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EDITORS' PREFACE

"Star Formation in Galaxies" was a large, international conference, held on June 16-19 1986 in Pasadena,
California. There were over 200 attendees from 12 different nations, and together they brought experience
and knowledge on many aspects of star formation in normal, starburst and active galaxies. On the
observational side there was particular emphasis on the comparison of radio continuum and CO data with
the IRAS data, and the nature of the energy source(s) of the most infrared-luminous extragalactic objects,
but the discussion and poster papers ranged from the diffuse far-infrared emission in the Galaxy, through
the detailed processes and triggers of star formation in disks and starburst nuclei, to the inter-relationship
between an active nucleus and a surrounding starburst.

Many people contributed to the success of the Conference. The Local Organizing Committee is
especially grateful to Wendy Zhome for her untiring assistance in the organization and preparation for the
Conference. Barbara Bateman and Rosanne Hemandez, were also invaluable. In addition, the assistance
of Cynthia Bennett, Ellen Erwin, Linda Fullmer, Helen Hanson, Gaylin Laughlin, Lesley Lloyd, Larry
Lloyd and Naomi Theodorou in the running of the oral and poster sessions is greatly appreciated.

For assistance with the preparation of the Proceedings, I am tremendously indebted to Helen Knudsen,
who gave up much of her free time for many weeks to correct and organize manuscripts, and construct
an excellent set of indices. Thanks are also due to John Fowler, Rosanne Hernandez, Julie Serpa, and
Zacqueline Souras for their help in the production of the Proceedings. I would also like to thank those
contributing authors who organized and proofed their manuscripts carefully.

Carol J. Lonsdale Persson

Pasadena, November 1986

iii



CONFERENCE PREFACE

As Becklin has remarked in his summary, the IRAS extragalactic discoveries have put infrared
astronomy into the big time. This conference, however, was not an IRAS, or even an "infrared" conference.
It has been a conference on a scientific subject; we have gone beyond tentative predictions and discussions
of data processing. The starburst phenomenon, once thought to be restricted to a very few galaxies, has
been shown to be ubiquitous, and has been correlated with the large scale galactic structure and dynamics
(bars, spiral arms, galactic collisions) and the smaller scale phenomena such as shocks and cloud collisions
which may trigger the star formation. The very luminous infrared galaxies have been shown to be the
dominant population of the Universe at the highest luminosities.

We intended this conference to be both a summary and a step forward. We think that the variety
and range of papers presented has accomplished these dual goals. We thank the presenters, the local
organizing committee and all the others who made this conference a truly pleasant and provocative
educational experience.

G. Neugebauer
N. Scoville

Pasadena, November 1986
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HIGH MASS STAR FORMATION IN THE GALAXY1

N.Z. Scoville J.C. Good
Astronomy Department 105-24 Infrared Processing and Analysis
California Institute of Technology Center 100-22
Pasadena, CA 91125 Pasadena, CA 91125

ABSTRACT. The Galactic distributions of HI, H2 and HII regions are reviewed
in order to elucidate the high mass star formation occurring in galactic spiral
arms and in active galactic nuclei. Comparison of the large scale distributions
of H2 gas and radio HII regions reveals that the rate of formation of OB stars
depends on <nH2 >1-9 where <nH > is the local mean density of H2 averaged over
300 pc scale lengths. In addition the efficiency of high mass star formation
(per unit mass of H2 ) is a decreasing function of cloud mass in the range 2x10 5

- 3x10 6 Mo. These results suggest that high mass star formation in the galactic
disk is initiated by cloud-cloud collisions which are more frequent in the spiral
arms due to orbit crowding. Cloud-cloud collisions may also be responsible
for high rates of OB star formation in interacting galaxies and galactic nuclei.

Based on analysis of the IRAS and CO data for selected GMCs in the Galaxy,
the ratio LIR/MH2 can be as high as 30 Lo/Mo for GMCs associated with HII regions.
This is a factor of ten higher than the mean value of 2.75 Lo/Mo for the H2
in the galactic disk. The total far infrared luminosity at A-1-500 pm associated
with the molecular disk in the Milky Way is 6x10 9 Lo. The LIR/MH2 ratios and
dust temperature obtained in many of the high luminosity IRAS galaxies are similar
to those encountered in galactic GMCs with OB star formation. High mass star
formation is therefore a viable (but certainly not unique) explanation for the
high infrared luminosity of these galaxies.

1. Throughout this article, we have scaled all derived parameters to the new
Sun-Galactic center distance Ro=8.5 kpc.

1. INTRODUCTION

Star formation is central to our understanding of both the structural evolution
of galaxies and their energetics. The formation of high mass stars is a key
element in both the spiral structure of galaxies and the highly luminous galactic
nuclei since in both instances, rapid, OB star formation has been proposed as
an efficient mechanism for generating a high luminosity with a small expenditure
of interstellar gas. Although massive star formation is often invoked to account
for the enormous energy output of extragalactic nuclei, the underlying cause
for the bias toward high mass stars is not at all understood.

In this contribution, we review the results of several recent investigations
specifically designed to elucidate the formation of OB stars in the Galaxy.
These studies also provide us with the diagnostics needed to distinguish high
and low mass star formation in external galaxies.

Carol J. Lonsdale Persson (Edior)
Star Formation in Galaxies 3



N. Z7 SCOVILLE AND J. C. GOOD

2-. GENERAL CONSIDERATIONS

Numerous millimeter and infrared studies of nearby star formation regions
have demonstrated that virtually all star formation activity in the Milky Way
occurs within molecular (not atomic) hydrogen clouds. The bulk of the molecular
gas is contained in giant molecular clouds (GMCs) of mass 105-106 Mo. For a
GMC of diameter 40 pc, the mean internal density is n200 H2 cm- 3 (see Scoville
and Sanders 1986 for a review).

The total mass of molecular gas in the Milky Way is estimated to be approximately
2.3x10 9 MH based on CO line surveys of the inner galaxy. The maximum global
star formation rate for the Milky Way would be 10' Mo yr-I if these clouds were
undergoing free-fall collapse (Tff=3xl0 6 years for a density of 200 cm'3).
Since the actual star formation rate is estimated to be approximately 5 Mo yr-1,
it is immediately apparent that the GMCs are generally stable against collapse.
That is, the overall efficiency for star formation on the free fall collapse
time is <1%. We should therefore view the gas parcels within the molecular
clouds as being in an "inactive" state 99% of the time; only occasionally (presumably
by unusual circumstances) are they activated to collapse and form stars.

Two alternative viewpoints can be taken with regard to star formation mechanisms.
On the one hand, we may picture star formation as a percolation process, ie.
once the clouds form, star formation proceeds inevitably, albeit at a slow rate.
In this picture, the overall star formation rate within any region of the galaxy
should vary linearly with the total mass of molecular gas. A second possibility
is that external, environmental factors occasionally initiate the star formation
at a high efficiency for a short time. For example, the shocks associated with
galactic spiral arms, expanding HII regions (Elmegreen and Lada 1977) or supernovae
remnants (Herbst and Assousa 1977) have been proposed as the initiation mechanism
of high mass star formation on cloud surfaces. A fourth mechanism (not discussed
much in recent years but for which we believe there is considerable observational
support) is the compression of molecular gas in the interface between colliding
GMCs. This latter process is consistent with observed concentration of high
mass stars in the spiral arms where the cloud-cloud collision frequency is highest
(due to orbit crowding in the spiral arms) and with observations of the star
formation efficiency as a function of cloud mass (see below).

3. THE LARGE SCALE DISTRIBUTION OF MOLECULES

The most striking characteristic of the molecular gas distribution in the
galaxy is the existence of a ring-like maximum midway between the Sun and the
galactic center. This feature (at R=3-7 kpc), containing 75% of the total molecular
gas, was first identified in the early survey of Scoville and Solomon (1975)
and it has been confirmed by all subsequent CO emission surveys (eg. Burton
et al 1975, Cohen et al 1980, Robinson et al 1984, and Sanders, Solomon and
Scoville 1984).

In Figure 1, we show the galactic radial distribution of molecular gas
derived from the 40,000 point Massachusetts-Stony Brook CO survey in the first
galactic quadrant (Clemens, Sanders, and Scoville 1986). For comparison the
distributions of radio HII regions and atomic hydrogen are also shown. The
ring-like distribution seen in both the molecular hydrogen and the 11l regions,
is totally absent in HI (which has a relatively flat distribution outside R=3

4



HIGH MASS STAR FORMATION IN THE GALAXY

GAS SURFACE DENSITIES
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Figure 1. Comparison of the H2, HI, and giant HII regions surface densities
in the Galaxy. Values for H2 and HI include a 1.36 correction for He. The
HI distribution is from Burton and Gordon (1978) and the H2 from Clemens, Sanders,
and Scoville (1986) and corrected to Ro=8.5 kpc.

kpc and a hole in the central region). A second major feature of the molecular
gas distribution is the sharp peak within 400 pc of the galactic center. The
total mass of molecular gas within the galactic center peak and the molecular
cloud ring at 3-7 kpc are 2x10 8 Mo and 1.8x10 9 Mo, respectively. The total
H2 and HI masses at R<14 kpc are each %2.3x109 Mo (assuming Ro=8.5 kpc, cf.
Scoville and Sanders 1986). The Z distributions of molecular gas and HII regions
are also very similar with the thickness (FWHM) of approximately 90 pc in the
area of the molecular ring, whereas the diffuse atomic hydrogen has approximately
twice this scale height.

Although all investigators using CO to survey the large scale distribution
of molecular clouds agree that there are large concentrations of CO emission
corresponding to the tangential directions (1=32 and 500) of the inner spiral
arms, there is still controversy concerning the density contrast between the
arm and inter-arm regions. For example, Sanders (1981) estimates an arm-interarm

5



N. 7. SCOVILLE AND J. C. GOOD

contrast of approximately 3:1 averaged over length scales of 500 pc, yet Cohen
et al (1980) assert that virtually all giant molecular clouds are confined to
the arms. The principle reasons for this disagreement are the loose definition
of the spiral arm locations and widths and uncertainities in the distances assigned
to emission features due to the two-fold ambiguity in the kinematic distance
and the finite velocity dispersion of the clouds.

Perhaps the best approach to the spiral arm question is to appeal to high
resolution observations in nearby external galaxies similar to the Milky Way.
In this spirit, it is significant that Rydbeck et al (1985) find only a 20%
enhancement in the molecular emission along the spiral arms in M51 as compared
with the mean emission at each radius when averaged over a length of approximately
1 kpc. In M83, Allen, Atherton and Tilanus (1986) found the HI emission peaks
downstream from the dust lanes and they point out that the absence of HI emission
from either the dust lanes themselves or the upstream side of the spiral arms
implies that the interarm gas must be largely molecular. The latter investigation
didn't provide a quantitative estimate of the density contrast, but it does
at least clearly settle the issue of whether molecular clouds can occur outside
of the spiral arms.

Within the Milky Way (at R=3-7 kpc), all the observations are consistent
with at least 50% of the molecular gas being in interarm regions and a density
contrast of >3:1. The interarm gas fraction could be even higher if a tight
definition is adopted for the spiral arms. The much greater arm-interarm contrast
seen in the galactic HII regions then implies that the spiral arm clouds are
either intrinsically different in a Way which favors high mass star formation
or that OB star formation is induced by environmental factors such as galactic
spiral shocks or cloud-cloud collisions (which are more frequent in the arms).

4. GMCS ASSOCIATED WITH HIGH MASS STAR FORMATION

We have recently undertaken a comparative study of discrete CO emission
regions from the Massachusetts/Stony Brook galactic CO survey (Sanders et al
1986) and radio HII regions. From the CO survey, we have compiled three samples
of giant molecular clouds (Scoville et al 1986). The first sample, which we
take to be the general cloud population, contains 1,427 emission regions with
CO temperatures exceeding 5 K. A second sample, which is a subset of the first,
contains 255 hot CO emission cores (delineated at the 9 K level). The cloud
cores are regions of molecular gas subject to strong heating--presumably active,
star forming gas. The third sample of GMCs consists of 95 clouds associated
with 171 radio HII regions (Downes et al 1980 and Lockman 1986).

4.1 Correlation of Hot Cloud Cores with Spiral Arms

Not surprisingly, the clouds associated with HII regions appear significantly
hotter than the general cloud population. The mean peak CO temperature within
the HII region clouds is 11.4 K while that in the general cloud population is
7.4 K. This correlation between hot molecular clouds and the spiral arm HII
regions has been pointed out by Sanders, Scoville, and Solomon (1985), Solomon,
Sanders and Rivolo (1985), and Scoville et al (1985).

The longitude-velocity distributions of the three cloud samples are shown

6



HIGH MASS STAR FORMATION IN THE GALAXY

./v DISTRIBUTION OF CLOUDS

80 WOWS. 4K CLOUDS

1.I

60"

• .-. . .

2o1) ". -'.'. .'-. .
40

20 f

-20 0 20 40 60 80 100 120

HOT CLOUD CORES

60" 8 K CLOUDS)

40-1(-) • .. .

20 : % " ... .

0.

-20 0 20 40 60 80 00 120

HII REGION CLOUDS
60

40 S(°) ". .

20"

01
-20 0 20 40 60 80 100 120

V (km s-')

Figure 2. The longitude-velocity distribution of the general cloud population
in the first galactic quadrant is contrasted with that of hot cloud cores and
clouds associated with HII regions (Scoville et al 1986).
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in Figure 2. There it can be seen that the hot cloud cores and HII region clouds
exhibit a much tighter confinement within the longitude-velocity plane than
the general cloud population. Indeed, the hot cloud cores appear to fall along
two arcs stretching from 1=00, V=0 km s-1 to the terminal velocities at 1=32
and 500 -- the Scutum and S&.gittarius arms.

The tight confinement of hot cloud cores to the spiral arms does not address
the fundamental question of why the OB star formation favors the GMCs in the
spiral arms since clouds undergoing massive star formation will have higher
temperatures due to the presence of the luminous embedded stars.

4.2 The Decreasing Efficiency of OB Star Formation in Massive GMCs

The more interesting question is whether the spiral arm clouds are intrinsically
different (eg. have a different mass spectrum or internal density) than the
more widely distributed disk population clouds. It is therefore of interest
to note that the mean diameter of the HII region clouds (at the 4 K CO boundary)
is 52 pc, effectively a factor of two larger than that of the general GMC population
measured at the same threshold temperature (Scoville et al 1986). Although
it is clear that massive star formation tends to prefer the larger GMCs, this
may simply reflect the greater mass and therefore, the larger number of sites
for star formation in the larger clouds.

In order to analyze the efficiency (per unit mass of H2) for massive star
formation in clouds of varying masp. we show in Figure 3 the HII region free-free
luminosity normalized by the cloud mass for clouds in five mass bins between
2x10 5 and 3x10 6 Mo. Also shown is the normalized number of giant HII regions
as a function of cloud mass. The figure demonstrates that the efficiency (per
anit mass of H2) for both uv emission and formation of separate OB star clusters
decreases for high mass clouds compared to lower mass clouds over this mass
range. Thus, the formation rate for massive stars is not simply proportional
to the total mass of H2, but must depend on other factors such as the galactic
location or the internal properties of the clouds.

The decreasing efficiency for OB star formation in higher mass clouds argues
rather strongly against mechanisms involving internal stimulation of the clouds
to initiate star formation. This is because an internal stimulation process
should generally have a higher efficiency in more massive clouds where there
is more material (surrounding the trigger) ready to be stimulated. For this
reason, sequential star formation models such as the compression of shells at
the edges of HII regions (Elmegreen and Lada 1977) do not appear to dominate
in the formation of massive stars.

4.3 Cloud-Cloud Collisions to Form OB Stars

An alternative mechanism for forming massive stars is the compression of
gas in "-e interface between colliding clouds and cloud clumps (cf. Scoville,
Sanders, and Clemens 1986). This mechanism is strongly supported by comparison
of the galactic distributions of molecular clouds and HII regions. Recently,
Clemens et al (1986) have analyzed the Massachusetts-Stony Brook CO survey to
yield an approximate face-on distribution for the molecular gas in the inner
galaxy using scale height information to resolve the distance ambiguities.
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Figure 3. The distribution of virial masses and OB star formation efficiencies
(per unit mass of H2 ) are shown for 71 GMCs with associated HII regions at known
distances (Scoville et al 1986).

Figure 4 shows the dependence of the number of HII regions on the molecular
hydrogen density averaged over length scales of %300 pc. The best fit power
law is

NHII - <nH2>1.9±0_2

The quadratic dependence of the HII region density (presumably the OB star formation
rate) on the molecular hydrogen density is strongly suggestive that OB stars
form as a result of a collision process, such as cloud-cloud collilions.

Since the 4 km s-1 rms velocity dispersion of giant molecular clouds (Clemens
1985) is comparable to or less than the typical internal velocities in the clouds,
it is clear that most collisions between GMCs will result in a bound complex
rather than disruption of the clouds. During a cloud-cloud collision, the interface
gas will remain molecular but be heated to peak temperatures of 10 3 -2x10 3 K.
Since the Jeans length at the highest temperatures is much greater than the
thickness of the hottest zone in the interface, stars would not be expected
to form until the post-shock gas has cooled to approximately 100 K. At that
point, the highest mass stars will form first in the cooling gas, thus favoring
massive stars in the initial mass function.

The mechanism of cloud-cloud collisions to form OB stars is consistent
with a number of previous observations of OB star formation. Most important
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HII REGION CONCENTRATION vs.
MEAN H2 DENSITY
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Figure 4. The number density of HII regions depends quadratically on the local
H2 density (averaged over IL300 pc in the galactic plane). The face-on density
of H2 is taken from Clemens, Sanders, and Scoville (1986).

is the fact that one may now understand the concentration of HII regions along
the spiral arms as resulting from the convergence of cloud orbits in the spiral
potential minimum associated with the density wave. With a modest 5% spiral
perturbation, Kwan and Valdes (1983) found that the number density of clouds
increased by a factor of approximately three in the spiral arms which would
result in an increase of the collision rate by a factor of nine. This corresponds
well to the observed contrast between arm and interarm HII regions -- Mezger
and Smith (1977) find 15% of the giant HII regions in classic interarm areas
of the I-V plane. In addition, it has often been noted that OB star formation
occurs with a low duty cycle in molecular clouds, that is, the time during which
massive star formation occurs is relatively short compared to the spread of
ages for lower mass young stars within the clouds. In the collision nodel,
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Figure 5. The 60 pm IRAS data were used to produce a constant, logarithmic
stretch image of the first galactic quadrant. The image was prepared at IPAC
by G. Laughlin.

it is natural to expect a low duty cycle as a result of the fact that the cloud
crossing time (that is, the interaction time) is a factor of 5-10 less than
the mean time between cloud collisions.

The HII regions formed during cloud collisions could be found deep in the
cloud interior or near the edge of the merged cloud, depending on the relative
masses of the initial two clouds. Since the largest fraction of the gas will
be activated in collisions of equal mass clouds, one would also naturally predict
a peak OB star formation efficiency (per mass of H2 gas) at intermediate cloud
masses. Finally, we note that the resulting HII regions will line up along
the collision interface; thus, the model will be consistent with all the observational
evidence which has been sumoned to support sequential star formation models
(cf. Elmegreen and Lada 1977).

5. THE INFRARED EMISSION ASSOCIATED WITH MOLECULAR CLOUDS

As a result of the IRAS survey, there now exists reasonably complete spectral
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and spatial information for the infrared emission associated with the GMCs detected
in the Massachusetts-Stony Brook CO survey. Identification of discrete CO emission
complexes with concentrations of far infrared emission in the IRAS survey also
enables us to determine the kinematic distances for numerous far infrared sources
and thus to estimate luminosities from the IRAS flux measurements. Figure 5
is a far infrared image of the first galactic quadrant constructed from the
60 Um data with a constant logarithmic stretch. Each of the three strips contains
100 of latitude and 450 of longitude.

5.1 The Total Far Infrared Luminosity From Molecular Clouds

In Figure 6, we compare the longitude distributions of the far infrared
luminosity, molecular hydrogen mass, and dust temperature (derived from the
60 and 100 pm fluxes with a dust emissivity - A-1 , see Appendix B of Lonsdale
et al 1985). For both the CO and IRAS data, the fluxes were averaged over a
window of Ab=2 0 and AI=2.5 0 , and in the infrared, a background was subtracted
corresponding to the fluxes at b=±10 . The far infrared luminosity includes
the bolometric correction for X=1-500 pm (Lonsdale et al 1985). For both the
H2 mass and the infrared luminosity, the units are displayed in solar units
for a reference distance of 1 kpc. Since the bulk of the emission in the range
1=10-50` arises from regions at a distance of 5-15 kpc, the vertical scale should
generally be multiplied by factors of 25-225.

The dominant feature in both the CO and far infrared luminosity distributions
is the molecular ring at 1=20-500. For the range 1=8-500 the mean ratio of

lIR/mH2 is 2.75 Lo/Mo and the mean far infrared dust temperature is 29.3 K.
There are, however, very notable departures from a constant IR:CO ratio in the
vicinity of high luminosity HII region complexes, for example, at 1=24, 34,
50 and 750.

Assuming that, on average, the far infrared emission arises with the same
distribution of source distances as the CO, we may use existing CO mass estimates
to derive the total far infrared luminosity of molecular clouds in the galactic
plane. That is, global models for the CO emission distribution in the galactic
disk (for which the source distances were derived from the CO velocities and
scale heights) may be applied directly to yield the d2 factors needed to convert
the far infrared fluxes in Figure 6 into luminosities. For a solar distance
of 8.5 kpc, Clemens, Sanders, and Scoville (1986) deduce a molecular mass of
2.1xlO9 Mo for the region R>1.5 kpc. Using the mean ratio of far infrared luminosity
to CO mass (2.75 Lo/M ), we obtain a total far infrared luminosity from the
same region of 5.8xi09 Lo0

The luminosity in the galactic center region may be estimated directly
from the observed flux assuming that all of the radiation observed at 1=-2.5
to +2.50 originates at a distance of 8.5 kpc. The luminosity from this region,
corresponding to R<375 pc, is 7x10 8 Lo.

It should be noted that this luminosity estimate does not include emission
components with large latitude thickness since we removed the "background" flux
at b=f±l 0 . Although part of the emission which varies slowly in latitude is
undoubtedly local and therefore does not represent a significant addition to
the overall Galactic luminosity, some of the high latitude emission must originate
in the 3-7 kpc ring on the basis of the longitude variation which shows a maximum
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Figure 7a. The far infrared luminosity (X=1-500 pm) and CO (V=10->40 km s-1)
distributions are shown for a 2x5° area of the galactic plane including M16
and M17. Pixels are 3x3'.

in the range 1=20-500 (Puget et al 1986). This diffuse component could constitute
as much as 50% of the total far infrared luminosity. Although the emission,
seen at IbI>l°, is probably emitted by dust associated with non-molecular ISM,
the energy sources of this luminosity are presumably situated closer to the
galactic plane in the molecular cloud ring.

5.2 The Infrared Luminosity of Individual Clouds

In Table 1, the far infrared and CO properties are summarized for GMCs
associated with the high luminosity HII regions M17, M16 and W51. Measurements
are given for regions of varying diameter in each cloud -- including both the
primary infrared sources associated with the HII regions and the more extended

14



HIGH MASS STAR FORMATION IN THE GALAXY

0--

Qo0

b -

170 160 150 140 130

I
Figure lb. The far infrared optical depth and dust temperature maps are shown
for the same area as Figure 7a including M16 and M17. The opacity and temperatures
were derived from the 60 and 100 pim IRAS data following the prescription given
by Lonsdale et al (1985) for tXoX-l. The image stretch is T6 0 11m=O 0 .0 5 and
TD=25-45 K.

emission associated with the much larger molecular clouds.

The ratio of far infrared luminosity to molecular mass is a factor of ten
higher than the galactic plane average of IIR/mH12=2.75 L0 /M0 in the immediate
vicinity of the luminous HII regions. The maximum value for LIR/MH2 (25.7 L0/M0 )
is obtained on M16. It is noteworthy that even though the ratio of far infrared
luminosity to H2 mass decreases as one includes larger areas of the cloud, inclusion
of the entire GMC (100 pc in diameter) still yields a high LIR/MH2 (n-10 L0/M0 )
which is much greater than the mean value obtained for the galactic plane.

Images of the CO and far infrared emission in a 2x5o (bxl) area of the
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Figure 7c. The CO and LIR/MH2 maps for M16 and M17. The stretch for LIR/MH2
is from 3 to 30 Lo/Mo and the image is blanked where the CO measurement is less
than 7a.

galactic plane including M16 and M17 are shown in Figure 7. The CO emission
was integrated from VLSR=-10 to 40 km s-1 and the infrared optical depth, dust
temperature and luminosity were computed assuming an emissivity E)Aj"X (see
Lonsdale et al 1985). The infrared emission in the vicinity of the HII regions
is characterized by low opacity, high temperature and high luminosity density.
In areas of the GMCs away from the HII regions, the dust appears significantly
colder than even the galactic background and hence, the GMCs show up on the
dust temperature map as dark areas (which also have high opacity). The LIR/MH2
map clearly shows the tendency for high values in the vicinity of the HII regions
and in general along the cloud boundaries where the interstellar Lv probably
heats the peripheral dust.
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Table I

IR Properties of High Mass Star Formation Regionsa

Region Diameter MH2 b LIRb LIR/MH IREb TD
(pc) NO) (LO) (Lo/Moy (K)

1M16 20 9x104  1.3x,0 6  15 14 36

M17 18 9x104  3.4x106  37 2.4 43
75 1x10 6  l.3xl07  13 6.9 31

W51 50 8.7x10 5  1.3x10 7  15 4 39
135 2.8x10 6  2.7x10 7  9.6 6.9 35

Galactic Centerc 740 2x108  6.8xi08  3.5 31

Galactic Diskd 2.2x10 9  6xlO9  2.8 29

Notes

a) Assumes Ro=8.5 kpc throughout.

b) MH2 evaluated from NH2=3.6xlO2 0 H2 cm- 2 (K km s-l)"1 (Scoville et al 1986).
LIR obtained from 60 and 100 tim IRAS fluxes with an assumed X-1 emissivity
law (see Appendix B of Lonsdale et al 1985). The infrared excess (IRE)
was evaluated from LIR and the radio free-free flux (cf. Myers et al 1986).

c) 1--2?5 to +2?5, b=-10 to +10. The IR background at jb=l0 was removed.

d) R<1.5 kpc. The IR galactic background at !b=l° was removed.
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6. APPLICATION TO HIGH LUMINOSITY IRAS GALAXIES

Recently, Sanders et al (1986) have obtained single dish CO measurements
for some of the distant IRAS galaxies. Their results indicate typical LIR/MH2
ratios in the range 10-50. These values are generally consistent with those
obtained for Galactic GMCs associated with HII regions (Table 1), suggesting
that high mass star formation is a viable energy source in the luminous IRAS
galaxies. However, it is then required that virtually all the clouds in these
galaxies have conditions similar to the most active areas in W51 and M17 and
this may be somewhat implausible.

With regard to the suggestion by Scoville, Sanders and Clemens (1986) that
most massive star formation in our own galaxy results from cloud-cloud collisions,
it is noteworthy that Sanders et al (1986) have found that the majority of the
distant high luminosity IRAS galaxies are in fact interacting galaxy pairs in
which one would expect a high frequency of collisions between the interstellar
clouds of the two galaxies.

We acknowledge support for this work under the IRAS General Investigator
Program (NS) and NSF Grant AST 84-12473.
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DISCUSSION

ELMEGREEN:
Molecular clouds are clumpy and stars form in the dense clumps. The average density in cloud complexes

decreases with increasing cloud mass, so the star-forming cores represent a smaller and smaller fraction of
the overall cloud mass as this overall mass increases. This may explain why the efficiency decreases with
increasing mass; this decrease may be independent of sequential star formation processes. The observed
clumpiness also explains the low star formation efficiency without the need for physical assumptions about
cloud stability. The clumps dissipate their kinetic energy in only several crossing times and eventually form
cores dense enough for star formation. The efficiency in these cores can be large (10%-50%), but the overall
efficiency in the whole cloud, low. Cloud complexes need not be 'stable' for any longer time than this clump
dissipation time. Star formation is not necessarily the same as clump formation because the clumps could
be primordial, that is, the big clouds may form by a coalescence of smaller clouds, which are still visible as
clumps.

SCOVILLE:
If the decreased efficiency for massive star formation in higher mass clouds Is the result of the decreased

fraction of the cloud mass in dense clumps, then this also implies that 'sequential star formation' has little
to do with the OB star formation i.e., the formation of massive stars is simply due to the pre-existing clump
structure in the clouds. In any case, there are as yet no observational studies suggesting that the fraction of
mass in dense clumps is any different in high-mass clouds than in low-mass clouds. The mean density is
probably higher in the latter case, but it does not follow that this is the result of a higher clump fraction.

HUNTER:
You have said that galaxies with low 'CO contents' would preferentially form low-mass stars. What

about irregular galaxies which have low CO luminosities and yet plenty of high-mass star formation?

SCOVILLE:
The critical factor is not the absolute 'CO content' but rather the concentration of the molecular gas. You

could certainly have situations in which the overall molecular gas content of a galaxy was low but the clouds
were restricted to a small region (or had a high velocity dispersion) so that the frequency of cloud-cloud
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collisions was high, resulting in a high rate of OB star formation. One should also note that massive star
formation in the irregular galaxies with low Hz/HI ratios could result from collision of HI clouds.

HUNTER:
But in NGC 4449, for example, the high mass star formation is scattered throughout the galaxy, so clouds

would have to be colliding over the entire disk. This implies a lot of molecular mass.

BEGELMAN:
Is there actually time for gravitational collapse to occur at the cloud-cloud interface during the collision?

Even if cooling is very rapid, collapse can occur no faster than the free-fall time. In the limit of rapid cooling,
the interface would cool isochorically rather than isobarically.

SCOVILLE:. Depending on the size of the GMCs undergoing a collision, the collision time could be up to 10 7 years
which is much greater than the 106 year free-fall time at density _> 103 cm- 3 .

ELIAS:
With regard to the point about HII regions being at the center of molecular clouds, I noticed, first, that

the specific examples you showed had the HII region toward the edges, and, second, that the clouds were
very non-spherical. How does this affect your statistical discussion?

SCOVILLE:
I agree that the interpretation of the HII region offsets is very dependent on the assumed geometry of

the clouds, i.e., whether they are spherical or elongated.
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DIFFUSE INFRARED EMISSION OF THE GALAXY:

LARGE SCALE PROPERTIES

J.L. Puget, M. Perault, F. Boulanger, and E. Falgarone
Radioastronomie

ENS, 24 rue Lhomond, 75231 Paris Cedex 05

ABS1RACT

A quantitative analysis of IRAS data in the galactic plane shows that:

about 2/3 of the power radiated in the 100pom band comes from diffuse
medium (atomic, molecular and ionized components), the other 1/3
coming from well identified luminous sources (GMC/HII complexes).

the diffuse emission has almost coastant colours throughout the
Galaxy, similar to the local "cirrus" colours.

the sources have a much lower 12pm/25pm and a much higher 60jm/100pm
emission ratio than the diffuse component, giving a very striking
anticorrelation in the colour-colour diagrams.

the separation between one narrow (molecular) and a second broader
(atomic) component shows that the molecular component does not provide
much more than 1/2 of the diffuse emission in the "molecular ring":
this implies a 4t vI(v) emissivity at 10 0 ps for the atomic component
of about 2.4 10-30 watts per H atom, 10 times higher than the
emissivity of' the molecular component at the same galactocentric
radius (4-6 kpc). The atomic component emissivity measures the
interstellar radiation field density.

The temperature distribution of the 2 components is discussed comparing
!RAS data with new measures of the 900pm emission of the galactic plane, which
appears to be dominated by cold dust in the narrow (molecular) component.

Carol J. Lonsdale Persson (Editor)
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The Origin of the Diffuse Galactic IR/Submm Emission: Revisited after IRAS

P. Cox and P.G. Mezger
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Auf dem Hiigel 69, D-5300 Bonn 1, F.R.G.

Abstract

In three previous papers we have investigated the origin of the diffuse
galactic IR/Submm emission by fitting model computations to balloon-borne
surveys. In this paper we compare the balloon observations with IRAS
observations. For the longitude profiles we find good agreement. However, the
dust emission observed by IRAS - contrary to balloon observations which show
dust emission only within Ibi 6 3" - extends all the way to the galactic pole.
We repeat the model fits, using more recent parameters for the distribution of
Interstellar matter in galactic disk and central region. IR luminosities are
derived for the revised galactic distance scale of Re = 8.5 Kpc. A total IR
luminosity of 1.2 EIOL0 is obtained, which is about one third of the estimated
stellar luminosity of the Galaxy.

The dust emission spectrum XlN attains its maximum at - XlOO1pm. A
secondary maximum in the dust emission spectrum occurs at-XlO0m, which
contains - 15% of the total IR luminosity of the Galaxy. To this hot dust
emission contribute both OH/IR stars (- 1/3) and very small grains down to few
A size (- 2/3). OH/IR stars are M giants with (for optical/NIR radiation) opaque
dust shells. The very small grains could be polycyclic aromatic hydrocarbon
(PAH) molecules.

We compare the galactic dust emission spectrum with the dust emission
spectra of external IRAS galaxies. The emission spectra observed between X30pm
and 1300prm can be fitted by a minimum of two dust components: Cold dust with
temperatures of -14-25 K, which is associ-ted with diffuse atomic hydrogen and
with molecular hydrogen, respectively, and which is heated by the general
interstellar radiation field; and warm dust with temperatures of -30-50 K,
located in HII regions and dense molecular cloud cores, which is heated by 0
and early B stars. The warm dust luminosity relates to the present OB star
formation rate, while flux densities observed at longer submm wavelengths are
dominated by cold dust emission and thus can be used to estimate gas masses.

I. The Galactic Disk between Galactic Radii 2 g R/kpc ' 10

The diffuse galactic IR/Submm emission is due to stellar radiation, which
is absorbed and reradiated by interstellar dust particles. About one third of
the total stellar luminosity of the galactic disk is reemitted as IR emission.
For an investigation of the origin of this dust emission three basic parameters
must be known: i) The dust characteristics; ii) the spatial distribution of both
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interstellar dust and stars of different luminosity and evolutionary stage; iii)
the geometrical association between stars and interstellar dust. which
determines dust temperatures and luminosity.

We have investigated the origin of the galactic submm."IR emission in three
successive papers (Mezger, Mathis and Panagia, 1982. Mathis, Mezger and
Panagia, 1983. Cox, Kr~igel and Mezger, 1986. This last paper is referred to in
the following as Paper I). As 'input parameters to our model computations ;e
use the distribution of the interstellar gas as derived from HIX21cm and
CO(J=l-0) line emission. The distribution of different stellar populations
adopted for our model computations are discussed in Mathis et al., who also
derive the intensity and spectral distribution of the interstellar radiation field
(ISRF) as function of galactic radius R.

We use the Mathis, Rumpl and Nordsieck (MRN, 1977) dust model (which
consists of graphite and silicate grains), as extended beyond Xl0pm by Me.,.;er
et al. (1982), but with optical constants as revised by Draine and Lee, (1984:
see also Paper I). We scale the gas-to-dust mass ratio as a function of R with
the observed galactic O/H abundance gradient. The MRN grain size distribution
has the form f(a)a a-3-5 , with a lower and higher cut-off at radii amin -100
(=0.01 pm) and amax -0.25pm. In dense molecular clouds one expects grains
with radii >am.,rx due to formation of ice mantles. In the diffuse atomic
hydrogen (HI) rcent observations suggest an extension of the grain size
distribution to radii as small as a few A (Boulanger et al., 1985). The existence
of thcse very smal grants (VSG) in interstellar space, probably polyc..c,',:C
aromatic hydrocarbon moec-:les IPAH), was first suggested by LLger and Puget
(1984).

We first compute the temperature of dust located in the diffuse HI and in
quiescent giant molecular clouas (GMC) heated by the general ISRF. The dust
emission predicted as a function of galactic longitude 1 and wavelength X is
then compared to observations. The spectrum of the dust emission within the
solar circle (but without contributions from the region around the galactic
center) is shown in Figs. la and lb. Fig. la shows the spectrum taken from
Paper 1, which is based on a compilation of balloon observations by Pajot et al.
(1986). Open circles relate to a preliminary evaluation of IRAS observations.
The revised spectrum in Fig. lb contains the final IRAS results (filled circles),
which are obtained by integrating the IRAS maps after subtraction of the
contributions by zodiacal dust. Very recently new and improved balloon
observations at X145pm and X380pm became available (Caux and Serra, 1986).
We cannot incorporate their surface brightness directly in the spectrum Fig. lb,
since their integration extends over lblz'1.25 rather than over )blLl used by
us. However, we adopt their spectral shape for X a- 100pm.

It is found that the contributions from very cold dust (vcd) associated
with quiescent molecular clouds and from cold dust (cd) associated with atomic
hydrogen, as derived from our model computations (see Table 1), can account
for only part of the spectrum between X30pm and 1000pmr. Remember that both
these dust components are heated by the ISRF, whose radiation density is
primarily determined by contributions from stars with Teff/ 10,000 K.
Subtraction of the contributions by (vcd) and (cd) leaves the dotted curves in
Figs. la and b, which represent the contribution by warm dust (wd, T -
30-50K) to the diffuse galactic emission X I 30pm. Deta; A model computations
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Figure 1. Spectrum of the dust emission betw/een 4 and 900 lim from the inner
part (R A- 8 kpc) of our galaxy, averaged over galactic longitudes 3 -35* and
latitudes I bl -e 1°. a) This is the spectrum reproduced from Paper I; open
circles refer to preliminary IRAS results. b) This is the revised spectrum based
on final IRAS data (filled circles). The three components which are used to fit
both spectra for X •- 30mm are: cold dust (dashed curve), very cold dust (cros-
ses) and warm dust (dotted curve). Two components contribute to the (hd)
spectrum in the middle IR X &- 301im, viz. very small grains (dashed curve) and
OH./IR stars (dashed-dotted curve). The solid line shows the superposition of
the five dust components.

(Paper D) show that only 0 and early B stars located in HII regions and dense
molecular cores can heat dust to these (wd) temperatures and provide the
luminosity required to explain the observed galactic (wd) emission. These model
computations further suggest that -2/3 of the (wd) luminosity is due to heating
by 0 stars and -I1/3 is due to heating by B stars. Comparison of the hydrogen
masses associated with (wd) and (cd, vcd), respectively (see Table 1) shows,
that only -1% of the interstellar hydrogen is associated with warm dust, while
the (wd) and (cd) luminosities are about equal. Of further interest is the fact
that the submm part of the spectra shown in Figs. 1, for X>500pm, is dominated
by (cd) and (ved) emission. Taking these facts together we arrive at the
important conclusion that the (wd) luminosity of the diffuse galactic emission
is related to the formation rate of 0 and early B stars during the past few
million years, and that flux densities at submm wavelengths .N -1 500pro are
dominated by contributions from (cd) and (vcd), which represent the bulk of
the interstellar dust.

The emission between X4pJm and 20pJm is due to hot dust (hd) of several
hundred K. Our model computations, adjusted to the most recent IRAS results,

suggest that - 1/3 of the total (hd) luminosity comes from normal MRN grains
located in circumstellar shells of M giants, which are in their asymptotic giant
branch (AGB) evolutionary stage, where heavy mass outflow occurs(the
so-called OH/IR stars). The other 2/3 of the (hd) luminosity Is contributed by
very small grains (VSG) which are heated temporarily by absorption of single
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energetic photons to temperatures of several hundred K. If these grains are
made of PAH molecules, they would emit the absorbed energy via a "forest of
lines" at MIR wavelengths rather independent on the exact grain temperature,
and thus could account for the MIR shoulder in the spectra Fig. 1.

While the basic heating sources of the galactic dust are the same as
described in Paper I, some of the model parameters have been changed for the
fit of the revised spectrum presented here in Fig. lb. Original and modified
model parameters are given in Table 1 for Ro = 10 kpc.

Table 1 Parameters for the Model Fit to IR/subam Emission from our Galaxy
within the Solar Circle C 2 & R/kpc a 10)

Dust component used in Paper I used here Reference
and Fig.Ia and in Fig.Ib

Very cold dust _vcd)

(Tvcd> in K 14 14 iPuget, 1983)
Lvcd in Le 5 E 8 8 E 8

MR 2 in mo 9 E 8 1.5 E 9 (Puget, 1983)

Cold dust (cd)

Tcd in K 15 - 25 15 - 25
Lcd in Le 4.4 E 9 6.6 E 9

lEI in m 0  6 E 8 9 E 8 (Bloemen et
al.. 1986)

Warm dust (wd)

Twd in K 30 - 40 30 - 40
Lwd in Le 7.3 E 9 6 E 9

gad in mo 4 E 7 3 E 7

Hot dust (hd)

Thd in K 200 - 500 200 - 500
Lhd(VSG.) in Le 1.3 1 9 2 z 9
IX

Lhd(OH/IR) in Lo 1.2 E 9 1.4 E 9 (Habing, 1986
priv. comm.)

A. (10 - 2Kpc)

Avtot in mag 20 25 (Puget, 1983)
AV81  in mag 9 13.5
AvH 2  in mag 11 11.5

The main difference of the parameters used in the revised model is an
increase of the mass of interstellar matter associated with (vcd) and (cd) by
factors of -1.7 and -1.5, respectively, accompanied by a corresponding increase
in the IR luminosities. VSG appear to exist only in the diffuse interstellar
matter (HI).Hence their contribution to the (hd) luminosity also increases by a
factor 1.5. In paper I we adopted a luminosity ratio Lhd(VSG)/Lcd - 0.25, which
we here increase to - 0.30 based on the latest evaluation of IRAS results (Cox
and Leene, 1986).

Ridge line intensities of the dust emission in the galactic plane as
derived from IRAS observations are shown together with our model fits in Figs.
2a,b,c and d. Fits for surveys at other wavelengths can be found in Paper I.
Ridge line intensities, derived from balloon and IRAS surveys, generally agree
very well. Latitude profiles derived from IRAS surveys - contrary to balloon
surveys - show dust emission at all latitudes. The extended IRAS latitude
profiles are well reproduced by our model computations (see Paper I, Fig. 4).
This high-latitude dust emission increases the radiation density contained in
the FIR part of the ISRF by nearly an order of magnitude, as compared to the
estimates by Mathis et al.(1983).
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Figure 2. Ridge line intensities of the infrared emission for 3X 1 90" in the
four IRAS bands. The data are averaged over I bl & 0*.5. The dashed curves
represent at > = 12pm and X = 25pm the contributions of very small grains
and show at X 60ýtm and A 100pm the contribution of cold dust. Solid
curves are the sum of the contribution of cold, very cold and warm dust at
60pm and 100 pm, and of very small grains and hot dust in the shells of OH!IR
stars at 12prm and 25pm.

II. The Galactic Center Region

The central regions of many external spiral galaxies are prominent IR
sources. In analyzing their integrated dust emission one would like to know if
and how the emission spectra of nuclear regions (R 6 1 kpc) deviate from those
of the spiral arm regions, where most of the OB stars form. For most external
galaxies the angular resolution of IRAS is not sufficient to resolve disk and
nucleus. However, for the center region of our galaxy the IRAS data can oe
used to estimate the characteristics of its dust emission.
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The surface density of both atomic and molecular hydrogen falls to a
minimum between galactic radii R -l-2kpc, then starts to increase again at R &
0.7 kpc. The total mass of interstellar matter within this radius amounts to
several 10E8 mO. Free-free and warm dust emission, however, which indicate OB
star formation, are only found within an area at x %b - 2' x 0".5.
corresponding to - 350 x 90 pc surrounding the galactic center. The dust
emission from this region will be investigated in this section.

a) ", b)

10-8 ,- -. .

3t.

10-10

10-11 1 1 1 n , I I I I ,

10 100 1000 10 100 1000

X (PIm) X (m)

Figure 3. Average spectrum of the dust emission associated with the galactic
center, integrated within an area al x Ab - 2* x 0*.5 (dots and full line), a) is
a comparison with the spectrum of the galactic disk taken from Fig. lb (dotted
line); b) is a decomposition of the galactic center spectrum into the
contributions of very cold dust (crosses), warm dust (dotted line) and hot dust
(dash-dotted line), as described in the text.

In Fig. 3a we have plotted flux densities integrated within this area.
The flux densities relate to the galactic center, i.e. an underlying extended
component due to dust emission from the galactic disk has been subtracted.
Flux densities at 900Pm and 300Pm are those estimated by Mezger et al. (1986
and references therein), flux densities at shorter wavelengths have been
derived from IRAS data. The dashed curve in Fig. 3a represents the spectrum of
the surface brightness of dust emission from the galactic disk as shown in Fig.
lb, but normalized to coincide with the galactic center flux density at XlOPm.
The full curve connects the observed flux densities and represents the true
IR/submm spectrum of the center region to the best of our present knowledge.
Again, the spectral shape for X b 100 pm has been adopted from Caux and
Serra (1986).

An investigation of the cold dust emission at X30Opm ant X900pm yielded
a total mass of hydrogen of -1.5E7 mO within 2" x 0'.5, comparable to the
total mass of molecular hydrogen as estimated from CO observations. This ied
to the conclusion that most of the hydrogen in the central region is in form of
molecules located in GMCs, whose average dust temperature of <Tvcd> - 20K,
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however, appears to be higher than in disk GMCs. Also, kinetic gas
temperatures derived for the center GMCs are much higher than gas
temperatures derived for disk GMCs (Mezger et al., 1986, and references
therein).

The (vcd) spectrum, for MH = 1.5E7 mO and <Tvcd>= 20K, is shown t,'
crosses in Fig. 3b. Subtraction of this (vcd) contribution from the observed
spectrum leaves the dotted line, which corresponds to the emission from (wd)
with Twd - 35-45K. Due to the absence of atomic HI we consider the
contribution from (cd) emission negligible. This also agrees with the
considerably lower (hd) emission as compared to the galactic disk (Fig. 3a).
Since VSG dust is to be correlated with diffuse atomic hydrogen, which appears
to be absent in the central 2"x0".5, only OH/IR stars will contribute to the
(hd) emission.

Table 2

Parameters foz the Model Fit to the IR/subam Emission from

a Region Al x Ab - 2
0
x 00.5 surrounding the Galactic Center.

Adopted Distance to the Galactic Center is RO = 10 kpc.

Dust component Parameters References

Very cold dust (vdc)

(TVcd) in X 20

Lvcd in Le 7E7 Nezger et al.: 1986

XR2 in SO 1.5E7

Cold dust (cd)
not considered

Warm dust (wd)
Twd in K 35 - 45 Dent et al.: 1983
Lwd in L0  2.3E8
1vd in mo lE6
gas

Hot dust hAd)
Thd in K 200 - 500

Ihd (VSG) in L0
Lhd (OH/ZR) in Le 3E7

The parameters used for the model fit of the dust emission from the
central 2"x0".5 are given in Table 2. The corresponding dust luminosity
amounts to - 2% of the total luminosity. Estimates of the formation rate of OB
stars in the central 350 x 90 pc - based on free-free flux densities and warm
dust luminosity - range from - 10-4% of the total OB star formation rate in
the Galaxy. The nucleus of our Galaxy thus exhibits only mild star formation
activity.

III. Comparison with external galaxies

The average spectrum of 18 Sbc type galaxies, taken from Chini et al.

(1986), is shown in Fig. 4. This spectrum can be decomposed into a minimum of
three components, which we identify - in analogy to the dust emission from
our Galaxy - with contributions from i) (vcd) + (cd) emission (which cannot be
separated), ii) (wd) emission and iii) (hd) emission, respectively.
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Figure 4. The average spectrum of 18 Sb,c type galaxies normalized at )lOO;pm

(from Chini et al., 1986). The solid curve is the sum of the contributions from
very cold dust and cold dust (16 K), warm dust (45 K) and hot dust (of a few
hundred K).

Compared with the decomposition of the galactic dust emission spectrum
in Fig. 1, which is based on model computations, the decomposition of the
observed spectra of external g~iaxles in contributions from (cd) and (wd) is
somewhat arbitrary and appears to represent a rather extreme solution, since
the (wd) spectrum has been forced to fit the IRAS observations at X25mm and
100pm, respectively. This is also born out by the fact that the ratio Twd/Tcd
- 2.9. derived for the external galaxies, is considerably higher than the ratio
TWd/((TCd> + Tvcd)0.5 - 2.1. obtained for our Galaxy (with temperatures taken
from Table 1). It has been shown. however, by Chini et al. that this
uncertainty in the decomposition barely affects the determination of Lwd.
The uncertainty in the (cd) + (ved) luminosity, on the other hand, does not
affect estimates of the gas content of these galaxies, which are based on their
X1200 pm flux densities. The gas content of external galaxies estimated in this
way (see e.g. Chini et al.) promises to be considerably more reliable than
estimates based on the luminosity of the opaque 1 2 CO emission line. For the
Sbc galaxies a ratio Lwd/Lcd - 0.7 is found as compared to a ratio - 0.8 for
our Galaxy (with luminosities taken from Table 3). The dust emission
characteristics of our Galaxy appear to fit in with Sc galaxies (see Chini et
al., 1986, Fig. 2).

IV. Dust luminosities of the Galaxy

Dust emission characteristics of the galactic disk as given in Table 1
extend to 10 kpc. In Paper I we have extended model computations beyond 10
kpc. Adding both the contributions for R >10 kpc (Paper I) and R <2 kpc (Table
2, this paper) to the luminosities given in Table 1 yields the total dust
luminosities of the Galaxy, as given in the second column of Table 3. Note that
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the (hd) luminosities from Tables 1 and 2 have been decreased by a factor of

1.4 to account for opacities at MIR wavelengths (see Paper 0). The absorbed MIR

luminosity is reradiated at longer wavelengths.

Table 3

Total Dust and Stellar of the Galaxy

Ro = 1.0 kpc 8.5 kpc

bred in Lo 1.0 E9 7.2 E8IR

Licd in Lo 7.3 E9 5.2 E9

LId in LO 6.5 E9 4.7 E9LIR

T.L d ilk Lo 2.5 E9 1.8 E9

IR

4 tin L,) 1.7 110 1.2 E10

L.°t in LO 5 EO1 3.6 E10

The total stellar luminosity in Table 3 comes from Mathis et al.(1983). All
luminosit have been obtained for a distance R0 = 10 kpc between solar
system s alactic center. Recently, the Working Group on Galactic Constants
of the i- Commission 33 (see, e.g. Kerr and Lynden-Bell, 1986) has
recommended to use the distance R0 = 8.5 Kpc. In this case all luminosities are
reduced by a factor 0.852 = 0.72. These reduced luminosities are given in the
third column of Table 3. The ratio Lt-Ot/Lt~t -0.34 means that one third of the
stellar emission in the Galaxy is abso"bed and reemitted by dust.

V. Dust Luminosities and Star Formation Rates

At present the most reliable way to estimate the global star formation
rate (SFR) of 0 and early B stars, *OB, is via the Lyman continuum (Lyc)
photon production rate, which can be derived from the integrated free-free flux
density of a galaxy. In a second step the OB SFR is connected to the total
SFR, *, by adopting an initial mass function (IMF). It has first been suggested
by Mezger and Smith (1977) that in our Galaxy (and in external galaxies
probably as well) we deal with two different star formation processes, viz.
"spontaneous SF", where stars form in the total mass range 0.1 6 m /mrn ' 100
according to a rather general IMF, and "induced SF", where only stars form
above a critical mass mc. In our Galaxy induced SF appears to occur primarily
in main spiral arms and (probably) in the center region, with mc - 3 mo. The
ratio of induced to spontaneous SF is a = jind/1 *spon - 2-2.5. This hybrid
process of SF, also referred to as "bimodal SF", was put into a quantitative
form by G-isten and Mezger (1983) in order to explain galactic abundance
gradients. As a by-product it was found that bimodal SF also solves the
problem of an apparently too high SFR, which is estimated on the basis of the
Lyc-photon production rate.

From the Lyc-photon production rate in our Galaxy, using the IMF
obtained by Miller and Scalo (1978), one derives a present-day SFR of *(to) =

10.4 mf yr- 1 . The change of the galactic distance scale mentioned above
reduces this value to - 7.5 mo yr- 1 . The contribution to the total SFR from
the central region appears to be less than 10%, that from outside the solar
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circle accounts for - 10%. This leads to an estimated total present galactic SFR
of *(to) - 9in, which is the value given in Table 4 for a = 0. The
corresponding lock-up rate in low mass stars m - 1 mo and dead stellar
remnants is d.VLdt = (1-r)* = 5.2moyr-1. with r = 0.42 the fractional rate of
"instantaneous return" to the interstellar space of matter transformed into a
newly formed generation of stars. These values are close to the SFR and
lock-up rate averaged over the lifetime of the Galaxy. In other words this
would mean a time-independent SFR and lock-up rate, which - for various
reasons - appears to be an unlikely situation. In the upper line of Table 4 is
shown, for mc = 3mn and two values of a, how bimodal SF reduces both * and
.•n our Galaxy. Analytical formulae to compute SFRs and lock-up rates in the
case of bimodal SF are given by Mezger (1985).

Table 4

Present Star foraatiou Rates *(to) and Lock-up Rates (W /dt)t
- N in our Galaxy and in an IR Galaxy with 1.14 - Il2 Lo,

computed for sc 3 so and three values of (a> . (*tid/*sponl.

(a). 0 2.5

Rates in awr1 * 1

Our galaxy

Lwd - 4.7Z9LO 9.0 5.2 4.5 1.8 2.6 0.34

IR Galaxy

Lwd -11120 1.913 1.1E3 9.512 3.82 5.512 7.21

For external galaxies a determination of the Lyc photon production rate is
difficult, since in most cases for X - 2mm synchroton emission, and for X e 2mm
dust emission dominate over the free-free emission. It therefore would be
desirable, if the easily observed total IR luminosity of a galaxy could be used
to estimate its SFR. Most authors who have tried to do this, however, have
oversimplified a rather complex problem. As pointed out above, it is only the
warm dust luminosity which is directly linked to the number of recently formed
0 and early B stars. But a quantitative relation between Lwd and YOB is
difficult to establish. Factors f(m) enter into such a relation, which measure
the fraction of the MS lifetime of a star of mass m, during which it is
associated closely enough with dust In surrounding HII regions and shells to
heat it to the (wd) temperatures (see the discussion in Paper I, Appendix A).
Rather than using such a quantitative relation we combine values l' and Lwd

from Tables 3 and 4 to derive the empirical relation * (<a> = 0) - 1.9 10-9
Lwd, valid for our Galaxy and (a> = 0 (i.e. no induced SF). Here L(wd) Is given
in solar luminosities and '* in moyr- 1 . This empirical relation can be
generalized for bimodal SF. Then, assuming that this relation also holds for
external galaxies, we estimate the SFR and lock-up rate for a hypothetical IR
galaxy with Lwd = 1E121,0. Without bimodal SF a SFR of nearly 2000 RO yr- 1

would be required to sustain the (wd) luminosity of 1E121,0. In one million
years this galaxy would transform 2E9 me Into stars and lock up one half of
this mass in stellar remnants. Remember that the total gas content of our
Galaxy is - 4E9 me.

Considerations like these have probably helped to popularize explanations
of high IR luminosities of galaxies in terms of "bursts of star formation". If,
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however, in such actively star forming galaxies induced SF dominates
(i.e. <a> -*.) both 4, and AM&are drastically reduced. E.g. in the case of the
galaxy with Lwd = IEI2L0 . as shown in the second line of Table 4, a SFR of
550 moyr-I is required to sustain this luminosity, of which only 64 rnoyr-'
would oe permanently locked up. This example shows that galaxies can derive
their high IR luminosities for a long time without consuming extensive amounts
of gas or piling up too much mass in dead stars. Moreover, as shown by Chini
et al. (1986) high IR luminosities in Galaxies are not necessarily a sign of star
burst, but rather of very massive galaxies, whose SFR is proportional to their
gas content, i.e. , - MH.

VI. Estimated Uncertainties

This paper and related previous papers were aimed to derive a model
which both explains the diffuse galactic IR/Submm emission correctly, and is
consistent with observations pertaining to dust characteristics and the
distributions of stars and interstellar matter. How accurate are these
parameters known today?

Derived dust luminosities depend primarily on the quality of the IR
surveys and on the galactic distance scale, but only marginally on a particular
model. Provided RO = 8.5 Kpc is the correct distance to the galactic center,
LtOt = l.2E10Lo should be correct within - 20-30%. There are indications that
Re is still overestimated.

Model computations related to the emission from dust associated with H!
and H2 , which is heated by the general ISRF, depend on i) the dust absorption
cross section per H-atom; ii) the distribution of interstellar gas in the galactic
disk; iii) the density and spectral distribution of the ISRF. At present, we
believe that dust cross sactions between XO.1pm and - 40pom are known with
uncertainties of a few 10%. At longer wavelengths absorption cross sections
could be up to twice as high as those adopted here and in Paper I.
The intensity and spectral distribution of the ISRF in the solar vicinity and for
wavelengths X A 2prm appear to be rather well established. The FIR part of the
ISRF, as given by Mathis et al. (1983), may be underestimated, however, by an
order of magnitude and more, since contributions from dust at high galactic
latitudes were neglected. This would affect primarily the temperature of dust
deep inside GMCs. This is the reason why we adopted a rather uniform
temperature <Tvcd> - 14 K of dust inside GMCs, rather than the lower values
suggested by the model computations by Mathis et al. (1983). Extrapolation of
the ISRF becomes more uncertain with increasing distance from the sun. We are
nearly completely ignorant regarding the contribution of newly formed medium
and low mass stars to the heating of dust in quiescent molecular clouds.
Estimates of the surface density of atomic and molecular hydrogen as a
function of galactic radius appear slowly to converge. In the case of HI self-
absorption of the X21cm line appears to be the main source of uncertainty. The
determination of H2 surface densities based on 1 2 CO surveys is highly
uncertain on a number of accounts. We refer to recent critical reviews by Puget
(1983) and Bloemen et a1.(1986).
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DISCUSSION

TELESCO:
For your Sbc galaxy energy distribution, what do you claim is the origin of the 10pim emission?

NMEZER:
Presumably OH/IR stars and small grains.
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TELESCO:
Shouldn't one be able to separate out these contributions to some extent, since small grains and others

associated with 'starbursts' should be spatially distributed differently from the OH/IR stars? The OHIIR stars
should be more uniformly distributed since they are not necessarily starburst products.

MEZGER:
Yes.

GALLAGHER:
Which initial mass function did you use?

METGER:
We used the Miller/Scalo IMF.

GALLAGHER:
More recent results, from both the Milky Way and Large Magellanic Cloud, suggest a flatter slope for

the upper IMF than adopted by Miller and Scabo. This will help remove some of the energetics problems that
you discussed. Going from an upper IMF slope of ,3 to the Salpeter value of ,2.35 might gain a factor of
3-10 in predicted Lm per M® of stars formed.

MEZGER:
I agree.

PUGET:
In your discussion of the Galactic Center region, you don't mention the fact that the heating is due mostly

to an old disk population-type spectrum peaking at 1pm, which is quite different from what happens in the
disk and could explain the low l2prm/100rm ratio.

MEZGER:
In the Galactic Center region, Al x Ab - 20 x 00.5, we identify OH/IR stars as the principal contributors

to the MIR emission, while the warm dust (, 35 - 45 K) is heated by 0 stars and early B stars. The
contribution from cold dust associated with atomic hydrogen is absent, and the very cold dust associated with
molecular hydrogen is wanner (,,20K) than in the Galactic disk. Although I agree that the density of the
interstellar radiation field in the central region is higher than in the disk and is dominated by M giants, I
doubt if these stars contribute anything to the 12pm flux density. Apart, of course, from those M giants which
happen to be in their AGB evolutionary stage. In fact, we believe that all MIR emission in the central region
comes from such OH/IR stars.
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Star formation in galaxies takes place in molecular clouds and the Milky Way is the
only galaxy in which it is possible to resolve and study the physical properties and star
formation activity of individual clouds. In this paper we describe and analyze the masses,
luminosities, dynamics and distribution of molecular clouds, primarily giant molecular
clouds in the Milky Way. The observational data sets are the Massachusetts-Stony Brook
CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared
luminosities of galactic clouds are then compared with the molecular mass and infrared
luminosities of external galaxies.

Section 1 describes how molecular clouds are observationally defined from the CO
survey. We then show in section 2 that molecular clouds have well defined empirical laws
governing their size-linewidth and virial mass-CO luminosity relationships (Solomon et al.
1986a). The virial mass-CO luminosity law establishes a physical basis for the use of CO
as a tracer of molecular cloud mass, primarily H2 . The size-linewidth law combined with
the dynamical mass from the virial theorem leads to mass-linewidth and CO luminosity-
linewidth laws. Section 3 presents the molecular cloud mass spectrum.

In order to determine the current star formation activity in GMC's we have measured
their far IR luminosity from a comparison of the IRAS and CO data. Section 4 shows
that the IR luminosity is proportional to the CO luminosity and that the (IR luminosity
/ cloud mass) is independent of mass. There is a maximum to the LIR/M(H 2) ratio in
galactic molecular clouds indicating that star formation activity is well regulated within
the clouds. Section 5 briefly discusses the comparison between far IR and CO emission on
a galactic scale and section 6 shows a face on picture of molecular clouds in the galaxy.
In section 7 we briefly summarize our results on far IR and CO luminosities in external
galaxies. We compare the star formation activity in isolated and interacting galaxies with
that of galactic molecular clouds. The interacting galaxies have (IR luminosity / molecular
mass) ratios substantially higher than any galactic molecular cloud.

1. CO Observations and Cloud Definition

The CO survey observations were carried out during 1981 and 1982 on the FCRAO

Carol J. Lonsdale Persson (Editor)
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14 meter antenna operating at a frequency of 115.271 GIlz (HPBW = 47 arc seconds).

Approximately 40,000 CO spectra were obtained between the limits of 80 to 900 in lon-

gitude, -1' to +1V in latitude and -100 to +200 km s- 1 in velocity with a typical rms
noise level of 0.35 K. The survey spacing of 3 arc minutes (over the range t = 18' to 540)
was chosen to enable measurement of essentially all molecular clouds inside the solar circle

with size greater than 20 pc. For example on the far side of the galaxy at distances of 14

kpc the spacing is 13 pc; on the near (wrt the tangent point) side in the molecular ring at

a distance of 4 kpc th, spacing is 3.5 pc. A more complete discussion of the observations

and calibration procedures along with maps of the complete data in latitude-velocity space
is in Sanders et al. (1986); longitude-velocity maps and spatial (longitude-latitude) maps

at fixed velocities are given in Clemens et al. (1986) and Solomon et al. (1986b). Inspec-
tion of the actual survey contours in the above references shows that many clouds easily

stand out from the background and can be defined with little difficulty. However there are

also regions of strong emission with blending of features in which the definition of cloud

boundaries in the three dimensional (1, b, v) space is complicated and may be subject to

different interpretations by different observers. In our first analysis of the Massachusetts-
Stony Brook CO Galactic Plane Survey (Solomon, Sanders and Rivolo 1985) we overcame

the boundary problem by defining CO sources, representing the cores of molecular clouds,

as local maxima in 1, b, v space. We showed that the galaxy had two populations charac-

terized by (1) warm molecular cloud cores with one-quarter of the population and about

one-half of thte emission; they exhibit nonaxisymmetric galactic distribution, are clearly
associated with H II regions, appear to be clustered, and are a spiral arm population; and

(2) cold molecular cloud cores containing three-quarters of the total number; they are a

widespread disk population located both in and out of spiral arms.

In this work we adopt a procedure which unambiguously defines cloud boundaries in

three dimensions in order to obtain an objective cloud data set and to study cloud structure

and dynamics. Clouds are defined as closed surfaces in the three dimensional space at fixed

intensity levels T,- = 3, 4, 5, 6, 7 K. The galactic plane emission is thus broken up into

a set of discrete clouds fof each intensity. For the purpose of this analysis a cloud was

required to have a minimum total integrated intensity summed over all locations inside

the surface of 40 K. km. s- 1 for T* = 6 and 7 K and 60 K. km. s- 1 for TR* = 4 and 5

K. Each set corresponds to a cloud catalog containing about 400 clouds. There are about

1,000 clouds smaller than the minimum. Large sections of the galactic plane are blended at

the 3 K level ,vith features extencding over as much as 5' and 60 K . km. s-1. By contrast

there is very little blending of tl'e surfaces at the 6 K level. The 4 K catalog was adopted

except for the most confused regions between longitudes of 8' and 320 and velocities v > 60
km . s- 1 . Here a selection was made of the lowest intensity surface cloud which was not

severely blended. A quantitative measure of the cloud asymmetry was utilized to eliminate

spatially blended clouds. The final catalog is thus composed of a mixture of clouds defined

at the 4, 5 and 6 K levels. Above longitudes of 540, where the emission is weaker, the 3 K
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clouds were substituted for the 4 K clouds.

Each cloud in the final catalog is described by a set of parameters including the location
of the emission peak in f, b, v space, the minimum and maximum extent (in f, b, v) of the
emission surface, a total CO flux inside the surface, a galactocentric radius R determined
from circular rotation, and the rms dispersions from the means in all three coordinates.

There is a two fold (near-far) distance ambiguity for all kinematic distances in the inner

galaxy. We have resolved the ambiguity by utilizing a boot strap process based on the
cloud physical properties measured for a subset of clouds with known distances which

serve as calibrators. The calibrator clouds include those with small near-far distance ratios
(tangent point clouds), and clouds which can be assigned either near or far on the basis of
an association with an H II region (Downes 1980) with a radio frequency absorption line
for which an assignment has been made.

2. The Size-Linewidth and Virial Mass-CO Luminosity Relations

For the calibrators a direct relationship between cloud size, defined as the geometric

mean of the t-b dispersions [S = D tan( a&,_•,)] and the velocity linewidth, is established.
Although the cloud boundaries have been defined at the particular level (T7 3, 4, 5, 6,

7 K) we have included all emission down to the 1 K level within a cube circumscribing the
cloud boundaries for the purpose of determining the cloud size, linewidth and luminosity.

Measuring S in parsecs we find (see Figure 1)

UV = S-.0 (km' -s-1) (1)

with a logarithmic dispersion in av of ± 0.13 or 40%.

Near or far distances to all remaining clouds in the final list were assigned using
three criteria: 1) choosing the distance with the better fit to the size-linewidth relation,
2) choosing the near side if the far distance places the cloud more than 150 pc out of
the plane, and 3) choosing near or far based on the best fit for the scale height of the
emission in the longitude and velocity range of the cloud. The third method utilizes the

well determined value for the half width at half maximum of the molecular layer of 60

parsecs (see e.g. Sanders, Solomon and Scoville, 1984). The details of these methods are
explained elsewhere (Solomon et al. 1986a). For the purposes of this paper the accuracy of
distance assignments is not critical since the result using only calibrator clouds is virtually

identical to that using all clouds.

For each of the clouds a virial theorem mass can now be determined from the measured
velocity and size dispersion

M yT 3 fp S aUV2MVT - a (M®)

where fp is a projection factor (taken herein as 7r, this being consistent with a cylindrical

truncation of spherically symmetric clouds), and G = 1/232 in units of km.s-1 and
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Figure 1. Molecular cloud velocity dispersion o(v) as a function of size dispersion S for 250 clouds in

the inner galaxy. The solid circles are calibrator clouds with known distances and the open circles are for

clouds with the near-far distance ambiguity resolved by the three techniques discussed in the text. The fit

line is o,, = (S/1.0)0 -5 kms s 1. For virial equilibrium the 0.5 power law requires clouds of constant surface

density.

parsecs. In addition, a cloud's CO luminosity is obtained directly from the survey data

within the cloud boundaries as
D ffT (fb,,v) d dbdv (K.km.s-1.pc2 ) (2)

where Tn*(t, b, v) is the antenna temperature at location (t, b, v). Figure 2 shows the virial

mass as a function of CO luminosity for all clouds with calibrators shown as filled symbols.
A least squares fit to all of the data shows an extremely tight power-law fit over a range

of four decades given by

MVT = 42 (Lo)0"8 ' (M®) (3)

with a dispersion of 0.14 in log(MVT) or 38% in Mvr.
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Figure 2. The Virial Mass-CO Luminosity relation for molecular clouds. The clouds range in distance

from 1 to 15 kpc and in flux over more than two orders of magnitude. The solid circles and open circles are

the same as in Figure 1. The fit is MvT = 42 (L(,,"8 1 M®. For a given L(.o, the dispersion in MvT is

0.13 in the log.

The observed cloud mass-CO luminosity relation can be translated into a molecular

hydrogen column density N(H2 ) as a function of the average CO integrated intensity over

the cloud velocity range Av, I = fav T dv. The mass is the product of the mean column
density and the surface area; the luminosity is the product of I and the surface area.

Letting N(H2 ) = a I, we find a = 4.7, 3.1 and 2.0(10)20 for CO luminosities of 104,

105 and 106 K-kmin s-1 • pc 2 . Thus, although the mass is not strictly a linear function of
CO luminosity, the conversion factor varies by only a factor of two between clouds of mass

5 x 104 and 2 x 106 MD. We adopt a =: 3.1 as the effective conversion factor for clouds of

mass 3 x 105 M 0 which are close to the median of the mass distribution.

The only other technique which has determined the CO luminosity to mass conversion
factor for giant molecular clouds with m > 105 M 0 uses the observed -y-ray flux resulting
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from cosmic ray interactions with hydrogen molecules. As summarized in Table 1 for the

Orion Molecular Cloud a = 2.6 ± 0.8 and for the galactic plane emission between

R = 5 kpc and R = 10 kpc, a = 2.8 ± 1 (Bloemen et al. 1984, 1986). The conversion

factor based on the variation of optical extinction measured along the lines of sight with
measured CO or 13 CO integrated intensity also gives good agreement although the clouds

are typically of lower mass.

The close agreement of these conversion factors with our dynamical measurement

demonstrates that the assumption of virial equilibrium in the clouds is correct. Molec-

ular clouds are therefore bound by self gravity and not by pressure equilibrium with a hot

phase of the ISM.

The agreement between these techniques and between the local and molecular ring

calibrations provides an empirical basis for the measurement of the total mass of molecular

hydrogen in the galactic disk (see e.g. Sanders, Solomon and Scoville, 1984 and Table

2). The agreement between the dynamical conversion factor which is heavily weighted to

clouds in the molecular ring at R = 5 kpc, the -y-ray conversion factor determined for a

mixture of the molecular ring and relatively local clouds and the -y-ray conversion factor

determined for the nearby Orion molecular clouds shows that a constant conversion factor

for the galactic disk between R = 4 kpc and R = 10 kpc may be used to determine the

total H2 mass. There is no evidence of a radial gradient in the conversion factor between

R = 5 and 10 kpc as suggested by Bhat .et al. (1985) and Blitz and Shu (1980).

One of the more interesting empirical results which follows directly from the size-

linewidth relation (equation 1) and the assumption of virial equilibrium, is the constant
surface density of the clouds E = 230 M®/pc2 . Equivalently the mass-velocity law is

M = 2230 av4 (Me) (4)

Expressed in terms of CO luminosity using equation 3 (Figure 2) yields a relation between

velocity-width and size analogous to the Fisher-Tully or Faber-Jackson relation for galaxies

Leo = 143 Uv5  (K-km-s- .pc 2 ) (5)

The empirical mass-luminosity law (equation 3 and Figure 2) provides a basis for un-
derstanding the use of optically thick CO emission as a tracer of mass, primarily molecular

hydrogen, in interstellar clouds. Both the existence and the form of the mass-luminosity
law are a consequence of the structure and gravitational equilibrium of giant molecular

clouds. If we assume that a cloud consists of a large number of small, optically thick

regions (clumps), then emission intensity, T•, along a line of sight at a velocity v will be

proportional to the filling factor of the clumps at v and the temperature of the clumps T.

For a Gaussian line profile the average surface brightness of the cloud is I = (21r) 1/2 To av

where or is the velocity dispersion and T0 is the peak intensity at the line center averaged

over the cloud. The average filling factor of the cloud at line center is To/T. The CO

luminosity is then the product of the surface area 37rS 2 and the surface brightness

L,:,) = 3v/2 .3/2 T0, a, S 2  (6)
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TABLE 1

CALIBRATION OF CO INTEGRATED INTENSITY WITH H2 COLUMN DENSITY

Method Location a = N(H 2 )/I(-.,, References

(c1- 2 /K kin s-')

A, < 4 (in dark clouds) Local 2.2(10)2') Dickman 1975

A,, > 5 Local 5.0(10)21) Liszt 1982

A, > 5 Local 3.6(10)20 Sanders, Solomon

& Scoville 1984

-y rays Orion 2.6(10)2') Bloemen et al. 1984

-y rays 5 < R !5 10 kpc 1.0(10)20) Bhat et al. 1985

-1 rays 5 < R < 10 kpc 2.8(10)'24 Bloemen et al. 1986
Virial Theorem 4 < R 5 8 kpc 3.1(10)20 Solomon et al. 1986a

TABLE 2

TOTAL GALACTIC H2 MASS FOR 2 < R < 10 kpc

Reference M a

(109 MO) (cm-2/K- km. s-1)

Scoville & Solomon (1975) 1-3

Gordon & Burton (1976) 2.1 -

Solomon, Sanders & Scoville (1979) 3.9 5 X 1020

Thaddeus & Dame (1984) 0.7 (1-2)x 1020

Sanders, Solomon & Scoville (1984) 2.6 3.6 x 1020

Bronfman et al. (1986) 1.3t 2.8 x 1020

This Work 2.01 3.0 x 1020

t The difference between this and 2.0 is primarily due to a different weighting

used to obtain the radial emissivity and to a 20% lower CO intensi ty calibration.

I The emissivity has been calculated using equal weight p er unit of projected

face on area for each radial bin.
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Combining equation (6) with the virial theorem, and utilizing the empirical size-linewidth
relation (equation 1) yields a mass-luminosity relation

MVT = 174 L,)4/5 (7)

For the clouds in our catalog T(, ranges from 5 K to about 15 K with a mean of about

7 K which gives MVT = 37 (L,;)4/5 in close agreement with the empirical results
in equation 3. Thus the effective conversion factor from luminosity to mass is lower for
hotter clouds than for cooler ones, and is lower for more luminous or massive clouds. For a
fixed luminosity the mass-to-luminosity ratio can be expressed as a function of the average
density p = 100/S (M® pc- 3).

_MT (•)I/2

, 12 T1, (8)

Thus the small scatter in Figure 2 is evidence of a fairly small scatter in the mean density
of the clouds at a fixed luminosity.

3. The Molecular Cloud Mass Spectrum

Figure 3 shows the mass spectrum of clouds dN/dm oc m-3/2. This is consistent with
previous determinations by Solomon and Sanders (1980), Liszt and Burton (198 1), and
Sanders et al. (1985) although it is based on a much larger sample of clouds. The turnover
below m = 5 x 104 M® is due to the undercounting of clouds, (even warm clouds) on the
far side of the galaxy with diameter < 16 pc. The mass fraction of clouds per logarithmic
mass interval m-dN(m)/d log m oc ml/2 demonstrating that most of the mass in molecular
clouds is in the high end of the spectrum (Solomon and Sanders, 1980).

As can be seen from Figure 4 the most massive clouds are a few million solar masses
and the single most massive object just below 107 M®.

4. Far Infrared Luminosity of Galactic Molecular Clouds

The IRAS survey at 60 Am and 100 Am has an angular resolution similar to that
of the Massachusetts-Stony Brook CO Survey of the Galactic Plane. Although the far
infrared emission is severely blended it is possible to utilize the velocity information of
the CO survey to identify individual molecular cloud/H II region complexes in the far
IR. The far IR luminosity originatin prom newly formed stars in, or associated with, the
molecular cloud can then be determined from the IRAS maps utilizing the distance to
the molecular cloud. The most luminous and hottest molecular clouds (with high peak
CO intensity) are readily apparent on the IRAS 100 and 60 micron images. Most of the
warm molecular clouds have IR counterparts which correspond to H II regions in or on the
border of the clouds. An overlay of the locations of the predefined molecular clouds on the
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Figure 3. The molecular cloud mass spectrum dN/dm. A fit above 7x104 M® gives dN/dm c M-3/2

(see text). There are 15 clouds in each bin and thus the standard deviation of each point is ± 24%. The

turnover at low mass is due to undercounting of smaller clouds in the more distant parts of the galactic disk.
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Figure 4. The number of clouds as a function of virial mass in the sample.

IRAS 60 and 100 micron galactic plane images shows a very good, although not complete,
correspondence. In particular, almost all of the CO clouds with high CO luminosity and
peak intensity above 10 K have obvious IR counterparts. However in regions of the galactic
plane where there is a substantial overlap of several strong CO clouds at different velocities,
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the infrared emission associated with each cloud may be difficult to separate. We have
therefore picked a subset of molecular clouds which are the dominant feature in velocity
space over their latitude and longitude extent. For each CO defined cloud a detailed
comparison was carried out with the IRAS maps smoothed to 3 arc minute resolution. The
boundaries of the molecular cloud were slightly adjusted to include IRAS sources which
were sometimes at the edge of the cloud. In order to be certain that the infrared emission
was associated with the velocities of the candidate CO cloud, an interactive program was
developed which displayed the average CO spectral line profile over any specified region
of (1,b) space. The program would then calculate the total CO flux within the velocity
and spatial limits of the cloud and the IR flux above the background but within the
cloud boundaries. The IR background which consists principally of galactic background
not associated with the candidate cloud and some contribution from the zodical light at
60 microns, was measured by three techniques. The first consists of a point by point
comparison of the IR flux as a function of the CO flux.

As can be seen in the example in Figure 5, there is substantial far IR emission uncor-
related with the CO integrated intensity below about 40 K . km . s- 1. This uncorrelated
emission provides a measure of the background level with respect to the molecular clouds.
Similar correlations can be carried out for the restricted velocity range of a single cloud.
The second technique finds the background by measuring the radially averaged IR profile
around a source associated with a CO cloud. The radially averaged IR flux generally de-
creases approximately exponentially approaching a background level about two or three
scale lengths from the peak. This technique works only for strong or well defined sources.
The third method is a standard clipping (rc-a) technique which iteratively finds the back-
ground by eliminating signals more than two standard deviations above the mean.

Figure 6 shows the far infrared luminosity as a function of the CO luminosity for 46
clouds. The clouds range in flux over two orders of magnitude and in luminosity over
three orders of magnitude. They include such well known objects as M17, W51, and W43,
as well as many previously uncatalogued molecular clouds. A formal fit shows that the
infrared luminosity is proportional to the first power of the CO luminosity.

L~e = 14 (L,)0 9 7±0"08 IL®O (11)

The molecular cloud mass M can be obtained from equation 3. Figure 7 shows the
ratio of infrared luminosity to cloud mass as a function of the mass. There is a substantial
degree of scatter with L,, /M varying from about I to 12 with the only significant exception
being the M17 cloud with a LnM = 23. Our cloud defining algorithms have broken the
M17 complex into two regions. The well known and strong H II region is associated with a
molecular cloud of 2 x 105 M® and the remainder of the complex is in a cloud which we
refer to as M17B with mass of 7 x 105 M® and a very low luminosity to mass ratio. If we
combine these two clouds into one, the ratio becomes 5, near the mean of all other clouds.

The most interesting feature of Figure 7 is the lack of dependence of LIR/M on the
cloud mass itself. The star formation rate per unit of available molecular mass is thus
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Figure 5. A point by point correlation of IR brightness as a function of CO integrated intensity (T; > 1

K; -40 < v<+ 140 km • s-1) for a 20 by 20 region of the galactic plane between t = 290 to 310, b = - -1

to +10. There is substantial far IR emission uncorrelated with CO integrated intensity below about 40

K • km s- 1 which provides an estimate of the IR background wrt the molecular clouds. The 100 micron

background here is about 8x 108 Janskys/steradian.

independent of the mass of the cloud. There appear to be no cases of uninhibited star for-
mation. The star formation process appears to be equally efficient (or inefficient) in clouds
of mass as low as 5 x 104 or as high as 5 x 106 MeD. This is evidence against nonlinear pro-
cesses within a cloud, such as star-formation-induced star formation or supernova-induced

star formation. Both of these processes would lead to a higher rate of star formation in
the most massive clouds since the probability of forming a star per unit of available mass

would be proportional to the number of recently-formed stars in the cloud. In fact, Figure

7 shows that there are many massive giant molecular clouds with no more than one 0 star.

Twelve of the clouds in Figures 6, 7, and 8 (indicated by open circles) have no obvious IR

sources; for these clouds the infrared luminosity should be regarded as an upper limit and

there are probably no 0 stars. There are thus some giant molecular clouds with very little

or no massive star formation.
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Figure 6. Far infrared luminosity as a function of CO luminosity for 46 molecular clouds in the galactic

plane. The solid circles are molecular clouds with well defined IR sources which are H II regions associated

with the cloud. The open circles are molecular clouds with no obvious IR.

Figure 8 shows the luminosity-to-mass ratio as a function of the far infrared color,
F10o/F60. The systematic decrease in the luminosity-to-mass ratio with decreasing far

infrared color temperature is expected for thermal radiation. Expressed in terms of dust
color temperature Td we find, assuming an infrared emissivity proportional to the 1.5
power,

(Mcloud) o 5.

Thus the primary effect resulting in strong far infrared luminosity is simply hotter dust
rather than more dust. Not surprisingly the far infrared emission at these wavelengths is

not a good tracer of the mass of interstellar dust since there are some very massive cold
clouds (see Figures 7 and 8) with relatively little far IR, such as M17B.
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Figure 7. The ratio of infrared luminosity to cloud mass as a function of cloud mass. The solid and

open circles are same as Figure 6. The star formation rate per unit of available molecular mass as measured

by LIR/MVT is independent of the mass of the cloud.
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Figure 8 The ratio of infrared luminosity to cloud mass as a function of infrared color. The solid and
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5. Galactic Plane IR-CO Emission

Figure 9 shows the 100 micron and CO flux from a region 10 in I by 20 in b as a
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Figure 9. The 100 lsm and CO flux binned every 10 in t between b = -10 to +10, as a function of

galactic longitude. The strong peaks near 230, 310, 500, and 800 correspond to prominant molecular clouds

in the galaxy (see text). The general trend with I of the 100 am and CO flux indicate that the molecular

ring is a major feature of the IRAS data.

function of galactic longitude between the latitude range of +10 and -1'. The peaks in

longitude and the general trend in longitude are the same for the 100 micron and CO

flux. The strong peaks correspond to the most luminous molecular clouds in the galaxy

located at (t, b, v) : (23.0, -0.4, 74) at a distance of D - 12 kpc, W43 (30.8, -0.05,92) at

D = 7 kpc, and W51 (49.5,-0.4,57) at D z 7 kpc. Their IR luminosities are all about

4 x 10 7 L®. The peak at I - 80' is from the relatively nearby Cygnus clouds. The fall

off beyond longitudes of 350 is a characteristic not shared by the 21 cm emission from

atomic hydrogen. Thus the molecular ring is clearly a major feature of the IRAS data as

well as the CO data. On the basis of our assignments of infrared luminosity to molecular

clouds, we estimate that about half of the far infrared flux is associated with the molecular

component.
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6. Face-on Picture of Warm Molecular Clouds

in the Milky Way

Figure 10a is a face-on picture between t - 8' and 90', of the distribution of molecular
clouds that we have-found from the Massachusetts-Stony Brook CO Galactic Plane Survey

and the Cloud Catalog discussed previously. Small and low luminosity clouds have been
left out of this picture. The most prominent feature is the ring-like structure at about

R = 5 kpc (we assume R, = 10 kpc) which is seen here to wind around to the far side of
the galaxy at a distance of 14 kpc from the sun. Almost one-half of the CO luminosity
in the warm component is in this feature, which corresponds to the traditional Scutum

spiral arm tangent to the line of sight at a longitude near 30'. There are two other ring-
like structures at approximately 7 kpc and 9 kpc from the galactic center which appear

merged together on the far side of the galaxy. The 7 kpc feature is the well known Sagitarius
spiral arm which is seen here to continue on to the far side of the galactic plane. While

the accuracy of kinematic distances does not allow a conclusive statement regarding the

pitch angle of these arms, their reality will remain regardless of distance errors due to
noncircular motions such as streaming. In particular, the gap between R = 6 and 7 kpc is
very prominent and appears even in the radial distribution of these objects (see Solomon,

Sanders and Rivolo, 1985). Figure 10b is similar to Figure 10a but with the size of the

molecular cloud image in proportion to the size of the molecular cloud. This gives a much

more realistic appreciation of the space between the GMC's. Although the GMC's are the
largest and most massive objects in the galaxy, the space between them or between the
clusters of GMC's is much larger than their size.

It is important to note that these clouds represented in the picture are primarily those

with peak intensities T* > 5 K. As we have previously shown from an analysis of CO
sources, these are the spiral arm population. The cold clouds which are more difficult to

define by their outer boundaries, would fill in the spaces between the spiral arms just as

the cold CO sources fill in the longitude velocity space (see Solomon, Sanders and Rivolo,

1985). Approximately one half of the galactic CO emission is in the warm clouds.

7. The Ratio of Far IR Luminosities to Molecular Mass

in Interacting and Isolated Galaxies

As part of a program to investigate the content and distribution of molecular gas
in external galaxies, we have observed A 2.6 mm CO emission along the major axis of

approximately 100 galaxies. In this section we briefly describe the results of a comparison

of the CO and far infrared luminosities of these galaxies. We compare the results found

for these external galaxies with those of molecular clouds in our own galaxy discussed in

previous sections. The candidate galaxies were drawn from three separate samples. The

first was a study of nearby large angular size spiral galaxies generally of type Sb or later
with optical diameters greater than 7 arc minutes and distances greater than 4 Mpc. The

second sample was drawn from early IRAS Circulars, particularly Circular 15. The third
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Figure l0a. Unresolved face-on picture of molecular clouds in the galaxy between 1 80 to 90 0 . The
grey scale was generated with a Gaussian distribution of N points with or = 100 pc about each cloud peak
location. The contrast is achieved by setting N =150 (L/106)11 7 5 . The dashed line is the low longitude
cutoff. Clouds with L < Ix 10" L were excluded.
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sample consists of all IRAS galaxies at declination 6 > 00, 100 Am flux > 30 Janskys and
velocity v > 700 km .s- 1. The observations were carried out using primarily the FCRAO
14 meter antenna between 1982 and 1986 and more recently the NRAO 12 meter antenna.
These observations are reported in detail elsewhere (Solomon, Sage and Barrett, 1986 and
Sage, 1987). Previous studies but with smaller samples have been carried out by Sanders
and Mirabel (1985) and Young et al. (1986).

Galaxies were classified as either isolated, interacting or merging based on their optical
appearance. Interacting galaxies are those with disturbed appearances and/or neighbors
closer than about 7 optical diameters. Merging galaxies are those with 2 nuclei as well as
some of the extremely luminous peculiar galaxies such as MKN231, ARP220 and N6240.
The combined sample has almost a 3 order of magnitude range in infrared flux.

Figure 11 shows the far infrared luminosity as a function of the CO luminosity for
approximately 80 of these galaxies, both interacting and isolated. The CO luminosity was
calculated from the major axis observations spaced every beamwidth taking account of the
inclination of the galaxy and integrating out to at least half of the Holmberg radius. The
far infrared luminosity was determined from the 60 and 100 Am fluxes in either the IRAS
point source or extended source catalog. For large angular size nearby galaxies the far
infrared luminosity was determined from the IRAS images.

As can be seen from Figure 11, there is generally a good correlation of the IR and
CO luminosities but with a wide dispersion. The interacting galaxies are systematically
higher in their infrared to CO ratio than the isolated galaxies although there is significant
overlap between the two groups. In Figure 11 two lines have been drawn which indicate
the range of the IR to CO ratio for galactic clouds. While many of the isolated galaxies
could be understood as a collection of molecular cloud-H II regions similar to those in the
galaxy, it is clear that the interacting, and particularly the merging galaxies, have IR to
CO ratios substantially greater than any individual clouds in the Milky Way. Even some
of the isolated galaxies appear a factor of two higher in this ratio than any clouds in our
galaxy. This however could be explained if our galaxy has only about half of its far infrared
emission associated with GMC's.

Figure 12 shows the infrared and CO luminosities separately for interacting and isolated
galaxies along with a fit to the data. The interacting galaxies are systematically higher in
the IR to CO ratio than the isolated galaxies by a factor of 3-5 with extreme cases such
as MKN231 and ARP220 higher than the isolated galaxies by a factor of 10 to 20. If we
utilize a constant conversion factor to obtain the molecular mass from the CO luminosity
and regard the far infrared luminosity as an indicator of recent star formation, then we
find that the star formation rate per unit mass of molecular hydrogen (as indicated by
LIR/M(H2) ) is 3-5 times greater in interacting than isolated galaxies.

The interacting, and particularly the merging, galaxies are also systematically hotter
than the isolated galaxies. The merging galaxies in our sample have an average dust
temperature (assuming a A-1 emissivity) of - 45 K while the isolated galaxies have an
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Figure 11. The Infrared and CO Luminosity of isolated and interacting galaxies. The two lines represent

the range of L11 /L,.:) for the galactic molecular clouds. The interacting galaxies are systematically above

the galactic GMC's.
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average dust temperature of - 33 K. Much of the dispersion in Ll,/M(H2) is thus due
to dust temperature variations since L1 R cc (Td) 5 . Young et al. (1986) have treated the

dust temperature as an independent parameter and fit the LiR/M(H 2) relation separately

for galaxies of different temperature. However, the temperature dependence of LR on
dust temperature is a necessary consequence of thermal radiation and selecting on dust

temperature is almost equivalent to selecting on luminosity.

The dust temperature is therefore a result of the high luminosity and not a cause. We

note that if the gas in the molecular clouds is also systematically hotter in interacting

galaxies the CO-H 2 conversion factor will be smaller and LI, /M(H 2 ) will be even higher.

We thus find that the effect of an interaction appears to be to increase the star forma-
tion rate within preexisting molecular clouds rather than primarily creating new molecular
clouds. Our finding that none of the molecular clouds in our galaxy has as high a ratio of
IR to CO as the interacting or merging galaxies suggests a fundamental change in the star

formation initiating mechanism in galaxy interactions.

8. Summary

From an analysis of several hundred galactic molecular clouds we have shown:

1) the velocity linewidth is propotional to the 0.5 power of the size a, cx (S) 0-5 . Com-

bined with virial equilibrium this shows the clouds are characterized by a constant mean

surface density and have a mass M oc a, 4 .

2) The virial mass-CO luminosity law is M cc (L,.,)0 8 1. This establishes a calibration

for measuring the total cloud mass from CO observations.

3) Molecular clouds are in or near virial equilibrium since their mass per unit CO lumi-

nosity determined dynamically, agrees with other measurements. The cloud CO luminosity
L,.,0, c, av. This is the molecular cloud version of the Fisher-Tully or Faber-Jackson law

for galaxies.

4) The far IR luminosity per unit cloud mass L,,?/M is independent of the cloud mass.
Since the source of the far IR luminosity is primarily young massive stars, this argues

against star formation induced star formation which is a nonlinear process that should
spread throughout a cloud. There are some giant molecular clouds of mass 10_- 106 ME

with little or no embedded far IR sources (0 or early B stars).

5) Star formation activity is well regulated in galactic molecular clouds with a maximum

(IR luminosity / cloud mass) ratio observed.

From an analysis of CO and far IR obsevations of external galaxies we conclude:

6) The fir IR !uminosity and CO luminosity are well correlated but with a wide dispersion.

7) Interacting galaxies have systematically higher IR iuminosities per unit molecular
mass than isolated galaxies and more importantly have higher LIR/M(H2) ratios than any
galactic molecular clouds. This indicates that the star formation mechanism in interacting
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and particularly merging galaxies is substantially more efficient than even the most active

molecular cloud-H II region complexes in the galaxy. Star formation still appears as a

viable mechanism for the luminous IR galaxies since the efficiency need only be enhanced

by about one order of magnitude. The increase in efficiency may possibly be due to a

compression of existing molecular clouds by cloud-cloud collisions during the interaction.

The lack of efficient or even runaway star formation in giant molecular clouds in the galactic

disk may be just as hard to explain as a "starburst" in luminous IR galaxies. Both systems

have more than sufficient material in molecular clouds to account for their observed star
formation.
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IRAS Colors of VLA Identified Objects in the Galaxy
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ABSTRACT

IRAS sources found within 4 degrees of I = 125C, b = 20 on the 3rd HCON 6011
Sky Brightness Images have been observed at the VLA. The intent of this project was to
identify regions where massive stars are forming by looking for small areas of radio con-
tinuum emission. The IRAS sources could be divided into three groups by their IRAS
12,!/ 2 5 p and 60j/1001A colors. The group identified with star forming regions contained
essentially all of the objects with extended radio emission. In all of these cases the ex-
tended radio emission showed a morphology consistent with the identification of these
objects as HII regions. The conclusion that may be drawn from this project is that star
formation regions can be distinguished from other objects by their infrared colors.

INTRODUCTION

Our long term goal is to study star formation on a large scale in the Galaxy. To
use IRAS observations for studying star formation in our Galaxy it is important to first
learn how to distinguish star formation regions from other possible sources of infrared
emission. This paper presents a first step in that direction. It might be expected that
many of the pre-main sequence 0 stars will be shielded from view optically because of
the high extinction of their progenitor cloud. However these objects should produce both
infrared and radio continuum emission. The infrared emission for these objects will come
from two separate regimes, hot dust near the star (possibly in a small HII region) and
much cooler dust at large distances from the star. The radio continuum emission will
come from the very young HII regions formed by such stars.

The method used here is to locate all of the infrared emitting objects within some
field in the galactic plane and identify them. The field chosen was centered on I = 1250,
b = 2" and the IRAS 3rd HCON 60p Sky Brightness Image for this area (plate number
13) was used to locate emission sources. One of these objects (Sharpless 187) was almost
30 arcminutes in diameter but the rest were smaller than 14 arcminutes, including 9 that
were not resolved (ie. smaller than 4 arcminutes). A total of 35 were found with peak
flux densities above our threshold of 2.3 x 107 Jylsr within 4 degrees of the central
position.

This particular field was not chosen strictly randomly. It is in the outer Galaxy
where confusion is less and kinematic distances are not ambiguous. This field is not con-
taminated with any extremely large (several degrees or larger) objects and is in the area
where kinematic distances are most accurately determined, although we are not con-
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cerned with the distances in this paper. It is slightly above b = 0' because HI images
show that the galactic plane warps up by a few degrees here. For these reasons we have
been studying this field at a variety of wavelengths, this project being the most recent in
our study.

OBSERVATIONS

All 35 of the objects were observed at the VLA in the C array configuration at a
wavelength of 6 cm in a snapshot mode of 3 minute observations. This provides a reso-
lution of 4 arcsec and a field of view of approximately 10 arcmin, however it is not sen-
sitive to structures larger than 1 arcmin and there is some loss of sensitivity (a factor of
2 for point sources) at the edge of the field. The snapshots were converted to images
that covered the entire field of view at slightly lower resolution in order to search for
radio emission anywhere in the field. Then the data were re-imaged at the maximum
resolution, but with smaller areas, around each possible source of emission. These im-
ages were then CLEAN'd to a flux density of 0.5 mJy/beam using the standard AIPS
(NRAO data reduction package) routine MX. The final images had an rms noise level of
0.4 mJy/beam.

In addition to the above observations, the single-dish radio continuum surveys by
Kallas and Reich (1980), Taylor and Gregory (1983), and Condon and Broderick (1986)
were examined at the position of each of the 6 0 , sources.

RESULTS

Radio continuum emission characteristic of HII regions was found in 19 out of the
35 objects from the IRAS 60p image. Although the identification of these all of these ob-
jects as HII regions is not firm, this is highly suggestive. An even more suggestive result
comes from comparing the radio emission to the infrared colors of the objects.

Most (25 out of 35) of the 60p sources were found in all four bands of the IRAS
images. Their peak brightnesses at 12p, 25p, 60u and 100l were measured. Figure
1 shows a color-color plot of these objects using all four bands. These objects can be
split into three groups: (1) those with low 6 0p/100p flux density ratios (0.1 to 1.0, T =
20'K to BOOK) but high 12A/25u flux density ratios (0.3 to 1.2, T = 1600 K to 3000K),
(II) those with moderate 60/I100#u flux density ratios (0.8 to 2.0, T == 50BK to 80°K) and
low 12p/25p flux density ratios (0.1 to 0.3, T = 1200 K to 1600 K), and (III) those with
high 60/100p flux density ratios (greater than 4, T > 180°K). The group I objects all
lie in the bottom right of Figure 1, group II objects all lie to the left of the center, and
the group III objects are in the top right side of the figure.

All but one (ie. 15 out of 16) objects with radio emission in this plot (as indicated
by open squares) lie in group I. (There are three objects with radio emission that are
not shown in this plot since they were not detected at 12p.) There are only 3 (of 18)
objects in group I that show no radio emission. In contrast, only 1 of the 5 objects in
group II shows any radio emission, and neither of the two objects in group III show radio
emission.

Of those 10 objects with no emission at 12p and therefore not shown in Figure 1
only 3 had detectable radio continuum emission. This is no surprise since these 10 ob-
jects are also the weakest infrared sources in this sample.
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Figure 1: A color-color plot of all objects in VLA survey that were detected in all
four IRAS bands. The solid lines show the Planck curves for emissivities of A-" for n -
0, 1, 2. The objects in the lower right hand corner all appear to be star forming regions.
Also plotted here, for color comparison, are the planetary nebulae measured by Pottasch
et al (1984) and the compact HII regions detected by Chini et al (1986).

DISCUSSION

It is possible to tentatively identify the objects in group I as star formation regions.
Essentially all of the objects with radio continuum emission are in this group and most
of the members of this group have radio continuum emission. This also indicates that
most of these new stars must be earlier than B2 in order to produce the ionizing photons
seen in these HII regions. The physical explanation for these colors is probably the fol-
lowing: at the longer wavelengths emission from cool dust around the HII region is seen
while at the shorter wavelengths the heated dust within the HII region dominates the
emission.

The colors of objects in group II correspond with the colors of planetary nebulae
(plotted in Figure 1 using data from Pottasch et al). Most of them do not have any
detected radio continuum emission and planetary nebulae are normally quite weak in
the radio. For these reasons group II is tentatively identified as planetary nebulae. The
group III objects are probably cool giant stars.

There is a problem reconciling these results with those of Chini et al (1986) shown
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plotted in Figure 1. The compact HII regions in their sample are hotter in the 12 and
25 micron bands but are not as hot as those in our sample. This may be due to some
physical difference between their objects and ours. Their sample contains very young HII
regions excited predominantly by very early types of stars (earlier than 08) and ours
may be excited by somewhat later stars or the HII regions may be older. Another pos-
sibility is that there may be a difference due to selection effects inherent in their use of
the IRAS Point Source catalog and our use of the Sky Brightness Images. Despite this
difference in the 12 p/125p colors, the 60 /1OOq colors of the compact HII regions still
match the colors of the objects in our survey and are different from those of the plane-
tary nebulae.

In summary: this project indicates that it is possible to distinguish star forming re-
gions from other objects on the basis of their infrared colors. Star forming clouds have
Sky Brightness Image peak flux density ratios of F(60A)/F(100p) < 1 and (possibly de-
pending on type of star forming object) F(12.t)/F(251A) > 0.3.
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ABSTRACT. A giant molecular cloud associated with the n Carinae nebula has
been fully mapped in CO with the Columbia Millimeter-Wave Telescope at Cerro
Tololo. The cloud complex has a mass of roughly 7 x 105 MO and extends about
140 pc along the Galactic plane, with the giant Carina HII region situated at
one end of the complex. Clear evidence of interaction between the HII region
and the molecular cloud is found in the relative motions of the ionized gas,
the molecular gas, and the dust; simple energy and momentum considerations
suggest that the HII region is responsible for the observed motion of a cloud
fragment. The molecular cloud complex appears to be the parent material of the
entire Car OBl Association which, in addition to the young clusters in the
Carina nebula, includes the generally older clusters NGC 3324, NGC 3293, and
IC 2581. We estimate the overall star formation efficiency in the cloud
complex to be -0.02.

1. INTRODUCTION

The q Carinae nebula (NGC 3372) is among the brightest giant HII regions in
the Galaxy, and the young clusters that supply the ionizing radiation -- Tr 14,
Tr 16, and Cr 228 -- comprise one of the largest known Galactic concentrations
of massive stars: 16 main sequence 0 stars, including 5 classified 03V
(Walborn 1971, 1973). Interstellar absorption lines observed toward many of
the member stars display velocities ranging over 550 km s-1 (Walborn 1982), and
it is generally agreed that the Carina nebula is pumping a lot of energy into
the surrounding medium. Within about 20 along the Galactic plane lie the three
somewhat older and less spectacular clusters NGC 3324, NGC 3293, and IC 2581,
which, together with the clusters in the Carina nebula, make up the Carina OBI
Association.

Because it lies in the Southern skies, CO observations of the region in and
around the Carina nebula were, until recently, limited either to single
detections (Gillespie et al. 1977; White and Phillips 1983) or to small region
mapping (de Graauw et al. 1981). In 1983 we installed the Columbia Southern
Millimeter-Wave Telescope at Cerro Tololo and carried out the first well-
sampled CO survey of the entire Southern Milky Way. As part of that survey, we
mapped a large molecular cloud complex that is the parent material of the Car
OBI Association. In this paper we present the observations of the q Carinae
molecular cloud complex, point out the interesting dynamical relationship
between the molecular cloud and the HII region, and give an estimate of the
overall star formation efficiency in the molecular cloud.

2. OBSERVATIONS

The CO observations were made between 1983 January and November at Cerro
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Tololo with the Columbia Southern Millimeter-Wave Telescope (Grabelsky 1985;
Bronfman 1986). The telescope has a beamwidth of 8.8' at 2.6 mm, and its
pointing accuracy is better than '. The detection system consists of a liquid
nitrogen cooled superheterodyne receiver with a single-sideband noise
temperature of -380 K, and a filterbank spectrometer with 256 channels, each
1.3 km s-1 wide at 2.6 mm for a total bandwidth of 333 km s-1. Spectra were
calibrated against a blackbody reference following the standard chopper wheel
technique (Kutner 1978), and only linear baselines were subtracted.
Integrations times were typically 5 minutes, yielding an rms noise per channel
of -0.14 K.

The region in and around the Carina nebula was covered in a survey of
molecular clouds in the Carina spiral arm (Grabelsky 1985). Observatiors were
space every 1/80 in 1 and b in the range 2700 _ 1 < 3000, IbI : 10, with
latitude extensions as needed to cover all nonlocal emission. The spectrometer
bandwidth, centered at v - 0, was more than adequate to cover all Galactic
plane emission within the longitude range of the survey.

3. IDENTIFICATION OF THE CLOUD COL2LEX

A mosaic of ESO J plates showing the n Carinae nebula and its surroundings
is displayed in Figure 1; the bright gas between 1 = 2870 and 2880 is the
Carina HII region. Although the young clusters in the Carina nebula are washed
out in this photograph, the other Car OBl clusters can be identified: IC 2581
(l,b - 284.70,0.10), NGC 3293 (285.90,0.10), and NGC 3324 (286.20,-0.20).
Various published distances place these clusters, as well as the Carina nebula,
at 2.7 kpc. The overlaid concours in Figure 1 show CO emission integrated over
velocity from -50 to -9 km s-1. Along the Galactic plane a sequence of
molecular clouds from 1,b - 2850,00 to 2880,-10 is evident. Each molecular
cloud in the apparent grouping is physically related to one cr more of the Car
OBI clusters, thus placing each cloud at the same distance and establishing the
identity of the molecular cloud complex. In each case the evidence for the
association of a cluster with a molecular cloud in the complex is the spatial
proximity and similar velocities; cluster velocities were determined either
from member stars or from associated HII regions. In the case of the Carina
nebula, discussed in the next section, there is, additionally, clear evidence
for direct contact between the HII region and the molecular cloud.

With the now widely-used assumption that integrated CO line temperature,
denoted W(CO), is proportional to N(H 2 ), the H2 column density, and adopting
the I ray calibration of Bloemen et al. (1986) of the W(CO)-N(H 2 ) relation, we
obtained a mass of 6.7 x 105 M% for the entire molecular cloud complex. We
call this the CO mass to indicate that it is based on W(CO). This value is
within about a factor of two of the virial mass derived by assuming that the
observed bulk motions in the complex support the cloud against gravity.

4. INTERACTION BETWEEN THE CLOUD AND THE HII REGION

One of the prominent features of the Carina nebula is the dark dust lane
that crosses the face of the bright gas. The generally good spatial
correlation between the CO and the dust suggests that a portion of the
molecular cloud must lie in front of the HII region, while the coincidence of
the strong CO peak at l,b = 287.50,-0.50 with the bright gas indicates that
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FIGURE 1. Mosaic of
ESO J plates showing
the q Carinae nebula
and its surroundings.
The overlaid contours
show CO emission
integrated over
velocity from -50 to
-9 km s-1. The
contour interval is
5 K km s-I Note the
good correlation
between the CO and
the dust lanes in the
vicinity of the
bright gas. This
dust represents a

fragment of the
molecular cloud that
is being driven out
by the HII region.

28S' I I FIGURE 2. Longitude-velocity map

of the n Carinae molecular cloud
complex. The CO emission is
integratea in latitude from b -10

288 "co 00; the contour interval is

0.125 K-deg. The mean velocity of

U °the emission is -19 km s"- buto
near the longitude of the hIl

287- region (1 = 287.50) a cloud
Z fragment with a velocity of about
0
- •-26 km s-1 is seen. This fragmentSU or filament corresponds to the
U * dust lane in front of the Carina

86nebula, and its appearance as a

- . blue-shifted feature (relative to
the mean cloud velocity) indicates

285* . that it is moving out from the
main body of the cloud. The CO
mass of the filament is -2 x 104 M0
and its velocity relative to the
mean cloud velo ly is 7 km s"-1

28 -3 -30 -2S 20 -1 -t The HII region iý evidently

LSR RADIAL VELOCITY (km s-) driving the filament outward.

much of the molecular cloud is located behind the HII region. A longitude-
velocity map integrated from b = -10 to 00 is shown in Figure 2. The mean
velocity of the cloud complex is -19 km s-1, quite close to the mean HII region
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velocity of -20 km s- 1 ; but at the longitude of the Carina HII region there a
CO "filament" with a velocity of about -26 km s-1. This blue-shifted filament
corresponds to the dust lane and the HII region may be driving the filament
outward with a relative velocity of -7 km s"-. The spatial correlation of the
blue-shifted CO filament and the dust lane is confirmed in spatial maps which
sample narrow velocity "slices" through the cloud (not shown here).

To check whether the HII region could be the source of the filament's
motion, we considered two possible mechanisms for driving the filament out from
the main body of the cloud: a stellar wind-driven bubble, and the rocket
effect. Following Castor et al. (1975), the velocity of the swept-up shell
around a wind-driven bubble can be expressed vs - 2.7 x 103 (M Vw 2 no' 1 )I/5
t- 2 / 5 km s-1. With the assumption that the CO filament is a piece of swept-up
shell and reasonable values in the Carina nebula for the stellar mass loss rate
(M), wind velocity, (vw), ambient cloud density (no), and age (t), a stellar
wind-driven bubble can easily account for the observed motion of the filament.
Similarly, in the Carina nebula there is enough ionizing radiation to make the
rocket effect of ionized gas streaming off the filament a plausible mechanism
for accelerating the filament. Evidently, the HII region is severely
disrupting the cloud.

5. STAR FORMATION EFFICIENCY

The star formation efficiency, SFE, is the ratio of stellar mass to total
stellar plus molecular cloud masses. For the cloud mass we used the GO mass
found above (§ 3.). To estimate the stellar mass we simply tallied up the mass
in all the observed stars with spectral types earlier than BO.5, and used the
IMF of Miller and Scalo (1979) to determine the total mass in spectral types
BO.5 and later. The IMF was calibrated to the number of observed BO.5V stars.
Our assumption that a reasonable total mass in early type stars can be attained
by simply counting them is based on the unusually large number of early type
stars observed in the Carina nebula. Using this method we obtained SFE - 0.02.
This result is in good agreement with SFE determined by Myers et al. (1986) for
about 50 inner-Galaxy giant molecular clouds.

REFERENCES

Bloemen, J.B.G.M. et al. 1986, Astr. Ap., 154, 25.
Bronfiman, L. 1986, Ph.D. thesis, Columbia University.
Castor J., McCray, R., and Weaver, R. 1975, Ap. J. (Letters), 200, L107.
de Graauw, T., Lidholm, S., Fitton, B., Beckman, J. Israel, F.P.,

Nieuwenhuijzen, H., and Vermue, J. 1981, Astr. Ap., 102, 257.
Gillespie, A.R., Huggins, P.J., Sollner, T.C.L.G., Phillips, T.G.,

Gardner, F.F., and Knowles, S.H. 1977, Astr. Ap., 60, 221.
Grabelsky, D.A. 1985, Ph.D. thesis, Columbia University.
Kutner, M.L. 1978, Ap. Letters, 19, 81.
Miller, G.E., and Scalo, J.M. 1979, Ap. J.Suppl., 41, 513.
Myers, P.C., Dame, T.M., Thaddeus, P., Cohen, R.S., Silverberg, R.F.,

Dwek, E., and Hauser, M.G. 1986, Ap. J., 301, 398.
Walborn, N.R. 1971, Ap. J. (Letters), 167, L31.
Walborn, N.R. 1973, Ap. J., 179, 517.
Walborn, N.R. 1982, Ap. J. Suppl., 148, 145.
White. G.J., and Phillips, J.P. 1983, M.N.R.A.S., 202, 255.

70



STAR FORMING REGIONS OF THE SOUTHERN GALAXY

T. B. H. Kuiper
Jet Propulsion Laboratory, 169-506
California Institute of Technology
Pasadena, California 91109
U.S.A.

J. B. Whiteoak
Division of Radiophysics
Commonwealth Scientific and Industrial Research Organization
P.O. Box 76, Epping, New South Wales 2121
Australia

J. W. Fowler
Infrared Processing and Analysis Center
California Institute of Technology, 100-22
Pasadena, California 91125
U.S.A.

ABSTRACT: A catalogue of southern dust cloud properties is being compiled to aid
in the planning and analysis of radio spectral line surveys in the southern
hemisphere. Ultimately, images of dust temperature and column density will be
produced. For the interim, a list of the 60 and 100 um fluxes has been
prepared for the cores and adjacent backgrounds of 65 prominent dust clouds.
Dust temperatures and column densities have been derived.

1. INTRODUCTION

Radio line surveys of southern molecular clouds have generally been based
on catalogues of visible nebulae and radio continuum sources (e.g. Whiteoak
1983). Thus sites of star formation without such indicators may have been
missed by such surveys. The IRAS far-infrared sky survey enables a more complete
identification of molecular clouds by pinpointing the associated dense dust
clouds.

Additionally, estimates of the temperature and column density within the
clouds can be made by combining the data of the four IRAS spectral bands. The
data for band 3 (60 um) and band 4 (100 um) are particularly useful for
this purpose.

We have begun a project to identify and study southern molecular clouds
present in the IRAS survey. Ultimately, we plan to produce images of esti-
mated dust temperature and column density for these objects. In this paper we
briefly discuss the method to be applied in the creation of the images, and
present some preliminary results. The latter consist of the identification of
65 bright southern dust concentrations and estimates of temperature and column
density towards their centers.

2. MATERIALS AND METHODS

2.1. Determination of Temperature and Column Density

Given a gas column density and dust temperature we can compute the flux
measured by IRAS as discussed below. We have assumed that the optical depth of
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the dust can be computed from

column density 0.5 PJm

T ---------- *-- ----------- --
21 c-210 cm /

This corresponds to a standard gas to dust ratio, and an inverse wavelength

dependence for dust opacity. The brightness was then calculated from brightness

= Bx(Tdust) * (1-exp(- T)) ,

where BX is the blackbody wavelength spectrum. This brightness was inte-
grated over the bandpasses of the IRAS detectors (Beichman et al., 1985).
Using a Newton Raphson iteration, we can invert the above equations to deter-
mine estimated dust temperature and gas column density from the 60 and 100 um
fluxes. We intend to produce images of estimated dust temperature and gas column
density for southern molecular clouds by applying the NewtonRaphson method on a
pixel by pixel basis to coadded grids of 60 and 100 um survey data. We prefer
to reconstruct the images from the Calibrated Reconstructed Detector Data to
using the Sky Brightness Images for a number of reasons. The data from the
entire survey can be combined in the images, providing higher sensitivity
and the potential for enhanced spatial resolution. Software is available
which can remove scan-to scan variations, due to detector baseline effects,
and field gradients due to extended background emission. The principal challenge
will be to find a satisfactory algorithm for removal of background emission.
We are presently using interactive image processing to evaluate the merits of
various approaches, such as no background removal, removal of a background equiva-
lent to the lowest pixel value, and subjective determination of cloud boundaries.

2.2. Selection of southern dust clouds

The 100--Um Sky Brightness Images were used initially for the identi-
fication of the southern dust concentrations. Bright discrete regions that
could be effectively separated from the superimposed background emission of the
galactic plane were selected for further processing with the facilities of the
Infrared Processing and Analysis Center (IPAC). The positions of peak bright-
ness were estimated using maps of the HCONI series. For a comparison of 60-1m
and 100-I'm brightnesses, the different angular resolution for the two sets of
data had to be taken into account. Accordingly, in our preliminary investigation,
for each wavelength band we derived the average brightness for a 3 x 3 pixel
grid centred on the pixel with the highest brightness. (The pixel spacing in the
maps is 2 arcmin). The associated mean background levels around each object were
also estimated. By means of the method discussed earlier, these results were
then converted into temperatures and column densities.

3. RESULTS

Sixty-five of the brightest dust concentrations at 100 um for declina-
tions south of -10 degrees have been examined. However, because of its
complexity the extended dense region near the galactic centre has been
excluded. Virtually all the objects are centered near the bright HII regions
listed in Gardner and Whiteoak (1974). In some cases the galactic background
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level is high and somewhat uncertain, Source Temperatures with No Background Subtraccton

and this uncertainty carries over to the .----- +----.----.----.-------------------.-----.------- 20

brightness estimates. To examine the con- (a)

sequences for the derived parameters, #

temperatures and column densities have -....---....---....------- 15
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about 40K. The other thing to be observed Source Temperatures with Background Subtraction---÷ - - - ---------.÷.. .÷. .. +. . ------- '----------. ..------- 20

is that the background temperature appears Wb 2

to be very uniform, varying only between
20 and 30 K over the 113 deg of longitude
covered by the sample. -----+-------------- 0 .... ---.... ----- -. ----+ 15

Although individual objects without 0
groups of dust regions often have similar
temperatures, some exceptions exist. A ii

prominent example is seen in the complex 0 -

near 1 = 2980. 298.2-0.3 has a dust tem- I iii

perature of 52 K; 298.9-0.4 has a tempera- # oif
ture of 44 K. 298.2-0.8 has a tempera- -+-+---------+----- ## -- ---- 5

ture of about 30 K. The associated back- fillni
ground dust temperature is about 20 K. : ti0iiiil I
Figure 2 shows the image of the ratio of --+----------------+----+----.----+-- .+ .0
the 60 to 100 micron flux for the complex. 0 20 40 60 80 100

In this instance, we adjusted the back- Background Temperatures

ground to be zero for the lowest pixel ------------.÷-o------------------------------------- 20

value. A temperature image will be simi- #
#

ilar to the colour image, since the flux #

ratio is nearly a function of temperature ....- +--------+ .. ------ +----+----+----+----.----. 15

alone. We have therefore selected the
contour levels in the figure to correspond of0
to colour temperatures from 20 to 60 K ---------- #I_------------------------------ -
degrees in steps of 5 K. #ii0

iii I

4. DISCUSSION Mil,
+ . .+ -- +###It ----- --- ------ --... ----- -. .+. . ------ 5

too#o

Comparison of the histograms in Fi- #####
gures la and lb suggests that the tern- Do01o 0
peratures derived for the cores of promi- 20 40 60 80 100

nent isolated dust clouds are not strong-
ly affected by what is assumed for the Dut Temperature (K)

Figure 1 - Histograms of derived dust temperatures towards cores of isolated
dust clouds (a) without and (b) with background emission subtract.
Dust temperatures of the background emission are shown in (c).
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background emission. Comparing either of those histograms with the one in
Figure Ic shows that there is very little overlap; the core regions are typically
15 K warmer than the background, averaged over 9 square arcmin. Also, the back-
ground temperature is quite uniform over a large part of the Galaxy.
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ABSTRACT

IRAS observations of the neighborhoods of six outer-Galaxy HII regions
were combined with CO observations to show that most of the far infrared (FIR)
luminosity from within -25-75 pc of the ionizing stars is contributed by dust
in molecular clouds, not by dust in the low-density ionized gas. Dust
associated wi ch the clouds is warmed by absorption of UV and visible light from
the cluster of stars responsible for the ionization. Most Q70%) of the OB
cluster starlight is not absorbed locally.

A fraction of the order of 10% of the OB cluster luminosity is absorbed by
nearby molecular clouds and reradiated as FIR light. The luminosity per unit
mass for the heated clouds is -3-13 L?/M0 , approximately one order of magnitude
greater than the corresponding ratio for clouds found near clusters without 0
stars, and two orders of magnitude greater than the ratio for dark clouds
heated primarily by the interstellar o-lation field. If the observations of
clouds near outer-Galaxy HII regions are used to characterize the molecular
clouds heated by HII regions in the inner-Galaxy, then at most 30% of the
Galaxy's molecular cloud mass is actively engaged in the formation of massive
stars at the present time.

INTRODUCTION

One can infer from a number of articles that appear in this volume that
the "warm dust" (Cox, Krdgel, and Mezger 1986) in many spiral galaxies has been
heated by massive stars. As a rule, massive stars are concentrated in the arms
of spiral galaxies and are accompanied by molecular clouds and diffuse atomic
gas, as well as ionized gas. In order to successfully interpret correlations
between indicators of massive star formation (e.g., radio continuum,
recombination line, and blue luminosity observations) and the FIR emission of
galaxies, it is necessary to understand how the luminosity of massive stars is
distributed among dust grains associated with the various components of the
interstellar medium (ISM). To put it succinctly: as we appreciate the beauty
of the forest, let's not forget what the trees are!

Analysis of the infrared emission from the neighborhoods of HII regions in
the Galaxy can be used to answer two important questions. First, how much of
the ionizing cluster starlight is absorbed locally? Second, what are the
relative proportions of the locally-absorbed starlight involved in heating dust
associated with diffuse ionized gas, difful atomic gas, and molecular clouds?
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Star Formadon in Galaxies 75



D. LEISAWITZ

OBSERVATIONAL PARAMETERS

We analyzed six regions, all of which lie outside the solar circle where a
molecular cloud can be associated with an HII region almost unambiguously, and
where the galactic infrared background is relatively uncomplicated. Table I
shows the star cluster coordinates (Alter, Ruprecht, and Vanysek 1970) and
distances, and the angular and linear radii of the regions.

Table I. Analyzed Regions

Star Cluster HII Region Galactic Coordinates da Region Radius
(l,b) (deg) (kpc) (deg) (pc)

NGC 7380 S142 107.08-0.90 3.60 1.0625 66.8
NGC 281 S184 123.13-6.24 1.66 0.8125 23.5
IC 1848 W51S199 137.19+0.92 2.31 1.0625 42.8
NGC 1624 S212 155.35+2.58 6.00 0.5625 58.9
NGC 1893 IC410/$236 173.59-1.70 4.00 1.0625 74.2
NGC 2175 S252 190.20+0.42 1.95 1.5625 53.2

a References for distance: NGC 7380, IC 1848, NGC 1893, and NGC 2175 from

Lynga 1981, NGC 281 from Walker and Hodge 1968, and NGC 1624 from Moffat,
FitzGerald, and Jackson 1979.

Observations of 12CO J=140 emission were obtained with the Columbia
University 1.2m millimeter wave telescope (Leisawitz 1985; Leisawitz, Thaddeus,
and Bash 1986, hereafter LTB). A circular region, centered on the star cluster
coordinates of the size indicated in Table I was mapped with a uniform sampling
interval of 7.5'. The antenna beamwidth is 8.7', the velocity resolution of
tke spectrometer is 0.65 km s , and the RMS baseline noise in all spectra is
TA - 0.28 K. A catalog and maps of the molecular clouds in the six regions of
interest are given by LTB.

Maps of 12, 25, 60, and 100pm emission corresponding to the regions mapped
in CO were extracted from the IRAS sky flux images (IRAS Explanatory
Supplement). The spatial resolution of the IRAS images is modestly better than
that of our CO observations. For comparison with the infrared data, the CO
data were interpolated and mapped into 2'X2' pixels.

RESULTS

After subtraction of an appropriate background (Leisawitz and Hauser
1986), in-band and bolometric FIR luminosities were calculated for the regions
of Table I and for each of the molecular clouds in these regions. Bolometric
luminosities were derived from the 60 and 100pm observations (cf. Appendix B of
Catalogued Galaxies and Quasars in the IRAS Survey). Two methods were applied
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to estimate the background levels in the directions of molecular clouds and
consistent results were obtained. Most of the uncertainty in the luminosity
measurements is due to uncertainty of the background intensity.

The region luminosities (bolometric) range from ~b5X10 4 to -5X105 L with
uncertainties >10%. A fraction between 5 and 30% of the total OB cluster
luminosity is reradiated in the FIR by dust within the regions studc"'d. Dust
associated with molecular clouds accounts for -50-80% of the FIR 1 'osity
from the regions considered; the rest of the emission from these regions comes,
in roughly equal proportions, from dust in the low-density ionized gas and dust
in diffuse atomic gas surrounding the nebulae.

Individual molecular clouds have luminosity-to-mass ratios <L/M> ~ 3 - 9•0
LI/M (cloud masses were derived from the CO observations assuming NH2 - 2X10

cm-2 K km-1sjT*dv). For comparison, the molecular clouds found in regions

near star clusters with members of spectral type BO or later (LTB) have <L/M>
0. 1 - 1L /M and the molecular clouds in the LTB survey that appear to be
isolated, local clouds have <L/M> ( 0.1 L0 /M and generally were not detected
by the IRAS.

DISCUSSION

If the luminosity of massive stars generally is distributed among the
various components of the ISM as it appears to be in the regions that we have
analyzed, then it is possible to deduce the fraction, f , of a galaxy's
molecular cloud mass that consists of warm molecular clou~s heated by nearby
massive stars:

fwmc c flocLOB (gal)/[Mmc (gal)<L/M>wmc

where f c is the fraction of an OB cluster's luminosity absorbed by nearby
molecular clouds and <LIM> is the luminosity-to-mass ratio for these clouds.
Radio continuum observations can be used to derive LoB(gal), the luminosity
from a galaxy's OB star clusters and CO observations can be used to estimate a
galaxy's molecular mass, M =(gal). Our analysis suggests that f lo 2 - 13%

and <L/M> wm 3 - 13 L /M. For the inner Galaxy, Dame, Elmegreen, Cohen, and

Thaddeus (1986) estimate M (gal) = 9.1X10 8 M0 and, from the Lyman continuum
photon 9 production rate obtamined by Gasten and Mezger (1983), we derive LoB(gal)
" 6X10 L . Accordingly, f should be between -1.3 and 29% for the inner
Galaxy. Bbservations of 13wwell-studied spiral galaxies summarized by Israel
and Rowan-Robinson (1984) suggest that a ratio LOR(gal)IM (gal) similar to the
ratio derived for the Milky Way is applicable to these gaTaxies as well.
Apparently, it is often the case that only a small fraction of a galaxy's
molecular cloud mass is actively forming massive stars at a given time.
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CONCLUSIONS

From analysis of the infrared emission from regions surrounding six OB
clusters in the outer Galaxy, we conclude that:

(a) at most 30% of the cluster luminosity is absorbed by dust
grains within -25-75 pc of the stars,

(b) -50-80% of the locally-absorbed starlight is absorbed by dust
associated with molecular clouds while the remainder is absorbed,
approximately in equal proportions, by dust embedded in low-density
ionized gas and dust associated with diffuse atomic gas, and

(c) the fraction of cluster starlight absorbed by nearby molecular clouds
is of the order of 10% and the FIR bolometric luminosity-to-mass
ratios that characterize such clouds are approximately a few to 13
solar units. This information can be used to estimate the fraction of
a galaxy's molecular mass that is in the form of molecular clouds
heated by nearby clusters of massive stars: in the Milky Way, and in
13 well-studied spiral galaxies, probably less than 30% of the
molecular gas is involved in the production of the current generation
of massive stars.
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ABSTRACT

In order to investigate the gas dynamics around young stellar objects, we have
mapped three sources which exhibit supersonic velocities in the 115 GHz, J=1-O
transition of CO (Bally and Lada 1983). The maps, made with the Ovens Valley Radio
Observatory Millimeter Interferometer, are the highest spatial resolution (5" x
5") images currently available of millimeter-wave continuum and line emission from
the sources S106, S87, and LkHa1Oi. Observations were made in the CS (J = 2-1) and
13C0 (J = 1-0) transitions. In all the sources, our observations indicate that the
ionized stellar wind is sweeping up ambient molecular gas. The molecular gas is
found adjacent to the outer edges of the ionized winds, which originate in embedded
infrared sources. From the observations presented here, we may infer that the
outf lowing ionized winds are channeled by the surrounding dense, neutral gas.

I. Observations

The inteferometer observations of S87 in the CS (J = 2-1) line were made with 32
channels at 3 km s-1 velocity resolution, while for S106 and LkHa1O1, the 13CO maps
were made at 0. 14 km s- 1 resolution. Because the interferometer resolves out SO-90Y.
of the emission due to missing spatial sampling of large-scale (>30") features,
these sources have also been mapped with the FCRAO 14-m antenna. The single-dish map
of S87 in this contribution is in 13C0, observed with 256 channels at 0.3 km s-1 per
channel, sampled every 15" on a 9 x 9 element grid.

II. Results

S87 is an HII region buried in the center of a hot molecular cloud, associated
with an extremely reddened IR source (Bally and Predmore 1983). It is the clearest
example of a bipolar flow among the three sources discussed in this work. Figure
1 shows the single-dish map of S87 in the wings of the 13Co line, while Figure 2
shows the same source as seen by the interferometer in CS. The position angles and
morphologies of the emission agree over a factor of ten in length scale between the
interferometer and single-dish maps, indicating that the bipolar flow is collimated
within 1017 cm of the central star.
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Figure 1 Figure 2
FCRAO 14-m map of S87 as seen in Same source, center coordinates, and VLSR
the J = 1-0 transition of 13C0. as in Figure 1, but as seen in the

Map center (1950) coordinates are CS J = 2-1 transition with the OVRO
a=19h 44-r. 13.7s, 6=24028'05. I". interferometer. The red wing is emission

VLSR = 22 km S-1 so the top integrated over VLSR=1 9 --+2 2 km s-1,
part of the figure is red-shifted while the blue wing is integrated
emission (VLSR = 24.5-+28 km s-1), over 22-+25 km s-1.

while the bottom half is
blue-shifted (17-+21.5 km s-1).

LkHa110 is a highly obscured emission line star which illuminates a roughly
fan-shaped reflection nebula. In this source, there is a clear anti-correlation
between the optical morphology and the molecular line emission. An unresolved 110
GHz continuum source is centered on the embedded young stellar object. Our line
observations suggest that the stellar wind of LkHa101 has already cleared out most of
the surrounding molecular cloud environment (Figure 3).

35'0 -- Figure 3
0 The 13 C0 J = 1-0 interferometer map

E of the environs of LkHc101
a(1950)=04h 26m 57.23s, 6(1950)=35009'55'',

VLSR=l.5 km S-1. The dotted contours
"N outline the unresolved 0.35 Jy

, •continuum source coincident with
0 the Ha emission line star.

RIWASCENSION

S106 is a bipolar optical nebula with a dark lane across its center, making it
a prime candidate for the detection of an edge-on interstellar molecular disk. The
optical emission exhibits a complicated velocity structure; however, the northern
lobe is generally red-shifted, while the southern lobe is blue-shifted (Solf and
Carsenty 1982). Figure 4 shows the 13C0 emission from S106. Figure 5 shows the
CS emission from S106 superimposed on the 1.3 cm VLA map (Bally 1985). We find no
evidence of the molecular disk claimed by observers at the Hat Creek Interferometer
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37 13 * 1

0 Figure 4
5 '• ••The interferometer map in 13 C0
00® of S106. The map is centered on

N1 ,' IRS4 (Gehrz et al. 1982)
10 ok(1950)=20h 25m 33.8s, 6(1950)=37012'48"

'5- VLSR=-I.0 km s-I. Note the
Ssimilar morphologies of CS and 13C0.

Figure 5

The interferometer map of CS emission from
S106 overlaid on its 1.3 cm radio continuum
emission. Note the anti-correlation of tMa
spatial distribution of the molecular and
ionized gas. There is no evidence for a
disk-like structure. The white speck at map
center is IRS4.

(Bieging 1984). Instead, the putative disk breaks up into two aense condensations on
opposite sides of the HII region, as seen in our higher resolution observations.

III. Conclusions

Highý velocity CO emission associated with active star-forming cloud cores has
been interpreted as outflows from embedded young stellar objects. In some cases,
these flows appear to be bipolar on arc-minute angular scales (Lada 1985). Some
authors have postulated massive (100 N.), large-scale, rotating molecular disks
as the energy source and/or focussing agent for the outflows. The observations
presented here show no direct evidence of the hypothesized disks. In particular,
the high-resolution data for S106 (one of the sources with best prior evidence for a
disk) show that the presumed disk is, in reality, two dense knots of neutral gas on
opposite sides of the conical HII region. These dense concentrations of neutral gas
are probably responsible for constricting the HII region's expansion along its minor
axis.

A preliminary interpretation of the data presented here lends support to the idea
that a hot, ionized wind sweeps out the surrounding cloud material soon after stellar
formation. However, it must be noted that the three regions studied here were already
known from optical and radio studies to contain ionized gas.
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Shock Heated Dust in L1551: L(IR) > 20 Solar Luminosities
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ABSTRACT. The infrared bolometric luminosity of the extended emission from the
L1551 flow exceeds 20 solar luminosities. Ultraviolet radiation from the shock
associated with the flow appears to heat the dust requiring shock temperatures
from 10,000 to 90,000 K in L7551, velocities of -50 km/s near the end of the
flow, and a minimum mechanical luminosity of "40 solar luminosities. The total
energy requirement of the infrared emission over a 10,000 year lifetime is
10-(46-47) ergs, two orders of magnitude higher than previous estimates for
L1551. Infrared radiation offers a new method of probing interstellar shocks,
by sampling the ultraviolet halo surrounding the shock. At least one current
model for bipolar flows is capable of meeting the energetic requirements.

I. Introduction

The extended infrared emission from dust around the L1551 flow reported by
Clark and Laureijs (1986), is analyzed. Bipolar flows from young stars have
heretofore been detected by means of broad wings on spectral lines (usually CO,
or Ha). The detection of infrared emission from dust surrounding bipolar flows
offers a new method of observing such flows. From the extended infrared emis-
sion from the L1551 flow, the total infrared luminosity is calculated, the
heating mechanisms is analyzed, the mechanical luminosity of the shock is esti-
mated, and the energy requirements calculated over the lifetime of the flow.

II. Data

IRAS HCON3 survey data, CPC images, AO edge detector data, and HCON1, 2, and 3
raw detector data have been analyzed. We have examined the spatial extent and
morphology of the infrared emission by analyzing GEISHA IRAS HCON1, 2, and 3
raw detector data, and small scale structure from CPC images.

III. Observed Flux, Dust Temperature, and Ambient Density

Table 1 illustrates the derived spatially resolved data from IRAS HCON3 survey
data, shown as strip averages from northeast to southwest: spatial offset in
arc minutes, IRAS flux, infrared luminosity, dust temperature (dust emissivity
varying inversely with wavelength), and ambient density from Snell (1981).

The extended flux contains a small model correction for the contribution near
IRS5 estimated with a cylindrical model which matched the observed cloud prop-
erties (Snell 1981, Snell and Schloerb 1985, and Mundt et al. 1985). L(IRAS) is
the luminosity observed by the IRAS filters. The bolometric IRAS luminosity,
corrected for that portion of a Planck curve with appropriate dust emissivity
not detected by the IRAS detectors, is 20-29 solar luminosities (Lo), with the
range representing uncertainty in dust emissivity, and dust temperature.
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Table 1

Offset F(60) F(000) L(IRAS) T(dust) no

' Jv Jy Lo K cm^-3

-31.8 1*.4 20.1 0.15 21 36
-26.5 1.0 22.8 0.17 20 52
-21.2 2.0 24.9 0.19 21 81
-15.9 6.1 30.0 0.23 29 143
-10.6 9.6 52.0 0.40 27 315
-5.3 19.8 192.3 1.47 25 1114

0 25.9 414.6 3.16 22 7295
5.3 15.2 238.6 1.82 22 1114

10.6 10.4 128.1 0.98 22 315
15.9 7.4 87.6 0.67 23 143
21.2 2.5 60.8 0.46 23 81
26.5 0.6 32.6 0.25 20 52
31.8 0.2 15.1 0.11 21 36

The extended infrared flux increases strongly towards IRS5, in good agreement
with the model of Snell (1981), while the dust temperature is quite uniform
across the flow. The comparison of the data near IRS 5 with the cylindrical
model described above indicates a significant reduction in dust emission from
near IRS5, perhaps from lower dust temperature, or less warm dust.

IV. Dust Heating Mechanism

The dust exhibits a near constant temperature of 22-26 K, with a radiative
lifetime of days, requiring the dust heating source to be active at the present
time. Three likely possibilities for heating the dust are: 1) radiative heating
from IRS5, 2) mechanical heating from the neutral shock heated gas, and 3)
radiative heating by shock-produced ultraviolet.

The uniform dust temperature over .5 to 2 pc speaks against the star as the
heating source for the dust. Collisional heating of dust by hot post shock gas
requires coexistence of the dust and hot gas which, under the range of condi-
tions of interest to the L1551 flow, is less efficient at heating the dust than
ultraviolet heating. The post shock region should have a thickness (.007 -. 02
pc) which is small compared to the total width (0.4 pc), and the infrared emis-
sion should be strongly limb brightened for collisional heating.

The dust in the L1551 cloud surrounding the flow can be quite effective at
trapping radiation which escapes from the flow. The conditions necessary to
heat the dust by ultraviolet radiation from the shock in L1551 are estimated as
an average shock temperature of 40,000 to 80,000 K, and an average shock velo-
city of 24 to 36 km/s (Hollenbach and McKee 1979). Ultraviolet heated dust will
occupy the volume defined by the ultraviolet opacity reaching approximately 1.
The surface of ultraviolet opacity - 1 (at 1500 Angstroms) has been modeled,
and unveils the ultraviolet halo around the shock, producing a very distinctive
morphology which blooms out at greater radii where the ambient density falls.
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Figure 1 illustrates the observed infrared emission (solid), the CO flow
(dotted) which coincides with the collisional heating morphology, and the UV
heating morphology (dashed). UV heating offers a natural explanation of the
excess infrared length and excess width at the ends of the infrared emission,
although not of the excess infrared width near IRS5.

1S30' L 1551
18

/ , 60pm IRAS-

rm- .,

UV heating J
model

I I

4h30m 4h28m

1 Right Ascension

Figure 1. CO map - also the collisionally heated morphology (dotted), the
ultraviolet morphology (dashed), and the observed infrared emission (solid).

Raw Detector Data - The raw survey detectors from HCON1, HCON2, and HCON3,
which offer 1.5' resolution for the in scan direction, have been analyzed to
determine the morphology with preliminary data from the GEISHA project. These
confirm that the infrared morphology is as long and as wide as indicated by the
IRAS survey data, and that the morphology of the infrared emission is that of a
filled image with no suggestion of limb brightening, as predicted for ultravio-
let heating of the dust.

V. The Mechanical Luminosity of the Shock

The dust heating has been modeled to determine the minimum heating require-
ments. The ultraviolet radiation field (Hollenbach and McKee) necessary to heat
the dust requires shock temperature "60-90,000 K at the low density end of the
flow (2 pc out), falling to -10-18,000 K within .3 pc of IRS5, with correspond-
ing shock velocities of ~50 km/s and -20 km/s, the variation presumably due to
projection effects of the shock upon the ambient material. The mechanical lumi-
nosity is estimated as 40-140 Lo.
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VI. The Mechanism Responsible for the L1551 Flow

The infrared luminosity of the L1551 flow is 20-29 Lo and the mechanical lumi-
nosity is estimated as 40-140 Lo. Emerson et al. estimate the bolometric lumi-
nosity of IRS5 as 38 Lo, and Mundt et al. classify IRS5 as a G-K star. These
data indicate that IRS5 may not be energetically capable of providing suffi-
cient energy to radiatively drive the L1551 flow (Draine 1983). A luminosity
range of 20-140 Lo over a flow lifetime of 10^4 years implies an energy of
>10^(46-47) ergs, two orders of magnitude larger than previous estimates (Snell
and Schloerb). Several times 10^48 ergs is released in the collapse of a solar
type star to the main sequence, and the model of Draine (1983) easily converts
energies of this order via a magnetic bubble which can drive flows. The L1551
infrared parameters place L1551 well within Draine's two asymptotic limits on
his figure 7.

VII. Summary

The detection of extended infrared emission from the L1551 flow offers a new
technique for probing bipolar flows, and a new method of estimating the ener-
getic requirements of the flows. The infrared luminosity is 20-29 Lo. The dust
appears to be heated by ultraviolet radiation from the shock requiring velo-
cities -50 km/s. The infrared dust emission appears to unveil the ultraviolet
halo around the L1551 shock. The shock mechanical luminosity is estimated as
40-140 Lo. Over a 10^4 year lifetime, this presents an energy requirement of
10^(46-47) ergs, two orderb of magnitude larger than previous estimates. The
magnetic bubble model for the bipolar flow is capable of supplying energies of
this magnitude.

Acknowledgements: We acknowledge stimulating discussions with E.E. Becklin.

References
Clark, F.O. and Laureijs, R.J. 1986 A.&A. 154, L26.
Draine, B.T. 1983 Ap.J. 270, 519.
Draine, B.T., Roberge, W.G., and Dalgarno, A. 1983 Ap.J. 264, 485.
Emerson, J.P., Harris, S., Jennings, R.E., Beichman, C.A., Baud, B., Beintema,

D.A., Marsden, P.L., and Wesselius, P.R. 1984 Ap.J. Letters 278, L49.
Hollenbach, D. and McKee, C.F. 1979 Ap.J. Suppl. 41, 555.
Mundt, R., Stocke, J., Strom, S.E., and Strom, K.M., and Anderson, E.R. 1985

Ap.J. Letters 297, L41.
Phillips, J.P., White, G.J, Ade, P.A.R., Cunningham, C.T., Richardson, K.J.,

Robson, E.I., and Watt, G.D. 1982 A.&A. 116, 130.
Richardson, K.J., White, G.J., Avery, L.W., Lesurf, J.C.G., and Harten, R.H.

1985 Ap.J. 290, 637.
Snell, R. 1981 Ap.J. Suppl. 45, 121.
Snell, R. and Schloerb, F.P. 1985 Ap.J. 295, 490.

86



MECHANISMS FOR THE CIRCULAR POLARIZATION OF
ASTROPHYSICAL OH MASERS IN STAR-FORMING
REGIONS AND THE INFERRED MAGNETIC FIELDS

Shuji DeguchiI and William D. Watson 1 ' 2

Departments of Physics and Astronomy 2

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract

Results of further calculations to explore the cause for the circular
polarization of astrophysical OH masers in regions of star-formation are
presented. New calculations are given for both the non-linear, Zeeman overlap
mechanism and the Cook mechanism. The authors previous result that magnetic
field strengths of a few milligauss or greater are required still survives.

Introduction

A striking feature of astrophysical masers is the strong, net circular
polarization of the OH masers associated with regions of star formation.
Linear polarization is also common though not so prominent as the circular
which exceeds fifty percent in perhaps half of the masers (see, e.g., Reid and
Moran 1981 for a review). One might reasonably suspect that, in addition to
gaining an understanding of a widely observed astrophysical phenomenon, a
quantitative knowledge of the mechanism might yield valuable information about
the structure and physical conditions in the gas in regions of star formation.
Although the striking polarization characteristics of these OH masers have been
recognized for some twenty years, no cause for the polarization has been
established by detailed calculations. The Cook mechanism (Cook 1966), which
depends upon the accidental matching of the gradients of the velocity and the
magnetic field, has been a possibility. The widespread occurence of the
necessary correlations in the magnetic and velocity fields would seem to be
surprising, however. We (Deguchi and Watson 1986) have recently recognized an
entirely new physical mechanism -- the non-linear effects of the overlap of
Zeeman components caused by a velocity gradient -- and have obtained a
quantitative formulation utilizing the Sobolev approximation. In the
presentation at this meeting, we extend our exploration of the polarization
properties of OH masers by presenting additional results for the Zeeman overlap
mechanism and results from an initial formulation of the Cook mechanism, also
utilizing the Sobolev approximation. Calculations are performed for an angular
momentum J=1-0 transition which is expected to be representative.

Non-Linear Effects in the Overlap of Zeeman Components

In this section, we augment our previous study (Deguchi and Watson 1986) by
presenting results in Figure 1 for the two linear Stokes components Q and U as
a function of the strength of the magnetic fieid. A description of the
calculations is contained in our previous paper. The calculations of Figure 1
suggest a tendency at Av Z> I for the circular polarization V to exceed the
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Figure 1. Ratios of the Stokes parameters Q, U and V to the intensity I as a
function of the ratio AvZ of the Zeeman splitting to the local breadth of the
spectral line. The angle between the magnetic field and the axis for the
velocities is designated by 0. Solid and dashed lines give the degree of
saturation R3/r for the most saturated transition of the Zeeman triplet.
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Figure 2. Calculations for the Stokes parameters and for the brightness
temperature TB (in Kelvins) viewed along the velocity axis. Quantities are
given as a function of the ratio of the spatial derivatives, along the velocity
axis, of the magnetic field and of the velocity in units of (cgvm/hvo). Here,
g is the Landd g-factor, Um the Bohr magneton and vo is the rest frequency for
the transition. The dashel and solid lines represent different pump rates;
they give the same (R 3 /r) as in Figure I for (aH/as)/(av/as) = 0. All three
lines are summed to produce this Figure.
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strength of the linear components Q and U -- a result that is in harmony with
the observations of OH masers. This seems to be especially the case for the
lower degree of saturation (R 3/r). Of course, the chief new information
derived from the association of this mechanism with the observations is a
measure of the strength of the magnetic field which is based on the requirement
from Figure I that Av > I to obtain large fractional polarizations. For the
parameters of the OH masers, this implies magnetic fields of a few milligauss
or stronger in these condensations in the gas in star-forming regions.

Evaluation of the Cook Mechanism

To our knowledge, the Cook mechanism for the circular polarization has not
been evaluated quantitatively -- that is, transfer equations for the maser
radiation have not previously been solved to exhibit the effect. In Figure 2,
we present the results of such calculations, again utilizing the Sobolev
approximation as described in Deguchi and Watson (1986). A qualification is
necessary. The ideal matching of the gradients of the magnetic field and of
the velocity corresponds to (aH/3s)/(3v/3s) = 1 in our units. The Sobolev
approximation can not be used at exactly this value because the spectral line
is not shifted out of the local, resonance profile by the gradients. In our
calculation, the three components of the J=1-O Zeeman triplet are considered to
be so widely separated that they never overlap.

The calculations thus tend to support the idea that the Cook mechanism can
be operative at the necessary maser power, given the proper correlations
between the gradients of the velocity and magnetic field. What is perhaps
surprising is its effectiveness over a wide range (not completely delineated
here) of values for the ratio of the relevant gradients. This tends to improve
the statistical likelihood for its occurence. However, the Cook mechanism
(just as the Zeeman overlap mechanism) requires that the Zeeman splitting be
comparable with or greater than the local breadth of the spectral lines; that
is, Av > I from Figure I and the limits of at least a few milligauss for the
magnetic-fields still hold (cf. Cook 1975).

The authors' research has been supported by the National Science
Foundation.
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SURVEY OF THE GALACTIC DISC FROM I = -150* TO 1 = 820 IN THE SUBMILLIMETER RANGE

Emmanuel CAUX and Guy SERRA
C.E.S.R. - CNRS/UPS BP 4346
31029 TOULOUSE CEDEX FRANCE

Abstract

We present new results about the emission of the galactic disc from 1=-150O
to 182*in the submm range (eX =380om). Observations have been made with the
AGLAE83 balloon-borne instrument-launched from Brazil in November 1983. In-flight
calibration of the instrument was made cn Jupiter. The longitude profile obtained
exhibits diffuse emission all along the disc with bright peaks associated with
resolved sources. The averaged galactic spectrum is in agreement with a
temperature distribution of the interstellar cold dust.

1 Introduction

The FIR emission of the Galaxy is produced by thermal radiation of dust
grains mixed with the interstellar gas and heated by the stellar radiation field.
Actually, most of the power radiated by stars in the inner Galaxy is converted
into FIR radiation. The galactic emission in the FIR range is mostly dominated by
temperature effects. Thus, observations in the submillimeter (submm) range are
necessary to assess more accurately the average spectrum of the diffuse galactic
emission. We report in this paper the first almost complete survey of the
galactic disc (from 1-i150 to 1=820) in the submm range ( X = 380im)
performed with the AGLAE balloon-borne intrument, modified to includfefa new submm
channel. The FIR channel (Xeff = 145pm) of the previous AGLAE flights was kept.

2 Instrumentation and observational procedure

The AGLAE83 experiment is a new configuration of the balloon-borne AGLAE
intrument which has been launched four times and has mapped the galactic emission
in the FIR range (Serra et al., 1978, 1979; Boiss6 et al., 1981; Gispert et al.,
1982, Caux et al., 1984, 1985). The 4detectors (composite bolometers) and filters
are located on the cold plate of a He cryostat operating at a temperature lower
than 1.5K (natural pumping at balloon altitude, p < 4mb). The detectors' output
signals are amplified by low noise preamplifiers located on the wall of the
cryostat. The sampling and 12 bit digitization was performed on board. The whole
gondola was continuously rotating at a constant angular velocity of about 2RPM.
In order to cover large wings on both sides of the galactic plane, and to provide
good zero level for the absolute reference of the emission, a 360° azimuthal
rotation on the sky of the experiment beams was adopted. The knowledge of the
direction viewed by the telescopes was obtained 32 times per turn with a
monitoring magnetometer locked onto the earth's magnetic field. The digitized
scientific and housekeeping data were then transmitted to the ground in real time
by PCM telemetry.
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The observations presented in this paper were obtained during a twelve hour
flight of the instrument launched from Sao Manuel (Brazil) on November Ist, 1983
at 0630 UT. The observational procedure allowed the coverage of the galactic
plane from -150° to 82, measurements of the sources close to the disc, and the
observation of the fluxes from Venus and Jupiter in both wavelength channels. The
photometric calibration was based on Jupiter (assuming a blackbody spectrum of
T-125K, Wright, 1976). For the submm channel, the results obtained are in
agreement to within 20% with the laboratory calibration using extended sources
(blackbodies) filling the beam. For the submm channel, the rms fluctuation
remakning after 7 signll pl~cessing can be estimated, in most parts of the profile,
at AIA -3 10 W.m .sr

Table 1: Instrument Characteristics

Primary mirror diameter: 140mm Beam diameter: 0.4*

Scanning velocity: 12; so--l
Bolometer N.E.P.: 2 10-W.Hz
Submm channel: Xeff - 3801im eff ' 150jm
FIR channel : Xeff = 145;im A eff ý 40•m

3 Results and discussion

The results are presented as a profile of the submm brightness of the
galactic disc (averaged over Ibj< 1.250), displayed as a function of the galactic
longitude between 1--150° and 1=820 in Figure 1. They are averaged in 10
longitude bins from -105° to 820 and in 58 bins from -1500 to -105.

8 IbI < 1.250 Xeff = 380pm

"6-

3.

0 1 .. . . . . .

150 120 90 60 30 0 -30 -60 -90 -120 -150
galactic longitude

Figure 1. Longitude profile of the averaged submm brightness of the galactic
disc.

This submm profile reveals, as in the FIR, a diffuse emission all along the
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galactic disc and the presence of resolved bright sources. Most of them are
related to FIR sources associated with HII region and molecular cloud complexes.
Emission peaks in the tangential direction of spiral arms are very apparent in
the submm, as they were in the FIR profile (Caux et al., 1984). The FIR profile
displays more contrast than the submm one, as would be expected because of the
steeper dependence on temperature of the FIR intensity. The longitude profile
(averaged over I1x2.5* bins) of a color index defined as the ratio of the fluxes
measured in the two channels (145pm/380m) and expressed in terms of ;I• is
displayed in Figure 2. No obvious large scale galactic effects are apparent in
the longitude interval -80(< 1 < 60a, and the mean value of this ratio is the
same for positive longitudes as for negative longitudes.

35 •< .

30 Ibl 1 250
E
:1-2520

M 20

E5

IQ:* 10
4 5

60 50 40 30 20 10 0 -10 -20'-30 -40 -50 -60 -70 -80

golactic longitude

Figure 2. Longitude profile of the averaged ratio 145m/380mm. The right scale
shows thl equivalent temperature (computed assuming a blackbody spectrum modified
by a X emissivity law) corresponding to the 145om/380pm ratio values.

The local apparent variations of this ratio are associated with bright
sources and reflect temperature effects. Our submm channel records the emission
by dust at about 10-30K while the emission in the FIR channel is dominated by
dust with temperatures ranging from 15K to 45K (see Figure 5 in Pajot et al.,
1986b). Thus the peaks of the 145pm/380wm ratio are related to sources of warm
dust. The average value of the color index in the longitude interval -80 < 1 <
700 is about 12 and leads to a typ.cal dust temperature of 20K, assuming a
blackbody spectrum modified by a i- emissivity law. This temperature is only
indicative. In fact, it can be seen on Figures 3a and 3b that the spectra of the
inner Galaxy and galactic center respectively, are characteristic of a
temperature distribution in the 100om-lmm range.

For all points plotted on these spectra, the emission is averaged in the
same way and reflects all t.e emission of the given region. Assuming a blackbody
spectrum modified by a X em ssivity law, we have computed the variation with
temperature of the ratios (in A I) for each pair of effective wavelengths used
in the FIR and submm ranges to plot the spectra of Figure 3a and 3b. The ratios
obtained with the measured fluxes in the average galactic spectrum correspond to
typical dust temperatures given in Table 2, Note that the different typical
temperatures displayed in Table 2 reflect a true distribution of the interstellar
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dust temperature, and not only uncertainties in the determination of galactic
fluxes at a given wavelength: an error of + 20% in the 145om/380pm ratio or the
60om/lO0m ratio leads to a temperature varTiation of only + 1K.

Table 2: typical temperatures deduced from the spectrum of the inner Galaxy

wavelengths 60/100 60/145 100/145 60/380 100/380 145/380
ratios 0.42 0.51 1.22 6.1 14.6 12
T (K) 24 24 23 22 21 20

10-3

10-4

L-5
I0)0

10-

a) 
b)a

10 ) b)... ..... .... . ...................
100 101 102 101 102 103

Figure 3a and 3b. Spectra cf the averaged inner galactic emission, 3*<1<330, IbI<
1.250 (3a) and galactic center region, Il1< 1.5°, IbN< 1.25° (3b). Data points
on the two spectra are from: Pajot et al., 1986: 900;jm, this work: 380im and
145jim, IRAS data corrected for the zodiacal light emission (Caux et al., in
preparation): lO0om, 60om, 25om and 12mm, Price, 1981: 4.4pm.
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DIFFUSE INFRARED EMISSION OF THE GALAXY: LARGE SCALE PROPERTIES

M. Perault, F. Boulanger, E. Falgarone and J.L. Puget.
Radioastronomie, ENS, 24 rue Lhomond, 75231 Paris Cedex 05.

IPAC, Caltech 100-22, Pasadena CA 91125.

The IRAS survey is used to study large scale properties and the origin of the
diffuse emission of the Galaxy. A careful subtraction of the zodiacal light
enables us to present longitude profiles of the galactic emission at 12, 25, 60
and 100 jm.

1. About 2/3 of the power radiated in the 100 #m band comes from the diffuse
medium (atomic, molecular and ionized components), the other 113 coming from
well identified luminous sources (complexes of giant molecular clouds (GMC) and
HII regions). The sources have a much lower 12pm/25#m and a much higher
60pm100#m emission ratio than the diffuse component, giving a very striking
antiuorralation in the colour-colour diagrams. The emission from the sources
will not be further discussed here.

2. The diffuse radiation observed at 12 and 25 #m represents a large fraction
of the far-infrared emission. The absence of any strong colour gradient across
the Galaxy implies that most of the emission up to 60 Jm is produced by small
particles through temperature fluctuations.

3. The large scale galactic structure is clearly seen at b=l, and even much
higher. The dust producing the strong emission excess for longitudes smaller
than 30* at b=l* is located about 150pc above or below the galactic plane, a
height where the gas is mostly atomic hydrogen. The clear difference in gas
scale height between the narrower molecular component and the broader atomic
(and partially ionized) component is used to determine the contribution of each
of these two components to the diffuse emission. Using an axisymmetric
assumption for the infrared production rate, and taking optical depth effects
into account, we simultaneously invert the diffuse infrared longitude profiles
(successively for each of the 4 bands) at b=00 and b=l*.

4. At all radii in the Galaxy the diffuse emission is dominated by the broad
atomic component. In the "molecular ring" half of the 100pm emission is
produced by this broad component, half by the sum of the cool molecular
component and the bright sources.
In the solar neighbourhood the dust infrared emission per H atom is 4 times
larger in the atomic gas than in the quiet molecular clouds. For atomic gas
this emissivity is 6 to 8 times larger in the "molecular ring" than in the
solar neighbourhood. These numbers imply that dust in molecular clouds is
efficiently shielded from the external radiation, and that a significant part
of the luminosity of 0 and B stars is absorbed in the atomic component. The
emissivity in this widespread component measures the interstellar radiation
field energy density (with strong weight in the ultra-violet), which increases
almost by a factor of 10 between the solar neighbourhood and the "molecular
ring".

A paper is in preparation, and will be submitted to Astronomy and Astrophysics.

Carol I. Lonsdale Persson (Eduor)
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THE LARGE SCALE GAS AND DUST DISTRIBUTION IN THE GALAXY:

IMPLICATIONS FOR STAR FORMATION

T.J. Sodroski 1,2 E. DwekI, M.G. HauserI, F.J. Kerr 2

INASA/Goddard Space Flight Center
2 University of Maryland

ABSTRACT

We present IRAS observations of the diffuse infrared (IR) emission from
the galactic plane at wavelengths of 60 and 100 pm and derive the total far
infrared intensity and its longitudinal variation in the disk. Using
available CO, 5 GHz radio-continuum, and HI data, we derive the IR luminosity
per hydrogen mass, and the infrared excess (IRE) ratio in the Galaxy.

We linearly decompose the longitudinal profiles of the 60 and 100 gm
emission into three components that are associated with the molecular (H 2 ),
neutral (HI), and ionized (HII) phases in the interstellar medium (ISM), and
derive the relevant dust properties (ie. temperature, IR luminosity per
hydrogen mass, total IR luminosity) in each phase. Implications of 3ur
findings for various models of the diffuse IR emission and for star formation
in the galactic disk are discussed.

I MORPHOLOGY OF THE FIR EMISSION FROM THE GALACTIC PLANE

Figures l(a) and l(b) show the longitudinal profiles of the observed 60
and 100 pm galactic plane emission, from which the contribution of the
zodiacal emission was subtracted using the empirical model of Boulanger
(1986). The profiles represent average intensities over the latitude interval
fbj< 0025 in longitude increments of 0?5 . As seen in Figure 1, the far
infrared (FIR) emission originates primarily from within the solar circle.
Most of the discrete sources are in the direction of, and likely associated
with, known HII region/molecular cloud complexes. Figure 1(c) is a profile of
the total IR intensity, integrated over all wavelengths, assuming the dust at
a given longitude emits at the corresponding line-of-sight temperature, with
an emissivity index of n = 2. The mean value of the total IR intensity in
W m- 2 sr-1 is 4 x 10-5 over the longitude range 1 = 2700 to 900 and 2 x 10-5
over the entire Galaxy (Note: The 0.5 position error in the original Zodiacal
History File data has been corrected).

II COMPARISON WITH CO, HI, AND 5 GHZ SURVEYS

i) Correlation of Mean Intensity Profiles
We have compared Figure l(c) with longitudinal profiles of the velocity-

integrated 12CO and HI emission, and 5 GHz radio-continuum emissiion from the
galactic plane, all profiles representing the mean intensity over -0?25 to
0?25 in latitude. The data used to derive the profiles comprise the galactic
plane surveys of 12CO from the Goddard Institute of Space Studies (GISS), the

Carol J. Lonsdale Persson (Eitor)
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Figure 1. (a) and (b) Longitudinal profiles of the galactic plane emission as
observed by IRAS and corrected for the zodiacal emission. (c) Profile of the
total IR intensity.

Berkeley (Weaver and Williams 1974) and Parkes (Kerr et al 1986) galactic
plane surveys of neutral atomic hydrogen, and the Haynes-Caswell (1979)
galactic plane survey of the 5 GHz radio-continuum. The longitudinal
variation of the total IR intensity closely correlates with both the CO and 5
GHz continuum emission, which originate from regions associated with the
younger galactic populations (i.e. molecular cloud complexes, extended low
density (ELD) HII regions), primarily located in the vicinity of spiral arms.

ii) The Infrared Luminosity Per Hydrogen Mass, and
Infrared Excess (IRE) Ratio

The total hydrogen column density along a given line-of-sight can be
derived from the velocity-integrated ' 2 CO and HI intensities. It can be used
together with the total IR intensity to calculate the infrared luminosity per

hydrogen mass, LIR . The longitudinal profile of LIR is plotted in Figure
2(a) in units of L./M. . Many of the peak values shown in the figure lie in

the directions of spiral arms. The mean value of LIR over the entire range of
longitudes is - 3 LQ/M6 , a value similar to that in clouds heated only by the
interstellar radiation field (Weiland et al 1986).

The infrared excess ratio, defined as the IR-to-Lya luminosity ratio, is
plotted in Figure 2(b). The IRE ratio is relatively constant with longitude,
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Figure 2. (a) Galactic longitude profile of the infrared luminosity per
hydrogen mass. The mean value is - 3 LONM8 . (b) The IRE ratio.

suggesting that the stellar initial mass function (IMF) is largely unchanged
throughout the inner Galaxy. This observed behavior contradicts the claim of
Gispert et al (1982) that there exists a marked increase of the IMF with
decreasing galactocentric radius, and, as must follow, that the inner galaxy
is deficient in producing OB stars relative to the solar vicinity. The mean
value of IRE is - 6 , and implies that known (instead of embedded) OB stars
can provide a large fraction of the radiation needed to heat the dust that is
responsible for the diffuse IR emission.

III A NEW APPROACH: A LINEAR DECOMPOSITION OF THE IR
INTENSITY INTO ITS GAS PHASE CONTRIBUTIONS

We have linearly decomposed the IRAS data into three emission components
associated with the most massive gas phases (H12 , HI, and HII) in the ISM as
follows. We assumed a constant gas-to-dust mass ratio and grain temperature
in each of the three phases. Then, at every longitude 1, the observed
intensity in an IRAS band i(=1,2) is given by the linear combination of the
dust emissivity per unit gas mass, eiA , in each gas component j(=1,2,3),
multiplied by the column density of that component. In order to obtain the
column density of the ionized gas we assumed a gas density of 10 cm- 3 in the
ELD HII regions. The best fit to the flux in each band was found by adjusting
the e i's. A statistical analysis of our decomposition algorithm has
confiiried that the parameters of the three components are linearly
independent. The resulting eii s were used together with an adopted
emissivity index of n = 2 to oNtain the dust temperature, the total IR
intensity, the IR luminosity per hydrogen mass, and the gas-to-dust mass ratio
in each gas phase component. Our results are summarized in Table 1.
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TABLE 1: DERIVED DUST QUANTITIES IN THE VARIOUS ISM PHASES

FIR Total
Dust Gas-to- Luminosity %Contribution Total Lumi-

Gas Temp Dust Mass per H Mass 60 100 Total Mass nosity
Phase (K) Ratio (L@/M@) ý±m ýim FIR (MO) (LO)

9a

H2 20 190 2.3 20 40 40 2.0x10 9  4.6x10 9

HI 24 270 2.8 30 33 30 2.6x10 9 b 7.3x10 9

HII 31 190 28.0 50 27 30 3.7x10 7  1.0x10 9 '

Mass-averaged
Values 200 3.8

References: (a)Cohen (1978); (b)Baker and Burton (1975); (c)Mezger (1978)

SUMMARY

We have calculated the contribution of the H2 , HI, and HII regions to
the galactic 60 and 100 pm emission. The major results of our calculations
are listed in Table 1 and can be summarized as follows.

1) The molecular, neutral atomic, and ionized gas components contribute
about equally to the total IR intensity. The total IR luminosity of the
Galaxy is about 1.3 x 1010 Le , with 35, 55, and 10 percent from H2 , HI, and
HII regions respectively.

2) The IR luminosity per hydrogen mass is - 2 - 3 for the H2 and HI
components, comparable to that of interstellar clouds heated by the
interstellar radiation field alone. Therefore, molecular and HI clouds
typically do not seem to have highly luminous, embeddcd heating sources.

3) The IRE ratio is - 6, implying that known OB stars can provide a large
fraction of the energy needed to heat the dust. Its constancy with longitude
implies that the stellar IMF does not vary significantly in the disk.
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ABSTRACT

We find a linear correlation between the infrared cirrus at 100 or 60 Pm and neutral
atomic hydrogen near the galactic plane. IRAS Sky Brightness images were compared to
the 0.5 * resolution Weaver-Williams HI survey in two regions of the outer Galaxy near 1=
125* and 1=215 . The dust temperature inferred is nearly uniform and in reasonable
agreement with theoretical predictions of thermal dust emission.

INTRODUCTION

The IRAS Satellite Survey has given us a wealth of information on the diffuse galactic
infrared emission, strongest in the 100 pm band, which has become known as the infrared
cirrus (Low et al. 1984). Boulanger, Baud, and van Albada (1985) have found a correlation
between the 100 pm cirrus and several high latitude HI clouds. Weiland et al. (1986) have
found an association between the cirrus and several high latitude molecular clouds.

We discuss the properties of the infrared cirrus, and the physical conditions necessary
for the observed emission. A more extensive discussion of the data can be found in Tere-
bey and Fich (1986).

DATA

The two IRAS image fields are from the original release of the third HCON Sky
Brightness Survey with central positions at (1.6h,60*) and (7.0h,0*) and linear extents of
16.5 °* We smoothed the IRAS data to 0.5' resolution and subtracted a smooth zodiacal
background from both the 60 and 100 pm data.

The HI data (Weaver and Williams 1973) have an angular resolution of 0.50 and
galactic latitude range (-10*,10°). We constructed integrated brightness temperature
maps from the HI data, then converted to neutral hydrogen column density assuming opti-
cal depth much less than one.

RESULTS

The 60 pm data show a linear correlation with the 100 pm data. Least squares
derived values for the slope give 0.207 ± 0.022 and 0.205 ± 0.026 for the I =- 125 0 and I
= 215 * fields, respectively. The small scatter in the correlation implies that the physical
conditions leading to the infrared emission are very uniform in the outer Galaxy.

Carol J. Lonsdale Persson (Editor)
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Figure 1. The HI column density is plotted against the IRAS 100 pm intensity in the I =

125 * field. Contamination by non-cirrus infrared sources produces the high intensity 100
pm points that don't follow the correlation. Solid line shows a least squares fit to the data

(excluding non-cirrus sources).

If the infrared emission is due to thermal emission from dust grains, then galactic pro-

perties such as the dust to gas ratio and the interstellar radiation field are relatively uni-
form in these regions. The infrared emissivity is a strong function of dust temperature. If
the dust temperature is uniform then we might expect a linear relationship between the
infrared intensity, which would be proportional to dust column density, and the gas
column density. In the outer Galaxy the interstellar medium is predominantly neutral
atomic hydrogen suggesting there should be a correlation between HI and the infrared
cirrus.

Figure 1 shows there is a strong linear correlation between the 100 pm intensity and
HI column density. A least squares fit gives slopes of 6.4 ± 1.1 10"15 and 4.2 ± 0.8 10-15 Jy
ster-1/ HI atom cm"2 in the 1 = 125' and I = 215 fields, respectively. This can be com-
pared with the value of 1.4 ± 0.3 10 14 found by Boulanger, Baud, and van Albada (1985)
for several high latitude HI clouds.
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CORRELATION BETWEEN CIRRUS AND HI

Assuming the emission is thermal emission from dust grains then tile ratio of the 100
pm intensity to HI column density can be used to calculate the characteristic dust tem-
perature. Following Hildebrand (1983) and using for illustrative purposes a dust opacity
proportional to X-5 gives a dust temperature of 16.7 and 15.9 K for the I = 125 and I
= 215 * fields, respectively. These results are in reasonable agreement with average dust
temperatures predicted by models of thermal dust emission from dust grains (de Muizon
and Rouan 1985, Draine and Anderson 1985).
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ABSTRACT

The Arp Ring is a faint, loop-like structure around the northern end
of M81 which becomes apparent only on deep optical photographs of the galaxy.
The nature of the Ring and its proximity to M81 are uncertain. Is it simply
foreground structure - part of our own galaxy, or is it within the M81 system ?
IRAS maps of the region show a far-infrared counterpart of the Ring. The new
infrared data are compared with previous optical and radio observations to try
to ascertain its physical nature. The poor correlation found between the common
infrared/optical structure and the distribution of extragalactic neutral
hydrogen, and the fact that its infrared properties are indistinguishable from
those of nearby galactic cirrus, imply that the Arp Ring is simply a ring
structure in the galactic cirrus.

INTRODUCTION

Deep optical pictures of M81 taken by Arp (1965) showed a faint and
fascinating loop-like structure around the northern end of the galaxy. Arp
originally considered the feature to be associated with M81, i.e. extra-
galactic, and interpreted it as a manifestation of an electromagnetic interact-
ion between electrons from M82 (then assumed to be exploding) and the magnetic
field of M81. Gottesman and Weliachew (1975) considered the Ring to be the
optical counterpart of the satellite neutral hydrogen they found around M81.
However, more recent deep plates by Sandage (1976) revealed widespread, low-
level diffuse optical emission throughout much of the region of sky about 181.
IRAS extended emission maps (IRAS Explanatory Supplement) of the area show a
good correlation between much of the diffuse optical emission and the infrared
"cirrus" (Low et al, 1984) thought to be local to our galaxy. The Arp Ring
could now be seen as simply a fortuitous alignment of a cirrus loop in the
foreground of M81. Very recently Karachentsev et al (1985) have added a furth-
er twist in the tale with their reported detection, within the Ring, of young
star clusters at recession velocities corresponding to the distance of the M81
group. So, is the Ring galactic or extragalactic ? Data obtained by IRAS show
an infrared counterpart of the optical Ring; we compare the infrared and opt-
ical structure with the distribution of extragalactic neutral hydrogen to try
to resolve the uncertainty.

OBSERVATION and RESULTS

Figures 1 and 2 show, respectively, the 100 and 60 micron maps of M81
made by coadding the data from IRAS pointed-mode observations (Young et al,
1985) of the area. The beam is 5 x 3 arcminutes at 100 microns and
4.7 x 1.5 arcminutes at 60 microns, with the long axis oriented perpendicular
to the mean scan direction - indicated by the jagged line marking the edge of
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the area observed. The maps have been flatfielded using techniques described
in Rice et al (1986). The infrared counterpart of the Arp Ring is the extensive
low surface brightness structure outside the northern half of the disc of M81.

Figure 1 Figure 2
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DISCUSSION

COMPARISON WITH SANDAGE'S DEEP OPTICAL PHOTOGRAPH

Inspection of Sandage's(1976) deep optical image reveals little to dist-
inguish the Arp Ring from other cirrus/reflection nebulosity in the vicinity.

Until recently only the relative sharpness of the Ring in the optical, and its
curious orientation about M81, were compellirý enough to suggest the Ring as a
possible component of the M81 system; originating perhaps in the interaction
between M81 and M82. However, Karachentsev et al now claim to have resolved
"blue diffuse and star-like objects" on plates obtained with the Soviet 6 metre
telescope (1986 and priv. comm.) Unfortunately details of where in the Ring
this recent star-formation has taken place have yet to be disclosed.

The IRAS maps of M81 can be used to compare the infrared and deep
optical appearance of the region immediately surrounding the galaxy. Despite
the lower spatial resolution of the infrared maps, superimposing them on the
deep optical image shows a one-to-one correspondence between the infrared and
optical bright spots of the Ring. This is particularly clear at 60 microns
where the spatial resolution is better and there is less confusion from nearby
cirrus.The glaring difference between the infrared and optical views is the
absence of the dwarf Magellanic irregular companion of M81, DDO 66, from both
the 60 and 100 micron images. DDO 66 is of considerably higher optical surface-
brightness than any part of the Ring, and, unlike the Ring, can even be seen on
the blue sky-survey print. If the Ring was to be considered extragalactic, it
would be unique as the only extended infrared feature, in any nearby galaxy
observed by IRAS, to have no optical counterpart on sky-survey prints. (See
"Atlas of IRAS Extended Galaxies" Rice et al, this conference.)
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FAR-INFRARED COLOURS

Can the Arp Ring be distinguished from nearby cirrus on the basis of
far-infrared colour ? The answer appears to be no ! The 100-over-60 micron
flux ratio has been determined for many cirrus features within two degrees of
M81 (Abolins and Rice, 1986). The values obtained are all greater than 5.5,
ranging mainly between 6 and 8, corresponding to dust grains with colour temp-
erature T425 K assuming emissivity proportional to 9", or T422 K assuming
emissivity proportional to y,1. The value for the Ring as a whole is 6 i 1.
This value does not change appreciably if smaller regions about the peaks are
sampled, i.e. when possible contamination from cirrus not associated with the
Ring is minimised.

21cm LINE DATA

Having established a close correspondence between the optical and
infrared structure, we now compare both with the distribution of extragalactic
neutral hydrogen from the published 21cm line data. The entire M81 group has
been extensively observed : Gottesman and Weliachew (1975) showed the existence
of clumps of satellite neutral hydrogen around M81, Cottrell (1977) and Gottesman
and Weliachew(1977) showed the neutral hydrogen bridge connecting M81 with
M82, van der Hulst (1979) described the bridge connecting M81 with NGC 3077 and
Roberts(1972) and Davies(1974) showed that M81,M82 and NGC 3077 are enveloped
in a giant cloud of neutral hydrogen. Is there then any close similarity bet-
ween the optical/infrared structure and neutral hydrogen distribution, from
which an extragalactic distance to the Ring could be inferred ? There is no
detected counterpart of either the giant enveloping cloud or the connecting
bridges (Abolins and Rice,1986). Gottesman and Weliachew(1975) interpreted the
Ring as the optical counterpart of the satellite neutral hydrogen close to M81,
but remarked that the radio emission was "very patchy" by comparison. In fact
only the eastern parts of the Ring show any coincidence with the radio emiss-
ion. Cottrell (1977) noticed this and pointed out that the bright portion of
the Ring due north of M81 is coincident with a minimum in the HI distribution.
The brightest of the satellite HI features is that associated with DDO 66, also
the brightest optical feature outside M81, but undetected in the infrared. A
cloud due north of DDO 66 is the only HI feature to overlap with the infrared
structure. Its total mass and surface density are similar to, but rather lower
than, those of DDO 66 (Gottesman and Weliachew, 1975), and therefore, if the
Ring is extragalactic and its infrared emission is from heated dust grains, the
gas-to-dust ratio must be quite unlike that of DDO 66.

INFRARED COUNTERPARTS OF EXTRAGALACTIC HI CLOUDS ?

Searches for infrared [dust] counterparts of extragalactic clouds of neutral
hydrogen, using IRAS data, are underway in the USA and Europe (eg this work and
priv. comms.). It is now clear that the task is likely to be severely hampered
by confusion from galactic cirrus if dust grains present attain temperatures
T'-20K (Pierce adTully, 1985). Extragalactic HI clouds in cirrus-free areas are
clearly the most promising candidates in this respect.

CONCLUSIONS

The far infrared maps and colour temperature of the Arp Ring are
entirely consistent with the Ring being composed of galactic cirrus. The app-
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arent conflict between this conclusion and the report of recent [extragalactic]
star-formation within the Ring is resolved if there is a faint dwarf Im galaxy
behind the [cirrus] Ring. This is not an unlikely event in a group known to be
rich in dwarf systems.
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ABSTRACT The paper presents the analysis of several diffuse interstellar
clouds observed by IRAS. The 60/100 Mm flux ratios appear to be nearly constant
in clouds with up to 1 of visual extinction at the centre. Observations of a
highly regular cloud in Chamaeleon show that the 12/O00pjm ratio peaks at an
intermediate radial distance and declines towards the centre of the cloud. These
observations indicate that non-equilibrium emission accounts only for the 12 and
25 Um bands; strong emission observed at 60 pm band is probably due to equili-
brium thermal radiation. The correlation of 12 pm emission with a red exceQ:
observed for a high latitude cloud, L1780, is shown to be consistent with the
assumption that both features are due to fluorescence by the same molecular
species.

1. Introduction

The early analysis of IRAS observations of dust in tL.e diffuse interstellar
medium concentrated on the discovery of the infrared cirrus (Low et al., 1984)
and the universal occurrence of strong emission at 12 and 25 pm. These observa-
tions provided a clear indication that existing grain models must be modified by
including a contribution of particles ebaitting as a result of transient rather
than equilibrium radiative heating. In order to provide wore restrictive con-
straints on grain models, we have analyzed data for individual well-defined
clouds and studied the dependence of IR emission on the visual optical depth.
This paper summarizes the most important preliminary results of the study.

2. Data reduction

The data base used in this study consisted of IRAS HCON3 scans (IRAS
Explanatory Supplement, 1985). The maps were corrected for detector sensitivity
effects (striping) by two-dimensional Fourier filtering. The zodiacal light
contribution was estimated by masking bright sources and fitting a cosecant law
to the remaining extended emission. After these reductions, the background level
was determined as the average of weak galactic emission surrounding each cloud.

3. A 'typical' diffuse cloud

The object, for which the data have been summarized in Fig. 1, does not
appear in the catalogues of galactic clouds. Its IR emission, however, is seen
clearly in the IRAS maps of the Chamaeleon area; the cloud can also be identi-
fied in the ESO/SERC J-plate. The cloud appears highly regular with nearly
circular IR isophotes, particularly at 100 pm. The brightness distribution
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within the cloud derived by averaging intensities in concentric rings, has been
shown in Fig. 1, which also presents pixel-to-pixel correlations between inten-
sities in individual bands.

The results of our study of the Chamaeleon object can be summarized as fol-
lows:
(1) The 60/100 4m ratio remains constant over the entire radial extent of the
cloud. The colour temperature implied by this ratio is 27K (assuming a A
emissivity law). This number is somewhat higher than the temperatures obtained
for several other clouds (Low et al., 1984; Laureijs et al., 1986); however, it
may be due to the inaccurate calibration of HCON3, since the analysis of the
cloud in HCON1 data yields a lower temperature of 24-25K (H. Walker, private
communication). (3) The ratio of 12 and 25 pm intensities does not vary strongly
but after improved background correction, the data imply a slight decrease
towards the centre of the cloud. The value of the ratio is - 0.3. (3) The 12/100

.........I .I I w i i

60 - 6 0 vs.' 1 00

100 100 X X 40x

x 20

-100 0 10 200X 0

+ + + *+x-2
60 £m +2

+ x -100 0 100 200

OX

+ I 0 -112 s.125

-100

25-I1m 0 5 -5 0 5 10

......... I" .

1 0 1062 1

12 /=m x•:

-5. **

OX

01 -101.

e1 -510 50 10 15

Fi. et:raia rihtes isriuto. igt px l-t-pxe creaion

I0 - 12 vs. -100,

10 100 •• .-
Radius (arcmin)0 -• .r'- "

-5- "

-50 50 1'50 25'0

Fig. 1. Left: radial brightness distribution. Rlight: ptxel-to-plxel correlations

between individual IRAS bands. Intensities are in units of 105 Jy/sr.

114



INFRARED PROPERTIES OF DUST GRAINS

um ratio peaks at an intermediate radial position in the cloud and declines
towards the centre.

The visual extinction at the centre of the cloud has not been measured (the
work on star count analysis is in progress), but a comparison with L1642
(Laureijs et al., 1986) implies AV 1 m.

The high 60/100 pm temperature observed for the Chamaeleon object and
almost all of the clouds so far extracted from the IRAS data base, cannot be
explained by the current grain models, which predict equilibrium temperatures of
less than 20K. The constant 60/100 pm ratio for the Chamaeleon object appears to
contradict the suggestion that the additional emission at 60 pm is due to non-
equilibrium emission from graphite particles with sizes of less than 0.005 ji
(Draine and Anderson, 1985; the 60/100 4m ratio can be made to vary more slowly
in this model if the power-law size distribution for the small particles is
assumed to be steeper than X ). The same argument appears to exclude the
hypothesis which associates the 60 and 100 pm emission with fine structure lines
of 01 and 0111 (Harwit et al., 1986), since the fall-off in the degree of frac-
tional ionization with optical depth should lead to a rapid variation in the
ratio of the two intensities.

As an alternative possibility, we have considered equilibrium emission from
a population of particles whose temperatures are higher than those obtained in
current grain models. The calculations related to this hypothesis have been
carried out for thin graphite discs modelled as oblate spheroids with an axial
ratio of -10, for which the equilibrium temperature in the diffuse interstellar
radiation field can be demonstrated to be -25K (the increased temperature of
spheroids with respect to spherical parti as considered in current grain models
is due to a combination of the properties of a conductor with a strong aniso-
tropy, which is peculiar to graphite; Ci: .wicki, 1985). The required abundance
of the additional particles is relatively low: with the distance to the cloud
estimated at "100 po on the basis of its location with respect to the more
extegded iirrus emission, the volume concentration of the particles is only
"10 cm . The abundance of particles responsible for visual extinction is
most easily derived from the three-population model (Hong and Greenberg, 1980),
with the 'large' particles represented by 0.15 um dielectric spheres. The
extinction of 1m at 1 6 he cintre of thecloud leads to a concentration of 'visual'
particles of "5*10 cm . The volume ratio for the entire populations of 60 jm
particles and large 'visual' grains is then -0.1. The ratio is almost unchanged
if the MRN (Mathis et al., 1977) model is used as a representation of the inter-
stellar extinction curve, since both models impose similar requirements on the
volume of material locked up in grains responsible for visual extinction. One of
the most important implications of this hypothesis is that algorithms for esti-
mating masses and volumes of interstellar clouds -such as the method described
by Hildebrand (1983) - which are based on parameters derived from submillimetre
data sensitive only to the IR properties of large particles, cannot always be
used In the analysis of IRAS observations at significantly shorter wavelengths.

3. L1780:correlated visual and IR fluorescence?

L1780 appears to be the only interstellar cloud for which a red visual
spectrum has been obtained (Mattila, 1979). The spectrum shows a pronounced peak
at -6500A, which cannot be explained by scattered light, unless substantial
modifications in the optical properties of the grains are assumed (the intensi-
ties of the scattered diffuse galactic light predicted at these wavelengths by
both the MRN and the three-population model are nearly constant). The position
and shape of the feature (as far as they can be determined in the inevitably
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noisy spectrum) are almost identical with the broad-band emission observed in
the Red Rectangle (Schmidt et al., 1980). Recent interest in the polycyclic aro-
matic hydrocarbons as a possible explanation for the unidentified IR features
and the IRAS 12 Om emission (PAH's, Leger and Puget, 1984; Allamandola et al.,
1985), has led to suggestions that the Red Rectangle feature is due to fluores-
cence by such molecules. We have analyzed the IR data for L1780 in order to test
the hypothesis that both the short wavelength IRAS emission and the red feature
observed by Mattila can be due to fluorescence from the same molecular species.
Since the basic parameters of the cloud have been determined by Mattila (A =m OB3 , r - 100pc, nH = 10 cm-; 1 = 3590, b= 36 ), the energies contained in both
visual and IR features can be estimated. By subtracting a scattering component
predicted by grain models from Matila's s ectrum, we have obtained a total
energy in the red feature of 8*10 erg s - 0.2 L0 . Table 1 contains the
fluorescence yields required to reproduce this number for molecules in the gas
phase and species locked up in grain mantles. The core-mantle grains containing
the molecy~es were assumed to be 0.15um spheres with a normal gas-to-dust ratio,
n no10 n.. Gas phase molecules were assumed, o consist of 20 carbon atoms

to have a UV absorption cross-section of 10 cm ; the total content of
carbon in the species was taken to be 1% of the cosmic abundance.

For aromatic molecules, the energy of a typical exciting photon (-4 eV)
should be distributed almost equally between visual and IR fluorescence (the
IRAS 12 nm band). If both the visual excess and the 12 pm emission are associ-
ated with the PAH's, the ratio of the energy contained in each wavelength range
should have a value close to the fluorescence yield The 12 _m nte~sity in the
part of the cloud observed by Mattils is I = 9*10 ergcm s sr . With the
intensity of the red excess of 4*10 , the'?ntensity ratio is 0.45 in perfect
agreement with fluorescence fields expected for aromatic species. A stronger
confirmation of the PAH hypothesis for L1780 could only be obtained if more
visual spectra of galactic clouds become available.

Table I
Fluorescence yields derived from the L1780 emission

Excitation Grain Free
threshold mantles molecules

3.5 eV (MV) 0.03 -I
2 eV (UV+Vis) 0.01 0.4

REFERENCES

Allamandola, L. J., Tielens, A.G.G.M., Barker, J.R., 1985, Ap.J., 290, L25.
Chlewicki, G., 1985, Ph.D. Thesis, University of Leiden.
Draine. B.T., Anderson, N., 1985, Ap.J., 292, 494.
Harwit, M., Houck, J.R., Stacey, G.J., 1986, Nature, 319, 646.
Hildebrand, R.H., 1983, QJRAS, 24, 267.
Hong, S.S., and Greenberg, J.M., 1980, Astr. Ap., 88, 194.
Laureijs, R.J. et al., 1986, in preparation.
Leger, A., and Puget, J.L., 1984, Astr. Ap., 137, L5.
Low, F.J., et al., 1984, Ap.J., 278, L19.
Mathis, J.S., Rumpl, W., Nordsieck, K.H., 1977, Ap.J., 217, 425.
Mattila, K., 1979, Astr. Ap., 78, 253.
Schmidt, G.D., Cohen, M., Margon, B., 1980, Ap.J., 239, L133.

116



IRAS Observations of the Pleiades

P. Cox1 and A. Leene 2

1. Max Planck Institut fur Radioastronomie
Auf dem HUgel 69, D-5300 Bonn 1, F.R.G

2. Kapteijn Astronomical Institute
Groningen, The Netherlands

Abstract

IRAS observations of the Pleiades region are reported. The data
show large flux densities at 12 pm and 25 pm, extended over the optical
nebulosity. This strong excess emission, implying temperatures of a few
hundred degrees Kelvin, indicates a population of very small grains in
the Pleiades. It is suggested that these grains are similar to the small
grains needed to explain the surface brightness measurements made in the
ultraviolet.

I. Introduction

At a distance of 126 pc, the Pleiades offer a beautiful opportunity
to observe the fine structure occuring in interstellar clouds. The well
known geometry of the cloud is of great help in characterizing the scat-
tering properties (albedo and phase function) of interstellar dyst. The
chemistry is unusual in the sense that the column density of CH is ex-
ceptionally high towards the Pleiades cluster. Previous models, based on
optical and ultraviolet observations, required that the dust in the Pleia-
des will be an extended and complex radiation source in the infrared.

We present the IRAS observations of the Pleiades region and give
preliminary results of the dust characteristics derived fron the infrared
data. A paper on this subject is in preparation and will be submitted to
Astronomy and Astrophysics. Here we give a summary of the salient results.

II. Observational Material and Data Reduction.

The data base consists of IRAS HCON3 scans (IRAS Explanatory Sup-
plement, Ref. 1). The maps were corrected for detector sensitivity ef-
fects by two dimensional Fourier filtering. The zodiacal light contri-
bution was estimated by fitting a linear baseline on the entire map and
using averaged values derived from a geometrical model of the zodiacal
emission (Ref. 2).

The resulting corrected and destriped maps are presented for 12
pm and 100 Fm in figures 1 and 2, respectively.

III. Results

The brightness distribution of the infrared emission for the Plei-
ades is very similar in all four IRAS bands. A ridge of high brightness
extends over the western half of the cluster. Three main emission peaks
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V,

.Figure 1:The 12 ym emission map of the Pleiades overlayed

on the Red Print of the Palomar Sky Survey.

are apparent, of which the southern is the more intense. A weakening in
the infrared distribution is noticeable east of this ridge. A diffuse
emission extends from this ridge several degrees across the region.

In figure 1, the 12 pm image is presented superimposed on a copy of
the Red Palomar sky Survey. The brightest infrared component lies south
of 23 Tau (Merope) and the two northen peaks correspond to the nebulosi-
ties associated with 20 and 17 Tauri.

Figure 12 shows the CO measurements (10 km.s -1) and the HI emission
at 7 km.s (Ref. 3-4). The CO cloud is slightly shifted with respect
to the main infrared peak: note however that the sharp edge of the mole-
cular cloud corresponds with the brightest region of the nebulosity, south
of Merope. This feature coincides with a region of obscuration recogni-
zable on visible photographs of the cluster. The HI ridge northen peak
corresponds with a decrease in the infrared distribution. No infrared
counterpart however is found for the southern HI peak.
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Figure 2: The HI cgntours (7 km.s ) and the CO
emission (10 km.s- ) superimposed on the 100 Y m
emission map.

In figure 3, the 12/100 ym ratio is presented superimposed on the
blue Palomar Sky Survey. The large values of this ratio are striking.
The first contour lies at 0.05 and is as extended as the diffuse blue
reflection nebulosity.

The 60/100 Fm ratio is also very extended and uniform over the nebu-
losity, indicating temperatures of the order of -25K.

IV. Discussion

The strong excess emission at 12 Pm which is extended over all the
region definitely indicates the presence of very small grains (-10 A
sized) in the Pleiades (Ref. 5). The high values attained by the 12/100
pm ratio suggest that a conspicuous amount of carbon is locked into these
grains i. e. up to 10% of the total carbon mass. 0

The presence of a large population of grains in the 10 A size has
been independently suggested by Witt et al. (Ref. 6) on the basis of
ultraviolet measurements. According to these authors the ultraviolet
data can only be understood if the scattering phase function becomes
more isotropic in the far-ultraviolet, which is a behaviour expected
for particles small compared to the wavelength of ultraviolet light.
These particles are reminiscent of the free radicals (or 'Platt parti-
cles') as described by Andriesse and de Vries (Ref. 7), which have a
high albedo in the far-ultraviolet and isotropic scattering i.e. g.0.2.
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Figure 3:The 12/100 pm ratio overlayed on the blue
print of the PSS. Contours are at 0.05 to 0.09 with
steps of 0.01.

V. Conclusions

IRAS observations of the Pleiades are presented. The observations
reveal a large flux density at 12 pm and 25 pm, extended over the optical
nebulosity, implying temperatures of a few hundred degrees Kelvin. The
60 pm and the 100 pm fluxes give temperatures of the order of 25 K.

The strong excess emission at 12 m can only be understood in terms of
a large population of very small grains (in the 10 A size range). We
suggest that these grains are similar to the small grains needed to
account for the ultraviolet measurements made on the Pleiades,i. e.
isotropic (g,,0.2) scatterers in the far-ultrlviolet. Finally, we note
that the unusually high column density of CH towards the Pleiades (Ref.
8) may perhaps be the key to the origin of these small graphitic parti-
cles.
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STAR FORMATION IN NORMAL GALAXIES
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1. INTRODUCTION

In this review I shall be mainly concerned with the ways in which recent
infrared observations, particularly by IRAS, have influenced our ideas about
star formation in "normal" galaxies.

2. IRAS SURVEYS AS A POINTER TO STAR FORMATION

That strong infrared emission is common in spiral galaxies became clear at
the time of publication of the first group of IRAS papers. De Jong et al.
(1984) examined a sample of 165 galaxies in the Shapley-Ames catalog and found
that over 80% of spirals (Sa and later) were detected by IRAS, though none of
the ellipticals were seen. Since the publication of the IRAS point source
catalog it has been possible to examine the incidence of infrared emission from
galaxies on a proper statistical basis. The infrared luminosity function has
been calculated by several .oups (Lawrence et al. 1986; Soifer et al. 1986;
Rieke and Lebofsky 1986). In general it resembles that of galaxies at visible
wavelengths except that there appears to be an excess of sources with lumin-
osities above about i1ý0 L.. These high luminosity objects include active gal-
axies and "starburst" galaxies that will be receiving much attention elsewhere
in this volume. I will generally be discussing lower-luminosity spiral galax-
ies in this paper, although I will present evidence that a number of early-type
barred spiral galaxies may be exhibiting signs of low-level nuclear activity.

A crucial problem in trying to use infrared luminosities as a guide to
star formation activity in galaxies is the difficulty of distinguishing emission
from the diffuse interstellar medium and emission from dust heated by newly
formed or still-forming stars. Attempts have been made to use various flux
ratios for this purpose. de Jong et al. (1984) found that the ratio LIR/LB
increases with the 60-100 Pm color temperature. From this result has come the
idea that spiral galaxy disks contain a cool dust component that corresponds to
the diffuse or "cirrus" emission, plus a warmer component that dominates in
cases of galaxies that are undergoing large amounts of star formation.

The separation of the infrared emission into a "cirrus" and a star forma-
tion component may be tested by comparing the IRAS data with some independent
parameter, such as the Ha or the CO fluxes. The results are not conclusive. Two
groups have compared the IRAS fluxes from a number of spiral galaxies with the
star formation rates calculated by Kennicutt from measurements of Ha spectro-
photometry; Moorwood, Veron-Cetty, and Glass (1986) conclude that the infrared
emission from Kennicutt's galaxies matches that expected on the basis of Ha
emission from star formation regions, but Persson and Helou (1986) conclude
that the bulk of the infrared emission from these galaxies comes from the
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interstellar "cirrus" component. Young (1986) finds a correlation between
infrared luminosity and the luminosity in the 2.6 mm CO line, supporting the
idea that much of the infrared emission is associated with star formation.
Since some of the galaxies in her study are of very high luminosity, however,
the result does not necessarily apply to "normal" galaxies.

A challenge to the idea that the 60-100 Pin color temperature is an indi-
cator of the role of star formation in galaxies has been raised by Burstein and
Lebofsky (1986). They present evidence that the apparent far-infrared lumin-
osity of Sc galaxies varies with inclination. This result would imply that the
disks of these galaxies are optically thick at 100 Am, which in turn would
require that the emission be concentrated within the central 1 kpc diameter
region. Burstein and Lebofsky's conclusions are disputed by Rice, Elias, and
Persson (1986), who point out that problems arise due to the difficulties of
correctly classifying galaxies that have high inclinations. Another difficulty
with Burstein and Lebofsky's hypothesis is that Devereux, Becklin and Scoville
(1986) found that the emission from most Sc galaxies is not concentrated within
the central 1 kpc, at least at 10 Pa.

The strongest correlation that has appeared so far from the IRAS data is
the very close proportionality between the 60 Pa flux density from warm dust
and the centimeter-wavelength nonthermal emission (de Jong et al. 1985; Helou,
Soifer, and Rowan-Robinson 1985). This correlation has not yet been satisfac-
torily explained. One popular model has it that the radio emission is dominated
by synchrotron emission from individual supernova remnants and that both the
infrared luminosity and the supernova rate are proportional to the star forma-
tion rate. A problem with this model is that in the two cases where adequate
data are available, namely M82 (Kronberg et al. 1985) and the Galaxy, individ-
ual supernova remnants are responsible for only a small fraction of the total
synchrotron emission from the galaxy disk. In an alternative model the radio
emission originates from relativistic electrons in the general interstellar
medium. The difficulty with this model is that synchrotron emission depends
strongly on the magnetic field strength as well as the number density of rela-
tivistic particles. To explain the proportionality of infrared and radio emis-
sion it is necessary to identify a mechanism that controls the interstellar
magnetic field strength in various different star-forming regions. As yet no
such mechanism has been identified.

3. DEPENDENCE OF STAR FORMATION RATE ON HUBBLE TYPE

The principle of the Hubble classification of spiral galaxies is that the
bulge-to-disk ratio is higher in early-type galaxies (Sa-Sb) than in late-type
galaxies (Sc-Sd). The ratio of the current to the histotical star formation
rate is higher in late-type galaxies than early-type galaxies (Kennicutt 1983).

Devereux, Becklin, and Scoville (1986) present evidence that the IRAS
emission from spiral galaxies is mainly a disk phenomenon. They find that their
measurements of the 1.65 Pm nuclear (5.5 arcsec or 500 pc diameter) flux dens-
ities of Virgo cluster spirals is much better correlated with the 60 Pm flux
densities in disk-dominated late-type spirals than in bulge-dominated early-
type spirals. On the whole, however, the dependence of infrared luminosity on
Hubble type is weak for spiral galaxies. Devereux (1986) finds no statistically
significant differences between the fractional luminosity functions of galaxies
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of Rubble types in the range Sa to Sc, though there appear to be deficiencies
of high-luminosity galaxies in the very late and very early classes. There are
strong resemblances between the infrared fractional luminosity function and the
radio continuum fractional luminosity function of spiral galaxy disks, as
derived by Hummel (1981).

The 60-100 Pm color temperature shows more dependence on Hubble type than
does the bolometric luminosity. Table I summarizes an analysis by Devereux
(1986) of a sample consisting of all 227 known galaxies in the distance range
15-40 Mpc, the galactic latitude range JbIIj > 200, and with a 60 1m luminosity
(VSV) ) 2 x 109 L.. There is a statistically significant excess of "hot" galax-
ies among early types. He has also measured the "compactness" of many of the
sample galaxies at 10 Mm by comparing the flux in a 5.5 arcsec IRTF beam with
the color-corrected 12 Pm flux measured through the much larger IRAS beam. He
finds that galaxies in which the 10 Pm emission is compact are significantly
more common among early-type than among late-type galaxies. A similar result
was found by Hummel (1981) for the central radio sources of disk galaxies, but
observations in the 2.6 mm CO emission line show a different trend with a num-
ber of early-type galaxies displaying a central hole rather than an enhancement
(Young 1986).

Table I
Classification of 227 Nearby Galaxies

by Hubble Type and by 60-100 PM color temperature

"Hot .. "Cold"
>44 K <44 K

Early (SO/a-Sb) 35 49

Late (Sbc-Sm) 25 118

4. ROLE OF BARS

The first evidence that the infrared properties of galaxies were affected
by the presence of bars was presented by Hawarden et al. (1986), who showed
that a number of barred galaxies exhibit an energy distribution that is char-
acterized by high 25pm/12Pm and low 10OPn/25Pm flux density ratios. They
estimated that over 30% of barred luminous galaxies show a flux excess at 25 Pf
and attributed this excess flux to a circumnuclear region of intense star
formation.

The sample analyzed by Hawarden et al. includes only galaxies that have
12 Am and 25 9m flux densities above the IRAS point source catalog limit.
Devereux (1986) has examined the effect of bars in the somewhat larger volume-
selected sample of galaxies that was defined in section 3. He finds that the
effect of bars is much more important in early-type galaxies than in late-type
galaxies. He finds that most of the early-type galaxies exhibiting high compact-
ness are barred, as are 29 of the 35 galaxies in the "hot" and "early" class in
Table I. This work is described in more detail elsewhere in this volume.
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On a smaller scale, aperture synthesis observations in the 2.6 mm CO
line have provided evidence for bar-like structures of molecular material in
the inner regions of IC 342 (Lo et al. 1984) and NGC 6946 (Ball et al. 1985).

5. COMPACT AND DWARF GALAXIES

Many galaxies for which there was preexisting evidence for nuclear (or, at
least, localized) rapid staz-forming activity are strong IRAS sources. These
include many of the non-Seyfert Markarian galaxies and the compact blue "H II
region" galaxies like II Zw 40. A large number of papers incorporating IRAS
observations have recently appeared (Gondhalekar et al. 1986; Hunter et al.
1986; Klein et al. 1986; Kunth and Sevre 1986; Sramek and Weedman 1986;
Thronson and Telesco 1986; Wynn-Williams and Becklin 1986). The IRAS observa-
tions generally confirm that these galaxies have high star formation rates.
Specifically, Kunth and Sevre (1986) find that blue, compact emission-line gal-
axies generally have higher IR/blue flux density ratios and higher 60Pm/100pln
color temperatures than spiral galaxies in the Shapley-Ames catalog.

6. ELLIPTICAL AND SO GALAXIES

Very few ellipticals were detected in the IRAS survey. A higher success
rate was achieved by Impey, Wynn-Williams, and Becklin (1986), who looked for
10 Pm emission from a sample of 65 bright elliptical galaxies using a 5.5
arcsec beam on the IRTF. One third of the sample showed emission above that
expected from pure photospheric emission, but this emission is more likely
to arise from circumstellar shells around late-type giant stars than from
regions of current star formation.

SO galaxies are much more common in the IRAS catalog than are ellipticals.
Devereux, Becklin, and Scoville (1986) found that 7 out of 34 SO galaxies in
the Virgo cluster were detected by IRAS. The 60Pin/lOOPm color temperatures of
these galaxies are similar to those of normal spirals, which led Becklin (1986)
to suggest that star formation may be the source of luminosity in these galax-
ies. However, their radio continuum emission (Hummel and Kotanyi 1982) appears
to be lower than would be expected from an application of Helou, Soifer, and
Rowan-Robinson's (1985) radio/infrared relation to the measured IRAS fluxes.

7. STUDIES OF INDIVIDUAL REGIONS

Future progress in understanding star formation in galaxies will require
detailed studies of individual regions as well as a statistical examination of
suitably chosen samples. Very few galaxies have angular sizes large enough that
they can be mapped by IRAS. M31 has been described by Habing et al. (1984); a
few others, including M33, are being presented by Walter Rice (this volume).
Wainscot, de Jong, and Wesselius (1986) have used the chopped photometric chan-
nel on IRAS to produce scans along the disks of several edge-on galaxies. In
the case of NGC 891 they find good agreement among the 50 pm, 21 cm continuum,
and CO profiles, all of which are considerably narrower than the 21-cm H I
emission.

The best far-infrared resolution achieved to date on an extragalactic
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source is the study of the central regions of M51 by Lester, Harvey, and Joy
(1986) using a 24 arcsec slit in the Kuiper Airborne Observatory. They find
that much of the far-infrared luminosity of this galaxy comes from a small,
sharply bounded region within a 700 pc radius of the nucleus. Finer detail
than this can only be achieved by moving to shorter wavelengths and using
large ground-based telescopes such as the IRTF. Maps at 10 VAn oi the central
regions of galaxies such as NGC 2903 (Wynn-Williams and Becklin 1985), and
NGC 3310 (Telesco and Gatley 1984) tend to show agreement in general, but
not in detail, between the regions of strongest radio, infrared, and optical
emission. Much more mapping at infrared wavelengths will be needed to
disentangle the effects of dust extinction and of variations in the stellar
formation histories in these regions.

Infrared spectroscopy is another area where important contributions can
be expected from ground-based observations in the next few years. Roche and
Aitken (1985) have shown that the 8-13 ýIm spectra of spiral galaxy nuclei
show much stronger 11.6 I'm features than are seen in H II regions in our
Galaxy. It remains to be seen whether this effect is also seen in
extragalactic spiral-arm star formation regions.

8. JNAt-3WERED QUESTIONS

I conclude wit!' a list of questions I think we need to address before

claiming to understand the nature of infrared emission from normal galaxies.

0 Is there a fundamental difference between normal and "starburst" galaxies?

0 What is the best way to separate "cirrus" emission from emission from
s tar-forming regions?

* Do measurements of visible H II regions provide a reliable guide to the
current star formation rate?

0 Is the far-infrared optical depth in spiral galaxy disks large enough to
produce self-absorption at high inclination?

* Does the radio emission come from supernova remnants or from cosmic rays

in the interstellar medium?

"* What is going on in early-type barred galaxy nuclei?

"* Is there star formation in SO galaxies?

"* Do star formation conditions in the central regions of spiral galaxies
resemble those in the disks?
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DISCUSSION

ELMEGREEN:
Early-type bars are different from late-type bars with respect to brightness profile, relative size and

kinematics (Elmegreen and Elmegreen 1985, Ap.J., 288, 438). The early-type bars apparently contain inner
Lindblad resonances and inner spirals, whereas the late-type bars may end at the ILR and contain no additional
resonances. The inner spirals in early-type barred galaxies are modeled by Sanders and Tubbs (1980, ApJ.,
235, 803) and others as pure-gas spiral shocks, responding to the inner resonances. Apparently these spiral
shocks promote unusually high star formation rates. This would explain the effect described by Hawarden et
al., but in addition, why early early-type galaxies show it more than late types.

YOUNG:
I think it is important to clarify the use of the term 'starburst.' A galaxy which is luminous in the IR and

has a high H2 mass may simply be a scaled-up version of the Milky Way, while a lower luminosity galaxy
which has very little H2 may be very efficiently forming stars. What is your definition of starburst?

WYNN-WILLIAMS:
I am not particularly fond of the term. I expect Dan Weedman will provide us with a definition of it

tomorrow.

IFROGEL:
You showed a viewgraph which indicated that a larger fraction of early-type galaxies have a warm dust

component than late-type galaxies. According to Mezger's bimodal model, early types would have more star
formation than late types. This appears to contradict widespread belief that late-type galaxies are more active.
Would you please comment on this.

WYNN-WILLIAMS:
The galaxies with a warm dust component tend to be early-type barred galaxies and there is evidence

that this extra component is associated with the central regions rather than the disk.
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ABSTRACT. Models for the infrared emission from IRAS galaxies by
Rowan-Robinson and Crawford, by de Jong and Brink, and by Helou,
are reviewed. Rowan-Robinson and Crawford model the 12-100 u
radiation from IRAS galaxies in terms of 3 components: a normal disc
component, due to interstellar 'cirrus'; a starburst component,
modelled as hot stars in an optically thick dust cloud; and a Seyfert
component, modelled as a power-law continuum immersed in an n(r) c
r-1 dust cloud associated with the narrow-line region of the Seyfert
nucleus. The correlations between the luminosities in the different
components, the blue luminosity and the X-ray luminosity of the
galaxies are consistent with the model. Spectra from 0.1 to 1000 gnm
are predicted and compared with available observations.

de Jong and Brink, and Helou, model IRAS non-Seyfert galaxies in
terms of a cool (cirrus) component and a warm (starburst)
component. de Jong and Brink estimate the face-on internal
extinction in the galaxies and find that it is higher in galaxies with
more luminous starbursts. In Helou's model the spectrum of the warm
component varies strongly with the luminosity in that component.
The 3 models are briefly compared.

1. INTRODUCTION

In this paper I review 3 attempts to interpret the far infrared
spectra of IRAS galaxies, by Crawford and Rowan-Robinson (1986), by
de Jong and Brink (1986) and by Helou (1986).

The main properties we have to explain are:
(i) the great range of far infrared luminosities in IRAS galaxies, from
4xl07-4x010 2 Le at 60 u (Fig 1).
(ii) the great range of ratio of far infrared to optical luminosity, in
IRAS galaxies, from 0.05 to several hundred (Soifer et al 1984,
Rowan-Robinson et al 1986),
(iii) the correlation of LFIR/Lopt with S(100u)/S(60,u) (de Jong et al
1984, Rowan-Robinson et al 198B),
(iv) the distribution of IRAS galaxies in the IRAS colour-colour
diagrams,
(v) the fact that many Seyferts show a peak at 25 M (Miley et al
1984, de Grijp et at 1985).

Carol J. Lonsdale Persson (Editor)
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Far infrared (10-1000,u) radiation can be expected from a normal
spiral galaxy due to a variety of mechanisms. Dust in interstellar
neutral hydrogen clouds, illuminated by the general interstellar
radiation field, radiates prominently at 100 m and in our Galaxy has
been called the infrared 'cirrus' (Low et al 1984). The cirrus is also
seen at 60 M and more recently has been found to be radiating
surprisingly stongly at 25 and 12 m (Gautier and Beichman 1985,
Boulanger et al 1985). To radiate significantly at 12 M, interstellar
grains must include a grain population much hotter than the thermal
equilibrium temperature and it has been postulated that this
population consists of very small grains (radius 0.001-0.003 M', - 50
atoms) or, alternatively, of large molecules (Sellgren 1984, Leger and
Puget 1984). Dust in the surface layers of molecular clouds will also
be heated by the interstellar radiation field and in addition may be
heated by young OB associations recently formed from the cloud
complex. However uv photons will not be able to penetrate further
than Av - 1 into the clouds, so the bulk of the dust within
molecular clouds should be at a temperature significantly lower than
that in the HI clouds. Dust in the vicinity of protostars and newly
formed stars embedded in molecular clouds will also radiate strongly
in the far infrared. Crawford and Rowan-Robinson (1986) have shown
that compact, high surface-brightness IRAS sources in the Galactic
plane, many of which are associated with compact H1i regions, can be
modelled as hot stars embedded in a high optical depth dust cloud.

Finally high optical-depth circumstellar dust shells around late type
stars, OH-IR sources and young planetary nebulae, form a related
population of far infrared emitters which dominate the 12 and 25 M
emission from the bulge of our Galaxy (Habing at al 1985,
Rowan-Robinson and Chester 1986) and could make a significant
contribution to the 10-25 M emission from the discs of some quiescent
spirals like M31.
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Turning to active galaxies, some categories like 'starburst' galaxies
(Balzano 1983) may differ from normal spirals in the far infrared only
in the relative proportions of the different ingredients discussed
above. On the other hand galaxies with a quasar-like nucleus, eg
Seyfert 1 galaxies, might be expected to produce additional far
infrared radiation. Both quasars and Seyferts are known to have
power-law spectra in the wavelength range 1-10 M, with spectral
index a (S(V) a V-0) in the range 0.5 -2 (Neugebauer et a] 1979, Ward
et al 1986). At visible and ultraviolet wavelengths quasars also have
roughly power-law continua with a mean spectral index around 0.5
(Richstone and Schmidt 1980, Cheney and Rowan-Robinson 1981).
Where such a nuclear source is located in a galaxy containing dust,
for example a spiral galaxy, some of this visible and ultraviolet light
will be absorbed by dust and reemitted in the far infrared.

The papers by de Jong and Brink and by Helou specifically exclude
Seyferts from consideration. All three papers attempt to account for
starburst and 'cirrus' components.

2. THE ROWAN-ROBINSON AND CRAWFORD STUDY

2.1 The Sample Studied

We have selected from the IRAS Point Source Catalog all those
sources which have high-quality fluxes in all 4 IRAS bands (12, 25,
60, 100 u), which are not flagged as associated with months-confirmed
small extended sources (SES) in any band, and which are associated
with catalogued galaxies. Associations were only accepted if they
were within 2' of the IRAS position. Where accurate optical positions
are available for the galaxy the positional agreement with the IRAS
source is generally better than 10- for this sample. After deletion of
2 sources whose far infrared spectra were clearly those of stars (and
for which there were also stellar associations) and of the planetary
nebula NGC 6543, which picked up a spurious association with a
nearby galaxy, the sample consisted of 208 galaxies.

The SES-flag condition was necessary both to eliminate contamination
by cirrus emission and to ensure that the fluxes measured by IRAS
represent the total flux from the galaxy. Where the emission from a
galaxy is extended with respect to the IRAS beam the fluxes reported
in the Point Source Catalog may be seriously underestimated and
corresponding IRAS colours will be distorted.

167 have measured velocities. For the 41 which do not, we clearly
have no information on their activity type either (see below). 24 are
elliptical or lenticular, 127 are spiral or irregular, 57 are of unknown
Hubble type, 18 are starburst or Hr galaxies, 15 are Seyfert 1, 23
are Seyfert 2. Arp, Vorontsov-Velyaminov and Zwicky compact
galaxies appear to be represented on a basis proportional to their
frequency in the general galaxy population.
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2.2 IRAS Colour-Colour Diagrams

Figures 2 a,b show the 12-25-60 and 25-60-100 si colour-colour
diagrams for the sample, with different symbols for starburst (+HII),
Seyfert and other galaxies. Some striking features of this
distribution are immediately apparent. (a) The starburst galaxies
occupy well-defined areas of the 2 diagrams and in fact have colours
very similar to those of compact H[[ regions in our Galaxy (Crawford
and Rowan-Robinson 1986); (b) the bulk of the 'normal' galaxies
(non-Seyfert, non-starburst) lie in a band stretching from the zone
occupied by the starburst galaxies towards warmer S(25)/S(12)
colours in Fig 2a and towards cooler S(100)/S(60) colours in Fig 2b;
(c) the Seyferts spread out from this band towards lower values of
S(60)/S(25), indicating the presence of a component peaking at 25 14
Such a component was first noticed by Miley et al (1984) in 3C390.3.
Low values of S(60)/S(25) have been successfully used as a criterion
for selecting Seyfert galaxies by de Grijp et al (1985).

* sb Fig.2 IRAS colour-colour
.ter diagrams for unresolved IRAS

N4other galaxies with high-quality fluxes

• in all 4 bands. Circled dots are
*. B p star-burst (or HII) galaxies,
ALA14. A. triangles are Seyferts, dots are

SS+A "•'*" l . neither of these or unclassified
A .*"'•;:.`. to date. The crosses labelled D,

B, S, are the adopted colours of
0" .4D the 'disc', 'starburst' and

'Seyfert' components used to
synthesize the observed far

I infrared spectra.
0 I

Ig(S(60)IS( 25))

*'4D -

A A

CA 0 &41 & :$~

+
S

1 I II

0 1

IgcS(60)/SQ51

136



MODELS FOR INFRARED EMISSION

2.3 A 3-Component Model for Far Infrared Spectra of Galaxies

As a first step towards understanding the range of galaxy far
infrared spectra implied by Fig 2, we postulate that these spectra
can be considered as a mixture of 3 components: (1) a normal 'disc'
component, (2) a 'starburst' component, (3) a 'Seyfert' component.
The colours adopted for these 3 components are indicated in Fig 2 by
the letters D, B and S, and Fig 3 shows the corresponding spectra of
the 3 components normalised to 12 1j, after colour-correction for the
effect of the IRAS pass-bands. We now discuss models for each of
these 3 components.

0-5 B•/''•,/"B j
D Fig 3 12-100 m spectra, normalized

A to 12 U, of adopted model components:
D('disc'), B('starburst') and

tA 0 S('Seyfert'). The broken curve Q is
~ -~the a = 0.7 power--law ('quasar')

I component considered for 3C273
"(Fig 8c).

-0.5

I I2 ,g X( 1/,

In Fig 4a the spectrum of the 'disc' component is compared with the
spectrum of an isolated piece of cirrus in our Galaxy, a small cloud of
interstellar neutral gas and dust with Av - 0.15 presumably
illuminated by the interstellar radiation field (Boulanger et al 1985).
The agreement is remarkably good, showing that it is plausible to
regard the 'disc' component as radiation from interstellar dust in the
galaxy illuminated by the general galaxy starlight. Rowan-Robinson
and Chester (1986) have estimated that emission from the bulge
component identified by Habing et al (1985) would not make a
significant contribution to the integrated flux from most galaxies at
12-100 ja. We have also shown an empirical fit to the 'disc' component
spectrum of the form c0BV (30K) + PVBv (210K).

Pig 4b shows the spectrum of the 'starburst' component compared
with the spectrum of the 3 kpc disc observed in NGC1068 by Telesco
et al (1984), with the average spectrum of star-forming clouds in our
Galaxy calculated by Rowan-Robinson (1979) and with a simple model
for a cloud containing a newly-formed massive star (stellar
temperature T. = 4Q0O0K, grain condensation temperature T, = 1000 K,
uniform density, ratio of inner radius of dust cloud, ri, to outer
radius, r 2 , rj/r 2 = 0.0015, composite interstellar grain properties
adopted by Rowan-Robinson (1982), ultraviolet optical depth, Tuv
100). The latter model is one from a sequence used by Crawford and
Rowan-Robinson (1986) for high surface brightness sources in the
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Fig 4 Model fits to the
spectra of the adopted
components (filled cirlces).

0 .(a) 'disc' component. The x's
denote the spectrum of an
isolated cirrus cloud in our
Galaxy studied by Boulanger et

-2 al (1985). The dotted curve is
the interstellar grain model

. . of Draine and Anderson (1985).

3 2 0 The solid curve is an

ig X (t) empirical fit of the form
'Sy =0 DV(30K) + PVBi(210K).

(b) 'starburst' component. The
small crosses are the data of
Telesco et al (1984) for the 3-kpc
ring in NGC 1068, which they

0 attribute to a starburst. The large

loys,) crosses are the average spectrum for
regions of massive star formation in
our Galaxy derived by Rowan-Robinson

-2 (1979). The solid curve is a simple
model for a star-forming region of
the type discussed by Crmaford and
Rowan-Robinson (1986), a uniform

-' spherically symetric dust cloud
illuminated by a hot star

3 2 1 (Ts=40J)OOK), with optical depth
g {/ T uv = 100, ratio of inner to

outer cloud radius rj/r 2 = 0.0015.

(c) 'Seyfert' component. The
solid curve is a model
consisting of an = 0.7 power-

- law continuum source
(indicated by the broken line)
embedded in a spherically

Ssysm etric dust cloud with
density distribution
n(r)wr-l, r,4r~r2 , optical

3 1 0 -1 depth T uv = 1 (Av=0. 2 3 ),
temperature of the hottest

grains T, = 1000K, and
rj/r2 = 0.0055.

Galactic plane associated with star-forming regions and compact HII
regions.

The agreement of the 'starburst' component spectrum with the model,
with the average spectrum for star-forming clouds in our Galaxy, and
with the 3 kpc disc in NGC1068 which Telesco et al (1984) argue to be
a burst of star formation, is excellent.
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Pig 4c compares the spectrum of the 'Seyfert' component with a
simple model consisting of a central source with a power-law
continuum extending from ) = 0.1 M to 1 mm embedded in a dust
cloud with density distribution n(r) a r-1, T, = 1000 k, r 1 /rz =
0.0055, Tuv = I (Av = 0.23). The agreement is satisfactory. The
spectral index a = 0.7 was selected because quasars detected by IRAS
appear to have 12 - 100l spectral indices centred on this value
(Neugebauer, Soifer and Rowan-Robinson 1986). Models with a = 0.5,
0.9 also give a reasonable fit. The dust is presumably located in the
narrow-line region of the quasar-like object (see section 7). We were
not able to obtain a satisfactory fit with n(r) a r-2 or n(r) = constant.

We conclude that there is a reasonable observational and theoretical
basis for the separation into the 3 components of Fis 3 and that this
separation may give valuable insight into the nature and energetics
of infrared-emitting galaxies.

2.4 Deconvolution into Components

Let AV1 , i = 1-4, be the effective bandwidths for the IRAS 12, 25, 60
and 100 m bands (i.e. 13.48, 5.16, 2.58 and 1.00 x 1012 Hz
respectively, IRAS Explanatory Supplement 1984) and suppose Si are
the fluxes in Jy in each band for a particular galaxy.

4
Let Stot = X Si Avi (1)

i=1

and yi = Si/ Stot , i = 1-4. (2)

For the 'disc' component (j = 1), 'starburst' component (j = 2) and
'Seyfert' component (j 3), let the flux in band i be Tj,i (Jy) and let

4

Tj,tot - T J1 AVI (3)
i=l

tj,i = Tj,i /Tj,tot. (4)

We then look for the least-squares solution of the over-determined set
of equations

3

Yi = I cj t j,i , i = 1-4, (5)

j=1

to determine the relative proportions, a, j = 1-3, of the spectrum
attributable to component j. If any of the aj are found to be
negative, the most negative is set to zero and the equations
re-solved with one fewer variable. If one of the cXj is still negative,
the remaining one is set to be 1.
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Table I summarizes the number of each mixture combination for each
galaxy type. All Seyferts but one have a 'starburst' component and
all but 3 have a 'Seyfert' component. The 3 exceptions are all Type
2 Seyferts.

Table 1: Numbers of galaxies with different combinations of 'disc' (D),

'starburst' (B) and 'Seyfert' (S) components

type number

D 5 (NGC 2076, 4750, 5078, 5530; 23260-413)
B 5 (NGC 1614, 4418; UGC 8335; 20551-425, 23128-591)
S I (IC 4329A)

DB 124
DBS 51

DS 7 (NGC 4047, 5656, 7624, 7817; 01091-382, 02069-233, 20243-022)

BS 15 (NGC 1275, 1377, 4253, 5253, 6552; UGC 3426, 4203, 8058, 8850,
9412; 00344-334, 08171-250, 08341-261, 13197-162,
20481-571)

2.5 Correlations Between Luminosities in Components

To calculate the far infrared luminosities in each component we need
to apply a correction for the incomplete wavelength coverage of the
IRAS bands. Lonsdale et al (1985) have shown that the quantity
1.26(S 3 AV3 + S4 AV4 ) is an excellent approximation to the 42.5-122.5 Ij
integrated spectrum of sources with blackbody or powerlaw spectra.
The great range of spectral behaviours over the wider range
10-100 mi make it impossible to achieve as good a result over this
whole wavelength range. However the quantity

4
1.26 Stot = 1.26 SiAvi (6)

i=1

is a good approximation to the integrated spectrum from 10-120 ga of
the 'Seyfert' component model adopted here and is within 15% for the
'starburst' model, so we adopt this as a measure of the 10-120 P far
infrared flux from galaxies.

We have then calculated luminosities in each component, using

Lj = 1.26 aj Stot .4 wd 2  (7)

where d is the luminosity distance calculated in an 0 1 universe for
H = 50. We have also calculated optical luminosities based on V St, in
the B-band applying the de Vaucouleurs et al (1976) internal
extinction correction. Corrections for interstellar extinction have
been derived from the maps of Burstein and Heiles (1978), assuming
AB = 4 E(B-V). Optical luminosities have not been quoted for galaxies
with /b/ < 100 unless direct estimates of interstellar extinction are
available.
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Fig 5 shows the correlation of LD, the luminosity in the 'disc'
component, with L, t, the B-band optical luminosity, with different
galaxy types indicaoted by different symbols. If the 'disc' component
is interpreted as emission from interstellar dust as a result of
absorption of starlight, then the ratio of these two luminosities can
be interpreted in terms of a characteristic optical depth in dust

LD/Lopt,tot (1 - e-T) , (8)

where Lopt,tot = f L = 3.3 Lopt by integration over the
opt-uv

interstellar radiation field model of Mathis et al (1983). Lines of
constant T as given by (8) are indicated in Fig 5. As might be
expected, early-type galaxies (E and L) have lower values of LD/Lopt,
consistent with a low dust content. Any contribution from dust near
newly-formed stars or from circumstellar dust shells would also be
lower for early-type galaxies. The values of T are consistent with
internal extinction formula of de Vaucouleurs et al (1976). We see
that there is no evidence for exceptionally high internal extinction in
IRAS galaxies, even where LIR/Lopt is exceptionally high. This
appears to be in contradiction to the conclusions of Moorwood et al
(1986) (and also of de Jong and Brink, see section 3 below). However
the corrections for interstellar extinction are very significant for
several galaxies in this sample. It is possible that the minisurvey
galaxies studied by Moorwood et al lie behind molecular gas
associated with the Ophiuchus complex and hence that their interstellar
extinction estimates based on neutral hydrogen column density are
underestimates.

Fig 5 The correlation of the
13 + T1 luminosity in the 'disc'

* T=2-5 •component, LD, in solar units,
V T=6-1O versus the blue luminosity of

.3 the galaxy. Ho = 50 km s-1
Mpc- 1 , and 00 = 1, throughout

- this paper. Different symbols
are used for different ranges

[gLo/L. . - of galaxy types, based on the
parameter T of de Vaucouleurs

4 +et al (1976): + E-SOa,
9- 0 Sa-Sbc, V Sd-Irr, • type

unknown.

9 I t3 The solid lines give values of
tgLt/ the characteristic optical

depth T derived from eqn (8).

Fig 6 shows the correlation of LB, the luminosity in the 'starburst'
component with Loet. Here there is a great deal of scatter,
consistent with the idea of a transient, high luminosity event. There
is clear evidence that barred spiral galaxies have significantly more
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luminous starburst components than non-barred spirals and this is
the explanation of the correlation of far infrared colour with the
presence of a bar, found by Hawarden (1985).

13 Fim 6 The correlation of the
eunbarred luminosity in the 'starburst'

other . component, LB, in solar units,.hSey .

A.A versus the blue luminosity of
.A.aA A the galaxy. The symbols

P:+ 'a. denote: + barred galaxies (SB
+ &s or SAB), G un-barred galaxies

10' "j•"A J (SA), • bar-type unknown or
Ag " L0  not relevant, A Seyfert.

A I

9 11 13
= Ig Lopt/Lo

A broad correlation is found between LS, the luminosity in the
'Seyfert' component, and LB suggesting that there may be a common
cause (for example, the sudden feeding of a galactic nucleus with
gas) for the starburst and power-law continuum source. Fig 7 shows
LS versus LX, the X-ray luminosity showing a good correlation,
consistent with the idea that the 'Seyfert' component is dust
illuminated bv the central quasar-like source.

0 Fit 7 The correlation of the

2-10 keV ('hard') X-ray
luminosity, in solar units, with
the luminosity in the 'Seyfert'

1X=1 component. Seyferts of type
11 and 2 are denoted by

0 circles and triangles,

respectively. The straight
S 13lines are labelled with the

0 infrared to X-ray spectral

0 index.

9

/~V N1068

10 12

Of the 14 galaxies in our sample which have LIR > 3.10 1 1 LO the far
infrared spectra of 11 are dominated by starburst components
(including the galaxy NGC6240 studied by Joseph et al 1984, Becklin
et al 1985). The exceptions are the quasar 3C273, the Seyfert 1
galaxy I Zw 1, and the Seyfert 2 galaxy Mk 463.
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2.6 Model Fits to the Infrared Spectrum of Selected Galaxies

For several g.%laxies in our sample the spectra are known at
wavelengths outside the 12-100 Aj range studied by IRAS, in some
cases covering the range from ultraviolet wavelengths to I mm. These
spectra provide a strong test of our models. The main conclusion of
this comparison in that while our models give an excellent fit to the
infrared spectra of more than 60% of the galaxies with good spectral
data, the remainder require modification to give a good fit in the
range 1-10 mL. These cases are almost all Seyfert galaxies and the
modification required is that the optical depth across the dust cloud
in the narrow-line region should be ) 1.

There are 2 other galaxies which require an additional ingredient to
bring their predicted spectra into line with observations. Arp 220
(not actually in our sample) and NGC 4418 both have anomalously high
(S(25)/S(12)) ratios, most easily understood as due to heavy
extinction by interstellar dust in the parent galaxy.

We now discuss these 3 classes of galaxy in turn:

2.6.1.Galaxies for which the models of section 4 are a good fit. Fig
8a,b shows the visible to far infrared spectra of several galaxies for
which the basic model of section 4 gives a good fit. These include
the galaxy NGC 6240, for which we attribute most of the far infrared
emission to a starburst component (r 2 = 0.95). The contribution of
starlight can be seen at wavelengths shorter than 3 m (except for
NGC 7469, for which it has been subtracted). Fig 8c shows the data
for 3C273 compared with our 3-component model and for a model with
an additional pure power-law component. Although the latter
improves the fit to the IRAS data, the fit to the overall spectrum is
not improved. Although we can not resolve the issue of whether
dust is present in the emission line region of 3C273, the IRAS data do
point to the existence of a starburst in this galaxy.

2.6.2.Galaxies for which a higher optical depth Seyfert component is
required. The best observed galaxy in this category is NGC 1068.
Fig 8d shows the spectrum of the core ((100 pc) of this galaxy
compared with our standard 'Seyfert' component and with a high
optical depth model (P=1, T 1=500K, ruv=75, rl/r 2 =0.00215). The latter
model, which involves a dust mass of 3x10$ M1 distributed between 4
and 180 pc from the central power-law source, is a much better fit to
the observations.

On rerunning our deconvolution programme with this higher optical
depth Seyfert model, there are several other galaxies for which this
gives a much better fit to the overall spectra: NGC 1275, 1386, 3783,
5253 and 6764 avd Mrk 3 and 231, illustrated in Fig 8c and e.

2.6.3.Arp 220. Vig 8f shows two possible models for the unusual
galaxy Arp 220. This galaxy does not actually qualify for the sample
studied in the present paper, since the 12 a flux is not of sufficient
quality, but the interest generated by it (Soifer et al 1984) warrants
trying to understand its far infrared spectrum within the framework
of the present paper.
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F Ultraviolet to millimetre wavelength spectra predicted by the
models of the present paper, compared with observations, for selected
galaxies. The filled circles are the colour-corrected IRAS data. to
which the models were fitted.
(a) NGC 1365, 08341-261, NGC 2782, KGC 3504.
(b) NGC 4507, 6240, 7552, 7469 and Mk 509.
(c) Contemporaneous observations of 3C273 (solid curve: 3-component
model, broken curve: 'starburst' plus a = 0.7 power-law model) and
NGC 1275 (Tuv=75, T 1 =500K model, see Fig 8d), the latter with the
contribution of starlight subtracted.
(d) The core of NGC 1068 (data from Telesco et al 1984) compared
with Tuv=7 5 Seyfert model, with T, = 1000K (dotted curve) and 500K
(solicd cu.rve).
(e) Galaxies for which the Tuv = 75, ... .

T,=500K model of Fig 8d give. N138
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(f) Models for Arp 220
(broken curve: 'starburat'
model with an additional

lg{•,) AV = 78 mg. of extinction by
interstellar dust. Solid curve:

-10 -power-law (or=0.7) continuum
source embedded in uniform
spherically symmetric dust

Ný4418 cloud with TUV = 186 (Av=40).
-12 The upper and lower solid

"curves at larger wavelengths
correspond to whether the
power-law source continues
beyond 100 1j or not.) and NGC
4418 (dotted curve: 'starburst'
model with an additional

3 2 1 Av = 39 mg. of extinction by
interstellar dust).

The IRAS colours of this galaxy are unique (for example,
Log(S(25)/S(l2))=l.25) and it cannot be understood as a mixture of
the 3 components used in section 4. It can however be modelled
either as a starburst behind very strong (Av = 78 mag.) interstellar
extinction (arising perhaps because the galaxy is seen virtually
edge-on) or as a quasar embedded in a high optical depth
(ruv = 186, Av = 40) dust cloud. The predicted outer angular radii
of the dust clouds are 1*'7 for the starburst model with extinction
and 0:*37 for the embedded quasar model, and since the 20 5J emission
tends to come from the inner edge of the dust cloud these are both
consistent with the < 1" size at 20 u reported by Becklin et al 1986.

2.6.4.NGC 4418. This galaxy has an unusually high S(25)/S(12) ratio
and a very deep 10 /j absorption feature (Roche et al 1986), both of
which suggest exceptionally high extinction. It is located at 1=290,
b=61, where the interstellar extinction is low. Our model for this (Fig
8f) consists of a pure starburst model with an additional Av=37
magnitudes of extinction, most of this presumably due to internal
extinction in NGC 4418, which would again have to be almost edge-on.

2.7 Discussion

The model fits to the far infrared spectra of the assumed components
illustrated in Figure 3 can be used to estimate the dimensions and
masses of the dust clouds responsible for the infrared emission. For
the 'starburst' and 'Seyfert' component models, which involve a
specific optical depth in dust, the angular and linear radius of the
dust cloud can be derived from the integrated flux, Stot (eqn (1))
and the luminosity Lj (eqn (7)) respectively.
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For the 'starburst' model we find, for a spherically symmetric cloud
illuminated by a central cluster of stars,

Ig el(") -7.83 + 0.5 lg (1.26 OC Stot)

and (9)

Ig r 2 (cm) = 14.59 + 0.5 Ig (LB/LG)

The inner edge of the dust cloud is defined by

r1 /r 2 = 0.0015.

The corresponding dust mass is

lg(Md/MG) = -6.32 + lg(LB/LI,). (10)

For the galaxies in the present sample, r 2 lies in the range 3 pc to
250 pc, so the starburst activity is confined to a small region of the
galaxy, presumably in most cases the nucleus. However our
assumption of spherical symmetry clearly underestimates the extent if
the stars are distributed through the cloud or if the starburst is
actually located in a ring. For example for the NGC 1068 'starburst'
component we find e2 = 3" and r 2 = 30 pc, considerably smaller than
the observed 3 kpc diameter ring.

For the 'Seyfert' model we find

lg *2(") = -7.32 + 0.5 Ig (1.26 ac3 Stot)

and (11)

Ig r 2 (cm) = 15.11 + 0.5 lg(Ls/Le)

with a corresponding dust mass

lg (MD/MG) = -7.81 + lg(Ls/Le). (12)

The inner edge of the dust cloud is defined by

rj/r2 = 0.0055.

For the galaxies in the present sample r 2 lies in the range 30 pc to
400 pc, consistent with the dust being located in the narrow line
region of the Seyfert nucleus.

For the 'disc' model we assumed TV a v, but the model does not
involve any specific value of Tuv so we can only calculate T1ool/2 e2,
where TV T=oo( a100jm/X) is the optical depth in 30K grains.
We find

ig {TrooM r 2 (cm)) = 16.02 + 0.5 lg(LD/1LO)

or (13)
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lgfT1 0OM e2(")) = -6.90 + 0.5 Ig (1.26 al Stoti.

The optical depth at 12 u in 210 K grains, ¢T2, is related to that in
30 K grains by T12 = 0.98 x 10-4 T1eo. For a source to be a point
source at 60 and 100 m, the full width at half-power cannot be
greater than 1'. Galaxies with aD > 0.5 yield *jooh O2(") in the range
0.'6 to 1.'2 and this implies T1"( )ý 0.0004. Using the interstellar
grain model of Rowan-Robinson (1986), we can translate this lower
limit on T 1 0 0 to one on A. and find Av ) 0.8. This is broadly
consistent with the optical depth estimates derived from Fig 5. As
many of the galaxies in the present sample have Holmberg diameters
considerably greater than 1', we must presume that the bulk of the
far infrared emission comes from the inner part of the galaxy. This
is still consistent with being reemission of starlight obscured by
interstellar dust, since the halfpower width of the optical light is
much smaller than the Holmberg diameter.

3. THE DE JONG AND BRINK STUDY

de Jong and Brink decompose the far infrared energy distribution
into two Q•By(T) components with QV at t and the dust temperature&
T = 15, 60 K.

The warm component is heated by recently formed stars (T,=3(}000 K)
inside molecular clouds. 50% of the luminosity of these stars is
assumed to be absorbed inside the clouds and 50% is assumed to
escape and contribute to the cool component.

The cool component is heated partly by older disk stars (T,=7000 K)
in the general interstellar medium and partly by light from recently
formed stars which escapes from the molecular clouds where the stars
have formed.

0
They solve for AB, the face-on extinction, L1 , the luminosity of the
disk stars, and L2 , the luminosity of recently born stars, such that
the IRAS 60 and 100 U fluxes and the observed blue magnitude are
reproduced. The calculation takes account of the inclination of the
galaxy and the 1-1 dependence of extinction (so there are different
optical depths for 3Q000 and 7000 K radiation). The analysis has
been applied to two samples: a representative sample of 120 galaxies
from the Revised Shapley Ames Catalog, and a subset of 20
minisurvey galaxies studied in detail by Moorwood et al (1986).

de Jong and Brink conclude that:
(i) A large fraction of the disk infrared luminosity is emitted at
wavelengths ) 100 jmm.

0
(ii) For the RSA galaxies the values of AB and their dependence on
galaxy type agree well (within a factor of two) with those derived
from optical data by Sandage and Tammann (1981) and by de
Vaucouleurs et al (1976). Their Fig 1 gives the average value of AB for
each Rubble type.
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(iii) The minisurvey galaxies show enhanced star formation (higher
0 0values of L2 /L 1 ), higher values of AB (50% of the sample have A 3>l,

compared with 9% for the RSA sample), and a tendency to be more
highly inclined (40% of the sample have a/b > 2.5 compared with 15%
for the RSA sample). The minisurvey sample can be subdivided into
40% which are highly inclined normal galaxies and 60% which have -3
times larger star formation rates. Galaxies in the latter group are
about twice as dusty as normal galaxies.
(iv) The model gives a natural explanation of the distribution of
galaxies in the LIR/LBT versus S(100)/S(60) diagram.

4. THE HELOU STUDY

The sample studied by Helou consists of all galaxies in 'Catalogued
Galaxies and Quasars Oberserved in the IRAS Survey' (Lonsdale et al
1985) having high quality fluxes in all four IRAS bands and not
flagged as extended. Most galaxies with S(60)/S(25) < 5.5 are
Seyferts (de Grijp et al 1985) and are not considered further by
Helou. Fig 9a shows S(60)/S(100) versus S(12)/S(25) for 'normal'
galaxies (those with S(60)/S(25) > 5.5). They spread out along a
band such that the warmer they are in S(12)/S(25), the cooler they
are in S(60)/S(100).

0.20 f -0.93
0.20 I LOG R(25/60){[ 93,-74]

+ A M81
E + B M33

0.00 C Mkn 158
D NGC 6240÷,0, + E '1 Zw506

D •t9 (a) The IRAS
colour-colour diagram for

-C.40'normal' galaxies, with a few
+ "galaxies identified by letters.

•A
-0.60

-0.80

-0.8 -0.6 -0.4 -0.2 0.0 0.2

LOG f (2.)
f,(25$)

The band corresponds to progressively greater star formation activity
as it proceeds from the lower right hand corner to the upper left
hand corner of the diagram. Galactic cirrus (Low et al 1984, Gautier
1986, Leene 1986) is found at the lower end of the band, together
with very quiescent spirals such as M31 and M81. In contrast the
upper end of the band it occupied by starburst galaxies like NGC
6240 (Wright, Joseph & Meikle 1984) and blue compact galaxies or
'extragalactic HII regions' such as Mrk 158, and compact Zwicky
galaxies (Kunth and Sevre 1986, Wynn-Williams and Becklin 1986).
This interpretation is supported by a model in which a realistic
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mixture of grains including polycylic aromatic hydrocarbons (PAH) is
subjected to increasingly intense radiation fields (Desert 1986: see
the curve labelled D in Fig 9b).

0.2C D Comnputatons (Desert 1986)

0.00

%(b) As above, compared to the
model by Helou. Various
cirrus measurements are shown.

9ý -OAO0

-0.60 CiRRUS DATA L

- B Boulanger (1986)1

G Gautier (1986)

-0.80 L Leene (0986)

-0.8 -0.6 -0.4 -0I2 0,0 0.2

LOG f,
f, (25p)

Two other samples of IRAS galaxies confirm the reality of the band in
Fig 9: a sample of Virgo cluster spirals complete to B 12.8 (Helou
1986), and a sample of near-by galaxies, roughly complete to an
apparent diameter of 10' (Rice et al 1986). However the restriction to
unresolved galaxies in the Helou and Rowan-Robinson and Crawford
studies does lead to underpopulation of the low surface brightness,
cooler (in S(60)/S(100)) end of the band.

Helou argues that the spread across the band implies that a simple
mixing of two fixed components, C ('cirrus') and A (active component
related to HII regions) is inadequate. He argues that two physical
parameters are required to characterize the distribution: the intensity
in its active regions, A, and the ratio A/C, where C is the (fixed)
cirrus component. As the ambient radiation field goes from solar
neighbourhood intensity to several hundred times this value, A traces
out the curve D in Fig 9b from X to Y. As this is an upper envelope
to the observed band the model is capable of explaining all galaxy
colours.

The C component is due in large part to older disk stars and cannot
be identified with recent star formation. The close relation between
non-thermal radio and far infrared emission becomes even more
intriguing, as it seeei to apply independent of IRAS colour (Helou,
Soifer and Rowan-RoLnson 1985).

5. DISCUSSION

These 3 models for the observed normal galaxy - starburst sequence
are strikingly different in their predictions of the optical properties
of IRAS galaxies. In the Rowan-Robinson and Crawford model, the
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starburst component is immersed in over 50 magnitudes of visual
extinction, so there would be virtually no additional radiation
observed in the visible. de Jong and Brink allow 50% of the
radiation from the starburst to escape, so that IRAS galaxies with
strong starbursts should differ in colour and intensity profile from
normal galaxies. Helou's calculation (curve D in Fig 9b) is essentially
an optically thin one, so would imply drastic changes to the visible
appearance of a strong IRAS starburst galaxy. However Helou (1986a)
argues that the dust optical depth must in fact increase for strong
starburst galaxies because of the high value of IiR/Lopt. Further
study is needed to establish whether the presence of a strong, warm
component at 60 and 100 j is accompanied by changes in the visible
appearance of the galaxy. My impression of the work published to
date is that there is in general no drastic change. A preliminary
look at the distribution of LD/Lopt versus LB/Lopt in the model of
Rowan-Robinson and Crawford shows no evidence of the strong
correlation that would be expected in the de Jong and Brink model.

The question raised by de Jong and Brink as to whether galaxies
with high values of infrared-to-optical luminosity ratio also have
abnormally high internal extinction deserves further study, as also
does the question of whether edge-on-galaxies are over-represented
(de Jong and Brink) or under-represented (Burstein 1986) in the
IRAS survey. My own recommendation is that these studies should
not be carried out on the minisurvey sample, much of which lies near
the Ophiucus and Taurus molecular clouds, where the magnitude of
interstellar extinction in our own Galaxy cannot be reliably
estimated. Finally it is clear that the current star formation rate in
a galaxy can not be calculated simply by multiplying the far infrared
luminosity by an appropriate constant.

Acknowledgement: I am very grateful to G. Helou for presenting this
paper at very short notice and for helpful comments on the
manuscript.
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DISCUSSION *

PUGET:
If you consider the cirrus component in our Galaxy, about half of the heating is due to UV coming from

B stars, so that component is related to star formation.

HELOU:
Yes, but it is difficult to deduce the amount of star formation from the infrared emission, because of the

uncertain fraction of B star luminosity that is being re-radiated by the cirrus. The point of all this is that the
relation between total infrared emission and massive star formation rate in a galaxy is not linear, but must
depend on the IRAS colors.

de JONG:
I would like to react to a question that has been raised by several people this morning concerning the

correlation between the far-infrared and the radio continuum emission of galaxies. The fact that not only
the 601im but also the lOO1im fluxes correlate extremely well with the radio continuum flux indicates that a
substantial fraction of the recently formed stars have moved out of the molecular cloud in which they were
born, within their lifetime. These stars contribute significantly to the general interstellar radiation field that
is supposed to heat the cool dust responsible for the 1001im emission. In our simple two-component galaxy
model, presented at this meeting, this has been taken into account.

YOUNG:
On the one hand, the tight correlation between Lii and radio continuum is not surprising, since within

individual galaxies the continuum resembles the Ha, CO and blue light. On the other hand, I find it puzzling
that the Luk is so tightly correlated given that it depends on the 5th power of Tdst.

HELOU:
The scaling with Tdua is in this case an irrelevant truth, because what determines LIR in the end is

the amount of heating luminosity available. The reason I find the correlation puzzling is the long chain of
intervening steps between Lm and L1.4II, On one hand, you heat dust grains with the starlight, on the other,
you wait for the stars to go supernova and produce cosmic ray electrons, then take those and put them in the
magnetic field to radiate. There must be a dozen free parameters, and yet the ratio Lut/LI.4onz is constant!

* Note: The paper was read by G. Helou.
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ON THE ORIGIN OF THE 40-120 MICRON EMISSION OF GALAXY DISKS:
A COMPARISON WITH H-ALPHA FLUXES

Carol J. Lonsdale Persson and George Helou
Infrared Processing and Analysis Center

California Institute of Technology, 100-22
Pasadena, CA 91125

Abstract

A comparison of 40-120 micron IRAS fluxes with published H-
alpha and UBV photometry shows that the far infrared emission of
galaxy disks consists of at least two components: a warm one
associated with OB stars in HIT-regions and young star-forming
complexes, and a cooler one from dust in the diffuse, neutral
interstellar medium, heated by the more general interstellar
radiation field of the old disk population (a 'cirrus'-like
component). Most spiral galaxies are dominated by emission from
the cooler component in this model. A significant fraction of the
power for the cool component must originate with non-ionizing
stars. For a normal spiral disk there is a substantial uncertainty
in a star formation rate derived using either the H-alpha or the
far infrared luminosity.

1. INTRODUCTION

There is now a general consensus that the far infrared flux of
the Galactic disk originates in part in the diffuse neutral and
ionized media, heated by the general interstellar radiation field
in these regions (eg. Cox and Mezger 1987). In this paper, which
summarises the results of Lonsdale Persson and Helou (1987), we
explore the extent to which the IRAS-measured 40-120 micron fluxes
of a sample of normal disk galaxies can be attributed to the
different regimes (young HII-region/GMC complexes, the diffuse
neutral medium and low density HII-regions) and stellar populations
(OB stars, A and later stars) which contribute to the Galactic far
infrared (1-1000 micron) emission, by comparison of the 40-120
micron flux with the H-alpha flux. If the emission of galaxy disks
in the IRAS bands is dominated by emission from young OB stars
(either optically visible or GMC-embedded), then the IRAS fluxes
might be expected to be highly correlated with H-alpha fluxes.
Conversely, a poor correlation of far infrared with H-alpha flux
might imply large dispersion in H-alpha extinction, far infrared
emission from a mixture of HII-regions of varying derz.2-y and
dustiness, or a substantial contribution to the far ''lrared
emission from older and less massive stars.

The H-alpha fluxes are taken from Kennicutt and Kent (1983),
who made large aperture H-alpha+[NIII observations of over 100 disk
galaxies. Our restricted sample of 54 galaxies represents all
those in Kennicutt and Kent's list with high quality H-alpha, 60
micron and 100 micron fluxes, and with 60 micron flux density

Carol J. Lonsdale Persson (Editor)
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greater than 2 Jy. Also, galaxies for which a significant part
(>20%, as defined by Kennicutt and Kent) of the H-alpha emission
originates in the nucleus, or which are known to possess Seyfert or
starburst nuclei, were excluded since the primary interest here is
disk emission. The measured H-alpha+[NII] fluxes were corrected for
extinction and [NII] emission as recommended by Kennicutt (1983).

2. RESULTS

In Figure 1 we plot the 40-120 micron flux of the sample
against the H-alpha flux and the blue flux. This far infrared flux
is derived from the sum of the fluxes in the 60 and 100 micron
bands (_alQg_9d GalanLxJes in the IRAS Survey, 1985, Appendix B).
We have chosen not to extrapolate to 'total' (1-1000 micron) far
infrared/submillimeter fluxes for the general analysis because of
the uncertainties in the dust grain emissivity law and temperature
distribution.
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Figu.re . Correlation between far infrared and (a) H-alpha and (b)
blue fluxes (derived from the extinction and inclination corrected
blue magnitudes in de Vaucouleurs, de Vaucouleurs and Corwin 1976)
The 54 galaxies are binned by revised Hubble type (Sandage and
Tammann 1981).

The correlation between the far infrared and H-alpha flux seen
in Fig la is quite good, with a slope consistent with unity and a
Spearman's rank-order correlation coefficient r=0.81. Fig. lb,
however, shows just as good a correlation (r=0.79) between the far
infrared flux and the flux within the blue filter. Good
correlations still exist when both axes in these figures are
normalised by the square of the angular diameter or when
luminosities are plotted instead of fluxes (not shown), thus the
correlations are not due to underlying correlations with distance
or mass.
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To investigate further the contribution to the far infrared
flux by the stellar population responsible for the blue light, we
derive the infrared excess, IRE, defined as the ratio of the
infrared luminosity (here taken as the 40-120 micron luminosity) to
the Lyman alpha luminosity (derived from the H-alpha luminosity).
In Figures 2 and 3 we show the relationships of IRE and of the
60/100 micron color temperature to the equivalent width of H-alpha
and the (B-V) color, respectively. IRE is proportional to the ratio
of the axes of Fig. la, so since the slope of the relationship in
that figure is consistent with unity, IRE is a measure of the
residuals from the mean relation.
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Figue o2. Relationships between the equivalent width of H-alpha
and (a) the infrared excess (the 40-120 micron flux in units of the
Lyman alpha flux) and (b) the 60/100 micron color temperature.

gur 3. Relationships between (B-V) color (from de Vaucouleurs,
de Vaucouleurs and Corwin 1976) and (a) the infrared excess and (b)
60/100 micron color temperature.
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There is a tendency for IRE to decrease, and the color
temperature to increase with the H-alpha equivalent width, which is
a measure of the current relative star formation rate (Kennicutt
1983). Also, galaxies which are red in (B-V) tend to be cooler in
the far infrared, and to have larger IRE. Similar relationships
are seen with (U-B). It is also apparent that IRE decreases
towards later morphological type, but no general gradient in color
temperature can be distinguished with type, apart from the fact
that very late types tend to be relatively warm, as also found by
others.

3. INTERPRETATION AND MODELLING

On the basis of Fig. I we conclude that the 40-120 micron flux
of galaxies may be powered in part by the stellar populations
responsible for the blue flux, in addition to the HII-regions.
The blue flux is dominated by old disk stars of 1-2 solar mass
characteristic mass (Searle, Sargent and Bagnuolo 1973; Lequeux
1986; Renzini and Buzzoni 1986), which implies significant input
to the far infrared flux from non-ionizing stars.

Figures 2 and 3 indicate that the coolest galaxies, which have
60/100 micron ratios similar to that of Galactic cirrus emission
(Gautier 1986), tend to have high IRE, low H-alpha equivalent width
and red UBV colors, while warm galaxies have 60/100 micron values
which are more typical of compact HII-regions (Chini et al.
1986a,b). For these objects, IRE tends to be low, the equivalent
width high and the UBV colors blue. Thus high IRE is apparently
anti-correlated with optical indicators of a high star formation
rate, and with dust temperature.

The simplest ways to explain this result are Mi) that the far
infrared flux is powered predominantly by OB stars and the trends
seen in Figures 2 and 3 are due to a large dispersion in dust
optical depth; (ii) that there are at least two far infrared flux
components contributing to the IRAS-observed emission: a warm,
low-IRE one originating with the OB star population and a cooler
high-IRE one powered by the general interstellar radiation field
and not strongly related to the HII-regions; and (iii) that the
variations in observed IRE are driven by a changing IMF, such that
the HII-regions in the high equivalent width galaxies are powered
by hotter stars, resulting in higher dust temperatures and lower
IREs (Panagia 1974).

We favor the second possibility described above as the most
likely scenario for spiral disks with steady state star formation,
which make up the bulk of our sample. A strong objection to the
first model is that if the decrease in B-V in Fig. 3a were to be
attributed to reddening, a visual extinction of more than two
magnitudes would be required. This is much larger than typical
galaxian internal extinctions. Also, there is a rough separation by
Hubble-type in Fig. 3 in a sense consistent with dominance of the
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B-V color by stellar populations rather by reddening. An objection
to effect (iii) is that though it is likely to be operating to some
extent in the high star formation rate late type galaxies such as
NGC 4449 and NGC 1569, it is somewhat artificial for large disks
undergoing steady state star formation.

Besides these objections raised to the other models, we
favor the second interpretation because (a) there exist normal HI-
rich spirals with little or no detectable H-alpha flux, which are
not particularly dusty yet have normal IRAS-measured far infrared
fluxes (Bothun 1986); (b) it is similar in concept to the current
understanding of the situation in our own Galaxy (eg. Cox and
Mezger, 1987); and (c) galaxies are known to possess substantial
flux at wavelengths greater than the IRAS limit (Telesco and Harper
1980; Smith 1982; Rickard and Harvey 1984; Chini et al. 1984a,b)
which would be identified with the cooler of the two components we
propose.

To estimate the approximate contribution of the two components
to the total far infrared flux we have constructed a simple two
component model: a 'warm' component to be associated with the young
OB star population, and a 'cool' one associated with interstellar
radiation field heating of diffuse neutral material. All the H-
alpha flux is associated with the warm component. Each model is
defined by the 60/100 micron flux density ratio of the warm and
cool component, selected to lie at or beyond the extrema of the
observed distribution of this ratio and to be consistent with
colors of HII complexes (Chini et ag 1986a,b) and of cirrus
(Gautier 1986), respectively. Three values of each temperature
were considered. For each galaxy and each model the combination of
the two components was found that matches the observed far infrared
flux and 60/100 micron ratio.

Models with warm and cool model component color temperatures
of approximately 50 to 80 and 20 to 26 K, respectively, are able to
fit all the sample galaxies. For these models, the contribution to
the 'total' far infrared luminosity (an extrapolation of the 40-120
micron luminosity over a Planck function assuming that dust
emissivity falls as the square of the wavelength) of the galaxy
disks from the two components is roughly equal, with somewhat more
arising in the cooler component. The 'total' IRE (derived from
the 'total' far infrared luminosity) of the warm component lies in
the range 2-10 for the bulk of the sample.

4. DISCUSSION

We have concluded from our simple model that in most disk
galaxies a cool component, interpreted as 'cirrus' emission (dust
in the diffuse neutral interstellar medium heated by the
interstellar radiation field) is responsible for >50% of the
'total' far infrared flux, and that the intrinsic 'total' IRE of
the remaining warm OB star-powered emission lies in the range 2-10.
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We have checked that there is sufficient power in the
interstellar radiation field to account for the observed infrared
luminosity of the cool model component, and a large enough optical
depth in the diffuse medium to absorb this energy for re-radiation
in the far infrared, by comparison with the solar neighborhood
cirrus models of Draine and Anderson (1985). we find that the
ratio of the 100 micron flux to the HI line flux (Huchtmeier et Al.
1983) is quite comparable to that predicted by the models of Draine
and Anderson (1985) for most of our sample.

A good test of the existence of the cool component cirrus
emission is long wavelength photometry. Only two of our sample
galaxies have been measured at wavelengths longer than the IRAS
limit. For these, NGC 4449 ( Thronson eqt Al. 1986) and NGC 4736
(Chini it -al. 1984b), the long wavelength photometry is in better
agreement with our two component model than with a single component
interpretation of the far infrared data.

The infrared excess of our model warm component may be
compared with predictions for model HII-regions, which vary from
values as low as about 3 for low density HII-regions (Caux et Al.
1984; Mezger, Mathis and Panagia 1982) to >9 (Hauser et al. 1984)
depending on assumptions about the IMF, the optical depth of the
gas and dust to the ionizing and non-ionizing continuum and the
lines, and the gas density. Larger values can occur if very young
dust-embedded stars dominate the emission, or if non-ionizing (late
B and early A) stars belonging to the OB associations contribute a
significant heating flux.

About 10% of the galaxies have an IRE of 2-3 for the warm
model component, including half of the Sd-Im galaxies. Hence for
these galaxies there is little evidence that the integrated H-
alpha emission is seriously affected by extinction, or that GMC-
embedded stars or very compact HII-regions are a significant
fraction of the total OB star population (see also Hunter -t al.
1986 and Kunth and Sevre 1986). Thus the far infrared flux of
these galaxies comes primarily from the vicin!ty of the low density
HII-regions, and the H-alpha-derived star formation rates are
probably reasonably accurate.

For the remainder of the sample, which have relatively large
IREs, it is not possible to rule out (a) a significant H-alpha
extinction, (b) a significant trapping of the ionizing continuum
by dust, or (c) a contribution to the warm component far infrared
flux from either non-ionizing stars or from very young dust-
embedded OB stars. Thus it is possible for these galaxies that star
formation rates derived from H-alpha fluxes are severely
underestimated. In view of the ambiguities associated with the
interpietation of the warm component far infrared luminosity of
these galaxies, it is not possible to derive reliable star
formation rates from the IRAS far infrared data either.
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DISCUSSION

MEZGER: This is more a comment than a question. In all cases in
which we have extended the spectra of IRAS galaxies by observations
at 350 and 1300 microns we find that (iM the 100-1000 micron
luminosity is comparable to the 25-100 micron luminosity, and (ii)
cold dust emission contributes a non-negligible fraction to the 100
micron flux density. This certainly complicates a spectral
analysis based on IRAS data alone, and makes the interpretation of
the 60/100 micron ratio in terms of a color temperature somewhat
questionable.

REPLY: I agree. In fact the cold dust contribution to the 100
micron flux is just the point that we are making. Our approach is
based on the fact that it is IRAS data that we now have available
for thousands of galaxies, and we must understand clearly the
limits to which we can use it. After making the model
decomposition based on 60/100 micron color temperature, we made a
correction to both the warm and cool component fluxes for flux
beyond the IRAS limits. These corrections are about a factor of
1.5 - 2, similar to what you find. Also, we find a similar
fraction of the total (1-1000 micron) far infrared flux to be
coming from the cool component as you do.

NEZGER: Yes, we are in general agreement.
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ABSTRACT. Because of their proximity, the Magellanic Clouds provide us
with the opportunity to conduct a detailed study of the history and current
state of star formation in dwarf irregular galaxies. There is considerable
evidence that star formation in the Clouds has been and is proceeding in a
manner different from that found in a typical well-ordered spiral galaxy.
Star formation in both Clouds appears to have undergone a number of
relatively intense bursts. There exist a number of similarities and differences
in the current state of star formation in the Magellanic Clouds and the
Milky Way. Examination of IRAS sources with ground based telescopes
allows identification of highly evolved massive stars with circumstellar shells
as well as several types of compact emission line objects.

1. A BRIEF OVERVIEW OF STAR FORMATION IN THE CLOUDS

We are all familiar with the well-worn cliche concerning the inability to
see forests because of the trees. In astronomy the converse is often true:
while global properties of galaxies can easily be studied, the extent to which
the individual constituents can be observed is severely limited. But it is
these individual constituents - stars and clouds of gas - that determine the
appearance and evolution of a galaxy. The Magellanic Clouds present us
with a unique opportunity to study the stellar content of two galaxies in
considerable detail and to provide some insight to the problems of star
formation and evolution in a galaxy-wide context. In this first section I will
briefly review some ideas of the history of star formation in the Magellanic
Clouds.

1.1 Old Stars

There is a population of stars in both Clouds which is the equivalent
of the halo population of the Milky Way. These stars are old, a_01 yr,
and metal poor. The two most obvious examples of this stellar population
are RR Lyrae variables, found throughout both Clouds, and star clusters
similar to metal poor gil-bular clusters in the Milky Way. These stars have
a metalilcity between 30 and 100 times less than solar. The SMC's old
population is more metal poor than the LMC's. These old stars constitute
about 6% by mass of both Clouds, the same as that for the Galaxy's halo
population interior to the solar circle (Frogel 1984).

Carol J. Lonsdalc Persson (Editor)
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1.2 Intermediate Age Stars

About 5 Gyr ago there appears to have been a major burst of star
forming activity in the Clouds. Strong evidence for this comes from optical
color-magnitude diagrams and luminosity functions constructed for a number
of fields in both Clouds (e.g. Butcher 1977; Stryker 1984); from the
discovery of large numbers of luminous asymptotic giant branch (AGB) M
and C stars located throughout both Clouds (Blanco, McCarthy, and Blanco
1980); and, finally, from the relative number of clusters of intermediate age
(e.g. Bica, Dottori, and Pastoriza 1986), although this line of argument has
been questioned by Elson and Fall (1986).

As is the case for the oldest stars, the intermediate age population in
the LMC has a higher mean metallicity than that of the SMC. On the
whole, metal enrichment of the interstellar medium in the LMC appears to
have occurred at a higher rate over time than that in the SMC. But even
in the LMC, enrichment has proceeded much more slowly than in the Milky
Way (e.g. Twarog 1980). References to discussions of these topics may be
found in a more lengthy review article (Frogel 1984).

1.3 Young Stars

There is a significant population of objects in the Magellanic Clouds
with an age of order 108 yrs. It is best typified by the so-called blue
globular clusters and the Cepheid variables. Morphologically, the blue
globulars resemble Galactic globular clusters. However, their turn-off mass is
about 5-7 M9 and their metallicity is only a factor of two down from solar.
They have no obvious Galactic counterparts and appear to have formed in
regions of very low gas density (Freeman 1980). The conditions which
brought about their formation seem to be quite different from those which
occur in the Galactic disk.

The blue globulars and AGB stars of similar age in the field of the
Magellanic Clouds appear to be the result of an enhanced epoch of star
formation with a production about 10% of that in the intermediate age
stellar component (Frogel and Blanco 1983).

2. CURRENT STAR FORMATION

Scoville pointed out in his review talk this morning that essentially all
star formation in our galaxy takes place in giant molecular clouds (GMC)
which are delineated by their CO line emission. In the Magellanic Clouds
there is clearly a great deal of current star forming activity. For example
there are large numbers of OB stars and late type supergiants in the field of
both Clouds as well as many young stellar associations and HII regions.
However, the preliminary evidence from the Columbia CO survey of both the
LMC and SMC pointed to a low molecular abundance.

Results of a CO survey of the LMC reported by Cohen, et al. (1984)
indicated that H2/HII is 5-10 times lower than in the Milky Way. A
similar survey of the SMC by Rubio, et al. indicated an even lower ratio
there. These results of course depend critically on the assumption that the
CO to H2 ratio is the same as in the Galaxy. With the possible exception
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of the N159 region in the LMC, Israel (1984) found no unambiguous
evidence on the basis of CO line strengths for GMC complexes in the Clouds
as exist in the Milky Way.

More recently, Israel, et al. (1986) have argued that the CO abundance
of both clouds is low not just, or even primarily, because of the low overall
abundance of heavy elements, but because of the high destruction rate of
molecules due to the strong interstellar UV radiation field and lower gas-to-
dust ratios; the latter results in less shielding of the CO molecules. Hence,
use of a Galactic H2/CO ratio will result in gross underestimation of the H2
abundance since this molecule is much less affected by the interstellar UV
field than CO. Their model also qualitatively accounts for the relative CO
strengths between the Large and Small Cloud. A search for H2 from HII
regions in the Clouds has in fact revealed its presence in quite a few objects
(Israel 1986). Its discovery supports Israel, et al.'s contention that its true
abundance cannot be inferred from observations of CO.

As reported in the poster paper at this conference by Jones, Hyland,
and Harvey (hereafter PI) there appears to be a lack of high surface
brightness, compact infrared cores to HII regions in the Clouds as are found
in many Galactic HII regions where star formation is taking place. Elias
and Frogel, in another poster paper (hereafter PII), note that they have
been able to identify only a few IRAS sources associated with HII regions
that are compact. "Compact" here means that the IRAS 12 and 25/Lm
fluxes are only slightly greater than equivalent fluxes mea-".red from the
ground in apertures of a few arcseconds in diameter. !T any case, the point
is that such objects are rare in the Clouds. Most IRAFS sources associated
with HII regions are quite extended (PII). There also is an absence of
highly obscured but IR/radio luminous HII regions in the Clouds (PI).

Gatley, et at. (1981, 1982) have found obscured compact objects in the
SMC and LMC which they identify as protostars but Jones, et al. (1986 and
PI) note a gei.eral absence oi low luminosity protostellar objects. Also, they
find an apparent under luminosity of the HII regions for the number of
ionizing photons that are inferred when compared with Galactic HII regions
and the IMF of stars therein. Their interpretation of this result is that the
cause is a lack of intermediate mass stars in regions of star formation. This
conclusion is quite dependent on the assumption that all of the light from
OB stars in the HII region is absorbed by dust and subsequently reradiated
in the infrared. On the other hand, Hunter, et al. (1986) find that
L(IR/Hx) is about the same for all dwarf galaxies with IRAS data and that
this ratio is "roughly consistent with both luminosities measuring the
integrated OB stellar luminosity output."

There is, of course, a danger in trying to derive an IMF from a sample
of stars that represents an extremely limited slice of space and time. While
there may well be some differences within HII regions, globally the IMFs for
the LMC and the solar neighborhood appear to be quite similar, even for
the massive stars (Humphreys and McElroy 1984).

Elias and Frogel (PII) have been attempting to identify and obtain
near infrared and optical spectroscopy of IRAS sources ', the Magellanic
Clouds. They have observed about 65 sources, two- of which have
IRAS colors typical of stars. Two general results of urvey are: 1) The
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relative scarcity of compact infrared sources in association with HII regions
(discussed above); and, 2) a generally lower level of star forming activity in
the SMC relative to the LMC.

The IRAS data by themselves cannot distinguish between luminous
stars in the Magellanic Clouds and nearby field stars. Near infrared data,
though, divides the IRAS sources up into three reasonably well separated
categories. The first of these, about half of the star-like sources found, have
JHK colors, CO, and H20 indices quite similar to those of late-type giants
in the solar neighborhood. Most of these can be identified with visually
bright stars. Their K magnitudes are brighter than seventh; with very few
exceptions no LMC or SMC supergiants are this bright (Elias, Frogel, and
Humphreys 1985).

A second category of stellar sources consists of objects with colors and
indices typical of late-type giants with circumstellar shells. CCD
spectroscopy of the ones with optical counterparts usually reveals
exceptionally strong TiO bands. At least one of these, in the SMC, is a
carbon star. A few of the scurces in this second category have no optical
counterparts and probably are extreme examples of dust-enshrouded evolved
objects. None, however, are as red or as luminous as the two LMC
supergiants found by Elias, Frogel, and Schwering (1986) in their first look
at Magellanic Cloud IRAS sources. One of these two has recently been
identified as the first OH/IR star in the Magellanic Clouds by Wood, Bessell,
and Whiteoak (1986). It should be remembered that although these cool,
luminous stars are highly evolved, they are quite young and as such can
yield important information on current star formation in the Magellanic
Clouds. In particular they must play an important role in the enrichment
and recycling of interstellar material.

The third category into which Magellanic Cloud IRAS sources can be
divided on the basis of ground based data is compact or stellar emission line
objects. Some of these are in HII regions. Others appear to be emission
line stars. Some have optical spectra - permitted emission lines from neutral
atomic species and from thc- .- ium triplet - characteristic of pre-main
sequence objects surrounde a relatively dense cloud of gas and dust,
presumably the remnant ou which they formed (cf. McGregor, Persson,
and Cohen 1984). An advantage of studying such objects in the Clouds is
the fact that they are all at the same distance so that the accuracy of a
derived luminosity function will be limited only by the ability to find them.

In summary, we see that the history of star formation in the
Magellanic Clouds and its current status, various aspects of which are
considered in some of the poster papers presented at this conference, differ in
a number of significant features from the situation in the Milky Way.
Globally, star formation in the Clouds would be expected to be different
from that in the Galaxy because of their smaller mass and lack of ordercd
spiral structure. The increasingly well-documented low metallicity of the
Clouds, particularly of the SMC, appears to have resulted from a
significantly lower rate of enrichment of the interstellar medium in these
irregular systems than in the Milky Way. A lower enrichment rate could
come about, for example, because of the inability of a low mass galaxy to
retain the metal-enriched material present in supernova-driven winds. As
pointed out by Vader (1986), such winds, even with a moderate total mass
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loss rate, can carry away a substantial fraction of the heavy metal
production resulting in a substantially reduced yield. A low present day
abundance of heavy metals can be expected to have important effects on
current star formation.

The Magellanic Clouds present us with the opportunity to study in
great detail star formation in an environment different from that which
obtains in the Galactic disk. Let us proceed to examine the trees and the
leaves that grow on them so we may be better able to comprehend and
appreciate the beauty and complexity of the forest as a whole.

I thank Terry Jones for material based on work in progress by him
and his collaborators, Frank Israel for drawing my attention to his recent
work on molecules in the Magellanic Clouds, and Jay Elias for considerable
discussions about our own work.
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DISCUSSION

GALLAGHER:
Can you say anything about the number of OH/IR stars with regard to the death of AGB stars via

'superwinds'?

FROGEL:
Not at this time because our sample is restricted to the outer region of the Clouds where source confusion

would not be a problem.

ISRAEL:
Under the extreme conditions exemplified by the Magellanic Clouds (e.g., low heavy-element abundances,

relatively strong UV radiation field) one cannot expect CO to be a reliable tracer of H2. In fact, despite the
weakness of CO, there are several indications that the clouds may contain significant amounts of H2. The
most indirect indication is that several dark cloud silhouettes can be seen in both clouds with dimensions
similar to those of Galactic GMCs.

The second indication is found in the IRAS maps, where several warm, high dust column density sources
can be seen that do not have clear HI counterparts. Unless one is willing to accept wildly fluctuating and
at times very high dust-to-gas ratios (in a low-z environment!) the obvious explanation is that these sources
contain mostly molecular gas.

Third, Koorneef and I have detected several sources of 2prm H2 emission, in fact in a large fraction of
all sources looked at. Although it is very difficult to derive physical parameters such as mass, etc., from these
detections, the frequent occurrence of H2 emission (often at positions where CO is weak or absent) indicates
that H2 may be widespread in both Magellanic Clouds.

FROGEL:
Great! Finding large amounts of H2 will help with one of the major problems I noted with regard to star

formation in the Clouds.

ROCHE:
Did you not find any carbon stars in the Clouds?

FROGEL:
One SMC object is a C star. Without optical spectra, we cannot tell from the IR data we have whether

the blank field SMC and LMC sources are C stars or M stars.
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ABSTRACT. The problems associated with measurements of star formation rates
in galaxies are briefly reviewed, and specific models are presented for
determinations of current star formation rates from Ha and FIR luminosities.
The models are applied to a sample of optically blue irregular galaxies, and
the results are discussed in terms of star forming histories. It appears
likely that typical irregular galaxies are forming stars at nearly constant
rates, although a few examples of systems with enhanced star forming activity
are found among HII regions and luminous irregular galaxies.

1. INTRODUCTION

In this paper we briefly review methods for deriving star formation rates
(SFRs) in galaxies with an emphasis on techniques based on the Ha and IRAS
infrared luminosities (see also GUsten and Mezger 1982). Conversion of
measured quantities into SFRs involves model-dependent assumptions, and it is
interesting to intercompare SFRs derived by different methods as a means to
test the reliability of the models. The blue irregular galaxies which we
discuss include objects that are espcially well suited for this test for a
variety of intrinsic and practical reasons outlined in Hunter and Gallagher
(1986).

The strong emission lines and blue colors of galaxies in our sample
sometimes are taken as evidence for "star burst" events. This view conflicts
with results from the analysis of Gallagher, Hunter and Tutukov (1984;
hereafter GHT), where a near constant SFR was found to fit most blue Irrs in
agreement with earlier studies by Searle, Sargent and Bagnuolo (1973). The
IRAS data base provides a new way to explore the star burst issue (as
emphasized in many talks and poster papers during this conference), and we
have developed a working definition for star bursts that is applicable to most
types of galaxies.

2. MEASURING CURRENT STAR FORMATION RATES IN GALAXIES

To illustrate the factors involved in calculating SFRs, consider some
quantity Q which is a measurable property of a stellar population in a galaxy
(i.e. Q could be a luminosity, color, or mass estimate). Formally we then
have

Q = ftfvfmq(m) *(m) w(r) g(t) dm dV dt • H(D). (1)

*See erratum, page 257.

Carol 1 Lonsdale Persson (Editor)
Star Formation in Galaxies 167



J. S. GALLAGHER III AND D. A. HUNTER

This equation illustrates the many parameters that affect any apparently
simple measurement of Q: q(m) is the weighting factor in stellar mass, *(m) is
the stellar initial mass function, g(t) is a description of the time evolution
of the system, w(r) takes internal structural properties such as extinction
into account, and H(D) is the distance factor which is (4wD)- 2 for fluxes.
Thus we require either good models or simple galaxies if we are to obtain
reliable measurements of Qs that can be converted into SFRs, and in our work
we have chosen the latter route in concentrating on studies of irregular
galaxies (see Gallagher and Hunter 1984; Hunter and Gallagher 1986).

To get a current SFR for a galaxy, we must observe a Q that is sensitive
to short-lived stars. If T is the time scale for significant variations in
SFRs over galactic scales, 9hen we require that q(m*) + 0, where the stellar
evolution lifetime T for stars of mass m* is T(m*) - Tg. Unfortunately, we
do not currently have good theoretical predictions for T9, gnd furthermore Tg
may vary between galaxies. A reasonable choice is T_ < I0 yr, which g
corresponds to typical dynamical time scales within Jalaxies. For Tg = 108
yr, the critical stellar mass is m* - 5 Mo. On the other hand, one should not
choose too narrow a time interval to probe SFRs, since statistical noise
associated with small samples of objects or small numbers of star forming
sites will become a problem. For example, counting the luminosities of HII
regions in the short-lived compact phase (Habing and Israel 1979) would not
necessarily give a statistically reliable indicator of the current SFR in a
galaxy.

To measure current galactic star formation rates, we therefore must
estimate the numbers of OB stars, which is a well known result. A variety of
measurable quantities Q can be used to trace OB stellar populations in
galaxies: (1) Rocket ultraviolet luminosities reflect the numbers of hot stars
in galaxies, but the interpretation is complicated by major extinction effects
which are not easily disentangled (e.g. Huchra et al. 1983; Donas and
Deharveng 1984; Lamb, Hunter and Gallagher 1986). (2) In a few nearby
galaxies, OB stars can be directly counted and the resulting luminosity
functions converted to star formation rates (Dennefeld and Tammann 1980;
Hoessel and Danielson 1983). A difficulty in this approach lies in obtaining
complete samples of OB stars, which is proving to be a major challenge even in
the Magellanic Clouds. (3) Thermal radio emission and hydrogen recombination
line luminosities measure the fluxes of Lyman continuum photons and thus the
populations of hot, young stars. This approach has been successfully adopted
by several groups including Smith, Biermann and Mezger (1978), GHT, Hunter and
Gallagher (1986), Israel (1980), and Kennicutt (1983). These results also are
sensitive to effects of dust and to the choice of model to convert observables
into Lyman continuum luminosities (see the excellent summary by Gusten and
Mezger 1982). (4) The far infrared luminosity way arise from dust heated
primarily by OB stars. Our lack of understanding of the details of radiation
processes resporibl fbr L(FIR), as discussed by several papers during this
meeting, introduce uncertainties into the choices of w(r) and q(m) that are
needed to drive SFRs. In the pre-IRAS era, L(FIR) primarily was used to probe
SFRs in 'star burst' galaxy candida-tes (e.g. Telesco and Harper 1980; Rieke et
al. 1980; Gehrz, Sramek and Weedman 1983) and only recently has this Q been
applied to galaxy populations in the general sense. (5) Radio continuum
luminosities of galaxies are well-correlated with all other indicators of
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current SFRs (see Klein 1982; Kennicutt 1983; de Jong et al. 1985; Helou el
al. 1985; Sanders and Mirabell 1985), but suffer from a lack of understani 1 ag
of the basic physical process which produces the correlation (i.e. both
w(r) and q(m) are not properly known). Thus at present radio r-. atinuum data
must be taken as a secondary method for deriving SFRs, which rlies on other
techniques for absolute calibration.

3. A COMPARISON OF SFRS BASED ON FIR AND Ha LUMINOSITIES

In the spirit of eq. (1), we compress the problem of measuring a
corrected Ha luminosity L*(Ha) from an Ha flux corrected for Galactic
extinction F*(Ha),

L*(Ha) = F0 (Ha) • exp T(Ha) • (1+9y*) • (4rD2 ). (2)

Here D is the distance, y is a correction factor for underlying Ha stellar
absorption, and r(Ha) is some mean optical depth in the Ha line due to
internal dust in the galaxy. From simple recombination theory, the Lyman
coytinuum photon luminosity Nc is proportional to L*(Ha), Nc = 7.3xl0II La(Ha)
Sg~

Nc is linked to the stellar population through the initial mass function
(IMF), and following the notation of GHT with a Salpeter IMF,

c fmu(m-2 3 5 ) [n(m)t(m)]n dm. (3)Nc=a m* nc

We have adopted the Renzini-Tinsley approach in assuming a constant SFR over
the time interval of interest here, in which case the time evolution of the
luminosity for stars of mass m, nc(m), is replaced by an average over the
appropriate stellar lifetime at mass m for the production of H-ionizing
photons (see Renzini 1981). The other parameter n is an efficiency factor,

and we wish to solve for the normalized SFR, ac (A(Ha) = 5.8a CM yr-1 with a
minimum stellar mass of 0.1 Mo; see GHT for details.)

The integral in eg. (3) is also sensitive to the choice of the maximum

stellar mass Mu, as n (m)t(m) rises nearly as steeply as the Salpeter IMFC

falls to masses of ZI00M0 (GUsten and Mezger 1982). For an mu = 100mo, we
estimate

M(Ha) = (2.5x10-8 n-1 L0 (Ha) M yr- 1  (4)

where L*(Ha) is measured in units of the sun's bolometric luminosity. The
coefficient in eq. (4) depends on several factors, including the choice of IMF
parameters, stellar evolution models, and the derivation of nc(m) as a
function of time, effective temperature, surface gravity, abundance, etc.
Hidden in the efficiency factor n are the escape of ionizing photons and the
loss of ionizing photons due to the effects of dust. Since most of the
contribution to A(Ha) must come from stars with lifetimes T(m*) < 107 yr; Ha
observations in principle provide particularly clean snapshots of star forming
processes in galaxies.
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An SFR can be derived from measurements of L(IR) under the assumption
that massive stars play a major role in heating dust. The analog to eq. (3)
is then (cf. Hunter et al. 1986a)

L* (FIR) - a fMU (m-2. 3 5 ) (L(m) t(m)) 8 dm. (5)

This is a more extreme simplification than in the Ha case, as the efficiency
factor 8 should be a function of stellar temperature and the geometry of the
galaxy should be taken into account in calculating the absorption of
radiation. We will assume that 8 - 0.5 for all stars with an effective
temperature above some threshold. The sum is over stellar evolutionary
phases, and following the Renzini-Tinsley approach, we need only bolometric
energies which stellar evolution models predict reasonably well (cf. Renzlni
1981). Finally, we must account for infrared luminosity that is not
associated with young stars, e.g. we probably should exclude the cold dust
luminosity component (see Hunter et al. 1986a). Thus for an observed L*(IR),
we have L*(FIR) = 6L*(IR) where 6 7 1.

For m* = 10 M. and modern stellar evolution models which include mass
loss (e.g. from Maeder 1981; Brunish and Truran 1982), we find

AI1 (FIR) - 2.5x10O108-1• L°(IR) MoYr-I (6)

where L°(IR) is again in bolometric solar units. The relevant time scale for
eg. (5) is T(m*) - 2x10 7 yr, and we are including only stars and evolutionary
phases with log Te > 4.3. If cooler stars are effectively heating dust, then
the coefficient in eq. (6) is reduced. For example, reduction of the stellar
temperature limit to log Te ) 4.0 corresponds to m* - Mo and i(m*) 109 yr,
while the coefficient changes only slightly to 2.1x10'- 0 Mo yr- L 0

Taken on their own, the FIR data thus involve a time average of the SFR
over a somewhat indeterminate period, which could vary depending on physical
conditions within galaxies. Dusty galaxies can have high optical depths for
the absorption of radiation at visible wavelengths, and even comparatively
cool stars can contribute to L*(IR). Most blue irregular galaxies lie at the
opposite extreme, and have low dust optical depths in the visible (Hunter and
Gallagher 1986). In these types of galaxies, UV heatings by younger stars is
likely to be favored, and thus L*(IR) may be a good indicator of the current
SFR.

4. APPLICATIONS TO REAL GALAXIES

4.1 Current SFRs

Blue irregular galaxies provide a way to test our ideas about SFRs and
evolutionary processes in galaxies for the following reasons: (1) We have
collected a large body of optical data, which includes Ha fluxes (cf. Hunter
and Gallagher 1986). (2) Due to the low internal optical depths found in most
Irrs, star forming sites usually are optically visible (Hunter 1982). (3)
Irrs have the bluest optical colors for 'normal' (i.e. non-active) galaxies,
and thus are logical candidates for star formation bursts on galactic
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scales. (4) The majority of the less luminous Irrs are structurally simple
and close to single zone systems, which allows primitive models to be used in
interpreting observations.

We have recently collected IRAS observations of Irr galaxies included in
our various optical samples (see Hunter and Gallagher 1986; Hunter et al.
1986a,b). These data are shown in Figure 1, where the Irrs basically form a
continuation of the normal spirals to higher far infrared color temperatures,
and perhaps somewhat more surprisingly, to higher values of L(IR)/L(B). A
complete discussion of these data is currently in preparation by Hunter, Rice,
Gallagher and Gillett.

1 I I I lo'1.2-
e dwarf Jrr

nA A

.8m x giant Irr

___ o amorphous Irr 4
a 0

Sdistant Irr O X. X4

S X
N A

0 00
00

-. 4,

-.8

.8 .6 .4 .2 0
log S(100)/S(60)

Figure 1. Irr galaxies are plotted on a luminosity-color diagram after de
Jong et. al. (1984). L(B) is the blue luminosity, and S(60) and S(100) are
IRAS flux measurements at 60 and 100 microns. L(IR) is derived from vf(v) at
80 microns. The various structural class samples of Irr galaxies defined by
Hunter and Gallagher (1986) are shown, and the approximate area occupied by
spirals is outlined.

The two indicators for current SFRs, A(Ha) and A 1(IR), can be directly
intercompared using the data for Irrs. Making the approximation that (I+y*)
- 1.0 in eq. (2), we have

A(Ha) = 100 exp r(Hz)8L(Hca) (7)

(iR) L L IR) 17
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For the assumptions of high efficiencies, (8 = 1) and low T--7, we obtain
the limit that L(IR) - 100 L(Ha) if both luminosities measure the current SFR,
and star formation has continued at a constant rate over > 2x10 7 yr (cf. eqns.
5 and 6). A minimum ratio of L(IR) = 16 L(Ha) can also be derived by assuming
that, as in HII regions, equal amounts of power from 0 stars goes into dust
heating and the eventual production of Ha emission (see Hunter et al.
1986a). The minimum model thus is appropriate where L(IR) is dominated by
contributions from HII regions. The results of these models are shown in
Figure 2.

42

41+ LIR 16 L Ha

~~40

3 
LIR IOOL

IR Ha

38

37 I I I I
40 41 42 43 44

log L(IR)

Figure 2. Ha and FIR luminosities are plotted for Irr galaxies (same symbols
as in Figure 1) and spiral galaxies for which Ha fluxes have been measured by
Kennicutt and Kent (1983) (plotted as stars). Model relationships are also
shown.

Figure 2 is encouraging in tY L(IR) a L(Ha) over a factor of -104 in
luminesity and the proportionality constant lies near the expected value of
100. Thus we see tht L(IR) empirically is a useful tracer of the current
SFR. This diagram also shows that many details remain to be sorted out.
Luminous spirals and Irrs have high L(IR)/L(Ha) ratios, which could be due to
high optical depths or heating by older stellar populations. Just as puzzling
are the normal Irrs where L(IR)/L(Ha) falls near our minimum estimate. It is
possible that only very massive stars are contributing to the observed L(IR)
in these systems, and further work is neLded.
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4.2 Star Formation Histories and the Existence of Star Formation Bursts

Following the approach of GHT, we can chart the evolutionary histories of
galaxies by comparing SFR indicators that are sensitive to long term integrals
over the SFR with estimates of current SFRs. GHT and Kennicutt (1983) have
argued that most disk galaxies with active star formation have produced new
stars at roughly time-constant rates during the past several Gyr. We can test
the constant SFR, fixed IMF model by using the blue luminosity L(B) to
estimate the average SFR over -3Gyr (GHT).

In this case, a simple model which includes evolved stars as in eq. (5)
and adopts a Salpeter IMF predicts L(B)/L(IR) -1, where we have taken a mean
optical depth at B of TB - 1.0. Note that L(B) is the luminosity in terms of
solar luminosities on the Johnson B system (one must be careful to properly
define luminosities in the various color bands!). The results of this model
are shown in Figure 3. Most galactic SFRs are within a factor of 3 (which is
still quite large, but our model is primitive) of the constant SFR line. We
will define a 'star burst' to be an epoch in which the SFR has increased by a
substantial (> 3) factor over its historical mean value. Thus short-lived
bursts (this diagram is most sensitive to bursts over time intervals of < 109
yr) are not common in field blue galaxies, and the only obvious burst
candidate in our sample is the extragalactic HII region IIZw4O. A similar
result has been found by Thronson and Telesco (1986), although we -have used a
slightly different approach in analyzing our data.

44 1 A

0, .0

•"41
oe_

I//,"

40 L L' l
40 41 42 43 44 45

log L(MR)

Figure 3. Predicted correlations for L(B) vs. L(OR) are shown with observed
properties of spiral and irregular galaxies.
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The L(B) vs. L(IR) diagram is not a useful diagnostic for systems such as
M82, where T is high. In these cases one can use mass-to-light ratios to
detect anomalously luminous stellar populations. This approach was pioneered
by Telesco and Harper (1980) and by Rieke et al. (1980), who pointed out that
very low values of stellar mass-to-light ratios are indicative of
overpopulations of massive stars. Using our models, we would predict M*/L(IR)
- 2.5 in solar units for a constant SFR, and M*/L(IR) ý 0.5 for high amplitude
SFR bursts. Observed M*/L(IR) values in the centers of galaxies suspected of
harboring star bursts are often < 0.1, which argues very strongly for the
existence of bursts or some other anomaly, such as an IMF that is skewed in
favor of massive stars (see Telesco 1985).

Another way to look at star formation histories is shown in Figure 4.
Galaxies in region 1 have near constant SFRs in combination with either
moderate TnM7 or dust heating by older stars to give high values of L(IR)
relative to optical luminosities. Area 2 contains galaxies where both L(B)
and L(Ha) are very low, and these systems are likely to be very dusty and
effectively opaque at visible wavelengths. The physical nature of the power
sources in these hidden galaxies cannot be determined from optical
observations. Area 3 contains optically thin, constant SFR galaxies, and area

3 I I#I

ts 4

nA

** . A :. .I *
__*I_* *

I *

I". :o<* x ^

o • 0 0

1 "t
0 1

log L(IR)/L(B)

Figure 4. Irregular and spiral galaxies are plotted on a color-color diagram
which can be used to study star forming histories. Different numbered regions
are discussed in the text. Galaxies with high optical depths, which are
effectively hidden at optical wavelengths, are found in the upper right
corner, HII-region-like objects fall to the center right, and constant SFR
galaxies cluster near the left-center.
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4 shows the presence of a few low optical depth burst galaxy candidates.
Finally Zone 5 includes galaxies which have extreme excesses of L(Ha). Very
metal-poor galaxies with low dust-to-gas ratios could populate this region of
the diagram, but we have no outstanding candidates for such galaxies.

5. CONCLUSIONS AND CAUTIONS

i) Both L(IR) and L(Hi) provide useful measures of current SFRs in
galaxies, at least to the levels of factors of 2 or 3. It is not clear,
however, what stellar lifetime should be associated with L(IR), and there are
indications that the average age of the stellar populations responsible for
L(IR) varies between galaxies.

ii) The majority of normal blue Irrs in our sample (which is not a
complete sample; see Hunter and Gallagher 1986) have properties consistent
with constant SFRs over the past 2-4 Gyr. Thus the IR observations give
results that agree with the GHT optical studies (see also Thronson and Telesco
1986), and one cannot assume that galaxies with blue colors or strong emission
lines are in a star burst phase. Furthermore, if the SFR is roughly constant
over time, luminosities arising from different age stellar population
components are correlated, and thus it is not easy to isolate the stellar
population component responsible for L(IR).

iii) Optical depths may play a substantial role in determining properties
of FIR-luminous galaxies. In general we expect that as the internal optical
depth increases, L(IR) rises while L(Ha) and L(B) decline. We see some
evidence for this trend to occur among the luminous Irrs (see Figure 4) which
suggests that optical SFR measurements do not give a complete picture in these
systems.

iv) SFR bursts are not common among the dwarf and normal Irr galaxies in
our sample. IIZw4O has all the properties that would be expected for a high
amplitude SFR burst in a small system. The very high values of L(IR)/L(B) and
L(IR)/L(Ha) in combination with the substantial optical luminosities of the
luminous Irrs suggest that many of these galaxies could also be in SFR burst
evolutionary phases. We suspect, on the basis of optical observations, that
the majority of the luminous Irrs are results of enhanced star forming
activity associated with galaxy-galaxy interactions. High levels of star
formation are also seen in the strongly interacting galaxy sample being
investigated by H. Bushouse (1986a,b) and interactions thus may be the main
source of star bursts among more luminous galaxies in nearby samples.
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DISCUSSION

YOUNG:
In your plot of LH,, vs. LB was NGC 1569 included?

GALLAGHER:
Yes, it looks normal. This is probably an indication that the epoch of enhanced star formation has been

going on for , 109 yr. For time scales of Z 109 yr, the LB/LHCY ratios rapidly approach their equilibrium
values for constant SFR systems.
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CO OBSERVATIONS OF GALAXIES WITH THE NOBEYAMA 45-M TELESCOPE
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ABSTRACT

High-resolution (15"), filled aperture maps of the CO (J=1-0) line emission
have been obtained of several nearby, CO-bright galaxies like M82, M83, IC342,
NGC891, etc. in order to study star forming activity in these galaxies.

1. INTRODUCTION

Star formation In galaxies is intimately related to their molecular hydrogen
content from which stars form. In order to obtain high-resolution, high--sensi-
tivity and filled aperture maps of H2 gas in spiral galaxies, we have conducted a
survey of the CO (J=l-O) line emission at 115 GHz using the 45-m telescope at the
Nobeyama Radio Observatory. The survey already includes nearby, CO-bright galax-
ies like M82, M83, M51, NGC253, NGC891, IC342, and NGC6946. We have obtained an
almost complete map of M82, a map of the bar and central region of M83, a map of
the central region of IC342, high-sensitivity scans along the major and minor
axes of the edge-on galaxy NGC891, and several incomplete maps of the other gal-
axies. The survey is being extended to more galaxies. In this paper we report
the results for NGC891, M83, IC342, and M82.

2. NGC891

The large-scale distribution of the CO line emission in disk galaxies has an
important implication for understanding the structure and dynamics of gaseous con-
tent and the evolution of star-forming activity on a galactic scale. Inthe case of
edge-on galaxies, one dimensional scan maps can give fairly complete information
about the large-scale CO distribution in a realistic observing time.

NGC891, a typical edge-on Sb, shows a very similar property to our Galaxy.
It has been observed in CO using the FCRAO 14-m telescope with a resolution of
45" (Solomon 1981;1983). The CO intensity distribution is characterised by a
ring-like concentration at radius 5 kpc and a central hole. It is well known
that the Milky Way, a typical Sb galaxy, has a strong central concentration of
molecular gas forming a dense nuclear disk (e.g. Liszt and Burton 1978). It is
therefore interesting to clarify by high-resolution observations whether Sb gal-
axies like NGC991 have a nuclear molecular disk. Another important implication
of the CO observations of edge-on galaxies is to derive a rotation curve of mole-
cular gas without the ambiguity of inclination angle. A CO rotation curve is
especially importan: to see the dynamics of the central region, for the HI emis-
sion has a depressi. i, giving poor information about the central region (Sancisi
and Allen 1979).

Observed CO line spectra along the major axis are shown in figure 1. The
intensities are corrected antenna temperature calibrated with respect to Ori A

Carol J. Lonsdale Persson (Editor)
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with TA* =35 K. Figure 2 shows a position-velocity diagram along the major axis.
The rotation curve as derived from the terminal velocities (as drawn with the

dashed line) coincides with the HI rotation curve of Sancisi and Allen (1979).
From the rotation curve the dynamical mass contained within 15 kpc (225") is

estimated to be 2 x10 1 1 M.. The diagram shows that there exist many clumpy
structures, which we identify with tangential (' 'ctions of spiral arms, except
for the central strong peak.

The distribution of integrated CO intensity is shown in figure 3. We find
that the radial CO distribution is composed of two components: a broadly spread
main-disk with the maximum at 60" (5 kpc) radius, tailing as far as to 15 kpc
from the center, and a strong concentration toward the center, having a sharp
peak of ICO = 26 K km s- 1 , which we refer to as the nuclear disk.

The main disk is distributed on a broad ring of radius 5-15 kpc with its
peak at about 5 kpc. This well resembles that of our Galaxy which has the 5-kpc
molecular ring. The main disk is well visible at least up to 15 kpc and appears
to extend further beyond this radius. The total mass of molecular hydrogen gas,
as derived using the same conversion factor as that used in Solomon (1983) but
taking care of the difference between the antenna temperature of Ori A for the
45-m telescope and the 14-m telescope, is about 7x 10 9 M.. This shares 4 percent
of the dynamical mass and this fraction is comparable to that in our Galaxy.

The nuclear disk has a radius of about 0.5 kpc, but the thickness is not
resolved. This component has been detected for the first time for an external Sb
galaxy, which confirms that NGC891 has a similar characteristics to our Galaxy, as
the size and mass, 3x 10 8 Mo, of molecular gas, are comparable to the nuclear
disk in our Galaxy. The velocity dispersion near the center of this component is
more than 100 km s-1. The high dispersion may be partly due to internal motion
of gas and partly to the steep gradient of the rotation curve. From the velocity

dispersion a dynamical mass of 109 Me is derived. This leads to a fractional
mass of molecular gas in the nuclear disk as high as 30 percent, much higher
than that observed in the main disk. This suggests either that the molecular gas
is really rich or that the conversion factor from ICO to H2 mass adopted here
(Solomon 1983; Young and Scoville 1982) was too large. If the latter is the
case, we have a higher rate of production of heavy elements in the central region
than in the main disk: if the molecular mass shares '-10% of the dynamical mass
as in the main disk, the CO abundance in the nuclear region is about three times
as large as that in the main disk.

Figure 3 compares the CO distribution with those of HI (Sancisi and Allen
1979) and radio continuum (Allen et al. 1979). The CO main disk has a similar
distribution to that of the broad disk of the continuum emission. The HI gas is
more widely distributed than CO and continuum. The CO nuclear disk coincides

well in position with the central peak of continuum. This shows a significant
correlation between the nuclear activity and the existence of a dense molecular
disk in the center. A detailed description is given in Sofue et al. (1986).

2. M83

The SABc galaxy M83 is the nearest barred spiral (3.7 Mpc distance). The
bar structure in a galaxy gives a deep nonlinear potential wave in the rotating

material. The interstellar gas suffers a strong shock wave in such a deep
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Fig. 4. CO intensity map of the barred region of M83. Note the strong
concentration in the central 20".
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Fig. 5. Peak velocity distribution of CO gas in the bar of M83. A non-
circular motion of 20-30 km s-I is seen near the center.
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potential (S~rensen et al. 1976; Roberts et al. 1979). In fact well developed
dark lanes are found along the leading sides of the bar of M83 indicative of a
shocked concentration of molecular gas. The strong shock will cause loss of
angular momentum, leading to an accumulation onto the galactic center. Infall of
gas toward the center may result in a high rate of star bursting, which is
observed as the strong radio continuum emission near the center (Ondrechen 1985).
The radio continuum observations show evidence of nonthermal emission along the
barred shocked region. It is therefore important to investigate the motion of
gas in and around che central barred region.

The high resolution map of HI line emission by Allen et al. (1986) shows,
however, a depression in the central region including the bar, giving no informa-
tion about the motion of gas there. In order to see the motion in the bar and
gaseous concentration toward the center we have performed a survey of the CO line
emission as the tracer of the molecular hydrogen gas. Our CO map covers a region
of 3.5' xl' along the bar, where most of the bar is included. Figures 4 and 5
show the distributions of total intensity, namely the H2 column density, and the
velocity field, respectively (Handa et al.1986).

The gas is concentrated in the central i' xO.5' (lx 0.5 kpc) region, where
about 40% of the gas in the observed region is found. The central gas distribu-
tion is elongated roughly along the bar, but shows an S-shaped ridge with two
strong peaks, one is associated with the center, and the other is mote shifted
from the center by 10" (200 pc).

In the barred region a rather broad CO distribution is found, and the peak
positions of the CO intensity runs approximately along the leading sides of the

bar.

A clear noncircular motion is found in the central 1' (1 kpc). The amount
of the noncircular motion subtracted for the circular rotation is about 20-30 km
s-1. This may be a superposition of deceleration by the shock and the infall

motion. Beyond V' from the center the velocity field resembles the circular
rotation, although the sensitivity of the present observations might not be
enough to detect weak noncircular motion.

The strong concentration of molecular hydrogen toward the center and its
noncircular motion is suggestive of the infall of matter due to the barred shock
wave, and must be intimately related to the activity of star formation observed
in optical, infrared, UV, X-ray, and radio observations (Rieke 1976; Bohlin et
al. 1983; Trinchieri et al. 1986; Ondrechen 1985).

4. IC 342

Extensive CO line observations of this bright Scd galaxy have been made by
Rickard and Palmer (1981) and Young and Scoville (1982). IC342 has a bright
optical nucleus with a dark lane elongated in the north-south direction. A
prominent molecular bar has been found lying on the dark lane using the Owens
Valley interferometer (Lo et al. 1984). Their field of view was spatially
limited by the primary beam as well as by the velocity coverage of the spectro-
meter. It is therefore not known whether the molecular bar is connected to the
outer spiral arms, whether the bar is surrounded by more broad gas distribution,
etc. We have made a highest resolution CO map accessible by a single-dish with
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a sufficient velocity coverage (Hayashi et al. 1986).

Figure 6 shows a distribution of the integrated intensity of CO line emis-
sion. The dark circle is the center of the galaxy as determined by 2.2 pm
infrared emission (Becklin et al. 1980). The CO emission is concentrated in the
central bar whose size is 13x0.6kpc after being deconvolved from the beam. Uttle
CO emission is seenoutside the bar: the molecular bar is localized within the opti-
cal bulge and is not connected to the outer spiral arms. The result is consis-
tent with that of Lo et al. (1984), but our result suggests that the bar is more
spread in the minor axis direction than the interferometer result. The beam-
deconvolved width of the bar is 0.6 kpc and is considerably wider than that
measured by Lo et al. (1984). The narrower width of their CO map might be caused
by the limited velocity coverage of their spectrometer.

The CO bar has a double-peaked structure with a shallow dip toward the
nucleus, being symmetric with respect to it. The two maxima lie about 200 pc
away from the nucleus. The molecular hydrogen mass of the nuclear bar is esti-
mated to be 2x 10 8 M.. Five percent of the total H2 mass is accumulated in the
central small area. This may explain the vigorous star forming activity in the
nuclear region of this galaxy (Becklin et al. 1980; Turner and Ho 1983).

Figure 7 shows equal-velocity intensity maps, where intensities at every 20
km s-l are shown in the form of contour maps. At the systemic velocity, the
intensity distribution has a symmetric bar structure, whereas at 30- 50 km s-1
there exists a dense complex at 15" to the NE of the center, and no counterpart
to this complex is seen at the opposite side at -10 "- 10 km s-1. The velocity
distribution shows a significant displacement from a circular rotation consist-
ent with Lo et al. (1984). The noncircular motion may be related to the forma-
tion of the bar concentration of gas in the central region.

5. M82

The peculiar edge on galaxy M82 is well known with its filamentary structure
running perpendicularly to the galactic plane, which suggests an intensive out-
flow of gas from the disk (Lynds and Sandage 1963). The dynamic state of the gal-
axy may be caused by star formation activity near the center (Rieke et al. 1980;
Kronberg et al. 1985). The active star formation must be deeply related to the
dense molecular hydrogen gas concentrated near the central region (Olofson and
Rydbeck 1984; Nakai et al. 1986; Lo et al. 1986).

Figure 8 shows the intensity distribution of the CO lineemission in the
central 40" of M82 as observed with the 45-m telescope. Figure 9 shows a distri-
bution of volume density of H2 gas obtained by deconvolving the observed CO intensi-
ty on the assumption of a cylindrical symmetry around the rotating axis. It is
remarkable that there exists a hole at the center, surrounding which we find a
"200-pc rind', or a doughnut-shaped structure. This ring has a steep density gradi-
ent toward the center, whereas it is widely spread towards the outer side. The ring is
further associated with spur-like protrusions extending toward the halo. The pro-
trusions make a large-scale cylindrical structure with the height 500 pc from the
galactic plane.

Velocity variation along the major axis shows a normal rotation of the disk
at velocity of 100 km s-1. Along thp minor axis and along the cylindrical struc-
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Fig. 8. Integrated intensity of CO line emission of M82. Note the double
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extending toward the halo, which we interpret as due to cylindrical distri-
bution of molecular gas perpendicular to the galactic plane. The lowest contour
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ture in the halo we find also a velocity gradient. If we take into account the
inclination of the galaxy disk, this gradient is well attributed to an outflow
motion of molecular gas. The outflow velocity is from 100 to 500 km s-l perpen-
dicular to the disk plane, depending on the inclination angle, 70*-85*.

As the total mass involved in the cylinder is estimated to be 5x10 7 Mo, the
kinetic energy of the outflow motion is of the order of 0.1-1.4 x 1056 ergs. Ac-
cording to the star bursting model of Rieke et al. (1980) the rate of supernova
explosions in the central few hundred pc is about 0.3 SN y-i and the duration of
the bursting activity is 5 x 107 y. Then thi total energy released by SN explosions
is 2x10 5 8 ergs for a single SN energy of 1051 ergs. If the fraction of energy con-
verted to kinetic energy ofthegas i 0.03 (Chevalier 1974), enough energy is given
to the gas to drive the outflow motion of the molecular cylinder.

Another fraction of the released SN energy may be used to heat up the ISM to
high temperature, and the heated-up gas will expand into the halo, forming an
X-ray halo. This is actually observed as an elongated halo of X-ray emission
perpendicular to the disk plane (Watson et al. 1984). It must be noticed that the
X-ray halo is confined by the wall of the molecular cylinder. It is likely that
the interface of the X-ray halo and the molecular cylinder has an intermediate
temperature, radiating H alpha emission. The H alpha filamentary structure may be
a view of the interface region as seen through tle dusty (molecular) cylinder with
outflow motion. Figure 10 illustrates this picture.

From the observed facts we may propose the following scenario of evolution
of M82: More than 107 years ago there appeared a dwarf galaxy ('proto-M82') with
very rich content of molecular gas, possibly induced by an inflow of gas from M81
through a tidal interaction. The gas accumulated toward the center and produced a
dense molecular disk. In the central region there occurred intensive star formation
which propagated outward through the disk. Subsequent SN explosions and mass out-
flows from stars caused compression of the disk gas into a ring of high density mo-
lecular gas. In such a dense ring, especially near the inward shock-compressed side,
further star formation occurred. The ring and star bursting sites are now observed
as the 200-pc ring and associated nonthermal radio emisson. Plowed HI gas has been
accumulated in an HI ring outside the molecular ring (Weliachew et al. 1984).

Released energy through the subsequent SN events escapes into the halo, a part
of which goes to heating up the surrounding gas and a part goes to the kinetic en-
ergy of the high-velocity outflow of gas perpendicular to the disk, and is readily
observed as the X-ray halo and the molecular cylinder as described above.

The shock-compressed 200 pc ring is probably expanding. In fact, the velocity
dispersion toward the center of M82 is as high as 200 km s-I in full width. This
cannot be attributed to the rotation alone, and suggests an expansion of the ring
gas at velocity 100 km s-1. Then the expansion should have begun before 2 x 106
years ago, consistent with the duration of star bursting activity. The kinetic en-
ergy of the expanding motion is 3 x 105 ergs as the total mass of the ring is 3 x
107 Me, again enough driven by the SN energies.

6. Discussion

The galaxies reported here all show dense molecular disks in their central
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regions. They show more or less central activity, and some show bursting star
formation. Such activity may therefore depend on the molecular gas content in
the central regions.

Table 1 lists the molecular to dynamical masses in the central few hundred
pc of the galaxies reported here, and compares their ratios of molecular to dy-
namicalmasses. Here the molecular mass was estimated using the formula given in
Sofue et al. (1986) except for M82 for which we used the value of Nakai et al.
(1986). All the galaxies show that the ratio is 0.2-0.3, which is significantly
higher than that known for the main disk of NGC891 or than in our Galaxy disk.

Table 1. Molecular and dynamical masses in the central few hundred pc.

Galaxy Type Distance Region Mdyn M2 2 /Mdyn

NGC891 Sb 14 Mpc R •500 pc v109 Mo v3xl08 Mo , 0.3

M83 SABc 3.7 350 5x10 8  1xl0 8  0.2

IC342 Scd 4.5 500 5x10 8  ix10 8  0.2

M82 Pec. 3.3 200 4x10 8  108 0.2

It is interestira to note that the ratio is almost constant for these galaxies,
which include a normal galaxy such as NGC891, though all of them show some central
activity. This implies that the anomalous star bursting activity in M82 is affected
not only by the gas density alone, but also by some other mechanism. A hint may
come from its ring structure: the 200-pc ring of M82, which likely arises from
a shock compression by a more central activity, may play an essential role in the
burst. Namely the degree of star forming activity depends on dynamics and morphology
of the molecular disk as well. A comparative study in a more quantitative way is
in progress. Finally we mention that the difference in the activity might be due
to different Ico to H2 conversion rate in those galaxies: the high molecular con-
tent in NGC891, IC342 and M83 might be an apparent phenomenon caused by a higher
content of heavy elements in their central regions than in M82 or in normal disks
of NGC891 and our Galaxy, because we have used the usual conversion factor as noted
above.
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DISCUSSION

UNGER:
A VLA map of OH absorption in M82 shows a rotating molecular ring on a scale of a few hundred pc

(Weliachew et al. 1984, A and A 137 335). How does this relate to your expanding CO ring?

SOFUE:
Positionally it coincides with the CO ring, though I haven't done detailed comparisons. Neither have I

checked whether the OH ring is expanding. But it is quite likely that they are both in the same site on a ring,
being illuminated and compressed by the star formation burst and the central activity.
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HECKMAN:
Pat McCarthy, Wil van Breugel, and I have recently obtained long-slit optical spectrophotometry of the

emission-line filaments in M82. These new data strongly support the type of bi-polar wind model you have
described. First, we find that the gas pressure in the filaments drops roughly like /r2 , as a simple wind
model would predict. Second, the relative emission-line strengths can be well fit by standard shock models.
I will be discussing these and other related data during my talk Thursday afternoon.

SOFUE:
That's important information. Thank you for the comments.
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CO Observations of Nearby Galaxies and the Efficiency of Star Formation

Judith S. Young
Department of Physics and Astronomy

University of Massachusetts
Amherst, MA

ABSTRACT. We have observed the CO distributions and total molecular content of
160 galaxies using the 14 meter millimeter telescope of the FCRAO (HPBW = 45").
For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO
distributions are centrally peaked, while for the Sb and Sa galaxies the CO
distributions often exhibit central CO holes up to 5 kpc across. None of the Sc
galaxies have CO distributions which resemble that in the Milky Way.

The shapes of the azimuthally averaged CO distributions in the face-on Sc
galaxies are similar to those observed in Ha, blue light, and radio continuum,
and markedly different from the flat extended distributions of atomic gas. The
relative constancy of the HG/CO ratio as a function of radius in NGC 6946
suggests that the massive star formation rate is proportional to the mass of
molecular clouds present, or that the star formation efficiency is constant as a
function of radius. In contrast, the spiral arm structures in M51 appear to be
regions of enhanced star formation efficiency; we find that the Hc/CO ratio (at
45" resolution) is a factor of 2 higher on the arms than between the arms in
M51.

We find a general correlation between total CO and IR luminosities in
galaxies, as noted previously (Rickard and Harvey 1984; Young et al. 1984;
Sanders and Mirabel 1985; Young et al. 1986a). The scatter in this relation is
highly correlated with dust temperature, in that there is a tight correlation
between IRand CO luminosities within 3 distinct ranges of dust temperature. We
find no strong correlation of IR luminosities with HI masses, and thereby
conclude that the infrared emission is more directly tied to the molecular
content of galaxies.

The ratio of IR/CO luminosities increases roughly as T4 , consistent with
the IR emission of thermal origin at the characteristic temperature given by the
dust temperature. If the IR/CO luminosity ratio is a measure of the emergent
stellar luminosity per unit molecular mass, or the star formation efficiency
(SPE), we find that this efficiency varies over two orders of magnitude from
galaxy to galaxy. We suggest that galaxies which have high SFEs produce more
stars per unit molecular mass, thereby increasing the average temperature of the
dust in star forming regions. Irregular galaxies and galaxies previously iden-
tified as mergers have the highest observed star formation efficiencies. For
the mergers, we find evidence that the IR/CO luminosity ratio increases with
the merger age estimated by Joseph and Wright (1985).

Lastly, we find that isolated galaxies have a mean value of LIR/M(H 2 ) of 11
Lo/Mo, while the ratio for the interacting galaxies in our sample is 44 Lo/Mo.
Clearly, the environment has a strong influence on the efficiency of star
formation in galaxies.

Carol J. Lonsdale Persson (Editor)
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1. INTRODUCTION

The evolution of a galaxy must depend in part on the distribution and
abundance of molecular clouds within it, since stars form in molecular clouds.
Furthermore, the evolution of a galaxy can be described in terms of the star
formation history of the disk: the distribution of blue light from the disk
indicates the past sites of star formation, the distribution of far-infrared
emission indicates the currently forming stellar population, and the distribu-
tion of molecular clouds indicates the underlying potential for star formation.
A synthesis of the details of the distributions of past, present, and future
sites of star formation is one key to expanding our picture of the evolution of
galaxies.

Since the earliest detection of molecular clouds in external galaxies
(Rickard et al. 1975), there have been a large number of investigations of CO in
galaxies, including both detailed studies of nearby galaxies, and comparisons of
the global properties of selected samples of galaxies. These observations have
been used to determine (1) the shapes of the CO distributions in galaxies and
the dependence of this shape on galaxy type, (2) the relationship between the
molecular content and the star formation rate within galaxies and from galaxy to
galaxy, and (3) the relationship between the molecular and atomic gas distribu-
tions and masses in galaxies. In this paper, I shall use both studies of indi-
vidual galaxies as well as large samples of objects to address the question of
the star formation efficiency in galaxies.

The data upon which this discussion is based consist of CO observations at
2.6 mm (115 GHz) of 160 galaxies made primarily by myself, J. Kenney, L.
Tacconi, and S. Lord using the 14 meter millimeter telescope of the Five College
Radio Astronomy Observatory (HPBW - 45", for references see Young 1986). Of
these 160 galaxies, CO was detected in 2/3, and mapped along the major axis in
more than half. While the galaxies we have surveyed do not constitute a
complete sample, since they were chosen to span a wide range of luminosity,
morphological type, and environment, most of the objects are brighter than 10 Jy
at 100 Pm.

Also, I shall not use the common terms "normal" galaxy or "starburst"
galaxy. Rather, in order to characterize the present state of star formation in
a galaxy, I shall refer to the star formation rate per unit molecular gas mass,
or the star formation efficiency.(SFE). In this context, "starburst" galaxies
are ones with high SFEs, and "normal" galaxies are galaxies with low SFEs;
whether, in fact, a low SrE turns out to be the norm for galaxies remains to be
determined.

2. CO RADIAL DISTRIBUTIONS IN NEARBY SPIRAL GALAXIES

In this section, I shall describe the CO radial distributions in the
galaxies more nearby than the Virgo cluster (45" corresponds to 4.4 kpc for D -

20 Mpc) and for which we have made more than 5 CO measurements along the major
axis. Throughout this paper, I will assume that H2 surface densities are
directly proportional to integrated intensities of CO emission (cf. Young and
Scoville 1982a; Dickman, Snell and Schloerb 1986), with a constant of propor-
tionality given by N(H2)/ICO - 4x10 2 0 cm- 2 /(K km s-1).
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2.1. Sc Galaxies

The CO radial distributions have been measured in 7 relatively face-on
nearby Sc galaxies - NGC 598 (M33) and NGC 2403 (Young 1986), NGC 5194 (M51)
(Scoville and Young 1983), NGC 5236 (M83) (Combes et al. 1978; Lord, Strom and
Young 1986, this conference), NGC 5457 (1I01) (Solomon et al. 1983), NGC 6946
and IC 342 (Young and Scoville 1982a). Figure 1 shows the CO radial distribu-
tions corrected to the plane of the galaxy (i.e. corrected for inclination) for
6 of the galaxies listed above. In each galaxy, the azimuthally averaged
distribution of CO integrated intensities peaks in the center and decreases
with radius in the disk. Also shown in Figure 1 is the Milky Way CO distribu-
tion at 1 kpc resolution, indicating the central peak, absence of gas between 1
and 4 kpc, and molecular annulus between 4 and 8 kpc (cf. Scoville and Solomon
1975; Burton et al. 1975; Sanders, Solomon, and Scoville 1984). None of the Sc
galaxies have distributions which resemble that in the Milky Way.

1023 ! I I I
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Fiue1 CO radial distributions corrected to the plane of the galaxy in 6
Sc/Scd glaxies (Young and Scoville 1982a; Solomon et al. 1983; Young 1986;
Lord, Strom, and Young 1986) at 45" resolution. Also shown (dashed line) is the
distribution found for the Milky Way (Sanders, Solomon, and Scoville 1984).
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It is clear from Figure 1 that there is a wide range of molecular hydrogen
surface densities found in Sc galaxies: the high luminosity galaxies M83 and
NGC 6946 have the highest H2 surface densities at all radii, while the low
luminosity galaxies M33 and NGC 2403 have the lowest H2 surface densities. In
contrast, the atomic gas distributions in these same galaxies show little
variation from one object to the next. This is illustrated in Figure 2, which
compares the H2 and HI radial distributions in high and low luminosity Scd
galaxies (HI from Rogstad and Shostak 1972; CO from Young and Scoville 1982a and
Young 1986). Although the low luminosity galaxies are small, so their HI disks
have a small radial entent, the azimuthally averaged HI surface densities reach
the same peak value of 1021 cm- 2 as the high luminosity galaxies, in addition
to exhibiting central HI holes. Thus, the ratio of H2/HI surface densities is
highest in the centers of the Sc galaxies, and is lower in the disks.
Furthermore, the inner disks of the high luminosity galaxies have hJqher
molecular-to-atomic gas ratios than the low luminosity galaxies.

ISM Mass Distributions in Scd Galaxies
N a) High Luminosity Galaxies b) Low Luminosity Galaxies
E I -T I I
o

to I C 342 NGC6946 M33 NGC2403
E

0 10 22
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*H 2  H2
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Figure 2, Comparison of the Ht2 and HI radial distributions in
high and low luminosity Sod galaxies (HI from Rogstad and Shostak
1972; 00 from Young and Scoville 1982a and Young 1986).

2.2. Sa and Sb Galaxies

The 00 morphologies of some of the early type 3piral galaxies are
distinctly different from those of the Sc galaxies. Of the 14 nearby Sa and Sb
galaxies whose CO distributions have been measured, 5 have been observed to
exhibit central GO depressions. These are NGC 224 (M31; Stark 1979), NGC 891
(12C0 by Solomon et al. 1983, 13C0 and 12CO by Sanders and Young 1986), NGC 2841
and NGC 7331 (Youg-n~d Scovillle 1982b), and NGC 4736 (Garman and Young 1986).
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Additionally, it has been suggested that NGC 1068 also has a central CO minimum
(Scoville, Young, and Lucy 1983), based on a deconvolution of the CO intensity
distribution with the assumption that the CO velocity field mimics that of Ho.
Thus, 6 out of 14 galaxies surveyed, or 40% of the early type spiral galaxies
have central CO depressions. For NGC 2841 and NGC 7331, Young and Scoville
(1982b) have pointed out that the central CO hole is coincident with the extent
of the nuclear bulge, as determined from the separation of the blue light
distribution into bulge and disk components (Boroson 1981). Obviously, higher
resolution CO observations may reveal central CO depressions in more of the
Sa and Sb galaxies.

Figure 3 shows a comparison of the H2 and HI distributions in the Sb
galaxies NGC 7331 and NGC 2841. As for the Sc galaxies in Figure 2, the HI
distributions exhibit central holes (Bosma 1978), and the H2 surface densities
are greater than those of HI in the inner disk. The difference here is that for
the Sb galaxies there are holes in both the atomic and molecular gas
distributions, although the extents of the H2 and HI holes differ.

ISM Mass Distributions in
Sb Galaxies
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3. THE STAR FORMATION HISTORIES OF INDIVIDUAL GALAXIES

3.1. NGC 6946

The measurement of the CO distribution in a galaxy enables us to determine
the star formation history of the galaxy through a comparison of tracers of star

formation in the disk which are sensitive on different time scales. In the case
of NGC 6946, observations have been made of Ha (DeGioia-Eastwood et al. 1984),
HI (Rogstad, Shostak and Rots 1973; Tacconi and Young 1986a), CO R-ickard and
Palmer 1981; Young and Scoville 1982a; Tacconi and Young 1986a), radio continuum
(van der Kruit, Allen and Rots 1977; Klein et al. 1982), and blue light (Ables
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1971; 9lmegreen and Elmegreen 1984), as discussed in detail in Tacconi and Young
(1986a). Figure 4 shows the azimuthally averaged radial distributions of H2 ,
RI, Hu, blue light and radio continuum emission for NGC 6946 (see also Tacconi
and Young 1986b, this conference). It is remarkable that all of the radial
distributions show similar behavior except that of the atomic gas. Furthermore,
the same features in the various radial distributions are seen in most luminous
Sc galaxies (see also Kenney and Young 1986b, this conference), and therefore
the conclusions stated in this section apply more generally than simply to NGC
6946.

Radial Distributions in NGC6946
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Figure 4. Comparison of the CO (H2 ), HI, Ha, blue light, and
radio continuum radial distributions in NGC 6946 (for references
see text). All intensity scales are relative except that for the
HI, which is plotted relative to H2.

The fact that the CO, blue light, and Ha distributions in NGC 6946 all show
similar radial behavior is significant in term of the evolution of this galaxy.
If the blue light from a late-type spiral galaxy is a measure of the star for-
mation which has occurred over the last 2x10 9 years (cf. Searle, Sargent and
Bagnuolo 1973), and the Ha flux indicates the massive star formation rate (SFR),
the fact that the ratio of blue/CO surface densities is constant (Young and
Scoville 1982a), and the ratio of Hn/CO surface densities is constant
(DeGioia-Eastwood et al. 1984), indicates that the amount of star formation
which occurs is proportion I to the available supply of molecular gas. That is,
the star formation efficiency is constant as a function of radius in NGC 6946.
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From a comparison of the ISM surface density distributions in NGC 6946, it
is apparent that the shapes of the atomic and molecular gas distributions are
very different (see also 62.1). The ratio of H2 to HI surface densities
decreases from a central value of 30, to approximately 1 at a radius of 10 kpc
(Tacconi and Young 1986a). If the ratio of H2 to HI surface densities is a
measure of the efficiency with which molecular clouds form, the radial behavior
of the H2 to HI ratio indicates that the molecular cloud formation efficiency
decreases with radius in NGC 6946.

3.2. M51

While the star formation efficiency is constant as a function of radius in
the disk of NGC 6946 and other luminous Sc galaxies, there are azimuthal
tures in the disks of galaxies which are known as spiral arms. If the st
mation efficiency were constant at all locations in a disk, then the spir
patterns which are so apparent optically should also be apparent in the molecu-
lar gas. However, searches over the years in a wide range of Sc galaxies and
with a variety of resolutions have indicated that molecular spiral patterns are
not the dominant feature of the molecular gas distributions. Indeed, studies of
M51 with the OVRO interferometer resolve out more than half of the emission (Lo
et al. 1984), indicating that the arm/interarm contrast in CO is not as high as
that in Ha.

To determine the star formation efficiency on and off the arms in M51, we
have compared the Ha image of Kennicutt (1985) with our fully sampled CO map,
both at 45" resolution (Lord and Young 1986). In Figure 5 (top), we plot the
Ha and CO surface brightnesses as a function of spiral phase, where the dust
lanes are specified to be at phases 90* and 2700. While the spiral pattern in

M51
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He is apparent, even at 45" resolution, that in GO is not. At the bottom of
Figure 5, the ratio of H*/CO surface brightnesses is shown to vary in azimuth,
with the highest values on the arms. Thus, the star formation efficiency is
higher on the arms than between the arms in M51. This result requires that star
formation is not simply a local process, depending only on the mass of available
gas, but that some mechanism has operated to produce more stars per unit molecu-
lar mass in the arms of M51.

4. THE STAR FORMATION EFFICIENCY FROM GALAXY TO GALAXY

4.1. Correlation of Total CO and IR Luminosities

With the success of the IRAS, the IR flux densities and color temperatures
have now been measured for galaxies over the entire sky. These observations
provide a measure of the star formation occurring within a galaxy, since the far
infrared (far-IR) emission is believed to arise from dust heated by young stars
forming in molecular clouds (cf. Rieke et al. 1980; Telesco and Harper 1980).
The comparison of the IR luminosity, which provides a measure of the currently
forming stellar population, with the CO luminosity, which traces the molecular
content, enables us to deduce the star formation efficiency in galaxies.

Only a small number of CO-IR comparisons have been made in galaxies because
of the limited amount of IR data previously available. From observations bet-
ween 40 and 160 Pm using the KAO, Rickard and Harvey (1984) found a rough corre-
lation between CO and IR fluxes in the central 1' for 30 galaxies. Young et al.
(1984) searched for CO emission in 20 galaxies reported during 1983-4 in the
IRAS Circulars and for which radial velocities were available in the literature;
CO emission was detected in 10 of these galaxies, including Arp 220 and
NGC 6240, and a general correlation between CO and 100 MR luminosities was
found. Sanders and Mirabel (1985) compared the central 11 CO luminosities and
40 to 120 Pm IR luminosities for a sample of 21 galaxies chosen on the basis of
their strong radio continuum emission, and found a similar correlation. All of
the above CO-IR comparisons exhibit more scatter than would be expected based on
a constant efficiency of star formation from galaxy to galaxy. However, the
above galaxy samples are too inhomogeneous to determine which parameters are
primarily responsible for this scatter.

From a comparison of total CO and IR luminosities in 27 IR bright galaxies,
Young et al. (1986a) found that the scatter in the LCO - LIR plot is highly
correla-ted with dust temperature, in that there is a tight correlation between
the IR and CO luminosities for galaxies in each of three distinct ranges of
dust temperature.

Figure 6 shows the total IR and CO luminosities for 122 galaxies - 27 from
Young et al. (1984 and 1986a), 15 from Sanders et al. (1986), 23 in Virgo from
Kenney and Young (1986), 13 galaxies of large angular size (Young and Scoville
1982a and 1982b; Scoville and Young 1983; Young, Tacconi and Scoville 1983;
Scoville, Young and Lucy 1983; Solomon et al. 1983; Young and Scoville 1984;
Scoville et al. 1985; Sanders and Young 1986), and 44 major axis CO maps
observed during the past six months (Young et al. 1986b). The data shown in
Figure 6 are coded by dust temperature, from which it is clear that there is a
good correlation between IR luminosity and CO luminosity (or H2 mass) within
each dust temperature bin.
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We have fitted the data in Figure 6, with a power law, and find that

LIR a M(H2 ) 0 .S8±.I . (1)

with an overall correlation coefficient of 0.90. For each dust temperature bin,
the IR luminosity is roughly proportional to the first power of the H2 mass.
Also shown in Figure 6 is the position of the Milky Way (from Scoville, this
conference), indicating a similarity to the galaxies with the coldest dust tem-
peratures.
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Figure 6. Comparison of the total IR and CO luminosities for 122 galaxies (27
from Young at al. 1984 and 1986a; 23 in Virgo from Kenney and Young 1986a; 15
from Sanders et al. 1986; 13 galaxies of large angular diameter - for referen-
ces see Young-M; and 44 IR bright galaxies from Young et al. 1986b). The
data plotted include total CO luminosities from both major axis maps and single
CO observations. The IR luminosities are from the IRAS Point Source Catalogue
(JISWG 1985) and from coadded survey data (Young 1986), following the method
outlined by Lonsdale et al. (1985). Data points are coded by dust temperature
as indicated in the upper left hand corner of the plot.
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The data in Figure 6 can alternatively be illustrated as in Figure 7, where

the ratio of LIR/LCO for each galaxy is plotted against the ratio of 60/100 me
flux densities, or the dust temperature. The ratio of the IR/CO luminosities is

observed to depend on roughly the fourth power of the dust temperature, which is

what one expects if the infrared emission is thermal emission related to dust in

molecular clouds, as noted by Young et al. (1986a). This result is further

emphasized by the fact that we find no-correlation of the IR luminosities with

HI masses. For the galaxies with the coldest dust temperatures, the mean value
of LIR/I(H 2 ) is 5 Lo/Mo, while for the galaxies with the highest dust tem-
peratures the mean value is 56 Lo/Mo.

Young et al. (1986a) interpret the ratio LIR/LCo as the reradiated stellar
luminosity per unit molecular mass, or the galaxy-wide star formation efficiency
(SFE). Thus, the SFE varies by almost 2 orders of magnitude from one galaxy to
another, with higher SFEs in galaxies with higher dust temperatures.
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Figure 7. Ratio of uR/CO luminosities versus the ratio of 60/100 tm flux den-
sities for the galaxies plotted in Figure 6. The dust temperatures indicated at
the top of the figure were derived from the ratio of 60/100 ta flux densities,
assuming a X-1 emissivity law. The dashed line superposed on the data is not a
fit, but represents a T4 dependence of the LIR/LCo ratio, which is what one
expects if the IR luminosity has a T5 dependence, and the CO luminosity has a
T1 dependence (cf. Young et al. 1986a). The different symbols represent the
sam three different dust temperature bins as in Figure 6.
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Furthermore, the galaxies previously identified as mergers (cf. Joseph and
Wright 1985) are among the galaxies with the highest SFEs. We suggest that
efficient star formation Is responsible for the high dust temperatures observed,
through the formation of more stars per unit molecular mass. Thus, the
interacting galaxies which are luminous in the IR and therefore have high rates
of star formation (cf. Lonsdale, Persson, and Matthews 1984) also have high
efficiencies of star formation. However, even if the rate of star formation is
low, as for the merger NGC 3310 and the irregular galaxy NGC 1569, the effi-
ciency of using the molecular gas in these systems is high as well.

Finally, Young et al. (1986a and 1986b) find that the dust mass is well
correlated with the molecular gas mass from galaxy to galaxy even though IRAS is
only sensitive to that fraction of the dust which is warmer than - 25 K and
emitting at 100 Un. Figure 8 is a plot of the mass of warm dust versus the
12 mass in 122 galaxies, indicating a good correlation over 4 orders of magni-
tude, such that

M(H2 ) ctMDI 1 2 0". (2)

However, the mean value of the molecular gas-to-warm dust ratio is 500, not
S100 as it is for the Milky Way (cf. Hildebrand 1983). The most likely expla-

nation for this discrepancy fs that IRAS is sensitive only to the warm dust in a
galaxy. If the gas to dust ratios in the external galaxies are the same as that
in the Milky Way, we are observing as little as 20% of the dust mass with IRAS.
However, due to the strong temperature dependence of the IR luminosity, IRAS is
sensitive to the majority of the dust luminosity in a galaxy.

o Tdat < 30K
0 30K < Tdst<40K 0o

- n T > 40K * - .

07- ooS *

7 0 0 0

o go o0

5 ~~ 0 ~ *
a0,

00

4 L , , I , , I , I , , I ,

6 7 8 9 10 II

log M fl?) %I

Figure 8. Comparison of the mass of dust, derived from the IRAS observations
(cf. Hildebrand 1983), with the H2 mass inferred from CO. The fit to all
galaxies is given by M(H2) a MD 1±.201 with a correlation coefficient of 0.91.
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4.2. The Effect of Environment on the Efficiency of Star Formation

It is apparent from the above studies that galaxy mergers are among the
galaxies with the highest values of LIR/M(H 2 ) (i.e. NGC 3310, NGC 6240, and Arp
220). Therefore, we have searched for CO in 30 objects specifically chosen to
represent the extremes of environments: isolated galaxies, and merging or
strongly interacting galaxies (Young et al. 1986b).

Isolated galaxies were taken from the Karachentseva Catalog of Isolated
Galaxies (1973), with the additional requirement that they not be included in
any groups (Sandage and Tammann 1975; Turner and Gott 1976; Geller and Huchra
1983). This selection procedure yielded 26 isolated galaxies brighter that 13th
magnitude, of which 13 were observed in CO. Examples of galaxy mergers were
selected from the paper of Joseph and Wright (1985); interacting galaxies were
selected from the Arp Atlas of Pecuiar Galaxies (1966) to be pairs of galaxies
in contact. This sample of galaxies includes 15 mergers and interacting
galaxies. One striking difference between the galaxies in these samples is that
the ratio of 60/100 um flux densities for the isolated galaxies is 0.35 ±0.11,
while that for the interacting galaxies is 0.83 ± 0.21.

The principal difference between these two galaxy samples Is in the value
of the IR luminosity per unit H2 mass, or the star formation efficiency. Figure
9 shows a plot of the ratio LIR/M(H 2 ) as a function of the 60/100 MR flux
density ratio, with the data points coded by environment: stars indicate
mergers and interacting galaxies, while circles indicate the isolated galaxies.

3 - I I ' I I 1 1 1 1 ' 1 ' 1 ' 1
o ISOLATED GALAXIES
0 GROUP/CLWSTER GALAXIES
* MERGMNG/1ERACTI GALAXIES

at C

00 0

S• -

0 0 g. 0

0 1

O• So'

SS,• iso 0

0 I , I I i , i I , ,

0 0.5 I 1.5

S!/S0

Figure 9. Comparison of the ratio of IR luminosities to H2 masses with the
ratio of 60/100 Va flux densities for the galaxies plotted in Figure 7. Here,
the data for each galaxy are coded by the environment, with circles for isolated
galaxies, and stars for interacting galaxies. Both the LIR/M(H 2 ) ratio and dust
temperature are high in interacting galaxies and low in isolated galaxies.
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We find clear separation between the two samples, in that the isolated galaxies
have low values of LIR/M(H 2 ) and dust temperature, while the interacting
galaxies have high values of both quantities; the mean value of LIR/N(H 2 ) is
11 Lo/Io in the isolated galaxies and 44 Lo/Mo in the interacting galaxies.

However, within each sample we find a range of more than two orders of
magnitude in both the IR luminosities and H2 masses. The isolated galaxies were
found to contain between 3x,0 7 and 1010 No of H2 , while the range for the
interacting galaxies is between 108 and 3x10 1 0 No of H2 . Similarly, the IR
luminosities are between 4x10 8 and 1011 Lo for the isolated galaxies and between
2x10 1 0 and 2x,012 Lo for the interacting galaxies. The physical mechanism which
causes star formation to be more efficient in interacting galaxies must operate
over a wide range of masses and luminosities since even low luminosity galaxies
with low star formation rates may have high star formation efficiencies.

4.3. Gas Depletion Timescales

Assuming that the observed IR and blue luminosities are produced primarily
by 0, B, and A stars, it is possible to estimate the inferred global rates of
star formation in these galaxies. If the early type stars produce energy using
the CNO cycle, and process 13% of their mass while on the main sequence,
Scoville and Young (1983) have shown that the star formation rates are given by
MO,BA = 7.7x10-1' Ltot/Lo, where 1Ltot is the sum of the IR and blue luminosi-
ties, and MOBoA is in Mo yr-1. Figure 10 is a plot of the total luminosities
(LIR + LB) and total ISM gas masses (H2 + HI) for the galaxies in our sample.

Gas DepIion Tlmscft13 * u ' ' ' u ' I I

130

0 30K <1T"t <040K 10V 2 "M,>4o0K

00

9 0

80

00

7 8 9 10 II
Io Mo (M0)

Figure 10. Comparison of the total luminosity (LIR + LB) with the interstellar
gas mass (H2 + HI) for the 114 galaxies in Figure 6 for which HI masses and blue
luminosities were available. For galaxies with HI absorption profiles, only
lower limits to the gas masses are plotted. The star formation rates were
computed following Scoville and Young (1983), and the solid lines indicate the
depletion times for the ISH gas masses.

209

8 . . . .r I t I "- 00



J. S. YOUNG

The lines drawn in Figure 10 indicate the times in which the present gas masses
will be depleted at the current rates of star formation implied by the total
luminosities.

For the galaxies illustrated in Figure 10, the timescales for gas depletion
range from 10 years to 6x10 9 years. In the sample of 27 galaxies studied by
Young et al. (1986a), the galaxies with the highest star formation efficiencies
and highest dust temperatures have an average gas depletion timescale of
1x10 9 years, while those with lower efficiencies and dust temperatures have an
average gas depletion timescale of 4x10 9 years. Obviously, if the episodes of
intense star formation in merging and interacting galaxies are relatively short-
lived compared to 108 years, then the gas depletion timescales for these objects
could in fact be considerably longer.

5. THE VIRGO CLUSTER

In order to understand the effect of environment on star formation for
nearby galaxies, we have observed the molecular content of a complete optically
selected sample of spiral galaxies in the Virgo cluster (Kenney and Young 1985
and 1986a). The Virgo cluster environment appears to be altering the atomic gas
content of some of the member galaxies (cf. Giovanelli and Haynes 1983), and the
star formation rates of Sc galaxies in the cluster core seem to have been
reduced (Kennicutt 1983). Thus, the Virgo cluster serves as an environment for
investigating the histories of star formation and molecular cloud formation in
galaxies.

From HI observations of large samples of galaxies, it has been demonstrated
that the atomic gas content of spiral galaxies in the Virgo cluster is lower by
a factor of 2 in the mean, with some galaxies deficient by more than a factor of
10, from comparisons with isolated galaxies of the same type and optical
diameter (cf. Haynes, Giovanelli, and Chincarini 1984). The presently favored
explanation for the HI deficiency is stripping of the atomic gas as the galaxies
move through the intracluster medium. Recent maps of the HI disks of Virgo
spirals indicate that the HI radial extents have been reduced in the HI defi-
cient galaxies (Giovanelli and Haynes 1983; van Gorkom and Kotanyi 1985; Warmels
1985), and that the stripping occurs primarily in the outer parts of the disk.

Kenney and Young (1986a and this conference) have shown that the ratio of
H2 /HI masses is lower in the HI-normal galaxies and higher in the HI-deficient
galaxies, consistent with stripping of the atomic and not the molecular gas.
Additionally, they find that the ratio of CO diameters to HI diameters decreases
with distance from M87, providing further evidence for the conclusion that only
HI is stripped from the galactic disks. Furthermore, Kenney and Young (1986b)
have shown that the atomic gas is stripped even from the inner disks of the
HI-deficient galaxies, where the CO appears normal. Since the CO has not
responded to the atomic gas removal, then this implies a long lifetime for the
molecular phase of the ISM, of order 109 years which is the cluster crossing
time.

A question which remains unanswered relates to the Ha emission from the
Virgo galaxies. If the CO is not stripped, then why are the Haproperties of
Virgo Sc galaxies different from those in the field (cf. Kennicutt 1983) ?
This could be for any of several reasons. First, it is possible that some of

210



CO OBSERVATIONS OF NEARBY GALAXIES

the He emission from field galaxies arises in the outer disk where it is dif-
ficult to detect CO. In the outer disks of the Virgo galaxies where the HI has
been stripped, subsequent molecular cloud formation (and the resulting star
formation) has been truncated. This could explain the lower Ha fluxes for the
Virgo galaxies. On the other hand, the molecular cloud size distribution in the
Virgo spiral galaxies may have been altered as a result of the HI stripping. If
the IMF depends on the molecular cloud size distribution, then the consequent
Ha flux may have been reduced. More detailed Ha and far-IR observations of
galaxies in the Virgo cluster are needed to address this question.

6. CONCLUSIONS

From observations of the CO content and distributions in galaxies, we have
investigated questions related to star formation and its efficiency in galaxies
and found the following.

1) The CO radial distributions show central peaks in the Sc galaxies and
central CO holes in 40% of the Sb galaxies.

2) The azimuthally averaged distributions of CO, Ha and blue light are
similar in the disks of luminous, relatively face-on, late-type spiral galaxies.
In NGC 6946, we conclude that the star formation efficiency is constant as a
function of radius.

3) The distribution of Ha emission in M51 at 45" resolution shows an
enhancement of a factor of 2 on the spiral arms relative to the interarm
regions, while that of CO shows at most a 25% enhancement on the arms. Thus,
the efficiency of star formation on the arms of M51 appears to be higher by a
factor of two relative to the interarm regions.

4) From 00 maps of the disks of IR bright galaxies, we find that the CO
emission is distributed throughout the disks, and not concentrated solely in the
nucleus of the galaxy.

5) We find a general correlation between the total IR luminosity and total
CO luminosity of a galaxy, in that galaxies with high CO luminosities
(H2 masses) have high IR luminosities. The scatter observed in the IR
luminosity-H2 mass comparison is highly correlated with dust temperature; for
a given H2 mass the IR emission observed is higher for galaxies with higher dust
temperatures.

6) The ratio of LIR/M(H 2 ) is observed to depend on roughly the fourth
power of the dust temperature, which is what one expects if the infrared
emission is thermal emission related to dust in molecular clouds. This is
further emphasized by the result that there is little correlation between the IR
luminosities and HI masses in galaxies.

7) The dust masses are well correlated with the H2 masses from galaxy to
galaxy, even though we are only observing that fraction of the dust which is
emitting at 100 Pm. If the gas to dust ratios in the external galaxies are the
same as that in the Milky Way, we are observing as little as 10% - 20% of the
dust mass in some galaxies with IRAS. However, IRAS is sensitive to the
majority of the dust luminosity in these galaxies.
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8) The implied rates of massive star formation required to produce the
observed total luminosities range from 0.4 to 190 Mo yr-1. If the galaxies are
in a steasy state, the available supplies of ISM (H2 + HI) will therefore be
depleted in 108 to 6 x 109 years.

9) The star formation efficiency, as measured by the ratio of IR luminosi-
ties to H2 masses, is found to vary by two orders of magnitude from galaxy to
galaxy. The galaxies with high values of LIR/M(H2) are galaxies with high dust
temperatures, independent of whether or not they have high values of the total
luminosity. Thus, Arp 220 and NGC 1569 both have high dust temperatures and
ratios of LIR/M(H 2 ), even though they have IR luminosities which differ by 4
orders of magnitude. We suggest that the high efficiency of star formation in
these galaxies is probably responsible for the high dust temperature,

10) Those galaxies previously identified as mergers are among the galaxies
with the highest star formation efficiencies and dust temperatures. Conversely,
a sample of isolated galaxies we have studied is characterized by low star for-
mation efficiencies and low dust temperatures. This indicates that the star
formation efficiency from galaxy to galaxy does depend on global factors, and
not only on the amount of molecular gas present.
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DISCUSSION

SOLOMON: The Ha emission in M51 only gives a measure of the ionized gas or star formation rate from
photons which escape out of the HIU region. Much of the star formation may be inside molecular clouds and
the Ha may be trapped and heat the dust. Thus, only the far-infrared could give a true measure of the star
forming activity.

YOUNG:
There are sources of far-infrared emission which are not directly linked to star formation, such as dust

in planetary nebulae, or dust in HI clouds heated by the ambient stellar radation field and more closely linked
to older, stellar populations. Thus, the far-infrared is not a better measure of star forming activity, but an
alternative meas.:re to the use of Ha. Unfortunately, the Ha emission has extinction uncertainties; there are
problems with Ha if more HII regions are on the far side of clouds (which is, of course, unlikely), or if there
are radial gradients. in the extinction. At the present time, however, the Ha distributions in galaxies have
much higher resolution than the infrared, and continue to be essential for comparisons with CO.

SOLOMON:
The separation of galaxy properties such as La/Lco according to the 100/Am - 60pm color or dust

temperature does not really tell us anything about the galaxy. As I mentioned in my talk, for molecular clouds
within the galaxy, Lm/Lcoa T"'. This is exactly what is expected for thermal radiation. The fact that hotter
galaxies (hotter dust) have higher Lm/Lco is just a consequence of the Planck law and the dust emissivity.
The T5- dependence overwhelms any possible difference in the infrared luminosity due to differences in the
percentage of dust which is heated.

YOUNG:
Phil, I agree completely. In my recent ApJ. paper, I pointed out that the dependence of Lm/Lco on T4 in

galaxies is precisely what is expected for thermal emission. However, if the IR emission is of thermal origin,
then why do some galaxies have hotter dust? I have suggested that a higher efficiency of star formation, thus
producing more stars per unit molecular mass, will heat the dust to a higher temperature in some galaxies.

BECKLIN:
In M51 what is the spiral arm enhancement in the far-infrared?

YOUNG:
The IRAS data do not have sufficient resolution to see arm structures in M51, since they are -30" across.

The 49" resolution 170/Am map of Smith (1982) does not show spiral arms to the extent that the Ha (at 45"
resolution) does. However, at 170/Am, the cold dust should agree more with the CO, since IRAS measures
only warm dust.
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FORREST:
The Brackett a emission could be a good tracer of the star formation rate, being less affected by

extinction.

YOUNG:
It would be interesting if the emission could be mapped over the optical disk.
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Submm Observations of IRAS Galaxies

R. Chini, E. Kreysa. E. Krdlgel and P.G. Mezger
Max-Planck - Institut filr Radioastronomie,
Auf dem Hilgel 69, D-5300 Bonn 1, F.R.G.

As most of the talk is contained in a paper which will appear in a Letter of
Astronomy and Astrophysics, we present in the following only the summary:

26 galaxies from the IRAS point source catalogue have been observed at 350
and 1300 pm. The FIR spectra from 25 to 1300 pm are interpreted in terms of
two dust components of about 16 and 53 K. Flux densities at 1300pm are used
to estimate the total gas mass Mg. The warm dust luminosity Lw is considered
to be proportional to the star formation rate of massive stars. Lw is found to
be proportional to MO.9 in the mass range 3 108 • Mg/Mo & 1012. The
efficiency of star formation seems to be four times higher in barred and
peculiar galaxies than in Sc types.

Carol J. Lonsdale Pers•sn (Editor)
Star Formation in Galaxies 217



STELLAR BARS AND THE SPATIAL DISTRIBUTION OF INFRARED LUMINOSITY

NICHOLAS DEVEREUX1

University of Hawaii, Institute for Astronomy
Honolulu, Hawaii 96822 USA

ABSTRACT. New ground-based 10-p'n observations of the central region of over 100
infrared luminous galaxies are presented. A first order estimate of the spatial
distribution of infrared emission in galaxies is obtained through a combination
of ground-based and IRAS data. The galaxies are nearby and primarily noninter-
acting, permitting an unbiased investigation of correlations with Hubble type.
Approximately 40% of the early-type barred galaxies in this sample are associ-
ated with enhanced luminosity in the central (H kpc diameter) region. The
underlying luminosity source is attributed to both Seyfert and star formation
activity. Late-type spirals are different in that the spatial distribution of
infrared emission and the infrared luminosity are not strongly dependent on
barred morphology.

INTRODUCTION

I am using the IRAS data to investigate the infrared emission from normal
galaxies and in particular correlations with optical morphology. Here, I would
like to present some preliminary results on stellar bars and the spatial distri-
bution of infrared luminosity.

The primary motivation for thie particular study was the discovery made by
Hawarden et al. (1986) that the IRAS S25./S12pm flux ratio could actually seg-
regate barred from unbarred galaxies.

THE METHOD

I have investigated the role of bars separately in early- and late-type
spiral galaxies. The sample was divided into two broad categories segregating
early (Sb and earlier) and late (Sbc and later) spiral types. Each category
was further subd'vided on the basis of barred morphology. I then compared the
distributions of some property, such as luminosity or color, by using a statis-
tical Kolmogorov-Smirnoff (K-S) test. This enabled me to quantitatively estimate
whether the "bars" differ from the "unbars" in that property. I will argue the
new result that the most significant differences between the bars and the unbars
are seen in the early-type spirals.

1Visiting Astronomer, Infrared Telescope Facility, which is operated by
the University of Hawaii, under contract with the National Aeronautics and Space
Administration.

Carol J. Lonsdake Persson (Editor)
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THE SAMPLE

The galaxies are selected from a volume-limited (distance 4 40 Mpc) cata-
log compiled by Dr. Brent Tully of the University of Hawaii. I believe that I
have identified all galaxies with 60-1m luminosity 02.2 x 109 Lo, corresponding
to a far-infrared luminosity, L (40-120 pa) > 3 x 109 L., for S100Om/S60m - 3.
The lover luminosity limit was chosen to ensure completeness in the sense that
IRAS would have detected all galaxies with L6 0 pn 0 2.2 x 109 L. in a volume of
radius 40 Npc, which is the outer distance limit of the catalog. Nearby
galaxies, D 415 Mpc, were excluded, thereby reducing the number of galaxies
whose large angular size would require more extensive observations. Galaxies
with close neighbors were also excluded, since it was uncertain what fraction of
the total IRAS flux was emitted by each galaxy. The selection criteria yielded
a sample of -230 galaxies.

RESUL7S

The first property I investigated was the effect of bars on the luminosity
of the central region. IRAS did not resolve the emission from most of the gal-
axies, and so I have used the IRTF to obtain new ground-based 10-Pn observations
with a small 6" aperture. These observations have enabled me to estimate the
luminosity of the central (0.5-1 kpc diameter) region for a subsample of 127
galaxies in the RA range 5 4 a 4 16 hr.

The distribution of central 10-Pm luminosity (4%D2 vSv) observed for early-
type spirals is shown in Figure 1. The shaded area indicates barred galaxies,
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Figure 1. The distribution of central 10-Vm luminosity for early-type barred
and unbarred spirals. Arrows indicate 20 upper limits. The central 10-Vn
luminosity in -40% of the barred spirals exceeds the maximum central 10-Pm
luminosity in the unbarred spirals.
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and the arrows indicate 20 limits. The distributions for barred and unbarred
galaxies are significantly different at the 95Z level. The distributions are
different because there is an excess component of 10-Pm luminosity in -40% of
the bars that is not present in the unbars. Figure 2 illustrates the distribu-
tion for late type spirals; the K-S test indicates that the bars are not signif-
icantly different from the unbars (<90%).

The second property I investigated was the IRAS 25-Pm/12-Pm flux ratio to
see if the effect, described by Hawarden et al. (1986), is related to the cen-
tral 10-Pm luminosity distributions described above.

The point source measurements for many of the sample galaxies were limits
or unreliable because of extended emission. The IRAS point source measurements
of 134 galaxies (-60% of the sample) were improved by line coadding raw IRAS
scans. This was achieved using the facilities available at IPAC.

In Figure 3, I present the distributions of 25-pn/12-im flux ratio for
early- and late-type spirals. The distributions are significantly different at
the 95% level. The difference arises because a larger fraction of the early
types have S25•m/S12pm > 2.

When considering Just the early-type spirals (Figure 3, top), the distribu-
tion of the bars (shaded area) is significantly (95%) different than that of the
unbars. The difference arises in that a larger fraction of the bars (50%) than
the unbars (17%) has 5 25Pm/$12pm > 2.5. Considering the distribution for late-
type galaxies illustrated in Figure 3 (bottom), the K-S test indicates a less
significant (<90%) difference between the bars and the unbars.

I I I
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Figure 2. The distribution of central 10-Pkm luminosity for late-type barred
and unbarred spirals. Arrows indicate 20 upper limits. The distributions for
barred and unbarred spirals are similar.
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Figure 3. The distribution of the IRAS S2 5 1•/S 1 2 1, flux ratio for (top) early-
type and (bottom) late-type spiral galaxies. The distributions for early- and
late-type spirals are different largely because of an excess of early-type
barred spirals with S2 5 p /S12p3 > 2.5.

To summarise these results, I have shown that for the late-type spirals
there was no significant difference between the bars and the unbars in both the
ground-based and the IRAS data. In contrast, the early-type spirals did exhibit
differences between the bars and the unbars, in both the ground-based and the
IRAS data.

DISCUSSION

A reasonable hypothesis to explain the observations in the early-type
bars would be that the luminosity of the central region is sufficient to domi-
nate the IRAS 12-P. and 25-p. fluxes. To test this hypothesis, I define a param-
eter that I call the "compactness," which is the ratio of the ground-based small
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Figure 4. Compactness at 10 pm versus IRAS S25m/S12pm. Galaxies for which
the central region dominates the flux at 12 Pm are compact. The IRAS
S25pa,/Sl2pm colors for the compact galaxies indicate that the central region
dominates the 25-a. flux also. Barred galaxies are indicated by horizontal bars.

beam 10-pm measurement to the larger beam IRAS 12-pm measurement, color cor-
rected to 10 Pm by extrapolating the IRAS 12-Pm to 25-im energy distribution.
The compactness enables me to identify galaxies for which the central region
dominates the IRAS 12-Pm and quite likely the 25-pm emission.

The result of plotting compactness against the IRAS 25Pm/12pi ratio is
shown in Figure 4. The figure demonstrates that compact galaxies (i.e., >-30Z
compactness) all have 25-im/12-pm flux ratios consistent with those observed
previously in Seyfert and starburst nuclei (Lawrence et al. 1985). I have indi-
cated the classification of the nuclei based on optical spectra when available.
The figure shows that the optical classifications are consistent with the antic-
ipated 25-pm/12-pm flux ratio in the sense that the H II region nuclei have
larger ratios that the Seyfert nuclei (Lawrence et al. 1985). This supports
the idea that where a galaxy's central region dominates at 12 pm it also domin-
ates at 25 Pm.
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There is actually only a small number of galaxies in which the central
region dominates the IRAS 12-pm and 25-Pm fluxes. I estimate that there are only
about 30 early-type barred galaxies with a central 10-Pm excess, in the distance
range 15-40 Mpc. Approximately 10% of all early-type barred galaxies are associ-
ated with enhanced central activity. The far-infrared luminosities L(40-120 pe)
of the active early-type bars is >1 x 1010 Le.

It is of interest to consider these results in the context of previous
studies concerning the association of central activity with stellar bars.
Seyfert nuclei are found predominantly in early-type spirals, although the
association with stellar bars is of less statistical significance (Heckman
1978; Simkin 1980). On the other hand, H II region nuclei are found to be
significantly biased to barred galaxies of all spiral types (Heckman 1980).

There is a difference between this study and those referenced above,
in that the latter investigated only the frequency with which characteristic
optical emission lines were observed in the central region of barred and
unbarred galaxies. I have investigated the frequency with which high
central 10-Pm luminosity occurs in barred and unbarred galaxies. I found that
in early-type galaxies, bars are essential for high central 10-Pm luminosity.
Perhaps the important parameter, distinguishing the bars from the unbars,
is not the frequency with which a particular form of activity is observed,
but rather the intensity of the activity.

QUESTIONS TO BE ADDRESSED

These results raise some interesting questions regarding the role of the
bar in the early-type spirals. Is the bar somehow stimulating star formation?
Is it supplying additional fuel for star formation and/or active nuclei?
Perhaps a more fundamental question may be, Why is the bar more important in the
early-type spirals? The latter may indicate that the stellar mass distribution
is as important as a gas reservoir in fueling activity in the central region.
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QUESTIONS

Solomon: With regard to the question of fuel in the bar, I have mapped the CO
emission in the barred spiral NGC 1530. Along the bar the CO flux is an order of
magnitude greater than off the bar, thus there is more fuel.

Helou: Did you not find the early-type galaxies to be more compact than the
later types? Does that not contradict the result by Judy Young and coworkers
that the CO distributions are centrally peaked in the late types and have holes
in the early types?
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Reply: Yes, the early types are more compact than the late types. The compact-
ness of the late-type spirals, however, is not inconsistent with the exponential
distributions observed by Judy for both the CO and blue luminosity in the late-
type Virgo spirals. Regarding the CO holes, I think it is important to estab-
lish the distribution of CO in the early-type galaxies in question.

Kenney: Regarding the question about CO holes in the early types, I have mapped
the CO emission in about a dozen early-type Virgo spirals; most of these are
centrally peaked with a resolution of 45" (-4 kpc). Only one has a definite CO
hole at this resolution.

Simkin: Models of gas flows in spirals induced by bars show that the rate of
flow depends on the mass distribution in the galaxy. It may be that your associ-
ation of central activity with early-type barred galaxies reflects the different
mass distribution in these objects.

Reply: I am aware of these results and hope to obtain observations to investi-
gate them further. In particular I plan to obtain multiaperture photometry at
near-infrared wavelengths to establish the spatial distribution of starlight in
the central regions of the spiral galaxies under discussion here.

Rieke: The result shown earlier (Wynn-Williams) from Rieke and Lebofsky that
showed a strong tendency for Sa's not to have high-infrared luminosities was
derived only for unbarred galaxies. It would imply that a bar was nearly essen-
tial for high luminosity in an early spiral. Is that consistent with your
results?

Reply: Yes.

Kennicutt: Several years ago Sersic noted that nuclear hot-spots occur almost
exclusively in barred spirals. Maybe you are seeing the same thing. Could the
predominance of centrally concentrated sources in early-type spirals be a con-
trast effect due to the lower disk star formation in the early-type galaxies?

Reply: The Sersic result is now in question in the light of a recent study by
Heckman (1978). Regarding the second part of your question, I do not believe
that this is a contrast effect for two reasons. Firstly, Wynn-Williams showed
that the far-infrared luminosity distributions of early- and late-type spiral
galaxies are similar, thus there is no evidence that the disk star formation is
lower in the early types. Secondly, the effect in the early-type bars is evi-
dent not only in the colors, but also the luminosity, of the central region.
The luminosity of the central region of -40% of the early barred galaxies is
greater than that observed in the late-type galaxies and the early unbarred
galaxies.

Joseph: There is an important additional parameter that could undercut your
comparison of early- and late-type galaxy infrared luminosities. In our J,H,K,L'
study of the spirals in the Virgo cluster we found that late-type galaxies are
significantly fainter than early-type spiral galaxies in this cluster. Would
this systematic bias in luminosity, and therefore also in the mass of gas pres-
ent, not account for the differences between early- and late-type galaxies which
you find in this sample?

Reply: In the study of those same Virgo galaxies carried out by myself,
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Becklin, and Scoville, we found two results: the 10-Pm luminosity of the central
region of all spirals is comparable, whereas the near-infrared luminosity tended
to be higher, on average, in the early types. Regarding my presentation, I am
investigating the differences between bars and unbars separately in early and
late types. I am not considering the differences between early- and late-type
spirals here.
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ABSTRACT. High resolution digitized images of 181 in the radio continuum, He,
H I, and I band are used to see how well various density wave models agree in
detail with observations. We find that the observed width of the nonthermal
radio arm favors a cloudy version of a density wave model (e.g., the model of
Roberts and Hausmun). The radial distribution of the set of giant radio H II
regions disagrees with the simple expression of Shu and Visser for star forma-
tion by a density wave. The observed displacements of the giant radio H II
regions from the spiral velocity shock indicate that some revisions in the
details of the ballistic particle model of Leisawitz and Bash are necessary.

1. INTRODUCTION

In classical density wave theory, the compression of the gas by a spiral
shock is responsible for triggering the formation of new stars. Some recent
versions of density wave theories take into account the clumpy nature of the
interstellar medium. For example, in the cloudy density wave model of Roberts
and Hausman (1984), star formation is enhanced in the spiral arm because
collisions between giant clouds occur more frequently there. Digitized higi
resolution radio and optical images of galaxies can now be made for checking
the predictions of these various theories. We selected M18 for such a study
because (i) the observed H I velocity contours show a spiral velocity shock
(Visser 1980 a,b, Hine and Rots 1986) and thus provide strong evidence for a
density wave in this grand design spiral, and (ii) theoretical density-wave
models of this galaxy are available from Visser (1980 a,b) and Leisawitz and
Bash (1982) for comparison with observations.

We present three tests of density wave models for 181. These tests
involve using VLA radio continuum data from Bash and Kaufman (1986), VLA H I
data from Hine and Rots (1986), Ha observations by Hodge and Kennicutta983j, and
I band data from Elmegreen (1981). We compare these observations of Hal with
some predictions of the following density-wave models:

(a) the hydrodynamic density-wave model for 81 by Visser (1980 a,b), who
treats the interstellar gas as a continuous, single component medium;

(b) the ballistic particle model for M1l by Leisawitz and Bash (1982), who
use Visser's model for the H I gas but assume that stars form in giant clouds
that orbit as ballistic particles;

(c) the cloudy density wave model for our Galaxy by Roberts and Hausman
(1984), who impose a spiral gravitational perturbation but use an B-body
calculation to simulate a cloudy interstellar medium.

Carol J. Lonsdale Persson (Editor)
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The models of Roberts and Hausman and Leisawitz and Bash both involve clouds
and a spiral gravitational perturbation but differ in the assumptions made
about the clouds and the processes that lead to star formation.

Our goal Is to see how well the above models agree in detail with the
available data.

2. FIRST TEST: OBSERVED WIDTH OF THE NONTHERMAL RADIO ARMS

Classical density wave theory predicts a narrow nonthermal emission ridge
on the inside edge of the spiral arms, where a spiral shock compresses the
interstellar gas and magnetic fields. Since M81 is not seen face-on, the
width of the ridge in the plane of the sky would depend on the scale height of
the shocked layer. If the appropriate shocked layer is the H I disk, then
Visser's model predicts a nonthermal ridge that is, at most, 260 pc wide in
the plane of the sky. Roberts and Hausman did not do a model for M81. For
our Galaxy their model produces a spiral "shock front" 300 - 600 pc wide and a
spiral density enhancement 1 kpc wide; we expect that their calculations would
yield similar results for K81.

To determine the width of the nonthermal radio arms for comparison with
these values, Bash and Kaufman (1986) have made VLA observations of M1e at
wavelengths of 6 and 20 cm. We detect radio continuum emission from the
spiral arms and the mint-Seyfert nucleus, but not from the disk. On a series
of radio continuum and spectral index maps that range in resolution from 10"
to 15" (160 - 240 pc If the distance of M81 is 3.3 Mpc), we are able to
separate giant H II regions from the more extended nonthermal arm emission
(see Figure 1). The good correspondence between H II regions and many of the
bright knots on the radio continuum arms Is shown in Kaufman et al. (1986),
where an Ho image Is superimposed on a 20 cm radio image, both at a resolution
of 10". A spectral index map with a resolution of 18" shows that much of the
more extended emission from the arms Is mildly nonthermal. Either the
extended emission is a combination of nonthermal and diffuse free-free
emission or the electron energy spectrum Is not very steep. In the latter
case, our spectral index values would agree with Duric's (1986) proposed
mechanism for diffusive shock acceleration of relativistic electrons by spiral
density-wave shockr.

Bash and Kaufman (1986) show examples of intensity profiles obtained by
slicing across the radio continuum arms at various positions that avoid the
giant H II regions. The intensity profiles were made on a 20 cm map with a
resolution of 9.5" (150 pc) and on one with a resolution of 17" (270 pc). On
both maps the nonthermal arms are patchy and well resolved, with a typical
width of 1 - 2 kpc. Therefore the nonthermal arms are too broad to fit
Visser's hydrodynamic model and seem to agree better with the width of the
density enhancement In the cloudy density wave model of Roberts and Hausman.

From their VIA H I maps of N81, Hine and Rots (1986) conclude that the
observed width of che velocity shock Is too broad to agree with Visser's model
but appears consistent with the width of the shocked layer in the model of
Roberts and Hausman for our Galaxy. Therefore both the synchrotron radiation
and the H I data point to the same conclusion.
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S. Si9OOD TiST: THE RADIAL DISTRIBUTION OF GIANT RADIO H II REGIONS IN THE

PLAuE OF 118

Kaurman et al. (1986) study 42 giant H II regions with high surface

brightness that are detected in the radio continuum maps of 481. Figure 1

stoms the distribution of these giant radio H II regions deprmjected into the

plane of M81 and superimposed on a gray-scale display of the deprojected 20 cm

map. The set of giant radio H II regions is more sharply confined to the

spiral arms than the total optical samples plotted by Connolly et al. (1972)

and Kodge and Kennicutt (1983). The total optical sets include faint H II

regions as well as bright ones. We conclude that the giant radio H II regions

are more likely to be related to a density wave. Rumstay and Kaufman (1983)

ried a similar phenomenon in M83 and M33 and suggest that the low luminosity

H 1I regions are more likely to occur in smaller clouds and to involve
sporadic star formation.

Ilp 1 Figure 1. A gray-scale display of
- 'the 20 cm emission after deprojec-

tion Into the plane of M81. The
superimposed contours show the
positions of the giant H II

-0.4 r regions that are detected in the
; F' *radio. The bright compact source

in the nucleus was subtracted
" ' before making this map. The major

I0 axis is horizontal.
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We use the radial distribution of giant radio H It regions in the plane of
MI to test the following simple relation proposed by Shu (1974) for star
formation by a density wave:

~ 11) - o1H,[I(R) - ] ,shock/ )n n = 1, 2, (1)

where X(H I1) is the number of H II regions per kpc 2, dHI is the mean surface
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dmnity oa H I at galactocentric distance R, Q(R) is the angular rotation
speed oa the matter, 1p in the pattern speed, and d shock / in the spiral

shock compression oa the gas. The lower bar graph in Figure 2 is the observed
radial distribution of the set of giant radio H II regions, while the dashed
curve is obtained from Shu's expression with parameter values from the Visser
model that gives the best fit to the observed distribution. Although the peak
occurs at about the same location in both distributions, the observed
distribution is more sharply peaked than the predicted one.
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0.6 Figure 2. Comparison of the
.4- observed radial distribution of

0.2 the set of giant radio H II
regions (the bar graph labeled

1.0- -adio "radio") with the predictions of
view models for M81 by Visser (1980b)

-3.1 and Leisawltz and Bash (1982).
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CO measurements and upper limits suggest that the surface density of H2 in

HSI Is very low; therefore replacing "HI in Equation (1) by the surface

density of atomic plus molecular hydrogen would not change the clear
disagreement between theory and observation. We know of only one convincing
detection of CO in MI: using a 102" F•HP beam (1.6 kpc at the distance of
33I) centered near the two most luminous H I1 regions in the peak of the
radial distribution, Stark (1986) obtains an integrated TAv of only 0.3 ± 0.1

K km s for the J = 1 4 0 transition of 12CO. This suggests that H 2 is a

very minor constituent compared to H I.

The upper bar graph in Figure 2 is the prediction of a ballistic particle
model adopted by Leisawitz and Bash for N31; it disagrees with our
observations. To get their model to produce the narrow peak in the observed
radial distribution requires a different choice for the assumed radial
distributions of either the small clouds or of the birth sites of the giant
clouds.

4. THIRD TEST: THE LOCATIONS OF THE SPIRAL ARMS DEFINED BY VARIOUS TRACERS

Figure 3 shows the H I intensity data from Hine and Rots (1986) after
deprojection Into the plane of K81, with the major axis horizontal. Rots
(1975) suggests that the faint Inner H I ring is produced by the inner
Lindblad resonance. Our 20 cm observations support this interpretation (see
Bash and Kaufman 1986). The position of the velocity shock measured by Hine
and Rots is along the Inside edge of the H I arms. Notice that the inner edge
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of the arm is more sharply defined than the outer (downstream) edge. Near
the northern major axis (the left-hand side In Fig. 3), the H I arm spreads
out. This my be the result of a tidal distortion by 1M82.

Elmegreen's (1981) 1 band plate shows the spiral arms defined by the old
stars; the I band ridge indicates the location of the spiral potential
minimum. When we superimpose a sharp-m asked I band image on the H I image, we
see that the potential minimum defined by the old stars lies just downstream
from the spiral shock. This agrees qualitatively with Visser's hydrodynamic
model and with the cloudy density wave model of Roberts and Hausman. Figure 3
shows the positions of the giant H II regions that are detected in the radio.
All but one of the giant radio H II regions are located on either the H I arms
or the Inner H I ring. Essentially all of these regions lie downstream from
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Figure 3. A gray-scale display of the rectified H I intensity map from Hine
and Rots (1986). The superimposed contours show the locations of the giant
radio H II regions. The compact nucleus is not an OB association but Is
retained here as a fiducial point. The major axis is horizontal.
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the spiral shock. If the H I image, the distribution of giant radio H II
regions, and the sharp-masked I band Image are all superimposed (as was shown
In a colored slide In the lecture), then one sees that some of the giant radio
H II regions lie along the potential minimum defined by the old stars; the
others, particularly at large R, are farther downstream.

To illustrate how this data can be used to test density wave models, we
consider the angular distribution of H II regions that Leisawitz and Bash
obtain with their adopted ballistic particle model for H81. Near the major
axis, the model predicts two clumps of H II regions: one just upstream from
the shock and the other stretching appreciably downstream. Near the southern
major axis all the observed giant H II regions lie along the spiral potential
minimum (i.e., just downstream from the shock); near the northern major axis
some are located still farther downstream. At large galactocentric R, the
model predicts that all H II regions should lie just upstream from the shock,
but here the observed regions are significantly downstream from the shock. It
appears that some change Is required In the values used in their model for the
launch speed and the time delay before the onset of star formation.

5. CONCLUSIONS

The observations of MS1 are consistent with the presence of a density
wave; this paper Is concerned with how well the details fit. The width of the
nonthermal radio arms favors a cloudy version of a density wave model. A
comparison between the predictions of the ballistic particle model of
Lelsawitz and Bash (1982) and the observed radial and azimuthal distributions
of giant radio H II regions indicates that some revision in the details of
their model Is necessary.
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DISCUSSION

DICKEY:
I was not surprised to see a mixture of thermal and non-thermal emission shown by the spectral index

map for the south-eastern spiral arm, but I was surprised that there is not a gradient in the spectral index
representing a variation in the mixture of thermal and non-thermal emission. Are you confident that you have
resolved the spiral arm?

KAUFMAN:
First of all, this is VLA data, not data taken with a filled aperture, so one should exercise some caution in

interpreting the spectral index values. We checked on a spectral index map made with 160 pc resolution that
the bright Ha sources have spectral indices consistent with optically-thin free-free emission. The slide showed
a spectral index map with a resolution of 290 pc, and at this lower resolution the emission from an MII region
is convolved with surrounding non-thermal arm emission. We use this map to distinguish between free-free,
mildly non-thermal, and strongly non-thermal emission, but I would be wary of making finer distinctions. We
find that most of the extended arm emission is mildly non-thermal.

Secondly, the intensity profiles across the arms show that the arm emission is resolved.
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ABSTRACT. High resolution, dual frequency radio observations and calibrated
H surface photometry of the spiral galaxy M51 are used to determine the physical
properties of the 40 brightest HII region complexes. M51 appears to have a normal
HII region population when compared with other nearby So galaxies for which good
data exist. We used the radio and H data to measure the extinction toward the
HII regions. The extinction is very apatchy but appears to have a weak trend to
become on average smaller toward large galactocentric radii. This trend is
consistent with a possible metallicity gradient in M51. We compared the radio
determined extinctions with Balmer decrement extinctions and found good agreement
between the two, contrary to previous studies of M51 and other galaxies.

1. INTRODUCTION

Several observable properties of galaxies provide information about recent,
massive star formation. Each of these, however, has its drawbacks. The far
infrared emission, for example, measures not only the energy absorbed by warm
dust around HII regions, but also represents emission from cool dust illuminated
by the interstellar radiation field. (Cox andMezger, this volume, Persson and
Helou, this volume). These components are difficuic to separate so that an
assessment of the massive star formation rate is difficult. A similar problem
exists when one tries to measure the thermal radio emission from HII regions. The
thermal free-free emission In principle measures all ionizing photons. The usual
observational handicap, however, is that the thermal radio emission one measures
is contaminated with non-thermal emission from the underlying disk and spiral
arms, so that here also one cannot simply use the total radio emission from the
HII regions as an indicator of the ionizing photon flux. First the thermal and
non-thermal emission must be separated. A third way of measuring star formation is
to observe the H emission. he prime difficulty with this method is that one needs
to correct the H' emission for the extinction, which is often not well known.a

We have used dual-frequency radio maps and calibrated H surface photometry
to investigate the distribution of extinction and to study tie HII region
population in the spiral galaxy M51. The radio maps allowed us to measure the
free-free emission from the HII regions so that it is possible to estimate the
extinction by comparing the free-free radio emission with the H emission of the
same region. The exact procedures and results will be discussed~briefly in the
next two sections.

Carol J. Lonsdal Peruson (Editor)
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2. OBSERVATIONS

The radio observations were obtained with the Very Large Array (VLA) of the
NRA0 2 in 1981-1982. (for details see Van der Hulst et al. 1987). The maps used
for this study are maps at 6 and 20 cm wavelength obtained from the multi-array
data which have a resolution of 8" (372 pc at the 9.6 Mpc distance of M51). This
resolution appeared best for detecting the most HII regions. The reason is that
some of the lower surface brightness regions begin to resolve out at higher
resolution.

The H data were obtained with the two stage Carnegie Image tube on the KPNO
2.1 m telescope. Two plates, one at H andoneintheredcontinuum were scanned on
the KPNO PDS microdensitometer, calib~ated, and then subtracted. The resulting H
emission image was then smoothed to 8" resolution to match the radio resolution.a
The H data were calibrated using spectrophotometric data taken with the IDS
scanngr on the UCSD-UM 60" telescope at Mt. Lemmon. Spectrophotometry was
obtained through 9" apertures for 15 HII regions (for a detailed description see
Van der Hulst and Kennicutt 1987).

The radio maps and H map were interpolated onto a common grid and then
blinked to identify the HII regions which have been detected in both data sets.
The radio data are essentially noise limited and restrict the number of regions
that can be identified and used. We detected 32 regions at H and in the radio
and found another 8 with probable detections in the radio. Tlese are the 40
brightest H•I regions in M51. We then measured fluxes at 6 and 20 cm in the radio
and in He through circular apertures varying in diameter from 12" to 21"
depending on the extent of the region. A correction for background emission was
made as described in Van der Hulst and Kennicutt (1987). The 6 cm radio fluxes
were decomposed into a thermal and a non-thermal contribution assuming a non-
thermal spectrum with a slope of a=-0.9 (S a va), as indicated by the total,
largely non-thermal emission of M51 (Klein and Emerson 1980). About half of the
HII regions have 6 cm fluxes which are entirely thermal. For the other regions
the fraction of thermal emission at 6 cm varies from 50 to 80 %. The extra non-
thermal emission is probably due to small scale structure in the uncerlying disk
or objects like supernova remnants. It should be pointed out that supernova
remnants, and in particular young supernovae may have a flat radio spectrum
(Reynolds and Chevalier, 1984) and are therefore inseperable from the thermal
emission of the HII regions. We then used standard recombination theory to
calculate HII region properties (following Schraml and Mezger 1969) and the
extinction in the visual (A ). For these calculations we assumed an electron
temperature of 7000 K, baseS on the average excitation of the HII region spectrz.
(see also McCall et al., 1985)

3. RESULTS

The HII region properties as determined from the radio fluxes are quite
normal and not drastically different from earlier results in M51 (Israel, 1980)
or recent results on the HII region population in M33 (Viallefond and Goss,
1986). Electron densities typically range from 2 - 5 cm ', HII masses are 3 - 8 x
106 M and the emission measures are 103-104cm- pc. The excitation parameter
rangel from 350 to 700 which indicates the equivalent of 20 to 150 0 5 stars
required to ionize the HII regions. The large number of radio detections enables
us to construct the HII region luminosity function more reliably than in the
past. Figure 1 shows both the radio and the H luminosity function for the HII
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regions we detected. The two luminosity functions are fairly similar and agree
quite well with the radio luminosity function Kaufman et al. (1987) find for the
HII regions in M81. Israel (1980) found a much steeper luminosity function for
M51. This is almost certainly a result of the large errors in his fluxes for the
HII regions due to the low resolution and low sensitivity of the data he used.

M51 HI REG.ONS M51 H1 REGIONS
Radio Luminosity 1- Luminosity

100 Functio 100 Function

iA 0A.

10 0*Z 10
z 1 0*

00

01 1 0

01 1.0 100 01 10 100og S (mJy) l F, (O eg cm sec

Figure 1. Radio luminosity function (left panel) and H luminosity function
(right panel) of the HII regions in M51.

We can use the radio and H data to probe the extinction in the direction of
the HII regions to give us some idea of the variation of extinction within the
galaxy. The extinctions found vary from A -0.4 to 4 magnitudes with a medianv
value of A -1.8. The extinction appears to be very patchy. An extreme example is
3 neighbouring HII regions in the eastern spiral arm where we find A -2.8, 0.7V"
and 2.5 respectively. Although the spread in extinction is quite large there
appears to be a slight trend toward lower extinction at larger galactocentric
radii. Figure 2 illustrates this trend. The inner two points and the outermost
point are based on single measurements and therefore placed between parentheses.

30 - M51

4 M51

X1 (ve ---1.0
t 2--0.5~ ~
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Figure 2. Radial dependence of A in Figure 3. Comparison of A as determined
M51. The excitation gradient in A51 from the Balmer decrementVand A as deri-

Is indicated by the crosses. ved from the radio - H flux ratios.

There nevertheless appears to be a slow decrease in average A when going from a
radius of 1 to 3 areminutes. This trend is in the same sense as the [OIII]/H
excitation gradient found by Smith (1975) (plotted as crosses In Figure 2), Ind
indicates that the extinction gradient is probably related to a metallicity
gradient in M51.
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It has been shown in the past that extinctions determined using the radio -
H comparison method as described above are systematically larger by on average
1!2 magnitudes than extinctions derived form the Balmer decrement (Israel and
Kennicutt 1980). Two ways to account for this are absorption internal to the HlI
regions or heavy clumping of the absorbing material inside or in front of the HIl
regions. Since we have Balmer decrements from the Mt. Lemmon spectrophotometry
for 15 HII regions of which 8 overlap with the radio sample we can investigate
this further in M51. Figure 3 shows the 8 regions with A determined from both
the Balmer decrement and the radio - H comparison. For these regions one would
conclude that both methods agree well %nd that no systematic difference exists.
Recent work by Caplan and Deharveng (1986) in the Large Magellanic Cloud indicate
that there a systematic difference exists of only 0.3 magnitudes, also much less
than found in the past for galaxies in general. Requirements for internal and/or
clumped extinction are therefore much milder. Caplan and Deharveng (1986) discuss
various geometries for the dust distribution and suggest that the extinction is a
combination of mostly general interstellar dust, partly clumped, and some
scattering dust in and around the HII regions.
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The Infrared Astronomical Satellite {ERAS) detected several hundred
individual regions of star formation in the Large and Small Magellanic Clouds.
Nearly two dozen of the brightest such sources have been searched for from the
ground at 10 microns; most of these have been located and measured at
wavelengths from 0.6 to 20 microns. Three principal results emerge from this
study: First, the IRAS data show that star formation is considerably less
active in the SMC than in the LMC, relative either to mass, luminosity, or H I
content. The reduced activity in the SMC is consistent with the smaller amount
of molecular material inferred from CO observations. Second, the sizes of the
objects range from less than a few arcsec - objects which look like extremely
compact HII regions, with little or no extended radio, optical, or infrared
emission - to some tens of arcsec across - giant H II regions, of which the
largest and brightest is 30 Doradus. Third, there are no obvious differences in
the characteristics of the central portions of the LMC and SMC sources; all
look like compact Galactic H II regions of similar luminosity.

IW DATA BASE

IRAS detected over 400 12 micron sources in the general direction of the
1M1, and roughly 100 such sources in the direction of the SMC. Most of these
have the characteristics of star formation regions: flux rising steeply from 12
to 100 microns. Specifically, star formation regions can be distinguished from
evolved Magellanic Cloud or foreground objects on the basis of their 25 to 12
micron flux density ratios, which are typically greater than 4, and always
greater than 3. Furthermore, only star formation regions have 60 to 25 micron
flux density ratios significantly greater than 1. Many of the star formation
regions are resolved by IRAS, which implies angular sizes of the order of an
arcninute. Many, but not all, can be identified with catalogued visible or
radio H IT regions. In an effort to better understand these sources, we
embarked on a ground-based observational program of LAC and SMO ITRS star
formation regions detected by IRAS. The program had three aims: to identify and

Carol I. Lon.dale Persson (Edior)
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locate precisely the stronger IRAS sources; to extend wavelength coverage to

shorter wavelengths - into the visible in some cases - and to obtain

information on sizes, by comparison of the small-beam grourd-based data w.ith

the IRAS data (principally at 10 microns) and by mapping. The ultimate goal of

the program is to make a comparison between the SMC, the L11C, and the Galaxy. A

separate but related program is a study of evolved objects in the Magellanic

Clouds detected by IRAS (Elias, Frogel and Schwering, 1986; Elias and Frogel,

in preparation).

The principal result from the IRAS data themselves is that the SIC contains

far fewer bright star formation regions that the LMC; the brightest 12 micron

point sources in the SMC have flux densities of roughly I Jy, while the

brightest LMC sources (excluding 30 Dor) are roughly 10 Jy, and there are more

than tOO I Jy sources. (In fact, confusion limits over much of the l1Mt are

greater than I Jy.) Similar comparisons can be made at 25, 60, and 100 microns.

This parallels the relative weakness of CO emission from the SMC, as compared

with the LME (e.g. Cohen, Montani, and Rubio 1984; Rubio, Montani, and Cohen

1984; Israel et al. 1986). Since the TR1S data measure most of the star
formation luminosity in these galaxies, it appears that the simplest
explanation of these observations is that star formation is currently much 1'ess

active in the SMC than it is in the LMC. The much higher flux limits in the

LMC, compared with the SMC, account for the fact that the total numbers of IRAS
sources in the two Clouds do not show so great a disproportion.

Another interesting result is that in the SM!, the brightest sources are

located in the eastern portions of the galaxy, with the brightest object (IRAS
01228-7324) located outside the main body. Since the distribution of H I in the
.TV also shows more concentration to the east than do the stars, it may be that
ongoing star formation is occurring in a different pattern than in the past.

1IFICATIGI OF IRAS S(U

Two main considerations led us to search primarily at 10 microns rather
than at some shorter wavelength. The first was a desire to be certain that the

IRAS sources were being correctly identified, and the position of maximum flux

located; this could in practice be done only at 10 microns. A second concern
was confusion at shorter wavelengths; since some of the star formation sources

proved to be extremely red, they could not be reliably located at wavelengths
less than 10 microns.

Most of the searches were done on the CTIO 1.5 mS telescope, using the "D2"

bolometer system and a beam size of 12.7 arcsec; follow-up observations were
made on the CTIO 4m telescope with beams sizes of 4 to 7 arcsec. A total of 12

i,1C sources and 6 SM sources were searched. With the exception of 4 of the
fainter SME sources, 10 micron flux was measured from all objects and an
approximate position of peak flux located. In many cases, the sources were
extended, with peak fluxes several times less than the total IRAS flux,
extrapolated to 10 microns. In two cases, however, the flux in a 5 arcsec beam
was not significantly less than the IRTAS flux, suggesting a very compact

source. Both of the these objects (IRAS 01228-7324 [:N88a; cf. Testor and
Pakull 19851 and 05216-6753) have visible counterparts with H II region
spectra, but no strong radio emission. Energy distributions of these objects

242



STAR FORMATION REGIONS IN THE MAGELLANIC CLOUDS

are shown in Figure 1. One should note, though, that because of the distance of
the Magellanic Clouds, these "compact" objects may easily be up to a parsec in
extent. Nevertheless, it appears that there ex:ist regions in both the SMC and
LMC similar to compact H II regions in the Galaxy.

I00 I I ' I " I

IRAS 05216-6753'1/

I0I

Figure 1. Flux Density
Distributions of Two Compact
.agellanic Cloud H II Regions.

SI -- The data from I to 12 microns are
"ground-based measurements with a

(nI
4.5 arcsec beam, and the 12 to

o100 micron data are IRAS Point
Source Catalog data. The data for

"0.1- IRAS 01228-7324- IRAS 05216-6753 are shown with a
L_ /solid line, and the data for IRAS

01228-7324 are shown with a
dashed line. The 60 and 100
micron upper limits for IRS

0.01 05216-6753 are set by confusion.I I I I i i I I
I 10 100

Wavelength (1lnm)

Another noteworthy aspect of the IRAS "star formation" sources searched for
is that all those that were identified proved to have one or more
characteristics identifying them as including H Hl regions: that is, regions
with stars producing substantial amounts of ionizing radiation. Most of the
objects have obvious,compact, visible counterparts, whose spectra are
characteristic of H II regions; the remainder are most likely H II regions
obscured by intervening molecular cloud material, and show generally redder
near-infrared energy distributions. Most sources, also, could be identified
with thermal radio sources. What is not clear is that these H II regions are in
fact the dominant source of far-infrared flux, since there are indications that
the 10 micron sources are not precisely coincident with the visible compact H
II regions. This apparent association of ITRAS sources with H II regions
suggests that luminous star formation regions containing only pre-main-sequence
objects are relatively rare - possibly because pre-main-sequence lifetimes are
so short compared with main-sequence lifetimes. A survey at high spatial
resolution might not be so dominated by H II regions, since (as noted above)
much of the flux from the TRAS sources come from regions several arcseconds or
tens of arcseconds across.
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STAR FORMATION IN THE LARGE MAGELLANIC CLOUD

Terry Jay Jones, University of Minnesota
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Paul M. Harvey, University of Texas

This conference has concerned itself largely with the properties of galaxies
that are very much more luminous than the Milky Way and shine predominately in
the far and mid-infrared. One might ask what role the Large Magellanic Cloud, a
dwarf irregular, can play in this endeavor. There are two main reasons the LMC
may prove helpful in our attempt to understand the infrared luminous galaxies.
One, the LMC is only 55 kpc away, very nearby compared to the much rarer high
luminosity systems. Second, the environment in the LMC is distinctly different
than in the Milky Way, at least those parts of the Milky Way interior to the sun,
where most of the studies of massive star formation have been concentrated. The

environment in the LMC is not, of course, likely to be similar to that in the
infrared luminous galaxies, but the fact that it is different than in the Milky
Way does provide a test for the universality of our theories of star formation.

Despite the title of this conference, the star formation process in galaxies
was not the central topic. Rather, the observed properties of infrared luminous
galaxies have dominated the discussion. There is plenty of observational evi-
dence for and theoretical understanding of how to push a large amount of gas
around (say in an encounter) and we also know that massive star formation results
in a large amount of mid and far-infrared luminosity. The connection between the
two, however, has yet to be established. That is, the star formation process
itself in these galaxies (if star formation is the correct explanation) is simply
not well understood. The study of the infrared luminous galaxies as a class is
still in its infancy, so this state of affairs is to be expected. As pointed
out by Becklin (these proceedings) only by detailed groundbased studies will we
be able to improve our understanding of these galaxies.

We sometimes forget that the LMC is an interacting system with a large
amount of neutral hydrogen that has been pushed around by the galaxy's encounter
with the Milky Way. Perhaps a good understanding of the star formation process

in the LMC will provide guidance in our study of the infrared luminous galaxies.
The two questions I wish to address are: 1) How is star formation in the LMC
similar to our galaxy, and 2) How is it different?

SIMILARITIES

1) The field IMF in the LMC is similar to the Milky Way (Humphreys and
McElroy 1984), although the very top of the IMF is probably hidden from optical
view by plasma and dust.

2) At least two LMC HII regions contain point IR sources with no Lyman
continuum or photospheric absorption features (i.e., protostars, Gatley et al.
1981, 1982).

Carol J. Lonsdale Persson (Editor)
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3) There is some dust in the LMC star forming regions as evident in the FIR
emission (IRAS, Werner et al. 1978, Jones et al. 1986), near IR reddening (Gatley
et al. 1982, Jones et al.) and silicate absorption at 10pm (Epchtein et al.
1984).

4) A few H 20 and OH masers have been found in LMC HII regions.

DIFFERENCES

1) There is proportionately more HI mass in the LMC than in the Galaxy.
There is plenty of raw material for making stars, the problem is how to go from
HI to massive stars.

2) The CO luminosity of the LMC is very low compared to the FIR luminosity
and Ha luminosity of the LMC, both of which are in the expected proportion to
one another based on observations of a wide range of galaxy luminosities. This
MAY indicate a significant lack of molecular hydrogen in the LMC, despite the
vigorous star formation going on. Israel (private communication) has argued that
there could still be large amounts of molecular hydrogen in the LMC without the
corresponding amount of CO and dust expected for a galactic molecular cloud in
the Milky Way.

3) There are no deeply imbedded, high surface brightness, very luminous FIR
cores in any of the LMC HII regions. This is further indication that the giant
molecular cloud phase may not be necessary (or considerably reduced in impor-
tance) in the LMC.

4) The six protostars found to date (Jones et al., Hyland et al. 1986),
tend to lie behind what appear to be the intersections of giant mass loss
bubbles. This suggests that direct compression of the HI gas results in the
formation of stars in the LMC.

5) There appears to be an excess of very early 0 stars in at least two of
the LMC giant HII regions (Jones et al.). This is best explained by a trunca-
tion of the IMF below about 30 Me. The lack of any protostars below a fewxl0 Le
supports this contention. Thus, the LMC may be producing more total luminosity
and Lyman continuum flux per unit mass of available gas than is the case in
galactic giant molecular clouds.

Without further study we can't be certain, but the LMC may be showing us
that massive star formation does not require exorbitant amounts of mass in gas,
molecular or otherwise, and that once the process gets going in the presence of
a large amount of neutral hydrogen, mass loss bubbles and supernovae keep the
process continuing at a high rate.
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ABSTRACT. The infrared excess (IRE) of LMC IIX nebulae is found to correlate
positively with the temperature of the ambient radiation field or with the
He+/H+ abundance ratio. This result is discussed in terms of a selective
absorption of the photons in the range 504-9121 relative to the He ionizing
photons. This interpretation may explain the paradox of finding highly excited
nebulae with only relatively moderate equivalent width of their Balmer lines.

1. INTRODUCTION

The excitation in HII nebulae is sensitive to the metallicity and to the
energy distribution of the radiation field in the far UV U ( 912b). The
metallicity as traced by the abundance of oxygen is known to be fairly uniform
across irregular galaxies in contrast to the case of spiral galaxies. Thus
restricting to a sample of NII nebulae in the Large Magellanic Cloud allows the
study of the relative variations of the temperature of the radiation field from
nebula to nebula, minimizing any possible influence of abundance variations.

2. OBSERVATIONAL DATA

The IRAS AO maps of the LMC (P. Schwering, in preparation) have been
analyzed in order to separate the emission originating from sources and the
underlying diffuse large scale component. About 200 sources have been identified
with NII regions outside the 30 Doradus region (Ungerer et al., in preparation).
In this catalogue we have selected the RlI regions detected in the 5 GHz radio
continuum survey (McGee et al. 1972) and having optical spectroscopic
measurements (Pagel et al. 1978 and references herein). We rejected the source
N44 whose radio continuum flux is contaminated by the SNR emission. For the NII
nebula N91 an extended north-south plateau shows up at 5 GHz in contrast with
the infrared and 408 MHz emission. We thus used the 408 MHz flux density. We
have redetermined the electron temperature, the abundance of He+ relative to R+
and O/H in a homogeneous way using the atomic data compiled by Mendoza (1983).
The ambient radiation field in an HII nebula can be conveniently characterized
by an effective temperatu e T f which measures the relative number of the
photons shortward of 5041 too Aose from 504 to 9121. Stasinska (private
communication) has demonstrated that this quantity is relevant for the
excitation of nebulae, no matter if there is one or several exciting stars and
which stellar atmosphere model is used. Thus we have defined Teff for the
ambient field inside a nebula as the Teff of a stellar atmosphere model having
the sane ratio of He to H ionizing photons. Based on the NLTE stellar atmosphere
models from Mihalas (1972) and the grid of photoionization models (Stasinaka,
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1982). we assign to each nebula of tur sample a Tuff' this temperature
reflecting directly the temperature of e ionizing star v uster if there was no
dust mixed with the ionized gas. This Taff has been determined from the relative
intensities of [01113727, [0II14363. [0iiI]4959+5007 and HP4860, and we checked
that it was also consistent with the He+/'+ ratios (Fig. 1).

The total infrared emission has been determined by multiplying the sun of
the four in-band fluxes with a bolometric correction factor of 1.8: this factor
is actually insensitive to the dust temperature over a large range of values
from 30 to 200K (Boulanger, private coimunication) allowing us to get reliable
bolometric infrared emission for NII regions. The IRE is deduced: by definition
it has a value of 1 corresponding to all the bolometric infrared luminosity
originating from Lyman a absorption (we further assumed that all Lyman continuum
photons which ionize the gas degrade into Lyman a photons).

3. RESULTS AND DISCUSSION

In Fig. 2 the comparison between the IRE and Teff is presented. The IRE
tends to increase with the radiation field temperature. More striking is the
very similar correlations in Fig. 1 and Fig. 2 which indeed implies that the 13K
correlates positively with the Neo+/E ratio.

If the absorption of Lyc photons by dust were negligible, the IRn would
measure directly the contribution of the nonionizing stars relative to the
exciting stars (>15Mg), and we would predict a decrease of the IRE with
increasing Teff caused either by different Initial Mass Functions (IMF) or by
age effects for the different nebulae. Thus we are forced to conclude that dust
in HII nebulae plays a major role for the excitation, and the IRE may not
directly reflect the properties of the young star cluster. One explanation for
the increase of the IRE with Teff is the existence of selective absorption of
the 504-9121 photons relative to the He-ionizing photons. If the 504-9121
photons are preferentially absorbed, the effective temperature of the ambient
radiation field will be increased relative to the effective temperature T6eff of
the star cluster. This effect is illustrated in Fig. 3 where we have computed
the IRE based on the Nl7E Mihalas atmosphere models and ignoring absorption of
all photons longward of 912J. The solid lines are related to the fraction of
504-9121 photons absorbed by the dust, and the dashed lines show the evolution
of Teff as the amount of selective absorption of Lyc photons increases.

In Tab. 1 we show the effects on derived star cluster properties for two
NII regions with extreme physical conditions when this selective absorption is
considered. The IMF parameters (i.e., the slope x and the upper mass cut-off
mu), duration of star formation T, star formation rate SFR, and the total
luminosity are based on an evolutionary model for a star cluster which gives
Tqff(x,muU,) and WOP x. u, ).
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TABLE 1

N214C N105

T f(104K) 3.58 3.52 4.3 3.6
;9 (from phot.)9121) 1.7 0.0 3.7 1.0
Equivalent width (1) 115 137 85 170
I phot. absorbed dust 0% 16% 0% 50%
Ionization rate (1050.-i) 1.0 1.0 2.5 2.5
Stellar Lye rate (105001) 1.0 1.2 2.5 5.0
IMP upper out-off Ou(lo) 40 25 140 35
CSF durqtion (Myr) 4.5 0 )>10 0
SFY (10Mo0 Myr- 1 ) 3.9 - -
Stellar mass formed (103M0) 18 3.0 - - 70
Present day Lrot(1O6 Lo) 8.1 8.0 - - 25
LpITe/rot 0.09 0.10 - - 0.1

Table 1: Correction effects on star cluster properties for the far UV
selective absorption: two columns are given for each nebula corresponding
respectively to the extreme cases of no selective absorption and Zero Age Main
Sequence star clusters. The last six lines of this table are based on a star
cluster model very briefly presented in the paper of Viallefond and Thuan (1983)
and revised by using the NLTE Mihalas stellar atmosphere model (Viallefond,
unpublished). An IMF slope of 1.3 was assumed corresponding to the Salpeter IMF
slope for the solar neighborhood: continuous star formation was also assumed. If
these two assumptions are relaxed, the star cluster parameters will be
different: however it will not affect the conclusions of this paper. An
unreasonable solution is indicated by "-

Lot AP(radio)-A (Balmer) be the apparent "excess" of extinction derived
by comparing the extfnction AS (radio), obtained from the relative strength of
the No Balmer line to the raaio free-free emission, with Ag (Balmer), obtained
from the relative strengths of the Ha and HS Balmer lines (Caplan and Deharveng,
1985). This "excess" extinction is believed to 4e at least partly caused by
the presence of dust mixed with the ionized gas: it might then be related to the
mount of selective extinction. The "excess" extinction for N214 is only 0.16
mag. compared to 0.54 mag. for N105, consistent with our analysis, which
suggests very little selective absorption for N214 compared to Ni05. This trend
is supported by the analysis of the full sample. The case of Ni05 illustrates
how partial correction for selective absorption can solve the problem of finding
many extragalactic IIT regions with high effective temperatures (40,000 to
50,000K) and very low values of VW (Stasinska and Viallefond, in preparation).
On the contrary, less excited HII regions such as N214C can be interpreted
without any selective absorption. Another important implication which emerges
from this discussion is that a substantial fraction of the nonionizing radiation
nay escape the ionized regions contributing to the large scale interstellar
radiation field in the LEC: only 10 to 20% of the total luminosity from the
young star clusters would be degraded into far infrared emission locally inside
the plasma, i.e., in the sites of star formation. Finally it is interesting to
notice that the absorption efficiency of small graphite and silicate grains
(with typical sizes of 30 to 1001) does peak near 700 to 800X (Drains and Lee,
1984). In this respect, the study of the excitation in III regions may give

249



V. UNGERER AND F. VIALLEFOND

Fig. 1: Abundance of HN+ relative to HR + " •.
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valuable now constraints on the lower part of the size distribution of the grain
population. The 22001 bump of the extinction curve of the LUC is apparently weak
(Prevot et al. 1984) compared to the bump for the standard galactic curve
(Savage and Mathis, 1979): the properties of the grain population must be
different in the LMC and in the solar neighborhood: selective absorption in the
far UV would be primarily caused by the small silicate grains in the LUC if the
small graphite grains are responsible of the 22001 bump of the standard
extinction curve.

4. CONCLUSIONS

From a sample of LUC NII regions for which all relevant information is
available, a positive correlation is found between the IRE and the effective
temperature of the ambient radiation field or the He+/H+ abundance ratio. We
suggest the presence of selective absorption in the far UV to explain this
observed phenomenon. While this result introduces a lot of complications for the
interpretation of the IRAS measurements of the young star-forming regions in
galaxies, it may solve the apparent paradox of finding many highly excited RII
nebulae with only very moderate values for their equivalent width of Ip.
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Abstract

Normal irregular galaxies seem to be unusual in having vigorous star
formation yet lacking the many dark nebulae typical of spirals. IRAS
observations of a large sample of irregulars are used to explore the dust
contents of these galaxies. Compared to normal spirals, the irregulars
generally have higher LIR/Ln ratios, warmer f(100)/f(60) dust color
temperatures, and lower glo~ally-averaged dust/gas ratios. The relationship
between the infrared data and various global optical properties of the galaxies
is discussed.

In spiral galaxies dust seems to be intimately connected with star-forming
regions. In normal irregular galaxies, however, there appears to be a dearth
of dark nebulae and reddenings are low relative to spirals. This is in spite
of the vigorous, apparently normal, star formation often found in irregular
galaxies. We present preliminary results from an investigation of the dust
content of a large sample of irregulars based on IRAS (co-added survey)
infrared observations at 12, 25, 60, and 100 Um (see also Hunter et al. 1986).

The irregular galaxies are divided into four groups: 1) "Dwarf"-- low
surface brightness Magellanic-type irregulars, 2) "Giant"-- high surface
brightness Magellanic-types, 3) "Amorphous"-- noted for their smoothness and
lack of resolution into stars and clusters, and 4) "Distant"-- distant, clumpy
irregulars. Systems in the first three grouups are primarily nearby,
non-interacting galaxies. The distant irregulars, however, are at such large
distances that morphological distinctions are more difficult and many of the
systems have been found to be interacting. The galaxies in these four groups
have many similar optical properties which are summarized and compared by
Hunter and Gallagher (1986). For comparison with spiral galaxies we have
chosen systems from Kennicutt's (1983) list of Ha observations and taken
infrared data from the Cataloge Galaxies and Quasars Observed in the IRAS
Survey.

In comparing the different groups of irregular galaxies, we find that the
distant irregulars tend to have higher ratios of L /L and L /L and
somewhat warmer f(100)/f(60) dust color temperaturAS. "Nowever.Rdifferences in
the infrared properties could be due to the fact that many of these systems are
* See erratum, page 257.
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interacting. The dwarf irregulars tend to have somewhat lower LIR/LB ratios,
but otherwise the groups have fairly similar infrared properties.
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Fig. 2-The outlined region shows the area

Fig. 1-Ratio of infrared to Ha occupied by normal spiral galaxies (de Jong

luminosity of the irregulars. et al. 1984).

In a comparison of irregulars with spiral galaxies, on the other hand,
there are some general differences. When irregulars are put on the plot of log
L I/L vs. log f(100)/f(60) of de Jong et al. (1984), one finds that on average
t e ipregulars have warmer f(1OO)/f(60) dust color temperatures and somewhat
higher LIR/LB ratios than the spirals. However, in terms of the f(25)/f(12)
dust color temperature, the spirals are on average somewhat warmer. Also,
spirals generally have higher LIR/LHo ratios.

Because dust at a range of temperatures contributes to the global IRAS
fluxes, the ratio f(100)/f(60) does not refer to a single temperature of the
dust. However, the ratio does give an idea of the average temperature of the
dust contributing to those passbands. One can then ask why this
temperature-sensitive ratio varies and why irregulars are warmer in general
than many spirals. One factor affecting the dust color temperature is the
composition of the dust grains. One might expect that, if composition of the
grains is the dominant factor affecting the overall temperature variation in
the dust between galaxies, that the temperature ratio f(OOW)/f(60) would be
correlated with the metallicity of the galaxies. Irregulars are in general
more metal poor than spirals. However, a plot of f(1OO)/f(60) against the
oxygen abundance shows that the average temperature of the dust does not depend
on the metal abundance of the irregular in any simple fashion.

Dust masses have also been estimated using f(60) and a silicate model. It
is important to note that the dust and gas masses are global measurements
rather than measurements of individual star-forming regions; and the gas beyond
the optical galaxy is not expected to contain dust that contributes to the IRAS
infrared flux. Keeping this in mind, one finds that irregulars generally have
lower global dust/gas ratios than spirals. Studies (Werner et al. 1978;
Viallefond, Goss, and Allen 1982; Viallefond, Donas, and Goss 1983; references
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in Koornneef 1984) of a few individual star-formeng regions in the LMC suggest
that local dust/gas ratiosre c(also lower than regions in spirals although
large optical depths due to dust can occur (Gatley et al. 1981). There Is no
correlation of the dustrgas ratio with the metallicity of the irregular.

Traditionally people have thought that radiation from stars in

star-forming regions is responsible for heating the dust (cf. Wyn-Williams and
Becklin 1974). But, with IRAS people have found that "cirrus" (Low et

al. 1984) can also contribute to a galaxy's total far-IR flux. It is possible
then that part of the far-IR flux os a galaxy comes from stars not connected
with the current star-forming activity (see also Helou 1986; Persson and Helou,
1986). The problem in dealing with inteffated fluxes of galaxies
is in determining the relative contributions of these two sources.

The SFR (star formation rate)yarea is a measure of the star-formation
related radiation field in the galaxy, and the optical surface brightness is
more a measure of the general stellar radiation field. There is no correlation
between the temperature-indicators, f(25)/f(12) and f(1OO)/f(60), and the
SFR/area although there may be a trend between f(1OO)]f(60) and surface
brightness. There are also hints of trends of both SFR/area and surface
brightness vs. LIR /L, but they are far from clean. When spirals are added to
these plots, ihey"ingrease the scatter. Part of the difficulty in using these
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brightness vs. infrared properties of the galaxies.

parameters is that we are looking at local processes through global averages.

In addition the irregular galaxies have formed stars at approximately constant
rates, so the stellar radiation field Is not independent of the current SFR and
it is difficult to separate the two. (See Gallagher and Hunter, these
proceedings, for a discussion of star-formation rates and histories).

We are grateful to all of the people involved in the IRAS project for an

excellent infrared data base and to the people at IPAC for their assistance in
extracting the data. This work is supported in part by a grant from NASA as
part of the IRAS General Investigator program.
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ERRATUM: IRAS OBSERVATIONS OF IRREGULAR GALAXIES

D. A. Hunter and J. S. Gallagher
Lowell Observatory, Flagstaff, Arizona 86001

In "IRAS Observations of Irregular Galaxies" by D. Hunter et al. and
"Measuring Star Formation Rates in Blue Galaxies" by J. Gallagher and D.
Hunter in these proceedings, as well as in D. Hunter et al. (1986, Ap. J.,
303, 171), galactic blue luminosities are based on standard optical
definitions. Thus we derive LB from the blue absolute magnitude MB using

LB - 7.81x100" dex(-0.4 MB) erg s-', (1)

or from the in band flux derived via

fB= j BXS(B)dX = dex (-0.4BT - 5.19) erg s-' cm-, (2)

where SA(B) is the Johnson B response function.

However, the LB system adopted by de Jong et al. (1984, Ap. J.
(Letters), 278, L67) for spiral galaxies was based on quasi-bolometric
(rather than in band) fluxes given by

f*B - AB fX( 4 4 0 0 A) erg s-' cm- 2 . (3)

The L*B on this system are a factor of 4.5 times larger than the LB from
eq. (1). Thus our statements that the L(IR)/L(B) ratios for irregular
galaxies are systematically higher than those of spirals are an incorrect
result of comparing data on two different LB systems. In fact, the
irregulars cover roughly the same range in L(IR)/L(B) as the spirals when
a consistent LB system is used. A corrected L(IR)/L(B) versus S(100)/S(60)
plot is given below.
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IUE OBSERVATIONS OF LUMINOUS BLUE STAR ASSOCIATIONS IN IRREGULAR GALAXIES
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ABSTRACT'

Two regions of recent star formation in blue irregular galaxies have been
observed with the IUE in the short wavelength, low dispersion mode. The
spectra indicate that the massive star content is similar in these regions
and is best fit by massive stars formed in a burst and now approximately
2.5-3.0 x10 years old.

I. INTRODUCTION

Irregular galaxies offer a special opportunity for the study of massive star
formation. They are the bluest of galaxies, as a class, and this, together with
the optical emission line spectra observed for some, indicates that massive stars
are currently being formed. We are particularly interested in exploring the high
mass end of the initial mass function (IMF) and the spatial patterns of star
formation for the massive stars in these systems.

The irregular galaxies span a considerable range in morphology. The
majority are blue, clumpy Im (Magellanic type) galaxies which have very obvious
lII regions and associated OB associations. The remaining irregulars are
classified 10 or Irr 11, some of which are red, like M82. An interesting subset
of the latter class are the Amorphous galaxies, which were first classified by
Sandage and Brucato (1979). These Amorphous systems can be as blue or bluer than
Im galaxies, but OB associations are not resolved, despite the relative proximity
of the galaxies to us. Extensive HII regions are observed in these systems,
however.

Ultraviolet spectra provide a means of exploring the hot stellar content of
these galaxies. In a previous paper (Lamb et al. 1985) we investigated the
massive star content of two amorphous irregulars - NGC 1705 and NGC 1800, through
IUE (International Ultraviolet Explorer Satellite) observations, together with
optical spectra. In this paper we continue the exploration of irregular galaxies
through IUE ultraviolet spectra of two systems which have very different star-
forming patterns: 1) NGC 1140 is a typical Amorphous system. It contains a
large blob of ionized gas at its center upon which the 1UE aperture was placed.
2) NGC 4449 is a classical, well-resolved Magellanic Irr with many star-forming

Carol J. Lonsdate Persson (Editor)
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Fig. 1. IUE short wavelength spectra of NGC 4449 and NGC 1140. The two spectra
of NGC 1140 were sunned with a weighting proportional to their signal-to-noise.
The spectrum for each galaxy was smoothed with a 5-point smoothing function.
Lines of primarily stellar origin are identified above the spectra.

HII regions. One large HII region at the southwest end of the bar is in the form
of an arc with a cluster of stars nestled in this arc (see Hunter and Gallagher
1985) and the IUE aperture was centered on this c ster.

Short-wavelength ultraviolet spectra were obtained at low-dispersion of
these two galaxies in 1984 June and December. Setting with the 1O"x20" aperture
was by blind offset from bright stars. SWP 23262 of NGC 4449 is a 210 minute
exposure, and SWP 24623 and SWP 24624 of NGC 1140 are respectively 180 and 185
minute exposures.

Data reductions and analysis were done using the Goddard Space Flight Center
Regional Data Analaysis Facility. The results are shown in Figure 1, and we see
that the primary stellar lines present are Si IV X 1394, 1403A, C IV X 1548,
1551A and N IV X 1720A. The other prominent absorption features arise from
interstellar sources within the external galaxies, and there can be a substantial
but unknown contribution from the interstellar medium of our own galaxy.

2. THE MASSIVE STAR CONTENT

2.1 Fitting the Ultraviolet Spectra

We have chosen to fit the overall shapes of the spectral lines, including
P Cygni profiles when they are present, and to give considerable weight to the
ratio of the equivalent widths of the SiIV and CIV features. This latter has
been shown by Walborn and Panek (1984 a,b) to be a sensitive indicator of whether
an individual massive star is on the main sequence or evolved into a
supergiant. They have also demonstrated that the presence of SiIV P Cygni
profiles is another indication of the luminosity class, as these develop only as
the massive stars move off the main sequence.

We have constructed spectra of stellar clusters using the IUE stellar atlas
(Wu et al. 1983) and relative contributions of stellar groups based on a standard
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Salpeter (1955) initial mass function. The weighting factor is a product of the
star's relative luminosity, number (the initial mass function), and lifetime (for
evolved models). The relative luminosity at X 1400-1500A for a star was
determined from the ratio of LF, (1400-1500A) to Te', where FA was determined
from Kurucz (1979) model stellar atmospheres (Z=Zof log g=4). The relationship
between Te and stellar spectral class, mass and luminosity were obtained from
Humphreys and McElroy (1984, see their Fig. 1), and the lifetimes of the stars
were taken from models by Maeder (1981, 1983). Six stellar masses
(9,15,30,60,85,120 MO) were chosen as representative of six stellar groups, and
average main sequence and evolved properties were determined for them. The atlas
stellar spectra were extracted as point sources, corrected for reddening, and
normalized to -1500A.

In constructing the synthesised models we attempted to span reasonable
possibilities in the upper mals cut-off and the time dependence of the star
formation rate. We did not vary the IMF, but our results are such that we can
exclude a very flat IMF for the most massive stars. We constructed nine
models. These included siggle burst models which varied from all main sequence
stars to a burst now 3x10 years old, and extended production models in which
the massive stars are either constantly formed or in w ich the production rate
has fallen off by a factor of five from a maximum 3x10 years ago.

The best fit to our spectra of NGC 4449 and NGC 1140 were obtained frc,.
sygthesised spectra of single bursts of star formation. The burst of age -2.5 x
10 years with an upper mass cut off of -120MQ gave an equally good fit to that
of the single burst of age -3.0 x 10o years with an upper mass cut off cf -70-80
No. The main features needed to provide a good fit are plenty of massive
supergiants and a lack of the most massive (M>50M ) main sequence 0 stars. The
emission hump in the spectra of NGC 1140 at A 1408-1500A was not fit by our
synthesised spectra. This feature is due to Wolf Rayet stars (see Nussbaumer et
al. 1982). Their spectra are not available in the IUE spectral atlas and are not
included in our models.

2.2 Comparison with Spectra of Giant HI1 Regions.

Rosa et al. (1984) have published IUE spectra for a variety of extragalactic
HIll regions and we compare these to our spectra. The majority of the systems
have quite similar short-wavelength spectra. That is, most giant extragalactic
HII regions have spectra which are similar to those of late 0, early B stars. A
few systems have weaker stellar absorption features without having the strong
emission lines of very hot stars, and a few systems are of higher excitation,
having NIVI X 1483,1486 A emission (These latter systems include NGC 1140.)

Thus we conclude, from the similarity between our results and those for
extragalactic HIT regions, that the OB star population is roughly comparable in
these systems. Small variations observed in these spectra indicate varying mixes
of evolved masgive stars whjch can most easily be attributed to an age spread
from -2.5 x 10 years to 10" years amoung the various regions.

In addition to the stellar features the energy distributions, i.e. the
slopes of the continua, are all roughly similar for the giant HIT regions and for
our Amorphous galaxies. The similarities in the ultraviolet continua are actually
quite remarkable. One might expect that dust contents and distributions would
vary greatly from region to region and with time within a given region. We
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conclude that dust does not play a large role in those parts of the galaxies
which we are observing in the ultraviolet.

3. THE SPATIAL PATTERNS OF STAR FORMATION.

Among the five lrr galaxies we have investigated (the two discussed here,
plus NGC 1705, NGC 1800 and DDO 50, see Lamb et al. 1985 and Lamb et al. 1986),
none are resolved into multiple clumps in the ultraviolet. Two of these
galaxies, NGC 4449 and DDO 50, are Im type and do have a clumpy appearance in the
optical. Although unresolved into clumps, the ultraviolet sources are broader
than a point source. Our other three galaxies (NGC 1140, NGC 1705 and NGC 1800)
are of the blue Amorphous type. These galaxies are more distant than our Im
galaxies (ranging from 8.7 Npc to 30 Mpc), and the large aperture of the IUE
covers a considerable fraction of the galaxy. In each case the aperture was
centered on the optical center of the object and in each case the ultraviolet
source was point like.

It appears that the ultraviolet spectra are dominated by the youngest and
brightest regions within the star forming complexes in all these galaxies. The
Amorphous systems appear to experience massive star production in very condensed
regions but the population of massive stars Is not obviously different from that
in normal Magellanic type irregulars.

We wish to acknowledge support from NASA grant NAG5-404 and to thank the
staff at the IUE observatory and at the Data Reduction Facility at Goddard Space
Flight Center for their help. S.A.L. was a NRC senior fellow during the
completion of this work.
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Neutral Hydrogen and Star Formation in Irregular Galaxies

Evan D. Skillman
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Abstract

VLA and WSRT H I synthesis observations of seven irregular galaxies are
presented. The total H I images of four Local Group dwarf irregular
galaxies and three larger more distant irregular galaxies are constructed at
the identical resolution of 500 pc (FWHM). When compared to H II region
distributions derived from Ha images, all galaxies studied show an excellent
correlation between the H I surface density and the presence of H II
regions. This correlation is most easily interpreted in terms of a
requisite threshold H I surface density for massive star formation. This
threshold is 1 x 1021 H I atoms/cm2 for a resolution of 500 pc. Giant
extragalactic H II regions - star formation events of the magnitude of 30
Doradus or more luminous - are only found near H I surface densities of a
factor of three to five times this threshold level. The observed threshold
implies a Jeans length of 150 pc, which is the same as the size scale at
which the structure in the H I complexes correlates well with the H II
region distribution. This, combined with the fact that in none of the
galaxies observed is there H I above the threshold level without concomitant
H II regions, implies an exclusively gravitational origin for the star
formation events. That is, there is no need to involve a "trigger" as in
the SSPSF theory (Seiden 1983) or feedback as in Dopita (1985).

Introduction

Since neutral hydrogen represents the ultimate raw material for star
formation, it is natural to study the relationship of the spatial
distribution of the source to that of the product. It is possible to do
this in external galaxies by measuring the H I 21cm emission and comparing
it to a tracer of massive star formation - the Balmer emission. Irregular
galaxies provide a logical starting point for this type of investigation,
since the interpretation is not complicated by the presence of spiral
density waves or abundance gradients.

Method

H I synthesis maps of seven irregular galaxies were produced at a
resolution of 500 pc (FWHM). In order for valid inter-galaxy comparisons to
be made, it is important that all galaxies be analyzed at the same
resolution because surface density varies as a function of resolution. The
inclinations of the ga'axies were determined by studying the total H I
distributions and velc ity fields and modelling the H I distribution as a
thin disk in dominantly circular motion. Images representing the H I

Carol J. Lonsdale Persson (Eior)
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surface density were then produced by scaling the column density maps by
cos(inclination). H II region catalogues derived from Ho photography were
then taken from the literature, and the H II region distributions were
compared with the neutral hydrogen surface density images.

Results

The observed galaxies divide into two groups. Four of the galaxies are
Local Group dwarf irregular galaxies with M > -16 (NGC 6822, IC 1613, DDO
75 - Sextans A, DDO 216 - Pegasus). The otRer three irregulars are more
luminous with M < -18 (NGC 4214, NGC 3239, NGC 4449). In addition to
luminosity, the two groups are distinguished by one other feature, velocity
field. The velocity fields of the dwarf galaxies were very regular, showing
predominantly solid body rotation. The velocity fields of the more luminous
irregulars range from very disturbed (NGC 4449) to moderately disturbed (NGC
3239) to warped (NGC 4214). (Images of the H I surface densities with
superposed H II region distributions were presented in the poster, but,
since there is insufficient space to display those images here, a written
description follows.)

The H I distributions in the Local Group galaxies are highly clumped.
Both holes (minima reching the zero level) and dense clouds (surface
densities > 2 x 10 2 1 atoms/cm2 ) are observed. In NGC 6822 and IC 1613, there
is an obvious correlation between the presence of H II regions and high H I
surface density. This is especially striking in IC 1613 where there Is one
strong H I concentration with an H I surface density higher by a factor of
two than anywhere else in the galaxy. Clustered around this H I
concentration are 15 of the 18 catalogued H II regions. Most of the H II
regions in NGC 6822 and IC 1613 are associated with regions of H I surface
density in excess of 1 x 10 2 1 atoms/cm2 . The 11 I distribution in Sextans A
is dominated by two large H I concentrations exceeding the 1021 atoms/cm2

level. Although there is no available deep Ha photography of Sextans A,
Hodge (1974) has reported detections of 3 H II regions, and optical images
of the galaxy show three obvious stellar associations. The reported H II
regions and associations are coicident with the H I maxima. There are no
immediately obvious H II regions in the Pegasus dwarf galaxy, although there
exists no published Ha photography. The H I surface density in Pegasus Is
everywhere low (< 0.5 x 1021 atoms/cm2 throughout the disk).

From the four Local Group irregulars two trends emerge. The first is a
very good correlation between the presence of H II regions and peaks In the
H I surface density distribution. The second is a threshold effect. No
H II regions are found in regions with peak H I surface densities less than
about 1 x 1021 atoms/cm2 .

The three high luminosity irregular galaxies all show strikingly large
numbers of H II .'egions. Here the correlation between H I surface density
and the presence of H II regions Is again very good. These galaxies also
support the idea of an H I surface density threshold. In NGC 4214, H I is
detected across a disk of 10' extent, but the H II regions are confined to a
narrow strip through the galaxy where the H I surface density exceeds 1 x
102 1 atoms/cm2 . All three galaxies have regions of H I surface density in
excess of 3 y 1021 atoms/cm2 . Coincident with these regions are giant H II
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regions (NGC 4214 and NGC 3239) or a large complex of H II regions (NGC

4449).

Discussion

The proposed threshold surface density value of 1 x 1021 atoms/cmz can
be converted to a characteristic central volume density by assuming an
exponential distribution in z. An assumed scale height of 200 pc yields a
central volume density of 0.8 atoms/cm3 . Next, this characteristic volume
density can be used to estimate a Jeans length (assuming the effects of
magnetic fields and the galactic gravitational potential are not important).
From:

-j =6 x 107 (T/5Po) cm

and values of T - 100 K and p - 1, a Jeans length of - 150 pc is derived.
This is comparable to the resolution in the highest resolution maps
available for NGC 6822. At this resolution the correspondence of the
presence of H II regions to H I surface density peaks is even more striking
than in the lower resolution images discussed earlier. This suggests that
gravitational instability is the cause of the massive star formation in
these irregular galaxies.

The observed threshold may have an additional significance. It is most
likely that the formation of molecular cloud cores is an intermediate step
between the formation of the large neutral hydrogen clouds and the onset of
star formation. It may be that the observed threshold represents a
requisite column density of dust for shielding the molecular cores from the
ambient uv radiation field of the galaxy. If this is the case, one would
predict a lower threshold value in regions of higher abundance where the
dust to gas ratio is higher. Finding appropriate galaxies to test this
hypothesis may prove difficult as dwarf irregular galaxies span a range of
only about one decade in heavy element abundance. This picture also
suggests an upper limit to the surface density of H I, as any atomic gas in
excess of the requisite shielding thickness is quickly converted to
molecular gas. Note that in the larger irregular galaxies the disturbed
kinematics imply that large scale dynamical processes are most likely
responsible for piling up large column densities of H I, and therefore
fueling the observed prodigious star formation.

Having assembled a collection of H I distributions of irregular
galaxies, it is of interest to assess them in light of current theories of
star formation. The stochastic self propagating star formation (SSPSF)
theory of Gerola and Seiden (1978) has been attributed with the ability to
produce an accurate picture of the global properties of dwarf galaxies
(Gerola, Seiden, and Schulman 1980). This theory has been laid on a more
credible structure by the inclusion of a gaseous component in the models.
However, this inclusion dramatically altered the interpretation of the
modeling experiments. It was shown that it is more appropriate to think in
terms of stochastic self propagating cloud formation (Seiden 1983). The key
words then become self-propagating. Is it reasonable to link the cloud
building stage causally to the star formation events in dwarf galaxies?
Whereas the compression of small clouds by supernova blast waves and stellar
winds must certainly be occuring, can the construction of the large (200 pc

265



B.D. SKILLMAN

to 1000 pc) H I clouds typically seen in irregulars be attributed to the
older star formation events? Or alternatively, are the majority of the star
formation events in the models of dwarf galaxies initiated stochatically in
pre-existing neutral clouds, while the self-propagating mechanism merely
insures that the "burst" has access to all of the available fuel. If the
latter explanation holds true, then it may be that the self-propagating
aspect of the theory is without a physical basis. It could be that the
gravitationally bound aspect of the H I complexes insures that most of the
constituent gas is available for star formation.

Finally a comment on the recent paper of Dopita (1985) regarding a law
of star formation in disk galaxies. If the concept of an H I surface
density threshold is valid for not only irregular galaxies, but all disk
galaxies, then a tight relationship between the star formation rate and the
product of the total mass and H I surface density (his figure 1) is
difficult to understand. A requisite H I surface density for star formation
implies that the star formation rate will be determined by the amount of gas
above the threshold value, and not the total H I content of a galaxy (the
H I surface density used by Dopita is really the total H I divided by the
optical area of the galaxy). Dopita notes that the scatter in the diagram
may be attributable to several factors. Perhaps the clumpiness of the gas
distribution is an additional factor causing the scatter. A threshold
effect would predict a good correlation between the star formation rate and
the total neutral hydrogen above the cutoff.
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CARBON MONOXIDE EMISSION FROM SMALL GALAXIES

Harley A. Thronson, Jr.
Wyoming Infrared Observatory

John Bally
AT&T Bell Laboratories

ABSTRACT. We have searched for J - I + 0 CO emission from 22 galaxies, detecting
half, as part of a survey to study star formation in small- to medium-size galaxies.
Although we find substantial variation in the star formation efficiencies of the
sample galaxies, there is no apparent systematic trend with galaxy size.

1. INTRODUCTION AND BACKGROUND

A correlation between far-infrared and CO emission from galaxies was discovered
by Telesco and Harper (1980) and discussed recently and more fully by Rickard and
Harvey (1984) and Young et at. (1986). Dust reprocesses starlight into far-
infrared radiation. Massive young stars, which are signposts of ongoing star
formation are usually surrounded by warm (30 to 60 K) dust which re-emits much of
the radiation into the 60 and 100 Um bands surveyed by the IRAS satellite. Thus,
the far-infrared flux should be a tracer of the global rate of star formation in
a galaxy. To first order, the CO emission is a tracer of the principle reservoir
of mass from which the stars are produced. Given that the far-infrared emission
arises from dust heated by young stars, LIR/LC is proportional to the star
formation efficiency, defined as the rate of s•ar formation per unit H2 mass.

We are conducting a survey of the J - 1 + 0 1 2C1 60 emission from a sample of
galaxies of modest size in order to estimate the amount of material available to
form stars. Dwarfs are the most abundant type of galaxy in the universe. They
appear to be structurally simple and without the complex gas dynamics, such as
spiral shocks, which can complicate the interpretation of processes in large
star-forming galaxies. On the a- e, dwarf galaxies are closer than the giants
and may therefore be studied in er detail.

2. OBSERVATIONS

We have used the AT&T Bell Laboratories 7-m telescope and the National Radio
Astronomy Observatory 12-m telescope to search for CO emission from 22 galaxies
to date. Our sample is deliberately heterogeneous, reflecting the variety of
small galaxies. Our selection criteria are: (1) modest angular size so that the
observed CO line strength is a good measure of the total line flux; (2) detection
in the IRAS Point Source Catalog, so that the total far-infrared luminosity is
known; (3) far-infrared luminosities less than about 1010L . Our results are
presented in Table 1 and Figures 1 and 2.

3. ANALYSIS

In Figure 1 we present a plot of far-infrared luminosity versus CO luminosity,
along with three lines showing the LCO/LIR relations found by Young et at. to fit
data for giant galaxies of different average dust temperature. These relations
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TABLE 1

J 1 * 0 CO Observations of Galaxies of Modest Size

Name Type Distance JT~dv E S 4i 2S V NM 2.58F60 * Flo,
-- -- (c) ( K- km/s) (K-km/s-MPC 2) 1--!Vl 7 .15x 7 7.Q 2L. (Jy)

CPG 330 [B k SkI! 3.1 -0.01 ± 0.15 -0.1 t 1.8 x 101 359 7.2 x 10 8.8x 10 <3.0 x 106 12.5

Haro 2 (N] Im(p) 20.5 0.94 t 0.22 5.0 ± 1.2 x 103 1435: 4.4 x 109 4.6 x 108 1.7 x 108 17

Haro 3 [N] Sm? 13.9 0.96 ± 0.28 2.3 ± 0.7 x 103  930: 2 x 109  5.4 x 108 7.8 x 107  17

D0D 154 !B] - 10 0.19 ± 0.10 2.4 ± 1.2 x 102 375 <1.5 x 108  2.5 x 109 <4.1 x 107 < 2.5

IC 10 (B] 1 3.0 1.01 ± 0.10 1.1 ± 0.1 x 102 -330 1.9 x 108 -- x. x 106 35

4k 86 (B] ScIllip 7.0 0.05 ± 0.27 0.3 ± 1.7 x 102 449 4.2 x 108 2.4 x 108  <3.2 x 107 14

Nk 527 (8] - 47.4 0.40 t 0.12 1.1 ± 0.3 x 104 355 2.5 x 1010 8.4 x 108 9.4 x 108 18.5

NGC 185 (B] dE3p 0.7 0.35 ± 0.15 2.2 ± 0.9 195 9.5 x 105 4 x 105: 1.9 x 105 3.2

NGC 205 [B] SO/E5p 0.7 -0.02 1 0.25 -0.1 ± 1.5 230 1.4 x 106  4 x 105: <2.5 x 105 4.8

NGC 1569 [B] SmIV 3.1 -0.24 ± 0.19 -2.8 ± 2.3 x 101 -83 9.8 x 108 1.7 x 108 <1.5 x 106 170

NGC 2814 [B] - 23.2 -0.03 t 0.17 -0.2 ± 1.1 x 103 
1740 1.9 x 109 -- <1.7 x 108 5.9

94C 2976 [B] SdIII 3.1 1.2 ± 0.2 1.5 ± 0.2 x 102 13 3.2 x 108 -- 1.3 x 107 56

NGC 3274 [B] SIV 6.4 0.1 1 0.14 5.0 ± 7.2 x 101 540 1.3 x 108  7 x 108 <1.7 x 107 5.3
18 8 <31x16

NGC 3738 [B] SdIII 5.4 -0.02 ± 0.06 -0.6 ± 2.1 x 10' 225: 1.3 x 10 3 x10 <3.1 10 7.4

NGC 4449 [N) SuIV 5.4 >2.5 t 0.5 >9.2 ± 1.8 x 102 244 3.2 x 109 2 x 109  >3.2 x 107 180

NGC 4605 [8] ScIll 4: 1.3 t 0.3 2.6 ± 0.6 x 102 141 5.8 x 108 -- 2.2 x 107 60

NGC 5506 (B) - 24.2 0.31 t 0.28 2.3 ± 2.1 x 103 1815 1.1 x 1010 1.2 x 109  <5.5 x 108 31

NGC 7800 [N] Im 25.8 -0.38 1 0.37 -3.2 ± 3.0 x 103 1950 2.4 x 109 3.4 x 108  <9.5 x 107  6.0

1 Zw 33 [B) Sop? 34.6 1.55 t 0.19 2.3 ± 0.3 x 104 2502 6.0 x 1010 1.7 x 109 2.0 x 109 84

I Zw 89 [B] Sb 31.1 1.96 t 0.26 2.4 ± 0.3 x 104 2329 8.4 x 109 2.4 x 109  2.0 x 109 14

II Zw 4 [N] - 10.1 0.62 ± 0.29 7.9 ± 3.7 x 102 800 1.4 x 109 4.5 x 108  2.7 x 107  23

III Zw 102 [B] Sp 21.7 3.0 t 0.24 1.8 ± 0.1 x 104 1626 1.2 x 1010 2.3 x 109 1.5 x 109  42

Telescope: [B) Bell Telephone Laboratory 7m; [N] NRAO 12M
6 2 * d NA 21

1. R2 was calculated from M2(M) - 1.07 x 10 D (Mpc)fTRdv [Bell 7m] and NH (N) - 4.25 x 105 02 (Npc)fT~dv [NRAO 12.].
Observations with the signal-to-noise ratio greater than 2 were treatid as detections. Upper limits for 94H4 are 2o.

2. (2.58F60+ F10 0 ] - LIR(Le)/ 6 x 10502(Mpc) and is proportional to the integrated far-infrared flux.

extend reasonably well to include the objects of low luminosity in our sample.
The center line in the figure corresponds to LIR/LCo = 25, which is about the
average value for our sample.

Luminosity-luminosity plots such as Figure 1 demonstrate that both CO and
infrared emission scale with the size of the galaxy: larger galaxies, on average,
have more CO and infrared emission than do smaller galaxies. Although the range
of far-infrared luminosities (presumably roughly proportional to mass of young
stars) reported in the literature vary over almost 7 orders of magnitude, the
range of star formation efficiencies is less than 2 orders of magnitude. Moreover,
some of the more efficient star-forming galaxies are dwarfs. We suggest that
concentration upon infrared-luminous galaxies in a study of star formation may
be misplaced effort.

Such plots alone, however, cannot be used to infer a good correlation between
CO and infrared emission since, in converting the observed fluxes to luminosities,
both species are multiplied by a common factor: the distance (D) squared. If the
range in the quantity D is comparable to or greater than the range of fluxes,
then even an uncorrelated set of CO and infrared fluxes will produce a correlation
in a plot of luminosity! The situation is made worse by the presence of errors
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Figure 1 -- The far-infrared luminosity versus the J = I ÷ 0 CO line
luminosity for the sample of galaxies observed in this program. The three
lines are those found by Young et at. for more luminous galaxies.

in the distance of the galaxies, which will tend to increase the dispersion in
the common weighting factor. A distance-independent plot, such as Figure 2, is
a better way to investigate the relationship between infrared and CO emission.

Figure 2 presents the CO surface brightness versus the total infrared flux,
measured by F IR = 2.58S 6 0 (Jy) + S1 oo(Jy). This plot clearly demonstrates the
range of star formation efficiencies which are encountered in our sample of
smaller galaxies. Objects located in the upper left of the figure are energetic
star-forming galaxies: they have L I/L = 50, and perhaps as high as 500! These
objects include the energetic galaxiesCRGC 1569 and NGC 4449, as well as the mega-
maser dwarf IC 10 (Henkel, Wouterloot, and Bally 1986). Although Young, Gallagher,
and Hunter (1984) report a detection of NGC 1569 using the FCRAO telescope, we
failed to detect it at a level 4 times fainter, indicating that the CO emission
from this object comes from an area smaller than the beam of the 14-m FCRAO
telescope. Objects located in the lower right of the diagram are lethargic star
forming galaxies, with L IR/L < 7. These galaxies have a relatively large
molecular content, but are not putting it to use in forming stars at a rapidrate. Objects in this category include I Zw 89 and III Zw 102.

It is interesting to note that these lethargic galaxies are relatively large
spirals, whereas all of the very energetic galaxies in our sample are irregulars.
Extensive spiral structure is obviously not necessary for a high efficiency of
star formation.
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Figure 2 -- The far-infrared flux versus the J = 1 - 0 CO line flux. Upper
limits are open circles. Note the wide variation in FIR/FCO.

A possible explanation for the high star-forming activity in irregular
systems may be a higher efficiency of induced star formation (or, more
significantly, molecular cloud formation) in a system having a thick gas layer.
Within a thin disk, with a small scale-height gas layer, much of the pressure
generated by massive star formation might be released above and below the plane
of the gas layer. Only an annular region within the plane is compressed. Within
an irregular galaxy or a thick disk, this pressure is confined and may therefore
produce compression in all directions.

H. Thronson was partially supported by NASA grant NAG 2-134.
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CHMCTERISTICS OF UGC GALAXIES DETECTED BY IRAS

Carol J. Lonsdale Persson and W. Rice
IPAC, California Institute of Technology

and G. D. Bothun
California Institute of Technology

Abstract

IRAS detection rates at 60 pm have been determined for the
Uppsala General Catalogue of Galaxies (Nilson 1973; the UGC).
Late-type spirals, characterised by a 'normal' IR/B ratio of
-0.6, are detected to a velocity of -6000 km/s for LB = L*.
Contrary to the situation for IRAS-selected galaxy samples, we
find little evidence for a correlation bewteen IR/B and 60/100 pm
in this large optically-selected sample. Thus a significant
fraction of the IRAS-measured far-infrared flux from normal
spirals must origionate in the diffuse interstellar medium,
heated by the interstellar radiation field. We do not find
support for Burstein and Lebofsky's (1986) conclusion that spiral
disks are optically thick in the far-infrared.

1. INTRODUCTION

The UGC catalog is the most uniform catalog of optically
selected galaxies available, being reasonably complete for high
surface brightness galaxies to a blue size limit of 1'. As one
approach to the question of the nature of the power source(s) of
the far-infrared emission of galaxies, we have begun an analysis
of the characteristics of the subset of the UGC galaxies detected
by IRAS. In this contribution we present initial results of our
study. A more substantial analysis, including a far-infrared
luminosity function, will be submitted to the Ap. J. (Bothun,
Lonsdale Persson and Rice 1987).

2. RESULTS AND DISCUSSION

The detection rate of UGC galaxies at 60 pm as a function of
morphological type is illustrated in Figure la. As first noted
by de Jong et al. (1984) the detection rate is low for E and SO
galaxies and increases towards later types. Figure lb displays
the detection rates of early- and late-type spirals in blue
magnitude bins. At an equivalent blue magnitude the detection
rate of the later spiral types is higher than that of the early
types.

Figure lb also shows that the IRAS detection rate drops
steeply beyond about 13.5 mag. Another way to lo 2 k at the
situation is in terms of the IRAS detectability of an Lopt galaxy

Carol A Lonsdal Persson (Ed•itor)
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60 pm DETECTION RATES FOR UGC GALAXIES

a. b.
80 Sb-Sc

60

40"

20 S01a-Sab

E SO Sa Sb Sc I P 11 12 13 14 15 16

TYPE BT0

rigur• 1 The 60 Mm detection rate of UGC galaxies is shown as a
function of Bubble type (a), and, for two type ranges, as a
function of blue magnitude (b). The 'I' class refers to Irrs,
and the 'P' class to Peculiars. The blue magnitude is corrected
for Galactic and internal extinction as in de Vaucouleurs, de
Vaucouleurs and Corwin (1976).

(ie. a galaxy at the 'knee' of the optical luminosity function;
Schechter 1976). For an IR/B ratio of 0.6, which is typical of

'normal', optically-selected spirals (see Figure 2), an L
galaxy can be seen by IRAS to a velocity of 6000 km/s, and would

have a blue magnitude of 14.2 at the limit of detectability (see

Bothun, Lonsdale Persson and Rice 1987 for full details). Thus
an galaxy sample extending to significantly fainter magnitudes or

higher velocities will be biased towards starburst and active
galaxies with high IR/B ratios. In particular, we would point
out that the IRAS catalog is not an unbiased survey of structure
on a 2-300 Mpc scale, as claimed by Lawrence et al. (1986), and
that studies of the large-scale distribution of matter using the
IRAS catalog as a data base (Yahil, Walker and Rowan-Robinson
1986; Meiksin and Davies 1986) must take into account the
possibilty that infrared-luminous galaxies may not trace the
matter very well (cf. Smith et al. 1987).

The apparently high detection rate for 'peculiar' galaxies
(Figure la) is undoubtedtly largely due to a selection effect in
the UGC such that an object with clearly evident morphological
peculiarities is likely to be a high surface brightness (high
specific star formation rate) interacting galaxy.

274



U-C GALAXIES DETECTED BY IRAS

1.0 -

0.5- " -

9

. , :;..'j .,, :o.*

0 . 0. . . 0 0', : ,

-1 .0 fiur 2 Dependence

LOG~~ ~2 (6100oolr

n F 2t, ar... t .

d .. " eal thors h

-0.5- .. 60 0 pm .l (

o %. 0

-1.0 • F±gure 2 Dependence

y be te tof the IR/B luminosity-1.0 -0.75 -0.5 -0.25 ratio on 60/100 t
LOG (601100) color.

In Figure 2 we plot infrared-to-blue luminosity ratio versus
60/100 frn color. Here the infrared flux is the 40-120 um flux
derived as in Persson and Helou (1987), and the blue flux is
defined as f (blue). Several authors have found a general
trend for the of/l00 UGn color to increase with IR/B in IRAS-
selected galaxy samples. We find little evidence for such a
correlatioin taour large optically-selected sample. We also find
a very large scatter in plots of the blue surface brightness vs.
IR/B ratio and 60/100 pm color (not shown here). Thus while itmay be true that the most luminous IRAS galaxies are warm objects
powered by starbursts or active nuclei, it does not follow that
star formation is the primary source of the far-infrared
luminosity of a typical late-type galaxy. It is, rather, likelythat for many galaxies, much of the far-infrared emission is from
the diffuse interstellar medium, heated by the interstellar
radiation field (cf. Lonsdale Persson and H~elou 1987).

Burstein and Lebofsky (1986) have found that the IRAS
detection rate of UGC galaxies decreases with increasing
inclination. We have verified this important result, but are
unable to find support for Burstein and Lebofsky's
interpretation that galaxies are optically thick in the far-
infrared, and that the far-infrared emission must arise
predominantly in the nuclear regions. As illustrated in Figure
3, there is no dependence of 60/100 urn color on inclination,
which would be expected if the disks are optically thick. we do
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not find any strong dependence of IR/B ratio on inclination
either. Burstein and Lebofsky's conclusion is also inconsistent
with the IRAS maps of nearby, spatially resolved galaxies (Rice
et al. 1987), which show that the far-infrared flux is not
strongly confined to the nuclear regions.
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. . .

08- *U * r. -
0.8*: *

• %... .,

* .S o* I

g~ 0.6 " "

0.4- " *

V. Figure 3 Inclination
"0.2 -*o.. dependence of the0.2- .• ... • .. * 60/100 urn ratio of UGCC

"'. "..h 0I.. galaxies. R2 5 is the
i:*;S . major to minor axis

" .�-1.25 rratio at the 25th mag.
_ _I I I___ I isophote, thus edge-on

-1.50 -1.25 -1.00 -0.75 -0.50 -0.25 galaxies lie at the
LOG (60/100) top of the figure.
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FAR-INFRARED PROPERTIES OF CLUSTER GALAXIES

M.D. Bicay1 , 2 and R. GiovanelliI

(1) Arecibo Observatory, NAIC
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Arecibo, Puerto Rico USA 00613

(2) Center for Space Science and Astrophysics
Stanford University
Stanford, California USA 94305

ABSTRACT. Far-infrared properties are derived for a sample of over 200
galaxies in seven clusters: A262, Cancer, A1367, A1656 (Coma), A2147, A2151
(Hercules), and Pegasus. The IR-selected sample consists almost entirely of
"IR normal" galaxies, with < Log [L(FIR)] > - 9.79 L@, < [L(FIR)/L(B)] >
0.79, and < Log [S(l00pm)/S(60m)] > - 0.42. None of the sample galaxies has
Log [L(FIR)] > 11.0 L@, and only one has a FIR-to-blue luminosity ratio greater
than 10. No significant differences are found in the FIR properties of
HI-deficient and HI-normal cluster galaxies.

I. INTRODUCTION

The synthesis of optical, radio, and X-ray measurements of galaxies and
clusters has provided evidence of interaction of galaxies with an intracluster
medium (ICM). IRAS observations allow us to expand the scope of studies to
examine what effect environmentally driven mechanisms have on a galaxy's rate
of star formation. Of particular interest is the question' of whether the
passage of a spiral disk through the ICM serves to stimulate star formation,
especially in the central regions of the disk, or whether the stripping of the
interstellar gas quenches star formation processes. We examine the far-infrared
(FIR) properties of galaxies in seven clusters and attempt to find correlations
with HI deficiency, a quantity that serves as a global probe of a galaxy's
interstellar gas content and that is assumed to expose recently stripped
galaxies.

II. THE SAMPLE

The noise-limited sample was obtained by coadding months-confirmed IRAS
observations for fields six degrees square, centered roughly at the cluster
cores. The resultant maps contained over 1700 points which satisfied the
criterion S(60pm) > 3a; this figure was typically 0.15-0.2 Jy. The flux-
weighted IR positions were then matched to optical positions listed in the
RCBG2, UGC, MCG, and CGCG catalogs, using a search radius of 90 arcsec (2
arcmin for galaxies of large angular extent). This procedure yielded a set of
-350 galaxies. By using redshift information to identify foreground and
background objects, and by selecting the most probable IR source in confused
fields (based on positional coincidence, morphology, and angular size), we were
left with a sample of 206 galaxies with known redshift. The basic parameters
for the seven clusters studied can be found in Giovanelli and Haynes .(1985:GH).

Carol J. Lonsdale Persson (Edtor)
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FAR-IfNFRAED PROPERTIES OF CLUSTER GALAXIES

III. INFRARED PROPERTIES AND CORRELATIONS WITH HI PROPERTIES

The mean optical, HI, and infrared properties of the sample galaxies are
given in Table I. Note that the A2147 field (-3 degrees square) is fully
contained within the A2151 field. Furthermore, the central Hercules cluster
(A2151) was examined to a flux density level of S(60pm)-50 mJy by Young et al.
(1984). The quantities in columns 7 and 9 of Table I are derived following the
precepts of Haynes and Giovanelli (1984:HG). The HI-deficient galaxies are
those with HI content less than half (HI def > 0.3) of the value found for an
isolated galaxy of the same morphology and linear diameter (see GH for
details). The mean values in Table I were computed on a reduced sample (i.e.
upper limits excluded), with the exception of "HI def" (for which lower limits
were included). Since the sample is flux-limited, it clearly suffers from the
Malmquist bias, as seen in the figures of col. 15. In the context of the
current study, however, the most important derived FIR properties are Log
[S(lOO0m)/S(60pm)j, the IR color index, and the FIR-to-blue luminosity ratio
Log [L(FIR)/L(B)]. For convenience, we will refer to these quantities as "IR
color" and "IR excess", respectively.

The sample galaxies in our study are found in clusters of various
morphologies, ranging from centrally concentrated clusters (A262, A1656) to
loosely organized systems (Cancer, Pegasus). Yet, inspection of Table I
reveals that there is little variation in the mean values of IR color and IR
excess, with one exception: the IR excess of A262 is significantly lower than
any of the other clusters. This is due, in part, to the high proportion of
early-type galaxies in the A262 sample and the associated high values of
optical luminosity. The fraction of E-SO galaxies in A262 is 10/34, twice that
of the other clusters. Table II shows that, on the whole, IR excess is lower
in E-SO cluster galaxies than in later types. This is certainly not surpris-
ing, in light of the fact that E and SO galaxies have low amounts of the dust
associated with FIR emission.

TABLE I I

DISTANCE-INDEPENDENT FIR PROPERTIES AS FUNCTIONS OF MORPHOLOGICAL TYPE

IR COLOR IR EXCESS
Log [S(190)/S(60)] Log [L(FIR)/L(B)]

All HI-def non HI-def All HI-def non HI-def

All galaxies 0.42(0.14) 0.46(9.17) 0.41(0.13) -0.16(0.35) -0.18(0.34) -0.06(0.31)

E - SOa 0.45(0.15) 0- - -. 30(0.35) -

So - Sob 0.40(0.18) 0.54(0.17) 0.37(0.13) -0.14(9.42) -0.36(0.34) -0.69(0.41)

Sb - Sbe 0.43(0.15) 0.47(0.16) 0.49(0.13) -0.12(0.32) -0.13(0.31) -0.11(0.32)

So - Sed 0.45(0.06) 0.39(0.03) 6.45(0.08) -0.08(0.21) 0.06(6.02) -0.09(0.22)

Pc.. Diet. 0.34(0.t0) 0.39(0.03) 0.33(0.10) -0.02(0.39) -0.32(0.21) -0.63(0.28)

Figures In parentheses ore standard errors of the mean.
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In Figure 1, the IR color is plotted as a function of HI deficiency for
all cluster galaxies within a projected Abell radius [r/r(A)] of 1.4. This
latter constraint not only gives us uniform IRAS coverage for each of the
clusters but is also the radius within which most of the HI-deficient galaxies
reside. If one considers only the reduced sample (dashed line), no correlation
is found. However, a very marginal correlation is apparently present when the
limits are incorporated (solid line), using the algorithm for doubly-censored
data given in Schmitt (1985). This "correlation" must be considered suspect,
however, when one notes that typical logarithmic uncertainties are 0.15-0.2 in
both HI deficiency and IR color. To quantitatively judge the significance of
this result, we applied nonparametric statistical tests suitable for censored
data. We find that the difference in the IR color distributions of
HI-deficient and HI-normal galaxies to be less than a 2a effect.

1.0.i i i i

Figure 1

0.8 - £ A plot of IR color as a func-
tion of HI deficiency for all

0•X cluster galaxies with known
0.6- • redshift and [r/r(A)] < 1.4.

* -° "X" denotes a lower limit in

00.4-- ----- -- - - -- HI deficiency; "Y" denotes an
o. ---- 6 •upper limit in IR color. The

X -results of two regressions
0. • - are superimposed. The dashed

V , qline excludes IR limits, but
0 includes HI limits. The solid
-J 0.0., y , £ line is a result of applying

the Schmitt (1985) algorithm

-0.2 for doubly-censored data. The

-0.8 -0.4 0. ' 0.'4 ' 0.'8' 1.2 correlation coefficients are

HI DEFICIENCY 0.07 and 0.49, respectively.

IV. SUMMARY AND CONCLUSIONS

The following points are made wiLh respect to the > 200 sample galaxies:

(1) The sample consists almost entirely of "IR normal" galaxies.
Included in the noise-limited sample are 31 E-SOa galaxies
(18% of the sample galaxies with known morphology).

(2) The derived IR properties are (nearly) normally-distributed,
with < Log [L(FIR)] > - 9.8 Le , < [L(FIR)/L(B)] > - 0.8, and
< Log [S(l00pm)/S(60pm)] > - 0.4. None of the galaxies has Log
[L(FIR)] > 11.0@. Only one, the distorted double system NGC 3808
(VV 300) in A1367, has a FIR-to-blue luminosity ratio > 10.

(3) 12% of the galaxies with known morphology are classified as
peculiar, disturbed, interacting, etc. Clearly, the tidally-induced
disruption of a galaxy is not a necessary condition for FIR emission.
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(4) Under the assumption that dust emissivity is proportional to
frequency, the mean FIR color temperature is 30-35 K, with no
variation seen among different spiral types. There is no way
to tell if this is an integrated temperature due to the two
components suggested by de Jong et al. (1984).

(5) There is NO significant correlation between derived IR proper-
ties and either projected Abell radius or, more importantly, HI
deficiency.

(6) The absence of IR luminous galaxies leads us to conclude that if
star formation is stimulated by the interaction of cluster galaxies
with the ICM or the general cluster environment, it occurs at a
negligible rate or over a time scale that is very small when compared
with that of determinable HI gas deficiency.

This study was partially supported by NASA grant NAS7-918 and by the
National Astronomy and Ionosphere Center, operated by Cornell University
under contract with the National Science Foundation.
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PRESENT STAR FORMATION IN SPIRALS OF THE VIRGO CLUSTER

B. GUIDERDONI
Institut d'Astrophysique

98 bis, Bd Araqo, F-75014 PARIS

ABSTRACT. From a study of spiral qalaxies in the Virqo Cluster (VC), it is shown
that ROD anemics with smooth arms and no siqn of present formation Af (massive)
stars have HI surface densities below a threshold value of 2 to 5x1fl atom cm- .
This value is very consistent with predictions of theoretical models. It is
likely that the HI disks of VC HI-deficient Rnnn anemics have been deeply affec-
ted by ram pressure strinninq in the qaseous intraclister medium, while Vr HI-
deficient RDO0 spirals have been only perinherally strinped.

1. RDnn ANEMICS IN THE VIRGO CLUSTER

The anemics of the RDOO classification introduced by Van den Berqh, 1976,
are smooth-arms d'.. galaxies with no "knots" characterizing HII reqions and O0
associations. Consequently they have a low present star formation rate of (at
least) massive stars. Since most RODO anemics are assigned RSA type Sa (Sandaqe
and Tammann, 1981, Bothun and Sullivan, 1980) and since they do exist in the
field, anemics might be simply the normal transition stage of the Hubble sequence
between spirals which actively form stars and lenticulars (Sandaqe, 1983). On the
other hand, since rich clusters actually have a large population of smooth-arms,
faint disks (Wirth and Gallaqher, 1980), anemics might be a staqe of the evolu-
tion of spirals after interactions with an aggressive cluster envirnnment (Van
den Berqh, 1976, Strom and Strom, 1978).

Guiderdoni and Rocca-Volmeranqe, 1985 (hereafter GRV), studied the observa-
tional properties of 107 spirals and irregulars (SO/a to Im, that is 0 4 T 4 10
accordinq to de Vaucouleurs et al., 1976, RC2) in the VC, from a compilation of
HI and photometric data. Among this sample, 38 galaxies have a RODO class from
Van den Rerqh, 1976, or Giovanardi et al., 1983: 24 are anemics (A or Sn, Sn/A,
A ?, A/S) and 14 are normal, "healthy" spirals (S): Guiderdoni, 1986, studied the
prn-ertio- -f these objects and some results are hereafter summarized.

2. EVIDENCE FOR A THRESHOLn IN STAR FORMATION PROCESSFE

It is well known that spiral galaxies in Ihe VC are HI-deficient relative
to referencecounterparts with the same RC2 -ni noloqical type and optical surface
(Davies and Lewis, 1973, Chamaraux et al., 1980, GRV). The deficiency parameter
is here Def(qd) = (<Ina q 1>T - log q.)/oa. q4 is t~e ratio of HI mass to optical
surface inside the B-isophote PR = 25.0 maq arcsec- and the means <log cH>T and
dispersions aT are computed in GRV at fixed RC2 morphological type T from a
reference, "field" sample.

It is hereafter shown that HI-deficient ROOD spirals and anemics have diffe-
rent HI surface densities in the central regions of their disks. Giovanardi et

Carol J. Lonsdale Persson (Edior)
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al., 1983, gave HI diameters at 1/3 x central peak and the derived HI surface
densities H =.MH / 1 DH4  closely approximate the HI surface densities in the
central sqions of ýhe disks. For 13 anemics, <loq ZH> = -0.43 t 0.11 (EH =
2.2 x 10 2 atom cm-2) while for 10 RDDO spirals, <loq TH> = 0.26 ± 0.06 (EH =
1.1 x 10 atom cm- ). Fiqure 1 readily shows that the HI surface densities of
RDDO spirals are always hiqher than those of anemics, whatever the deficiency may
be The separation value between the two RI)fO classes corresponds to FH = 6.0 x
10 atom cm-

20 2
Bosma, 1981, qave HI diameter DH 5 at the isophote 5 x 10 atom cm- . For

17 spirals, <nH 5 /n?5> = 1.64. Similrly, lentifulars mapped at X 21 cm have disk
column densities lower than 5 x 10 atom cm- (Sancisi, 1983). So no formation
of (at least) massive stars is expected for this value of HI surface density.
Thus the qlobal star formation is a threshold process, with a requlatinq para-
meter stronqly related to

Two theoretical models of star formation predict the existence of such a
threshold related to the HI surface density (Elmeqreen, 1979 and Seiden, 1983;
Dopita, 1985). Guiderdoni, 1986. showed that both models lead to numerical values
of the threshold = 2 to 5 x 10 atom cm-, in remarkable aqreement with the ob-
servational results.

1 I I I , I, I I I ,I I I II I , I I l I, , I I I,

A A

A AA A

ALAA A
0

00
0 0 o-

qH

o0 0

-1 0

-A RDDO Spiral

-0 RODO Anamic
-2 1 1 , 1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a

-1 -0.5 0 0.5 1 1.5 2

Def (9H

Fiqure 1 - HI surface density loq 41 (in 10- q cm- 2) versus deficiency
parameter Def(q.1 ). See text for definitions. Triangles =RDDO
spirals. Squares = RDDO anemics.
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3. THE FATE OF SPIRAL GALAXIES IN THE VIRGO CLUSTER

There is a now qood evidence that in the VC as well as in some other
clusters, the HI disks are altered by ram pressure strippinq (and evaporation)
in the qaseous intracluster medium (see refe ces in Guiderdoni, 1986). It
appears in figure 2 that RODO spirals and aneics have been affected by the
stripping in a different way. The inner disk value log EH for RDDO spirals does
not depend on Def(cH), supporting an effective stripping only in the peripheral
reqions. As a matter of fact, figure 2 shows that Dr/D 25 well correlates with
Def(oH). On the contrary, the inner disk value log F" for anemics roughly depends
on Def(aH while DH /D 0 25 does not depend on Def(cll). That seems to support a
stripping occurring in the whole disk. So the present HI disks of VC anemics
might originate from stellar ejecta or conversion of molecular gas into atomic
gas.

' " ' I 'I ' ' F I ' i ' ' ' I ' ' I ' ' '

2.2
0

0
1.8 -]

0
Lo 1.4 A

AA

1.0 0 O

AA A A 0

06 A R DDO SpiralAA0

0 RDDO Anemic
0.2 1 1 S l I I --

-1 -0.5 0 0.5 1 1.5 2

Def (0-H)

Fiqure 2 - HI/optical diameter ratio DH/D 0 25 versus deficiency parameter flef(qoH).
See text for definitions. Trianqles = RI))n spirals. Squares = RDO
anemics.
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Molecular Gas and Star Formation in HI-Deficient Virgo Cluster Galaxies

Jeffrey D. Kenney and Judith S. Young
Department of Physics and Astronomy

University of Massachusetts
Amherst, Massachusetts 01003

ABSTRACT Mapping of the CO emission line in 42 Virgo cluster galaxies reveals
that the molecular gas contents and distributions are roughly normal in severely
HI-deficient Virgo spirals. The survival of the molecular component mitigates the
impact of the HI-stripping on star formation and subsequent galactic evolution.
For spirals which are deficient in HI by a factor of 10, far-infrared, Ha line,
and non-thermal radio continuum luminosities are lower by no more than a factor of
2. The fact that the inner galactic disks are stripped of HI, while CO is normal,
suggests that the lifetime of the molecular phase is -109 years in the inner
regions of luminous spirals.

1. INTRODUCTION & OBSERVATIONS

Many spiral galaxies in the Virgo cluster have far less atomic gas (HI) than
typical isolated spirals, probably because the galactic atomic gas is stripped
away as the galaxies rush through the intracluster gas surrounding M87 (for a
review, see Haynes, Giovanelli, and Chincarini 1984). Since many of these
galaxies appear to have lost over 90% of their original HI supply, the evolution
of Virgo galaxies has unquestionably been altered to some degree by the harsh
cluster environment (e.g. Kennicutt 1983). However, the fate of star formation in
HI-deficient galaxies depends critically on the response of the molecular gas to
the HI-stripping event: in luminous spirals, molecular gas is a significant frac-
tion of the total interstellar gas mass, and is the component of the interstellar
medium out of which stars form.

To determine the fate of molecular gas in HI-deficient galaxies, we have
mapped CO(J=I+O) emission in 42 Virgo spirals with the 14-meter telescope of the
Five College Radio Astronomy Observatory (HPBW=45"). All Sa-Sm galaxies brighter
than BTO=12.0 in a 16*x16° field centered on M87 were surveyed in 3-9 positions
along the major axis. Of the 42 galaxies surveyed, 33 were detected in at least
one position. Both the radial distribution of CO emission and the total CO flux
have been determined from the observations by modeling the sources to correct for
inclination and source-beam coupling. Results for a subset of the present sample,
focussing on the normal CO emission in the HI-deficient galaxies, have been
published elsewhere (Kenney and Young 1985, 1986). In this paper, we concentrate
on the relationship of the gas content to the present star formation in the
HI-deficient Virgo spirals.

2. RESULTS

2.1. CO and Tracers of Star Formation vs. HI Deficiency

As a measure of the HI content of Virgo galaxies, we employ the HI deficiency

Carol J. Lonsdalk Persson (Editor)
Star Formation in Galaxies 287
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HI-DEFICIENT VIRGO SPIRALS

parameter, as formulated by Giovanelli and Haynes (1983). Its definition is:
HI def = log[M(HI expected)/M(HI actual)], where M(HI expected) is the HI mass of
a typical isolated galaxy of the same morphological type and optical diameter.
The HI deficiency is a logarithmic ratio, so that HI def = 0 (±0.3) denotes a nor-
mal HI content, and HI def = 1.0 denotes a galaxy with 10 times less HI than nor-
mal. In Figure 1, the HI deficiency is compared with global measures of CO
emission and three tracers of current star formation. In order to compensate for
the range in galaxy masses, we normalize these quantities by the blue optical
luminosity.

Figure la shows that the CO luminosities of the HI-deficient galaxies are
roughly normal, since the LCO/LB ratios are similar for the HI-normal and severely
HI-deficient galaxies. Further discussions of the CO luminosities and distribu-
tions in Virgo spirals, including comparisons with non-Virgo spirals, are pre-
sented in Kenney and Young (1985, 1986). Stark et al. (1986) also find naJrmal CO
emission in Virgo spirals. Throughout this paper, the H2 mass is assumed to be
proportional to the CO luminosity (a(Hi) - 3.9 fTR(CO)dv Mopc- 2 ; Dickman, Snell,
and Schloerb 1986). Although the ' 2 CO(J=1+O) line is generally optically thick,
the fact that more massive molecular clouds have larger linewidths (at least in
our galaxy, e.g. Sanders, Scoville, and Solomon 1985) allows the use of CO
emission as a valid tracer of molecular mass. The CO+H 2 conversion does depend
linearly on the mean gas temperature (and weakly on the mean gas density and the
cloud mass spectrum). However, we find that the S60um/S1OOum ratios (a measure of
dust temperature) are uncorrelated with HI deficiency. Thus, it is unlikely that
the CO H2 conversion is significantly different in the HI-deficient galaxies.

Figures lb and 1c show that the far-infrared and 1.4 GHz radio continuum lumi-
nosities are not strongly correlated with HI deficiency. Figure ld indicates some
degree of correlation between HI deficiency and Ha luminosity for Virgo Sc's, as
discovered previously by Kennicutt (1983). However, the maximum slope in any of
these relations, of -0.32 in the log, means that galaxies which are HI-deficient
by a factor of 10 are deficient in current star formation by a maximum of a factor
of 2. We argue below that this is due to the survival of the molecular component.

2.2 Radial Distributions of Gas, New Stars and Old Stars

That the survival of H2 is responsible for maintaining high global rates of
star formation despite the severe HI deficiencies is elucidated by the radial
distributions in Figure 2. There are 2 features of the radial distributions which
are worth emphasizing: 1) In all galaxies, the distributions of CO, HII regions,
and radio continuum emission are similar. This demonstrates that star' formation
occurs where the molecular gas exists. 2) In galaxies with normal amounts of HI,
the surface densities of HI and H2 are typically equal at some radius. In the
severely HI-deficient spirals, the surface density of HI is significantly below
that of H2 over the entire region where CO is detected.

One reason that the molecular gas has resisted removal, while the atomic gas
has not, is that the HI and H2 generally have such different distributions. The
gravitational force per unit area binding a gas cloud to a galactic disk is
approximately 2 lrGoToT(R)Ogas, where Ogas is the gas mass surface density, and
OTOT(R) is the total mass surface density, which is a function of galactocentric
radius R. Typically, a large fraction of a galaxy's molecular gas resides in the
inner galaxy, where OTOT(R) is large. Most of the HI exists in the outer galaxy,
and thus is more easily removed, since oTOT(R) is smaller.
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HI-DFICIEN'r VIRGO SPIRALS

The greater column density of molecular clouds (and corresponding greater
saas) is the second property of molecular gas which makes it more difficult to
sarip than atomic gas. This property is relevant, since even the inner regions of
the Virgo galaxies have less HI, as shown in Figure 3a. This figure displays the
(global) HI deficiency vs. the mean HI surface density over the inner half of the
optical disk, normalized to the typical value for a more isolated galaxy of the
same type (Wamels 1986). The slope of this relation, -0.38 in the log, means
that galaxies which are globally HI-deficient by a factor of 10, are HI-deficient
in the inner galaxy by a factor of -2-3. Thus even the inner galaxy, where the
bulk of the molecular gas exists, has been stripped of atomic gas. Figure 3b
shows explicitly that the M(HI)/M(H 2 ) ratio is significantly lower over the region
where CO is detected (which is typically 0 /4) in the HI-deficient spirals. The
slope of this relation, -0.50 in the log, 7ndicates that the inner galaxy HI defi-
ciency is the same (within the uncertainties) whether measured with respect to the
HI in isolated galaxies, or with respect to the molecular gas.

2.3 The Long Lifetime of the Molecular Gas Phase

While perhaps unsurprising that the dense H2 has survived the stripping, it is
significant that the molecular gas has not yet responded to the atomic gas remo-
val. The large number of Virgo galaxies with small HI/H 2 ratios suggests that the
molecular gas has not responded during a cluster crossing time (-10 years), which
is approximately how long the stripping events have been going on.

Inasmuch as the HI-deficient Virgo galaxies can be considered once-normal
spirals subjected to modification in a cluster 'laboratory', we may conclude that
the molecular phase is long-lived in the inner disks of all luminous
(non-starburst) spiral galaxies. Energetic events associated with star formation

.5 I"I ... II . I I .I II. I 1 0'

0 0 0 0P . •

S• o . 0 * • c

0 0 0 0

Virgo Cluster Virgo Cluster 0 0 0
by anl goloniess dpes -0,38 jr -O.68 - I l galaxies, diope--0.52 r -- 0.82
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Figure 3. (a) Mean HI surface density for Virgo spirals over the inner half of the
optical disk (out to a radius of 0 /4, where Do is the optical diameter from the
RC2), nomalized to the typical value for a more isolated galaxy of the same type
(Warmels 1986), vs. HI deficiency. (b) HI/H 2 mass ratio, over the region where
CO is detected, vs. HI deficiency.
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undoubtedly act to partly ionize and disrupt molecular clouds, but the conversion
of H2 back into HI appears to be an inefficient process in these galaxies.
Apparently, once gas enters the molecular phase in the inner regions of luminous
spiral galaxies, it tends to remain molecular for -109 years. The predominant
disruptive influence of star formation on molecular clouds may be to break apart
the cloud into smaller fragments.

3. CONCLUSIONS

1) CO fluxes and distributions are roughly normal in HI-deficient Virgo cluster
spirals. This is easily understood, since molecular clouds are difficult to
strip. Two charactersistics of molecular gas are responsible for its
survival: its high surface density (with respect to most of the HI), and its
location deep in the gravitational well of the galaxy.

2) The survival of the molecular component mitigates the impact of HI removal
on star formation and subsequent galactic evolution. In galaxies which are
globally HI-deficient by a factor of 10, global tracers of star formation
(FIR, radio continuum, Ha) are lower by no more than a factor of 2.

3) Atomic gas has been stripped even in the inner galaxy, where the molecular
gas resides. Molecular gas has not significantly responded to the HI
removal in over a cluster crossing time, or ~109 years. This implies that
gas in the inner regions of luminous spirals does not cycle rapidly between
the atomic and molecular phases. Instead, once a typical nucleon enters the
molecular phase, it remains molecular for -109 years.
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STAR FOCOMTN RATES AS A FUNCTICO OF GALAXY MASS
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ABSTRACT

Several groups have found correlations between the colors and absolute
magnitudes of spiral galaxies. Using optical and/or near IR (1.6 micron) colors,
they find that lower luminosity spirals are systematically bluer than higher
luminosity spirals. I have used IRAS far IR luminosities to investigate the
suggestion that one prime cause of these color- absolute magnitude correlations
is a systematic variation with galaxy mass of the current star formation rate
(SiR) per unit mass. To the extent that the IRAS fluxes actually measure disk
SFR, I find NO correlation of SFR/ unit mass and galaxy mass. Other possible
explanationsEf the color- absolute mag. correlations are discussed, as well as
caveats on the use of IRAS fluxes as a means of comparing SFRs in galaxies of
differing mass.

INTROUCTION

Several groups (Tully, Mould, and Aaronson 1982; hereafter THA; Wyse 1982,
and Visvanathan 1981) have reported finding color- absolute magnitude
correlations for spiral galaxies. All find that lower luminosity galaxies are
bluer than higher luminosity galaxies. The most striking relation is shown by
TM, who plot the optical minus infrared color BT(b,i)- H(-0.5) versus the HI
line width. Their B magniiiuIis a total magnitude corrected for Galactic
absorption and internal galaxy absorption (galaxy tilt). Their H (1.6 micron)
magnitude encompasses a diameter corresponding to about 1/3 the B-25 mag/sq.
arcsec isophotal diameter. This B-H color changes by almost 2 magnitudes as W,
the HI line width corrected for galaxy inclination, ranges from 200 to 600 kn/sec.
uR, postulate that much of this effect is caused by a higher star formation rate
(SIR) per unit mass in lower mass galaxies.

I am studying the role of SFR in explaining the B-H relation for spirals
using IRAS far infrared fluxes. The rationale, of course, is that the far IR
flux might be a good measure of the current SFR for massive stars, as the massive
stars are presumably the heating source for the dust radiating at 60-100 microns.

SAMPLE AND ANALYSIS

My sample is similar to that in TMA. The TKA sample was drawn from "A
Catalog of Infrared magnitudes and HI velocity Widths for Nearby Galaxies"
(Aaronson et al 1982, hereafter the "HI CATALOG").

The primary sample consists of all galaxies in the HI CATALOG meeting the
following criteria:

1) only galaxies smaller than 3.5 arcmin diameter were included , as the
fluxes in the Catalogd Galaxies in the IRA Sury (Lonsdale et al 1985) for
larger galaxies may be seriously under-eitimated
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Star Formadon in Galades 293



W. ROMANISHIN

2) Galaxies with inclinations larger than 800 were ignored, to avoid the
worst of the possible inclination dependent detection problems (Burstein and
Lebofsky 1986).

Approximately 120 galaxies from the HI CATALOG meet these 2 criteria. Of
these, about 80% had positive detections at 60 and 100 microns listed in
Cataloged Galaxies in the IRAS Su (Lonsdale et al, 1985).

A more restricted sample was also chosen, for which good B magnitudes could
be determined. These were chosen from the galaxies meeting 1) and 2) which also:

3) Had BT magnitudes listed in the Second Reference Catalog (RC2) or had
Zwicky magnitudes which were converted to BT estimates usingthe procedure in
Auman, Hickson, and Fahlman (1982).

4) Had Galactic latitude greater than 300, following TMA.

Of this restricted sample of 88 galaxies, 76% had positive IRAS 60 and 100
micron detctions.

Far IR luminosities (LFIR) were found using LOG(FIR) listed in Catal
Galaxies in the IRAS Survey (Lonadale et al 1985) and galaxy distances from the
HI MW4O.. sie-- sta'-e- are based on a Virgocentric infall model. I assumed
a value of 15.7 MPC for the distance to Virgo.

Galaxy masses (Mgal) were derived from the simple relation (Faber and
Gallagher 1979)

Mgal'- R (&V)2 /G

where R is the galaxy radius (derived from the diameters in the HI CAA ) and

AV is an estimate of the rotational velocity (derived from the HI line width).

RESULTS AND DISCUSSION

In Figure 1 I have plotted Log(LFIiVMgal) , which should be a measure of the
SFR per unit mass, against the galaxy mass. This figure shows NO OBVIOUS
CORRELATION OF SFRiUNIT MASS WITH MASS. Notice that the scatter is large. If
there is any trend, it is actually for loiwr mass galaxies to have a lower
Log(LFIR/PIgal) than higher mass galaxies. However, this is not statisiIailly
significant with the present sample.

The LFIR/ blue luminosity ratios for this sample are similar to the lower to
middle range found for Shapley- Ames spirals (de Jong et al 1984, ApJ 278, L67).
This implies that galaxies in the present sample are not unusually active.

Several points mist be kept in mind:

1) If lower mass, lower metallicity galaxies have a lower dust mass/ total
mass ratio, LFIR might not be a good measure of current SFR. Arguing against the
importance of this effect is the fact that LFIR does seem to measure SFR in small
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FIG=• 1. Plot of Log(Far IR Luminosity / Galaxy Mass) vs. Log (Galaxy
malss). Luminosity and mass are measured in Solar units.

blue irregular galaxies (Hunter, Gillett, Gallagher, Rice and Low 1986).

2) There may be stron conatmination of the disk emission by nuclear sources
(Burstein and Lebofsky 1986). 1 hope that analysis of 1RhS pointed observations
Of nearby galaxies will settle this question.

3) Possible problems with overesdmnation of the flux for sources near the
survey limits have not been dealt with yet.

4) Galaxies with upper limits to LOG(FIR) have not been included. There is
a slight trend for the lower mass galaxies to have a lower detection rate. Thus,
proper inclusion of upper limit data might actually accentuate any tendency for
lower mass galaxies to have lower SFIV unit mass.

Mhat are nowe other possible explanations for the (B-H)- absolute magnitude
relation? Some possibilities include:

1) GNU=• AG- Lower luminosity galaxies might well be younger (in sow
sense) than higher mass galaxies. if this is true, they might have far less of

the old NPopulation11 campont which is red in (B-H). (see discussion in
Bothun, f~twaihin, Strom and Strom 1984).

295

S. . . .. .. ,=,=, , ,, , ,4 I I i



W. ROMANISHIN

2) IMUMO M OF M11 POPULATION TO H(-0.5) - The manner in which the H
iagnitude is measured (to a fraction of the standard isophotal diameter)
emphasizes the contribution from the center of a galaxy. This accentuates the
importance of any old (red) bulge population. If bulge/ total galaxy population
increases with galaxy mass (on average) this could help explain the correlation.
(Note however that TM find little type dependence of the correlation, arguing
against the importance of this poiunt.)

3) SYSTUMflC MEAL ADUNDRNCE VARIATIONS- TKA do point out the possibility
of a contribution of a change in stellar metal abundance with galaxy luminosity
to the (B-H)-W correlation. Perhaps this is more important than previously
thought (see Bothun et al 1984 for a discussion of systematic metal abundances in
spirals).

4) EXTINCTION VARIATIONS - If lower luminosity spirals have less dust, they
will tend to be bluer optically simply because they have lower internal
extinction.

Possibly all these factors play some role in the color- absolute magnitude
relation.
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Global Properties of the Nearby Spiral H101
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and
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1M101 (NOC 5157) is a classic So I spiral galaxy located
sufficiently nearby, 6.8 I1po, (Aaronson, Mould and Huohra 1980)
that its structure can be studied even with the coarse angular
resolution of IRAS. This work addresses the global infrared
properties of 14101 including the radial dependence of its
infrared emission.

IRAS pointed observations were combined to construct maps
of M101 at 12, 25, 60 and 100 micron. The processing included
subtraction of a linear baseline from each detector stream to
remove residual electronic offsets and zodiacal emission (Rice
et al. 1986). The emission from the galaxy was integrated using
a circular area of 28' diameter to obtain the integrated fluxes
of 1M101 presented in Table 1. The flux densities include small
color correction factors derived by fitting an intrinsic source
spectrum consisting of the sun of Planok functions at two
temperatures times an emissivity proportional to frequency. The
best fit temperatures are 200 K and 31 K.

Table 1. Global Properties of K101

A. Observations 1  B. Derived Properties

f,(12) 9 ± 2 Jy F(IR) 2  5.7-12 W -2
f,(25) 12 + 2 Jy L(12100- um) 1.3110 Lo
zw(60) 95 - 15 Jy IR/B 0.40
f,(100) 260 + 40 Jy L(0.15-100 us) 1.0311 Lo

Notes: 1)Color-correoted values measured in a 28' diameter
aperture; 2)flux between 40 and 120 micron as defined by
Helou et al 1985; 3) see text.

A spectrum of the galaxy from the UV to the far-infrared is
presented in Fig. 1. The UV data are from Code and Welch (1982),
the visible results from Okamura et al. (1976) and the near IR
from ilmegreen (1980) and all have been oorrected for reddening
(AvoO.17 nag) within our galaxy. In making Figure 1 a geometric
correction factor was applied to the data to account for the
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Figure 1. Spectral energy distribution of 4101 from UV to far
infrared wavelengths.

fact that observations at the various wavelengths were obtained
with different sized apertures. This factor was based on
extending an exponential disk at each wavelength to infinite
radius.

The determination of the radial dependence of the
infrared emission is complicated by the fact that the size of
the galaxy (C101) is comparable to the resolution of the IRAS
detectors (about 0.75'x4.51 at 12 and 25 micron, 1.5'x1.5' at 60
micron and 3tx5' at 100 micron) and because a number of giant
II1 regions are bright at these wavelengths. The following
procedure was invoked to separate these two components. Data
from scans which crossed the galaxy in the same direction were
fitted to a model consisting of an axisymmetrio exponential disk
of amplitude I and scale length h convolved with the detector
response; data from the vicinity of the HI1 regions were
excluded. Fits were made in the scan direction at a number of
different position angles and the results averaged. Table 2
lists the properties of the M101 disk.
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Table 2. The H101 Disk

Vavelength Amplitude Scale Length Integrated Model
Disk
(its) (NJy/sr) C') (kpo) (D>>28')(Jy)
12 3.1 3.0±0.2 5.9+0• 14
25 3•4 3.2+0.2 6.3_40. 18
60 18 3-4_04 6.7._0.8 110
100 45 3.4-0.5 65.71.0 280

CO 3.61
Visual Light 2.2-2.6

Notes: 1) Solomon *t al. 1982.

Figure 2 shows a 25 micron map of M4101 before and after
subtraction of exponential disks. While the fitting procedure is
not yet perfect, as evidenced by the negative parts of the maps,
the procedure enables one to detect five of the major HIl
regions in the galaxy, N5447, N5455, N5461, N5462 and N5471.
Even preliminary estimates of the brightnesses of the HII
regions allow one to state that the emission from 1M101 is
dominated its disk. The Influence of the major optical HI1
regions is negligible at 12 and 25 micron and less than 20% of
the total at 60 and 100 micron.

Overall Properties

1M101 is similar to other spirals detected by IReS with an
infrared luminosity and 12/25 and 60/100 micron colors
consistent with those of a galaxy with modest amounts of star
formation (Helou, this conference). A number of authors have
used the IR to blue luminosity ratio, defined as Vfr(80)/Of#(B)
where f*(80) is the average of the 60 and 100 micron flux
densities, as a measure of infrared activity. M101 has an
IR/blue ratio of 0.4, similar to that inferred for our own
galaxy and close to the median for spirals detected by IRAS
(Soifer et al. 1984).

OrIai orf Ape nflrared umssion

M101 is an average spiral galaxy and it is therefore
important to understand the nature of its infrared emission
meohanism and to distinguish it from the more luminous infrared
galaxies. We argue that much of the infrared emission from 1M101
originates in the neutral medium, and not in the ionized
conponent.

First, the ratio of 12 to 25 micron flux densities (Table
3) Implies a temperature of 200 K and, as shown by the scale
lengths in Table 2, Is roughly constant across the face of the
galaxy. This emission accounts for approximately 25% of the 12-
100 micron luminosity of the galaxy. The existence of large
amounts of hot, 200 K, material outside of HI regions cannot
be accounted for within the context of equilibrium heating of
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grains in the interstellar radiation field of the galaxy.
Further, the lack of a radial temperature gradient runs counter
to the expectation that, for equilibrium heating of dust, the
temperature in the disk should decrease as the radiation field
falls off with increasing radius.

Table 3. N101 Colors

M101 Disk Galactic Cirrus
log(fA(12)/fV(25)) -0.12 -0.2 to 0,1

log(fV(25)/fr( 6 0)) -0.92 -0.65+0.0
log(fV(60)/fV(100)) -0.341 -0.81+0.022

Notes: 1) Boulanger et al. 1985; 2) Weiland et al. 1986.

A solution to this problem may be found in the similarity
of the 12/25 micron color of the 14101 disk to that of the hot
cirrus found within our own galaxy (Boulanger, Baud and van
Albada 1985; Weiland et al. 1986). The warm Galactic cirrus has
been attributed to small (<10 Angstrom) grains, possibly
polyaromatic hydrocarbons (Puget, Leger and Boulanger 1985)
transiently heated by the absorption of single UV photons. In
this process the maximum temperature reached by a grain is
independent of the intensity of the radiation field; the
intensity of emergent spectrum, but not its shape, depends on
the input intensity. We suggest that the existence of large
amounts of 12 and 25 micron emission in the disk of M101 is due
to the existence of such small, stochastically heated grains.

The poorer spatial resolution of the 60 and 100 micron maps
makes it harder to separate the disk component from the HII
regions. The 60/100 micron color of the disk is considerably
hotter than that seen toward typical Galactic cirrus and may
partially be due to unresolved HII regions. However, not all of
the infrared emission can originate in HII regions. On the
basis of a catalog of 21 cm continuum observations of HII
regions in 14101 and the integrated intensity of the galaxy at
2.8 on (Klein and Emerson 1981), Viallefond (1986) has
estimated that about 100 mJy of the 21 cm emission from 14101 is
thermal. From this one calculate that the infrared excess (IRE)
of this disk exceeds 16, far higher than for typical HII regions
with values of 5 (Myers et al. 1986). Such a high IRE suggests
that predominantly non-ionizing photons, from A or later type
stars and not from OB stars, dominate the heating of the disk.
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EFFICIENT STAR FORMATION IN THE BRIGHT BAR OF M83

S.D. Lord, S.E. Strom, and J.S. Young
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ABSTRACr. We have detected the bright molecular bar in M83 stending out as a
100% enhancement of molecular emission with respect to the off-bar emission at
the same rafii. We compare the spatial variations in the star formation
efficiency, as traced by Ha emission and the surface density of the interstellar
gas, in M83 and M51. Both the central bar of M83 and the spiral arms of M51 are
regions characterized by high massive star formation rates. For M83, we ascribe
the fact that both the gas surface density and the star formation efficiency are
high to the hydrodynamics of the central region.

1. INTRODUCTION

In recent years, detailed molecular studies of nearby disk galaxies have
helped to identify the role played by the molecular cloud population in the
presence of spiral density waves and central bars. The detection of molecular
bars in optically barred and unbarred galaxies, such as IC342 (Lo et al. 1984),
NGC 6946 (Ball et al. 1985), NGC 1530 (Solomon 1985), and possibly NtC 4548
(Kenney 1986), demonstrates the propensity of this phenomena to occur. Here we
report the detection of a luminous molecular bar, extending 8 Kpc (assuming a
distance of 8.9 Mpc) in the nearby spiral M83 (SAB) and examine the galaxy's
star formation efficiency as traced by the Ha emission and gas surface density.
We compare our results to a similar study in the galaxy M51, and contrast the
efficiency of massive star formation in a bar and in spiral arms.

2. OBSERVATIONS

We have observed the grand design spiral galaxies M83 and M51 in the
(J-1+0) transition of CD using the 13.7 m telescope of the Five College Radio
Astronomy Observatory during 1984 to 1985. Emission was detected in 21
positions (HPBW - 45") for M83 and 57 positions for M51, with the observations
extending out to a radius of 2.6' in each galaxy. The observed positions
(spaced radially by 1 HPBW) and contours of integrated intensity are shown for
M83 in Filpre 1. We have compared the intensity of molecular emission in each
aperture with Ha intensities obtained from the photometric database of Talbot,
Jensen, and Dufour (1979). These data had been corrected for extinction by the
authors using their detailed UBVR color results and the Whitford reddening law.
Contours of Ha intensity are displayed in Figire 2, with the same spatial scale
as Fi1are 1. We have used the initial mass function (IMF) of Jensen, Talbot,
and Dufour (1981) to relate the Ha flux in each aperture to the star formation
rate, and have converted the CD emission to an H2 mass surface density (as per
Dickman et al. 1986). Likewise, for M51, we have used the calibrated H a data of
Kennicutt G-ee van der Hulst and Kennicutt, this volume), corrected with their
radial extinction estimate, to obtain the star formation rate in each aperture.
A Saltpeter IMF was choosen in this case, because it has been found to
consistently model the integrated colors of this galaxy (Kennicutt 1983). The
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Figure 1. The CO integrated Figure 2. The He flux in
intensity in M83. Points marks M83. The contour levels are
the aperture positions separated 23.5, 22.0, and 20.5 mag
45" (1 HPBW) apart. The contours
start at 15 K km s-1 and are arcsec-2. (Adapted from de
separated by 5 K km s-1 . Vaucouleurs, et al. 1983).
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FiguLe 3. The star formation efficiency for M83 and M51 plotted as a
function of galactic radius after azimuthal averages have been made.
The vertical scale shows the SFE for all stellar types. Considering the
relative freedom involved in choosing an IMF for each galaxy, we advise
caution, and hav placed a break in the axis. We do however conclude
that the massive star formation efficiency in M83 is a factor of 4
higher than in 451.
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star formation rates (SFRs) and star formation efficiencies (SFEs) have been
calculated for each aperture. Here the SFE is defined as the ratio of the star
formation rate in MO pc- 2 Gyr-1 to the total surface density of the ISM, o(HI) +
G(12), in %8 pc- 2 . In this sense, the SFE may be thought of as measuring the
reciprocal gas depletion time, measured in Gyr- 1 , given the current rate of star
formation and no gas recycling. The results are discussed in detail in Lord and
Young (1986) for 151, and Lord (1986) for M83, with the major results given
belao.

3. RESULTS

In Figure 2 it can be seen that the HII regions in M83 delineate its
central bar, the spiral arms, and the "cusp" regions where the inner arms
connect to the bar (see also Rumstey and Kaufman 1983). The Ha brightness in
this galaxy is very strong in comparison to other spiral galaxies, and about a
factor of 10 higher than that of M51 at comparable radii. Likewise, the CO
brightness in the barred inner region of M83 is strong (in molecular emission
this galaxy is among the brightest spiral galaxies known) and the emission is
seen to be clearly organized into a central bar (c.f. Sofue, this volume) as
well as a region at the end of the bar in the southwest, displaced about 30"
closer to the nucleus than the corresponding Ha feature (Figure 1). Dynamical
information is provided by our observations. The molecular isovelocity contours
show a weak S-shaped distortion in crossing the central bar, characteristic of
oval orbits in the presence of a bar potential, and the velocity dispersions of
the line profiles along the bar are found to be greater in general than those
measured off-bar. The bar of 183 lies nearly colinear with the major axis, so
our dispersion results are Just the opposite of the situation usually
encountered in unbarred disk galaxies, where the major axis profiles are the
narrowest due to the minimal projection of non-circular motions into the line of
sight. Our results for the M83 SPE calculations are presented as an azimuthal
average in Figure 3, with the star formation along the bar dominating the
result s.

In M51 we find an extremely high point-to-point spatial correlation between
the spiral pattern and regions exhibiting a high SFL This high efficiency is
manifested in the production of massive stars and HII regions in the absence of
any correspondingly large excess in the gas surface density. At any given
radius in this galaxy, the molecular surface density remains a constant in
azimuth to within about 40% while the Ha intensity makes 200% departures from a
mean value, if regions 45" (2.2 Kpc) in diameter are considered. However, if
the Ha and CO emission are averaged azimuthally, the star formation efficiency
is found to be a constant, SFE - 0.25 Gyr-I, as function of radius, as shown in
Figure 3.

Only in the region from R-1.5' to R-2.6' in M51 do we clearly see an
enhancement in molecular emission (of 80%) when crossing the spiral pattern, as
displayed in Figure 4. This is also the radius at which the HI surface density
begins to become an appreciable fraction of the molecular density, with
o(HI)/V(0 2 ) - 0.2, and increasing outward. The inclusion of the HI component in
the SPE calculation serves to maintain a constant SFE, as shown in Figure 3.
In M83 the HI contribution is negligible throughout the the area under
consideration (Allen et al. 1986).
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Figure 4a. Ha image of H51 showing the aperture positions (white) and the spiral
pattern. The Ho emission was smoothed to the resolution of the OD observations
and sampled at the same points for the analysis below.
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Figure 4b. CO emission, HG emission, and SPE for the annulus 1.5' <Ig~al < 2.'
The data were interpolated to give intensity as a function of position angle
relative to the spiral pattern in the plane of the galaxy, with arm crossings at
90° and 270°. The regions around the HIt coiplemas A and B stand out in
emission in both in HG and 0S.
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4. DISCJSSION AND CONCLUSIONS

What causes the molecular cloud population to form a bar in M83? It is,
most likely, the convergence of the oval streamlines in the gas motions thought
characteristic of barred spirals and evidenced dynamically in spectroscopic
studies. Of the hydrodynamic models for barred spirals we have considered, the
model of Roberts et al. (1979), seems favored by these results. This model,
incorporating a d-is-and spheroidal potential, manifests "shock focusing", where
disk material from both inner and outer regions tends to convarge at the ends
of the central bar in hook shapes that connect with the spiral pattern. The
convergence of gas streamlines can set up a shock front along the leading edge
of the arm and bar. We think that the molecular material at the southwest end
of the bar my have arrived there as a result of such focusing action.

In comparison to M83, M151 shows a constant SFE with radius in the disk, a
high efficiency on the arms, and an overall lack of molecular spiral structure.
The last result is in part an effect of the spatial resolution enploayed, since
Rydbeck, et al. (this volume), with finer resolution, find 20% on-arm
enhancemen-t-stypicaL Even so, the result still holds that the molecular cloud
population is largely ubiquitous. The dominant portion of the molecular
distribution is uniformly distributed in azimuth and monotonically falling-off
in radius. It scarcely resembles the Ha distribution, even when the latter is
smoothed to comparable resolution. We must therefore conclude that the
principle action of the spiral density wave in this galaxy is not in gathering
clouds, but triggering the star formation within them.
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Abstract. In this paper we compare the distribution of the atomic and ionized
hydrogen along the inner spiral arms of M51. As is the case in M83, the location
of both these phases of the interstellar medium with respect to the major dust
lanes suggests that molecular hydrogen is dissociated on kpc scales in active
star-forming regions, and that this dissociation process may strongly affect the
observed morphology of atomic hydrogen in spiral arms.

1. INTRODUCTION

Since the introduction of the notion of spiral density-waves by C.C. Lin
and F.H. Shu in the mid-1960's the gaseous spiral arms observed in galaxies have
been explained as shocked gas arising from the non-linear response of the
gaseous disk to a relatively weak density-wave disturbance in the gravitational
field of the old stellar disk (summarized e.g. in Shu 1982). In this picture the
shock is thought either to stimulate the formation of giant cloud complexes or
to cause the collapse of pre-existing clouds, eventually resulting in the
formation of new stars downstream from the the shock. Young, bright stars and
giant lII complexes are distributed like 'beads on a string' along the outer
edges of spiral arms. The position of the shock front is outlined by the dust
lanes, which thus represent the locus of highest (total) gas density. However,
in several cases, e.g. M81 (Visser 1980) and M83 (Allen et al. 1986), the
highest density of the atomic gas is observed to be shifted downstream with
respect to dust lanes. In the case of M83 the shift puts the atomic gas along
the same locus as the HII complexes. Visser has shown that such a shift could
arise from bean-smoothing, but we have ruled out this possibility in the case of
M83 (Allen et al. 1986). Ve suggest that, since no atomic and ionized gas is
observed at the position of the dust lane, the interstellar gas is apparently
mostly molecular there and remains molecular for some time downstream of the
shock. After the formation of sufficiently hot stars the molecular gas is
dissociated giving rise to the observed arm of atomic gas, or ionized yielding
giant HII complexes. In this scenario the correspondence between the ridge of
highest HI density and the 'string' of HII regions is thus explained quite
naturally.
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Ve have emphasized however that the region studied in 183 is exceptional in
that the displacements described are very clear. Our interpretation of this fact
is that, for this region, the density-wave streaming is vell-ordered enough to
allow the time sequence of star formation to be stretched out in space. Since
such large-scale ordered motions have been identified previously in M51
(Segalovitz 1976), we have obtained high resolution HI and He observations of
this galaxy.

2. OBSERVATIONS

High resolution HI observations of 451 were carried out using the
Vesterbork Synthesis Radio Telescope in a 2 x 12 hrs. observalion. The data have
been Hanning smoothed resulting in a resolution of 16.5 km s- , the 63 channels
spanning a total rangl in velocity of 520 km s- centered on the systemic
velocity of 440 km s- . The spatial resolution is 12" x 18" (at x 8). The data
shoved some moderate phase errors resulting in extra grating rings at 10', and
we are still in the process of removing these errors. The inner parts presented
appear to be unaffected by these problems, except possibly for a region close to
the nucleus. The continuum has been formed by averaging the channels free from
line emission. Subsequently the continuum-subtracted line channels have been
added using a cutoff of 3a. The resulting total HI map is shown in Figure 1,
with the contours representing -4, 4, 8, 14 and 20 yy/beam (4 mJy/beam a 3a;
for this resolution, 1 mJy/bean a 4.6 x 10 atoms/cm along the line of sight
through M51).

Hf observations were obtained using the TAURUS imaging Fabry-Pdrot
spectrometer (Atherton et al. 1982) attached to the IIaac Newton telescope on La
Palma. The total velocity range observed is 400 km s- over 72 channels, the
resulting resolution in velocity is 15 km s- , sampling slightly less than 3
channels per resolution element. Again the continuum was formed by averaging
line-free channels and a total He map was obtained adding the
continuum-subtracted line channels using a cutoff of 3a. The distribution of the
He emission in the inner region of 451 is shown in Figure 2, where the contours
are -250, 250, 500, 1000, 2000, 4000, and 6250 in units which scale linearly
with the number of photons observed. This map and a velocity integrated map of
the original cube shoving also the continuum sources are in excellent agreement
with broad-band He observations of M51 by Kennicutt (1986, private
communication). Ve have used his observations and positions of reference sources
from Mathewson et al. (1972) to obtain a position calibration of the TAURUS
observation accurate to approximately 1". Figure 3 shows the He distribution of
Figure 2 smoothed to the resolution of the HI observation (Figure 1).
The thick lines in Figures 1,2 and 3 represent the major dust lanes along the
inner spiral arms of M51, obtained from overlaying a large scale optical
photograph with the He observations.
Ve emphasize that a more thorough analysis of both the Ho and HI data is in
progress, using more advanced methods of treating the data.
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Fig. 1 HI density distribution in
the central region of K(51.
contours: -4, 4 (-3o), 8, 14, and
20 uJy/beam.
The beau (12"x18") is shown in the
bottom left corner. The thick contours
indicate the main dust lanes.

3. DISCUSSION

Although the separation is not as pronounced as in M83, comparing Figure 1
with Figures 2 and 3 shows that the ridge of highest HI density is more closely
coincident with the He distribution than with the dust lanes, in particular
along the inner northern arm. This suggests that in the inner parts of M51, as
in K83, the interstellar gas is molecular at the position of the shock and
remains molecular downstream of the shock until the newly formed stars
dissociate or ionize the molecular gas on a kpc scale. Furthermore, our
observations indicate that this dissociation process may significantly affect
the BI morphology in the inner regions of galaxies and that the HI clouds need
not always have key role as precursors of molecular clouds.

More so than in M83, the observed distribution of the ionized gas is likely

to be affected by obscuration effects. High resolution radio continuum
observations at several frequencies have been obtained which should be free of
obscuration, allowing a precise indication of the location of both the thermal
(EIl regions) and the non-thermal (shock region) radio continuum (van der Eulst
1986, private comunication).
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STRUCTURE AND KINEMATICS OF THE MOLECULAR SPIRAL ARMS IN M51
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S-439 00 Onsala, Sweden

Mapping of the CO(1-0) emission from the spiral galaxy M51 has been made with
the Onsala 20 m antenna (HPBW-33"). The observations show that the emission is
considerably enhanced - above the background disk distribution - in spiral arms
which appear to originate as intense ridges of emission about 1 kpc from the
nucleus (assuming a distance of 9.6 kpc). Inside this region there is virtually
no emission (Rydbeck et al., 1985b; cf. also the FIR results by Lester et al.,
1986). Arm-interarm ratios (defined as in Rydbeck et al., 1985b) along the obser-
ved arm (arm r,p in Tully, 1974, Fig. 10), vary between 1.1 and 2.5, with an
average of about 1.4. The beam deconvolved arm-interarm contrasts are likely to
be higher, however. The excess emission along the arm is broken up into large
scale patches of up to a few kpc in size. This suggezts that the "on-arm" molecu-
lar clouds are assembled into giant complexes with hydrogen masses estimated to
be up to 10 M , using the Young and Scoville (1982) "empirical" conversion
factor of inte~rated CO to H2 mass. Cloud parameters could be very different in
this case, however, making the determination rather uncertain.

One of the main objectives for the 1986 observations was to study the variations
of the tangential velocity component of molecular gas across a spiral arm. The
radial velocity component was studied in Rydbeck et al. (1985a,b) whe.e it was
found to have a velocity shift similar to that predicted by density wave theory.
Note that tangential and radial velocities are observed along the major and minor
axis, respectively.

The present (1986) observations of the inner southern spiral arm of M51 ( @on-
taining the southern part of the major axis, its position angle being -10 )
show that also the tangential velocity component behaves in a way which con-
forms with density wave theory. As one crosses the spiral arm radially outwards
(see Figure) the tangential velocity first displays a gradual decrease followed
by a sudden increase the velocity slowly decreases again. As was found for
the radial velocity component the sudden change in tangential velocity is
rather large (50-70 km sa-, depending on the inclination) compared to what is
usually expected from density wave models (030 km s-1, Roberts and Hausman, 1984,
cf. also numerical simulations of tidal interactions by Sundelius et al., 1986).
It thus appears that the density wave in M51 is comparatively strong.

Looking more closely at the rapid velocity change in the position-velocity maps,
we find that going radially outwards this velocity shift, in most cases appears
as a new component spatially overlapping the old one, while in general there
appear to be less clouds with "intermediate" velocities. In some cases, however,
e.g. in crossing the largest cloud complex (around position 8,8 in Rydbeck et al.,
1985a, or near position p in Tully, 1974, Fig. 10), the clouds appear to evenly
fill the whole velocity gap (c.f. Figure 12a in Rydbeck et al., 1985b), but still
overlap spatially.
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From the structure of our position-velocity maps it seems that these results
cannot be explained by beam or sidelobe effects. Higher resolution maps of some
of these arm-regions would be highly desirable. Assuming that our interpretation
above is correct it seems that fairly violent cloud-cloud collisions may occur
.in the arm regions. The occurance of high velocity cloud-cloud collisions may
be important to the formation of massive stars in the spiral arms.

We have compared the molecular arms with the Ha ionized gas arms of Tully (1974)
and find that the ionized gas appears to have its maximum intensity slightly
outside the molecular arm. This apparent phase shift may be due to extinction
by dust. However, the molecular gas seems to have a systematically lower velocity
than the ionized gas (Rydbeck et al., 1985b, Fig. 9), so a correlation between
the arm maxima for the molecular and the ionized gas is not obvious, though
the most intense non-central Ha emission does occur on the north-eastern mole-
cular cloud complex.

Onsala Space Observatory is operated by Chalmers University of Technology with
financial support from the Swedish Natural Science Research Council (NFR).
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MODELLING THE WAS COLORS OF GALAX=ES

George Helou
I P A C. California Institute of Technology

ABSTRACT: A physical interpretation is proposed for the color-color diagram of
galaxies which are powered only by star formation. The colors of each galaxy result
iftm the combination of two components: cirrus-like emission from the neutral disk.
and warmer emission from regions directly involved in on-going star formation. This
approach to modelling the emission is based on dust properties, but independent
evidence for it is found in the relation between the color sequence and the
luminosity sequence. Implications of data and interpretation are discussed and
possible tests mentioned for the model.

1. INTRODUCTION

While still unfolding, the contribution of IRAS to extragalactic astronomy has
already attained remarkable proportions. Perhaps the most dramatic quantitative
expression of this contribution has been the staggering increase in the number of
objects accessible to study: from fewer than a hundred in the pre-IRAS era to about
20,000 detections in the Point Source Catalog (Helou 1986a), and the promise of at
least another 10.000 sources at the completion of the Faint Source Survey (which
will average the individual detector output from all survey scans before searching
for detections). Even though the spectral coverage of IRAS Is limited to four bands
(12. 28, 60 and 100 Mrm), and most galaxies are detected in only two of these bands
(00 and 100 yam). It Is the large number of objects that both demands and makes
possible a detailed Interpretation of the origin of the infrared flux. The starting
hypothesis, predating IRAS (Wynn-Williams 1982). that needs improvement is that far-
infrared emission is proportional to the rate of formation of massive young stars in
the system. Rowan-Robinson (in this volume, hereafter RR) reviews several attempts
at an improved interpretation, all of which try to decompose a galaxy's IRAS
emission into physically distinct components.

The present contribution summarizes (52) the model presented in Helou 1986b
(hereafter H86). and addresses In some detail (83) two specific aspects of that
model, namely the assumption of small optical depths in the infrared, and luminosity
constraints on the model. Implications and tests are reviewed briefly in 54. In
what follows objects whose emission is dominated or affected by a Seyfert or quasar-
like nucleus are excluded from the discussion, so the mid- and far-infrared emission
from all systems considered is mostly due to thermal radiation from interstellar
dust grains heated by starlight.

2. MODEL BUJMARY

A scatter diagram of R(60/100)=ffif(601m)/f1 (100pm) va R(12/25)=fp(121m)/fr(261m)
shows normal galaxies" spreading out along a band such that R(12/26) and R(60/100)
are antJ-com/ated (Figure I of H86 or Figure 9 of RW). While R(12/25) increases
along the band, apparently signalling hotter dust, R(60/100) decreases, signalling
cooler dust! The resolution to this paradox is found in the properties of the dust
rather than in those of the galaxies.

Cwol A. Losuda Pernon (Editor)
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In part as a result of the IRAS data. it is now recognized that realistic
models of interstellar dust must include a population o1' very small grains (Beichman
1987)o extending the size distribution into the range of polycyclic aromatic
hydrocarbons, i.e. a few A. As such a mixture of dust is heated by increasingly
intense radiation fields (D6sert 1986), the IRAS colors of its emission trace out a
curve like the one labelled D in Figure 2 of H86, or Figure 9 of RR. The shape of
that curve is dictated by the presence of very small grains and by the emission
features of polycyclic aromatic hydrocarbons at 7.7, 8.6 and 11.3 IJm (Puget, L6ger
and Boulanger 1985), and reflects in particular the transition from the dominance of
temperature fluctuations at low intensity of heating flux (Draine and Anderson 1988)
to dominance by single temperature emission from grains in equilibrium at high
intensity. As can be seen in D6sert (1986), the smallest grains transiently heated
to very high temperatures emit with a spectrum extending down to a few inn, and with
an intensity scaling roughly linearly with the intensity of heating radiation. This
emissio• dominates at low heating intensities, i.e. for cirrus, at the lower end of
curve D. As the heating increases, larger grains reach higher equilibrium
temperatures, and their blackbody spectrum starts moving into the IRA$ bands, until
it dominates and determines the colors at the uppper end of curve D.

Since the emission from any galaxy is a mixture of components all of which lie
.n curve D, galaxies are expected to fill out a region of the color-color plane
whose upper envelope is the "heFting curve" D. Rather than assume arbitrary mixing
bet•en any number of points on the heating curve to generate galaxy colors, H86
proposes a simple model with two components: (1) •p), cirrus-like emission whose
colors are constant from one galaxy to the next, typified by emission from the
neutral interstellar medium in the solar nelghbourhood, and (9) A(p), emission
directly associated with active star formation, especially from dust within HII
regions and their immediate surroundings, such as outer layers of molecular clouds.
This second component A(v) is assumed to have variable colors: If the galaxy Is
forming stars mostly in high density regions, the dust exposed to high heating
intensities will place A(p) at the upper left. hand side of curve D. If on the other
hand the mlJority of HII regions in a galaxy are mature, extended low density
objects, then the colors of the active component will place it lower on that curve.
Thus the model relates the infrared colors of a galaxy to two physical parameters,
the ratio between active region and cirrus emission, and the effective gas density
in regions of active star formation.

3. MODEL DISCUSSION

The heating curve D is of course a function of properties and size distribution
of the dust grains, which is a serious limitation to the accuracy to which it can be
specified. Its over-all •haracter however is quite unlikely to change. A basic
assumption In using D6sert's (1986) calculations Is that optical depths in the
infrared are never large enough over so large a fraction of the emitting medium that
infrared colors are affected. Bursteln and Lebofsky (1986) have found evidence
suggesting that the disks of galaxies are optically thick In the infrared, but
Persson, Rice and Bothun (1987) show data suggesting otherwise. The assumption that
most galaxies are optically thin in the infrared is sup--orted in the Milky Way,
where the 12 IJm extinction In the direction of the Galactic center is only about one
magnitude, low enough to allow detection of 12 IJm sources in the Galactic nucleus
and beyond, without any patchiness in their projected distribution (Hablng et al.
1985). That assumption should therefore hold in a galaxy whose interstellar medium
mass is less than a few times the corresponding mass in the Milky Way. It may break
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down in a few cases, namely those with very massive and dense concentrations of gas
and dust. e.g. systems containing mega-masers (Baan and Haschick 1984).

In defining the components in this model, the approach Is phenomenological in
essence. There are clearly many possible choices for emission components (see RR),
and no obvious way to decide where to place them in the color-color diagram in the
absence of "perfect" dust models. One additional constraint however results from
the luminosity sequence associated with the galaxy distribution in the color-color
diagram. Total infrared luminosity and especially infrared to blue ratio increase
substantially from the lower right hand end to the upper left hand end of the galaxy
band. For instance, in the sample used in H86 the median value of f&(25pm)/D'
(where D in the optical diameter of the galaxy) increases by almost an order of
magnitude when R(80/100) goes from 0.37 to 0.66. This trend can become a constraint
on the emission models: Suppose a galaxy's spectrum is being synthesized by adding
to the cirrus spectrum (component 0 a gradually increasing contribution from a
component A whose colors place it above and to the left of the observed galaxy band.
Then the associated increase in the amplitude of the synthesized spectrum can be
interpreted as the luminosity trend and constrained to be of the appropriate amount
to agree with the observations. It turns out that the large increase in Infrared
luminosity (scaled to the size of the system) from one end of the band to the other
forces a choice of components whose colors fall basically at the boundary of the
galaxy distribution. This argument for the general placement of curve D is
completely independent of the curve's physical Justification above.

4. IMPLICATIONS

The most significant implication of the observed color-color diagram is in
demonstrating that emission from some galaxies is dominated by cirrus, and from
others by recent star formation. The model proposed in H86 quantifies the relation
between far infrared emission and the recent star formation rate in a galaxy, with
the unavoidable conclusion that the number of young stars in a galaxy is not simply
proportional to the infrared luminosity. This proportionality holds for many
galaxies (e.g. star-burst objects), but fails by uncertain and varying amounts for
the others. Other implications of the model can be used as potential tests:

(1) In the IRAS color-color diagram, the model expects the colors of HII
regions to place them near curve D. Unfortunately, the relevant data are not yet
available, mostly because of difficulties in extracting HII regions in the IRAS data
from the surrounding background (P6rault 1986).

(ii) Another prediction is that the active component should correlate with
tracers of recent star formation such as thermal radio or Ha emission, and should do
so better than the total infrared emission. A first investigation (Persson and
Helou 1987) has shown encouraging results, even though using a more rudimentary
model which keeps the colors of both active and cirrus components fixed.

(ii) An indirect test related to selection effects is suggested by the fact
that for any reasonable choice of curve D, the model expects more galaxies to appear
Just below the band which is now filled out. Since the galaxies shown on the color-
color diagram were chosen to be detected in four bands and unresolved by IRAS, they
are biassed towards high infrared luminosity and high surface brightness. Optically
selected galaxy samples may provide indirect confirmation for the model if they tend
to fill the area just below the band in the color-color plane.
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A SIMPLE TWO-COMPONENT MODEL FOR THE FAR-INFRARED EMISSION FROM GALAXIES

T. de Jong and K. Brink
Astronomical Institute "Anton Pannekoek", University of Amsterdam
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

ABSTRACT. We have constructed a simple model to calculate the far-infrared
emission of galaxies made up of a disk component containing cool dust heated by
the general interstellar radiation field and of a molecular cloud component
containing warm dust heated by recently formed massive stars. This model is
fitted to the optical and far-infrared data of 120 Shapley-Ames galaxies and of
20 optically studied mini-survey galaxies, resulting in the determination of
blue face-on extinctions and of the total luminosities of recently born massive
stars and of disk stars. The ratio of these two luminosities is a more reliable
star formation activity index than the previously often used ratio LIR/L . The
results show that infrared selected galaxies are on the average almost tRree
times more dusty than optically selected ones. Only about 10% of the mini-survey
galaxies exhibits strongly enhanced star formation.

1.. INTRODUCTION

A large fraction of the energy emitted by recently formed massive stars is
reradiated in the far-infrared by dust grains in molecular clouds - the dominant
site of massive star formation in a galaxy. This makes the infrared by far the
most suitable wavelength range to study the energetics of star formation and to
derive global star formation rates in galaxies.

However there are additional sources of infrared radiation in a galaxy that
complicate the picture. Dust particles in the general interstellar medium,
predominantly heated by much older field stars, also contribute to the total
infrared emission. This dust is probably cooler than the dust in molecular
clouds (cf. Mezger et al. 1982, de Jong et al. 1984). Furthermore, hot dust has
been shown to be present in the nuclei of active galaxies (de Grijp et al.
1985).

If infrared observations of galaxies with high spatial resolution would be
available the different infrared components could be separated directly.
However, because of the large detector sizes (typically several arcminutes, cf.
Neugebauer et al. 1984) the IRAS data, on which our study will be based, provide
only total energy information.

Thus to study star formation in galaxies the observed infrared emission has
to be decomposed into several components. In this paper we present some
preliminary results of fitting simple two-component models to the IRAS 60 and
100 pm fluxes of about 140 galaxies.

Carol J. Lonsdak Peruson (Editor)
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2.* THEl MODEL

The purpose of our model calculation is to fit the observed 60 and 100 pm
fluxes and the BT magnitude of a galaxy. In addition to these three observables
the model also makes use of the observed galaxy inclination (or equivalently the
axial ratio b/a).

First we fit two infrared components to the observed infrared spectral
energy distribution. To do so we assign a dust temperature Tw to the warm dust
in molecular clouds and T to the cool dust in the general interstellar medium
(the f isk component). We further assume that the dust emissivity is proportional
to X- . This fit results in 60 and 100 ps fluxes for each component, that add up
to the observed fluxes. We then calculate the total luminosity of each
component, Iw and Lc, by integrating over all wavelengths.

Next we calculate the total luminosity of recently formed massive stars,
L2 , by assuming that half of the luminosity of these stars is completely
converted to infrared radiation inside molecular clouds, so that L2 - 2L . The
other half is emitted by stars that have moved away from the molecular clouds in
which they were born within their lifetime. The 50Z estimate above has been
derived for stars born with a Salpeter initial mass function (IMP) and a cloud
residence time of 3 10i yrs (cf. Garmany et al. 1982), i.e. for stars moving
with velocities of 10 km s- in clouds with sizes of order 60 pc. The fact that
we do observe OB stars is convincing evidence that an appreciable fraction of
them indeed escapes from clouds within their lifetimes.

To calculate the luminosity L1 of disk stars, that are largely responsible
for the blue luminosity of a galaxy and for the heating of the cool interstellar
dust, we assume a surface black-body temperature for these stars of T1 - 7000 K.
Anticipating the result that in a typical spiral galaxy L2 /L 1 a 0.5 (see section
3) and taking T - 30,000 K (see below) the mean colour temperature of the
interstellar radiation field is found to be 12,000 K, close to the canonical
value of 10,000 K.

However, OB stars outside molecular clouds also contribute to the heating
of the interstellar dust and to the observed blue light. The effective
temperature of these stars is about 30,000 K, another result of the calculation
of the fraction of the luminosity emitted outside clouds by stars born with a
Salpeter IMF inside molecular clouds. Taking account of the fact that the
interstellar absorption roughly 3cales with 1/X so that the effective optical
thickness of the disk for 7000 K and 30,000 K radiation is different, we
iteratively solve for the dust optical thickness at X4400,, , of the galactic
disk (equivalent to the face-on extinction) and L1 . To fit tAe observed blue
magnitude we take into account that the blue light is attenuated by optical
thickness (a/b)¶B. The face-on extinction is then found from the relation
A5 - 1.086 -

Our model thus results in the determination of the face-on blue extinction
AO of a galaxy and of the luminosities L1 and L2 . The quantity L2 /L 1 is a much
better measure of the ratio of present-to-past star formation rates than the
often used quantity LIR/LB (de Jong et al. 1984, Soifer et al. 1984).
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3. iNSULTS AND DISCUSSION

We have fitted our simpie two-component model to infrared and optical data
of 120 galaxies in the Revised Shapley-Ames Catalog of Bright Galaxies (Sandage
and Ta~ann 1981) and to the data of 20 mini-survey galaxies (Soifer et al.
1984) for which morphological classifications, detailed optical and infrared
photometry and optical spectra have recently been presented by Hoorwood et al.
(1986). Infrared flux densities of these galaxies were taken from the IRAS Point
Source Catalog (JISWG 1985), supplemented by flux densities from the IRAS Small
Scale Structure Catalog (JISWG 1986), if listed. Optical blue magnitudes of both
the ISA galaxies and of the mini-survey galaxies were corrected for extinction
in our own galaxy according to the prescriptions given by Sandage and Tamnann
(1981).

For our model calculations we took TL, = 60 K and Tc =-16 K. These are not
arbitrary choices but were selected as follows. Tw was chosen to be somewhat
larger than the largest dust temperature as derived from the observed So/6
flux density ratios. Tc was chosen such that the average face-on extinct ion
derived for the RSA galaxies agreed with optically determined values (see fig.1
and discussion below). The low temperature of the cool component implies that a
substantial fraction of the total infrared luminosity of galaxies (more than 501
in most cases) is emitted at wavelengths longward of 100 •a.

We note that our adopted values of T,. and Tc are remarkably close to the
ones recently derived by Chini et al. (1986) by combining sub-millimeter
observations with tEAS data for about 20 bright galaxies. This agreement may be
somewhat fortuitous because Chini et al. assumed a X- dust emissivity law.

We have verified that the results are rather insensitive to changes in the
adopted parameters. The largest effect is observed for Tc, understandably

S because Lc changes significantly if To changes by only a few degrees. We
emphsizetha the value adopted for Tc is found by fitting optical extinction

measurements of galaxies and is thus rather well-determined.

o~s.•RSA

0.3

I.s soabsb Sbc cS d~I, A

F igure 1. Mean values of the face-on blue extinction A0 as a function of

i morphological type.* The numbers of galaxies on which this mean value is based,
i- are listed.
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The distribution of average face-on blue extinctions as a function of
morphological type for the RSA galaxies is shown in fig.l. Formal uncertainties
in the averages are typically of order lOZ - 20Z. As noted above the temnerature
of the cool dust has been fixed by requiring that the weighted mean of A1 over
all spirals equals that calculated using the prescriptions of Sandage and
Ta mnn (1981). The somewhat higher values for Sa and Sab galaxies quoted by
Sandage and Tammang may be due to the exclusion of dust-poor galaxies in their
determination of CB for the earliest morphological types.

The variation of Aj with u rphological type is quite interesting and seems
intuitively rather plausible. A1 is small for early-type galaxies because they
contain relatively small amounts of interstellar matter and thus also of dust.
Proceeding to later morphological types the mass fraction of interstellar matter
increases and so does the face-on extinction. For the latest morphological types
we deal with galaxies in which evolution has been so slow or in which star
formation has started so late that their metallicity is still relatively low,
showing up here as a low face-on extinction.

0
In fig.2 we compare values of A and of the recent star formation activity

index log(L2 /L 1 ) for an optically jomplete sub-set of about 50 bright RSA
spirals (BT-< 12.5, VR > 500 km s- ) and for the sub-set of the infrared-
complete aini-survey galaxies studied by Hoorwood et al. (1986). The most
important conclusion to be drawn from this comparison is that the mini-survey
galaxies are on the average almost three times more dusty while the present star
formation activity Is only about twice as large as in the RSA spirals. The

a b

24., RSA 24- RSA

6 6

mmi-srwy i-survey

8 6

4 . 4.

2-- 2.

0 .0 o, '.4 1'.2 16' -.2 -0.8 -0.4 0.0 0., 0.8 12 1.6
0 (m%) tog(L2 /L1)

Figure 2. The distribution of: (a) blue face-on extinction A2, and (b) star
formation activity index log(L2 /L 1 ) for bright optically selected RSA spirals
and infrared selected mini-survey galaxies.
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latter may be fully explained by realizing that galaxies with higher present
star formation rates are expected to be overrepresented in an infrared complete
sample of galaxies. Thus we conclude that infrared selected samples of galaxies
are apparently dominated by dusty galaxies.

This possibility was already briefly discussed in the discovery paper by
Soifer et al. (1984). Later excitement about the alternative possibility of
enhanced star formation may have resulted in the somewhat premature conclusion
that an appreciable fraction of infrared detected galaxies are "starburst"
galaxies (e.g. de Jong 1986). In fact fig.2b suggests that only 10% of the
galaxies in an infrared complete sample shows anomalously enhanced star
formation (L 2 /L > 10). It is interesting to note that the two deviating
galaxies (IRAS 0413+081 and IRAS 0414+001) are the most morphologically peculiar
in the sample studied by Moorwood et al.. The one galaxy with L2 /L 1 > 10 among
the RSA galaxies is NGC 2146, a well-known peculiar galaxy.

The fact that most of the mini-survey galaxies are probably anomalously

1 .5L -0.9 log -0.3 0.0 .3

1.1

0 7 1.6 . "13

A A A--"

JJ
SAA . A

0.3 ,0.1

-0.9 ... - -

0.8 0.6 04 0.2 0.0

I og (S•ojSG)

Figure 3. A theoretical LTR/L, versus S1 0 0 IS6 0 diagram. Lines of equal Ag
(dotted) and L /L (full-drawnltare shown, calculated for a representative value
of b/a - 0.6. Ls Indicated by the labelling of these lines the values of the
parameters increase by a factor two from one line to the next. Data points for
bright optical RSA spirals (triangles) and mini-survey galaxies (squares) are
plotted.
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dusty was derived from near-infrared photometry by Moorvood et al. (1986). Our
model analysis nicely confirms their findings.

Another way to illustrate our results is shown in the (LTR/LB) versus
(SIO00/86) diagram in fig.3 where data points for the opticall y complete RSA
sub-set( triangles) and for the mini-survey sub-set (squares) have teen plotted.
Using our simple two-component model we have drawn lines of equal A and L2/L
in this diagram. These lines are calculated for a representative value of b/a '
0.6. For Aj > 1 almost all optical radiation is reemitted in the infrared so
that the r 8 tio L2 /L 1 fixes the infrared color ratio S10O//S independent of the
value of Ai, whereas bI/LB is determined almost exclusiveto by the extinction.
For small values of A-t-he quantity LIR/LB is most strongly dependent on L2 /L 1 .
The upper right hand corner in the diagram is forbidden because L2 /L1 cannot
exceed infinity.

Fig.3 clearly shows that the aini-survey galaxies are such more dusty than
the optically selected bright RSA spiral galaxies while the star formation
activity is only about twice as large in the mini-survey galaxies. It. is quite
rewarding that in spite of the simplicity of our model it is so remarkably
succesful in explaining the differences between optically and infrared selected
samples of galaxies. A more extensive discussion of our results will appear
elsewhere.

The research of K.B. is supported by a grant from the Netherlands Foundation for
Astronomical Research (ASTRON) with financial aid from the Netherlands
Foundation for the Advancement of Pure Research (ZWO)
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DETECTION OF CO (J-1-0) IN THE DWARF ELLIPTICAL GALAXY NGC 185

Tommy Wiklind and Gustaf Rydbeck

Onsala Space Observatory

S-439 00 Onsala, Sweden

We report the first detection of CO(J-1-0) emission in the dwarf elliptical
galaxy NGC 185. The observations were performed with the Onsala 20 m telescope
equipped with a SSB tuned Schottky mixer and, for the most recent observations,
a SIS mixer. The previously reported tentative detection of CO in NGC 185 by
Johnson and Gottesman (1979) does not agree with our results, see also Knapp
(1983).

NGC 185 is a companion to M31 and classified as dE3p (Sandage and Tammann, 1981).
It is classified as peculiar owing to the presence of dust patches and a popula-
tion of blue stars situated in the centre region (Hodge, 1963). It contains
1.5. 10 M. of atomic hydrogen, which is asymmetrically distributed with respect
to the centre (Johnson and Gottesman, 1983).

The presence of both dust and atomic .,ydrogen made NGC 185 a prime object for a
deep search for molecular gas. We detected CO emission at a level %f 37 inK;
intensities are given as main beam ,rightness temperature, Tmb - TA / nmb

(nmb v 0.3). So far we have observed two positions; the center and a prominent
dust cloud. Emission was detected from both places. The emission profile consists
of two distinct peaks, centered at VLSR - -203 km s8- and VLSR = -292 km s-1,
respectively.

The HI seen by Johnson and Gottesman was centered at VLSR r -190 km s-1, their
observations did not cover a possible HI component around -290 km s-1. With only
two observed positions it is impossible to determine whether the two peaks
correspond to an ordered motion or not.

Conservative estimates of the mass of molecular gas can be made by assuming
Galactic factors for the conversion of CO intensity to H2 mass. In the case of
optically thick emission we get approximately 1.5 10s Me1 of H within the
observed region. Should the emission be optically thin we get .10s Hs. We
emphasize that these mass estimates are very uncertain, but most probably
represents lower limits for both cases.
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Figure CO(J-1-0) spectra of NGC 185. The velocity resolution is 5.2 kmn s9-

and the intensity is given as main beam brightness temperature,
- TA*/ Tn,. No baseline correction has been applied.
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Star Forming Regions in Gas-Rich SO Galaxies

Richard W. Pogge
Lick Observatory, University of California, Santa Crus, CA 95064

and
Paul B. Eskridge

Dept. of Astronomy FM-20, University of Washington, Seattle, WA 98195

ABSTRACT

We present the first results of an Ha imaging survey of HI rich SO galaxies, in
which we are searching for Hn regions and other sources of emission (e.g., nuclear emis-
sion). CCD Ha interference filter images have been made of 16 galaxies. Eight of these
galaxies show evidence for on-going star formation (HnI regions), one has nuclear emis-
sion but no HII regions, and the remaining seven have no emission detected within well
defined upper limits. With the exception of one notably peculiar galaxy in which the
emission from HII regions appears pervasive, the HII regions are either organized into
inner-disk rings or randomly distributed throughout the disk. A few of the galaxies are
found to be clearly not SO's, or peculiar objects atypical of the SO class. Using simple
models we have estimated star formation rates (SFRs) and gas depletion times from the
observed Ha fluxes. In general, the derived SFRs are much lower than those found in
isolated field spiral galaxies (Kennicutt 1983) and the corresponding gas depletion time
scales are also longer.

I. Introduction

The gas content of early-type galaxies is a subject of great interest, especially
because of its application to understanding the evolution of these systems. Early-type
galaxies as a class are deficient in gas and dust relative to later types. For a long time,
only a few SO galaxies and no E galaxies had been detected in 21-cm emission surveys.
Recently, however, more sensitive techniques and instruments have increased the num-
ber of detected galaxies, and a few E galaxies have now been detected (see the extensive
compilations in Wardle and Knapp 1986 for SO galaxies; and Knapp, Turner, and Cu-
niffe 1985 for E galaxies). Among SO's with similar properties, there seems to be a broad
range in gas content from relatively strong ("HI Rich SO's") to undetected ("HI Poor
SO's").

It is of interest to ask to what extent this gas is attended by current star for-
mation. We have used CCD imaging through redshifted Ha interference filters to search
for H1 regions in a sample of HI rich SO galaxies selected out of the literature. By sub-
tracting the underlying stellar continuum using images taken through filters sampling
emision-free regions of the spectrum, it is possible to isolate not only the brightest HR1
regions (if any), but also to detect faint Hu regions whose surface brightness may be be-
low that of the surrounding starlight.

Carl J. Lansdale Perruon (Editor)
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U. Sample and Observations

From the literature published up to June 1985, a total of 103 SO galaxies have
detectable HI emission, contrasted with about 220 HI poor SO's for which there is either
no Hi detection or only an upper limit. For the present imaging survey at Lick Obser-
vatory, the galaxies must be accessible to our redshifted interference filter set, which ex-
cludes all galaxies with V > 3800 km sec"1. In addition, the galaxies must be within the
declination limits of the 1-meter Anna Nickel telescope at Lick Observatory, which lim-
its the sample to the range +620 > 6 > -250. The final redshift and pointing limited
sample contains 62 Hi rich SO's.

Observations were made using the 1-meter Anna Nickel telescope at Lick Ob-
servatory using the f/17 GEC CCD direct camera during Spring 1985, and using the
TI CCD Cassegrain spectrograph in direct imaging mode during Fall 1985. For each
program galaxy, two images were taken, the first through an interference filter isolat-
ing Ha+[N u]A,6548,6583 emission at the galaxy redshift, and a second through a filter
centered on emission-free stellar continuum 40A redward or blueward of the emission
line filter. The filters have a typical width of 22A and peak transmission of 80%. Re-
duction and analysis of the images was done using the VISTA image processing program
developed at Lick Observatory. Atmospheric extinction corrections were made follow-
ing Hayes (1970). An approximate flux calibration was accomplished by observing white
dwarf standard stars from the lists of Oke (1971) and McCook and Sion (1984). The
fluxed continuum image was subtracted from the fluxed emission image to produce an
essentially starlight-free Ha+[N ZZ) emission line image of the galaxy. In cases where
emission regions were not evident after continuum subtraction, a "detection limit" was
evaluated.

M. Results and Discussion

Of 16 SO galaxies observed so far, eight galaxies have detectable H11 regions,
and one (NGC 7743) has nuclear emission but no HII regions. The remaining seven
galaxies have no emission detected with well defined upper limits. Total Ha fluxes, or
appropriate upper limits, are given in Table T The Ha fluxes have been corrected to ac-
count for a contribution due to [N In]A6548,6583 emission following Kennicutt (1983).

In the SO's with detectable HII regions, we find the star forming regions are
either distributed into inner rings near the central regions, or randomly distributed
throughout the disk of the galaxy. With the exception of NGC 694, in which the star
formation appears to be global, the observed HII regions sparsely populate the disk com-
pared with the covering seen in later type spirals (Hodge and Kennicutt 1983). A few
of the galaxies (e.g., NGC 7013) also show signs of nuclear emission. HI maps of NGC
7013 (Knapp et al. 1984) and NGC 4138 (Shane and Krumm 1983) suggest that the HI
gas rings are associated with the HII region rings. Two galaxies (NGC 4670 and UGC
12713) turn out to be irregular galaxies misidentified as SO's.

Following roughly the procedures used by Gallagher, Hunter and Tutukov
(1984) and Kennicutt (1983), we have used these fluxes to estimate the total star for-
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mation rates (SFRs) in these galaxies. Details of the derivation may be found in Pogge
and Eskridge (1986). The total star formation rates in Mo/year are given in Table I. By
comparison, Kennicutt (1983) found that for field Sa and Sb spiral galaxies the mean
SFR is - 1.6 Me/yr, and for field Sbc and Sc spirals it is - 3.5 Mo/yr. (Kennicutt's
method of estimating the SFR differs slightly from ours, so it was necessary to multi-
ply his estimates by 0.64 to bring the two methods into agreement.) For the detected SO
galaxies the SFRs are typically - 0.4 M 0 /yr, smaller than for field spirals.

In Table I, we give estimates of the total gas depletion time in years for the SO
galaxies with detected HII regions assuming that all of the HI gas is available for star

TABLE I. HII Regions in HI Rich SO Galaxies.

D MHI H II log SFR r

Galaxy Type' (Mpc)2 (10 MO)3 Dist 4  F(Ha)5 (M®/yr) (yr)

NGC 473 SO 45.4 ... e R -12.33 0.66 ... 6

NGC 680 SO 513.6 2.96 < -15.4 <0.0006

NGC( 694 SOp 60.0 4.20 G -12.42 0.94 1.1 x 1010

NGC 936 SBO 3S.I 1.80 < -15.7 <0.0001

NGC 1023 SBO 15.2 S.72 <-15.1 <0.0001

NGC 4138 so 8.6 0.3 R -12.39: 0.02: 9.5 x 1010:

NGC 438r SBO 50.4 11.7 P -11.36: 7.6: 3.9 x 109:

NGC 4670 SBOp 24.6 1.84 G -11.51 1.28 3.6 x log

NGC 5631 so 40.2 2.40 < -14.9 <0.0015

NGC 6501 so 60.0 5.96 < -15.4 <0.0006

NGC 7013 SO/a 20.0 2.04 R -11.88 0.36 1.4 x 1010

NGC 7180 SO/a 30.4 0.18 < -16.2 <0.00003

NGC 7280 SO 41.2 1.08 < -15.4 <0.0003

NGC 7742 SOp 35.2 4.16 P -14.75 0.016 6.5 x 1011

NGC 7743 SBO 38.2 1.00 n < -15.5 <0.0001

UGC 12713 SO/a 9.2 0.26 G -13.11 0.0044 1.5 x 1011

Notes:

A colon (:) means fluxes are uncertain to greater than 20%, hence greater uncertainty in SFR and r.

1.) From de Vaucouleurs at at. (RC2) or Sandage and Tammann (RSA).

2.) Based on Ho = 50 km/sec/Mpc and Vvi,ro = 1350 km/sec.

3.) From literature, see references in Pogge and Eskridge (1986).

4.) Emission Region Distribution Codes: R=Ring, G=Global, P=Patchy, n=nuclear.

5.) Log of integrated Ha flux in erg/cm2 /sec.

6.) Promised updated value of MH! not available at press time.
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formation. The total gas mass is found by correcting the observed HI mass to account
for helium, molecular gas, and gas recycling by evolved stars (see Kennicutt 1983; Lar-
son et a4. 1980). The gas depletion time (r) is the amount of time required to use up the
available gas at the current SFR. For field spirals, the median value of r is - 4 x 109 yr
(Kennicutt 1983). For our detected SO's r varies from 1.1 x 1010 yr for NGC 694 to as
high as 6.5 x 1011 yr for NGC 7742. A bright nuclear starburst in NGC 4385 makes its
estimate of r uncertain as our simple SFR models may not be valid. If all of the HI gas
is not be available for star formation, then our estimates of r would be reduced. For ex-
ample, if only the gas in the inner regions of NGC 7013 (MH- = 1.92 x 109 Mo- Knapp et
al. 1984) is available for star formation, this implies that T - 5 x 109 yr, compared with

1.4 x 1010 yr using the total HI mass.

Both the SFRs and gas depletion times suggest that on-going star formation
in most of these systems is likely to have little impact on their subsequent evolution un-
less the SFRs increase dramatically. This is consistant with the evolutionary theory of
Larson et al. (1980), suggesting that SO's may be fossil spiral galaxies with only vestigial
star formation continuing to the present.

IV. Conclusions

We have demonstrated that in at least a few HI rich SO galaxies, the gas is
accompanied by current star formation. Much work remains. In particular, it is essen-
tial to have detailed HI maps made of more of these systems to be able to determine to
what extent the gas is directly associated with the star forming regions.
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A SIMPLE THEORY OF BIMODAL STAR FORMATION*
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ABSTRACT. We present a model of bimodal star formation, wherein massive stars form in
giant molecular clouds (GMC), at a rate regulated by supernova energy feedback through
the interstellar medium, the heat input also ensuring that the initial mass function (IMF)
remains skewed towards massive stars. The low mass stars form at a constant rate. The
formation of the GMC is governed by the dynamics of the host galaxy through the rotation
curve and potential perturbations such as a spiral density wave. The characteristic masses,
relative normalisations and rates of formation of the massive and low mass modes of star
formation may be tightly constrained by the requirements of the chemical evolution in the
Solar Neighborhood. We obtain good fits to the age metallicity relation and the metallicity
structure of thin disk and spheroid stars only for a narrow range of these parameters.

1. THE MASSIVE STAR FORMATION RATE

The effects of massive stars on the surrounding interstellar medium and subsequent
star formation may be envisaged to be either to suppre88 further star formation for some
time by destroying the cold (molecular) gas from which stars are presumed to form, or to
induce further star formation through the increase in pressure compressing and destabilising
clouds. These two effects in fact operate simultaneously, leading to self regulated (massive)
star formation (cf. Cox 1983; Franco and Cox 1983; Dopita 1985). The lower mass stars
are effective over much longer timescales and may be neglected for the regulation of the
formation of short-lived stars. Assuming that the most important energy injection process
is due to supernova explosions, which maintain a velocity dispersion in the system of GMC
that governs the cloud-cloud collision time and hence energy dissipation and star formation
time, leads to the following dependence of global massive star formation rate (SFR) per unit
(molecular) gas mass on the surface densities (E) of total material, and gas:

M. ~

9gas,,co

The self regulation allows one to understand why only a small fraction of GMC cores
have associated EMI regions (Solomon, Sanders and Rivolo 1985; Scoville, Sanders and Clemens
198I) ie. why massive star formation is in this sense inefficient.

The massive SFR in external galaxies may be estimated from the UV flux, or the far IR
assuming it is mainly due to dust reradiation of the UV from massive stars. Unfortunately,
large discrepancies in these two estimates exist for the galaxies that have measurements of
the quantitien in the above equation, which may indicate either that a significant fraction of
the IRAS flux is due to a cirrus component of dust heated by the general stellar radiation
field, or that extinction problems remain with the quantitative interpretation of the UV, or
both. Thus a direct quantitative testing of this relation is not yet possible.

*Supported in part by Calspace.
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2. THE RADIAL DEPENDENCE OF GMC AND MASSIVE STARS.

The dependence of the global massive SFR on total surface density found above sug-
gests that the rotation curve may be of importance. Many models for the formation of GMC
complexes analyse the effect of a spiral density wave and postulate that the potential causes
an increase in the lengthscale which is gravitationally unstable, or simply aids the coagula-
tion of small diffuse clouds of either atomic or molecular gas (eg. Cowie 1980; Balbus and
Cowie 1985). We here present a phenomenological model for GMC, whereby the rate of their
formation, and CO emission, depends on the rate at which a parcel of gas encounters a spiral
perturbation, and on the square of the HI density. We are most interested in understanding
the radia profle, of CO in disk galaxies - why they are so different from the atomic gas
profiles, but similar to the blue light. In this respect it is only important that the progenitors
of GMC have the same radial profile as the HI, as may be the case for the analogs of the small
high latitude CO clouds found by Blitz, Magnani and Mundy (1984). Thus

CO(r) oc n' (r)(fl(r) - flp)m

where 0 is the local angular frequency, Op and m being the pattern speed and number of
arms in the spiral pattern. For situations where no underlying density wave occurs but the
arms are due to a simple shear instability and swing amplifier, we set np = 0, since then
0(r) mimics the Oort constant of differential rotation, which controls the instability (Toomre
1981). A dependence on the rate of encounters of spiral arms was also postulated by Shu et
at. (1972) in their modelling of the SFR in density wave theory, and by GýIsten and Metzger
(1982) for massive stars in the spiral arms of our Galaxy. The dependence on the square of the
EI density assumes that two-body processes such as binary cloud-cloud collisions dominate.
We are also equating a rate with a luminosity and hence mass.
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Figure I. Predicted CO emission (filled triangles), arbitrarily normalised, compared to
the observations (open circles) for the Milky Way (Sanders, Solomon and Scoville 1984) and
NGC 2841 (Young and Scoville 1982).

We have made predictions for of order ten galaxies with the necessary observations,
obtaining encouraging results. Interesting features are that galaxies which are believed to
have a density wave are best fit by corotation in the outer regions, as predicted by theory
(Shut d at. 1972) and have a significantly poorer fit if we set Op = 0, while the galaxies with
more filamentary arms (eg NGC 2841) are well fit by the theory for arbitrary values of the
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pattern speed, as may be expected. Results for the Milky Way and NGC 2841 are shown in
Figure 1. We obtain equally good agreement with the CO observations for galaxies with a
CO 'ring' and those with monotonic CO. The radial fall-off of the CO emission to large radii
while the HI remains flat reflects the near exponential behavior of 0(r) - flp, which in turn
reflects the profile of the stellar disk since disk galaxies are essentially self-gravitating within
a few scale-lengths. Thus fitting an exponential to the CO results in a scale-length close to
that of the stars, or equivalently, the blue light.

3. CHEMICAL EVOLUTION IN A BIMODAL MODEL.

Any reasonable model for the time dependence of the gas mass, together with the regu-
lation equation above, yields a massive SFR that decreases sharply with time. This contrasts
strongly with the derived constant Solar Neighborhood low mass SFR (Twarog 1980) - hence
the star formation process is bimodal in time as well as space (cf Larson 1986). Matteucci and
Greggio (1986) showed that a constant SFR for stars of all masses would overproduce oxygen
and other elements due to massive stars. The effect of the new 12 C(a,•y) 1' 0 reaction rate
on the chemical yields of massive stars was investigated subsequently (Matteucci 1986) and
silicon and iron are still overproduced. A decreasing massive SFR appears to offer a solution.

We have investigated the chemical evolution in a particular parameterisation, where
the two modes are taken to be 1). 'low mass' mode : Miller-Scalo IMF, all masses, constant
SFR AlM®Gyr-I and 2) 'massive' mode: only stars above ML2, SFR A2 e- t /1MOGyr-'.
The lower mass cutoff of the 'massive' mode is made as low as possible, to avoid introducing
a time dependence into isotopic ratios which would arise were the nucleosynthetic properties
of the two modes different and which is not observed. The models are required to fit the
Solar Neighborhood age-metallicity relationship for low mass F stars and also to reproduce
the present day gas content and total disk surface density, 70 Mopc-2 (any dark matter being
stellar remnants). A gas consumption time of at least several Gyr is also required. These
quantities are shown in Figure 2 for a model we deem satisfactory.

Figure 2. The predicted age metallicity relation
A Twarog for long-lived F stars in the Solar Neighborhood
0 Carlberg et a] (solid line), for a model for the thin disk with ini-

tial metallicity a tenth solar consistent with the
spheroid model in Figure 3(b), and with low mass

0 mode SFR 4 MoGyr- 1 , high mass mode, with
7 lower mass of 2 ME, normalisation 20 M®Gyr-1

and e-folding time of 2 Gyr. The observational
data of Twarog (1980) and Carlberg et at. (1985)
are also shown. The model and observations are

model input: Z,=0.002 m good agreement, and the model output values,
.5Mu=2.. T2=2. at l5Gyr, for the gas and stellar surface density p. A1=4., Ag=20. Mopc- 2 and the gas lockup (consumption) time

output: A,,.(1S)=
2 2 ., p.(15s)=48 , are entirely satisfactory, although the gas content

lockup time(1 j is somewhat high.
0 5 10 15

Age (Gyr)

We have also compared model predictions with the cumulative metallicity distributions
of thin disk stars and extreme spheroid stars, allowing for ejects from the spheroid (leaving
at a rate A times the star formation rate) to pre-enrich the thin disk material (see Figure 3).
There is a narrow range of parameter values which provides a good fit to all these observational
constraints.
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We are currently working on fully self consistent models, using the equations above for
the time and radial dependences of the massive SFRs. Extension of the model to different en-
vironments such as IRAS galaxies is underway to help understand the starburst phenomenon.

I , I I I I I I - -I I I T I I I I [ I 1 1 '1

bimodal model, initial [Fe/H]=-I. -- model input A=2; Ag=50.; A1=0 1; i=2.;

/" / 8 cr= 100.

,- -/ ,output [Fe/H]- _o,=-0.9,

- ,spheroid:disk mass = 0.1
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Figure 3 (a). Cumulative metallicity distribution for the low mass stars of our favored model
(solid line) compared to estimates of the true distribution, which are ±2a truncated gaussians,
of mean -0.15 dex (dashed lines delimiting range of dispersion 0.1 < o < 0.2 dex).

(b). Cumulative metallicity istribution for spheroid stars. The model (solid line) has
star formation parameters as indicated, with outflow at twice the total SFR, and a total initial
surface density (oi) of 100M~pc-2 . The observations are the metal poor spheroid globular
clusters (Zinn 1985). The model predicts reasonable values for the initial enrichment of the
thin disk and for the spheroid to thin disk mass ratio.
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THE HISTORY OF GAS IN SPIRAL GALAXIES
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The general association of luminous young stars with spiral
arms in galaxies has led to widespread acceptance of the idea
that the formation of massive stars, at least, is somehow
triggered by the interaction of interstellar gas clouds with a
spiral density wave . The observed increase in C/H and N/H with
decreasing galactic radius receives a natural explanation in this
scenario, as gas closer to the galactic nucleus has more
encounters with the spiral density wave. This picture may only be
applicabl- to grand design spirals, since non-grand design spiral
galaxies not have long-lived density waves (Kormendy and
Norman 1. ).

Consider a very simple model for the gas in such a spiral
galaxy, with a specified initial surface density a(r) and angular
velocity Q(r). A spiral density wave (pattern speed Qp) is
present. In each encounter with the density wave some fraction f
of the gas is permanently lost in the form of low mass stars and
stellar remnants. The actual nature of the density-wave trigger
is unimportant (e.g., whether the density wave causes HI clouds
to coalesce into molecular clouds which then form stars, or
causes star formation in pre-existing molecular clouds). The
fraction of gas remaining after n encounters with the density
wave is Just (l-f)n, where f has been assumed constant with time.
An assumed initial gas distribution can be evolved back to T
years before the present or followed forward in time. If the
conversion factors used to infer H2 column densities from CO
J=1-0 emission are correct, then H2 dominates the mass of the ISM
for radii less than = 10 Kpc, and the present-day radial gas
distributions in spirals are roughly exponential.

Typical results from this simple model, with parameters
appropriate to NGC 6946, are shown in Figures la and b. The H2
distribution is from Young and Scoville (1982); O. is from
Roberts, Roberts and Shu (1975). Gas profiles have been
calculated only for the region of nearly solid-body rotation.
Figure la showp^an initial exponential distribution that has been
evolved for 10±0 years; Figure lb gives the initial (T-0)
distribution implied by a present-day exponential distributio'aA
It is evident that a gas distribution that was exponential 10'u
years ago would now be very flat. A general result is that the
gas distibutions inferred from CO observations require too much
gas in the past, exceeding the dynamical mass derived from the
rotation curve.

Cwol A Lomdak Persm (Edior)
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figure Ia. Upper curve is initial
exponential gas distribution; Figure lb. Uppet curve is initial
lqaor curve is gas profile after distribution 10L years ago implied
10 years. da density is by present-day exponential
normlised to initial 3-0 density. distribution. Normalizatiov as in la.

The idea that encounters between spiral density waves and
interstellar clouds would lead to depletion of gas at small radii
was first suggested by Oort (1974) to explain the distribution of
HI in spirals. Possible explanations for this discrepancy are:

1) The conversion from integrated CO intensity (IsCO to H
column density (N(H2 )) is in error. Since linear conversions oi
this form implicitly assume that all clouds are identical, they
almost certainly overestimate the amount of H2 in the inner
region of the galaxy relative to the disk, regardless of the
absolute error.

2) The star-forming efficiency f is much less than 1%. Note
that f as defined above is the amount of gas that is permanently
locked up in stars and stellar remnants. This fraction is related
to the amount of gas that is turned into stars as a result of the
density wave, F, by a factor that depends on the amount of mass
returned to the ISM by evolved stars. If only high-mass stars are
formed as a result of the density wave (e.g., the lower mass cut-
off is a 3 M.) then f would be expected to be - 0.1F, unless
remnants with very large masses are formed. The idea that the
initial mass function may be bimodal has been extensively
discussed by Larson (1986).

3) Grand design spiral structure doesn't persist over
galactic lifetimes.

4) Our understanding of the effects of density waves on the
ISM is very inadequate.

5) Infall of gas into the inner disk is extremely important
in the evolution of spiral galaxies.

Unfortunately, it is very difficult to make any quantitative
statements regarding 2) - 5). Therefore, for the rest of this
paper I shall discuss the issue raised by 1), namely: how
accurately can we really presume to know the molecular gas
distributions in galaxies, based upon observations of CO J=1-0
emission?
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It has been suggested that there should be a linear
conversion between ICO and N(H2) if the antenna temperature TR
effectively measures the fraction of the beam that is filled with
clouds. Then, if all the clouds have the same excitation
temperature, and are virialized so that the linewidth of each
cloud depends on its mass and thus column density, it is claimed
that there will be a constant conversion factor between Ico and
N(H2) (Young and Scoville 1982). Dickman, Snell and Schloerb
(1986) (DSS) have made a study of this relation, using a number
of simplifying assumptions. However, no rigorous analysis of this
suggestion has yet been made, and no study has been made of the
errors in H2 column densities which might result if the
assumptions involved are violated.

In order to perform this analysis, a model has been
constructed which simulates the observation of molecular clouds
in galaxies in a completely general way. A model galaxy is
assigned a rotation curve, z-velocity dispersion and inclination.
The overall parameters of the cloud distribution (total number,
form of radial distribution,etc.) are specified, and a random
number algorithm assigns coordinates and z-velocities to the
clouds. Cloud velocity dispersions, excitation temperatures, and
radii are all assigned individually and may be arbitrarily
complicated functions of position. The positions and velocities
of all the clouds are projected onto the plane of the sky.
Convolution of the cloud brightness distribution with a gaussian
antenna (with FWHM 0i/ 2 )is performed numerically, without any
simplifying assumptions. Cloud-cloud shielding is explicitly
taken into account.

Under what conditions is ICO proportional to N(H2 )? For
simplicity, let us consider a face-on galaxy and assign all
clouds the same radius and velocity dispersion, a . The surface
density of molecular clouds falls off exponentially with radius,
in accordance with the distributions inferred using a constant
conversion factor. If the clouds all have TEX = 10 K and
virialized linewidths, then Ico/H2 is a constant. However, sinc•

a- a and <N(H 2 )>, the cloud-averaged column density, is - ac
the value of the constant 4epends on ac and hence on the mean
density. For <n> = 200 cm", the vale used by DSS, the
conversion factor is N(H2 ) =2 X 10U ICO. Here N(H2 ) is the
column density of H2 averaged over the beam FWHM. This is 2X
smaller than the value advocated by Young and Scoville (1982). It
is also smaller than the value of DSS for the same <n>. This is a
result of their neglect of contribution to ICO from clouds
outside the FWHM.

Under restricted conditions, then, ICO/NH2 is constant, with
a value within a factor of two of that suggested for it. The key
question then becomes how strongly this ratio is affected by
deviations from these restrictive conditions. As mentioned above,
clouds must not only be in virial equilibrium, but have the same
mean density for ICO/NH2.to be strictly constant. This last
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condition is very unrealistic. It is not even clear that clouds
are in virial equilibrium. In studies of dark clouds, Leung,
Kutner and Mead (1982) and Myers (1983) have suggested that these
objects are in virial equilibrium, but there is reason to suspect
that this is not true (Maloney 1986). If clouds have linewidths
that do not reflect their masses, the correlation between CO
emission and H2 column density will cease to be linear.

Of perhaps more importance is the effect of variations in
the excitation temperature of the CO J=1-0 line. The models show
that, as expected, Ico depends linearly on TE. Figure 2 shows
ICO versus radius for two model galaxies whic1 are identical
except that one has TEX = 10 K everywhere, while the other has an
exponential TEX(r), wfth TEX(0) = 40 K and TEX (15 Kpc) = 5 K.
Figure 3 shows N(H2 ) versus R obtained using a constant
conversion factor, as well as the actual N(H2 ) distribution. A
TEX gradient of this size will lead to an error of an order of
magnitude in the inferred H2 mass between the center and edge of
the disk.

III I

I A
8 _ £ A A I D _ _*

0 150 0 150

RAIUS (AMCSEOI4) MAIUOS (CMCSEOIDS)

Figure 2. Integrated CO intensity Figure 3. Actual N(H2 ) distribution
vs. R (20"-l kpc) for model with (triangles) and distribution inferred
exponential T (boxes) and constant from ICO/N(2)U X l0'v. N(H2) in
Tax (trianglef--. units of 10 " " 10

It is apparent that large errors in H2 mass within a galaxy
are possible when using a constant I o/N(H2 ) conversion, with the
result that the actual gas distribution may be considerably
different from what is inferred from CO observations. In the
absence of information on the actual variation of excitation
temperature across a galaxy, caution must be exercised in the use
of such conversions.

I would like to thank John Black for numerous helpful
discussions.
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STARBURST GALAXIES
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ABSTRACT. The infrared properties of star-forming galaxies, primarily as
determined by IRAS, are compared to X-ray, optical, and radio properties. New
luminosity functions are reviewed and combined with those derived from optically
discovered samples using 487 M.rkarian galaxies with redshifts and published
IRAS 60 U fluxes, and 1074 such galaxies in the Center for Astrophysics redshift
survey. It is found that the majority of infrared galaxies which could be
detected are low luminosity sources already known from the optical samples, but
non-infrared surveys have found only a very small fraction of the highest
luminosity sources. Distributions of infrared to optical fluxes and available
spectra indicate that the majority of IRAS-selected galaxies are starburat
galaxies. Having a census of starburst galaxies and associated dust allows
several important global calculations. The source counts are predicted as a
function of flux limits for both infrared and radio fluxes. These galaxies are
found to be important radio sources at faint flux limits. Taking the integrated
flux to z - 3 indicates that such galaxies are a significant component of the
diffuse X-ray background, and could be the dominant component depending on the
nature of X-ray spectra and source evolution. The dust which must be associated
with the known infrared galaxies obscures a significant portion of the universe
beyond z - 3. Whpending on the scale size of dusty galaxies, this effect may
prevent the observation of distant quasars and primordial galaxies.

1. INTRODUCTION

Infrared astronomers can be defined as those individuals whose primary
source of reward is hot dust. Studying hot dust might be considered as just
another one of those things people do in California, but the census of this dust
revealed by the IRAS has dramatic implications, at least for astronomy. In this
paper, I summarize some implications of IRAS discoveries for understanding
various astronomical problems, including consequences for X-ray, optical, and
radio astronomy as well as fundamental cosmological interpretations of galaxies
and quasars. In all cases, the results discussed arise because the extra-
galactic sources seen by IRAS are predominantly star forming regions visible in
the infrared by re-radiation from dust heated by the hot, massive, young stars.
It is now obvious "hat this is the rtost efficient locator of star forming
regions, so that these new data givre us the most complete accounting yet
available of star formation in the universe.

This paper emphasizes the starburst galaxies because it is clear that the
great majority of the most luminous infrared galaxies are made luminous by star-
bursts. This was already suspected from ground based observations, but was
quantified by studies of IRAS sources (e.g. Lawrence et al. 1986, Rieke and
Lebofsky 1986). Galaxies whose fundamental power sources are non-thermal, such
as Seyfert galaxies, can be notable infrared sources, but do not exceed 10% of
the infrared-luminous galaxies in any surveys. Even some bright Seyferts, such
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as NGC 1068, are found when observed ctrefully to have their infrared luminosity
arising primarily from starbursts rather than non-thermal processes (Telesco et
al. 1984). Consequently, I am not going to distinguish any further in this
review between thermal and non-thermal infrared sources, and will simply group
all galaxies into a single infrared luminosity function.

The term "starburst" connotes an object in which star formation is proceed-
ing at a rate that cannot be maintained in equilibrium over the life of a
galaxy. A corollary is that the observed properties of a galaxy undergoing a
starburst are dominated in many wavebands by radiation originating in the star-
burst: X-rays from supernova remnants and compact accretors associated with
massive stars, ultraviolet and optical continua from the hot stars themselves,
emission lines from ionization by these stars, infrared continua from dust
re-radiation, and radio continua from the hot gas and the supernova remnants.

It is no surprise that starburst galaxies show up on lists of interesting
objects derived in many different ways. While the most luminous infrared
galaxies fulfill this definition of starburst galaxy, there are many fainter
infrared galaxies which are luminous because of star formation processes
proceeding at more or less their equilibrium rate. There is no defined
luminosity at which such "normal" galaxies separate from starburst galaxies.
To facilitate my analysis, I will group all galaxies into a single 60P
luminosity function, whether starburst or not.

I feel there is no real purpose in defining precisely when the star forma-
tion rate is abnormally high, but if one wishes a rigoroas definition of a
starburst system, it could probably best be derived using the ratio of infrared
to optical flux. In the discussion below, I consider the infrared properties of
some optically derived samples--the bright, generally normal galaxies in the
Center for Astrophysics redshift survey (Huchra et al. 1983) and the Markarian
galaxies, most all of which are detected because excessive star formation makes
their optical continua unusually blue. Utilizing the ratio "r" of infrared to
optical flux as defined by Soifer et al. (1984), the distribution of r in these
samples is as in Table I for those CfA and Markarian galaxies detected by IRAS.
It is seen that Markarian galaxies are systematically about four times as
luminous in the infrared relative to the optical. This is comparable to the
distribution of r for galaxies discovered as infrared sources by Wolstencroft
et al. (1985). My primary objective in the remainder of this paper is to con-
sider some overall consequences of star formation in the universe as revealed by
infrared results, so I worry no further about precise definitions for the
various galaxies in which such star formation is revealed via the infrared
luminosity.

2. LUMINOSITY FUNCTION FOR GALAXIES AT 60P

The correct way to determine the luminosity function for any sample of
celestial objects is to define the sample on the basis of a flux limit and then
determine the actual fluxes and redshifts of every object in the sample. This
procedure has begun for samples of infrared galaxies found by IRAS, utilizing
primarily the 60V fluxes at which detections are optimized. Two such studies
based primarily on new redshift data have already appeared (Lawrence et al.
1986, Soifer et al. 1986). The importance of continuing these efforts is so
obvious that I should not bother to mention it. It would be useful if authors
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Table I
Distribution of Infrared to Optical Flux Ratio r

bin of log r # of Markarian galaxies # of CfA galaxies

-1.6 to -1.2 1 (0.2%) 3 (0.28%)
-1.2 to -0.8 1 (0.2%) 21 (1.20%)
-0.8 to -0.4 5 (1.0%) 125 (11.6%)
-0.4 to 0 62 (12.7%) 531 (49.4%)

0 to +0.4 188 (38.6%) 307 (28.9%)
0.4 to 0.8 177 (36.3%) 71 (6.6%)
0.8 to 1.2 43 (8.8%) 15 (1.4%)
1.2 to 1.6 9 (1.8%) 0 (0%)
1.6 to 2.0 1 (0.2%) 1 (0.1%)
2.0 to 2.4 0 (0%) 0 (0%)

always include their redshift and flux values in papers, because it is impos-
sible otherwise to reproduce calculations of luminosity functions, and compari-
son between different samples then involves interpolation to other luminosity
bins, normalizing of different cosmologies, and a lot of wondering as to whether
I or one of the other parties did it wrong in the first place.

In Table II are shown the results for the two studies mentioned, normalfzed
to the best of my ability to the same luminosity intervals and Ho = 75 km s-
Mpc-1 . Both studies derive from faint IRAS sources in small areas of the sky
and refer to relatively luminous galaxies. The results do not agree particular-
ly well, but the average of them should give a real luminosity function that
does not err by more than a factor of two in any bin.

Table II
Space Densities of Galaxies for 60 Luminosities

d log L. d log vL, Lawrence Soifer CfA Markarian
(erg/s/Hz) (erg/s) #Mpc- 3  #Mpc- 3  #Mpc- 3  #Mpc-3

(294 (141 (1051 (487
galaxies) galaxies) galaxies) galaxies)

28.6-29 41.3-41.7 ..- 2 -2
29 -29.4 41.7-42.1 - - 3.2x10-3 1.2x10-4
29.4-29.8 42.1-42.5 9.7xlO-3 - 9.6xlO-3 9.7xlO-4
29.8-30.2 42.5-42.9 5.5xi0-3 - 3.2xlO-4 3.5x10 -2 -30.2-30.6 42.9-43.3 4.7x10-3 - 40.6x10-4 2.0x10-4
30.6-31 43.3-43.7 1.8x10- -4 3.0x10•5  l.2x10-_
31 -31.4 43.7-44.1 6.2xi0 - 3.5xi0-5 5.7xi0 - 3.8xi0-6
31.4-31.8 44.1-44.5 2.lxlO-5 5.6xlO -6  5.7x10l7  6.8x10 7-7
31.8-32.2 44.5-44.9 4.lxlO - 8.5x10 6-6 i.2x10-8 6.6x-8 -8
32.2-32.6 44.9-45.3 6.5x10l7  2.0x10-7  l.7x10-_ 3.6x10
32.6-33 45.3-45.7 9.4x10_-7 l.9x10-8 1,0xlO 8.7x1O
33 -33.4 45.7-46.1 1.8xlO 5.1x10- - -
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To supplement these results at low luminosities, it is necessary to have
nearby galaxies, which are found spread over the entire sky. Limiting values to
the space densities at low luminosities can be derived from the CfA sample,
using IRAS fluxes for those galaxies. This sample contains redshifts for the
approximately 2500 brightest 2 galaxies, defined by their optical magnitude, in
the most accessible 9000 deg of the sky. I found 60V fluxes for 1074 of them
excluding Markarian galaxies (to be discussed separately) in the catalog of
Lonsdale et al. (1985). Calculating distances and luminosities is problematical
for some because of the very low redshifts. To keep the procedure simple, I
ignored those with cz < 500 km s-1 and determined distances to the rest using
H - 75 km s-1 Mpc-1. The CfA sample is a large and important data base for use
with IRAS results; there are many more sophisticated things which could be done.

Most of the CfA galaxies are found in low luminosity 60U bins. The space
densities of such galaxies in the infrared luminosity function only represent a
lower limit to the true space densities, because they are defined by an
additional optical selection effect that may or may not affect the infrared
selection. That is, there may be more low luminosity infrared galaxies Mpc-3
than have already been found as optically bright galaxies. On the other hand,
the fact that these low luminosity infrared galaxies exist in the CfA sample as
known objects means that they must be included in the complete infrared
luminosity function; that function cannot be truncated at only those luminosi-
ties seen in the samples derived from IRAS discoveries alone.

The largest other sample of optically discovered galaxies having redshifts
is the Markarian sample, which gives another set of minimum limits to the
infrared-luminous galaxies which must exist. Of the 1500 known Markarian
galaxies, I found 487 with both redshifts and 60V fluxes. Existing data on
Markarian galaxies including 60p fluxes are summarized by Mazzarella and Balzano
(1986); their catalog was completed after my calculations so may include a few
more redshifts than I utilized. Space densities from the CfA and Markarian
samples are also listed in Table II, calculated assuming an IRAS 60U flux limit
for source detection of 0.5 Jy.

In Table III, the space densities of Table II are summarized into a single
luminosity function that is adopted for the remainder of this paper. This
Table also shows the proportion of galaxies in any luminosity bin that would
already have been known from the optically derived samples compared to the
number found from IRAS-derived samples. There are two interesting conclusions
from this comparison; a few examples of the most infrared luminous galaxies were
already known among optically discovered galaxies (such as Markarian 231, 171,
NGC 7469, IC 4553), but infrared discovery observations find an increasingly
higher percentage of the most luminous galaxies. This is a simple demonstration
of the importance of IRAS for finding many examples of the most dramatic star-
burst systems. (It is fair to note that these percentages greatly underestimate
the potential of optical techniques for finding such galaxies. No completeness
corrections have been applied to the Markarian sample, and no allowance has been
made for improved objective prism observations such as in Wasilewski (1983) that
can significantly increase compared to Markarian's search the number of star-
burst galaxies found optically.)
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Table III
Space Densities and Luminosity Function Adopted at 60p

d Log LV Space Density minimum log Lv log '
# Mpc known T has units

optically # Mpc- 3 >L

29 -29.4 >4.4xlO- 2  100% 29 -1.18
29.4-29.8 >l.OxlO-'2  100% 29.4 >-1.64
29.8-30.2 5.5x10-3 65% 29.8 -1.90
30.2-30.6 4.7xl0- 3  28% 30.2 -2.15
30.6-31 1 8x10 3-3 23% 30.6 -2.61
31 -31.4 4.8x10-4  20% 31 -3.19
31.4-31.8 1 3x10-• 9% 31.4 -3.80
31.8-32.2 2.5x10 -5  3% 31.8 -4.5232.2-32.6 4.3x1-_6 1% 32.2 -5.30
32.6-33 5 .7 0.3% 32.6 -6.16

33 -33.4 1.2xlO-1 0% 33 -6.92

3. SOURCE COUNTS IN INFRARED AND RADIO, AND THE X-RAY BACKGROUND

3.1. Results at 60V

The luminosity function in Table III, derived from various uses of IRAS
fluxes, provides a starting point for predictions for how many star-forming
galaxies should be seen in the universe with various observing techniques. Such
predictions are commonly presented in terms of source counts as a function of
flux limit, or "log N - log S" plots. The easiest way to make such calculations
is as a sum of the number of galaxies seen in successive volume shells of the
universe. Let dN(z) be the number of galaxies within a redshift interval dz
having volume interval dV seen to a given flux limit. Then dN(z) = '[L(z)]dV,
for L(z) the minimum luminosity which can be reached for observations at z with
the flux limit used. All of the results presented use a cosmology with qo =
0.1, although the precise form is not important for most results, and Ho = 75.
The methodology and necessary cosmological equations are summarized in Weedman
(1986). All calculations for the infrared use a continuous spectrum of form
fV a V-2 , an index corresponding to that between 25V and 60p for typical
galaxies in the samples used to construct the luminosity function.

Expectations for observations at 60U are in Table IV, carried to a final
flux limit of 0.5 mJy. Not surprisingly, the number of sources to be found
increases rapidly with flux limit. The characteristic redshift of sources also
increases but does not reach very large values even for faint flux limits
because source counts are contaminated by the many low luminosity, nearby
objects. If the most luminous objects could be traced, they would be visible to
great distances. This is shown by the values of maximum redshift at which a
galaxy with log LV 33 could be seen.
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Table IV
Predicted Source Counts and Redshifts for 60p Flux Limits

Flux limit (Jy) # deg -2>f(600) most probable z highest z

11 0.01 0.0030 0.07
4.4 0.038 0.0045 0.10
1.8 0.15 0.0070 0.15
0.7 0.53 0.011 0.23
0.28 1.9 0.017 0.33
0.11 6.5 0.026 0.48
0.045 21 0.040 0.66
0.018 67 0.065 0.90
0.0072 200 0.095 1.22
0.0029 580 0.14 1.61
0,0012 1540 0.21 2.10
0.0005 3800 0.28 2.70

3.2. Relation to Radio Source Counts

Contrary to some expectations, deep radio surveys with the VLA did not
reveal progressively increasing fractions of radio sources to be faint and
distant quasars. Instead, a new population of intrinsically faint but rela-
tively nearby galaxies begins to appear at flux levels of a few times 10-4 Jy
(Condon 1984, Windhorst et al. 1985). From their blue colors, these seem to be
starburst galaxies. The radio properties of starburst galaxies and IRAS sources
in general deserve increased attention, and are getting it (see papers by
Dressel, Wielebinski, Fich, and Eales and Wynn-Williams, this meeting). Data so
far available indicate very similar ratios of infrared to radio flux, as would
be expected if both are the consequence of the same starburst (e.g. Helou,
Soifer and Rowan-Robinson 1985). For my calculations, I adopt the mean ratio
f(60i±)/f(2Ocm) - 350 from the 8 starburst systems measured with both the VLA
and IRAS from Sramek and Weedman (1986). Applying this to the luminosity
function of Table III predicts the radio counts at 20 cm given in Table V.
Fluxes associated with the counts in Table V can be rescaled proportionally if
another value is adopted for the f(60u)/f(20cm) ratio.

These expectations are consistent with the observed radio counts to the
extent that the infrared galaxies predict a significant portion of but do not
exceed the observed Iource counts. For example, Windhorst, Kron and Koo (1984)
find 50 sources deg- to 6x10-4 Jy at 20 cm. There is much room and great
potential for new and exciting results in correlating the infrared and radio
properties of faint starburst systems. These may prove to be the dominant
component for the faintest radio counts. Conversely, the radio counts can pro-
vide useful constraints to deductions from infrared data, which encourages
further efforts at improved correlations between data from the two wavebands.

3.3. The Extragalactic Diffuse X-ray Background

The most outstanding puzzle in observational X-ray astronomy is that of
the source of the diffuse X-ray background at energies above one KeV (Boldt
1981). This background seems to fill the extragalactic sky evenly and so must
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Table V
Radio Source Counts of Starburst Galaxies at 20 cm

Flux limit (Jy) # deg-2 >f(20cm)

0.29 0.0003
0.12 0.0014
0.047 0.006

0.0019 0.023
0.0075 0.088
0.0030 0.34
0.0012 1.2
0.0005 4.5
0.0002 16

arise from very distant sources. (The lower energy background nas structure
that correlates with the Milky Way Galaxy, so is attributed to various
Galactic sources.) Much effort has gone into asking what sources could explain
this background. Quasars, for example, could with sufficient evolution arise
in adequate numbers to explain the background, except that the observed steep
X-ray spectra of quasars are in gross disagreement with the flatter, seemingly
thermal, spectrum of the background. Perhaps the background is associated with
diffuse processes in the early universe, or perhaps it hints at an as yet un-
observed population of objects. The exciting result from the infrared data is
that starburst galaxies can play a significant, perhaps dominant, role in
explaining this X-ray background.

Once again, I start with the starburst galaxy luminosity function in Table
III. The answer for the predicted background will simply be a lower limit. The
reasons are several. Low luminosity galaxies in large numbers could be signifi-
cant for any background, which is by definition the integrated flux from many
sources too faint to be resolved. Yet, the infrared luminosity function in
Table III is truncated at log L(60) - 29, with no allowance for fainter
galaxies that could conceivably exist in large numbers, given the steepness of
the luminosity function. Furthermore, star formation should have been more
comn in the early universe, but no evolution is included in my calculation.
Finally, the sum of sources is carried only to z = 3, because that is where the
high redshift observables (quasars) cease, even though the presence of heavy
elements in those same quasars shows that star formation must have predated
their epochs.

It is possible empirically to ratio infrared and X-ray fluxes using a few
star-forming systems with both Einstein and IRAS fluxes. The result I adopt
arises from 12 galaxies in Fabbiano, Felge'ion and Zamorani (1982) whose mean
ratio f(600)/f(2keV) - 2.7 x 108. Extremeto of this value range from 4.7 to
0.4. An improved determination of this ratio could be folded into the calcula-
tion simply by scaling the predicted X-ray background in proportion, as long as
the ratio is not taken as a function of luminosity. Another uncertainty lies
in the X-ray spectrum of starburst systems, of which nothing is known. (This
ignorance may be considered an advantage for the modeler since that lessens
demnds on one's model.) Because existing galaxy observations are at 2 keif,
that is the energy of the background calculation made. it is necessary to
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adopt a spectrum to account for K-corrections at high redshifts; because
matching the background is the target, I adopt a spectral index of -0.4 to
resemble that observed for the background near this energy.

The results are quite exciting, predicting without source evolution a 2 keV
background from faint, unresolved X-ray sources of l.3x10- 7 Jy deg- 2 , or 13% of
the observed background. The sources are so common (over 106 deg- 2 -- see next
section) that this background would appear unstructured. Applying source
luminosity evolution proportional to (l+z) 2 , not unreasonable since quasars
evolve as about (l+z) , approximately doubles the background. The most critical
need at the moment to pursue this idea further is improved X-ray data on star-
burst galaxies; it is obvious, however, that with relatively minor modifications
to the parameters used the starburst galaxies could prove to be the primary
source of the extragalactic X-ray background.

4. THE SHROUD OF THE UNIVERSE

Among the more pressing cosmological mysteries are the issues of why no
primordial galaxies can be seen (e.g. Sunyaev et al. 1978) and why quasar
numbers rapidly diminish beyond redshift of about 2.5 (Osmer 1982, Schmidt,
Schneider and Gunn 1986). Various speculators have wondered if one or both of
these effects might be caused by dust obscuring the background universe. Here,
as well, the infrared galaxy luminosity function is a necessary step toward
learning the answer. For this use, we no longer care what is heating the dust,
but simply use the infrared-luminous galaxies as tracers of dust. Obviously,
the results will be lower limits, because we omit objects containing dust that
is not heated enough to radiate and omit objects with luminosities too low to
be included in Table III.

To consider dusty galaxies as obscurers rather than emitters requires some
modifications in cosmological considerations. Fluxes and luminosities no
longer are relevant; all that counts is the total area of the sky covered up by
all galaxies to a given redshift, regardless of the luminosities of these
galaxies. A very important cosmological effect enters, which is that the
angular diameter of galaxies decreases very little with redshift beyond z about
unity. Unlike its contribution to flux, the obscuring ability of a galaxy
changes little with redshift in those redshift regimes where the total number of
galaxies is increasing dramatically. For example, with qo - 0.1 and Ho - 75,
the angular diameter subtended by 10 kpc remains almost constant at 1.3" for all
z~l.

As was done for the source count calculations, the numbers of galaxies per
shell of volume are summed to the cutoff redshift, also taken here as z - 3.
Truncating the luminosity function at the luminosity in Table III, there are at
least 6.6xlO- 2 dusty galaxies Mpc- 3 . Carrying these to z - 3 with the cosmology
assumed yields l.lxlO0 galaxies deg- 2 . It is easy enough to weight each of
these by actual size, because the great majority of them are at z>l where their
angular size no longer changes with z. From this result, it is found that the
fraction of the universe beyond z - 3 which is obscured by these galaxies closer
than z - 3 is 4.5 x 10- 3 R2 , for R the effective radius of the absorbing material
in kpc.
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This result illustrates the critical importance of obtaining infrared
imaging data on galaxies to determine reasonable values for R. Note presenta-
tions at this meeting by Telesco, Low, and Rice. Recalling that most of the
galaxies in the luminosity function are normal spirals, R may approach 10 kpc.
In that case, the obscured fraction approaches unity, and could easily exceed
unity if allowance were made for the faint or cold but dusty galaxies not
included in the luminosity function used. Regardless of the conclusions finally
reached, the IRAS data give us unambiguous proof that dust plays a significant
role in governing the observable properties of the distant universe.

5. PUZZLES AND PROGRESS

There are many other aspects of investigating starburst galaxies whose
importance is not diminished by the fact that I did not review them thoroughly.
For example, I trust that A. Toomre will give what is due to those theorists
who are struggling commendably with understanding why starbursts happen at all.
Work by Struck-Marcell and Scalo discussed at this meeting is particularly
relevant and diligent. Another area exciting in its own right is the molecular
radio astronomy which attempts to understand how the presence of giant
molecular clouds couples to the starburst phenomenon. There is no question
that extensive CO emission correlates with infrared flux, as discussed in the
literature and at this meeting by Young et al., Lo et al., and Solomon. Which
ingredient was needed first; did the dust have to be there to make the
molecules, or are the stars which made the dust there because of the raw
material in the molecular clouds?

Another intriguing molecular observation is that of the megamasers such as
originally emphasized by Baan and Haschick (1984) and discussed here by
Bottinelli et al. and by Norris. These require not only dense molecular clouds
between the observer and galactic nucleus, but also strong continuum radio
sources in those nuclei. Such sources, as the ones in IC 4553, NGC 3079 and
NGC 3690, are usually unresolved and accompanied by strong infrared sources
(see the paper by Becklin and Wynn-Williams). To me, these sources are great
puzzles. It is hard to understand how a starburst of the luminosity required,
especially to explain the radio fluxes, can be compressed in such a small
volume. These objects may prove to be important hybrids of starbursts plus
something more mysterious. The entire question of why there are starbursts in
and near galactic nuclei and how these relate to other forms of active nuclei
is a basic one. Observationally, note papers here as well as earlier work by
Turner, Keel, and Wilson which illustrate the various techniques being used to
probe these nuclei; Norman has been worrying about the theory to explain these
events and their consequences.

Various programs underway for intensive spectroscopic follow ups of IRAS
sources are reported here by Houck, Savage et al., Dennefeld, and Smith et al.
Beyond making major progress toward understanding the luminosity function and
distributions of galaxy types, such observations are also the opportunity for
finding really weird things. For example, are there more galaxies out there
like Markarian 231? We knew 1. years ago that this object has a very strange
optical spectrum, having a Seyfert I broad line region, absorption lines from
young stars, and blueshifted absorption lines from dense interstellar material.
I thought initially it was a more or less normal Seyfert galaxy with an
absorbing cloud which happened to be in front of the nucleus, but the
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exceptional infrared luminosity now known implies that the absorption is much
more widespread. Optical observers have found no other similar objects. Are
there many hidden in the IRAS lists?

Seeking to answer such questions illustrates a basic value of surveys such
as that of IRAS: these produce a treasure trove that keeps astronomers in many
specialties busy and excited for years. Closing on that note, the IRAS teams
deserve much commendation for their efficiency in making this marvelous data
base so quickly and easily available to the rest of us.
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DISCUSSION

MONTMERLE:
You made the suggestions that starlmurt galaxies could explain the diffuse x-ray background. However,

this background extends out to several 10 kev, whereas, to my knowledge, such high energies in our Galaxy,
relate only to x-ray sources like compact binaries, etc. The Galactic star forming regions themselves may be
associated with temperatures of 10-12 kev at most (see the recent 'Tenma' results). Therefore, what kind of
Aorvational evidence in our Galaxy may support your suggestion? Or are you thinking in terms of special
pnxese not observed in Galactic star-forming regions?
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WEEDMAN:
I don't know the answer for our Galaxy. Because there are no extragalactic starburst systems with 10

key data. I didn't consider that energy in my analysis.

LOW:
Have you used the new infrared luminosity function to re-calculate the diffuse infrared background? It

is possible to extract a diffuse extragalactic component from the IRAS data at 100pm.

WEEDMAN:
I have determined a number, but did not present it because I wasn't aware of any meaningful measurements

that could extract the extragalactic background from Galactic and zodiacal backgrounds.

BURBIDGE:
Since you have a 60/Am luminosity function, can you look at the production of helium in galaxies? In

effect, the amount of helium produced by hydrogen burning in galaxies is now greater than we originally
expected it to be because the bolometric luminosity of galaxies integrated over the age of the universe is
greater.

WEEDMAN:
What you suggest is an important consistency check that I have not done.

SCOVILLE:
.Could you comment on the relative shapes and number densities of the IRAS galaxy and quasar luminosity

functions.

WEEDMAN:
I have not compared them to determine the luminosity at which the space densities are comparable. At

most luminosities, the galaxies greatly dominate, but at the very highest luminosities, there are only quasars.
My definition of quasars includes Seyfert I galaxies, so the real issue should be to try to produce thermally
vs. non-thermally derived luminosity functions.

GALLAGHER:
In considering the issue of 'extra' bolometric luminosity that has been found by IRAS (e.g., with regard

to Geoff's questions about He production), don't you have to distinguish between blue, near constant SFR
systems that surprise us by radiating much of their power in the infrared, and true bursts which surprise us by
having a much larger bolometric luminosity than we would have expected from optical data? Do you have
any estimates for the relative infrared luminosity contributions of these two classes of Markarian systems?

WEEDMAN:
I have not tried to distinguish starbursts at various levels from more equilibrium star formation in the

luminosity function given. The hope is that we are observing a representative statistical sample of the total
60prm luminosity at a given epoch of the universe, and that the average would remain the same even as
individual galaxies come and go.
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ABSTRACT

We have observed the Brackett a (4.05 pm) and Brackett -y (2.17 pm) lines with 7.2"
angular and 350 km s-1 velocity resolution in 11 infrared-bright galaxies. From these mea-
surements we derive extinctions, Lyman continuum fluxes, and luminosities due to OB stars.
The galaxies observed to date are NGC 3690, M83, NGC 5195, Arp 220, NGC 520, NGC 660,
NGC 1614, NGC 3079, NGC 6946, NGC 7714, and Maffei 2, all of which have been suggested
at some time to be "starburst" objects. The contributions of OB stars to the luminosities of
these galaxies can be quantified from our measurements and range from insignificant (Arp 220,
NGC 3079, NGC 5195) to sufficient to account for the total energy output (M83, NGC 1614).
The OB stellar luminosities observed are as high as 1012 L9 in the galaxy NGC 1614. It is
noteworthy that star formation can play very different roles in the infrared energy output
of galaxies of similiar luminosity, as for example Arp 220 and NGC 1614. In addition to
probing the star formation process in these galaxies, the Brackett line measurements, when
compared to radio and infrared continuum results, have revealed some unexpected and at
present imperfectly understood phenomena: 1) in some very luminous sources the radio con-
tinuum appears to be suppressed relative to the infrared recombination lines; 2) in many
galaxies there is a substantial excess of 10pum flux over that predicted from simple models of
Lyman a heating of dust if young stars are the only significant energy source.

OBSERVATIONS AND METHODOLOGY

Young 0 and B stars are likely energy sources for the intense infrared emission observed

in many galaxies (Telesco and Harper 1980; Rieke et al. 1980; Scoville et al. 1983), but non-
stellar sources may also be involved (Rieke 1976; Wynn-Williams and Becklin 1985). The first
priority in studying star formation in galaxies is to quantify the contribution of young stars
to the total luminosity. For this purpose, we have observed the Brackett a (4.05 prm) and "y
(2.17 pm) lines of hydrogen. From the Brackett line strengths one can derive the extinction,
the flux of ultraviolet photons, and, with the assumption of an initial mass function, the total
number of OB stars present. The properties of this deduced stellar population, including total
luminosity, 10 &m luminosity, and thermal radio flux, are then compared to the observed
values. Details of the method are found in Beck et al. (1986), and Turner et al. (1986).
Uncertainties in the derived quantities depend on their sensitivity to the assumed values of
elecron temperature, which can affect both the total ionizing flux and extinction derived by
10 to 15 percent; dust temperature, which can change the predicted 10 pm flux by up to 50
percent; and the initial mass function, the largest uncertainty, which can change the total
luminosity due to young stars by up to a factor of two.

Carol J. Lonsdate Persson (Editor)
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The observations were made using the Cornell Cooled Grating Spectrometer (Beckwith
et 4J. 1983) on the NASA Infrared Telescope Facility on Mauna Kea in March and October
1985. All of the galaxies observed are bright, have companions, and have been suggested
to contain regions of rapid star formation, but the sample spans a range in morphology,
luminosity, distance, and strength of tidal interactions with the companion.

RESULTS

The OB luminosities derived from the Brackett lines indicate that star formation con-
tributes varying amounts to the total infrared luminosities in the galaxy sample. In the
three galaxies NGC 5195, Arp 220, and NGC 3079, the OB stellar population was found
to contribute only insignificantly (less than 20 percent of the total) to the far-infrared lu-
minosity. Corrections between the small-beam Brackett observations and the large beams
of far-infrared measurements used to find the total luminosity cannot explain these discrep-
ancies. By contrast, in NGC 1614 and M83 the luminosity due to OB stars derived from
a Miller and Scalo (1979) initial mass function with upper mass limit 30 Me is actually
somewhat greater than the total observed luminosity, indicating that star formation is the
primary energy source and that the initial mass function may be truncated. In NGC 6946,
NGC 7714, Maffei 2, NGC 660, NGC 520, and NGC 3690 the luminosity of young OB
stars is a significant portion of the total observed. When beam size corrections are consid-
ered, the observations of these galaxies suggest that star formation is their major luminosity
source, although proof will require continuum measurements with higher angular resolu-
tion.

From the Brackett line flux, the UV flux and hence the thermal radio continuum flux
can be derived. In almost all cases, the predicted thermal radio flux SP" I < 0.1 - 0.2 Sr,',
with the excess radio emission due to synchrotron emission. There are two possible exceptions
in the galaxy sample. The predicted thermal flux from NGC 1614 is about half the total
observed. In the most unusual source, M83, S -70-100 mJy whereas S101 -30 mJy.
The deficiency in radio emission in M83 could result from a very low electron temperature in
the ionized gas (< 5 x 101 K) or from optically thick radio continuum emission. The latter
possibility is intrinsically more interesting in that it suggests the presence of > 10i compact
EI regions with possibly 10 7 Me tied up in young stars. We suggest that the burst of star
formation in M83 has been short, < 104 yrs, and that the prodigious rate of star formation
cannot be sustained (Turner et al. 1986).

The 10pm flux can also be derived from the Brackett line fluxes, assuming that
dust heating is due solely to Lyman a radiation within HI regions. Small beam (< 8")
10pam ground observations when compared to IRAS 10pm observations with a larger beam
(0.8# x 5.0'), indicate an excellent correlation with on average more than 50% of the 10pm
emission coming from the nuclear regions. Yet the 10pum fluxes predicted from Brackett lines
consistently underestimate the observed 10&m flux (measured with similar telescope beams)
by'an average factor of 5. This excess in 10&m emission suggests that the nominal ratio of
10ptm flux to the ionizing flux as derived from Galactic HII regions may not be applicable to
external galaxies, especially in the nuclear regions. The 10pm excess could be due to unusual
distributions of stars and gas, small dust grains, or possibly to higher temperatures in regions
with a high spatial density of hot young stars.
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THE NATURE OF STAR FORMATION IN GALAXIES

The galaxies in this sample for which OB stars are the primary energy source cover a
wide range of luminosities, morphologies, and interaction histories. The Brackett line obser-
vations suggest that the infrared luminosity, radio continuum flux, and 10 pm emission may
not be practical quantitative predictors of star formation activity under these circumstances.
In some of the galaxies observed the thermal radio flux is lower than that predicted from the
Brackett lines; in all of the galaxies the 10prm flux is significantly higher than the OB stars
can account for if the emitting region behaves as do "normal" Galactic HiI regions. These
results imply that it is very difficult to unambiguously predict the spectral signature of star
formation. Complicating factors as optically thick HII regions or non-equilibrium heating of
small grains may have to be considered in models of such objects. This sample of bright
infrared galaxies appears to be a disparate group and difficult to model. This may be only
what should be expected from galaxies known to be undergoing a shortlived, unusual, and
highly energetic stage of development.

This research has been supported in part by the Alfred P. Sloan Foundation, and NSF
Grant AST85-09907. The Infrared Telescope Facility is operated by the University of Hawaii
under contract from the National Aeronautics and Space Administration.
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DISCUSSION

PUGET:
If your 10pm excess is due to small grains, the observations in our Galaxy show that the excess is

much larger in the neutral medium than in 1M11 regions, so the 10pm excess may be a handle on the relative
distribution of 0 stars and B stars.

HO:
That is certainly a good suggestion. When more detailed mapping is available, we can compare the

10pm excess and the ionizing flux in tenms of spatial distribution.
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GALIAGHER:
What is the evidence for an outflow from the nucleus of NGC 3079?

HO:
Hummel and collaborators have published a radio continuum map which shows an extension perpendicular

to the plane of the galaxy.

YOUNG:
In your comparison of 10pm fluxes in a 7" aperture, what was the source of IR data? The Point Source

Catalog will underestimate the total flux in many of the galaxies which are extended, and the coadded survey
fluxes are higher than those in the Extragalactic Catalog.

HO:
For examining the 10p•m excess, we used the Brackett lines to predict a 10pm flux in a 7" beam. We

compared this flux to 10m flux actually observed in ground-based observations with angular resolution _<8".
To determine the dominance of nuclear 10pm emission, we compare the ground-based photometry with IRAS
12pm flux from the Extragalactic Catalog. We don't think extended emission (with respect to the IRAS
beam) is likely for our sample, because these sources have high correlation coefficients, ,-,99%, consistent
with 'point-like' (with respect to IRAS beam) distributions.

TELESCO:
All the 12pm IRAS flux in M83 can be accounted for in a recent map at 10.8#m (Telesco et a!; this

conference). Nearly all falls within the central 20" diameter region. However, most of this to in the central
T'. The infrared source is compact, but not extremely compact.

HO:
In our comparison of 10pm and Brackett flux for M83, we have actually summed over the positions

mapped in the Brackett line. We have been careful to compare data that are at the same positions and with
similar beams. M83 was the strongest source in our sample so that a little mapping was possible.
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MOLECULAR GAS IN THE STARBURST NUCLEUS OF M82

K.Y. Lo
California Institute of Technology

Pasadena, California

ABSTRACT. 7"-resolution CO(1-0) observations of the central 1 kpc of M82 have resolved 2 components
of molecular gas: (1) A high concentration in the central 700 pc x 200 pc, and (2) extended features
that may be gas expelled from the central concentration. The central concentration of molecular gas
falls in the same confines as the other tracers of recent star formation, and may be identified directly
with the star-burst region.

The molecular gas in the star-burst nucleus of M82 appears to be highly disturbed and, has
high kinetic temperature (> 40 K), likely consequences of the high density of young star clusters. Stellar
winds and subsequent supernovae from the star clusters can effectively sweep up the interstellar medium.
The flux of the stellar radiation throughout the M82 star-burst region (-, 10i L®/pc2 ) is comparable
to that in Orion, at - 0.25 pc from the Trapezium stars, and can heat the gas to high temperature.
The N(H 2)/Ico ratio is , 10 times smaller than that for the galactic GMC, but indicates a substantial
column density still-N(H2) >_ 3 x 1022 cm-2 or > 500 Me/pc2 . LIR/MH2 for the M82 star-burst region
is 170 LG/ME, much higher than the ratio for the extended molecular disks of nearby galaxies (- 5
LO/Mo).

The spatial distribution and kinematics of the nuclear concentration of the molecular gas, as
well as the 2 pm light distribution, suggest the presence of a stellar bar in M82. While accretion from
otside the galaxy could have contributed to the gas supply in the nuclear region of M82, the immediate
mechanisms for both supplying and confining the gas in the central 1 kpc, and for triggering the star
formation may have been provided by the stellar bar.

Comparisons of the M82 star-burst nucleus to a sample of IR luminous galaxies suggest that star-
burst regions in general may have a higher gas temperature (therefore higher integrated CO intensity) and
much higher LIR/MH2 than the galactic disk, and that LrR of the star-burst regions may be essentially
proportional to their area.

1. INTRODUCTION

M82, at a distance of 3.25 Mpc, serves a prototypical system for studying the star-burst phe-
nomenon. The most persuasive explanation for the 3 x10 1° LEinfra-red luminosity (Telesco and Harper
1980) is that it is due to a recent burst of star formation that started _ 5 x 107 years ago with an expo-
nential decay time of - 2 x 107 years and produced primarily massive stars at high efficiency (Rieke et al
1980). Detailed optical studies show that very young star clusters exist in the nucleus of M82 (O'Connell
and Mangano 1978, hereafter OM), and high resolution radio maps of M82 show the presence of >40
compact radio sources which are most likely young supernova rempants (Kronberg et al 1985). Thus,
star-bursts in the nucleus of M82 seem well founded.

Carol J. Lonsdale Persson (Editor)
Star Formation in Galaxies 367



K. Y. LO

Extremely large infra-red luminosity is observed towards the central few hundred pc to kpc scale
in many galaxies (cf. Telesco and Harper 1980). Recent IRAS observations have shown that galaxies
with extremely large far-IR luminosity are fairly common (Soifer et al 1986). While star-bursts could
be the natural explanation for the luminosity, the underlying mechanisms for star-bursts are not well
understood. Questions concerning (i) the source of the molecular gas, the raw material for star formation,
(ii) the mechanisms for collecting the gas in the star-burst regions, typically the central kpz, and (iii)
the triggering of star-bursts need to be answered. In addition, some mechanism to regulate the runaway
star formation may be required.

One of the most useful approaches to this problem is through an investigation of the molecular gas,
the raw material for forming new stars, using observations of the relatively abundant trace molecule,
CO. M82 is the brightest emitter of the CO radiation which has been studied extensively via single
telescopes (Rickard et al 1977; Knapp et al 1980; Olofsson and Rydbeck 1984; Young and Scoville 1984;
Nakai 1984). Even at the modest distance of M82, single telescope CO observations have rather poor
linear resolution: a few hundred pc at best (e.g. Nakai 1984). With the Owens Valley millimeter-wave
interferometer, we have observed the molecular gas distribution within the central 1 1 kpc region with a
linear resolution of 110 pc, adequate to resolve spatially some of the prominent irregular dusty filaments
visible in optical pictures.

In this paper, we present high resolution interferometric observl-tions of the CO(1-0) emission
from the central - 1' region of M82. (For details, see Lo et al 1986.) They show that the molecular
gas can be divided into 2 components: (1) a high concentration in the central 700 pc x 200 pc, and (2)
extended regions that may be shell-like and filamentary in structure. We also discuss the properties of
the interstellar medium in the nuclear region of M82 implied by our and related observations and the
implications of our observations for star formation in M82 and in other galaxies.

2. NUCLEAR CONCENTRATION OF MOLECULAR GAS

2.1 Relationship to Star-burst Region

Figure 1 shows the integrated CO intensity map of the central ,',1' of M82 superposed on a print
of an 103aO plate of the galaxy. The CO source, 1.5 kpc by 0.3 kpc in extent, is roughly aligned with
the disk of the galaxy and shows two prominent peaks - 25" (,- 450 pc) apart, with a weaker one in
between. To illustrate the relative distribution of the molecular gas and other components in the nucleus
of M82, we have superposed the integrated CO intensity maps on (i) a \6 cm map, (ii) a 10 pm map
and (iii) a 2.2 pm map of the nuclear region of M82 (figure 2;cf. Rieke et al 1980). Both the 6 cm and
10 pm emissions trace the locations of recent formation of massive stars within a region of - 700 pc X
200 pc. Figure 2 shows that the region of recent star formation falls in the same confines as the central
concentration of the CO distribution. However, the correspondence is not exact in detail.

The correlation of strong CO emission and recent star formation is further illustrated by figure 3
in which a 0.15-resolution \ 6 cm map (Kronberg et al 1985) is superposed on the integrated CO intensity
map. The general 6 cm distribution is very well correlated spatially with the central concentration of CO
emission. There are many compact radio sources in the 6 cm map, lying preferentially on the periphery
of the overall 6 cm distribution (with the majority to the south). These compact sources are most likely
supernova remnants, some of which have been observed to be decreasing in flux and must be quite young
(Kronberg and Sramek 1985). However, the supernova remnants appear to be offset from peaks of the
CO emission.
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Figure 2: Comparisons of the integrated CO intensity map to A 6 cm radio continuum (top),
10p•m emission (middle), both tracers of recently formed stars, and 2.2 pm emission (bottom), presum-
ably the underlying stellar nucleus and disk (Rieke et al 1980). Note that the CO peaks are not
symmetrically placed about the 2.2 pm nucleus. The accuracy of the positional registration for all the
maps is < 1".
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Figure 3: A 0'!15 resolution A 6 cm radio continuum VLA map of M82 (Kronberg et al 1985),
showing the discrete radio supernova remnants, is superimposed on the integrated CO intensity map.
Note that the remnants are not situated on the CO intensity peaks.
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2.2 Kinematics

From the available channel maps, an intensity-weighted velocity field of the CO emission mea-
sured with the spectrometer can be constructed, as shown in figure 4. The overall velocity gradient
suggests a general rotation of the gas. The rotation axis would be at a PA of '- 130, about 20* offset
from the stellar minor axis of M82. It appears that the kinematic and structural major axes of the
CO emission are not aligned. Similar misalignment is observed in the velocity field derived from optical
emission lines (Heckathorn 1972; OM; Williams et al 1985). Thus, the observed gas motion cannot
simply be that of an inclined circularly rotating ring or disk. Within the central 300 pc region, the high
brightness CO emission in the nucleus has a constant velocity gradient of 0.7 km s- 1 /pc, compared to
the Ha velocity gradient of - 0.9 km s-1 /pc within the central 180 pc (OM). The velocity gradient of
the HI gas within the central 500 pc is - 0.5 km s-'/pc (Weliachew et al 1984). The orbital time scale
of the neutral and ionized gas within the central 500 pc of M82 is < 107 yr.

M82

690 56' 00"

Mel

30"

W 690 55' 00"
C

150

690 54' 00"
I I I I I

09h 51 55 50 45ý 4e 35

RA

Figure 4: The dashed lines are the isovelocity contours at 10 km s-1 intervals, showing the
velocity field of the CO emission falling within the spectrometer. The numbers are the LSR velocities in
km s-1. The solid contours show the CO intensity map obtained from summing all the emission in the
observed channel maps and therefore does not represent all the emission in the central 1'. The contours
of the solid lines are multiples of 54 Jy-km s-1 /beam.
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3. EXTENDED EMISSION: MOLECULAR SUPERSHELLS ?

The channel maps (figure 5) show a bright, slightly resolved component as well as fainter extended
emission. The bright component is CO emission from the central concentration, distinguishable from
the extended emission by its higher brightness temperature and confinement. In many of the maps, the
extended CO emission appears to show arc-like structures. As the linear resolution of the beam is , 110
pc, any distinctly resolved feature would have a scale > 200 pc. The arc-like structures at VLSR = 234.6
km s-1 have scale size up to 400 pc. At other velocities, the extended emission may show overlapping
arc-like structures, and sometimes, the structure retains some similarities over 2 to 3 channel maps (see,
for example, VL.SR = 286.2, 297.0 and 307.4 km s-1 in figure 5.)
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Figure 5: The "cleaned" 10.4 km s-1 channel maps all show the presence of a bright component
and an extended fainter component (< 0.5 of peak brightness) which shows arc-like structures. The
black dot denotes the 2.2 ism peak (cf. figure 2). The numbers refer to the VLSR in kmn s-1 at the center
of the 10.4 km s-1 channels. The shift in position of the emission relative to the 2 Jim peak indicates
a general velocity gradient. The contours are multiples of 0.7 Jy/beam or Rayleigh-Jeans brightness
temperature of 1.1 K.
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The total flux density from the extended emission is roughly twice that of the central concen-
tration in each of the channels. This implies that the molecular gas mass involved in the extended
emission is roughly twice that in the central concentration, if the same conversion factor from Ico to H2
column density applies to both. If the CO emission is optically thin (see below), then the H2 mass in
the extended emission is , 10s Me.

If we identify the extended emission as largely due to gas expelled from the central concentration,
perhaps in the form of incomplete shells, we may estimate the following parameters. The continuity of
structure over only 2 to 3 channels may indicate that the present expansion velocity is low, < 10 to 15
km s-1. With scale size ranging up to - 400 pc, the implied dynamical time scale is on the order of 10'
yr. The expansion kinetic energy of the extended emission can be estimated as - 1/2 x 1OMex (10
kmn s-1 )2 or ,, 10" ergs.

These shell-like structures may be similar to the HI supershells first identified by Heiles (1976,
1979) in our galaxy. Similar large and energetic HI shells have been identified in M101 (Allen et al
1978) and in M31 (Brinks 1984), as well as in other galaxies (cf. McCray and Kafatos 1985). A single
supernova, or the stellar wind from an individual 0 star cannot account for the large kinetic energy and
scale size of one of these supershells (cf. Heiles 1979). A supershell can be formed from sweeping up
the HI medium by the combined action of the stellar winds and subsequent supernovae from an OB
association (Bruhweiler et al 1980; Tomisaka et al 1980; McCray and Kafatos 1985).

Given the enhanced level of recent star formation in the M82 nucleus, it may be natural to
identify the extended CO emission with supershells. As the interstellar medium in the nucleus of M82 is
quite different from those in the galactic disks (e.g. much higher mean density), the formation of such
supershells requires more extreme energy input. The substantial mass (Q 10P Me) contained in the
extended emission suggests that the interstellar medium is highly disturbed.

4. THE INTERSTELLAR MEDIUM IN THE NUCLEUS OF M82

4.1 Highly Disturbed Molecular Gas

While the gas in the nuclear concentration is only slightly resolved by the 7" beam, its disturbed
structure is suggested by a short exposure plate of M82 (cf figure 1 of OM) that shows a very patchy
distribution of the obscuring dust on scales as small as , 2". Furthermore, the close correlation of a
large number of young radio supernova remnants with the CO emission also implies that the medium
would be highly disturbed by the explosions (cf. figure 4). The extended CO emission is most likely due
to gas expelled from the central concentration. Thus, there exist both direct and indirect indications of
a highly disturbed molecular gas medium in the central 1 kpc of M82.

4.2 High Gas Temperature

The peak Tb of CO emission from the central concentration of M82 ranges between 9 to 15 K.
this is much higher than the brightness temperature of the clouds in our Galactic disk when averaged
over - 100 pc. The galactic values can be no larger than the 3 to 6 K (Sanders et al 1985; Blitz
1980). Taking into account the less than unity filling factor and probable small optical depth of the CO
emission, one would infer that the kinetic temperature of the gas in the central concentration (eztent
700 pc) is greater than 40 K.

374



MOLECULAR GAS IN THE NUCLEUS OF M82

Maintaining such high kinetic temperature for a substantial amount of gas over a large extent
requires special circumstances. However, the nuclear region of M82 has a high space density of young
massive stars (OM) and a very intense radiation field (- 105 L®/pc2 or - 45 ergs s-1 cm-2 , about 104

times that of the average galactic interstellar medium; Tielens and Hollenbach (1985)). The molecular
gas throughout the nuclear region of M82 is ezposed to a radiation field not very different from that in
Orion within 0.2 pc of the T7pezium stars.

If the H2 gas is highly disturbed by the stellar winds and supernova explosions from the young
star dusters, with resultant sheet-like structures, large surface area of the molecular gas would be
exposed to the intense radiation field external to the gas. Surface layers of hot molecular gas (Tk -
100 K, thickness corresponding to Av -,,2) are obtained under such circumstances, heated primarily by
photoelectric emission from dust grains (Tielens and Hollenbach 1985).

4.3 Column Density and Mass of H2

Given the gas in the star-burst nucleus of M82 is found in very different conditions as the
galactic disk GMC, the conversion from the observed integrated CO intensity to H2 column density may
be different. Since the observed properties of CO emission from the nucleus of M82 can be explained
by a hot, optically thin source with a large area filling factor, the H2 column density implied by the
CO(1-0) intensity in this limit is 2.6 x 1019 Ico cm- 2 (cf. Knapp et al 1980), ,- 14 times smaller than

that given by the conversion for galactic GMC (Sanders et al 1984). Also, the visual extinction implied
by the CO intensity would then be consistent with that derived from other methods (Rieke et al 1980;
Jaffe et al 1984). Within the central concentration (700 pc x 200 pc), the mean H2 column density is
2.6 x 102 cm-2 , or 430 Me/pc2 and the total H2 mass is 6.0 x 107 Me.

5. STAR FORMATION IN M82

5.1 Gas Supply

Detailed optical studies of M82 show that outside the central 2 kpc, the current star formation
rate is abnormally low compared to normal late-type spirals (OM). In contrast, the central region has
had very active star formation in the last 10i years, with the central star clusters being the youngest.
The observations here show that a high concentration of neutral gas is found in the region of most recent
star formation (central 700 pc), suggesting that a fresh supply of gas has entered the central 1 kpc to
fuel the star formation during the last 108 years. To support the observed luminosity, massive stars must
have been formed at a rate of (L/10' Le) Me/year or -- 3 Me/year (e.g. Scoville et al 1985) over the
last 10s years, requiring a mean gas supply rate of > 3 Me/year over the same period.

It has often been suggested that tidal interaction with M81 could be responsible for the observed
properties of M82. The fuel for the last burst of star formation may have been accreted during the
interaction with M81. There exists - 10P Meof HI surrounding M82 (Cottrell 1977; Killian 1978).

5.2 Confinement Mechanisms

However, it is not clear how the tidal interaction confines the gas within the central kpc of
M82. Furthermore, NGC253, another star-burst galaxy with properties very similar to M82 (Rieke et
al 1980), is not in an interacting system, so that additional mechanisms besides tidal interaction may
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be necessary. Both the spatial and kinematic distributions of the nuclear concentration of molecular gas
may be consistent with the gas responding to a non-axisymmetric mass distribution in M82. 2.2 pm
observations of Rieke et al (1980) and Scoville (private communications) show that the central 1' of the
M82 has a different PA from the galaxy as a whole. Furthermore, the 2.2 pm intensity profile of M82
shows a plateau with a scale size of 1' in addition to an exponential profile typical of spiral galaxies. This
profile is similar to those of barred spiral galaxies observed in the near-IR by Baumgart and Peterson
(1986). Thus, there may be indirect indications of a stellar bar in M82, although the large inclination
of the galaxy makes a definite identification difficult.

The effects of oval distortions in the nuclear bulges of spiral galaxies on the gas dynamics in the
inner galaxy are significant (Huntley 1977; Zaritsky and Lo 1986), as perhaps illustrated in the high
resolution observations of CO emission from nuclear regions in IC 342 (Lo et al 1984) and NGC 6946
(Ball et al 1985). An important consequence is the resulting radial transport of gas towards the center.
In IC342, a few x 108 Me of gas are confined to a bar structure 1500 pc long, and the velocity field
suggests the gas flow can be approximated by highly elliptical orbits. Thus, the orbital time scale of
,.107 yr implies that on the average > 10 ME/yr of gas is brought towards the center. A similar process
due to a stellar bar may have supplied the gas to the central kpc of M82.

5.3 Triggering Mechanisms ?

Do the star-bursts in M82 occur simply because a large amount of H2 has been collected in the
nuclear region, independent of external factors ? Kronberg et al (1985) identified > 40 radio supernova
remnants of which the brighter (younger) ones are aligned along a quasi-linear feature - 650 pc x 60
pc in extent and are offset from the peaks of the CO intensity distribution (figure 3). Unless the H2
distribution follows that of the supernova remnants when viewed at sufficiently high resolution (<_ 3"),
it seems unlikely that the precursors of the supernova remnants - massive stars - were formed along a
"line" as a result of spontaneous collapse of the molecular clouds. A large-scale external mechanism
was probably involved in initiating the formation of massive stars along the quasi-linear feature in the
nucleus of M82 (cf. Kronberg et al 1985).

The same underlying mechanism responsible for supplying gas to the nuclear region and for
aligning the gas may also be triggering star formation in the collected gas. A stellar bar can induce
shock fronts in the gas (e.g. Roberts, Huntley and van Albada, 1979) which would lead to increased
cloud collisions and growth of GMC's along the shock fronts, both of which may help to accelerate
cloud-collapse to form stars (Lo et al 1984). A stellar bar in M82 may have played an important role in
the star-bursts.

5.4 Regulation of Star Formation ?

The current state of the H2 medium in the nucleus of M82 appears highly disturbed as a result
of the recently formed stars. Such a medium may be unsuitable for further star formation until the
gas has been collected into giant molecular clouds again by some large-scale gravitational mechanisms
such as the ones discussed above. Thus the star-burst could be its own limiting factor in continuing
star formation, due to its disruptive effects on the interstellar medium. Sustained continuous enhanced
star formation may not be possible, which could explain why the gas supply is not exhausted in all the
galaxies and star-bursts are still possible at the current epoch.
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6. IMPLICATIONS FOR STAR-BURST GALAXIES

6.1 High CO Intensity from Star-burst Regions

The high gas temperature in the M82 star-burst nucleus is likely the result of the very high
density of young star dusters there. It is therefore interesting to estimate the the star density within
such regions of other ER. luminous galaxies. We have listed in Table I a sample of IR luminous galaxies
with measured IR luminosity, LIR, (1 to 300 pm; Telesco and Harper 1980; Becklin et al 1980) and
10 pm size. Except for the nonthermal contribution to a fraction of the luminosity of Arp 220, NGC
6240 and NGC 1068 (Becklin et al, this conference; Wynn-Williams 1985; Telesco et al 1984), LIR is
predominantly due to the luminosity of young stars formed in the central regions (Telesco and Harper
1980) and the 10 pm size is a measure of the extent of the recently formed stars. Thus, if we assume that
the stars are uniformly distributed in a flattened circular distribution, with extent d, given by the 10 pm
size, E = LIR/Tr(d/2)2 , the mean IR luminosity per unit area, is a measure of the stellar luminosity per
unit area in the star-burst region and indirectly a measure of the surface mass density of young massive
stars. E is within a factor of 2 of 10s L®/pc2 for all these galaxies, coresponding to a few BO stars per
square parsec (> 100 Me/ pc2 ).

The large E also indicates that the molecular gas throughout such star-burst regions is exposed

to a high FUV radiation flux. In contrast, in an average region of the galactic disk, molecular clouds

TABLE I

LUMINOSITY AND SURFACE BRIGHTNESS
OF SOME IR-LUMINOus GALAXIES

LI R d 0,om E
GALAXY (L) (pc) (10L/pc2)

Milky Way .......... 2x109  2308 0.5
NGC 253 ............ 3x1010  < 500b > 1.5
NGC 1068 .......... 2X1011  3000c 0.3
NGC 2903 .......... 7X10 9  300 x 150d 1.6
NGC 3034 (M 82) ... 3X1010  

4 70 b 1.5
NGC 5236 (M 83) ... 2x1010  4604 1.2
NGC 6949 .......... 2x1010  640 x 800a 0.4
IC 342 .............. 3X109  300e 0.4
Arp 220 ............. 1X10 12  2000 x 4500f 1.1
NGC 6240 .......... 5X1011 2500 1.0

" Low et aL 1977.
b Telesco and Harper 1980; Jaffe et al. 1984.
C Telesco et al. 1984.
d Rieke 1976.

* Becklin et al. 1980; Telesco, private commumication.
f Rieke et aL. 1985.
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are located in quite different conditions (cf Draine 1978; Goldsmith and Langer 1978). Furthermore, the
cosmic ray ionization rate of H2 , C, if proportional to the much increased supernova rate per unit area in
the star-burst regions, would lead to much more significant cosmic ray heating of the molecular gas (cf.
Goldsmith and Langer 1978). Thus in star-burst regions generally, the molecular gas is likely to be heated
to higher temperature, resulting in higher CO intensity, compared to a GMC in our galactic plane. The
standard N(H 2 )/TIo ratio of the galactic GMC may not apply to star-burst regions in general. However,
the amount of H2 mass could still be high, given the generally higher Ico expected from the star-burst
regions.

6.2 High Star Formation Efficiency

From our observations, we can estimate a mean star formation efficiency (e, the fraction of gas
that has been converted to stars in the star-burst) directly for the star-burst nucleus of M82. The
total amount of gas (H2 + HI + ionized gas) within the central 1 kpc is 1.8 x 10s Me, including the
extended gas which we assume to have been expelled from the central concentration. The amount of
stellar mass involved in the star-bursts is 2 x 10s Me, indicating that c is 0.5 (see also Rieke et al 1980).
This efficiency is much higher than inferred for our galaxy generally (Wilking and Lada 1985), but the
physical mechanisms for such high c in star-burst regions are not clearly understood.

6.3 LIR depends on Area of Star-bursts

The nearly constant E (Table I), if upheld in larger samples of IR luminous galaxies, may mean
that a nearly constant stellar surface density is formed in star-bursts. This suggests some saturation
effects in the underlying mechanisms in the star-burst process. One factor could be that there is a
limit to the maximum possible surface density of H2 in a galaxy. Tightly packing galactic GMC's in a
thickness of 100 pc would yield a surface H2 density of - 500 Me/pc2. Another self-regulating process
could be the disruption of the interstellar medium by the recently formed massive stars, as is perhaps
seen in M82.

If there are physical limits to the surface densities of young stars that can be formed in the
star-burst process, then the luminosity of the star-burst region would depend strongly on its extent.
For galaxies with an extreme luminosity of - 1012 Le, the requisite star-burst, if limited to E -
10 Le/pc2 , would take place over - 3.5 kpc. This extent is much smaller than the typical galactic
dimension and subtends a very small angle for the more distant galaxies (3.5 kpc = 7" at 100 Mpc).
Under this hypothesis, galaxies with luminosities of 1011 and 1010 Le would have star-burst regions with
characteristic dimensions of - 1 and - 0.3 kpc, respectively. High resolution far-IR observations are
required to verify this hypothesis.

6.4 Why are the More IR Luminous Galaxies Mergers ?

The more luminous IR galaxies (L > 1011 Le), if due to star-bursts, cannot be easily supported
in isolated or loosely interacting galaxies (Lo et al 1986). In strongly interacting or merging galaxies,
the twin requirements of sufficient gas supply and of triggering simultaneous star formation over a large
extent are more likely to be satisfied. In such cases, strong tidal disruption of the underlying galaxies and
the gas distribution could initiate star-bursts over a few kpc extent, perhaps via direct cloud collisions
or as a result of concentration of large amount of gas in the same place. Thus, while the amount of
gas in the merger may be only the sum of the gas in the two galaxies, the resulting LIR, if proportional
to the area of interaction, can be many times higher than would be implied if the luminosity is simply
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pvpomtional to the mass of gas present. Also, the star-burst regions in such mergers need not coincide
with the nuclear regions.

7. CONCLUSIONS

The aperture synthesis CO observations of the central 1 kpc of M82 presented here provide the
highest resolution probe yet achieved of the molecular gas within a star-burst nucleus. They have enabled
a closer examination of the underlying processes involved.

1. The 7" resolution observations have identified a 700 pc x 200 pc concentration of H2 gas in the
same confines as tracers of recent star formation in the nucleus of M82, amounting to 6 x 107

Mg. The gas temperature is very high (Tk > 40 K) throughout this region and is most likely due
to the high stellar radiation flux there (- 10s L0/pc2, comparable to that in Orion). LIR/MH2
for the M82 star-burst nucleus is > 170 L®/M®, reflecting very high star formation efficiency.

2. The observations have also identified extended CO emission that may be due to gas expelled
from the central concentration. It suggests that the molecular gas in the nucleus of M82 is highly
disturbed, most likely resulting from the stellar winds and subseqent supernovae from the OB
associations formed in the star-burst. The kinetic energy involved in the extended gas is> _0(
ergs. The extended emission may have structures similar to the HI supershells seen in the Galaxy
and other galaxies.

3. The concentration of H2 within the central - 700 pc of M82 requires an explanation. The distri-
bution and kinematics of the central gas concentration, as well as the 2.2 pm light distribution,
all suggest the presence of a stellar bar in the central region of M82. Such a bar may provide
the underlying mechanisms both to transport the molecular gas towards the center and to trig-
ger the star-burst. While tidal interaction with M81 may provide some of the gas needed for
star-formation, the more direct cause of star-burst in M82 is probably provided by the stellar
bar.

4. Comparisons of the nucleus of M82 to a sample of other IR luminous galaxies suggest that the
flux of stellar radiation in all the star-burst regions is high and comparable in magnitude. This
implies that the gas temperature (and therefore the CO intensity) in the star-burst regions may
generally be higher than that found in the galactic disk. The N(H 2)/Ico is likely to be smaller
than the galactic ratio, but the higher Ico expected from such regions could indicate substantial
H2 column density still.

5. Existing evidence for a sample of 10 IR luminous galaxies suggests that the star-burst regions
may have a nearly constant mean IR luminosity per unit area, possibly a result of physical
limits of the surface density of young stars that can be formed in the star-burst process. This
would imply that LIR of luminous star-burst galaxies is primarily proportional to the area of the
star-burst. Such a dependence can explain why the more luminous galaxies are mergers.
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DISCUSSION

WATSON:
Given the structure of the molecular ring in M82 and the possibility of its being a resonant orbit in a bar

potential, what do you 'predict' for the parameters of the bar, i.e., size, pattern speed, etc.? Is it consistent
with the wings seen on the 2pum distribution?

LO:
As M82 is so highly inclined, none of the parameters of the 'molecular ring', or of a stellar bar is

well determined. So, I have not made quantitative comparisons of the parameters involved. It is suggestive,
however, that the wings seen of 2pm distribution have a comparable scale to the starburst region.

MEZWER:
You quote an N(H2)/Ico ratio for M82 which is about a factor of 10 smaller than the value used for our

Galaxy. This would lead to an underestimate of the total mass of gas in M82. I would have expected the
opposite. How did you derive this value?

LO:
The lN!(H 2)/Ico ratio I quoted was derived from the CO emission in the optically thin limit. The resulting

gas column density is consistent with the 400pim observations of the dust continuum of Jaffe et al. (1984,
ApJ. 285, L31).

THRONSON:
How do your observations compare with single-dish data in (a) total intensity and (b) line shape and

structure?

LO:
At the velocities at which the interferometric observations wert, made, the total flux is comparable to the

single dish measurements.

SHULL:
If supernova remnants are common in M82, their evolution will be speeded up and the x-rays from their

hot interior will be effective at ionizing, heating and exciting large volumes of molecular gas.
Have you looked for evidence of this excitation or of enhanced star formation due to supershells?

LO:
In the starburst nucleus of M82, the observed high gas temperature is very likely due to heating by a very

high far-UV radiation field, as well as by the enhanced cosmic ray flux and the x-rays, as you have mentioned.
The extended CO emission within the central 1V of M82 may be naturally identifie vith supersh.lls. To look
for enhanced star formation within the supershells requires higher resolution (< 2' ) observations of both the
molecular gas and the far-infrared emission.

YOUNG:
If the interstellar radiation field is heating the clouds in M82, the 2-1/1-0 12CO ratio may not be probing

the same regions and cannot be used to argue that the gas is optically thin. And, if the CO is optically thin,
the CO is not a good tracer of the H2 mass.
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LO:
The important point is that the observed gas properties within the star-burst nucleus of M82 are very

different from those in our Galactic disk, presumably the result of very different physical conditions within
the M82 nucleus. The optically thin CO limit leads to a gas column density consistent with the dust opacity
derived from the 400ism observations of the central -,40" of M82, if the gas to dust ratio is assumed to be
the same as the Galactic value (Jaffe et al. 1984).
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ABSTRACT

We report on a program of radio line and continuum studies of star formation in nearby
(< 10 Mpc) spiral galaxies. The objective is a search for hot gas and peculiar dynamics
in spiral nuclei with 10" to 30" angular resolution. Vigorous star formation is found to
be a common phenomenon in the inner kpc of spirals. Arcsecond-resolution observations
of radio continuum emission at 6 and 2 cm have been used to separate the thermal and
nonthermal radio components. We find that thermal and nonthermal emission are well-
mixed even on sizescales of 10 pc. To understand the reason for the increased level of star
formation activity in spiral nuclei, we are studying HI and CO emission in these galaxies. The
CO (J = 3 -- 2) transition has been detected in M51, M82, NGC 253, NGC 6946 and IC 342
with T,* -0.5-2.0 K, at 20" angular resolution. The dynamics and spatial distribution of
nuclear gas are being studied using VLA HI maps with 30" synthesized beams. Evidence for
noncircular motions in HI has been found in the nucleus of IC 342.

INTRODUCTION

It is clear that nuclear activity is common in spiral galaxies, as evidenced by strong
radio continuum (e.g. Hummel 1981), infrared (e.g. Telesco and Harper 1980), and optical
(e.g. Keel 1980) emission. In many cases, the emission regions resemble regions of intense star
formation activity (Rieke et al. 1980). A useful approach toward understanding the "star-
burst" phenomenon is to study nearby galaxies, where the nuclear emission can be studied
with great sensitivity and spatial resolution. We describe a program of radio observations
of the ionized and neutral gas in spiral galaxies closer than 10 Mpc, where we can resolve
regions of 100-200 pc extent. We use radio continuum emissio> to trace the ionized regions in
these nuclei; dual-frequency observations allow estimates of the thermal emission, and hence
the number of young stars and their spatial distribution. The hot molecular component as-
sociated with these OB stars can be studied using higher transitions of CO. The enormous
numbers of young stars posited for these sources imply high rates of mass consumption. A
central issue becomes: is this activity in the nucleus fed from gas in the disk? This question
can be addressed with high reolution aperture synthesis maps of HI.

RADIO CONTINUUM STUDIES OF NEARBY SPIRAL NUCLEI

In order to accurately measure thermal radio continuum fluxes in spiral galaxies, it is
desirable to spatially resolve out the extended synchrotron emission that dominates single-dish
radio continuum observations (Klein and Emerson 1981). Observations of seventeen nearby

Carol J. Lonsdale Persson (Editor)
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spiral galaxies were made with the NRAO Very Large Array, at 1" resolution, corresponding
to roughly 10 - 20 pc linear extent. Matched beam observations were obtained at 6 and
2 cm to allow spectral separation of the thermal and nonthermal emission (Turner and Ho
1983).

We detected nuclear radio continuum emission in sixteen of the seventeen galaxies. The
nuclei show a range of activity, from 1 mJy in M101 at 7.2 Mpc, to 2 Jy in NGC 253 at
2.5 Mpc, a factor of more than 200 in luminosity. Spectral index maps show that the radio
emission is usually dominated by nonthermal emission, even on 10 parsec sizescales. Spectral
indices of -1.2 to -0.8 are common. However, flat and positive spectral indices have also been
observed (M83; IC 342), possibly indicating the presence of large complexes of compact HII
regions in the nuclei. In a number of cases, including Maffei 2, NGC 253, and NGC 4736,
the radio continuum knots are organized in one-dimensional structures. In NGC 253, at 0.1"
resolution, there is a string of compact knots aligned to within a degree on the sky, and 5
degrees in the plane of the galaxy; this 100 pc jet-like structure may be related to ejection
from the central compact (< 0.6 pc) nonthermal (> 105 K) nucleus (Turner and Ho 1985).

Even for our small sample of nearby spirals, the range in activity and the variety of
morphologies are impressive. The overall impression is that nuclei in general are very active.

CO (J = 2 --+ 1) AND CO (J- 3 -- 2) OBSERVATIONS

The goal of the CO observations is to detect molecular gas that has been heated by
star formation in spiral nuclei, and to study the dynamics of this gas. High excitation
CO lines have two advantages over the CO (J = 1 -- 0) transition for studying warm
gas in the nucleus: if the gas is optically thin, the warm gas will have significantly higher
line intensities in CO (J = 2 -. 1) and (3 -. 2); if the gas is optically thick, the smaller
beamsizes afforded by the higher observing frequencies will decrease beam dilution effects.
The CO (J = 2 --+ 1) and (3 --, 2) observations were made with the NRAO 12m telescope,
with system temperatures of 2000 K and 12000 K and beamsizes of 35" and 22" at 230 and
345 GHz, respectively.

We have mapped CO (J = 2 --+ 1) in the nuclei of the nearby spiral galaxies IC 342,
M51, NGC 253, and NGC 6946. The beam-diluted brightness temperature, which ranges
from T.*(2 -- 1) -0.2 K in M51 to 1.4 K in NGC 253, is in each case similar to the
CO (J = 1 -- 0) temperature (e.g. Young and Scoville 1982). Since the (2 -4 1) beam is
four times smaller than the (1 -+ 0) beam, the CO most likely is optically thick, clumpy with
respect to 30", but with a total angular extent greater than the telescope beams. Mapping
shows that the CO (J = 2 --+ 1) extent is confined to roughly the inner two kpc. The extent of
the (2 --+ 1) emission in the nucleus of IC 342 is - 2' x 1', somewhat larger than that mapped
interferometrically by Lo et al. (1984), but in agreement with the (1 -4 0) Nobeyama map
of Sofue (1986). The (2 -- 1) maps also show that the rotation curve in these galaxies rises
very steeply out of the nucleus: in NGC 253 the velocity centroid shifts by 150 km s- 1 over
30" (-360 pc), implying an enclosed mass of 2 x 108 Me.

CO (J = 3 -- 2) was detected in M82, NGC 253, IC 342, M51, and NGC 6946. These
observations represent the first detection of extragalactic CO (J = 3 -4 2). The peak antenna
temperatures T,*(3 -- 2) range from 0.7 K in NGC 6946, -1 K in NGC 253, IC 342, and
M51, to ,-2 K in M82. In all cases, T.*(3 -- 2) is very similar to T,*(2 --* 1). This

384



NUCLEAR STAR FORMATION ON 100 PARSEC SCALES

supports the implications from the (2 -- 1)/ (1 -- 0) ratio that we are observing well-
distributed but clumpy molecular gas. Even for modest clumping factors, the detected CO
temperatures are higher than the values commonly found in Galactic giant molecular clouds.
For example, if the molecular scale length is 100 pc in M82, we deduce a gas temperature of
-30 K.

With the increasing angular resolution achieved by studying the higher frequency CO
lines, we can begin to define the morphology and kinematics in the nuclear regions. However,
it appears that arcsecond angular resolution will be needed to define the hotter gas component
that is heated by star formation activity.

VLA HI MAPPING OF NEARBY SPIRAL NUCLEI: IC 342

The objective of HI mapping of nearby spiral nuclei is to study the relation of the disk
gas (HI) and the molecular gas found in the nucleus, as described above. From the large
numbers of stars derived for many spiral nuclei (e.g. Beck, Turner, and Ho 1986) it is clear
that not many generations of such star formation activity can proceed before the nucleus
is exhausted of gas. Is the nuclear gas replenished from the disk? Can we see evidence for
nuclear feeding in the HI velocity distribution? To study this problem, we have observed
IC 342 in HI with the C and D configurations of the VLA. The preliminary maps have 30"
angular resolution and 10 km s-1 velocity resolution.

The integrated intensity distribution in IC 342 shows a flat HI disk distribution and
a -2' central HI hole, as shown in Westerbork (Rogstad, Shostak, and Rots 1973) and
Cambridge (Newton 1980) maps. The higher resolution of the VLA map, however, reveals
that the central hole is not completely devoid of HI. There are faint HI features in the
nucleus. One HI filament lines up with the inner portion of a spiral arm, as traced by radio
continuum emission. Another HI filament appears at the center of the nuclear region, slightly
offset from the nuclear radio continuum source and the CO bar of Lo et a). (1984). This
nuclear HI filament has an extent of roughly 2' x 1', oriented north-south. This feature is
very similar in extent to the CO (J = 2 --+ 1) feature mentioned in the previous section
and the Nobevama maps of Sofue (1986). The mass of this HI bar is -1-2x106 Me, or
approximately 1% of the CO mass (Lo eta]. 1984). The north-south orientation of the HI bar
is -,20* different from the more northwesterly orientation of the disk HI gas at the same
velocity.

The HI velocities also indicate that the central HI bar feature is not simply a contin-
uation of the HI disk. Deviations from circular rotation appear in the central 2'. The HI
bar rotates nearly north-south, with velocities similar in both direction and magnitude with
those of CO (Lo et al. 1984). In contrast, the disk HI at these velocities (near the systemic
velocity of IC 342) define a rotating structure with a position angle -45° east of north. Other
deviations from circular rotation appear at the edges of the HI hole near the ends of the bar.
The deviations from circular motion are -10 to 30 '.m s-.

The high angular resolution HI synthesis maps show that the molecular gas in the
nucleus can be connected to the disk atomic gas. The correspondence between the HI filament
and the CO bar, and the presence of noncircular velocities suggest flows into the nucleus and
concurrent conversion of atomic gas to molecular form.
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SUMMARY

We report here on a program of radio continuum, CO, and HI studies at high angular
resolution in order to examine the kinematics and spatial distribution of key tracers of young
star formation. These studies have been most fruitful and promising in demonstrating a link
between the nuclear and the disk environments in the case of IC 342.

This research has been supported in part by the Alfred P. Sloan Foundation, NATO
Grant 83/584, and NSF Grant AST85-09907. The National Radio Astronomy Observatory
is operated by Associated Universities, Inc., under contract with the National Science Foun-
dation.
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DISCUSSION

APPLETON:
Can you be sure that the weak HI feature you see near the center of IC 342 is not a result of incomplete

continuum subtraction from the line-containing maps? It seems suspicious to me that this weak HI feature
corresponds so closely to the continuum emission.

TURNER:
The feature only shows up in four or five channel maps: it is clearly a spectral and not a continuum

feature.
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ABSTRACT. The Infrared Astronomical Satellite (IRAS) survey uncovered a class
of Extremely Luminous Far-Infrar d Sources (ELFS), exhibiting luminosities up
to and occasiocally exceeding IOU In. We present arguments to show that sour-
ces with luminosities L > 3x10 L may represent gas-rich galaxies in colli-
sion. The more conventional explanation of these sources as sites of extremely
active star formation fails to explain the observed low optical luminosities of
ELFS as well as their high infrared s In contrast, a collisional model
heats gas to a temperature of -10 K where cooling takes place in the extreme
ultraviolet. The UV is absorbed by dust and converted into far-infrared radia-
tion (FIR) without generation of appreciable optical luminosity. Gas recombin-
Ing as it cools generates a Lymn-a photon gnly once for every two extreme
ultraviolet -50eV photons emitted by the 10 K gas. That accounts for the high
infrared excess. Finally, our model also is able to explain the observed
luminosity distribution of ELFS as well as many other traits.

1. INTRODUCTION TO THE DATA

The most luminous sources identified through the IRAS survey exhibit these
properties:

i) Their FIR luminosities approach and sometimes exceed 1012 L, (Soifer
et al. 1986),

ii) The FIR flux appears uncorrelated with the oytical and near infrared
luminosity which typically remains around 10 L. characteristic of
fairly normal spirals (Houck et al. 1985, Allen et al. 1985),

iii) Many ELFS appear to be irregular, disturbed or interacting galaxies
(Houck et al. 1985),

The authors have submitted a more comprehensive article (Harwit et al.

1987) on the sae topic to The Astrophysical Journal. Here we only summarize
the findings presented in greater detail in that paper.

Cdol J. LAmrdaic Pernon (Editor)
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iv) The FIR luminosity is directly proportional to the 21-cm radio
continuum luminosity (Sanders and Hirabel 1985),

v) CO otservations at 2.6mm indicate a high molecular hydrogen content
-10 1OM.(Sanders and Hirabel 1985), and

vi) The CO lines are abnormally broad, indicating high-velocity motions.

vii) The infrared excess -- the ratio of FIR to Lyman-line radiation -- is
higher by an order of magnitude than in HII complexes (Beck et al.
1986, DePoy et al. 1986).

viii) Low-ionization states of atoms are more prevalent than the more highly
ionized species generally found in HII regions (Allen et al. 1985).

ix) The luminosity distibution function is roughly proportional to
L- 5 / 2 for L > 3x10 LI, but declines less steeply below a break in
the curve at -~3x1O10 L, (Lawrence et al. 1986, Soifer et al. 1986).

x) Only one extragalactic source in -106 has FIR luminosity above -1012

Lf (Soifer et al. 1986).

xi) Intense vibrational H2 emission characterizes many ELFS (Joseph
et al. 1984).

2. MODEL FOR ELFS

We assume that ELYS are the byproduct of collisions among gas-rich galax-
ies. We picture most of the gas in each of the colliding partners to be
concentrated in a central disk, roughly I kpc in radius, 0.1 kpc thick and
containing-1010 M, of gas. The indicated pre-collision gas density then is
nH - 103 cm-3. Galaxy-gflaxy collisions are expected to occur at free infall
velocities > 500 km sec- . The observed CO line widths are consistent with
such high velocities and the line strengths suggest the high gas content we
have assumed.

If the disks collide face on, the dissipated kinetic energy gives rise to
a luminosity -1012 Ln for about 3x105y. More oblique collisions can account
for lower luminosities, often with longer enduring interaction. A rough numer-
ical calculation that takes into account a wide range of initial orientations
and of center-to-center distances for the colliding pairs gives the luminosity
(the dissipation) distribution function shown in Fig. 1. The line drawn
through the data points has been arbitrarily anchored to the probability with
which the most luminous galaxies are observed. There are no other assumptions
aside from the abovjlisted disk dimensions and mass. The shaded extension of
the curve around 10 L esimates the contribution of the many glancing (weak)
collisions. Collisional actf~ity should not make a pronounced contribution for
luminosities well below 3xlO L, and this appears to account for the break in
the luminosity distribution below that luminosity.

Calculation of the luminosity of stars that could form from 1010 M, of gas
suggest that a total luminosity of 101 L. could only be reached with unusually
efficient conversion of gas into stars and with an exceptionally high luminosi-
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Figure 1 - Data on the luminosity distribution function among luminous FIR
sources (Soifer et al. 1986) and a calculated fit (solid line and
shaded area). A derivation of this fit is presented in a
full-length paper by the authors (Harwit et al. 1987).
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ty to mass ratio for the stars that are formed. Even then, however, we would
have to account for the exceptionally low optical luminosity, since it is not
clear how one could systmatically block all but -1 percent of the optical
emission, converting all of that radiation instead into FIR. It would also be
difficult to explain the low observed atomic hydrogen line-emission or the
radiation from predominantly singly ionized, rather than multiply ionized
species. All of these observations break with those traditionally
characteristic of HII complexes around massive, luminous stars.

The collisional model does not face these difficulties. Observed gas
masses and velocities can account for dissipation rates consistent with thE
observed luminosities. At collision (Fig. 2) gas temperatures rise to >10 K.
At this temperature the bulk of the energy loss is via cooling through extreme
ultraviolet (EUV) radiation. Photons with energies in the 50eV range are
emitted. There is little optical flux. Much of the EUV emission is absorbed
by grains and converted directly into FIR. Detailed considerations show that
only every second EUV photon, on the average, leads to ionization followed by
recombination - to a a Lyman-a photon. This accounts for the high infrared
excess. The optical line radiation emitted in this layered model (Fig. 3)
comes largely from a dusty, partially ionized layer. The partial ionization of
the hydrogen accounts for the absence of highly ionized species; those would
quickly jump to a lower ionization state by charge exchange with a hydrogen
atom. Molecular hydrogen is vibrationally excited in this same partly ionized
regime, well upstream of the impact front.

(a) Cc)1€ Cd) (e)

SMolecular Cloud •. Ionized Gas

S•Cosmic Ray F:•rticles

Figure 2 - Schematic Diagram of Colliding Gas Clouds. Two molecular clouds
approach. (a) Upon contact, the gas between them is ionized and
heated to temeratures above I0 6 K. (b) Ionizing radiation escapes

into the molecular gas and produces an ionized layer even before
that gas has a chance to collide with the stationary layer of hot
gas that has formed. As the collision proceeds, (c,d) the central
layer thickens until no more molecular gas remains. Then the hot
outer layers of the ionized cloud expand outward to meet trailing,
more tenuous halo gas from each of the colliding galaxies (e).
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Figure 3 - Layered structure of colliding clouds. At the bottom is the central
portion of the colliding disks. At the top the outer pre-collision
gas.

More comprehensive arguments also suggest that the cosmic ray acceleration
rate and hence the radio flux should be proportional to the gas content of
colliding regions, leading to the observed proportionality of FIR to radio
continuua emission.

3. PREDICTION

The 106 K layer should give rise to highly ionized species such as OIV and
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NeV, whose fine-structure emission, respectively at 25.87 and 24.28um, should

penetrate through obscuring dust layers, to be observable from Earth. That
radiation would not be produced in HII regions and, if observed, would
discriminate against starburst models.
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DISCUSSION

BURBIDGE:
First, I would like to remind everyone that more than thirty years ago collisions were thought to be the

explanation of radio galaxies. The idea did not last! Second, I want to say that my own view is that the

brightest IRAS galaxies are young galaxies forming their first generations of massive (- 100 Me) stars which

give both line luminosity and the dust. A few times Wos stars are needed, and about 10 generations of them,
to make enough dust.

HARWIT:
First, observations tell us that galaxy interaction appears involved. Many of the most extremely luminous

sources clearly appear to be interacting partners.
Second, the most luminous phases may last , 3 x 105 yr, perhaps an order of magnitude less than the

lifetime of highly luminous stars. Lower luminosity, more oblique collisions will last an order of magnitude
longer. But we are dealing with events of extremely low probability here. Only one galaxy in a million has

a luminosity in excess of 1012 LE. Quantitatively, our model appears capable of explaining that number of

extremely luminous sources.

SCOVILLE:
I don't think the high LIR/LB,a line ratio is an insurmountable problem for massive star formation models

in interacting galaxies. The H11 regions there will have higher dust abundances than standard Galactic HII

regions because the cloud-cloud velocities are > 100 km s-I and fresh grains will be supplied continually to
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the ionized gas surrounding the OB stars.

HARWIT:
I would really like to see quantitative estimates of such effects. It appears very difficult to provide a

dust absorption shield which will have no holes, and will prevent all but 1% of the optical radiation from
escaping. The luminosities involved are so high that dust and gas constituting a shrouding envelope c'ould be
blown away by radiation pressure if it did not already have the enormous approach velocities involved in our
model.

SHULL:
Your large ratios of infrared to optical flux are predicated on the assumption that the emitting regions are

buried deep inside large homogeneous slabs. If you take into account a cloudy interstellar medium, wouldn't
much of the optical radiation escape through the 'holes'? Note that much of the cooling will take place in
optically thin optical-JR forbidden lines.

HARWIT:
The emitting regions in our model primarily radiate in the far ultraviolet which is readily absorbed by

the interstellar gas even if it escapes through holes between clouds. No direct optical radiation is involved.
Recombination in tenuous ambient interstellar gas ionized in this way will be extremely slow and result in
low luminosity emission from the galaxies' halos.

de JONG:
You have normalized the infrared luminosity function, predicted on the basis of your model, to the ob-

served infrared luminosity function. This implies a certain collision frequency of galaxies at impact parameters
of -1 kpc. Have you verified that this implied collision frequency is consistent with that directly derivable
from observations?

HARWrT:
Schweizer, in a recent article in Science, estimates that one galaxy in every ten appears to have undergone

an interaction in its past. Such figures are still not well established, but they appear sufficiently high,
particularly if we recall that many initial encounters may be quite weak - just strong enough to bind two
galaxies together in rather eccentric orbits. There may then be several relatively close passes before a
substantial collision occurs. In summary, the number of passes two galaxies make past each other could be
few times higher than the number of captures that take place.
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ABSTRACT

A simple model is presented for gas inflow through a disk galaxy driven by
interacting galaxies through the action of a non-axisymmetric disturbance
acting on the disk whose gas is modelled as an ensemble of gas clouds. Cloud
collisions, as well as being a vital process in forcing gas inflow to the
centre of the disk, are also assumed to generate massive stars. This ever
increasing rate of gas flow toward the centre of the galaxy and the associated
rapid increase in cloud collisions leads to a centrally concentrated starburst.

Starbursts have important consequences for the immediate environment of
galaxies. Mildly collimated outflows can be driven by a combination of
multiple supernovae and OB star winds. Jets associated with activity in the
galactic nucleus can interact strongly with a starburst environment.

Physical mechanisms proposed for qenerating starbursts and active nuclei
via feeding the monster are rather similar and a strong inference is that
starbursts and activity are intimately related. Among the obvious evolutionary
implications are that powerful infrared sources could be forming a siqnificant
part of their central stellar mass--which is galaxy formation in action--a
relatively delayed and hidden process. Furthermore, quasar-like nuclei
embedded in such objects as Arp 220 will be powerful infrared sources until the
gas and dust is depleted either by ejection and/or by transformation to stars.

I. INTRODUCTION

The remarkable observations of starburst systems discussed at this meeting
require at least some theoretical modelling. The analysis I discuss here is
quite simplified but may lead to some more physical insight. It will be
assumed that it is necessary to explain why companions and mergers trigger
starbursts, what skews the mass functions to predominantly OB stars in these
systems, what drives the observed outflows, what is the relation between
activity and starbursts? In addition we will discuss the implications of the
infrared observations for theories of galaxy formation and quasar activity and
for the metal enrichment of the intracluster medium.

II. INTERACTION DRIVEN INFLOW

Consider a normal disk galaxy with a significant gas content, say an Sc
galaxy, and apply a significant perturbation to it in the form of a companion,
bar, oval distortion or infallinq or merginq dwarf galaxy. Assume the pre-

Caro I. Lonudl Peruon (Editor)
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existing stars provide a background potential and that the gas distribution is
described as a mean cloud ensemble that can undergo various dissipative
processes such as collisions, coagulation, disruption, fragmentation etc. To
illustrate the relevant physics here we will simplify this system further by
assuming the perturbation is a linear (-10%) non-axisymmetric distortion, cloud
orbits can be described as test particles with drag and cloud collisions are
the sources of the drag as well as providing the massive star formation mode.

The technique used to calculate the response is to follow the elegant
stellar dynamical formulation of this problem by Lynden-Bell and Kalnajs (1971)
and butcher it by adding a collisional drag component to some of the stars that
are then called clouds. The general linear non-axisymmetric distortion is
Fourier decomposed into spiral modes, a transformation is made to action angle
variables, it is assumed the dominant collisional damping is on the radial
action and the long wavelength limit is taken. The rate of change of angular
momentum at any given radius in the disk is given by

2Y m 2 k2 S2 (S -a )

(m(< += m (m + S, +p p

where S is the potential wave amplitude, k is its radial wave number, y is the
drag collisional rate, A in the rotation frequency of the disk, 0 is the wave
pattern speed, K is the epicyclic frequency and m is the number oJ arms
associated with the perturbation (Norman 1984). The change of sign of the
effect at corotation when a = 9_ is obvious, as is the crucial dependence ofp
<4> on the presence of both the cloud collisions and the presence of the
perturbing wave. Physically, the clouds lead to the bar or general wave
perturbation inside corotation by an angle that is of order Y. This is just
the forced oscillator with drag response problem, where the drag gives a phase
shift. These leading clouds form a system that is torqued down by the action
of the corresponding stellar bar thus losing angular momentum and having the
clouds move inwards. Outside corotation the clouds move outwards since the
effect changes sign. This simple analysis fits the numerical simulations done
by Schwarz (1981) and Combes and Gerin (1985). Away from resonances, which is
the general case,the inflow velocities can be written, at radius R,

v 2Y m2SR kR] 2 [--] [ (2)

for k * O,and for k = 0

2 s2 U
Vr -2Y m2 R [R1 ] [22 v----- (3)

Once again we see that the combination of enhanced cloud collisions and large
amplitude perturbations will give greatly enhanced inflow. To estimate
timescales we need to establish the nature of the drag. There are two cases
here. If the drag is due to collisions with backgrond clouds the inflow
velocity will increase exponentially with time as e r , and secondly if the
drag is due to collision with other large clouds the temporal behaviour will be-1]-
as (0 - t/T) The timescale T 1 I/y is obtained from a [ncl al VCl
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estimate and here taking quan~ities relevant to the central reqion of ARP 220
we find a timescale of 2 x 10 yr, and for a normal Sc - 10 yr, when in both
cases a wave perturbation of order -10% is assumed. Thus the mechanism is
efficient and roughly fits even the rapid inflow rates required for
starbursts. For Arp 220 there are also interesting implications for star
formation and the details of the estimate for T are found in the following
section.

III. STAR FORMATION IN STARBURSTS

The question here is what is the physical process that skews the mass
function to high mass only?? Theories are very ambiguous here. For example,
in another hiqh pressure environment such as a coolinq flow it supposed that
only low mass stars form. Low mass star formation may be inhibited by shear,
turbulence or magnetic fields but may is the relevant word here. The approach
I will take here is to base the model on powerful observationally based
arguments presented by Scoville (this meeting) that cloud-cloud collisions
generate massive OB stars, and by clouds it is generally1 eant molecular
clouds. Taking relevant parameters for Arp 220 to be 10 1 me of gas in the
inner 3 kpc and assuming 10 MHe per cloud and a cloud radius of 5 pc and a
velocity dispersion of 20 km s and a wave amnlitude of 10% and a star
formation efficiency of -10% we get T - 2 x 10 years in the previous section
and a rate of OB star formation of -102 OB stars per year!

Cloud collisions rates can be significantly enhanced by the presence of
bars and ovals that generate shocks and give subtcantial orbit crossings. In
the central regions of triaxial systems there are many box orbits that have
plunging radial trajectories with the possibility for much orbit crossing. In
systems with strong central mass concentrations stochastic orbits can develop
and these orbits wander stochastically around the central region greatly
increasing the collision rate. This effect will be very significant for ratios
of black holes (in other central mass concentrations) to core masses of order
10-3 to 10-1 (Norman and May 1984).

IV. OUTFLOWS FROM STARBURSTS

Outflows from starbursts systems seem ubiquitous (Heckman, these
proceedings). The mechanical energy and momentum input is clearly very
sultantiali For a supernova rate of 1-10 yr-1 one finds a luminosity L - i
104 erg s- in an outflow where n is an efficiency factor. There are several
ways to model these outflows. Chevalier and Clegg (1985) have given a
spherical wind model with a wind velocity of order V - 2000 km s-1 at 200 pc,,. 0 [(02 _§ 1/2 1
and a terminal cloud velocity of Vt -400 [(10 cm )/(Ncl)] km s- • The x-
ray emitting gas is produced by shocked clouds and filaments in the wind
itself. Wind or explosion driven shell propagation and evolution has been
studied by various authors (c.f. Sakashita and Hanami 1986, Norman 1986 plus
references). A mild, wide-angled collimation of order 30-400 is found and
various evolutionary sequences can be seen as the shell is embedded in and
bursts out of the disk. These various stages can be compared with the data
(Heckman, Sofue, this conference). In the final state we expect a steady state
wind propagating in a core between two shock waves at the long edge of the core
and a massive molecular ring in the disk at the boundAries of the outflow
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region. The opening angle of the core is of order the inverse Mach number of
the flow at one disk scale height. Shocked clouds, bullets and filaments will
give the coronal x-rays and optical lines. Molecular lines may well be
observed in these outflows. The Galactic Centre itself has many of these
properties (PudritzI Norman and Heyvaerts 1986) if associated with a relatively
small starburst -10 - 10 years ago.

The metallicity content of these outflows is rather interestir-. A
supernova rate of 1-10 supernovae per year producing approximately 1 MH of iron
per supernova over a burst lifetime of -10 years gives an injected iron mass
of 108 - 109 M. of Fe into the intracluster or intergalactic medium. We assume
the gas does not cool and supernovae bubbles intersect before significant
cooling at such high supernovae remnant densities found in starburst systems.
This is a very significant metallicity input to the intra cluster or
intergalactic medium. One needs of order qreater than 1010-11 M. of processed
material per luminous L, galaxy injected into the intracluster medium
(Henriksen 1985) to explain the metallicity of the intracluster medium. If the
starhurst outflow were ubiquitous in the early stages of cluster evolution this
could solve the metallicity of clusters problem, essentially due to the
distorted initial mass function of starbursts.

IV. ACTIVITY AND STARBURSTS

There are many ways in which starbursts and activity can be related and
here I will briefly note a few of these. Jets can certainly trigger star
formation as is discussed in the context of Minkowski's object by van Bruegel
et al (1985) and Centaurus A (de Young 1981). Jet pressures are high compared
to interstellar medium pressures

-9 Ljet ((100 104 s-1 2jet (1- 1042 ergs • ajet vjet 1 ) dyne cm- (4)

where Ljet, Ajet and viet are the jet luminosity, shear and velocity. The over
pressure induced by a Jet striking a cloud is very similar to the effect of a
cloud-cloud collision and can therefore probably trigger massive OB star
formation. In this picture clouds can either orbit into a jet or be struck by
a jet propagating through the interstellar medium.

The structure of the molecular clouds and the interstellar medium can be
significantly affected by the prescence of activity. For example the
ionization balance in molecular clouds in the central region can be changed by
more than an order of magnitude if a powerful central x-ray source is
present. This can substantially lengthen the ambipolar diffusion time and
possibly lead to more massive star formation (Silk and Norman 1983).

The presence of starbursts can feed the monster creating the active
nucleus. Massive OB stars on radial box orbits or stochastic orbits can plunge
toward the central black hole and accretion disk on timescales of order a core
crossing time which is less than the time to evolve to a supernova. Thus high
pressure and other direct mass injection processes can occur due to the action
of starburst generated supernovae exploding near the central object. More
generally, the processes discussed here for fuelling starbhrets are the same as
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those for fuelling quasars. Recall that for powerful quasars one needs 10-100
X yr-1 and, conversely, it is difficult to see how such prodigious mass
inflows. could avoid forminq stars l

V. SUMMARY

A model has been presented where the action of a companion on a gas-rich
spiral galaxy can induce mass inflow rates typical of those required for Arp
220 and a starburst rate of massive OB star formation of -i0-10 2 per year where
it is assumed cloud collisons trigger the massive star formation mode.

Supernovae and OB star wind driven outflows were discussed and various
evolutionary stages were noted. The outflows would be significantly metal
enhanced and could provide the major source of metals to the intracluster
medium.

Starbursts and activity are intimately related--it is difficult to
conceive of one without the other in massive gas rich system with central black
holes. Massive starbursters appear to be forming a significant fraction of
their central stellar mass. This is indeed galaxy formation by any other
name. The process is apparently hidden by dust and occurs in burstsI Any
quasar embedded in such a system would be quite successfully shrouded until the
dust is removed. Arp 220 seems an excellent example. These points learned
from the infrared work must be kept in mind when discussing both galaxy
formation and quasar evolution.

It is a pleasure to acknowledge stimulating conversations with T. Heckman,
J. Heyvaerts, R. Pudritz and N. Scoville.
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DISCUSSION

SCOVILLE:
The size of 3 kpc assumed for the gas distribution in Arp 220 is consistent with the new Owens Valley

Interferometer maps of the CO as will be presented by Anneila Sargent tomorrow.

NORMAN:
Sounds good to me!

BURBIDGE:
You say that with a black hole and a starburst all of the phenomena can be explained. But how about a

prediction? Which comes first, and how do these systems evolve?

NORMAN:
Good question. I have tried to answer this in the text.

4W0



INDUCED STAR FORMATION IN INTERACTING GALAXIES

R.C. Kennicutt and K.A. Roettiger, Dept. of
Astronomy, University of Minnesota

W.C. Keel, Sterrewacht Leiden

J.M. van der Hulst, Netherlands Foundation for

Radio Astronomy

E. Hummel, Max-Planck-Institut fUr Radioastronomie

ABSTRACT. We have used measurements of H-alpha emission-line fluxes and FIR
fluxes in -100 interacting spirals to investigate the effects of close tidal
interactions on the disk and nuclear star formation rates in galaxies. Two
samples of interacting spirals were studied, a complete sample of close pairs,
and a set of strongly perturbed systems from the Arp atlas. Both the integrated
H-alpha luminosities and FIR luminosities are enhanced in the interacting
galaxies, indicating that the encounters indeed trigger massive star formation
in many cases. The response of individual galaxies is highly variable, however.
A majority of the interacting spirals exhibit normal star formation rates, while
a small fraction are undergoing bursts with luminosities which are rarely, if
ever, observed in noninteracting systems. Virtually all of the latter are in
the Arp sample, indicating that the Arp atlas is heavily biased to the most
active star forming systems.

INTRODUCTION

Although it is well known that many of the most spectacular examples of
starburst galaxies are members of interacting systems, relatively little quanti-
tative information is available on the effects of interactions overall on the
star formation properties of galaxies. The few available prior studies have
yielded contradictory results. For example, comparisons of optical colors and
infrared fluxes of normal and interacting galaxies by Larson and Tinsley (1078)
and Lonsdale et al. (1984), respectively, provided evidence for strong inter-
action-induced star formation bursts, while Hummel's (1981) study of radio emis-
sion in close pairs revealed no evidence of abnormal disk star formation.

Here we report preliminary results from a new optical and infrared study of
the star formation properties of interacting spiral and irregular galaxies. We
have obtained measurements of the Ha line emission and (IRAS) far-infrared fluxes
for objectively-defined samples of interacting and isolated galaxies, in order
to quantitatively assess the effects of interactions on the global star forma-
tion rate. The results summarized here are part of a more general survey of the
effects of interactions on the disk and nuclear properties of galaxies. Results
on the nuclear activity have been published previously (Kennicutt and Keel 1984,
Keel et al. 1985). We also refer the reader to closely related papers by
Bushouse and Cutri elsewhere in this volume.

MATERIALS AND METHODS

Following our earlier study of nuclear activity (Keel et al. 1985), we have
studied two samples of interacting galaxies. We used an unpublished catalog of
galaxy pairs by T. van Albada, along with published redshift catalogs, to

CAW0 J. Lo"dle Perssan (Fditor)
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generate a magnitude-limited sample of 53 galaxies with close companions,
selected independently of any abnormalities in structure, surface brightness, or
star formation activity. While this sample (referred to hereafter as the com-
plete pairs sample) may be contaminated by a few projected, noninteracting pairs,
it is free of the potentially severe selection bias which may plague any sample
which is selected according to purely morphological criteria. In order to assess
the importance of this bias, and to explore the effects of unusually strong
interactions, we also studied a subsample of pairs from the Arp (1966) Atlas of
Peculiar Galaxies. This latter sample of 58 galaxies, including several members
of the complete sample above, will be referred to hereafter as the "Arp" sample.

For comparison we used two control samples of noninteracting galaxies. For
comparisons of Ha properties we used the survey of Kennicutt and Kent (1983),
excluding elliptical and SO galaxies, interacting systems, and Virgo cluster
members. For the comparison of infrared properties we used in addition the
magnitude-limited sample of Keel (1983), again excluding interacting galaxies.
Both control samples exhibit very similar Ha and FIR properties.

We chose as our primary star formation indicator the integrated emission in
the Ha emission line; this has proven to be a useful and sensitive tracer of the
massive star formation rate (e.g., Kennicutt 1983, Gallagher et al. 1984).
Digital images in Ha and in the red continuum were obtained during 1983-1985 on
the 2.1m telescope at Kitt Peak National Observatory, using the ISIT Video Camera
(53 galaxies), and a TI CCD direct camera (27 galaxies). The images were pro-
cessed at KPNO to produce continuum-subtracted Ha + [NII] maps, aswellas a nor-
malized continuum frame of each galaxy. Final processing of the data, including
sky background removal and simulated aperture photometry, was performed on the
University of Minnesota image processing system. The main parameter of interest
for this study is the integrated emission-line equivalent width of each galaxy,
which is directly measurable from the relative fluxes in the net Ha and normal-
ized continuum frames (and the bandwidth of the Ha filter). For data taken
under photometric conditions we also derived the absolute emission line fluxes
of the galaxies.

We also obtained photoelectric Ha and continuum aperture photometry for 27
galaxies, using the Schmidt Two-Holer photometer on the UM/UCSD 1.5m telescope
on Mt. Lemmon. This provided a check on the equivalent widths derived from the
imagery, as well as flux calibration data for images obtained on non-photometric
nights. Comparison of the independent measurements indicates that the equiva-
lent widths are accurate to ±51 or better (or ±10% in galaxies with very high
equivalent widths). Finally aperture photometry for a few nearby, large-
diameter systems was taken from the surveys of Kennicutt and Kent (1983) and
Kennicutt, Edgar, and Hodge (in preparation).

We have also used the IRAS 60V and 100V data to measure the integrated far-
infrared (FIR) luminosities of the same galaxies. Roughly 30-40% of the galaxies
in the control samples and in the complete pairs sample are larger than the IRAS
detector resolution, so we determined integrated fluxes from the HCON1 sky flux
maps, using a background-subtracting aperture photometry program on the
University of Minnesota image processing system. Comparison of the derived
fluxes with the IRAS Point Source Catalog (1985) fluxes for small faint galaxies
in our program showed agreement to better than 15-25% on average, adequate for
our purposes. For galaxies smaller than 4' diameter we used the PSC fluxes
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Figure 1: Distribution of H-alpha 0.3
emission equivalent widths in the
interacting galaxy and control Control Sample (147)
samples. Numbers in parentheses 0.2
refer to the number of galaxies
in each sample.
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directly. Detection rates, using either the PSC or the sky flux maps, were 90%
for the control samples, 85% for the complete pairs, and 75% for the Arp pairs.
Unfortunately the IRAS survey does not resolve the emission from many of the
close pairs; this is especially a problem for the Arp pairs. We obtained flux
co-added maps for the close pairs in our samples, but in most cases the emission
from the individual members is hopelessly blended. For the statistical compari-
sons which follow (onlyl), we have used the relative Ha fluxes of the individual
components in the IRAS-blended pairs to estimate the relative FIR contribution
of each member. Alternatively one can throw out the blended pairs altogether,
or compare pairs together instead of individual galaxies, and the qualitative
conclusions are unchanged.

The 601 and 100M fluxes were combined using the algorithm in the IRAS
Explanatory Supplement (1985) to obtain an estimate of the integrated FIR flux
for each galaxy. Finally, we normalized this FIR flux to the blue flux (the
latter taken from de Vaucouleurs et al. 1976), in order to obtain a luminosity-
free index of relative FIR emission in each galaxy.

RESULTS

Both samples of interacting galaxies exhibit significant enhancements in
total Ha emission and FIR emission on average. Figures 1-2 show the distribu-
tions of integrated Ho + [NII] equivalent width and L(FIR)/L(B) in the samples
of interacting and isolated galaxies. Both quantities vary systematically with
Hubble type, so it is best to compare the different samples on a type-by-type
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Figure 2: Distribution of the ratio I I

of far-infrared to blue luminosity in
the samples. The top two samples are KK Control (135)

the control samples as described in 0.2
the text. The bottom is the combined
interacting galaxy sample (complete 0.1-
and Arp).

z Keel Cuntrol (83)
o 0.2.
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All Pairs (72)
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basis, as is shown in Table 1 (also see Figs. 3-4). The distributions of mor-

phological type in the three samples are very similar, however, so the type-

averaged distributions shown in Figs. 1-2 can be directly compared.

Although the average levels of emission are significantly higher in

interacting galaxies -- the average Ha equivalent widths and L(FIR)/L(B) ratios

are both roughly a factor of two higher in the Arp sample than in the control

samples -- the response of individual galaxies varies enormously. A large frac-

tion of the interacting galaxies we studied, in fact, exhibit little or no

enhancements in emission. In our complete sample, which should be the most

representative of galaxies with close companions, the median emission levels

are virtually identical to the control samples (though a few extreme star-

bursting systems are certainly evident). Virtually all of the starburst

galaxies in the complete pairs sample are members of the Arp atlas. In contrast

to the objectively-selected complete sample, the sample of galaxies selected

solely on the basis of morphological peculiarity possesses, perhaps not sur-

prisingly, a very high fraction of abnormally star forming systems, and a

systematically high level of star formation overall. Clearly the star formation

properties of a sample of interacting galaxies can be as dependent on the obser-

vational selection criteria as on the physical effects of the interactions

themselves.
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Figure 3: Same as Fig. 1, but showing S~la-Sa
only the early-type spirals. Note the

broad dispersion in emission properties 1.0 1 ,

of the interacting galaxies. Control Sample(18)
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Table 1

MEDIAN EMISSION PROPERTIES
Control Complete Arp

Sample Pairs Pairs

WX(Ha+ [NI]) (X)

All Types 22 24 46

SO/a-Sa 2 4 45
Sab-Sb 10 10 28

Sbc-Scd 26 32 33
Sm-lm 37 125 110

log (FIR/B) (detection only)

All Types +0.23 +0.44 +0.66
SO/a-Sa -0.24 +0.42 +0.78
Sab-Sbc +0.16 +0.29 +0.90
Sbc-Scd +0.32 +0.43 +0.52
Sm-im +0.42 +0.78 +0.67
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Figure 4: H-alpha luminosities for late-type galaxies. Closed symbols denote
interacting galaxies, while open symbols denote galaxies in the control sample.

The emission properties of the galaxies illustrated in Figs. 1-2 appear to
be continuous, but this is partly due to the mixing of different galaxy types.
When we examine the distributions among galaxies of a fixed type, we observe a
broader relative dispersion in properties, and in some cases a suggestion of
bimodality in response. This is most clearly seen in the early-type spirals,
as illustrated in Fig. 3. Isolated Sa galaxies normally exhibit only weak (if
any) detectable Ha emission, indicative of a low massive star formation rate.
Among the interacting Sa galaxies, however, we find both systems with normal
(i.e., low) Ha equivalent widths, and several systems with emission levels which
are abnormally high even for a late-type galaxy. In some cases this abnormally
strong emission is primarily nuclear, in others it is primarily from disk emis-
sion, aud in many both the disk and nuclear emission are enhanced.

For most of the galaxies we also have measured the total emission luminosi-
ties, and Fig. 4 illustrates the Ha properties of the late-type (Sc-Irr) galaxies
in our study. On average the interacting galaxies exhibit stronger emission at
all luminosities. The brightest systems, mostly members of the Arp sample,
possess total Ha luminosities which are rarely if ever observed among isolated
galaxies. Hence it is probably not surprising that such a large fraction of the
luminous sources in the IRAS survey, Markarian catalogs, emission-line surveys,
etc., are members of interacting systems.

DISCUSSION

The integrated Ha emission of a galaxy primarily measures the present star
formation rate for massive (>10 M.) stars, and hence our results confirm the
hypothesis that close galaxy-galaxy interactions can induce bursts of star
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formation in spiral and irregular galaxies. The degree of enhancement in the
star formation rate varies over a large range, from galaxies which appear to be
unaltered by the interaction (at least as observed at present) to galaxies with
star formation bursts which are 10-100 times stronger than is typically observed
in isolated systems.

Our results explain what had been an apparent inconsistency between the
studies of Larson and Tinsley (1978) and Lonsdale et al. (1984), who had found
evidence for strong star formation bursts in interacting galaxies, and the study
of Hummel (1981), who found no evidence for increase& disk star formation in his
complete sample of galaxy pairs. We confirm the results of all 3 studies. For
strongly interacting, peculiar galaxies selected from sources such as the Arp
atlas, including those which made up the bulk of the Larson and Tinsley and
Lonsdale et al. samples, we observe systematically high star formation rates.
Bushouse (1986) has observed a sample of even more strongly perturbed systems
and observes even higher average star formation rates. On the other hand, for
our objectively-selected complete sample of galaxies with close companions, we
observe a slight increase in the average star formation rate, confirming
Hummel's conclusion.

What can we learn from this complicated set of results? Clearly galaxy-
galaxy interactions are capable of inducing star formation in galactic disks,
and under special conditions can trigger major star formation bursts of a magni-
tude which is rarely if ever observed in noninteracting galaxies. Such star-
bursts are rare, however. The enhancement in star formation activity must be
very sensitive to the ambient conditions in the disks of the galaxies, as well
as to the orbital properties of the interaction itself.

The high star formation rates in the Arp sample confirm the not-surprising
result that the most strongly disturbed galaxies exhibit the strongest star for-
mation bursts. It is also, likely, however, that catalogs such as the Arp atlas
are strongly biased toward unusually luminous, high surface brightness systems,
and will a priori exhibit abnormal star formation properties. The relatively
normal emission in most of the members of our complete sample of close pairs
suggests that while induced star formation in strongly interacting galaxies may
be a very important physical process for understanding the IRAS source counts,
statistics of active and starbursting galaxies, etc., it is probably not a major
influence on the current evolution of most galaxies, even those with nearly
companions.

Several important questions remain to be explored in more detail. We intend
to use our imagery to study the spatial distribution of the star formation in the
interacting galaxies, and in particular to study the relative enhancements in
disk and near-nuclear star formation. Preliminary analysis of our data indi-
cates that the bulk of the Ha emission in most of the galaxies originates from
star formation in the disk, but that the fraction of emission from the nucleus
(or from a near-nuclear disk) is significantly higher than in isolated galaxies
(see also Keel et al. 1985 and especially Bushouse 1986). We are also measuring
the properties of individual HII regions in the galaxies, in order to better
understand the nature of the induced star formation. A better understanding of
the physical origins of the star formation, however, and its wide diversity in
different systems, will probably require detailed spatially-resolved kinematic
observations and modelling of individual systems.
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DISCUSSION

C. Magri: From your complete pairs sample, we see that proximity doesn't
guarantee enhanced star formation in component galaxies. Have you found any
discriminant (e.g., rotation velocity, HI content) of 'active' pairs vs.
'normal' pairs?

R. Kennicutt: It is very difficult to discern such second-order effects in our
data, because the dispersion in emission properties among isolated galaxies
is so large. Among the early-type spirals, we do notice that the 'active'
galaxies often exhibit unusually strong nuclear emission.

M. Harwit: Since gas-gas interactions can be far more abrupt than stellar
interactions in colliding galaxies, does one ever see galaxies in which the
gas is clearly interacting, while the stellar components appear virtually
unaffected?

R. Kennicutt: I do not think that enough data are available on gas distribu-
tions in galaxies to test your hypothesis. Most HI mapping studies of inter-
acting galaxies, for example, are limited to pairs which show optical
peculiarities. On the other hand, HI maps of a number of close groups (by
M. Baynes, for example) do show prominent gaseous plumes among what are
relatively undistorted galaxies in the stellar component.
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x IzinERCTING AnD IsoLATED GRLAXiIES

Roc K. Cutri

Steward Observatory

ABST•RCT

It has become increasingly apparent that the physical state of
galaxies can be influenced by their environment. To probe the
sensitivity of the star formation rate and extent in galaxies
to gravitational encounters, we have obtained ground based near
and mid-infrared and IRAS far-infrared measurements of complete
samples of isolated and interacting pairs of galaxies. The
observed infrared properties of the isolated galaxies are used
to gauge the magnitude of star formation in galaxies free from
external influences, and to define the relationships between
morphological type and infrared luminosity. We contrast these
properties with those of the interacting sample to examine the
extent to which interactions can enhance or alter the nature of
star formation. The mechanisms by which interactions influence
activity such as star formation are investigated through
correlations of the infrared characteristics with radio and
optical measurements, and with morphological and physical
parameters such as galaxy types, separations, encounter
velocities and interaction types. Limits to the physical
extent of the star formation are obtained by comparing the
large aperture measurements of IRAS with the small-aperture
ground based photometry.
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ABSTRACT. The IRAS survey of the local universe (z-0.1) has revealed the existence of a class of
ultraluminous infrared galaxies with L(8-1000pm) > 1012L9 that are slightly more numerous, and as
luminous as optically selected quasars at similar redshift. Optical CCD images of these infrared galaxies
show that nearly all are advanced mergers. Millimeter-wave CO (1 ---, 0) observations indicate that these
interacting systems are extremely rich in molecular gas with total H 2 masses 1 - 3 x 1010 Me. Nearly all
of the ultraluminous infrared galaxies show some evidence in their optical spectra for nonthermal nuclear
activity. It is proposed that their infrared luminosity is powered by an embedded active nucleus and a
nuclear stafburst both of which are fueled by the tremendous reservoir of molecular gas. Once these
merger nuclei shed their obscuring dust, allowing the AGN to visually dominate the decaying starburst,
they become the optically selected quasars.

1. INTRODUCTION

R determinations of the luminosity function for IRAS galaxies (Lawrence et al. 1986, Rieke
and Lebofsky 1986; Soifer et al. 1986) all show a significant population of luminous infrared galaxies
with infrared luminosities exceeding 1012 L® (HM = 75 km s-1 Mpct-). Soifer et al. (1986) find that
at luminosities above 1010 Le the space density of infrared galaxies is comparable to, or greater than
that for active and starburst galaxies, and at the highest luminosities the IRAS galaxies are slightly more
numerous than optically selected quasars (Schmidt and Green 1983). The ultraluminous infrared objects
with L(8-1000pm) > 1012 Le are the subject of this paper.

The data reported here are part of a larger study of the properties of the brightest galaxies in the
IRAS survey. The bright galaxy sample includes all objects brighter than 5.4 Jy at 60p4m with (b[ > 300
and 6 > -300. Because these are the brightest galaxies in the sky at 60pm, this sample represents the
best opportunity for the study of the infrared emission processes in galaxies. A complete description
of the survey and the luminosity function for these galaxies is given in Soifer et at. (1986, 1987). A
preliminary description of the morphology and molecular gas content of 'high luminosity' members of the
bright galaxy sample with LnR(40-400pm) = 6 x 1010 - 6 x 1011 L® is given in Sanders et al. (1986a).

2. THE ULTRALUMINOUS ERAS GALAXY SAMPLE

The ultraluminous objects in the IRAS Bright Galaxy Survey are listed in Table 1. Their tabulated
luminosity was computed using the prescription outlined by Perault et al. (1986) which uses the data
from all four IRAS bands to approximate L(8-1000pm). Since several of the ultraluminous objects have
substantial flux at 25pm, this method provides a significantly better approximation to the bolometric
luminosity than the more commonly used Lp fit to the 60 and 100pm data given in Catalog of Galaxies

Carol J. Lonsdal Peruon (Editor)
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and Quasars Detected in the IRAS Survey (1985). The dominance of the far infrared luminosity in the total
energy budget for all of the ultraluminous galaxies can be seen fiom the tabulated ratio fv,(80)/vfv,(B)
which has a median value of 25.

Table 1

Ultraluminous IRAS Galaxies

Object RA Dec cZ' L(8-1000/m) vf,,(80) Morph Optical

(1950) (1950) (kI S-1) (10 12 )LO vfA(B) Spectra

IRAS 051858.6 -252440 12706 1.23 24 star Sey 1.5

IRAS 08 57 13.0 +39 1540 17480 1.25 10 M 111

UGC5I01 0932 04.6 +61 34 37 12000 1.02 22 M Sey 2

IRAS 121112.2 +030520 21703 1.94 68 M LINER

Mrk231 125404.8 +570838 12623 3.45 22 M Sey 1

Mdc273 134251.6 +560813 11400 1.47 T Sey 2

IRAS 143452.3 -144724 24332 1.88 33 M LINER/HI

IRAS 152503.1 +360900 16009 1.00 25 M LINER

Aip220 153246.3 +234008 5450 1.58 59 M Sey 2

IRAS 224909.6 -18 08 20 22807 1.33 25 M LINER

Note: Objects in the IRAS Bright Galaxy Survey (Soifer etat. 1986, 1987) with L(8- 1000pm) _> 1012L®

"M e an optical heliocenric redshift
bM - advanced merger, tidal tails observed.

T - single long tail of Mrk 273 due to recent strong interaction with disturbed companion 2' North.
star - appears star-like on Palomar print; obvious nebulosity on short CCD exposure.

"6Based on linewidth of Ha+[NJl] and/or [OfHI]H/ line ratio from long-slit spectrum.

The majority of the objects in Table I have blue magnitudes greater than 15.5. hence are not found
in the standard catalogs. The mean redshift of the sample is - 16,000 kmn s- . The space density of
these objects in the local universe (z < 0.081) is p 10-7 MpC-I Mb . The sample of objects listed in
Table 1. although relatively small, is an impressive number when one realizes that the only other objects
in the same volume of space of comparable luminosity are quasars of which there are only about half as
many.
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3. BASIC PROPERTIES OF ULTRALUMINOUS IRAS GALAXIES

We have undertaken a major program of optical, near-infrared and radio continuum observations of
all of the galaxies in the bright galaxy sample in an attempt to understand both the nature of the host
galaxy and the origin of the enhanced infrared radiation in the most luminous objects. Data for the
ultraluminous sample are summarized here with a more complete accounting to appear in Sanders et at.
(1987).

3.1 IMAGING

One of the most important results of the entire IRAS Bright Galaxy Survey is that nearly all of the
ultraluminous objects appear to be merging spirals. Eight of the ten objects show obvious, long tii -ils
which extend from almost completely merged disks. The symmetry and length of the tails are nerr it
of numerical simulations of mergers between two disks of nearly equal mass (e.g. Toomre and i ire
1972). One of the remaining two objects, Mrk 273, has a single, long tail pointing directly away from an
extremely blue, nearly point-like companion. The companion has apparently scored a direct hit on Mrk
273, leaving behind most of its disk gas to what is now seen as a heavily reddened, disturbed galaxy.
The remaining ultraluminous object, IRAS 0518-25, appears stellar on the Palomar Sky Survey print, but
shows distinct nebulosity on a short CCD exposure. A deeper image is required to detect evidence of a
merged system.

Figure I shows deep CCD images of Arp 220 and Mik 231 - the two galaxies from our list that have
attracted considerable past interest because of their extreme infrared properties. Previous optical images
have apparently not been deep enough to show the faint tidal tails that clearly implicate a recent merger
as the trigger for the extreme luminosity of these objects.

Figure 1: CCD images at 6500k (Gunn r) of Arp 220 and Mrk 231. The scale is
approximately 0".5/pixel and seeing was - 1 arcsec.
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3.2 OPTICAL SPECTRA

High-resolution, long-slit optical spectra (3800-8000k) have been taken of the ultraluminous galaxies
using the CCD double spectrograph on the Palomar 5m telescope. All are strong emission-line objects.
Broad Ha emission was the primary diagnostic used to identify Seyfert activity. The remaining galaxies
with narrow emission lines most often show [OU]/H# line ratios characteristic of a LINER spectrum.
Only one object bear strict resemblance to a thermal HII region spectrum. One galaxy has two clearly
separable nuclei, one with a liner spectrum and the other of HIT region type.

Our classification of the optical spectra is rather simplistic as several of these ultraluminous objects
appear to have a mixture of nonthennal and thermal emission compoents. The most bizarre spectrum
is that of Mrk 231 which shows broad Ha emission plus several strong absorption bends indicating a
possible circumnuclear starburst (c.f. Boksenberg et a. 1976). Several other objects, most notably Arp
220 (Rieke et al 1984), appear to have both strong thermal and nonthemnal components, but in Table 1 we
have emphasized nonthermal emission. As a class, the ultraluminous infrared galaxies differ dramatically
from the majority of the galaxies with lower luminosity discovered by IRAS. The vast majority of the
bright galaxies surveyed by us (Sanders et al. 1987) as well as the IRAS mini-survey galaxies studied by
others (Elston, Cornell, and Lebofsky 1985; Lawrence et at. 1986) are narrow emission line objects with
HII region type optical spectra.

3.3 ENERGY DISTRIBUTION

We have combined the IRAS data with ground-based optical and near-infrared photometry to de-
"termine the energy spectrum between 0.44 and 100jom for all of the ultraluminous galaxies as shown in
Figure 2. The dominance of the far-infrared emission (A > 40prm) in the total energy budget ranges from
>95% for Arp 220 to -50% in MAk 231.

The distributions in Figure 2 are displayed approximately in order of increasing f,(60)pm/f(100pm)
ratio of flux densities. The 60AoM and 100prm IRAS data points have been fit with a single temperature dust
emission (e cc A-) cumrv; dust temperatures range from 47 K for Arp 220 to 62 K in IRAS 0857+39.
There is an obvious trend of increasing 12 pm and 25pm emission with icreasing f,,(60pm)/f,,(100pm)
color temperature, possibly due to a separate component of hotter dust associated with a Seyfert nucleus
(c.f. Miley, Neugebeuer, and Soifer 1985). There is also an obvious trend of increasing 1-5pro flux
with increasing far-infrared color. This may still represent thermal emission from high temperature dust
relatively close to a luminous nonthermal nuclear source, or it could be nonthermal emission directly
associated with the region emitting the broad optical emission lines.

3.4 MOLECULAR GAS

Because of the relatively large distance of most of the ultraluminous objects and the limited sensitivity
of current single dish millimeter-wave telescopes, direct measurement of the molecular gas content is
limited to two objects - Arp 220 and Mrk 231. However, these data are extremely interesting in that
both Arp 220 and Mrk 231 are among the most luminous CO sources known and their ratio of infrared
luminosity to total H2 mass is more extreme than observed in other high luminosity IRAS galaxies. Figure
3 shows that the total mass of H2 in Mrk 231 is 1.4 x 1010 Me and the LpM/M(H2) ratio of 150 is ,,35
times larger than that found for the ensemble of molecular clouds in the Milky Way (Sanders et al. 1986a;
Scoville and Good 1986). For Arp 220 the values are M(H2) = 1.43 x 10' 0Me and LIm/M(H2) = 95
(Young et al. 1984; Sanders and Mirabel 1985. If the LFIR/M(H2) ratio measures the efficiency of star
formation (Sanders and Mirabel 1985; Young et al. 1986) then their molecular gas will be depleted in
10' yea.
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4. DISCUSSION

The ultralumimous infrared galaxies represent the culmination of a trend toward an increasing percent-
age of interacting spirals with increasing infrared luminosity that has already been observed in previous
studies of IRAS galaxies at lower luminosity (Sanders et aL 1986a). Table 2 compares the properties
of the ultraluminonus sample with galaxies at lower luminosity from the IRAS Bright Galaxy Survey. In
addition to the increased freluency of merger candidates, there is evidence from the optical spectra that
non-thennal AGN's play an increasing role in the energy budget at the highest luminosities.

Figure 3 strongly suggests that the fuel for the infrared luminosity in all of the bright IRAS galaxies is
an abundant supply of molecular gas. Several possibilities exist for producing this luminosity, particularly
if both collision partners were initially rich in molecular clouds. During the merger molecular clouds in the
disks of the two spirals would be expected to undergo frequent collisions, potentially generating infrared
luminosity directly (Harwit et a. 1986) and/or triggering massive star formation (Scoville, Sanders, and
Clemens 1986). In addition, if the collision trajectory has the two galactic disks counter-rotating then the
cancellation of angular momentum during cloud-cloud collisions should result in a pile-up of molecular
material near the merger nucleus. This may further enhance the 'starburst' and supply fuel for a QSO
nucleus. Recent CO observations of Aip 220 with the OVRO millimeter-wave interferometer (Scoville et
al. 1986), show that most (> 70%) of the CO emission comes from a radius smaller than 750 pc centered
on the bright radio and near-infrared nucleus.

Table 2
lIAS Galaxy Properties vs Increasing Infrared Luminosity5

HL UL

Prpey (2 - 7 x 1010 Le) (7 x 101 0 - 7 x 1011 LO) (> 1012 Le)

No. Objects 80 80 10
(BG Sample)

Morphology merger 10% 40% 90%
close pair 15 30 10
isolated 75 30 0

Optical Seyfert < 10% 20% 50%
Spectra, LINRq ? 1>90 8040

Hill1 10

vf,(80)/vf,(B) 1 5 25
(median)

LM,/M(H2) 5 18 120
(median)

"Infrared luminosity f L(8-1000l m). Data for 2- 7 x 10'0 Le galaxies and High Luminosity sample is
from Sanders et al. (1986a, 1987).
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The Most Luminous Galaxies in the Local Universe (Z <.081)

UL IRASGalaxiesU U
Palomar-Green
*Ir'al" 0SOI"

I p

12.0 12.2 12.4 12.6
Log L (L0 )

FIgure 4: Objects with luminosities greater than 1012 L9 at z < 0.081. For the in-
frared galaxies the plotted value is L(8-1000lum) which is * 0.9 Lgj. For the optically
selected quasars (Schmidt and Green 1983) the luminosity is 14m as determined by
Soifer et at. (1986).

As the most luminous infrared objects in the local universe the ultraluminous IRAS galaxies are
all at, or near their peak luminosity. It appears likely that this coincides with a dense and massive
concentration of molecular gas around a merger nucleus which is heated by both an embedded AGN
and newly formed massive stars. Eventually this gas will be dispesed through the combined action
of supernova explosions, stellar winds, and radiation pressure. Such housecleaning may have already
begun in those objects listed in Table 1 whose broad-line Seyfert spectra suggest that we can see into
the central nonithermal source. It seems reasonable to assume that these galaxies will shortly resemble
optically selected QSO's characterized by a dominant central point source. The infrared-loud quasar
IRAS 1334+24 (Beichman et al. 1986) might well represent just such a state. Figure 4 compares the
total number of ultraluminous infrared objects and their luminosities with the bolometric luminosities of
a complete optical sample of QSO's within approximately the same volume of space. If the lifetimes of
the ultraluminous infrared and QSO phases are approximately equal, then Figure 4 suggests that nearly
all ultraluminous infrared galaxies become QSO's and that the QSO phase may in fact be slightly less
luminous than the infrared phase.
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DISCUSSION

Thromson: How does the following selection effect affect your interpretation of your plot of LIn vs Lmco
if at all: in a flux-limited sample, would you not tend to be strongly biased toward high-efficiency of star
formation?

Sanders: Our flux limited sample is biased toward selecting objects with high Lem, whatever the cause
of the FIR. Figure 2 should not be used to determine the true distribution of Lvn/Lco at a given Lco,
particularly at Lfl _< 7 x 1010LE where we have simply plotted all galaxies for which CO data was
available from the literature plus a few of our own. However, above LR ,- 1011L® where most of the
plotted data is from our Bright Galaxy survey, we attempted to uncover additional galaxies of comparable
far-infrared luminosity which lie within the boundaries of the survey, by lowering the 60 pm limit to 0.5
Jy. But, essentially no new objects were found. Therefore, the Bright Galaxy sample does appear to give
an accurate picture of the real distribution of Lnti/Lco at these high far-infrared luminosities.

Mundy: We have observed the nuclear region of NGC 253 in CO with the Owens Valley Interferometer.
The CO emission is in a 40" x 10" bar with Lut/M.t. ,,, 60. Where does this fit in your sample and
can't bars be very efficient at stirring up star formation?

Sanders: The data point for NGC 253 in Figure 2 represents the average Lni/Lco over the inner 6 arcmin
radius. Apparently, the small bar in your data has a ratio yet 3 times higher, which could presumably be
due to either an increase in star formation efficiency, or heating from a non-thermal nucleus.

Mezger: You showed a diagram of MH2 vs 14, which deviates from a linear relation at the high
luminosity end. This is in disagreement with a similar diagram shown by Krugel et at. (this symposium).
The major difference is that you determined MH2 from the (optically thick) 12CO line while KrUgel et al.
uses the (optically thin) A1300jum dust emission. My question is: What makes you believe that you can
extrapolate a relation between CO luminosity and H2 column density, originally derived for our Galaxy,
to galaxies which appear to have a gas content of two to three orders that of our Galaxy?

Sanders: I believe that the total 'Co from a galaxy is essentially influenced by the number of clouds. If
the mean internal cloud properties (temperature, density, etc.) were to vary greatly from galaxy-to-galaxy
then M(H2) as derived using the mean value of M(H2)/LCo = 5.8 found for the Milky Way would not
be very accurate. For one of the most luminous galaxies in Figure 2, Arp 220, we have been somewhat
surprised that our mass estimate agrees so closely with the mass determined by Emerson from 350 pm
observations. The criticism raised most often concerning extragalactic H2 masses is that 12CO may be
partially optically thin, a possibility that, presumably, is raised by the relatively large 12CO/ 13CO ratio
observed in M82. Krugel's work to which you refer is the first I have seen which gives substantially
larger H2 masses then we derive from 12CO.

420
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ABSTRACT

We are engaged In a programme to explore the spectra of galaxies In the near-
infrared (H & K) atmospheric transmission windows. We have detected emission
lines due to molecular hydrogen, atomic hydrogen recombination lines, a line we
attribute to [FelI], and a broad CO absorption feature. Lines due to H2 and
[FeII] are especially strong in interacting and merging galaxies, but we have
also detected them in Seyferts and 'normal' spirals. These lines appear to be
shock-excited. Multi-aperture measurements show that they emanate from regions
as large as 15 kpc. We argue that starbursts provide the most plausible and
consistent model for the excitation of these lines, but the changes of relative
line intensity of various species with aperture suggests that other excitation
mechanisms are also operating in the outer regions of these galaxies.

1 . INTRODUCTION

Spectroscopy in the near-infrared atmospheric windows Is an almost
completely undeveloped tool for investigating physical processes in galaxies.
Until recently there have been only two detections of H. in galaxies, In
N1068 (Thompson, Lebofsky & Rieke 1978) and N3690-IC694 (Fischer, Simon, Benson &
Solomon 1983). There have also been only two detections of the 1.644 Um
lines which are attributed to [FelI] in the nuclei of galaxies, in M82 (Rieke,
Lebofsky, ThompsonLow, & Tokunaga 1980) and in N4151 (Rieke & Lebofsky 1981).
Thert have been a few more detections of H Brackett lines in galaxies, but in
total probably less than ten (cf. Beck, Beckwith & Gatley 1984).

We have embarked on a programme to explore the spectra of several classes
of galaxies in the H & K atmospheric windows. Our interest in attempting such
spectroscopy arose from our studies of interacting and merging galaxies (Joseph,
Melkle, Robertson & Wright 1984, Wright, Joseph & Melkle 1984, Graham, Wright,
Melkle, Joseph & Bode 1984, Joseph & Wright 1985). The collision of two gas-rich
galaxies must be one of the most likely places in the universe to look for
shock-excited H,, and we hoped to be able to use these lines as shock
diagnostics and independent indication of a genuine physical interaction. This
conjecture was supported by the discovery of strong H2 emission In the
interacting galaxies N3690-IC694 by Fischer et al. (1983), and subsequently by
our discovery (Joseph, Wright & Wade 1984) and others' (Becklin, DePoy &
WYnn-W•-lIh 1984 Rieke etal, 1989 of extraordinarily luminous H. emission in
two of the most intriguing 'IRAS galaxies,' N6240 and Arp220. We have extended
this observing programme to include other classes of galaxies, partly for
comparison purposes, but chiefly as a systematic exploration of the near-IR
spectroscopic properties of spiral galaxies In general.

C"rl J. Lonudakl Persson (Editor)
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2. 06MSSVATIONS

Our observations have been obtained at UKIRT, using a circular variable
filter spectrometer. This instrument provides a spectral resolution X/dX - 120,
or about 2500 km/sec. Since the instrument employs re-imaging optics, this
resolution is independent of aperture. Our approach has been to begin study of
a given galaxy using the 19.6 arcsec aperture, and then to obtain spectra at
successively smaller apertures. In one or two nearby galaxies we have also
measured spectra in several different positions not centred on the nucleus. So
far we have obtained complete spectra in the H & K windows for about 15 galaxies.
Most of these are interacting and merging galaxies, but we have good spectra for
four nearby bright spirals and two Seyfert galaxies.

The features which appear most frequently in these spectra are the
quadrupole vibration-rotation lines of H2 , H recombination lines in the
Brackett series, a line at 1.644 um which we tentatively attribute to [FeII],
and the stellar absorption feature due to CO. Examples of the spectra we measure
are shown in Figs. 1 - 4. These spectra have been ratioed with the spectrum of a
G-type star taken at similar airmass to remove effects of the atmosphere and
instrumental response. The spectra illustrate how useful it is to work at the
high altitude of UKIRT on Mauna Kea. For example, one can study the 1-0 Q-branch
of H2 in galaxies even at redshifts as large as that of N6240 (7500 km/sec).

3. RSMUTS

We have done preliminary reduction of the spectra for a subsample of the
galaxies so far observed to obtain fluxes for the H2 , Brackett Y, and [FeII]
lines. In the follwing we summarise the physical parameters that characterise
this data, and the apparent trends which seem to be emerging.

3.1 Excitation mechanisms

Both shocks and fluorescence following absorption of a UV photon in the
Lyman or Werner bands have been suggested for the H2 excitation. The
evidence from relative line intensities in the-data available so far is
consistent with shock excitation. Table I shows relative line intensities
expected for excitation by a 10 km/see shock and for U V fluorescence. For
comparison we give the relative intensities of several of the H2 lines for
N6240 and Arp220. The most critical indication is probably the intensity of the
2-1 S(O) line relative to that of the 1-0 S(O) line. The data for these two
galaxies Is clearly consistent with shock excitation and incompatible with the UV
fluorescence model. We have also looked hard for the 2-1 SO() line as evidence
of UV fluorescence In the Seyfert galaxies we have observed. The line
intensities favour collisional excitation in these galaxies as well. However, we
intend to obtain spectra in still smaller apertures to distinguish the features
of the active nucleus itself more clearly.
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Figure 1. Spectra of the merging galaxy N6240 in a 19.6 aresec aperture.
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TABLE I. RELATIVE LINE INTENSITIES FOR H2 EXCITATION

Line N6240 Arp220 Shock* UVt

1-0 S(0) 0.28 0.17 0.22 0.67
1-0 S(1) 1.0 1.0 1.0 1.0
1-0 S(2) 0.24 0.36
1-0 S(3) 0.77 0.95
1-0 Q(1-7) 2.2 4.5 2.4 2.7
2-1 S(1) 0.14 0.05 0.1 0.55

*Hollenbach & Shull (1977)
tBlack & Dalgarno (1976)

The 1.644 pm [Fell] line is also collisionally-excited. If the [FeZI] were
emitted from an HII region, one would expect the ratio of the [FeII] 11.644 pm
line to Brackett Y A2.166 pm to be - 0.06 (Graham, Wright & Longmore 1986).
We find this ratio typically to be at least 10 times larger, suggesting that the
line Is not excited by photoionisation in an HII region. It Is very difficult to
excite this line by UV fluorescence, and we do not observe a line at 2.09 pm
which we would expect to see if the relevant terms were populated by this
mechanism. The line is therefore almost certainly shock-excited.

This is an important result. Shock speeds In excess of 30 km/sec are
required to excite the [FeII] emission, whereas shock speeds as low as 5 km/sec
can excite the H. 1-0 SO) line. Thus these lines provide powerful shock
diagnostics. For example, their relative spatial extent can constrain the kinds
of astrophysical source(s) driving the shocks. Comparison of these indicators
with the extent of Brackett Y and infrared continuum maps should then provide
rather detailed Insight into the astrophysics associated with the nuclear
Infrared activity in these galaxies.

3.2 Luminosities In H2 emission lines

The luminosities of the 1-0 S(1) emission lines discovered in 1984 in N6240
and Arp220 are astonishingly large, - 10 8 and 10' Le respectively. How do these
luminosities coaxr're with those for a larger sample including other types of
galaxies? The samples are still small, but some trends may be appearing. Table
II presents the 1-0 S(O) luminosities (H. - 50 km sec-' Mpc- 1 ) for the line
fluxes obtained In a 19.6 arcsec aperture centred on the nucleus of each galaxy.

These luminosities are enormous! At the upper end they compare with the
10 pm continuum luminosities of starburst galaxies. Another way to appreciate
the physical significance of these luminosities is to ask what masses of H2 must
be shock-excited to produce these luminosities. If the temperature Is - 2000 K,
these luminosities Imply masses of excited H2 of 102 to 103 Me, and excitation
rates of 30 to 30,000 Me of H2 per year. The timescales of the processes
producing this excitation must be large, since we have detected H2 emission in
virtually every interacting or merging galaxy we have observed, and In most other
galaxies as well. If the excitation were a starburst, one expects a lifetime of
)o 3 x 10' years, whereas if It were due to spiral density waves or to gas flows
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TABLE II. LUMINOSITIES IN THE H2 1-0 S(i) LINE

Galaxy type Luminosity range (Le)

Mergers 3 x 106 - 3 x 100

Interacting 2 x 105 - 1 x 107
(not merging)

Starburst (N253) - 7 x 104

Induced by bar instabilities the lifetime would be - 1010 years. Multiplying
these timescales by the excitation rates we have inferred suggests that all the
molecular gas must be excited over the lifetime of the starburst In N253. In the
mergers, the result Is even more striking: every H2 molecule must be excited
many times, in order to account for the high excitation rates we find In these
systems.

3.3 Energy source driving these shocks

Because many of these galaxies are ultra-luminous IR sources, It might be
expected that radiation pressure would be sufficient to drive the shocks we infer
are present. However, the radiation pressure, LIR/c. is << iv for the
excitation rates given above, even for shock velocities vs as low as 10 km/sec.

Alternatively, It may be that the relative kinetic energy of the collisions
for the interacting and merging galaxies, or mass outflows from star formation
regions or from the active nucleus In the case of the Seyferts, are the under-
lying energy sources driving the shocks. To investigate these possibilities we
have compared the ratio of the luminosity In the 1-0 S(1) line to the total IR
luminosity. This ratio should have a characteristic value for star formation
regions, since the S(1) line luminosity is a measure of the mechanical energy In
the outflow from a star formation region and the IR luminosity is a measure of
the total energy of the starburst. The ratio Is 1 x 10-8 for Orion (Shull &
Beokwith 1982). For all the galaxies we have observed this ratio does not deviate
above or below 1 x 10-8 by more than a factor of - 2, with one notable exception.
For N6240 this ratio Is at least 15 times larger. Our inference then is that
mass outflows from star formation regions similar to Orion can account for the
excitation of H. in all these galaxies, except for N6240, and in this case It
is likely that the relative kinetic energy of the merger has produced the higher
excitation rate we observe.

3.4 Spatial extent of the line emission

We have not yet completed our multi-aperture spectroscopy for this galaxy
sample, but the data available for galaxies observed in more than one aperture
suggests that the line emission has considerable spatial extent. In Table III we
list the relative line intensities found In various apertures, with the
corresponding linear dimensions associated with these apertures, for several
galaxies. The most noteworthy feature is the large extent of the H2 and [Fell)
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emission, over much of the disc, in the two merging galaxies N6240 and N1614.
There is spatial extent of at least 2 or 3 kpc for the H2 emission in the Seyfert
galaxy N3227 and in the interacting galaxy N2798. Although the Brackett Y is
also spatially extended, it appears to be more centrally condensed in the latter
two galaxies than is the H2 emission. We emphasise that even these results on
spatial extent are lower limits--19.6 arcsec is simply the largest aperture
available in our spectrometer.

TABLE III. SPATIAL EXTENT OF LINE EMISSION

Galaxy Line Aperture Linear
scale

5" 8" 12" 20" for 20"

N6240 1-0 S(1) 1.0 1.5 2.1 2.6 14 kpc

[FeII] 1.0 1.3 1.6 1.8

N1614 [FelI] 1.0 2.0 3.0 9 kpc

N3227 1-0 S(1) 1.0 2.1 2 kpc
S(1)/BY 1.0 1.3

N2798 1-0 S(1) 1.0 2.3 3 kpc
S(1)/BY 1.0 2.0

N253 See text

We have the most detailed information on the nearby starburst galaxy N253.
Here we have achieved some spectral mapping. We find the H2 emission extended to
at least ± 20 arcsec, i.e. ± 300 pc, along the major axis. By contrast the
(FeII] and Brackett Y emission are much more centrally condensed, and seem to
follow the 10 Um emission mapped by Rieke & Low (1975).

4. STEPS TOUMRD AN INTERPRETATION

There are several plausible mechanisms which might be responsible for the shock
excitation we observe in these galaxies. (1) Mass outflows associated with
starbursts have already been mentioned, and are one of the sources of H2
excitation in our own galaxy. (2) Dynamical processes associated with the
collision between two galaxies, as discussed by Martin Harwit elsewhere in this
volume, are also a likely source of shock excitation. (3) Mass outflows
associated with Seyfert nuclei may be responsible for shocks in the vicinity of
the nucleus in this class of galaxies. (4) Shocks due to spiral density waves or
due to flows associated with bar Instabilities may also be a source of
excitation. In the following we will use the results outlined above to work
toward a consistent picture of the astrophysical processes which might account
for the line emission seen in these galaxies.

Firstly, which of the above processes can be responsible for the greatly
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extended Ha emission? In N253, the [FeII] emission does not show similar spatial
extent, and so the slower shock speeds characteristic of spiral density waves, or
shocks associated with the bar In this galaxy are reasonable. The fact that
Brackett Y is centrally condensed In this galaxy also suggests that outflow from
star formation regions is not likely to be responsible for the extended H2
emission In N253.

For the merging galaxies, the [Fell] emission seems to be as spatially
extended as the H2 . Since the [FeII requires rather fast shock velocities,
gentler processes such as spiral density waves are not so likely to dominate the
excitation. In this case either star formation or the energy of the interaction
is likely to be responsible. If It were star formation, we would expect the
outflows from massive young stars to be responsible for exciting the H2 , and
outflows from supernova remnants to provide the fast shocks needed to excite the
[Fell). The strong emission from [Fell) in the 1.644 vim line In the supernova
remnant IC443 (of. Graham, Wright, & Longmore 1986) must be an archetypal example
of this process.

Secondly, the approximate constancy of the ratio of S(1) line to total IR
luminosity for nearly all galaxies helps to distinguish the relative importance
of these processes. The constancy of this ratio from one merging galaxy to
another might be understood in terms of the mechanical energy of the collision,
but It Is difficult to see why, In this case, it would be the same for non-
merging Interacting galaxies, a Seyfert, and a starburst galaxy. Moreover, that
this ratio is quantitatively the same as that for a local star formation region
(Orion) Is strongly suggestive that, In general, the H2 is excited by mass
outflows from star formation regions in the central regions of these galaxies.
N6240 is clearly the exception, and as we suggested some time ago (Joseph et al.
1984), It is likely that the relative kinetic energy of the interaction
dominates the Ha excitation In this merger.

If we adopt this Interpretation, we can ask whether It is consistent with
other information available for these galaxies. One of the most Important
questions is whether the H recombination line luminosity is consistent with a
starburst model. In our original paper on H. emission in N6240 and Arp220
(Joseph et al. 1984) we called attention to an apparently low flux of Lyman
continuum photons as evidenced by our failure to detect Paschen a at a similar
sensitivity as that used when we first detected H2 . This point has been
pursued by Becklin et al. (1986), who have detected the Paschen a line in a
5 arcsec aperture, and used the ratio of the luminosity in this line to the total
IRAS luminosity as a major argument to support their suggestion that N6240 is not
powered by a starburst at all, but by a quasar-like active nucleus. To
Investigate this point further we have calculated the ratio of the Brackett Y
flux we have measured in a 19.6 arcsec aperture to the IRAS 25 Um flux for
these galaxies, including N6240. We take the flux at 25 Jim to indicate the
starburst component of the far-IR emission, as the spectral synthesis models show
Is reasonable (of. Helou et al. in this volume). Therefore, the Brackett Y/25 jm
flux ratio should be roughly constant for galaxies powered by a starburst. The
ratio, shown In Table IV, is remarkably constant, especially considering the
rather heterogeneous collection of objects, and the fact that It will be somewhat
sensitive to reddening. Clearly, on this criterion, N6240 is not weak In H
recombination line strength among the galaxies measured. On the other hand,
Arp220 may be a bit short of Brackett Y photons.
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TABLE IV. RATIOS OF BRACKETT Y TO 25 Um FLUX

Galaxy BY/25 um (x10 5 )

N624I0 12
Arp220 1.7
N3256 3.9
N2623 4.6
N1614 6.6
N3227 6.2
N2798 7.4
N253 3.0

Finally we can use our spectroscopic data to infer what supernova rate is
implied If the (FeII] emission is due to supernovae associated with the
starbursts. Graham, Wright & Longmore (1986) have discovered the 1.644 pm [Fell]
line in the galactic supernova remnant IC443. The lifetime and [Fell] luminosity
of this supernova remnant, and the [Fell) luminosities of the galaxies in the
present sample indicate a supernova rate of < 1 per year for the Interacting and
Seyfert galaxies, and 10 - 70 supernovae per year in the mergers. These are not
unreasonable supernova rates.

However, the fact that the relative strength of the S(1) line flux to the
Brackett Y flux seems to be changing with aperture, for some of the galaxies
studied so far, as shown In Table III, suggests that starbursts alone may not be
enough to account for all the excitation of H2 . It will be particularly germane
to find out how the [FeII)/BY ratio varies with aperture to see how well the
starburst picture holds up for the excitation well outside the central regions of
activity In these galaxies.

5. sEUNRY AND COCLM IOIS

We have measured near-IR emission lines due to Hg, Brackett Y, and [Fell) for a
variety of classes of galaxies. The lines due to H2 and [Fell) are especially
strong In Interacting and merging galaxies. Multi-aperture measurements show
that the emission is generally extended over kiloparsec scales. The H2 and
[FeII] emission is apparently excited by shocks, in which case the latter
requires shook velocities > 30 km/sec. Consideration of several processes which
might produce emission lines from these three species shows that, In general,
starbursta provide the most attractive and consistent model. In particular, the
ratio of the H2 flux to the total IR flux, the ratio of the Brackett Y flux to
the 25 um flux, and the luminosities of the [Fell) provide semi-quantitative
support for this Interpretation. However, starbursts cannot be the whole story
for In some cases the ratio of H2 to Brackett Y emission shows a marked increase
with aperture, suggesting that shocks due to spiral density waves or to the
Interactions may become Important outside the most active central regions in
these galaxies.
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More quantitative and detailed presentations of the IR spectroscopic data
for these are other galaxies we have observed will soon be submitted for
publication in Monthly Notices of the Royal Astronomical Society.
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DISCUSSION

SHULL:
The supernova shocks would be expected to destroy the H2 at velocities above 25 km s-1. Can you

discuss this d;!ficulty in your model of star formation excitation of the 2prm H2 emission?

(Note, added afterwards: The Hollenbach-McKee idea of reforming H2 behind the shock (by grains that
survive shock destruction) may not work here, since the gas will have cooled well below 1000 K so that
vibrational lines cannot be excited.)

JOSEPH:
There are shocks of three different origins in the model outlined: 1) those due to the galaxy-galaxy

collision, 2) those due to outflow from star formation regions, and 3) those associated with supernovae. The
Hollenb•ch-McKee idea of reforming H2 on grains that survive the shock applies to the first case. We are
probably seeing excitation mainly because of the second case for the H2, and mainly because of the third case
for the (FelJ. Of course, the localized regions emitting the H2 are not the same as those emitting the [FeU],
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but they both emanate from the same general volume. There are examples in the Galaxy in which one sees
both [Fell] and H2 emission, for example, in the supernova remnant IC443.

BURBIDGE:
Can you say anything about the FH ratio in these objects. Is the ratio normal?

JOSEPH:
I don't think these measurements permit us to deduce much about the total FeIH abundance ratio.

TELESCO:
1) How did you determine that the H2 is extended in these sources?
2) Do you know the ratio of [FeIl/Lut for the Seyfert NGC 4151 and how does it compare to the values

for this sample?

JOSEPH:
1) Multi-aperture observations.
2) 1 don't recall the value for 4151, but for NGC 3227, the only clear-cut Seyfert in this sample, it is

about 5, which is much higher than for the other galaxies shown here (except 6240).

RIEKE:
The ratio for 4151 is about unity.
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ABSTRACT

The large dynamic range of star formation in galaxies, and the apparently
complex environmental influences involved in triggering or suppressing star
formation, challenge our understanding. The key to this understanding may be
the detailed study of simple physical models for the dominant nonlinear
interactions in interstellar cloud systems. We describe one such model, a
generalized Oort model cloud fluid, and explore two simple applications of
it. The first of these is the relaxation of an isolated volume of cloud fluid
following a disturbance. Though very idealized, this closed box study suggests
a physical mechanism for starbursta, which is based on the approximate commen-
surability of massive cloud lifetimes and cloud collisional growth times. The
second application is to the modeling of colliding ring galaxies. In this
case, the driving processes operating on a dynamical timescale interact with
the local cloud processes operating on the above timescales. The result is a
variety of interesting nonequilibrium behaviors, including spatial variations
of star formation that do not depend monotonically on gas density.
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I. INTRODUCTION

A. The Dynamic Range of Star Formation in Galaxies

The discovery of Sargent and Searle (1970) that several Zwicky irregular
galaxies are essentially "extragalactic HII regions" provided one of the
earliest indications that current star formation rates (SFRs) in other galaxies
could be very high compared to the SF1 in our galaxy. It was clear to these
authors that the relatively high SFRs in these galaxies could not persist for
any significant fraction of a Hubble time, if only because the implied gas
consumption time was short. Later, Gerola and Seiden showed that relatively
strong (i.e. enhancement factors of an order of a few')bursts of star formation,
separated by relatively long quiescent periods, could be a consequence of self-
propagating star formation in relatively small and essentially three-dimensional
systems like the dwarf irregulars (see e.g. the review of Seiden and Gerola
1982). At the same time, the discovery of Larson and Tinsley (1978) that
bursts of star formation were apparently ubiquitous in Arp interacting galaxies
showed that high SFRs were not unique to dwarf galaxies. More recently, the
observation that merger remnants are undergoing very extended starbursts (e.g.
Joseph and Wright 1985, and further references in the review of Schweizer
1986). provides very dramatic evidence that large galaxies are capable of very
large net SFRs.

Moreover, these examples of high SFRs in galaxies do not show the full
dynamic range of star formation in galaxies, since galactic Slts extend to very
low values as well. One example, is given by the class of anemic spirals of
van den Bergh (e.g. 1977). However, these galaxies have low gas densities as
well as small SFRs. A better example is provided by the gas-rich, low-surfac4-
brightness (LSB) galaxies discovered by Thuan and Seitzer (1979), and further
studied by Romanishin et al. (1982). As Schomner and Bothun (1983) point out,
these galaxies may provide evidence for suppression of star formation in other-
wise normal disk galaxies.

Many questions are raised by the existence of variations in star formation
between galaxies as large as those between the LSB galaxies and the starburst
galaxies. What are the mechanisms responsible? What are #he circumstances
required to induce bursts or the suppression of star formation in galaxies?
What is the precise role of interactions? Is the star formation process in
starburet galaxies an extreme extension of the normal mechanisms of star
formation in disk galaxies or is it a different process entirely? How can
we tell observationally?

With respect to the latter two questions, there is evidence that the star
formation efficiencies per unit mass in starburst galaxies can range up to
about two orders of magnitude higher than in normal spirals (Rieke et al. 1980,
Sanders and Mirabel 1985, Young et al. 1986, Sanders et al. 1986). In itself
this result does not answer the question of whether starbursts represent a
nonlinear continuation of a normal (e.g. Schmidt-law) mode of star formation,
or whether once some threshold is exceeded a qualitatively different mode
appears. If ther3 are two distinct modes of star formation, then the dis-
persion in optical and near-infrared colors in color-color diagrams gives an
indication of the relative importance of burst versus continuous star formation
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in galaxies (Larson and Tinsley 1978, Struck-Marcell and Tinsley 1978, and
Telesco 1983). However, these models do not directly address the question of
mechanisms.

At the present time, with radio continuum and optical line surveys, and
with IRAS data and near-infrared mapping of individual galaxies, there is a
wealth of new information available on star formation in galaxies. To decipher
the systematics and mechanisms of star formation in galaxies, it has been and
will continue to be especially important to have statistical studies of large
sets of data, collected in a consistent way (e.g. the IRAS data (Lonsdale et
al. 1985), or optical line work like that of Balzano 1983 and Keel et al.
1985). For the present, we leave the intriguing questions posed above, but
will return in the concluding section to consider a possible explanation for
the large dynamic range of star formation in galaxies, which is suggested by a
simple physical model.

Following some discussion of the general role of simple models, a specific
model is presented in section II. In sections III and IV two applications of
the model are considered - relaxation in a closed box and the evolution of ring
galaxies.

B. The Heuristic Role of Simple Physical Models

In order to model and understand the wide range of phenomena associated
with star formation in galaxies, theorists have used a variety of tools and
techniques, including continuum kinetic or fluid approaches, discrete N-body
models with approximations to include interstellar gas cloud and cloud-star
interactions, and modeling with a stochastic component of the star formation.
This range parallels that in studies of fluid turbulence, and other nonlinear
phenomena. The various approaches have different advantages and disadvantages,
both from the point of view of faithfully representing the phenomena, and the
practical point of view of being able to perform the calculations and inter-
pret them, analytically or on existing computers. In the end, to derive a
consistent interpretation of the many aspects of star formation in galaxies
(and hopefully some predictions!), a variety of increasingly sophisticated
approaches will be needed. Because of the extreme complexity of the numerical
models, the various approaches must be carefully compared to each other and to
observation.

On the other hand, to achieve a consistent physical understanding of a
complex problem it is very helpful to begin with the study of a relatively
simple phenomenological model which captures the essence of the phenomenon
(e.g. the Ising model of ferromagnetism or the Kolmogorov model of turbulence).
Of course, in using such a simple model one must remember that while it may
succeed in mocking-up the dominant physical processes in some relevant range of
parameter space, it may miss the full interplay of these processes in some
other parameter range, or it may miss the emergence of new processes. For the
problems of galaxy-scale star formation and gas dynamics the ideas behind the
classic Oort cycle - i.e. that clouds are built up by collisional coalescence
and massive clouds are broken up as a result of internal star formation
activity - have provided the basis for such a simple model for some time.
Examples of the usefulness of the Oort picture include the work of Field and
Saslaw (1965), who showed that a kinetic (coalescence) equation for the
evolution of the cloud spectrum with Oort cycle interactions yielded power-law
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solutions like the observed solar neighborhood cloud spectrum, and implied a
dependence of the star formation rate on gas density in accordance with the
empirical Schmidt law. Another example of a cloud collisi'-xal model is
provided by Larson's (1969, 1974, 1975, 1976) numerical models of collapsing
protogalaxies, which included density-dependent star formation and energy
dissipation in cloud collisions, and which yielded structures matching many
observations of elliptical galaxies. More recently, a variety of numerical
calculations (e.g. Casoli and Combes 1982, Combes and Germn 1985, Kwan and
Valdez 1983, Hausman and Roberts, 1984, Roberts and Hausman 1984 and Tomisaka
1984), which include Oort-type interactions, have shown that a spiral density
wave can drive collisional processes, leading to the buildup of giant clouds or
cloud complexes, and presumably, enhanced star formation.

These examples share in common the feature that the interstellar medium is
assumed to consist of an ensemble of distinct clouds (with perhaps a large
range of sizes and masses). The cumulative interactions among the clouds are
used as a link between the large-scale disturbance and the gas dynamics and
star formation on small-scales. This approach, like many turbulence theories
(e.g. eddy viscosity or mixing length theories), is an essentially
pheuomenological treatment of intermediate-scale interactions (like the
"inertial" range in incompressible turbulence). It attempts to model the
cumulative eficts of small-scale interactions, without incorporating the
details of those interactions (e.g. the physics of the formation of an indi-
vidual massive star). At the same time, the intermediate-scales (cloud
ensembles) can be driven by large-scale disturbances or instabilities (e.g.
density waves, gravitational or Parker-Jeans instabilities), and their non-
linear feedbacks can, in turn, effect the development of the large-scale
instability. Thus, a model of the intermediate-scale interactions serves as an
essential tool for applying knowledge of the physics of the interstellar medium
in our Galaxy and other nearby galaxies, to a variety of galaxy-scale problems.

In the original Oort model, and many of the later versions (e.g. Field and
Saslaw 1965), a number of physical processes of possible importance in the ISM
were not considered. Several of these can be incorporated quite readily into a
continuum formalism derived from a kinetic equation (see Scalo and Struck-
Marcell 1984), such as the fact that cloud collisions at high relative velocity
probably lead to cloud disruption, rather than coalescence (Hausman 1982,
Gilden 1984), or that clouds can be formed from the more or less random local
compression of the intercloud material by runaway 0, B stars (Bania and Lyon
1980). The possible effects of an intercloud medium on the cloud ensemble
(e.g. drag) could also be included; however, we have argued elsewhere (Scalo
and Struck-Marcell 1984) that such effects are probably not dominant in most
situations.

The interchange of material between cloud and intercloud media, or more
generally, between multiple phases in the ISM, is an intricate subject in its
own right. The view of the ISM as a gas in several co-existing thermal phases,
with a dynamic, time-dependent balance (McKee and Ostriker 1977, Ikeuchi et al.
1984, Bodifee and de Loore 1985), is indamentally orthogonal (though not
contradictory) to the Oort picture. However, since most of the interstellar
gas is located in relatively dense clouds, the multiple phase picture is
probably more relevant to the study of the intercloud gas.
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Another area of substantial ignorance is the role of magnetic fields on
all scales. Most workers have concentrated on the effects of magnetic fields
on small-scales (e.g. angular momentum transport, flux loss, etc.), but they
may also contribute an effective viscosity and additional dissipation on
intermediate and possibly large scales (e.g. Clifford and Elmegreen 1983,
Clifford 1984, 1985, Elmegreen 1985). The effects of magnetic fields may be
crudely included in a hydrodynamic model as additions to the cross sections or
rates of viscous transport and dissipation.

Perhaps the most serious questions about the relevance of an Oort-type
cloud model to gas in galaxies are raised by the conclusion of Scalo (1985, and
references therein) that a hierarchical structure of clouds within clouds is
implied by an analysis of observations in a variety of wave-bands of the ISM in
our Galaxy on a wide range of scales. In Scalo (1985) it is suggested that
about five levels of this hierarchy have been observed, with several clumps
contained within each clump of the next higher level. The hierarchecal Dicture
does not necessarily call into question the importance of cloud collisional
interactions, and cloud-star interactions, which are the basics of the Oort
model. However, at the least, it muddies the simple physical picture of the
original Oort model, e.g. the definition of a "cloud" and the proper treatment
of collisions in a hierarchecal structure, and in fact, makes the definition of
statistical averages ambiguous.

Nonetheless, despite the difficulties and ambiguities a cloud ensemble or
generalized Oort picture still provides a viable basis for building determin-
istic and physically understandable models of large scale gas dynamics and
star formation in galaxies (see e.g. Chiang and Prendergast 1985). As a
starting point for such a model, we have suggested (Scalo and Struck-Marcell
1984) a general kinetic equation for the joint coordinate position, velocity,
and mass distribution of an interstellar cloud ensemble as a function of time.
Unfortunately, this kinetic equation is too complex to serve as a very prac-
tical tool in itself (although N-cloud type calculations can simulate it).
Thus, again following the tradition in the study of fluids and turbulence, we
can take velocity and mass moments to derive hydrodynamic equations.

To proceed from this point one must adopt specific models for the cloud
interactions, which act like sources and sinks in the hydrodynamic equations.
A variety of approximate forms were suggested in Scalo and Struck-Narcell
1984. In the next section we will discuss a relatively simple example of
an Oort-type model. In later sections we will apply it to the ring galaxy
problem in particular, and explore the insights it offers on the starburst
problem in general.

/This procedure is of course quite idealized since we do not know the mass
and velocity distributions or how they may vary with time. However, within
the range of reasonable functional forms for these (where what is reasonable
is based in part on what we know of the cloud distributions in the solar
neighborhood), this amounts to uncertainty in coefficients or order unity.
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11. AN OORT MODEL EXAPLE

Given our great ignorance about the nature of the interactions in the
interstellar medium in galaxies, the choice of what methods to use in a simple
model, let alone the functional dependence of the interactions, will not be
unique and must be partially based on considerations of practicality or
feasibility. We have chosen to study, as a general-purpose model for a variety
of applications, a hydrodynamic model, averaged over the mass and velocity
distributions of clouds, with equations for the number density of clouds n, the
mean mass of clouds m, and the cloud velocity dispersion c (or equivalently the
internal energy). The equations are very similar to the normal hydrodynamic
equations except for the presence of extra source terms. We include source
terms for the usual Oort-cycle interactions, including: cloud collisional
coalescence, collisional energy dissipation, the breakup of massive clouds and
the acceleration of the fragments due to the stellar winds, expanding HII
regions, and supernovae that result from massive star formation. We have also
included the process of cloud disruption in high relative velocity collisions.
Figure 1 gives a schematic overview of these processes.

Among the key 'philosophical' choices we have made in setting up this
model are: 1) We assume that the characterization of the problem by the mean
values of cloud number density, cloud mass, mean flow velocity, and velocity
dispersion (i.e. the random motions of clouds), preserves much of the essential
physics of the problem (more on this later), 2) we do not assume constant
collisional cross sections and direct gas density-dependent star formation, and
3) we do not assume the cloud fluid is isothermal (motivated in part by the
possible observational comparisons since velocity dispersions can be measured
across the face of galaxies). In the remainder of this section we consider in
a little more detail a couple of the key aspects of the adopted model
(henceforth the Oort model), including the parametrizations of the collisional
cross sections and the rate of cloud disruption by internal star formation
activity. We also comment briefly on the role of time delays due to the finite
lifetime of massive clouds, a role we have found to be crucial in controlling
the qualitative and quantitative evolution of the models.

A. Collisional Rates

The form adopted for the rate of change of the number of clouds per unit
volume due to coalescence or disruption in collisions is

An-. innfm /mn~c,()(Z)collision nc(mc2/32 ()

where the n2 c factor gives the usual quadratic dependence on cloud number
density and linear dependence on velocity dispersion for binary collisions.

The factor m2/ 3 represents the mass dependence of the geometric cross section,
assuming that the internal density of clouds is roughly constant, and the
factor an contains the generalized cross section amplitude (i.e. the ratio

of effective to geometrical cross section). The additional collisional
nonlinearities are contained in the function fc' for which we have adopted
the simple parametrized form

_-(c/cr)
fc -r (2)

r
1+(c/C cr
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where ccr is the characteristic velocity dispersion such that the average

relative kinetic energy in collisions equals the mean gravitational binding of
a cloud. Thus, for example, when c increases past the value c - c cr' the sign

of the collisional cross section changes, giving the assumed change from
coalescence to disruption. The exponent r determines the abruptness or
nonlinearity of this change, and is treated as a parameter of the model. The
form of the function is such that it saturates at a maximum (minimum), where we
have essentially 100% efficient coalescence (disruption) at c<<ccr (c>>ccr).

Examples of the function, with different values or r are shown in Fig. 2,
taken from Scalo and Struck-Marcell 1986.

The simple binding energy approximation contained in eq. (2) does not by
any means fully represent the complex physics involved in cloud collisions,
see, for example, the recent numerical hydrodynamical calculations of Gilden
(1984), Lattanzio et al. (1985) and Hunter et al. (1986). Moreover, even the
numerical hydrodynamic calculations are highly idealized compared to real
interactions between clouds containing internal hierarchecal clumping. Thus,
it is presently hard to see how to substantially improve upon the physically
plausible, if crude, approximation above.

B. Internal Star Formation

In this simple Oort model we also assume that at any time some fraction
of the clouds are sufficiently massive to form stars efficiently and then
suffer disruption as a result. (For a recent observational reference see
Leisawitz 1985.) We have chosen the following parametrization for this
fraction as a function of mean cloud mass compared to a critical cloud mass
for star formation mSF,

(m/msF)s

fSF(m) - S (3)
l+(m/mSF) 5

where the exponent s, like the exponent r in eq. (2), is a parameter of the
model, which characterizes the nonlinearity, or rapid turn-on of star
formation, at mumSF (see Fig. 2). The ratio fSF(m)/fsF(mo), for some
characteristic (e.g. equilibrium) cloud mass m., gives the relative rate of
cloud disruption by internal star formation, and also the relative fraction of
clouds that are forming massive stars. If the mean gas density is constant
this ratio can also be taken as an indicator of relative star formation rate.
(Strictly speaking, this interpretation also requires particular assumptions
about the evolution of the cloud spectrum, see Scalo and Struck-Marcell 1986.)

The particular form for fSF in eq. (3) is somewhat arbitrary, but it

embodies several physically relevant features quite naturally. First of all,
the fraction of clouds massive enough to form stars (or at least the prob-
ability of massive cloud formation) is a monotonically increasing function
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Figure 2. Several examples of the parametrized coalescence -disruption

function fcand star formation function f SFare shown (from Struck-M4arcell and

Scalo 1986). Depending on the values of the parameters (especially the
exponents res), the form of these functions can range from nearly linear to an
almost step function form. The latter implies a strong threshold behavior.

of mean cloud mass. Secondly, since f SF is defined as the fraction of clouds
forming massive stars, it must have a maximum saturation value of f Spmax<1.

On the basis of the first point, we might simply choose to approximate f SF by

a power-law in m. The saturation effect, however, suggests the form of the
denominator on the right hand side of eq. (3). The form of the denominator
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also reflects an attempt to constrain fg (m) based on the possible evolutionof simple cloud mass spectra (see Appendlx A in Struck-xarcell and Scal

1986).

Note that a steep increase in f8. occurs at m - mSF if s*l. On the

other hand, it is apparent from Fig. 2 that if s<2, fSF is sufficiently smooth
that there is only a modest increase at 'threshold'.

As in the case of the collision function fc' it is difficult to go beyond
these qualitative considerations. Basically, the function fSF is dependent on
two highly uncertain quantities: 1) The efficiency of massive star formation
as a function of cloud mass, and 2) the most probably time-dependent mass
distribution of the cloud ensemble. Ongoing observations of star-forming
regions in our Galaxy should provide helpful constraints on the first factor.

We might hope that N-body simulations of interacting cloud ensembles
would provide useful constraints on the second quantity, in the same way that
molecular dynamics experiments yield information on net chemical reaction
cross sections. The analogy is imperfect of course, because we don't have a
first-principles understanding of cloud interactions, and the detailed results
of N-cloud calculations may depend sensitively on the assumptions made about
these interactions. Nonetheless, we can illustrate the usefulness of these
calculations with one example from the work of Kwan and Valdes (1983). The
evolution of the mass spectrum (g(m)) of a cloud ensemble following passage
through a spiral density wave, on a timescale which is assumed to be shorter
than the massive cloud lifetime, is shown in Fig. 2 of their paper. The form
of the mass spectrum does change significantly with time, but qualitatively,
it is characterized by a single dominant peak at all times, supporting the
basic consistency of a model based on the mean mass. Moreover, a narrowing of
the mass distribution as the mean mass increases and a steepening at the high-
mass end areapparentin their figure (for this essentially pure coalescence
case). These features indicate a fairly rapid increase of the mass fraction
greater than some (relatively large) critical mass as a function of the mean
mass. If this is also convolved with a threshold behavior in the star for-
mation efficiency, then it is quite plausible that the exponent s>2 in eq.
(3).

C. The Rate Equations with Time Delays

With the expressions above for the collision and star formation terms,
the equations for the rate of change of the cloud number density and velocity
dispersion squared due to these interactions in an isolated fluid element can
be written

dn nfcm 2/3n2mnc + 0BfSF(m(t-Td))n(t-Td)
t nc n d)

d(nc) 22/3n2 3
dt a nc +c fsF Wt-Td))t-Td (4)

(see Scalo and Struck-Marcell 1984, Scalo and Struck-Marcell 1986 for more
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details). With an additional assumption for the rate of conversion of gas
into stellar remnants, dm/dt, the equation set is closed. The full hydro-
dynamical equations, with pressure terms and other spatial gradients, are
derived and discussed in detail in Scalo and Struck-Marcell 1984.

As will be shown in the following section, it is essential to include
the finite cloud lifetime in the cloud disruption terms in eqs. (4). (The
importance of the cloud lifetime is readily apparent in several N-cloud
studies of density waves, e.g. Hausman and Roberts (1984), Tomisaka (1984).)
Specifically, massive clouds are assumed to have a fixed lifetime T d, and

thus, the cloud disruption rate at time t is proportional to the number of
massive star-forming clouds at time t-Td, i.e. n(t-T d)fSF(m(t-rd)). With

the inclusion of the time delay effect our simple Oort model is complete.

To suammarize, we have attempted to model, in a very general way, the
principle nonlinear effects associated with cloud collisions and the feedbacks
of massive stars on the cloud ensemble. To keep the model simple a number of
processes noted in the introduction have not been included. Eventually, it
would be interesting to extend the model to include some of these. In general,
there is no reason that the hydrodynamic formalism must be restricted to Oort-
type interactions. Many potentially interesting kinetic effects are excluded
in a mean fluid model, but in this case some idea of what has been lost can be
obtained by comparing to N-cloud calculations. (Multiple-fluid hydrodynamic
models are also possible, and even two-scale models have proven of great use in
atmospheric physics.)

Even with the many omissions this 'simple' model appears at first sight
to be very complex, and dependent on many parameters. However, as far as the
qualitative evolutionary behavior is concerned, this turns out not to be the
case. First of all, the equation set (4) has a single equilibrium (with
no, mo, c0 real and > 0) at constant gas mass density, and if the equa-

tions are nondimensionalized in units of this equilibrium six dimensionless
parameters remain. These include: the exponents r,s, the critical mass for
star formation msF/mo, (in units of mo for convenience) the critical velocity

dispersion for disruption in collisions ccr/Co, (in units of co) a dissipation

efficiency factor, and T the ratio of the cloud lifetime to the equilibrium
cloud collision time. The extensive parameter study in Struck-Marcell and
Scalo 1986, shows that, as long a S),2, only the parameter T effects the
qualitative behavior of the model, the quantitative effects of the other
parameters decouple to the extent that their individual effects are fairly
understandable physically (see the following section). Thus, we believe that
this deterministic Oort model can serve as a useful tool for studying a variety
of problems in galactic gas dynamics, and as an aid in the interpretation of
other more complex calculations.

III. APPLICATIONS I: A MECHANISM FOR STARBURSTS

A. Evolution in a Closed Box

The simplest application of the model eqs. (4) is to the study of the
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evolution of a cloud system in an isolated closed box with constant gas
density P - on, following a disturbance. Some of the essential results of such
calculations were given in Scalo and Struck-Marcell 1986, and an extensive
parameter study is reported in Struck-Marcell and Scalo 1986, so we limit the
discussion in this section to a brief summary.

We have found, on the basis of an extensive grid of numerical inte-
grations of eqs. (4) and linear stability analysis, that following an arbitrary
disturbance, the closed box cloud system relaxes within a few cloud collision
times to one of two generic behaviors. If T, the cloud lifetime to collision
time parameter (henceforth simply the 'time delay' parameter T) is assumed to
be less than some critical value Tcr, the system relaxes rapidly to the single

stable equilibrium state (no, ms, co). On the other hand, if T>Tcr the system

relaxes to a stable closed curve, rather than a point, in the (n,m,c) phase
space. In this case the system undergoes nonlinear, self-excited oscillations.
At T-Tcr the system undergoes a so-called Hopf bifurcation, so that for T

slightly greater than Tcr the attracting set is a single-period limit cycle.

The bifurcation is characterized not only by the appearance of the limit cycle,
but also by the fact that the original equilibrium state becomes unstable.
Thus, even if the system is in a state near equilibrium, if T>T cr it will
evolve out to the limit cycle.

The value of Tcr is found to be of order unity for virtually the whole

range of astronomically interesting values of the other parameters. Thus,
since cloud lifetimes are probably of the same order as cloud collision times,
the bifurcation phenomenon is relevant to galactic cloud systems. Moreover,
since Tcr is insensitive to the other parameters, it is not expected to be a

singular or unusual phenomenon. Even more generally, the bifurcation is not
restricted to the precise form of the Oort model terms of eq. (4), see Scalo
and Struck-Marcell 1986.

If T is increased far enough beyond Tcr, a second bifurcation occurs, this

time to a double-looped limit cycle with two bursts of different amplitude per
cycle. Indeed, further increases of T lead to a series of bifurcations and
eventually to deterministic chaos in the phase space. In this limit the SFR
vs. time looks essentially stochastic, with frequent bursts (Scalo and Struck-
Marcell 1986).

This result leads us to consider the physical meaning of high T. If the
cloud lifetime consists essentially of the protostellar collapse time plus the
main-sequence lifetime of massive stars, it should be more or less constant
universally (at a given stellar metallicity). On the other hand, the
equilibrium cloud collision time depends inversely on the cloud density and
cross section, which turns out to be the product of the mean gas density of the
cloud fluid and a slowly varying function. Thus, increased gas density implies
increased T (T-P roughly). Note, however, that m and fSF are highly nonlinear

functions of T. Thus, this is not a Schmidt law density dependence.

1. A Starburst Mechanism and Systematics

With the essentially mathematical questions of the generic existence and
stability of the limit cycle bifurcation resolved, we can proceed to the
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questions of the physical mechanism of the bifurcation and its consequences for
galactic gas dynamics. First the mechanism: In Scalo and Struck-Marcell 1986
we attributed the bifurcation to a "coalescence overshoot", where, as a result
of the relatively long cloud lifetime, a massive star-forming cloud can con-
tinue to grow for some time before suffering disruption. If the function f.,

is sufficiently nonlinear (s02), and the cloud mean mass is near the threshold
value mSF, this extra growth translates into a great deal more (and presumably

more efficient) star formation, i.e. build-up to a burst. Roughly one delay
time later the system suffers the consequences of these excesses - severe cloud
disruption. The energy input is quickly dissipated in (possibly disruptive)
collisions, then the system finds itself in a shredded, quiescent state, and
begins to regrow through coalescence.

The key step is the overshoot, or excess cloud growth past the equilibrium
mean mass (see Fig. 2). This step is similar to the triple-alpha nuclear
reaction in that a third-body (or more for the clouds) collision occurs before
the outcome of the original collision is resolved.

If we consider a series of closed box models with successively larger
values of T>Tcr, we find that both the amplitude and the period of the limit

cycle increase in the system phase space. This implies an increased starburst
amplitude, and a longer time between bursts (up to 10 times the burst duration,
see Fig. 3). The burst duration is of order T at TwTcr, i.e. of order a cloud

collision time a 3x10 7 yr. It varies quite slowly with T. It has been
suggested (e.g. Loose et al. 1982) that starbursts are of short duration
because the gas is blown out of the region (e.g. a galactic nucleus) by the
resulting winds and supernovae. These one-zone models imply instead that the
fundamental reason may be that the cloud system is simply broken down to a
state where it is no longer capable of forming stars efficiently. The apparent
low mass of the molecular clouds in the core of 182 (Knapp et al. 1980, Stark
1982, 01ofsson and Rydbeck 1984), together with the possible polar outflow
(Ungar et al. 1984), probably indicate that a combination of both processes is
at work in that galaxy.

The density dependence of the bifurcation sequence, together with the
notion of high gas consumption in bursts (see references in section I), implies
another relaxation process, one which tends to drive the cloud system below the
burst threshold. For example, consider the case of rapid gas infall into a
galactic nucleus induced by a tidal encounter which boosts the gas density and
time delay parameter above the value for the onset of chaos. With the system
in the burst mode a large fraction of the time, gas consumption will be rapid,
which in turn lowers the gas density. Figure 4 shows that a calculation in the
limit cycle regime, and including gas consumption, yields rapid damping of
burst amplitude. The gas consumption in these calculations is scaled to fSF'

and can range up to 30%. (Star formation is clearly very efficient.) Thus,
galactic cloud systems are probably found in the chaotic regime only rarely
(protogalaxies excepted?), and even successive limit cycle bursts are strongly
damped. This calculation also indicates that the gas consumption timescale
does not determine the duration of the bursts in the limit cycle or chaos
regime-It is the breakdown of the clouds that turns off the burst even if
there is still an ample gas supply.) This implies that apparent gas consumption
timescales in galaxies are relatively meaningless if the galaxies burst.
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Figure 4. Time series of the function fSp, as in Fig. 3, but for a calculation

with gas depletion included (from Struck-Marcell and Scalo 1986).

C. Other Consequences and Parameter Dependences

The model also yields several other observationally relevant consequences.
First of all, even within the limit cycle-starburst regime, the model has a
strong tendency to remain nearly isothermal. There is some observational
evidence for this result (see Lewis 1984, Gallagher and Hunter 1984). Even
under conditons that show large variations in m, n, and fSF' the velocity
dispersion varies only by a factor of about a few.

Secondly, we note that, in the same way that the model predicts starbursts
for VTTcr, it also predicts bursts of energy dissipation in cloud collisions.

These dissipation bursts might produce measurable shock emission, e.g. from
R 2 and [011. Estimates are given in Struck-Harcell and Scalo 1986. An

interesting complication is that in the models, the dissipation burst and star
formation burst are out of phase.

Thirdly, there is commonly a delay of order several equilibrium cloud
collision times between the occurrence of a disturbance in the cloud system and
the starburst it triggers. Most disturbances act to break down the clouds
initially and the delay is roughly equal to the regrowth timescale. This
regrowth time depends on how severe the cloud breakdown is, and thus on the
magnitude of the disturbance. Clearly, this effect can help account for the
observation that many interacting galaxies do not have enhanced SFRs.
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We conclude this discussion of the closed box model with a few comments
on the role of parameters other than T. Apparently, the chief role of the
parameter mSF/mo, is in determining the maximum value of the star formation

function: (fSF/fSF(mo))max = (mSF/mo)s. Since mSF/mo (mo mean equilibrium cloud

mass) is an essentially unknown quantity, the model cannot predict absolute star

formation rate amplitudes. On the other hand, the parameter co/c r plays the

dominant role in determining variations in c. Small values of this parameter
(i.e. when the equilibrium value c is much less than the cloud collisional
disruption threshold), yield nearly perfect isothermality. Finally, decreasing
the dissipation efficiency parameter increases the value of Tcr somewhat, and

decreases (fSm-) for a given T>T cr This is not surprising since dissipation
is an important part of the coalescence overshoot phenomenon.

IV. APPLICATIONS II: THE HYDRODYNAMICS OF RING GALAXIES

A. Why Study Rings?

The chief result of the preceding section was that above a critical value
of the time delay parameter, i.e. above a threshold gas density, starbursts are
a generic behavior of an Oort-type system. Taken together with the observa-
tional evidence that strong disturbances, e.g. strong density waves, induce
starbursts, this result cries out for numerical modeling of the gas dynamics
in interacting galaxies. In general, this modeling is a very formidable under-
taking, although there have been several pioneering efforts (Theys and Spiegel
1977, Icke 1985, and Noguchi and Ishibashi 1986). Thus, in attempting numer-
ical modeling with the Oort cloud fluid we have chosen to focus on what is
probably the simplest case - ring galaxies.

Since ring galaxies are relatively rare objects, it is worthwhile to
elaborate on the reasons why, among all types of interacting system, they
are deserving of detailed study. These reasons include the following.

1. Relatively unambiguous observation comparisons.

Detailed studies of the optical morphology and kinematics of several ring
systems have been carried out, including the Cartwheel galaxy (Fosbury and
Hawarden 1977), the Lindsey-Shapley ring (Few, Madore and Arp 1982), and the
Vela ring (Taylor and Atherton 1984). These studies revealed radially prop-
agating rings of 51I regions with companions at a distance of about one ring
diameter. Thus, in these cases at least, the circumstantial evidence for a
recent collision, and a resulting density wave (as in the Toomre 1978 models)
is strong. The strength of the wave depends on the relative masses of the
target and intruder galaxies, and, if the encounter is essentially impulsive,
to a much lesser degree on orbital passage time.

The possibility of obtaining direct observational estimates of the density
wave amplitude is clearly important, and is the first strong argument for
studying rings. (Consider the long debate over the amplitude of density waves
in spiral galaxies.)
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2. Symmetry.

In a direct, head-on collision between a purely stellar intruder galaxy
and a target system containing a cold disk, the formation of a cylindrically
symmetric ring in the disk can be approximated as a one-dimensional problem.
Indeed, even the examination of the evolution an isolated fluid element, driven
by a time-dependent external perturbation can be useful in the ring galaxy
problem (see Appleton et al. 1985). In general, some symmetry remains even in
the more likely case of an off-center collision. In this case the response of
the disk can be treated as approximately two dimensional, i.e. in the plane of
the disk. Multid.aensional numerical hydrodynamic calculations require a great
deal of computer time, so having relevant low-dimensional appcoximations,
within which it is practical to vary parameters and perform many computational
runs, is extremely helpful.

3. Range of perturbation amplitude.

Collisions with small companions, as well as with larger intruders are of
interest, as is the variation of response with companion mass. From a prac-
tical point of view, small disturbances are usually easier to model stably and
accurately, so it is a useful check of the stability of the numerical approxi-
mation to verify that model behavior changes continuously as the disturbance is
increased. Thus, both numerical and astronomical considerations converge here.

4. Extended starbursts.

It appears, on the basis of IRAS infrared luminosity and color
temperature (S1 0 0 S/6 0 ), that many of the rings are undergoing moderately

strong, and of course, highly extended starbursts (see Appleton and Struck-
Marcell 1986a). The large extent of the star formation in rings is not only
intrinsically interesting, but also of practical importance for providing a
class of galaxy where any nuclear activity is generally separated from
starburst activity. The spatial extent also makes the more nearby rings good
candidates for near-IR, radio continuum, 21 cm, and molecular observations of
spatial variations in star formation and cloud characteristics. Some work is
already underway (e.g. Ghigo et al. 1986).

In summary, the ring galaxies appear to possess a number of unique
advantages for facilitating the comparison between observation and theory of
star formation in galaxies, as well as being especially amenable to numerical
modeling.

B. Approximations for Numerical Modeling

We have begun a two-pronged effort to model ring galaxies using the Oort
model cloud fluid. The first part of this program consists of one-dimensional
numerical hydrodynamic mcdeling of cylindrically symmetric rings, using a
Jagrangian (moving) grid, and explicitly calculating the time-delay effects.
The second part o• the program consists of two-dimensional hydrodynamic
calculations of the formation and evolution of both symm'tric and off-center
rings. Both computer programs use the well-known Flux-Corrected Transport
algorithm (see Book 1981); details will be published elsewhere.

451



C. STRUCK-MARCELL ET AL

In the relatively (and only relatively!) inexpensive one-dimensional
calculations, it is possible to include the full details of the cloud inter-
action model (e.g. density-dependent time delay parameters calculated accurately
at each grid point), and to do a large enough number of calculations to fairly
sample parameters and initial conditions. The two-dimensional calculations are
better suited to study kinematic and dynamic questions (e.g. angular momentum
transport), but they become impractical without some simplifications in the
cloud fluid terms. For example, we typically assume isothermality and use
a very coarse calculation of the memory effects in the two-dimensional
calculations. Since here we are primarily interested in star formation in
the ring(s), most of the discussion below will be limited to results from
representative one-dimensional calculations.

We have not yet coupled a realistic treatment of the stellar dynamics
to the hydrodynamic calculations (nor included self-gravity in the gas), but
instead, assume that the potential of the target galaxy is dominated by a
softened point mass, with a softening length of typically 40 equilibrium
cloud mean free paths (e.g. 13(X/0.3 kpc.) kpc.). This large softening
length yields a rather flat rotation curve, over a large range in radius. The
companion galaxy is assumed to be a gas-free, softened point mass (softening
length of 1/4 - 1/2 that of the target disk), on a free-fall trajectory. In
the one-dimensional calculations, angular momentum is assumed to be conserved
in each Lagrangian fluid element (i.e. each discrete radial ring).

Finally, in all of the calculations reported below, the gas density was
assumed to be constant across the disk initially, with a value well below the
threshold for bursts.

C. Numerical Results in One-Dimension

Several of the most interesting numerical results are well-illustrated by
considering, either individually or in comparison, two representative one-
dimensional calculations. These calculations have initial conditions as
described above, with a companion mass equal to 20% of the softened point mass
in the target galaxy. The companion orbit is such that it falls through the
center very rapidly, yielding a somewhat unrealistically impulsive disturbance,
but in this case the details of the orbit are unimportant. The values of the
cloud fluid parameters are as follows: co/C~r = 0.924, the equilibrium

velocity dispersion is quite near the disruption threshold; mo/mSF - 0.1, the

equilibrium mean mass is well below the threshold for efficient star formation;
the dissipation efficiency is of order unity (i.e. almost completely inelastic
collisions); and r-s-4, implying steep thresholds in fc and fSF* The only
difference between the two calculations is that the initial, equilibrium value
of the time delay parameter is 0.3 of the critical value in the first case, and
0.75 the critical value in the second. (For brevity we will refer to these as
the 0.3 and 0.75 models.)

Figures 5 and 6 show the radial profiles of the mass density, star for-
mation rate indicator fSF/fSF(mo), and radial velocity at one representative

time in the 0.3 and 0.75 models, respectively. Although we will not discuss
detailed dynamical questions here (see Appleton and Struck-Marcell 1986b), we
note several very basic features in these figures. First, the radial velocity
profile shows infall outside of the ring, positive velocity within the ring,
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and, at late times, infall behind the ring into a second ring. Secondly, the
density profiles show that most of the density variations are limited to within
a factor of two of the initial value. This is one indication of the fact that
the ring propagates through the gas; it is not a shell.

These comments on the density structure also provide a starting place for
studying the star formation in the first or primary ring. It is clear from
Figure 5 that the enhancement of the SFR in the primary ring is also typically
no more than a factor of a few. A relatively small increase is expected on the
basis of the closed box results: since the density increase is about a factor
of two, the time delay parameter only increases through the density wave from
0.3 to about 0.6 of the critical value for the starburst bifurcation, so we
expect rapid damping to equilibrium following a disturbance.

The situation in Figure 6 is quite different. Shortly after its appear-
ance in this case, the primary ring exceeds the density enhancement factor of
4/3 needed to increase the time delay parameter beyond the critical value.
Interestingly, the ring does not burst inmediately. The disturbance is still
modest, and we expect that, in the analogous closed box case, the system woild
execute several cycles of a growing oscillation to evolve from near the (now
unstable) equilibrium out to the limit cycle. From the double-peaked structure
of the star formation profile at the intermediate time shown in Figure 6 we see
evidence of such an oscillation. At that time, it appears that a given fluid
element passes out of the overdensity part of the wave, into the rarefaction
zone where T<Tcr, before it can 'grow' a burst. The multiple peak structure is

interesting in its own right, since several rings seem to show such small-scale
filagree.

Later in the run the density profile steepens, making for a more unstable
cloud system and a stronger disturbance (see Struck-Marcell and Appleton in
preparation). The result is a starburst near the peak of the wave, with echo
bursts behind, each with decreasing amplitude as the density decreases. The
energy input from the bursts generates significant pressure, which begins to
effect the density wave profile.

Up to this point, the simple closed box model has proved to be a useful
tool for helping to understand the numerical hydrodynamic calculations, at least
qualitatively. At the same time, the numerical hydrodynamics reaffirms, in a
more general context, the existence of the starburst bifurcation, which was
discovered in the closed box. However, the hydrodynamic flows are fairly modest
at the times shown in Figures 5 and 6, at least in the primary ring.

Once the primiary ring has propagated through a good fraction of the disk, a
second ring forms and begins to move outward. It is apparent in Figures 5 and 6
that the infall velocities generated in the rarefaction behind the primary ring
are larger than those in front of the primary. In this case the hydrodynamic
flow times can become comparable to cloud interaction timescales, and the closed
box analogue without external driving may no longer be very accurate (Appleton
and Struck-Marcell 1986b). Thus, the compression is larger in the second ring,
and the density enhancement soon exceeds that in the primary, leading to
strongly enhanced star formation or bursts.
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it is an interesting question whether third, fourth, etc. rings can form.
We do not have a definitive answer at this time, but we know that the radial
oscillation period of an individual fluid element is roughly equal to its free-
fall time, which decreases with radius. Thus, the oscillations of adjacent
fluid elements (or stars) grow progressively out of phase. This dispersion,
coupled with dissipation damping, and the additional incoherence due to the
pressure waves generated by starbursts will cancel out the coherent radial waves
fairly rapidly.

The models above provide information on the spatial distribution of
relative SFR, which may be usefully compared to optical observations and radio
continuum maps. However, if there is substantial obscuration, the optical
observations may not reveal all of the star formation. On the other hand, many
of the nearby rings were detected at 60 and 100 Pm by IRAS, although with its
large beam size IRAS can provide no spatial resolution. The IRAS observations
show that the integrated FIR luminosity of the rings is typically 2-6 times that
of normal galaxies (see Appleton and Struck-Marcell 1986b). Are the models
consistent with this result? To provide a partial answer to this question we
integrate the SFR over the disk and compare to the initial unperturbed disk. Of
course, the result of this integration depends on the choice of the outer radius
(and on the value of the parameter mSF/mo), so it can only provide an estimate.

The first result of this integration exercise is that if the ring bursts,
the net SFR can in fact reach a value of a few to 10 times the initial value.
Most of this star formation does originate in the ring(s). Moreover, the models
imply that to get a strongly enhanced net SFR requires a burst in a ring to
offset the suppression in rarefaction regions. Such bursts can only occur in
the model if there is a finite time delay, i.e. only if the local gas densities
are sufficiently large.

D. Two-Dimensional Calculations

In order to treat more realistically the propagation of the density wave
withln a differentially rotating disk galaxy we have performed somewhat
simplified cloud fluid calculations in two-dimensions. We consider both
centered and off-center collisions of the companion with the disk (see Appleton
and Struck-Marcell 1986b for details). The principal difference between the
one- and two-dimensional calculations is the transport of angular momentum
within the ring which leads to more compression of the outer edge of the ring
and to stronger rarefaction behind the ring. Interesting behavior of the cloud
fluid is found when the ring compression timescale becomes comparable with the
cloud collision time. Even in the case when the massive cloud lifetime is zero
(instantaneous cloud recycling), the models show that significant differences
can exist between the spatial distribution of newly formed stars and the
amplitude to the density wave. The situation is even more interesting when the
amplitude of the density wave varies with position around the ring, as in the
off-center collisions. As an example we show in Figure 7 the star formation
rate distribution resulting from an off-center collision of a 1/5 mass companion
galaxy. Observations of SFRs around off-center ring galaxies will be an
important test of the cloud fluid models.

In the future, we plan to include the full set of Oort cycle interactions
in the two-dimensional calculations. Eventually, we also intend to incorporate
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a better treatment of the stellar gravity, and more realistic modeling of cloud
interactions (e.g. of the processes wind-driven fragmentation and magnetic
dissipation) in the cloud fluid equations.

R

01

0.0 25.0 60.0 75.0 M00.0
X

Figure 7. Contours of the star formation function fSF from a two-dimensional
hydrodynamic calculation of an off-center collision. As in collisions along the
symmetry axis, star formation is clearly concentrated in a ring. However, in
this case the ring is noncircular, and the star formation varies strongly with
angle around the ring. The base level of the contours is fSF/f'F m 0.5, with
increments of 1.0.

V. CONCLUSION: BEYOND RINGS

In conclusion, we recall that the arguments for studying ring galaxies were
not only based on their intrinsic interest, but also in the hope that they might
serve as a representative of many types of tidal interaction. This notion is a
potentially rich vein that we have hardly begun to mine. There are some direct
applications of course. Ring formation is probably the beginning of a small
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impact parameter galaxy merger. The evolution from ring to completed merger
could be explored by putting the companion in the ring calculations in a damping
orbit, allowing multiple, nonimpulsive encounters. The elliptical rings
produced in off-center collisions are first cousins to interaction-induced
spiral waves. More specifically, we might hope that the results above on star
formation in rings can be extended to arbitrary density waves.

The Oort model results suggest that, in general, the nature of the star
formation and dynamics of a local cloud system will depend on which of several
important timescales are commensurate. The first two of these timescales are
the cloud collision time and the massive cloud lifetime. The former is
basically the relaxation time of a dissipative cloud system, while the ratio of
the latter to the former, T, provides a measure of the instability of the
system. It was found in both the general applications, that above a critical
value, Tcr, there is no longer a single stable equilibrium state, instead the

system tends to 'relax' to an oscillatory attractor in phase space. A third
timescale is the local dynamical or flow time, which is typically of the order
as the local free-fall time. A fourth timescale, which is closely related to
the third in many cases, is the global dynamical timescale, e.g. the time
between perigalactic passages of a bound companion. If the local cloud
environment is effected by strong disturbances, these timescales can be roughly
commensurate with the cloud collision time, and the local cloud system can be
forced far out of equilibrium. Even if the time delay parameter is small, so
that the system is not unstable to oscillatory behavior, this nonequilibrium
behavior can yield enhancements or suppressions of star formation, which do not
necessarily correspond to the peaks and valleys in the gas density. If,
however, all of the first three or all four of the timescales are comparable,
then the system is driven relative to an 'equilibrium' that is inherently
oscillatory. In this case, depending on the regularity of the driving forces
relative to the natural system oscillation time, the dynamical evolution can
appear quite stochastic.

Such behavior seems likely in strong interactions and mergers. In the
burst regime of the model in general, and in the case of commensurate large-
scale dynamical and cloud system timescales in particular, the dispersion in
SFR, as a function of gas density for example, is large. Hopefully, these
timescale considerations will be useful in interpreting observations, though
the task will be complex.

Finally, these results suggest answers to some of the questions posed
in the introduction, at least within the context of the Oort model. The
mechanism of starbursts is the limit cycle bifurcation, or coalescence over-
shoot instability, which is a qualitatively different process than 'normal',
equilibrium star formation. Unfortunately, the possibility of driven, non-
equilibrium behavior iuperimposed on the limit cycle may confuse the application
of this result to complex systems. However, a number of interesting comparisons
between theory and observation should be possible in the simpler cases, like the
ring galaxies.

The canonical description of the ring galaxies is that they are like
dropping a pebble in a pond. For strongly interacting galaxies in general, the
models suggest a better analogy might be to a storm at sea, with starbursts as
the froth of a breaking wave.
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Gallagher: Is there a regime where the model breaks down due to energy input
by stars formed in a major burst?

Struck-Marcell: It is possible that in a violent burst most of the clouds are
broken down completely, and all the material distributed more uniformly in an
intercloud phase (e.g. Ikeuchi et al. 1984, and Bodifee and de Loore 1985).
In the Oort model discussed here, there is a breakdown of the system into a
large number of very low mass clouds following a strong burst. The clouds
regrow by coalescence on a long timescale. It is tempting to think that this
is at least part of the explanation for the tiny molecular clouds in the core
of M82.
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Beelman: What is your prescription fv, injecting kinetic energy into the
©luoudRV Are your results sensitive to the details of this prescription?

Struck-Marcell: At the end of its lifetime a massive cloud is supposed to
break up into Nc fragments, which fly off in random directions with a mean
velocity dispersion cN3. The generic behavior of the model is not sensitive

to the precise value of any parameter except the ratio of the cloud lifetime
to the collision time, T. However, the quantities Nc, cB3 are not allowed to

vary freely, but are tied to the equilibrium values of the model and the
dissipation efficiency, since dissipation balances energy input in equilibrium.
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ABSTRACT

We present new data that indicate that strong far-infrared galaxies
commonly have largescale emission-line nebulae whose properties are suggestive
of mass outflows ("superwinds"), presumably driven by the high supernova rate
associated with the central starburst. These data include longslit spectra of
1482 which show that the radial variation of the gas pressure in the emission-
line nebula is in excellent agreement with the Chevalier and Clegg (1985) wind
model. The M82 nebula also has a LINER spectrum, consistent with shock-
heating. We find morphologically and spectroscopically similar emission-line
nebulae In NGC253 (associated with the diffuse X-ray gas along the galaxy minor
axis), and in Arp220 and NGC6240 (where the nebulae are tens of kpc in size).
We have also conducted a longslit spectroscopic investigation of 20 additional
very powerful (- IOE12 L(sun)) far-infrared galaxies and find that they
generally have spatially-extended emission-line nebulae whose spectra closely
resemble that of the M82 nebula. If the "superwind" interpretation is correct,
it could have many. important consequences in extragalactic astronomy.

1. INTRODUCTION

The discovery of a class of galaxies with far-infrared luminosities of
10Eli to 101E2 L(sun) - 10 to 100 times larger than the corresponding optical
luminosities - is probably the most significant extragalactic discovery made by
IRAS. While these far-infrared galaxies ("FIRG's") are the subject of intense
scientific scrutiny, the most fundamental questions are not yet answered: What
powers the strong far-infrared emission? Bow are the observed optical
emission-lines and nonthermal radio continuum emission related to the infrared
power-source? What is the impact of the prodigious release of energy on the
surrounding galaxy? The answers to these questions are likely to prove of
considerable value to our quest to understand star formation, galaxy formation
and evolution, and the nature of nuclear activity in galaxies.

In order tp address these questions, we have embarked on two related
investigations of FIRG's. The first is a detailed study of the physical state,
klnematics, and morphology of the emission-line nebulae associated with the
nearest FIRG•s, The second is a systematic spectroscopic and direct imaging
survey of a moderately large sample of optically faint IRAS galaxies with very
powerful infrared emission. As we will discuss below, the data we have

Carol J. Losdal Permson (Edwr)
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collected so far strongly suggest that FIRG's are commonly associated with
largescale mass outflows ("superwinds") of the kind hypothesized by Chevalier
and Clegg (1985-hereafter CC). Further details concerning our data and their
interpretation can be found in Heckman, Armus, and Miley (1986) and McCarthy,
Heckman, and van Breugel (1986).

2. THE MODEL

We begin by briefly summarizing the model that will serve as the
interpretational framework for the data we will present and review in section
3. This model was originally proposed by CC to account for the X-ray and
emission-line nebula associated with the prototypical FIRG, M82.

SThe starburst underway in the circumnuclear (100 to 1000 pc-scale)
molecular disk of M82 implies a high supernova rate. CC hypothesize that the
kinetic energy of the supernova ejecta is efficiently thermalized as remnants
intersect one another at high velocities, producing a central cavity of hot gas
which then expands outward in the form of a fast (several*10E3 km/sec) wind.
While the CC model is for a spherically-symmetric wind, both the data (see
below) and physical intuition suggest that a bipolar wind will be produced as
the hot gas preferentially escapes along the rotation axis of the circumnuclear
disk. In the CC model the wind material itself is a negligible source of
radiation. The nebula in M82 is instead produced by shock-heated clouds that
have been entrained in the wind.

3. THE DATA

3.1. M82

As the nearest and best-studied FIRG, M82 is the "Rosetta Stone" for the
wind model described above. We will therefore summarize all the relevant
observational evidence, including the new results from our long-slit
spectroscopic investigation.

First, as emphasized by CC, both the starburst models of Rieke et al.
(1980) and the population of compact time-variable radio sources observed by
Kronberg et al. (1985) imply that supernovae are occuring in 1482 at the rate of
one every several years.

Second, recent high-resolution CO maps of M82 (e.g. Nakai 1984) show clear
evidence for a central cavity in the circumnuclear molecular disk (the "nozzle"
for the wind). The molecular annulus is coincident with the region of intense
infrared and radio emission, and is apparently coplanar with the largescale
stellar disk of M82.

Third, both the well-known emission-line nebula and the cospatial X-ray
nebula (Watson et al. 1984) are oriented perpendicular to the molecular annulus
(they lie along the galaxy's minor axis).

Fourth, the kinematics of the emission-line gas in the M82 nebula are
strongly suggestive of high-speed outflow (Axon and Taylor 1978; J. Bland and
R.B. Tully, private communication).

Fifth, our new spectroscopy shows that the pressure in the emission-line
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nebula falls smoothly and monotonically with radius (see Fig. 1). The form of
P(r) is in excellent agreement with the predictions of the CC model. Moreover,
the pressures in the emission-line gas agree with those estimated in the X-ray
gas. We note that this directly observed radial variation in gas pressure
rules out models in which most of the optical line-emission in M82 is dust-
scattered nuclear light.

Finally, our new data also demonstrate that the M82 nebula has a LINER
spectrum, very similar to the emission-line spectra of gas heated by shocks
(e.g. old supernova remnants - see Table I).

Thus, the available data on M82 provide evidence for the supernovae to
drive the wind, for the nozzle to channel the wind, and for the shock-heated
material which traces the wind's passage and probes its physical properties.

Table I
Emission-Line Ratios in Far-Infrared Galaxies

(1) (2) (3) (4) (5)
Name [oIIIJ/Hp [OIl/Ha [NII]/Ha [SII]/Ha

SNR's 0.0 to 0.6 -1.1 to -0.3 -0.5 to 0.1 -0.4 to 0.2
Shock Model 0.2 -1.1 -0.2 -0.2
M82 Nebula -0.1 -1.1 -0.4 -0.4
NGC253 -0.5 ? 0.0 -0.3
Arp220 0.2 -0.7 0.0 -0.2
NGC6240 0.2 -0.6 0.0 -0.1
FIRG Sample -0.2 to 0.6 -1.5 to -0.5 -0.5 to 0.1 -0.6 to 0.0

Notes to Table I.

Col. 1) Supernova remnants (SNR's) from Dopita et al. (1984) and references
therein. The Shock Model line ratios are the average of models B and C in
Raymond (1979) and models D and E in Shull and McKee (1979). The FIRG Sample
is described in section 3.4 in the text.
Colso. 2-5) The logarthmic ratios of the fluxes of the [0III]X5007 and HP;
[0I]X6300 and Hm; [NII]A6583 and Ha; [SII]X6717+6731 and Ha lines.

3.2 NGC253

NGC253 is nearly a perfect match to M82 in both its distance and far-
infrared luminosity. As such, it provides an important test of the generality
of the phenomena discussed above. Like M82, NGC253 has i) a central
circumnuclear molecular disk which is coincident with the region of intense
infrared and radio emission (Scoville et al. 1985; Turner and Ho 1983), ii) an
X-ray nebula extending along the galaxy minor axis (Fabbiano and Trinchieri
1984), and iii) a region of high-velocity outflow seen in the optical emission-
line gas (e.g. Ulrich 1978).

Our new data considerably strengthen the resemblance between NGC253 and
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Figure 1. The observed radial dependence of the gas pressure in the M82 nebula
(-2nlk, where n is the electron density as measured by the red [SII] lines and
T is taken to be 10,000K) is plotted along with the predicted thermal and total
(ram plus thermal) pressures in the wind model calculations of Chevalier and
Clegg (1985). A best fit between the model and the data is achieved if the
pressures are a factor of 5 below the maximum values allowed by the model (as
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M82. A narrowband (H-alpha) image shows that there is a striking morphological
relationship between the optical and X-ray emitting gas along the minor axis,
as in M82 (see McCarthy, Heckman, and van Breugel 1986). Moreover (again as in
X82), this gas has a LINER spectrum, suggestive of shock-heating (Table I).

3.3 Arp220 and NGC6240

These galaxies are two of the closest examples of the class of very-
powerful FIRG's, having luminosities one to two orders-of-magnitude larger than
M82 or NGC253. Rieke et al. (1985) have recently shown that many of their
properties can be explained by a scaled-up version of the starburst models they
had successfully applied to M82 and NGC253.

Our new narrowband (H-alpha) images and longslit spectra suggest that
superwinds are also occurring in these two FIRG's. Large (tens of kpc) and
morphologically spectacular emission-line nebulae are present in both galaxies
(see Figs. 2 and 3). The Arp220 nebula is strongly bipolar in appearance,
consisting of a bright central "Jet" and faint outer "bubbles". The inner
feature is oriented roughly perpendicular to the central dust-lane in Arp220.
The NGC6240 nebula is more complex, with a bright central "starfish" elongated
along the galaxy's minor axis, and an outer region of filaments and arcs.

Both nebulae have classic LINER spectra, at least in the bright inner
"Jet" and "starfish" (Table I). They are thus similar to the M82 and NGC253
nebulae both spectroscopically and morphologically. Little is yet known
concerning the kinematics of the gas in Arp220 and NGC6240, however high
velocity (several hundreds of km/sec) noncircular gas motions are clearly
present in both galaxies (see Table 2 in Heckman et al. 1986 and related
discussion).

3.4 A Survey of Very Powerful FIRG-s

We have recently undertaken a spectroscopic and multi-color direct imaging
survey of a sample of optically-faint IRAS sources chosen to have the same far-
infrared spectral-energy-distribution as Arp220 and NGC6240. Our principle
results of special relevance to the present discussion are as follows:

First, most of the 20 galaxies observed spectroscopically resemble the M82
nebula (see Table I). About half can be comfortably classifed as LINER's,
while most of the rest have spectra that are intermediate between a LINER and
an HII region.

Second, the emission-line regions are often spatially resolved, and
several nebulae are larger than 10 kpc in size. We have just begun a
narrowband imaging program to determine the statistical properties of these
nebulae.

Third, as is apparently the case for FIRG's in general, the galaxies are
generally very disturbed in their optical morphology, suggesting that galaxy
collisions/mergers are important in the FIRG phenomenon.

4. IMPLICATIONS

The evidence summarized above implies that the CC model for largescale
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Figure 2. Contour plot of a continuum-subtracted H-Alpha im~age of Arp22O.
The first contour is at a surface brightness of 3.E-17 ergs/(cm**2 sec
arcsec**2) and each subsequent contour is at a factor 2 higher brightness.
The dashed diagonal line represents the orientation of the central dust
lane in Arp22O.
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Figure 3. Contour plot of a continuum-subtracted H-Alpha image of NGC6240.
The first contour is at a surface brightness of 6.6E-17 ergs/(cm**2 sec
arcsec**2) and each subsequent contour is at a factor 2 higher brightness.
The dashed diagonal line represents the orientation of the major axis of
NGC6240.
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mass outflows (superwinds) driven by circumnuclear starbursts may have general
applicability to powerful far-infrared galaxies. If so, this will have many
far-reaching implications.

Simply scaling the CC wind parameters for M82 by the far-infrared
luminosity would mean that the superwinds in galaxies like NGC6240 and Arp220
have mass fluxes of 10 to 100 M(sun)/year of highly enriched material and
kinetic energy fluxes of 10E44 to 10E45 ergs/sec. If, as suggested by the
models of Rieke et al. (1980, 1985), starbursts last for about 10E8 years, then
these galaxies will inject 10E9 to 10E10 M(sun) and 10E60 ergs into the
intergalactic medium.

The consequences of the superwind model (if it is correct) may be profound
for our understanding of galaxy formation, the chemical and thermal evolution
of the intergalactic and interstellar media, the nature of QSO absorption-line
clouds, and many related topics. The main need at present is to place the
model on a more secure observational footing by combining detailed
investigations of the nearest examples of possible superwinds with continued
survey work on a large sample of FIRG's. Such work is underway.
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DISCUSSION

WINDHORST:
I assume that the shock heated gas implied by your model would produce a fairly hard x-ray spectrum.

Would not these star forming galaxies make up for the rest of the hard x-ray background, or even exceed it?

HECKMAN:
The x-ray spectrum need not be very hard, since the x-rays are produced by clouds that are shock-heated

by the wind. These clouds will be heated to only modest temperatures (T S 107 K) if they are relatively
dense.
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ABSTRACT. High resolution CO observations of the IRAS galaxies Arp 220, IC 694/NGC 3690, NGC
6240 and NGC 7469 have been made with the Millimeter Wave Interferometer of the Owens Valley Radio
Observatory. These yield spatial information on scales of 1 to 5 kpc and allow the separation of compact
condensations from the more extended emission in the galaxies. In the case of the obviously interacting
system IC 694/NGC 3690 the contributions of each component can be discerned. For that galaxy, and
also for Arp 220, the unusually high luminosities may be produced by non-thermal processes rather than
by intense bursts of star formation.

1. INTRODUCTION

IRAS observations have shown that the galaxies Arp 220, IC 694/NGC 3690, NGC 6240 and NGC
7469 are all extremely luminous with LlnR > 1011 LE (Sanders and Mirabel 1985). The molecular gas
masses, M(H2), derived from single dish measurements (Sanders and Mirabel 1985) are considerably in
excess of 109 Mo. In addition, the ratio LnR/M(H2), which can be interpreted as an indicator of star
formation efficiency (Sanders et al. 1986a), is significantly enhanced. A comparison of the properties of
these four galaxies with those of the starburst galaxy M82 is presented in Table I.

TABLE I

Galaxy Da M(H2 )b LHRb LFM/M(H2 )b
(Mpc) (10°1'0 ) (10"Lc) (L 0/M 0)

Arp220 77 1.3 13.4 100
NGC6240 101 1.99 5.3 26
NGC7469 66 0.92 2.6 28
NGC3690 | 48 0.73 5.3 72
IC694 I
M82 3 0.17 0.2 12

Notes:
a) Assumes IL = 75 km s- Mpc- .
b) From Sanders and Mirabel (1985) and Sanders et al. (1986a).

Although the presence of a significant quantity of molecular gas in these galaxies was discernible
from the single dish CO observations, their 45" resolution was not sufficiently high to determine the
distribution. Here we report 5" resolution, aperture synthesis CO maps of the four galaxies. These

' These results are presented in full by Scoville et al. (1987) and Sargent et al. (1986).
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observations permit a study of the detailed structure of the molecular gas and the origins of the unusually
high luminosities.

2. OBSERVATIONS AND RESULTS

Observations were made in the 2.6 mm CO line, using the Owens Valley Millimeter Wave Inter-
ferometer in May, 1986. For each galaxy, two configurations of the three 10.4 meter telescopes were
employed, with spacings out to 80 m north-south and 65 m east-west. The shortest projected baseline was
10mn, so that the interferometer is insensitive to structures greater than 30" in size. A recently-completed,
broad-band filteibank consisting of 32 channels, each 5 MHz wide, provided velocity coverage of 416 km
s-', with 13 km s-I resolution. System temperatures were typically 300 K (SSB).

The resulting contour maps of integrated CO intensity for Arp 220, IC694/NGC3690, and NGC 7469
are shown in Figures 1, 2, and 3, respectively, overlayed on optical images of the galaxies. No emission
was detected from NGC 6240 up to a level of 15% of the single dish flux, suggesting that the molecular
gas in this galaxy is distributed on scales > 30", rather than being confined to compact structures. In Arp
220 and NGC 7469, the CO emission is unresolved. This is also the case for each of the two compact
regions detected in IC 694/NGC 3690. Upper limits to the diameters of the compact sources range from
1 to 2 kpc. Precise values, as well as the fraction of the single dish flux detected by the interferometer,
Fi/F., are given in Table II. Average densities were calculated assuming a spherical distribution of gas
and are also presented in Table II.

Fgu 1: Contours of the integrated CO emission in Figure 2: Contours of the integrated CO emission in
Arp 220 superimposed on an optical photograph of Arp 299 (IC694-NGC3690) ovalayed on an optical
the galaxy. Contour levels are spaced by 12 Jy/beam photograph of the galaxy. Contour levels begin at,
km 3-1, the lowest being 12 Jy/beam km s-. and are spaced by, 10 Jy/beam km s-1.

TABLE II
Galaxy Phase Center Beam Scale Ft/Fs M(H2) NH2

S(1950) 6(1950) (kpc) (109w (cm- 3)

Arp220 15 32 46.92 23 40 07.9 6".4 x 4".0 1.4 0.7 9.1 130
NGC6240 16 5028.00 02 09 00.0 T'.6 2.2 < 0.15 < 3 < 10
NGC7469 23 00 44.00 08 36 18.0 13".'. 2.0 0.3 2.8 10
NGC3690) 11 25 42.60 58 50 14.0 8".3 x . 8 1.0 0.5 3.2 70

IC6944
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Figure 3: Comours of t integrated CO emission in
NOC 7469 superimposed on an optical photograph of
the galaxy. Contour levels are spaced by 8 Jy/beam
km s- 1, the lowest being 8 Jy/beam kIn s-1.

3. DISCUSSION

3.1. .Arp 220

A substantial mass of molecular gas, - 9 X 109 Me, is concentrated in a region of radius < 700 Pc at
the nucleus of Arp 220 (Figure 1). The minimum mean density is 130 cm-3 and the ratio Lim/M(H2) is
100 1I%4. The star formation mwte could be considerably enhanced as a result of an increased frequency
of cloud-cloud collisions (cf. Scoville, Sanders and Clemens 1986), and the unusually high luminosity
could be attributable to an intense burst of star formation (cf. Reike et al. 1985). However, it has recently
been discovered that the spatial extents of the 20 pm and radio continuum emission are comparable, and
less than 1.5" (Beddin 1986). This extreme concentration of the infrared and radio emission, the fact
that the Br oc emission is both unusuaM!- broad (de Poy 1986) and much weaker than expected if the
luminosity is the result of high mass tar , twmation (Beck, Turner and Ho 1986), the compact, dense
molecular core, and the uncommonly hig" value of LFm/M(H2), provide compelling evidence that the
energy in Arp 220 derives from non-thermal processes.

3.L. IC 694/NGC 3690

The interacting system Arp 299 comprises the galaxies IC 694 and NGC 3690. In the interferometer
maps, two compact CO components were detected (see Figure 2), each of mass -., 1.4 x 109MO. The
eastern component coincides with the nucleus of IC 694 (Telesco, Decher and Gatley 1985) where there is
an unresolved, flat spectrum radio source, termed A by Gehrz, Sramek, and Weedman (1983); the western
component spans their compact radio components C and C', which span the region where IC 694 and
NGC 3690 overlap. Although CO is known to be present at the nucleus of NGC 3690 (Sanders et al.
1986b), no emission was detected by the interferometer, indicating that there the molecular gas must be
distributed on scales greater than 30".

Observations at 60 and 100 pm, at 20" and 30" resolution respectively (Harper 1984), show that about
75% of the total luminosity from Arp 299 arises from the nucleus of IC 694. If the luminosity source is
as concentrated as the CO, 1.4n/M(H2) is , 280 Le/Me. The H2 mass in a 16" region centered on this
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nucleus is ,, 2.4 x 109 M4 (Sanders et at. 1986b), leading to LpIR/MHt2) = 150 L@/ME. These ratios
are casiderably greater than the values for the Milky Way, ,, 3, and for starburst galaxies, , 20 Le/Me
(Sanders et at. 1986a, Scoville and Good 1986, Young et al. 1986). Taken together with the presence
of the flate radio source at the nucleus, these results strongly suggest that the source of energy
in IC 694 may well be nonrhenral. By contrast the ratio Lpm/M(H2) for the remainder of the Arp 299
complex is between 40 and 70 LO/Me, indicating that the energy source here is probably massive star
formation.

The effect of the interaction between IC694 and NGC3690 appears to have been to channel a
substantial mass into the nucleus of IC 694, thereby producing an unusual energy source, probably fuelled
by non-thermal processes. It has also induced increased density and, by implication, enhanced star
forming activity in the region of overlap between the two galaxies.

3.3. NGC 7469

NGC 7469 is a type 1 Seyfert galaxy. From Figure 3, it is evident that the one CO source detected is
offset from the nucleus by about 8". Its mass, 2.8 x 109 ME, is approximately 30% of the total molecular
gas mass measured by Sanders and Mirabel (1985). On the basis of 3.3 pm emission measures, Cutri et
al. (1984) have suggested that star formation complexes may reside in a 2-8" annulus around the nucleus
of the galaxy. Since the interferometer observations were somewhat limited, the resolution here is not
optimal and the precise location and extent of the CO emission region is not well--determned. However,
it is tempting to speculate that it represents the densest part of such an annulus, perhaps similar to that
found around another Seyfen nucleus, NGC 1068 (Myers and Scoville 1986).
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DISCUSSION

A. S. Wilson. I'm a little puzzled by the offset of the CO emission from the nucleus of NGC 7469.
The centimetric radio continuum and circumnuclear optical line emission center very well on the nucleus.
Could atmospheric effects be responsible? It would be valuable if you could directly measure the relative
positions of the CO and the radio continumn in your data.

Sargent. Our observations of NGC 7469 were somewhat limited so that the exact size and location of
the compact CO region cannot be determined. It is possible that we have detected only the densest part
of i anmlu of gas centered on the nucleus. Higher sensitivity measures are needed to confirm this.

J. Caristrom. 1Do you see any 3 mm continuum emission from these galaxies?

Sargent. We have not yet searched for continuum emission from the galaxies, although such a measure-
ment might permit a move accurate determination of the CO offset from the nucleus.
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THE INITIAL MASS FUNCTION IN HII GALAXIES

Alison W. Campbell
Center for Astrophysics

60 Garden Street
Cambridge. Mass

Observation of a large sample of HII galaxies shows that the emission line
ratios of the youngest objects change systematically with gaseous oxygen abun-
dance, which we interpret as resulting from changes in the initial mass function
(DW) of the ionising cluster. Comparison with cluster/nebula models shows that
both the slope and the upper mass limit of the cluster IMF vary with abundance.
In HII galaxies with oxygen abundance about 1/10 that of Orion. the IMF for mas-
sive stars must have a slope which is about a factor of 2 smaller than in the So-
lar Neighbourhood.

'lHII galaxies", dwarf galaxies with the spectra of giant HII regions. are
ionised by massive 0 stars formed during a recent intense burst of star forma-
tion. Although the very strong. narrow emission lines which characterise these
objects have been used in several studies to determine physical conditions in
the ionised region (eg Searle and Sargent 1972. French 1980. Kinman and David-
son 1981. Kunth and Sargent 1983, Campbell. Terlevich and Melnick 1986a; CTJa).
little is known about their ionising clusters.

The nebular excitation of low-abundance HII galaxies is higher than can be
explained by a solar neighbourhood IMe (Lequeux et al 1981, Bergvall 1985). Gi-
ant HII regions in spiral galaxies show trends in emission line ratios which in-
dicate that the temperature of the ionising cluster. Tio. , increases smoothly as
the abundance decreases (eg Shields and Tinsley 1976, Stasinska 1980). The ob-
served change in Tis can arise if the IMF of the ionising cluster in giant HII
regions and HII galaxies is abundance-sensitive: Shields and Tinsley (1976)
proposed a systematic change in the upper mass limit of the IMF. while Terlevich
(1982) suggested that the slope of the IMP decreases with decreasing abundance.

Studios of the ionising cluster in HUI galaxies have so far been based almost
entirely on UV/optical/infrared colours, mass-to-light ratios, and recombina-
tion line equivalent widths; the easily-observed emission line ratios, which
carry important information about the mass distribution and age of the ionis-
ing cluster, have been almost totally neglected. We report here the results of a
comparison between the line ratios of a sample of - 50 HII galaxies and those of
model nebulae ionised by clusters with a variable IMF.

Modelling strategy

The ionising clusters of HII galaxies evolve very rapidly, on timescales
of order the lifetime of a massive star, a few Myr. As the cluster evolves, Ti,0
falls and the "hardness" of the ionising spectrum decreases, leading to a rapid
change in the relative strength of lines from different ionisation stages of a

Carol J. Loasal Persson (Editor)
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given element. A least-squares fit to the distribution of HII galaxies in a Tio
-sensitive emission line ratio will therefore always underestimate the To, of
the cluster 114F (as distinct from the cluster's current Ti.. ) and consequently
cause us to either overestimate the IMF slope or underestimate its upper mass
limit. If we wish to study the abundance behaviour of the IMF. it is therefore
crucial to remove the effect of cluster evolution.

In principle, there exists a set of HII galaxies. covering a range in abun-
dance. in which the ionising cluster is at close to zero age: a "zero age se-
quence* (ZAS) which will appear as an upper envelope in Ti.. -sensitive emission
line diagrams. Identification and modelling of this ZAS using zero-age main se-
quence cluster models will allow us to determine the abundance behaviour of the
HI! galaxy IMF for stars more massive than - 20 MeD

Model HII galaxies

We have used the cluster code of ?elnick. Terlevich and Eggleton (1985) to
produce zero-age main sequence model clusters of mass 106 M0 . The cluster mass
distribution is specified by a power-law IMF with slope a between 0. 1 Me and a
maximum of 200 Me . We next pass the ionising part of the cluster's spectrum to
a model nebula code (Ferland and Truran 1981) and construct low-density, clumpy.
radiation-bounded HII regions with oxygen abundances spanning the range covered
by the data. The models are discussed in greater detail in Campbell. Terlevich
and Melnick (1986b; CT4b).

Comparison of models and data: the ([0IIII/t0III. 0/H) diagram

The Tio. -sensitive line ratio [0IIIJ/[OIIJ is insensitive to O/H and thus
allows us to examine directly the behaviour of Ti.. with abundance. The ZAS, from
which objects evolve downwards, is easily visible in figure 1. The curves in
figure la are the loci of model HII galaxies ionised by clusters with a constant
INF specified by the M. and a shown. All these models are poor fits to the data.
Those with a - 3.0 produce values of [0III]/[(i0] which fall nearly an order
of magnitude below the ZAS for O/H %-! 4 x 10-5. while those with a - 1.0 grossly
overestimate the position of the ZAS for 6 x 10-6. It is immediately evident that
for any K. . a "flat" IMF (a - 1.0) is required at low abundance. The stoop turn-
down of the (OIII]/[OII] envelope with increasing abundance requires a system-
atic decrease in Mu or increase in a .

The strongest dependence of a and M. on abundance which can be accommodated
without conflicting with their observed values at the Solar Neighbourhood oxygen
abundance are

Ml = 5.9 (O/H)-° 3  (1)
a = 1.2 log (O/H) + 6.9 (2)

The loci of models in which M, and a vary according to equations (1) and (2) are
shown in figures lb and ic respectively. The fit of the variable-Md, models is
little better than that of constant IMF models, owing to the small change in the
cluster mass distribution caused by changes in M1, . Variable a models do much
better, but still overestimate the position of the envelope for O/H , 1.5 x 10-4.

It seems therefore that a systematic change with abundance of both a and M.
is required to fit the (0III]/ (0II] envelope. We have constructed two such mod-
els, one in which a increases with abundance in the variable-Mu model (equation
(1)). and another in which Mu decreases with abundance in the variable-a model
(equation (2)). Figure ld demonstrates that these closely similar models both
produce a very good fit to the ZAS.
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Figure 1

The distribution of the sample in the ([OIII]/[OIJ]. O/H) plane. Circles: data
from CTMa; squares: data from Kunth and Sargent (1983). IZwO8 is from Kinman and
Davidson (1981). The short dash-dot line represents the adopted zero-age enve-
lope for 0/H > 1.5 x 10-4. as explained in CTIb. The model loci are labelled as
follows: C398: constant IMF. a - 3.0. M, - 98 M4 ; C3200: constant IMF. a - 3.0.
Mu - 200 M ; C198: constant IMF. a - 1.0. Mu - 98 Me ; C1200: constant IMF. a-
1.0, Mu - 200 Me ; M3: IMF with a - 3.0 and variable Mu (eq. 1); MN: IMF with a -
1.0 and variable K4 ; a 98: IMF with M. - 98 MN and variable a (eq.2); a200: IMF
with Mu - 200 H and variable a ; M a : the variable Mu model (eq. 1) with 1.0 < a
< 2.7; aM: the variable a model (eq.2) with 200 > M1 > 73 Me.

Discussion

An excellent fit to our adopted zero-age sequence in the ([0T11]/[0111,
O/H) diagram has been obtained by allowing the mass distribution of the ionis-
ing clusters of HII galaxies to vary systematically with abundance. Our models
indicate a very pronounced change in the IMF in the oxygen abundance range 2.5 x
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10-i to 2.5 x 10-4; a is required to vary from c 1.5 to 2.7 and M, from r 200 to
o 75 Me . The dependence of the IMF slope on abundance is closely similar to that
derived (using different methods) for giant HII regions and HII galaxies by Ter-
levich (1982).

Assuming trends in emission line ratios are due to changes in the stellar
mass distribution of the ionising clusters of HII galaxies, the main results of
the emission line modelling can be summarised as follows:
1) No constant INF can reproduce the values of the Ti.. -sensitive line ratio
[OIII]/[OII] observed in the youngest ("zero age") objects over the oxygen abun-
dance range 2.5 x 10-5 < O/H < 2.5 x 10-4.
2) A systematic change with abundance of M. alone also fails to reproduce the
zero age range in [OIIJ/[(01. owing to the small effect which even large
changes in Mu have on the mass distribution of the ionising cluster.
3) Models in which only a varies cover much more of the zero-age range in
[0III]/ [0II] and if Mu = 200 Me . are correct for oxygen abundances ! 1 x 10-4.
Above this they slightly overestimate the position of the [0IIIJ/[OII] enve-
lope.
4) Models in wOch both a and Mu vary with abundance reproduce the data envelope
very well over the full range in oxygen abundance of 2.5 x 10-5 to 2.5 x 10-4. The
detailed abundance behaviour of a and Mu is given in CTMb.
5) For the lowest-abundance HII galaxies. eg IZwl8 (O/H t-- 1.5 x 10-), the pre-
dicted IMF slope is = 1.2, irrespective of M. . IZw18 is an evolved object in
which Tio. is currently considerably lower than its zero-age value.
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VLA CONTINUUM OBSERVATIONS OF BARRED SPIRAL GALAXIES

J. Antonio Garcia-Barreto
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P. Piqmiq
Instituto de Astronomfa, Universidad Nacional
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Mexico D.F. 04510, Mexico.

ABSTRACT

In this paper we report observations of NGC 613, NGC 1300, NGC 4314
and NGC 5383 using the VLA at frequencies of 1464.9 and 4885.1 MHz. These
objects are a subset of galaxies from which we have searched for radio emission.
Our selection criteria were: a) they are barred spiral galaxies preferentially
with different Hubble type; b) they have a peculiar or hot-spot nucleus as
reported by Sersic (1973, P.A.S.P. 85, 103) or Vorontsov-Vel'yaminov, Zaitseva
and Lyutyi (1972, Sovi.et Astron. 16, No. 1, 71); c) they have been observed at
far-infrared wavelengths by IRAS (1985, IRAS Catalogs and Atlases: the Point
Source Catalog, Government Printing Office) and d) they are observable from the
northern hemisphere. Their radio and far-infre ed properties are summarized in
Table I while their composite spectra are shown in Figure 1.
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Figure 1. Composite spectra showing radio and far-infrared observations of NGC
613 (A), NGC 1300 (+), NGC 4314 (o) and NGC 5383 (e).

Carol J. Lonsdale Perssen (Editor)
Star Formation in Galaxies 483



J. A. OARCIA-BARRETO AND P. PISMIS

=1 0

- 4 -4 -1

to to- -

4> Ix a

MN WN oý
~~U LA La (N -

* 0

.A t % lAI4
I.. 0(Ntr J0

w w

U- * ~ C; a ; z 0u

- 2- r ;;4 r-

Un 2"sOLO -MV

01 WN L
Is 14 <D C C (NZ44 u

ot to V 0
I.L - -N LL.0.Q co L0c
LL( 0 u 0 2 W

444

ca4)C L - : £0
(N~~ I, cr -.0 0r 04 - -4 -4- -c zJ

0:
Bco wl o 0 L ~

-z LA LA - 0 1-4 KN4 U
4.4 1-4 -44 04 x-i c U

£0 w ; 1 0> 0: q1 w

4D 'CI LA.- ZZ 00 L
'-4 La CJ

1-1~0 £0 a ! - W

t^ -C C U

Io uT _-4 WUl L - C .- o- UC) Z tN L 00 cN toC 0. 2-
'-a r5 -C o

-r 0q S-4 0qz -4 01 w SE -I'L,U1. u~ AA -11 C) A ~ C £ -T U-

.U L. * 0 a -a _

CL-- 1-04 Z U4-.s n- a.H
U L s L us cc

0. ' '-. U - s- 2 L ~ U- . s
I-D z0 0 0 0

ci- -c -cc~
Lo £0 £ £

LA. a C0£0 £

4MU



A DUST SCATTERED HALO IN STARBURST GALAXY M82?
Michael Rohan, Philip Morrison, and Alberto Sadun

INTRODUCTION
The source of the halo about M82 has been under discussion for several years; one

explanation for it is the dust model of Solinger, Morrison and Markert (1977) in which
they propose a diffuse cloud of dust through the M81 group, with M82 travelling through
the group holding a denser cloud of dust around it.

This paper looks at the feasibility of the "dust' theory in the X-ray range, using the
halo in the X-ray image of M82 taken by the Einstein Observatory. To this end the X-ray
cross section for dust is presented, along with the single scattered image of an X-ray source
surrounded by a dust cloud; multiply-scattered images have been simulated with a Monte-
Carlo program; profiles of the halo along the major and minor axes of M82 are presented.
Also presented is an accounting for line spectrographs of M82 that show unusual splitting
(e.g. Axon and Taylor, 1978), using the dust model.

The final model proposed for the X-ray image requires dust (typically SiO2 , although
the result is not overly sensitive to the choice of dust material) of radius 50 A-300 A, with
density on the order of 10-7 cm-3 to 10-' cm-3 , out to a distance of about 9 kpc for some
regions. The HRI image of M82 is shown in Fig. 1.

CROSS SECTION
The crow section for dust in the Rayleigh-Gans limit is

& 4Rk 41 - .112 (1 + C0e2 ) [sin:X -zcoe:] 2

where x = 2R1k sin($/2) has been used for brevity; R is the dust grain radius, and k is the
wavenumber for the X-rays, m is the index of refraction, and 0 is the scattering angle.

The total cross section is
or = 2rR'ISlm - 112.

Note that Im - 112 a k-4.

SINGLE SCATTERING
The image of a point source is strongly dependent on the location of the scattering

cloud. For a cloud of radius r about the source, the image intensity is given by

dl" = n lRkim - 1 12 (l 021 d

Carol J. Lowudale Persson (Editor)
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Fig. 1. The X-ray image of M82 taken by HRI-3 and smoothed with the point response
function. Contours are at 0.1-0.7 counts/arcsec2 for the observation.

where L. is the luminosity in the range considered, n the dust density, d the source-observer
distance, 0 is the separation in the sky from the source, and r is the extent of the cloud
in front of the source.

In the case of M82, X-ray scattering by dust in our galaxy produces a halo with constant
intensity beyond the field of the observing instrument; this is relegated to background.

It can be seen that the singly-scattered halo of the nucleus of M82 due to the diffuse
dust proposed for the MOI group would be much smaller than the observed halo, and is
'washed out' by it.
MULTIPLE SCATTERING

Multiply-scattered images of a point source have been simulated by a Monte Carlo
program. The program traces the photons to the surface of a spherical, homogeneous
cloud of dust around the source, and notes the exit angle of each photon at the surface
(from the normal). From this accounting, a distribution of exit angles can be obtained for
any point on the surface; from this distribution an image can be calculated.

In the.simulations done for M82 the dust used was SiO2, we set a lower limit of 100A
for the dust radius. The density had an upper limit of 10-7 cm-3 , and the cloud radius
was kept at Ion than 10 kpc.

A further limit imposed was that the mass of the homogeneous sphere of scattering dust
in the program was kept below Ion solar masses. (This keeps the mass of dust required
for M82 below 109 solar masses when we take into account filling factors and geometrical
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considerations.)
The simulated images were convolved with a o = 6 gaussian cut at 10' to account for

the extent of the core of M82.
The resulting multiply scattered images can be quantified using some results from

Alcock and Hatchett (1978), who showed that the variance of the angle between the path
of a multiply scattered photon and the source-to-photon position vector (0), after being
multiply scattered, is

< 0 > I<#2 >3

where < 02 > is the variance of the cross-section for the scatterers and r the optical depth.

Thus, a rough estimate for the width is given by
Vý<?2 > =rlnIR2/k.

The simulations follow this prediction (although some are at the limit of the small angle
approximation for 0).

DATA
The data below was taken in one observation (of 13,110.7 sec) with the High Resolution

Imager (HRI) aboard the Einstein Observatory. The HRI has a 25' diameter field of
0.5'xO.5V pixels, resolution -.1 arcsec. The energy range is 0.1 keV-4 keY, with no energy
resolution.

To study the scattering of the nucleus of M82, two 900 cuts of the image, one along the
SE major axis and one along the SW minor axis, were radially binned to obtain profiles.
The cuts are centered at a = 9h 51m 41.80, 6 = 69, 55', 56.2'; they are from 90* to 1800,
and 180. to 270 on the image in Fig. 1, clockwise from the top (north). The numbers
for the profiles are in units of counts/arcsec2 for the whole (13110.7 sec) observation, a
background of 0.017 counts/arcsec2 (taken from an agreement between the edge of the field
of the HRI and survey observations at similar galactic latitude) has been subtracted. The
profiles are shown in Figures 2 and 3.

MODELS
A set of simulated profiles from the Monte-Carlo program, convolved with a gaussian

nucleus of radius 10' ant; o = 6' are shown below in Figures 4 through 5, with the more
extended profile from the two cuts superimposed. A successful model for M82 needs dust
of radius <300 A in a cloud between 2 kpc and 9 kpc deep, at optical depths >10. Lower
limits can be set at 10-8 cm-3 density dust, 2 kpc cloud radius and with 5 optical depths
of dust for workable models, though these can all be overcome by allowing more dust or
much greater optical depths.
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SPECTROSCOPIC OBSERVATIONS
The line splitting that has been observed in spectroscopic observations of M82 (Axon

and Taylor, 1978) can be produced by scattering by dust within the disk of the galaxy. Sim-
ple models using sources moving within the nucleus (the existence of such bright sources
has been shown by O'Connell and Mangano, 1978) and the rotation curve for M82 (from
Burbidge, Burbidge, and Rubiu, 1964) can produce both published lines and more com-
plex possibilities.

Two sample slit spectrographs have been constructed in Figure 6. The drawing shows
the galaxy from the top with some velocities marked and four sources labelled in the
nucleus. The sections of the disc observed by slits a and P are drawn and labelled, and
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several sample scatterers have been placed on each slit. The shift for each scatterer-source
pair has been plotted below the figure and the line splits interpolated, producing the
observed line splitting.

Fig. 6. M82 viewed from the top: "a' 4

through Opm are the sections of the disk
viewed by two slits. Several scatterers
and their velocities have been placed on 3 3

each slit. The line shift due to each Z'

scatterer-source pair is plotted on the
graph for each slit, and the shifted
line for each source, have been drawn in.

SLITa 0) A SLIT0

-1 KPC

100 KM/S
2~ L-i

EARTH

The line splitting constructed shows the possibility of line splitting at either end as well
as splits and crossovers, using only one or two sources. Curling, horizontal lines and sharp
turns can also be produced in a spectrograph with the consideration of one additional
source.
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5. Martin, P.G., Mon. Not. R. Astr. Soc. 149 (1970), 221
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The Azimuthal and Radial Distributions of HI and H2 in NGC 6946

Linda J. Tacconi-Garman and Judith S. Young
Five College Radio Astronomy Observatory

University of Massachusetts
Amherst, MA

Abstract. We have completed a study of the atomic and molecular components of
th• -SMin NGC 6946. The distribution of molecular clouds has been determined
from a fully sampled CO map of the inner disk (R 4 8 kpc) using the 14-meter
telescope of the FCRAO (HPBW = 45"). The distribution of atomic gas was derived
from VLA observations at 40" resolution in the D configuration. When comparing
the global CO and HI properties with other components of the galaxy, we find
that the azimuthally averaged radial distributions of CO, Ho, radio continuum
and blue light all exhibit similar roughly exponential falloffs, while the
azimuthally averaged HI surface densities vary by only a factor of 2 out to R =
16 kpc. This indicates that while the He/CO ratio is approximately constant
with radius, the CO/HI ratio decreases by a factor of 30 from the center of the
galaxy to R = 10 kpc.

INTRODUCTION

To better understand the cycling of the interstellar medium and the star
formation efficiency in galaxies, we have undertaken a multi-wavelength study of
the ISM of the face-on Scd galaxy, NGC 6946. This galaxy has been well-studied
by a number of authors. Photometric data from Ables (1971) and Elmegreen and
Elmegreen (1984) indicate the exponential nature of the blue and I band
luminosity profiles. Ha studies by DeGioia-Eastwood et al. (1984) have been
used to infer the massive star formation rate. The H"-i't-ributlon has been
determined at a resolution of 2' by Rogstad, Shostak and Rots (1973). Radio
continuum emission has been observed at many wavelengths (cf. Klein et al. 1982;
van der Kruit et al. 1977). Observations of the CO distribution have previously
been determineZ-(RFris and Lo 1978; Rickard and Palmer 1981; Young and Scoville
1982), and most recently, an interferometric study of CO in the central 1' of
this galaxy (Ball et al. 1985) has uncovered a molecular bar -45" long. In this
paper we present tFe results of a complete 12CO and HI study at moderate
resolution.

DATA AND RESULTS

We have made 12CO observations at more than 100 positions in NGC 6946 with
the 14-meter antenna of the Five College Radio Astronomy Observatory, and have
fully sampled the inner 6' of this galaxy. Figure 1 shows a sample of the CO
spectra attained at radii c 2.'25, all plotted on the same scale. The CO
intensities peak in the center of the galaxy, and then fall off fairly smoothly
with radius, although azimuthal variations of factors of 3 are observed. We
observe 2 smaller CO peaks to the northeast and northwest of the galaxy in the
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direction of two major optical spiral arms. Using the standard conversion of CO
intensities to H2 surface densities (Young and Scovilll 1982) we find the
H2 density in ths central 45" to be 3.3x1022 atoms cm- with the lowest observed
values of <6x142 atoms cm- 2 in the disk of this galaxy.

CO IN
NGC696 ( 'Figure 1. A

CO sp~ecotraCO spectra

attained at
radii <2'.25
all pl *otted on
the same
scale. The
circles indi-
cate the posi-
tions where
the obser-
vations were
made. These
data represent
-1& of the
complete COmap of IGC
6946. The box
in the lower
left hand
corner indi-
cates the
scale of all
the spectra.

The 21-cm line data were obtained with the VLA in the 0 configuration,
where the resolution of the synthesized beam was 40"x37". We observe HI
emission at greater than the 3a level out to a radius of 30 kpc, with HI spiral
structure apparent in the outer disk, well beyond where the optical arms jre
seen (see Figure 2). The central surface densitt of HI is 2.5x402; H m- with
extreme values over the entire HI disk of 2.1x4020 to 2x1021 Hcm2 . There are
two noticeable HI peaks located -4' to the northwest and northeast of tht center
which are -2'.5 x 2'.5. The peak to the northeast contains about 2.4x100 NO of
HI in an area of 19 kpc 2 , and is roughly coincident with the largest, high
surface brightness spiral arm in the optical disk. The stronger peak to the
northwIst of the center contains about 3.8x108 NO of neutral gas in a region of
28 kpcz, and is also coincident with an oRtical spiral arm. The HI surface
densities in these regions are -14 No pc-z. We also observe several resolvable
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HI depressions larger than 45" (2.2 kpc) across in this galaxy to the north and
southwest of the center, as well as in the central region itself.

HI INTEGRATED INTENSITIES Figure 2. A con-

. i - - tour represen-
"tation of the600-. .10,, ". .. " . total HI

"' integrated flux
•. distribution

superposed on an
60005' enlargement of

the Palomar Sky
" . . Survey print.

0 "The contour
r_0""0" levels range from

0.2 to 3.0 Jy km
s-1 and are
-separated by 0.4tg I .. Jy km s-1 inter-

O 59 055' . ,. '"' ... vals. Regions of

HI depletion are
represented by
tic marks on the

59050' 0 .contours. The HI
0 .. synthesized beam.

' " "" "is shown In the
- •bottom left hand

.1 .1. corner of the
20h 35," 2 0 h 3 4 m 2 0 hh33m 20h 3 2 m figure.

RIGHT ASCENSION

COMPARISONS OF HI AND H2

In Figure 3 we show the H2 /HI ratio as a function of the molecular and
atomic surface densities for 89 positions at R 4 3' in the galaxy. We have made
linear fits to the data for each of the plots, and find that the H2 /HI ratio is
correlated with H2 surface density and anti-correlated with HI surface density.
These plots indicate that an increase in the H2 /HI ratio is due to an increase
in the H2 density as well as a slight decrease in the HI density in the inner
disk of NGC 6946. Thus, fluctuations in the ISM of this galaxy are dominated by
the molecular component rather than the atomic gas.

We have computed the azimuthally averaged radial distributions of HI and
H2 in NGC 6946, and have compared them with the blue luminosity (Ables 1971),
Ha (DeGioia-Eastwood et al. 1984), I band (Elmegreen and Elmegreen 1984) and
radio continuum (van Te-[ruit et al. 1977) profiles in Figure 4. The radial
distributions of CO, Ha, radio co-ntnuum, blue and I band all exhibit similar
roughly exponential falloffs (scale lengths = 4-6 kpc), while the azimuthally
averaged HI surface densities vary by only a factor of 2 out to R = 16 kpc.
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Thus the atomic gas distribution is the only component of NGC 6946 whose shape
differs from the rest. This indicates that while the Ha/CO ratio is
approximately constant with radius, the CO/HI ratio decreases by a factor of 30
from the center of the galaxy to R = 10 kpc.

'-1 l 4 I"1l 1 1 I [l''" l" " l Ill " Il[I-

" x Slope--1.79tO.22 + o Figure 3. H2/HI

2 ratio as a func-
tion of the (a)

• 0 _ atomic and (b)
0 HI H2  molecular surface

X 0 o- positions in the

NI% X 0 galaxy. A typical
"Cd -X error bar is shown

3: _ in the upper right
_* o• _ hand corner of the

EN 0

X plot. FilledX circles on the H2
0�0 0 plot represent
X 4 Slo-1.16 10.04 upper limits to,I,,,,If, the CO intensity,

20 25 21 21.5 22 22.5 and thus the H220 20.5 21 21.5 20.5 21 21.5 22 22.5 surface density.

log Surface Density (atoms cmn)

We interpret the CO/HI ratio as the efficiency of molecular cloud formation
from the atomic medium, and the Ha/CO ratio as the star formation efficiency
(SFE) from the molecular medium. Therefore, while the SFE is constant with
radius (DeGioia-Eastwood et al. 1984) the cloud formation efficiency decreases
sharply with radius. That-is, once molecular clouds are formed, stars are
produced at a rate which is proportional to the mass of the molecular clouds.
The formation of molecular clouds in the outer parts of NGC 6946 may be greatly
reduced due to the decreasing volume density of atomic gas. The optical edges
of galaxies, therefore, probabl~yreflect the edges of the molecular disks where
the formation of molecular clouds from atomic clouds is greatly reduced due to
the increasing HI scale height.
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Ftgure 4. (a) The azimuthally averaged radial distributions of HI and
H2 surface densities. (b) The blue surface brightness radial profile from Ables
(1971) ani total SFR's calaculated from He observations of DeGioia-Eastwood et
al. (1984). (c) Radial continuum radial distributions of van der Kruit et aT7"
"TM7). (d) I band (Elmegreen and Elmegreen 1984) and total ISM (HI +
radial distributions. At radii greater than 12 kpc, the closed circles in panel
d represent HI + H2 upper limits and the open circles represent the HI lower
limits to the total ISM density.
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ABSTRACT. We present initial results of a program to map the centers of
galaxies in the mid-infrared using the NASA-MSFC 20-pixel bolometer array. Maps
at 10.8 Um of the galaxies NGC 5236 (M83), NGC 1808, NGC 4536, and NGC 4527
reveal complex emitting regions ranging in size from 500 pc to 2 kpc. The
infrared spatial distributions generally resemble those in the visible and
radio. In all cases a large fraction of the IRAS 12 om flux originates in
spatial structures prominent in the maps.

1. INTRODUCTION

The central regions of many galaxies emit intense radiation at X > 5 Ur
usually attributed to warm dust. Complexes of young stars and, in some cases,
non-thermal sources appear to play a key role in heating the dust, but our
understanding of this phenomenon is severely limited by our not knowing how the
emission is spatially distributed in the centers of a large sample of
galaxies. We must be able to relate their infrared spatial structure to
fundamental galactic properties determined throughout the spectrum.

Although numerous galaxies have been observed at X > 10 Um by IRAS and from
the ground, these survey data are either of low spatial resolution, as in the
case of IRAS, or obtained with a single small focal-plane aperture (typically 6"
in diameter) centered on a visually prominent position. Multi-aperture
observations (e.g., Rieke 1976) have established scale sizes for central
infrared-emitting regions in a few galaxies, while mapping (e.g., Telesco and
Gatley 1984) has defined the details of the infrared spatial distributions in
several others. However, single-beam infrared mapping is very time consuming,
and the list of mapped galaxies is still short; only nine were mapped prior to
the present study. To address this problem, we at NASA Marshall Space Flight
Center have developed a 20-pixel bolometer spatial array for use at 10-30 Pm.
This array has substantially increased our mapping speed, as illustrated by the
fact that the total time required to map the four galaxies discussed here was
less than half an observing night.

2. OBSERVATIONS AND ANALYSIS

The maps were made at 10.8 on (AX - 5.3 pm) and were obtained at the NASA
Infrared Telescope Facility in 1985 November (NGC 1808) and 1986 March (M83, NGC
4536, and NGC 4527). The 20 array pixels were arranged in a 5 x 4 (RA x Dec)
configuration with each square pixel having dimensions (FWHM) 4"3 x 4:3. The
pixel center-to-center separation was 4"5. All maps are presented here at the
same scale, with the pixel size shown in Figure 2. Except for the lower 5" of

Carol J. Lonxdail Persson (Edtor)
Star Formaton In Galadies 497



C. M. TELESCO ET AL.

the map of NGC 1808, the separation between adjacent observed positions was one-
half pixel. The lowest contours drawn in each map correspond to a signal-to-
noise ratio > 2, and the mapped regions are enclosed by dashed lines. In these
maps, the cross designates the visually prominant position used for guiding at
the telescope. We have also found that the 2 Um teaks, which correspond to the
true nuclei as defined by the peaks in the mass distribution of old stars, are
coincident with the visible nuclei in M83, NGC 4536, and NGC 4527.

The four galaxies are bright IRAS far-infrared sources also detected by
IRAS at 12 and 25 um. The quoted flux densities are for 10.8 pm, but before
comparison of our and tRAS fluxes, our flux densities are converted to
equivalent 12 um values using the 12 and 25 um spectral slope, which is also
used to color-correct the 12 Um IRAS data. Presented flux uncertainties do not
include the * 10% inherent in the absolute flux calibration.

3. RESULTS

Our 10.8 um maps are fully reduced, but our analysis of these data is in
progress. These results are therefore presented without significant
interpretation. Preliminary comparison of the central infrared sources with
available radio and visual images shows that the shapes are similar. The study
of detailed correspondance (or lack thereof) of structure at various wavelengths
must await the accurate relative positioning of our maps with respect to radio
and visual images, a procedure now underway. Note that quoted infrared
luminosities correspond to the range 10-300 um and have oeen estimated by
assuming a reasonable extrapolation beyond 100 um (see Telesco and Harper
1980). We have also assumed that the energy distribution at each position in a
map resembles that observed from the whole region.

3.1 NGC 5236 (M83) 10

The total 10.8 Uim flux
density in our map of NGC 5236
(Figure 1) is 3.3 * 0.2 Jy,
which accounts for 80% of the 5
IRAS 12 um flux. The diameter -

of the lowest contour is 500
pc at 6 Mpc, and the total
source luminosity is -1 x W 0
1010L. Each of the two
10.8 um peaks emits -1 x
l09L. in a region 130 pc in
size. It is noteworthy that -5
no prominent infrared source
occurs at the visual and L.--------- ------

2 um nucleus. The infrared _ _,_I I_ _ _ _

map bears a striking 10 5 0 -5 -10
resemblance to the 21 cm map A RA(arcsec)
presented by Condon et al.
(1982). The visual properties Figure 1. NGC 5236 (SBc) at 10.8 am.
of the region spanned by our The contour levels (mJy/pixel) are: 100,
map are dominated by normal 150, 200, 250, 300, 350, 400, and 450.
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1lii regions (Pastoriza 1975), which, along with the infrared energy
distribution, implies that the complicated and extended infrared emission is
powered by young stars. A dust lane in the galactic bar enters the field near
the bright infrared sources to the northwest. Another dust lane enters the
field near the tongue-like feature in the southeast. We speculate that gas flow
along the bar may te feeding the star formation which is occurring at rates (OBA
stars) of 3 M. yr- throughout the mapped region and 0.4 Me yr at the peaks.

3.2 NGC 1808

The 10.8 Um flux
density within the lowest
contour of our map of NGC 10.Spm
1808 (Figure 2) is 2.5 * PIXEL
0.1 Jy, which accounts for 5 I

69% of the flux in the IRAS
12 Um band. The remaining

IRAS flux can be accounted
for by lower level emission 0 0
in the mapped region. The I
luminosity within the
lowest contour, which has a
maximum dimension of 1 kpc • -5 I
at 11 Mpc, is 2 x 10 1 0 L,. .
The peak luminosity is 5 x
109 L. from a region 230 pc
in size. NGC 1808 appears -10
to contain a weak Seyfert
nucleus embedded in a I
bright emission-line region
ionized by young stars
(Veron-Cetty and Veron
1985). Our map implies
that the Seyfert nucleus ----
emits < 25% of the infrared
luminosity. The most intense -20- I I I I 1
IR emission originates in a 10 5 0 -5 -10
region 200 pc x 400 pc in size A RA (arcsec)
which, if the lower visual
and infrared contours coincide, Figure 2. NGC 1808 (Sbc pec.) at 10.8 Um.
is centered on the Seyfert The contour levels (mJy/pixel) are: 200
nucleus. 300, 400, 500, and 600.

3.3 NGC 4536 and NGC 4527

The 10.8 Um flux density within the lowest contour of our map of NGC 4536
(Figure 3) is 0.43 * 0.03 Jy. From the entire mapped region, we detect 0.70 *
0.09 Jy, which accounts for 57% of the IRAS 12 pim flux. The total infrared
luminosity within the lowest contour, which has a long dimension of 1.4 kpc at
22 Npc, is 1.4 x 10 1 0 L. The peak luminosity is 5 x 10 9 L. from a region 460 pc
in size and originates within 1" of the visual peak. The shape of the infrared
source in NGC 4536 closely resembles that of the radio continuum emission
(Condon et al. 1982).
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The 10.8 Um flux density
from NGC 4527 (Figure 4) is

5 0.51 * 0.04 Jy within the

lowest contour, which accounts
I for 54%Zof the IRASl12 Um

flux. The lowest infrared
S0 g contour has a long dimension

U of 2 kpc at 21 Mpc. The
I luminosity within the lowest
I contour is 3 x 1010L., with 7

x 109L. originating in a 430pc region centered on each of
the two brightest peaks.
Although the complicated
emission region is roughly

- L0 -- centered on the visual peak,
no obvious infrared peak
occurs there.

10 5 0 -5 -10
A RA (arc mc)

Figure 3. NGC 4536 (Sc) at 10.8 Mm. The con-
tour levels (mJy/pixel) are: 50, 100, and 150.

I I I I I

5 ------------

0 +

Figure 4. NGC 4527 (Sb) at
10.8 pa. Contour levels I
(mJy/pixel) are: 50, 75,

100, and 12 5.
<00-

-10 -

I I I i I

10 5 0 -5 -10

A RA (urc sec)
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Far-infrared activity and starburst galaxies
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Abstract
After the IRAS discovery of galaxies with large far-infrared to blue luminosity ratio, it

has been proposed that an enhanced star formation could be the origin of the far-infrared
emission through dust heating. We have investigated whether a simple photometric
model is able to account for the FIR and optical properties of IRAS galaxies. The LIR/LB
ratio, (B-V) color and Ha equivalent width of normal spirals are well reproduced with smooth
star formation histories. In the case of starburst galaxies, several theoretical diagrams allow
us to estimate the burst strength and extinction. LIR/LB ratio up to 100 can be rather easily
reached, whereas extreme values (-500) probably require IMF truncated at the low end.

1.Introduction
One of the most striking IRAS discoveries i s the discovery of galaxies with far-infrared

activity (LR/LB) of several tens, some extreme objects even exhibiting LIR/LB ratios of 100
or greater. According to the energy distribution and optical spectra of these galaxies, bursts
of star formation have been proposed to explain their far-infrared (FIR) emission.

The purpose of this work was to check whether a simple photometric model could repro-
duce the FIR and optical properties of both normal and starburst galaxies.

A sample of "normal" spirals has been studied first. Then, the effects of bursts occuring in
normal underlying galaxies have been investigated. Several theoretical diagrams were obtained
which allow us to estimate the burst strength b (as defined by Larson and Tinsley, 1978) and
internal extinction Eb(B-V) for two samples of starburst and interacting galaxies. Finally,
the case of the most extreme IRAS galaxies (with LIR/LB - 500) is discussed.

2.Normal galaxies
The stellar population of a normal galaxy is computed for a given initial mass function

(IMF) and a history of the star formation (ratio of the present SFR to the average past SFR).
The dust content is described by the internal extinction E(B-V) and the fraction (1-f) of the
Lyman continuum photons directly absorbed by dust.

The IMF proposed by Kennicutt (1983) for normal galaxies has been adopted. Both on
observational (Vrba et al., 1984) and theoretical (Serra et al., 1980) grounds, we have assumed
that massive stars, which spend most of their life inside or in the vicinity of molecular clouds,
are on average more reddened than lower mass stars. So, a specific extinction e' for stars more
massive than - 20 M 0 has been introduced in addition to a uniform extinction e affecting all
stars.

As shown in figures 1 and 2, the He equivalent width and FIR activity of our 44 sample
galaxies are well reproduced with this model.

Ceol JA Lonsdal Perison (E&tor)
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Figure 1. Log EW(Ha) vs (B-V) diagram: normal spirals.
The EW(HG) are from Kennicutt et al. (1983) and (B-V) colors (corrected for galactic redden-
ing) are from the RC2 catalog (1976). Morphological types: A Sab, V Sb, 0 Sbc, 13 Sc, 0 Sm-
S pec. The theoretical line has been obtained with e = 0.05, e' = 0.35, (1-f)=0.3 and a galactic
extinction law (Savage et al., 1979).

Figure 2. LIR/LB vs (B-V) diagram: normal spirals.
The relation FIR = 1.75 10-1 (12.66S 12 + 5.00 S2 5 + 2.55 Se0 + 1.01Sloo) erg.cm-.s 1

(Boulanger et al., 1985) has been used to estimate the FIR luminosities. The flux densi-
ties (in Jansky) are from the Point Source Catalog (1985). Most of the galaxies lie within the
area between the two theoretical lines which may represent a realistic range of extinction for
typical spirals (lower line : e = 0.02, e' = 0.35 and upper line : e = 0.10, e' = 0.35).

The few galaxies outside of the "normal" range in figure 2 can be accounted for by lower
or larger internal extinction. However, NGC 4666 and NGC 6574 have a rather large LIR/LB
(" 3.3), more likely due to a slightly enhanced star formation.

,.Starburst galaxies
We have built starburst galaxies from normal ones by adding an enhanced star formation

event, simply represented by a step function. Three new parameters are then required : the
duration r. of the burst, its age At and its strength b (as defined in Larson and Tinsley, 1978).
The IMF has been assumed identical in burst and host galaxy and we have adopted a uniform
extinction Eb(B-V) in the burst where the stars have been formed recently and are then all
located near their birth-place.
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Figures 3, 4 and 5 show how the FIR activity, UBV colors and H,' equivalent width are
affected by bursts of different strength and extinction.
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Figure 3. LIR/LB vs (B-V) : starburst galaxies.
The three heavy lines correspond to galaxies experiencing bursts of strength b = 0.005, 0.01,
0.05 and internal extinction Eb(B-V) = 3. Thin lines show the effect of a decreasing extinction
on the FIR activity and (B-V) color (the Eb(B-V) values are indicated).

This diagram can be used to estimate the strength b in starburst galaxies. The corre-
sponding UBV and log EW(Ha) vs (B-V) diagrams (fig. 4 and 5) then give an estimation of
the burst extinction Eb(B-V) . As an example, NGC 1614, 2445, 2623, 2782, 3034 and 3504
are reported. Estimation of b and Eb(B-V) are summarized in the table.
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Figure 4. (U-B) vs (B-V) diagram : starburst galaxies.
Sequences of normal galaxies are represented by heavy lines. Thin lines show the effect of a
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decreasing Eb(B-V) on the UBV colors. Dashed lines are sequences of same Eb(B-V).
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Figure 5. same as figure 4, but for logEW(H 0 ) vs (B-V) diagram

NGC b Eb(B-V)

1614 -,0.04 >0.7
Table : Estimation of the strength 2445 <0.005 -0.3
b and extinction Eb(B-V) for 2623 -0.05 >1
the galaxies reported in fig. 3, 4, 5. 2782 -0.01 >0.5

3034 -0.01 >1
3504 <0.005 0.5-1

In the figures 3, 4 and 5, all the bursts have been assumed to be in progress since 2.107

years. Of course, when a burst gets old these figures cannot be used to estimate b and
Eb(B-V). However, as the LIR/LB ratio decreases quickly after the end of a burst, a galaxy
with large FIR activity likely experiences a recent burst. Furthermore, if Eb(B-V) is not too
large, only a current or very young burst contributes significantly to the H0, equivalent width.

4.Extreme IRAS galaxies
Figure 3 shows that LIR/LB ratios up to 100 are rather easily reached (at least in red

host galaxies) but extreme values - 500 are observed in IRAS 0404+101 and IRAS 0413+122
(Aaroneon et al., 1984-Houck et al., 1985). Such FIR activities would imply bursts of strength
b - 0.4- 0.5, clearly too large for a typical gas content. If these extreme LIR/LB ratios are
actually due to starburst events (Allen et al., 1985), more reasonable b would be obtained
with an IMF forming massive stars only. For instance, with a lower mass limit at - 9 MO, a
strength b of 8-10% could produce LIR/LB -500.

5.Conclusion
Thus, a simple photometric model is able to account for the FIR and optical properties

of both normal and starburst galaxies. Of course uncertainties in the duration and age of
the burst complicate the interpretation of the observational data. However, bursts of star
formation, put forward on observational evidences to explain many of the luminous IRAS
galaxies, appear to be realistic from this theoretical study.

Effects of other choices for the burst parameters (age, duration, IMF) are discussed with
more details in a paper submitted to Astronomy and Astrophysics, main journal.
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IRAS Observations of Starburst Galaxies

Kazuhiro Sekiguchi
Department of Astronomy, New Mexico State University

Las Cruces, New Mexico 88003 U. S. A.

Far-infrared properties of Starburst galaxies were analyzed using IRAS
observations at 25, 60, and 100 prm. Seventy-nine of 102 Starburst galaxies
from the list of Balzano were detected. These galaxies have high IR
luminosities of up to a few 1012 1L and concentrate in a small area of the IR
color - color diagram. The IR power law spectral indices, a, lie within the
ranges -2.5 <a(60,25)< -1.5 and -1.5 <a(100,60)< 0. These observed indices
can be interpreted in terms of a cold (-30 K) disk component and a warm
(-80-90K) component. More than 80% of the 60 pm emission comes from the warm
component. The fraction of the 60 pm emission attributable to the warm
component can be used as an activity indicator.

Strong infrared excess is known to be a property of starburst galaxies. It
has been suggested (Rieke and Low 1975; Rieke et al. 1980; Weedman et al. 1981;
Gehrz, Sramek, and Weedman 1983) that this IR excess is from gas and dust
heated by newly born massive stars. The maxima of these IR fluxes fall into
the IRAS wavelengths ranges, 12, 25, 60, and 100 pm. There is an indication
that a large fraction of the IRAS selected infrared luminous galaxies are
starburst galaxies (Elston et al. 1985; Allen , Roche, and Norris 1985; Soifer
et al. 1986). Some of them such as NGC 6240 (Wright, Joseph, and Heikle 1984)
show high luminosities, up to 1012 L9, comparable to those of quasars.

It is therefore of interest to eximine the far-infrared properties of
starburst galaxies. In this paper we present the infrared properties of
starburst galaxies based on the IRAS survey data. Then we try to interpret
these properties in terms of their star formation activity.

Galaxies studied by Balzano (1983) were used as the prime sample of
starburst galaxies. These galaxies are known to have a nuclear starburst which
dominates their observable properties in many wavelengths. In addition to the
Balzano galaxies, two well known starburst galaxies NGC 3690 (Gehrz, Sramek,
mad Weedman 1983) and NGC 6240 (Rieke et al. 1985) were included in the sample.
Eighty-one of 104 sample starburst galaxies are identified and listed in the
Cataloged Galaxies and Quasars Observed in the IRAS Survey (Lonsdale et al.
1985). Quoted flux densities of 25, 60, and 100 pm in the catalogue were used.
Since color correction for a black body source with T - 100 K is small at 60
and 100 p (< 4%), and - 16% at 25 pm, no cclor corrections were applied.

Carol J. LonMa Peruon (Editor)
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RESULTS

Figure 1 is a plot of power law spectral index a(60, 2 5) vs. a(100,60) for

all the starburst galaxies observed by the IRAS survey. The spectral index is

defined by -a(X2,ki) = Log(f2/fi)/Log(X2/Xi), where ft is the observed flux density

at L. This figure shows a large scatter of observed colors among the objects.

Some are even located above the power law line. No apparent trend or tendency

is seen from this plot. One reason for this large scatter is that not all of

the observed flux values are of the same quality. (A detailed discussion of

the uncertainties of IRAS measurements is given in IRAS Explanatory Supplement.

Beichman et al. 1985)
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Figure 1. An infrared color-color plot tor all staxblrat galaxies detected
snd identified by the MS survey. The spectral indoxes ae defled in the
tezt. The loci for Black body and PFaor lIr surces hbve been plotted for
comparism. The nxieru along the Power lo lne are the spectral indice
aed alomg the Black body line are the temperatures.

To obtain more reliable far-infrared colors of the starburst galaxies, we
imposed certain constraints on the sample. First, only flux densities of good
quality were selected. Then, to reduce uncertainties, only quoted flux values
with a la flux uncertainty Sfv/fv < 0. 12 were used. Finally, to minimize
possible effects of the different diaphragm sizes at 25pm (-0'.76 x 4'.6), 60
pm (-l'.5 x 4'.75), and 100pm (-3'.0 x 5'.0), a distance limit z > .0067
corresponding to distances exceeding 28 Mpc (A Hubble constant of 75 km s-1

Npc71 is used throughout this paper) was applied. If a typical galactic disk
has a radius 20 kpc, then a distance of 23 Hpc implies 3'.0 in angular
dimension. Therefore, at least for the flux densities at 60 and 100 pm used to
obtain total infrared luminosity, the diaphragm size effect should be small.

After having applied these criteria, nineteen objects remained for further
analysis. Table I gives the identifications of these galaxies along with other
pertinent information. Figure 2 shows the infrared color of these 19 galaxies.
From this figure it is apparent that starburst galaxies occupy a distinct and
quite localized position in the diagram. The mean spectral indices for these
galaxies are <a(60,25)> = -2.02 +0. 16 and <a(100,60)> = -0.71 E0.35.
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Table I

Objea IRAS Name u(60,25) a(lO00.6) z 'w P Log(Lw) Los(Lc) Log(LIR)
( K) (ergs s-) (erg$ s-) (ergs s-I)

Mk 133 09578+ 7222 - 1.97 - 1.15 0.0068 87 .S2 43.43 42.93 43.55
Mk 158 10560+ 6147 - 2.22 - 0.66 0.0068 80 .99 43.85 43.14 43.93
Mk 161 10591+ 4529 - 2.13 -0.92 0.0200 82 .85 44.25 43.68 44.36
Mk 201 12116+ 5448 - 1.87 -0.22 0.0084 85 .93 44.52 43.54 44.56
Mk 213 12290+ 5814 - 1.99 1.02 0.0105 86 .84 43.92 43.36 44.02
Mk 286 14188+ 7148 -2.02 -0.73 0.3250 84 .87 44.72 44.06 44.81
Mk 326 23256+ 2315 - 1.85 - 0.84 0.0130 88 .6 44.12 43.48 44.21
Mk 496E 16104+ 5235 - 1.93 -0.78 0.0290 86 .86 45.02 44.39 45.11
Mk 602 02572+ 0234 - 1.87 -0.89 0.0099 88 .85 43.84 43.23 43.94
Mk 691 15447+ 1802 - 2.30 - 1.15 0.0110 80 .83 43.93 43.45 44.06
Mk 708 09395+ 0454 - 2.22 -0.78 0.0070 80 .87 43.67 43.04 43.76
Mk 717 10078+ 2439 - 1.73 -0.16 0.0212 88 .93 44.56 43.57 44.60
Mk 799 13591+ 5934 -2.09 -1.29 0.0110 85 .81 44.36 43.91 44.50
Mk 897 21052+ 0340 - 2.05 - 0.80 0.0260 83 .87 44.60 43.95 44.68
Mk 1089 04591- 0419 - 1.99 -0.59 0.0120 83 .89 44.04 43.31 44.12
Mk 1093 05053- 0805 -2.21 -0.58 0.0140 80 .90 44.52 43.76 44.59
Mk 1379 14150- 0711 -2.03 -0.73 0.0094 83 .87 43.90 43.24 43.98
NGC3690 11257+ 5850 -1.81 -0.08 0.0100 86 .94 45-35 44.29 45.38
NGC6240 16504+ 0228 -2.15 -0.21 0.0246 80 .94 45A3 44A3 45.47

1. Redshift Sourcer Bakzno (1983), for NGC 3690 Sandage and Tammanm (1981)
and for NGC 6240 Fosbury and Wall (1979).
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To interpret the far-infrared colors of these galaxies, a two component
black body model was used. A fixed cool temperature, Tc, of 30 K which
represents the cold disk component was assigned. Then, a unique warm
temperature, Tv, which represents all the IR sources except the 30 K component,
can be obtained from the observed colors. In figure 2, we plotted loci of the
two temperature model. Numbers along the two temperature model curves are the
fractions, P, of the 60 pm warm component flux to the total 60 pm flux observed.
The galaxies' Tw and P determined from observed colors are given in Table I.

Finally, using the procedure outlined by Lonsdale et al. (1985), the total
IR luminosities from the two temperature model were computed. The total IR,
LIR, the warm, Lw, and the cool, Lc, component luminosities are given in Table
I.

The far-infrared colors of the starburst galaxies are quite distinct.
Their color indices a(60,25) are steeper than the range of Seyfert selection
criterion, -l.5<a(60,25)<-0.25 (de Grijp et al. 1985). Compared to the median
color indices of Seyferts and H II region galaxies (Hiley, Neugebauer, and
Soifer 1985), separation from Seyfert l's is clear. However, there is
significant overlap with Seyfert 2's. As is expected, H II region galaxies
show almost the same color as those of the starbursts. On the other hand, the
indices a(100,60) of the starbursts are similar to those of the Seyfert's.
They are much flatter than those of non-active spirals (de Jong et al. 1984)
and infrared galaxies in the IRAS minisurvey (Soifer et al. 1984).

From Figure 2, it can be seen that the starburst galaxies occupy a
relatively small range, -80 to 90 K, of Tw and a wider range, -. 80 to .95 of
P. Since the warm component mainly represents warm gas and dust associated
with a star-formation region, Tw and P should indicate their physical state and
degree of activity. The flat a(100,60) of starburst galaxies may be the result
of a larger warm component contribution to the total IR flux than that of
non-active spirals (ie. large P).

The total IR luminosity of the starburst galaxies ranges from 1010 to 1012
L9. NGC 6240 is the most extreme. At the low luminosity end there is overlap
with non-active spirals.

We thank K.S. Anderson for his valuable help and comments and S.W. Berrick
for help with manuscript preparation.
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A NEAR-INFRARED STUDY OF

THE LUMINOUS MERGING GALAXIES NGC 2623 AND ARP 148"

MARSHA.L Joyt AM PAUL M. HARVEyt

Astronomy Departnent, University of Texas at Austin

Austin, Texas 78712

ABSTRACT
As part of an investigation of the physical mechanisms which produce large infrar.d

luminosities in interacting systems, we have obtained multicolor near-infrared maps of the long-
tailed galaxy NGC 2623 and the ring galaxy Arp 148. We decompose the near-infrared broadband

spectrum to obtain the contributions of four processes: emission from evolved stars, nebular
continuum emission, thermal reradiation, and extinction. This multicolor analysis, along with
2 gim maps and 10 jim measurements, is used to determine the structure of these interacting

galaxies and to delineate regions of star formation.

Previous optical studies have suggested that both NGC 2623 and Arp 148 are in the
process of merging. Although much of the optical structure in the nuclear regions is found to be an

artifact of obscuration, our infrared analysis confirms that these galaxies are coalescing. Theoretical
models indicate that the pair of narrow tails in NGC 2623 are the result of a tidal interaction

between two spiral galaxies whose orbits are destined to decay within several revolutions; since a

single nucleus is observed in the infrared, we conclude that the merger is complete. The ring

galaxy Arp 148 is found to be the product of a close collision of two galaxies, and our multicolor

analysis implies that this system is in a very early stage of coalescence. The nuclear regions of
Arp 148 and NGC 2623 are extremely luminous in the infrared (-3.5 x 1011 L@); evidence

indicates that recently formed stars are the source of the infrared emission in NGC 2623.

Manuscript submitted to the Astrophysical Journal, 4 June 1986.

tVisiting astronomers at the Infrared Telescope Facility, which is operated by the University of

Hawaii under contract from the National Aeronautics and Space Administration.

Carol J. Lonsdale Persson (Editor)
Star FormadOn In Galades 515



Star Formation in the Merging Galaxy NGC3256

James R. Graham 1, G. S. Wright 2, R. D. Joseph3, J. A. Frogel4, M. M. Phillips4,
& W. P. S. Meikle3

lLawrence Berkeley Lab., 2Royal Observatory Edinburgh,
3 Imperial College London, 4 CTIO.

Abstract
We have mapped the central 5kpc of the ultra-luminous merging galaxy

NGC3256 (Graham et al. 1984) at J, H, K, L, & 10pl-n, and obtained 21im spectra
of the nuclear region. We use this data to identify and characterize the
super-starburst which has apparently been triggered and fuelled by the merger of
two gas-rich galaxies. We will also show that the old stellar population has relaxed
into a single spheriodal system, and that a supernova driven wind might eventually
drive any remaining gas from the system to leave a relic which will be
indistinguishable from an elliptical galaxy.

1 Introduction
NGC3256 is a spectacularly disturbed galaxy which has been identified as a merger

(Toomre 1977). At a distance of 50Mpc (Hf,=50km/s/Mpc) this is one of the closest and most
luminous such systems, and therefore it can be studied in some detail. The IR maps of NGC3256
were made at a resolution of 5", which corresponds to 1.3kpc. These maps show emission
extending over 5kpc.

2 Mapping and Spectroscopy
The 10tm emission is quite remarkable both in its extent and luminosity,(gee figure 1).

The 10pTm l u•mnot ( defined as vLv ) in the central kpe correonds to lxl~lUL this
iceesto 3x10 L within 2kpc of the nucleus, and to 6xl0"VL in IRAS band ?(12^m,
projected aperture of ix7.0kpc ). Thus not only does this galaxy raQ& among the most luminous
galaxies known (e.g NGC6240 or Mrk231, Wright et al.; 1984, Rieke et al. 1978) but most of the
IR luminosity arises from outside the central kpc!

Table1

10gm Luminosity

Aperture C') Corresponding Distance (kpc) 10pm Luminosity (L,)

3.5 0.9 8.4x10 9

5 1.3 1.4x10 10

15 3.9 3.4x10 10

Carol J. Lo0da16 Persson (Editor)
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1 kpc

Figure 1
A map of NGC3256 at 109m. The map was made at a resolution of 5" which corresponds to
a distance of 1.3kpc. This map, and multi-aperture lOj0m photometry shows that most of the
emission at this wavelength arises from beyond the central kpc. The map contours are 44,
88, 175, 350, 700 mJy/beam.

Although this galaxy is thought to be the merger of two disc galaxies there is no evidence
for two distinct systems from the near-IR colour maps (J, H, & K). 'These maps show that the
distribution of old stars is relatively smooth. The structure which i, pr sent can be interpreted as
due to extinction. The J-H map demonstrates that the structure to the south of the nucleus is
caused by a dust lane with Av~ 2 mags. The near-IR colours can be explained in terms of
emission from the old stellar population, reddened at J, and with some evidence for an additional
hot dust component at K. The K-L colour on all pixels on and around the nucleus is > 1.0,
indicating a strong non-stellar dust component at 3.5gim. The K-L colour map shows 2
off-nuclear 'hot-spots' indicating positions of high star formation efficiency. Multi-aperture
photometry at K shows that the distribution of old red stars can be described accurately by a r
profile out to a radius of at least 5kpc. This indicates that as predicted violent relaxation has
occurred following the collision producing a stellar distribution similar to that found in elliptical
galaxies.

A spectrum of NGC3256 at 21Lm shows two strong lines at ) = 2.163 and 2.134pm,
which we identifyas By and H2 1-0 S(l). The luminosity in these lines is approximately the same
and equal to 7xl0KL.The luminosity in these lines is high. In particular the H 2 flux exceeds that
of NGC1068 (Thomson et al. 1978) and is comparable to Arp220, but an order of magnitude
less than NGC6240 (Joseph et al. 1984)

Table 2

Spectroscopy

Wavelength (jim) Line Luminosity (L.)

2.163 By 7 x 106

2.134 H2 1-0 S(l) 7x 106

Sig
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3 NGC3256 as a super-starburst.
The observational evidence overwhelmingly points to recent and extensive star formation

triggered and fuelled by the merger of two gas-rich disc galaxies. The sheer extent of the
luminosity at 101pm (5kpc), and its lack of confinement to nuclear regions is the single most
persuasive piece of evidence in favour of star formation. Combining tle above data the starburst
within a,•rdius of 1.5 kpc of the nucleus can be characterized by 4x101 BO sgrs producing a total
of 3x10'* Lyman continuum photons per second, and a luminosity of 2x10I L, (see table 3).

Table 3

The Starburst within 1.Skpc of the nucleus

Total LB./LIR Spectral #of Stars

Luminosity (L.) Type required

2x10 11  4x10-5  BO 4x10 6

The ratio of H2 emisssion in the 1-0 S(1) line to total luminosity is 4x10"5. A ratio of lxl0"5

would be expected for a star formation region such as Orion.

Finally we note that the energy that will be released when these young stars explode as
supernovae exceeds the binding energy of the gas (as determined from the rotation curve) by a
factor of 50. Thus, it is very likely that a supernova driven wind will blow away any gas
remaining after the starburst has faded, and leave a relic which will be indistinguishable from an
elliptical galaxy.
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The Luminosity Functlim of the Brightest Galaxies in the IRAS Survey
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ABSTRACT. Results from a study of the far infared properties of the brightest galaxies in the IRAS survey are

described. Them is a correlation between the infrard luminosity and the hinfared to optical luminosity ratio and
betwe t infmred lumino and the far infrard colm temperature in these galaxies. The infrared bright galaxies
represent a significat compoenm of extragalactic objects in the local universe, being comparable in space density
to die Seyfeo, optically identified starburst galaxies, and more numenus than quasars at the same bolometric
luminosity. The far hinrcd luminosity in the local universe is approximately 25% of the starlight output in the
mie vouawe.

U INTRODUCTION

The IRAS survey was the first infrared all sky survey with sufficient sensitivity to detect a significant number
of cagalactic sources. 7b understand the significance of the infrm emission from galaxies it is important to
esalish a cersus of the kinds of galaxies hat are significant infrared emittrs, to determine the space densities of
thes galaxies, and to compare infrared bright galaxies with other known classes of extragalactic objects.

We have begun a program to understand the properties of the brightest infrared galaxies discovered in the
IRAS survey. This paper derives the far infrared luminosity function of this sample of galaxies. A preliminary
description of the luminosity funcion for the most luminous members of this sample was reported by Soifer, et at.
(1986a), while a detailed description of the entire sample is given by Soifer, et al. (1986b).

2A THE hAS BRIGHT GALAXY SAMPLE

Th objects selected for study in this survey were chosen to be a complem sample of far infrared emitting
extraplactic objects. Thw finl criteia defining the IRAS bright galaxy sample wer all extragalactic objects having

6Wprm flux densities pestar tan 5.A Jy and galactic latitd e b I > 30. The area of sky where complete redshift
isormaton was obtained for candidate objects placed further weal constraints on the sample: Declination > -300
for 0-12 hra,_ -15 for 12-14 hr, and > -200 for 14-24 hrs.

The final smpe was selected to be all extragalactic sources meeting the above constraints selected from
dt IRAS Pon Source Catalog (1965), the Catalog of Small Scale Structures (1966), and the Catalog of IRAS
Observalnom of Large Galaxies (Rice, a at. 1986). As would be expected, the dam sampling the largest spatial
scales always provided the largest 60pm flux density.

e total area covered in the Bright Galaxy survey is -14,500 square degrees. There are 324 objects in the
sample; 29 galaxies have 60#m flux densities taken from the Large Galaxy Catalog, 53 have 60pm flux densities
t* from the Small Scale Structures Catalog, with the rest taken fron the Point Source Catalog.

3.0 BASIC PROPERETIES OF THE BRIGHT GALAXY SAMPLE

The pmrpertes of th IRAS Bright Galaxy sample are important for describing the far iflred characteristics
of td local Univore. A basic question is to deermine the kind of objects contained in thee sample. Although no
mspholoal crerion was established for an object to be in the Bright Galaxy sample the vast majority of objects
in the sample am cataloged galaxies. FIbthermore only one object in the sample, IR0518-25 (Sanders, et a. 1986),
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shows a predominantly stellar appearance on visible images. This object (described in detail by Sanders, et al.) has,
In addition, brood emission lines and as clearly a Seyfert nucleus. Thus virtually all the infrared bright extragalactic
objects in the local Universe are associated with galaxies.

All the galaxies in the Bright Galaxy mample have far infrared flux densities much greater than can be expected
from a stellar populatiom. None are known radio loud objects where the infrared emission could be expected to be
an extension of a radio non-thermal source. Thus we assume that the far infrared peak in the energy distribution is
due o thennal Cmission by dust.

The galaxies in the Bright Galaxy sample range in distances from 0.7 Mpc for M33 to >300 Mpc. The median
distance is 32 Mpc, excluding Virgo galaxies. Thus the IRAS Bright Galaxy sample extends well beyond the local
supecluster, but js not sampling objects at distances significant with respect to the size of the Universe, i.e. the
sample is one of the far infrared properties of the local Universe. A total of 31 sample galaxies were identified as
associated with the Virgo cluster. While the Virgo cluster presents a significant contribution to the Bright Galaxy
sample, it by no means dominates the sample.

The range of observed far infrared luminosities extends from _- 10Lg to > 10121, with the peak in the
distribution occurring at - 2 x 10.IL. lfbr the IRAS Bright Galaxies the range in values of Iog(f,/fb) is from -1
to 2.1, with a median value of log (f,/fb) of OA, where fi, is the far infrared flux from the galaxy, and fb is the flux
in the blue, defined as Af, (blue). This value "s much greater that the corresponding value of log (ff/fb) of - -0.2
for an optically selected sample of galaxies. The infrared flux limited sample selects galaxies with much greater
average infrared luminosity per unit blue luminosity than does a magnitude limited optical sample.

Figure 1 shows that f./fb correlates with L, while there is no corelation between fQ/fb and Lb. The simplest
explanation of this conelation is that the far infrared and blue luminosity components are uncorrelaled, and the blue
luminosities of the galaxies in the bright galaxy sample are roughly constant. Thus a larger f-,/fb ratio requires
larger L& rather than extinction depressing the blue light. Th absence of galaxies in the region of Figure 1 where
L&t < lOel 0 and ffr/fb > 10 shows that there are no dwarf galaxies in the Bright Galaxy sample with large fu/fb
ratios.

In Figure 2 the 60pm/lOOpm flux density ratio (effectively color temperatur) is plotted vs far infrared lumi-
nosity. There is a colatiom between the color temperature and the far infrared luminosity in the sense of higher
luminosites generally implying higher 60pm/lOOpm color temperatures, while there is no correlation between the
far inframd color temperatue and the blue luminosity. The lack of correlation between far infrared color temperature
and blue luminosity further supports the lack of coupling between the blue and far infrared luminosity components
in these glaxies.

4.0 LUMINOSITY FUNCTION OF IRAS GALAXIES

The 60p/m luminosity function derived from the Bright Galaxy sample is shown in Figure 3. Other 60#im
luminmosity functions have been derived based on other samples from the IRAS data (e.g. Lawrence, et a. 1986,
Rieke and Lebofsky, 1986). We have compared these luminosity functions with that derived for the Bright Galaxy
sample, and show this comparison in Figure 3. Here we have converted all the luminosity functions to the units
used hare, i.e. the bins represent the space density in galaxies per cubic megapasec: per magnitude interval in
60aom luminosity, where the 60om luminosity is taken as ,L,(60pm), and H, is taken as 75 Km s-I Mpc- 1. As
can be seen from Figure 3 the agreement between the three luminosity functions, derived from completely different
samples is excellent.

Two power laws, fit to the observed 60/am luminosity function, are shown in Figure 3. At low luminosity
the best fit power law gives a slope p , L-0.83, while at high luminosity the best fit slope is p - L-2-5. The
huminosy of the break between the two power laws is ,- 2 x 101oL0 . For comparison a Schechte function is also
fit to the observed luminosity function.
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While die strict definition of the 60pm luminosity function is most appropriate for comparing the local lumi-
nosity function with the deeper surveys with IRAS (e.g. Hacking and Houck, 1986) and ultimately next generation
space missions, one of the more immediate goals of the present study is to understand the significance of far infrared
emission in the local Universe. This requires comparing the space densities of widely varying classes of objects. To
do this in a meaningful way we have chosen to paramaterize the luminosities of objects by the bolometric luminosity.
In Figure 4 the luminosity functions of a variety of different important classes of extragalactic objects are plotted.
The far infrared luminosity has been adopted as the bolometric luminosity for the IRAS Bright Galaxy sample. The
total far infrared luminosities calculated in this way are about 50 percent greater than the 601An luminosities for
the same galaxies.

Fbr comparison with the luminosity function for the Bright Galaxy sample, luminosity functions taken from
the literature for "normal galaxies," "starburst galaxies," Seyfert galaxies and quasars are included in Figure 4.
The published luminosity functions are given in terms of Mb, i.e. absolute blue luminosity, and thus a different
bolometric correction was estimated for each of the classes of objects. These corrections are described in detail in
Soifer, 1986ab.

Figure 4 shows that the infrared bright galaxies represent a significant component in the local Universe, being
more numerous than all categories of extragalactic objects at very high luminosites, and more numerous than all
except normal galaxies at those luminosities where normal galaxies contribute significantly to the global luminosity
function.

The infrared galaxies are more numerous than (non-Seyfert Markarian) starburst galaxies at all luminosities. In
the range 01 0 L•0 to 101 1Lo, the two become quite comparable. As suggested by Soifer, etat. 1986a, this agreement
suggests that these represent the same population,, at least over this luminosity range. At higher luminosities the
infrared selected galaxies become significantly more numerous than the starburst galaxies, suggestive of either dust
affecting the UV selection of the more luminous Markarian galaxies, or possibly a new luminosity component
becoming important at the highest luminosities.

Below -, 2 x 10"Lo, normal galaxies dominate the space densities of objects in the local Universe. For
luminosities above , 2 x 1O'1 LO infrared luminous galaxies appear to be the dominant population in the local
Universe, having virtually the same space densities as the Seyferts at the 1 wer end of this range, and a significantly
greater space density than quasars as the higher luminosities. How high the far-infrared luminosity function extends
will await a survey of sufficient numbers of IRAS galaxies to be able to make a statistically significant statement
on the content of the next luminosity bin.

Irom the luminosity functions the contribution to the luminosity density of the local Universe can be estimated.
The galaxies with far infrared lUMinosite greater than ILOS produce roughly 9 X 107L0/MpC3 in far infrared
emission, with 4x 107Lo/Mpc3 being generated in galaxies with luminosities greater than 101 0°.o. By comnpariso
the normal galaxies produce a bolometric luminosity density of ~ 4 x lOSL0/Mpc 3 , where the integrated blue
luminosity density was taken from Felten (1977) and Yahil, Sandage, and Tammann (1980), corrected to bolometric
luminosity and to H.ff75 Km s-I Mpc-1 . Thus -25 percent of the stellar luminosity luminosity of galaxies emerges
in the far infrared. At luminosities greater than 10r0L0 it is likely than star formation is the dominant form
of energy generation in infrared bright galaxies (this volume) at least until the very highest luminosities. Several
authors (Persson and Helou, 1986, Helou, 1986, Rowan-Robinson, 1986, de Jong and Brink, 1986) have suggested
that a significant fraction of the far infrared luminosity in less active galaxies is recycled stellar radiation not
necessarily associated with star formation regions. Thus ovemll, star formation accounts for between 60 and 80
percent of the far infrared luminosity generated in the local Universe.

The total space density of galaxies with far infrared luminosities > 1011L. is , 2.2 x 10-1 Mpc- 3 . Figure 1
shows that 85 percent of these galaxies have blue luminosities > 01°0 L0 . From Christensen (1975) the space density
of normal galaxies with Lb > 101OL. is 3.4x 10- 3, or roughly 0.6 percent of the galaxies with Lb > 1010 L.0 have
L& > 10"Le. If the infrared bright phase has a lifetime tir and the optical phase has a lifetime tb then the fraction
of galaxies that have undergone such an infrared active phase is 0.006 x tb/ti. If tb - 1010 yrs, and the infrared
bright phase is a starburst phase with ti < 10 yrs (Rieke, et at. 1980, Gerhz, Sramek, and Weedman, 1983) then
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a significant fraction, perhaps appreaching 50 percent of galaxies with L, > lOWL 0 must have undergone such an
infrared active period over the course of their evoulution, if this is a non- recurring event stage in galaxy evolution.
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DISCUSSION

BECKLIN:
Is there any reason to suspect that the infrared luminosity function drops off at L > 1012 Le and thus

drops below the QSO function?

SOIFER:
Not yet. This will require statistically complete redshift surveys of several thousand IRAS catalog

galaxies to extend the 60/Am luminosity function to greater luminosities than , 2 x 1012 L9.

LOW:
Why have we not found galaxies more luminous than Mkn231?

SOIFER:
Based on our Bright Galaxy luminosity function we would predict 3 objects with far-infrared luminosity

about 1 magnitude more luminous than Mkn23 1. We found no objects in that bin. Others have found individual
objects having higher luminosity than Mkn231 in the IRAS survey (e.g., MknilO14, 3C48, etc.) Until a large
enough sample can be surveyed, where the number of sources at these luminosities is significant, we will not
know whether there is a real cut off in the luminosities of IRAS galaxies.
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ROCHE:
We have been taking optical spectra at the AAT of faint IRAS galaxies with no identified counterparts

on the Sky Survey, and some of those have redshifts in the range 0.2-0.3. Even with fluxes of approximately
I Jy at 6014m they have luminosities a few times greater than that of Mkn 231.

WINDHORST:
Given the apparently good correlation between 60jim flux and 21 cm continuum flux for spiral galaxies,

did you translate your 60pm luminosity function to 21 cm and how does it compare with, for instance,
Hummel's 21 cm radio luminosity function of spiral or interacting galaxies?

SOIFER:
Hacking has done this and finds excellent agreement between the 60prm source counts and the radio

source counts for spirals done by Condon.
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ABSTRACT. We present preliminary results from a radio survey of galaxies
detected by the IRAS minisurvey. We find that the main difference between
galaxies selected in the far-infrared and those selected in the optical is that
the former have higher radio luminosities and that the radio emission is more
centrally concentrated. There is some evidence that the strong central ralto
sources in the gilaxies selected in the infrared are due to star formation
rather than to active nuclei. If the radio emission is caused by star forma-
tion, the star formation rate divided by the volume in which the star formation
is occurring is 100-1000 times greater in the galaxies selected in the infrared
than in the disks of normal galaxies.

INTRODUCTION

We present preliminary results from a VLA survey of the galaxies detected
by the IRAS minisurvey. The sample consists of the galaxies in the area of the
IRAS minisurvey with Mpg < 18 and $60m Z 0.5 Jy (Soifer et al. 1984), together
with the minisurvey sources that did not have optical counterparts on the
Palomar Sky Survey (Houck et al. 1984) but that were later found to be galax-
ies (Aaronson and Olszewski 1984, Houck et al. 1985). Eighty-eight of the 92
galaxies in the sample have redshifts, measured either at Mauna Kea
Observatory or at Palomar (Lonsdale, private communication). Because it was
selected in the infrared, the sample is biased towards galaxies with high far-
infrared luminosities; 76% of the galaxies have Lfir > 1010 L., compared with
5% of the spirals in an optical catalogue (Devereux, private communication).

We made 10-minute 'snapshot' observations of all the sources at 5 GHz with
either the B- or C-array of the VLA, or with both. The data were reduced in a
standard way, with extensive use being made of the CLEAN algorithm of Hogbom
(1974). To obtain structural information on the many sources that were just
resolved by the VLA, we found the two-dimensional Gaussian brightness distribu-
tions that best represented the sources. This procedure gave us three struc-
tural parameters for each source: the d1 "tances between the half-intensity
points along the major and minor axes and the position angle of the major axis.
Flux densities were obtained either from the Gaussian fits or from integration
over the maps in the vicinity of the significant components. Typical noise on
the final maps was 0.2 m3y beam- 1 .

Carol J. Lonsde Persson (Editor)
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RESULTS

Of the 92 objects in the sample, 57 were detected by the VLA. An addi-
tional 10 were detected at 5 GHz with the Effelsberg telescope by the Bonn
group (Klein, private communication). Eighteen of the 57 VLA detections were
unresolved. There is one double-lobed radio source (0421+040; Beichman et al.
1985), and three of the pairs of interacting galaxies in the sample have radio
sources coincident with both galaxies.

Fig. I shows an unrepresentative collection of radio maps; most typical is
0402+212, an undistinguished blob of emission at the position of the IRAS
source.

0402+212 1752+329
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Figure 1. VLA maps of the IRAS sources 0402+212, 0409+054, and 1752+329.
Negative contours are dashed, positive contours are solid lines, and the zero-
level contour has been omitted. For the first two sources, the contour interval
is 0.2 TJy beam- 1 ; for 1752+329, the contour interval is 7 WTy beam-1 . The
ellipse in the bottom right-hand corner of each map shows the shape and size
(FWHi) of the telescope beam. The 0409+054 source has a large physical size,
"-7 kpc in diameter. 1752+329 is a pair of interacting galaxies. The radio
peaks are coincident with the two galaxies.
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DISCUSSION

Fig. 2 shows the P-D (radio luminosity-physical size) diagram for the
minisurvey radio sources. The angular sizes used are mostly (exey)1/ 2 , where Ox
and • are the distances between the half-intensity points along the major and
minor axes of the best-fitting Gaussian brightness distribution. For sources
with complex radio structures, angular sizes were measured off the maps between
the lowest believable contours. The diagonal lines are lines of constant sur-
face brightness. The undetected galaxies may have remained undetected because
their radio luminosities are generally lower than those of the galaxies that
were detected, or they may have similar radio luminosities but lower surface
brightnesses and so fall on the P-D diagram to the right of the limiting sur-
face brightness of the VLA--roughly the upper diagonal line in Fig. 2. The
sizes of the sources range from 0.4 to 35 kpc. but most have sizes that bunch
around the median, -2 kpc.

How do the radio properties of these galaxies compare with those of galax-
ies selected from optical catalogues? Hummel (1980, 1981) used the Westerbork
telescope to observe a large number of galaxies in the Reference Catalogue of
Bright Galaxies. In Fig. 2 the horizontal lines show the luminosities above
which I% and 10Z of Hummel's galaxies lie. The minisurvey radio sources are
significantly more luminous (transforming between 5 GHz and 1.4 GHz, the fre-
quency used by Hummel, by assuming a - 0.7). The difference between the radio
properties of infrared- and optically-selee'..-d galaxies becomes more marked
when one considers that the radio emission Zrom a typical minisurvey galaxy is
coming from a much smaller physical regi(,- than the emission from a typical
galaxy in an optical catalogue.

Another way to look at the difference between the radio properties of
optically- and infrared-selected galaxies is to compare surface brightnesses;
the minisurvey sources have surface brightnesses similar to those of the cen-
tral sources in some well-known nearby galaxies (Fig. 2) (and much higher sur-
face brightnesses than the disks of those galaxies) but higher luminosities and
larger physical sizes. In the nine cases where we have accurate astrometry, to
within the position errors (1-2 arcsec), the radio and optical centroids coin-
cide, showing that the minisurvey radio sources occur in the centre of the
galaxies.

What is causing the intense radio emission from the central regions of the
minisurvey galaxies? Two possibilities, considering the high far-infrared
luminosities, are star formation or active nuclei. The data are not good
enough to reach a definite conclusion, but there are two arguments that suggest
that the radio emission is caused by star formation.

The median physical size of a sample of Seyferts in which the radio emis-
sion is probably caused by collimated outflow from an active nucleus is only
one-sixth that of the minisurvey galaxies (Ulvestad and Wilson 1984), which
suggests that something different in the minisurvey galaxies is causing the
radio emission. The second argument is that if the radio emission is caused by
plasma beams from an active nucleus, the radio sources should be long aad thin;
which is not the case, as is shown in Fig. 3. There we plot for the minisurvey
sources a histogram of eccentricity, defined as the distance between the half-
intensity Points along the major axis divided by the same distance along the
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Figure 2. The luminosity-physical size diagram for the minisurvey sources. A
Hubble constant of 75 km s-1 Mpc- 1 has been assumed. A indicates an upper limit
to the physical size. The squares show the positions of the central sources in
some well-known nearby galaxies (Ekers 1975). The diagonal lines are lines of
constant surface brightness. Galaxy disks have surface brightnesses that lie
between these lines. The horizontal lines show the luminosities above which lZ
and 10Z of Hummel's galaxies lie.

minor axis. The median eccentricity is not much larger than the median
expected from the effect of projection, if the sources consisted of thin circu-
lar disks.

A measure of the intensity of a starburst is the star formation rate
divided by the volume in which the star formation is occurring, call this C. If
the radio emission is caused indirectly by star formation and directly by
supernova remnants, E = radio surface brightness and is 100-1000 times greater
than in the disks of normal galaxies.

Although star formation may be the cause of the radio emission in most of
the minisurvey galaxies, there are a few galaxies in which the data point to an
active nucleus. M82 is at once the prototype starburst and also the prototype
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Figure 3. A histogram of eccentricity for the minisurvey galaxies. The hatch-
Ing Indicates lower limits. The median eccentricity is shown for those. sources
that have exact measurements. For comparison, the median expected from the
effect of projection if the sources were just thin circular disks is 1.3.

exploding galaxy 'Lynds and Sandage 1963, Bland and Tully, in preparation).
Chevalier and Clegg (1985) have suggested that this is not a coincidence: that
the explosion is caused by the large number of supernovae occurring in the
starburat at the centre of the galaxy. We speculate that for a starburst, e
cannot exceed its value for M482, otherwise an explosion occurs. Three minisur-
vey sources have, however, higher values of e, so these many be active nuclei
rather than starbursts. One minisurvey source is certainly caused by outflow
from an active nucleus--the double-lobed radio source 0421+040 (Beichman et al.
1985).
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INTRODUCTION

A year ago we initiated a large scale programme to identify IRAS point sources.
At ROE we have the ideal facilities to undertake such a large programme, viz. the
rapid scanning capabilities of the COSMOS measuring machine to exploit the depth
and resolution of the United Kingdom Schmidt Telescope (UKST) J survey plates.
This automated procedure is more rapid than visual identification procedures and thus
we have now covered about 1100 square degrees of sky containing about 1300 IRAS
point sources. Figure 1 indicates the plates and areas that we have already processed
together with those areas we hope to cover in the near future.
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FkI=u.u. Distribution of UKST/SERC J survey fields showing those plates scanned
by COSMOS (a) and to be scanned by COSMOS (o) as part of this project to
systematically identify IRAS point sources.
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The identification procedure has been thoroughly described in Wolstencroft et al.
(1986) and will not be repeated here. These new results are preliminary, and mainly
relate to the gross properties of the sample as a whole.

EMPTY FIELDS

Paper I (Wolstencroft et al. 1986) analyses the 10 empty field sources with no
identification (Bj < 21) out of 312 IRAS sources in this SGP area. Likelihood criteria
were used to estimate the reliability of individual identifications which should be a
more conservative estimator than that from gaussian errors alone.

Table I compares the chance coincidence rates with the likelihood ratios LR for both

low and high Galaxy densities.

TABLE 1

All galaxies Bj < 21m All galaxies Bj < 17m

r LR N .R N
1.0 15.5 0.08 1197 0.001
2.0 3.5 0.33 267 0.004
3.0 0.28 0.74 22 0.009

N is the number of galaxies at the SGP expected by chance within a defined
dimensionless angular distance, r, between the infrared and optical positions, it and all
other parameters are defined in Paper 1. Our adopted limit of LR ý, 3 corresponds
in the limiting case, for an individual object, to a reliability of 75%: however the
reliability of our identified sample as a whole is well over 90%. Also for some of
the fainter galaxy identifications, if we are to have a fairly high reliability, the search
radius has to be small to meet the LR constraint and thus some potential
identifications may be excluded.

However for our 10 original empty fields 5 do have possible or probable
identifications (Bj ( 21) just outside the 2o error ellipse derived from the known
galaxy and stellar identifications, I is a confused source and 1 is a probable cirrus
detection. The remaining 3 sources are either due to faint cirrus or may be true
empty field sources. In reality the genuine empty field sources may be extremely
rare. We have subsequently noticed whilst working through the new areas that all of
the new 13 "empty field" sources have a cirrus 1 flag > 1 and tend to be associated
with small localized clumps of cirrus. Examples are shown in Figure 2. In Figure
2(b) there is evidence of some very faint optical nebulosity on the original plate.
Reappraisal of the original SGP and Virgo cluster areas confirms that some of the
empty field sources in those samples also appear in such clouds. There probably
remain very few, if any, distant galaxies to be identified which are not fairly easily
visible in optical wavebands.

STELLAR IDENTIFICATIONS

Although it is possible in the great majority of cases to tell from the IRAS flux
density ratios whether the source is a galaxy or a star we prefer to keep this
information in reserve to be as objective as possible. Thus we are identifying all
IRAS sources. This in retrospect has been a wise decision. Figure 3 shows a
selection of unusual stellar objects which we have identified with IRAS sources. 3(c)
IRAS 10299-2803 has a blue point-like image but a diffuse extended red image. It
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Fiuure 2. Reproductions from UKST/SERC J survey glass atlas showing the positions
of definite IRAS cirrus sources, identifications and possible empty field
identifications. All sources have a cirrus 1 flag > 1. Since these are closely
associated in the sky and since optical nebulosity can be seen on the original plate at
(B) these proposed empty field sources are probably low level cirrus detections.

has IRAS fluxes which do indicate a galaxy identification and its morphological
appearance suggests an "N" galaxy or a low redshift quasar. An optical spectrum
taken on the Anglo-Australian Telescope confirms the extragalactic nature of this
object. Another advantage of this kind of objective systematic approach starting in
areas of the lowest IRAS source densities is that we are able to distinguish new
populations of stellar identifications. Figure 4 illustrates this.

Figure 4 shows the increasing numbers of fainter stellar identifications, Mira
variables, extreme M and carbon stars which begin to appear at lower galactic
latitudes. Optical spectra have been obtained on the Anglo-Australian Telescope of a
representative sample of these stars having magnitude - 15. These spectra confirm
that the stars are of late M spectral type. The availability of a wide variety of
UKST/SERC/ESO plate material covering a range of epochs suggests that these stars
may also be variable. Both the above are suggestive of Mira variables. A variety of
Schmidt plate material is also required to identify such sources. Neither IRAS
00193-4033 nor IRAS 10299-2803 are visible on the J survey material but both are
easily visible on R (5900-6900A) or I (7150-9000k) plate material (see Figure 3).
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Fiure 3. A selection of the more extreme types of stellar identifications.

(a) IRAS 00193-4033. Probably a dusty Mira star. The IRAS spectrum shows a
strong 10pm silicate emission feature indicating an oxygen rich dust envelope. It is
just visible with a very red spectrum on UKST objective prism plate material.

(b) IRAS 15194-5115. A similar type of stellar identification to (a) above.

(c) IRAS 10299-2803. A very blue star which appears slightly fuzzy on the red
sensitive emulsion. It has IRAS fluxes which indicate a galaxy type identification. It
is probably an l'r-galaxy or low redshift quasar with a redshift of about 0.3.
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Fiure 4. The relation between V magnitudes and logF, . for the 148 stars in Paper
1 (see text). Also indicated is an extremely red star, probably a Mira (*), found in
the more recent identifications. The histogram indicates the increasing numbers of
stars fainter than 10 magnitude being identified as we move to lower latitudes and
found in the regions either side of the SGP area of Paper I.

GALAXY IDENTIFICATIONS

Our major aim with the galaxy identifications is to provide a database from
which sound statistical analyses can be made. We are producing accurate blue
magnitudes and morphological classifications for each identification. In addition other
workers at ROE (MacGillivray et al.) are producing magnitude limited samples of field
galaxies in each of the areas in which we are working. We should eventually be able
to make firm statements about the proportions of all galaxies at a given magnitude
which are IRAS sources and see if there are any strong correlations with
morphological type. Clarification of the variation of LIR/LB with morphological type
will also be possible with this large database; our present work indicates that many
optically similar galaxies show a range in excess of 103 in LIR/LB, although our first
paper (Wolstencroft et al. 1986) did find a trend with morphology.

So far the galaxy identifications still appear to be primarily a selection of field
spirals. The combined galaxy error diagrams (Figure 5) for the total area that we
have now covered are considerably worse than the similar diagram for the stellar
identifications. In Figure 5 the error diagrams have been divided into two components
(A) for galaxies brighter than Bj w 15.5 and (B) for galaxies fainter than Bj w 15.5.
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Fire 5. Position differences IRAS minus optical for (A) the IRAS galaxy
identifications brighter than Bj - 15.5 and (B) Bj • 15.5 from the SGP area covered
to date. It can be seen that the scatter is much larger for the brighter galaxies
presumably because in some cases the IRAS source is not associated with the nucleus
of the galaxy. The offsets for the fainter galaxies are similar to those for the stars
and compatible with similar residuals quoted in the IRAS Explanatory Supplement,
Beichman et al. 1985.
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It appears to be the brighter galaxies that contribute most to this scatter. Figure 5
shows that for a significant number of the bright galaxies (which are unambiguous
identifications) there is an offset between the optical and the IRAS point sources
which is much larger than the IRAS position uncertainty. This indicates that regions
of star formation are not confined solely to the nucleus but there may be a significant
fraction of flux from the outer regions.

The UKST has a prism combination which acts as an intermediate dispersion
objective prism with a reciprocal dispersion of 1200AL/mm at H-y. On plates taken
with this prism many bright galaxies show prominent HII regions by virtue of their
emission-line spectra. It is hoped to use such prism plate material to investigate the
distribution of star formation regions in individual galaxies. As an interim measure
some low dispersion UKST prism plate material, which already exists for some of our
fields has been inspected. This plate material has a dispersion of 2440A/mm at H'y
and the wavelength range covered is 3200A to 5400A. At this low dispersion only
those galaxies with very prominent emission show detectable features of the blend
[0111] 5007/He and of [011] 3727 indicative of HII regions. Some galaxies with
prominent features are shown in Figure 6. Unfortunately the dispersion is too low to
investigate the distribution of HII regions in a reasonably large sample of galaxies nor
is it possible to determine accurate redshifts. A programme to measure redshifts for
the more luminous galaxies is under way and this is discussed in the poster paper by
Wolstencroft et al. at this conference.

The average number of field galaxy identifications is 0.5 per square degree. Half
of these are brighter than Bj ow 15.5. The fainter galaxies appear to be uniformly
distributed with no fields of 25 square degrees showing greater than a 2a variation.
However the brighter galaxies do seem to be clustered with some fields showing
density variations in excess of three sigma. Similar variations are also seen in the
field galaxy counts in two 25 square degree fields for galaxies brighter than Bj j 15.5
(Kalafi et al. 1986).

SUMMARY

We have now identified sources in 44 Schmidt plate areas including 1300 sources
and covering 1100 square degrees. The identifications comprise 700 galaxy
identifications (field and cluster members) and 600 stellar identifications. We hope to
extend this area to cover some 3000 square degrees which should inclu •le some 1500
galaxy identifications. There are also about 40 sources with no obvious identification
but which can be most easily explained by cirrus, confusion between two sources or
sources just outside the 2 sigma error box. We feel confident that we can tackle the
increased source densities, confusion and cirrus problems of lower galactic latitudes,
and succeed in our aim of compiling a sound database for detailed statistical analyses.
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Fiue{ These are a selection of IRAS source counterparts for which UKST low" dispersion objective prism plate material exists. This plate material has a dispersion of2440A/mm at Hy and the wavelength range here is 3200A to 5400A. At this low
dispersion only those galaxies with very prominent emission show detectable features of
the blend [0111] 5007/H• and [O11] 3727. For the galaxy at (a) the IRAS source may
be related to the strong extragalactic HII region rather than the bright Sbc galaxy;
(b) is the well studied galaxy complex "The Cartwheel" A0035-34 and (c) is clearly
resolved into two compact nuclei or galaxies.
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DISCUSSION

TELESCO:
Do you think there's a chance that the clustering of IRAS sources in the SGP is due to cirrus?

SAVAGE:
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A VERY DEEP IRAS SURVEY AT III = 970, bII = +30°

Perry Hacking and James R. Houck

Center for Radiophysics and Space Research
Ithaca, New York 14853-6801

ABSTRACT. A deep far-infrared S12-100om) survey is Dresented using over one
thousand scans made of a 4-6 deg field at the north ecliptic pole by the Infra-
red Astronomical Satellite (IRAS). Point sources from this survey are up to
one hundred times fainter than the IRAS point source catalog at 12 and 25um,
and up to ten times fainter at 60 and 100lm. The 12 and 25unm maps are instru-
mental noise-limited, and the 60 and 100pm maps are confusion noise-limited.
The majority of the 12pm point sources are stars within the Milky Way. The
25pm sources are composed almost equally of stars and galaxies. About 80
percent of the 60um sources correspond to galaxies on Palomar Observatory Sky
Survey (POSS) enlargements. The remaining 20 percent are probably galaxies
below the POSS detection limit. The differential source counts are presented
and conpared with theoretical models. The 12um source counts are found to be
consistent with what is predicted by the Bahcall and Soneira Standard Galaxy
Model (1980) using the B-V-12pm colors of stars without circumstellar dust
shells given by Waters, Cote and Aumann (1986). The 60pm source counts are
inconsistent with those predicted for a uniformly distributed, nonevolving
universe. The implications are briefly discussed. A detailed description of
the survey appears in Hacking and Houck (1986). A discussion of the scientific
implications of the source counts and colors are discussed in Hacking, Condon,
and Houck (1986).

INTRODUCTION

There are two reasons for conducting an infrared survey to lower flux
densities. The first is to detect trends in sources observed at higher flux
densities. The changes might be detected in the shape of the luminosity
function (i.e., changes in relative distribution of sources vs. luminosity) or
the position of the luminosity function in the density -- luminosity plane
(e.g., changes in the space density of sources or luminosity evolution at
cosmological redshifts). The second is to search for new classes or types of
objects. An obvious example would be the detection of a nearby, isolated brown
dwarf. It is also possible that a new type of source, as yet unthought of,
might be detected.

THE DATA

The survey is located at the north ecliptic pole, in the constellation of
Draco, at 18 h, +66P; III = 970, bII = 300, and covers 4.3 square degrees
at 12 and 25um and 6.3 square degrees at 60 and 100mm.

There are two types of data used in the survey: 488 scans from the IRAS
all-sky survey and 141 pointed observations. The survey scans cover the entire

Carol J. Lonsdale Persson (Editor)
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field approximately uniformly. Each survey scan map is 1/2' x up to 4e and
consists of data from a single scan of the satellite across a portion of the
field. The pointed observations are centered on NGC 6543, which is located
very near the ecliptic pole and was used as a calibrator for the IRAS mission.
Each pointed observation consists of three to six scans made at half the IRAS
survey scan rate and results In a map of dimensions 1/20 x 1 to 1.75°. Since
NGC 6543 was the target of the pointed observations, only the central three
square degrees is covered by them, and the coverage is nonuniform, with the
region around NGC 6543 (near the center of the field) observed the most. Over
one thousand scans were combined to form the final maps, making this the
deepest infrared survey to date. At 12 and 25um it is likely to remain so
until the next generation infrared satellite can be flown (e.g., SIRTF or
ISO). At 60 and 100mm, it may prove possible to probe slightly deeper in the
field (and a few other smaller select fields) using different filtering
techniques. Point sources as faint as 5-10 mJy are in the 12 and 25um maps
with SNR > 3-5 (a factor of 50 to 100 times fainter than the IRAS point source
catalog),. 50 mJy at 60im (ten times fainter than the IRAS PSC), and 100-200 mJy
at 100om (five to ten times fainter than the IRAS PSC).

Two images of each survey scan and each pointed observation were made:
1) A full-intensity image was made that approximates the true appearance of
the infrared sky; 2) a point-source filtered image was made that improves the
signal-to-noise ratio of point sources. Several preliminary maps were made
from subsets of the data to check for moving or spurious sources. All of the
images were then sunmed to form final intensity and point source filtered
images.

The intensity maps indicate that there is a great deal of extended emis-
sion in the field at 60 and 100pm. The 60um point source filtered map contains
very little extended emission. The 100um point source filtered map is contami-
nated with extended emission, however. This is due to the larger angular size
of the 1OOpm point spread function that is similar in size to much of the
structure present in the extended emission. For this reason, 100pm fluxes are
quoted only for sources also detected at 601im, where contamination from the
extended emission is less likely.

RESULTS

The point source density in this field at 12 and 25pm is quite low
compared to the effective beam size (10-15 sources per square degree brighter
than 20 mJy), so that the 12 and 25um surveys are limited by instrumental
noi se.

At 60m, the effective beam size and the source density (20 sources per
square degree brighter than 50 mJy) are larger, resulting in a confusion
noise-limited survey (Gconf = 20 mJy). Extended emission and confusion
prevented an unbiased 100pm survey.

No moving or spurious (single event) sources were found in any of the
preliminary maps.

The point source filtered maps were used to extract the point source
sample. The point sources were compared with the Smithsonian Astrophysical
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Observatory Star Catalog (1966) and the Palomar Observatory Sky Survey (POSS)
plates. A summary of the conparison is presented in Table 1.

TABLE 1 - Summary of Point Sources from Deep Survey

Totala Stars Galaxies Unidentified
Number % % %

121im 46 89 11 0
25pm 36 50 47 3b
60pm 99 0 -80 -20c

a Excluding NGC 6543
b Probably a distant Seyfert galaxy
C Probably galaxies below POSS detection limit

The distribution of sources vs. flux density was modeled, assuming a power
law of the fonr:

n>F = A FV-(

where n>F, is the number of sources with flux density greater than Fv per
square degree; A and a are constants. Values of a of 0.76±0.11 and 1.79±0.17
were found for the 12um (mostly stars) and 60zm (extragalactic sources) point
source samples, using the method of maximum likelihood. The Kolmogorov test
revealed that the power law distribution assumed for the source counts is
consistent with the data at 12 and 60um. Since the 251jm sample is conposed of
both stars and galaxies, the 251im distribution is a linear combination of the
12 and 60m distributions.

DISCUSSION

The 12um source counts are consistent with star counts predicted by the
Bahcall and Soneira Standard Galaxy Model*, using the B-V-12um colors given
by Waters, Cote, and Aumann (1986) for stars without circumstellar dust
shells. In partioular, the total number (33) and the value of a (0.78)
is successfully predicted (see Hacking, Condon, and Houck 1986 fl"letails).
Figure 1 shows differential star counts extrapolated to very low flux densities
at the north galactic pole (not covered in this survey) as predicted by the
model. The 121jm counts above -1OJy are dominated by stars with circumstellar
dust shells (Hacking, et al. 1985), which are not included in Figure 1. The
expected galaxy counts at 12um are also plotted in Figure 1. As can be seen,
galaxies should dominate the 12um point source counts below -10 mJy at the
galactic poles.

The 60um source counts were modeled in a similar fashion to the radio

*See Hacking, Condon, and Houck (1986) for a description of what was used,

and Bahcall and Soneira (1980), for a detailed description of the model.
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Figure 1 - Predicted 12um differential star counts at the north galactic pole
using the Bahcall and Soneira Standard Galaxy Model (1980) and
B-V-12mm star colors from Waters, Cote, and Aumann (1986). The log
of the number of sources per square degree, per decade of flux
density is plotted versus log flux density (in Janskys). The
differential counts for all stars are given by the solid line.
In addition, the differential counts for main sequence and giant
stars are each shown for the disk and spheroidal components. The
expected galaxy counts at l2um are also shown.

source counts using the model of Condon (1984) with and without evolution,
using the 60urm luminosity function and color-luminosity data given by Soifer,
et al. (1986). The predicted counts for an evolutionary model and a
nonevolving model are compared with the observed counts in Figure 2. Although
the source counts favor the evolving model, they do not constrain the type of
evolution that may have been detected. In addition, evolution is not the only
explanation for the discrepany between the observed source counts and the
source counts predicted for a nonevolving universe. In particular, a galaxy
cluster in the direction of this survey with a redshift of -0.2 could produce
this effect. Clearly, redshift data are needed to resolve the nature of this
di screpanq .
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Figure 2 - Predicted 60pm differential galaxy counts with and without
evolution, using the luminosity function and luninosity-color data
from Soifer et al. (1986). Tick marks indicate median redshifts of
the differentia-lcounts. The data from the deep survey are plotted
as filled circles, and the data from the IRAS Point Source Catalog
with Ibi > 5(0 are plotted as filled squares. Much of the increase
in thb% ource counts above 10 Jy is due to the Virgo cluster. The
luminosity function has been shifted down by 15% so that the
non-evolutionary model agrees with the differential counts at 1
Jy. See Hacking, Condon, and Houck (1986) for details.
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DISCUSSION

WYNN-WHLIAMS:
Are there other IRAS fields that can be analyzed to this depth, or have we hit the limit of what is possible

with IRAS?

HACKING:
This is probably as deep as we can go at 12 and 25gum. There are smaller deep fields that are almost as

deep as this field at 60 and 100lim. In addition, it may prove possible to reduce the confusion noise in this

field using different filtering techniques, allowing a study up to a factor of 2 fainter in this field.

WEEDMAN:
Your counts at 60pm agree precisely with expectations from the average luminosity function now avail-

able. The very close agreement must be fortuitous, but it is pleasing that all of the data are coming together

so consistently.

552



WHAT ARE 'CIRRUS' POINT SOURCES?'
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Astronomy Department
University of California, Berkeley

ABSTRACT. Most 'cirrus' point sources are associated with interstellar gas. We have isolated a subset of
thino, together with other sources showing Irgp band 4 to band 3 flux density ratios, that are no associated
with interstellar gas. Most of the point sources are asociated with diffuse cirrus emission. The sources appear
to be distributed randomly on the sky, with the exception of six clusters, one of which is not associated with
any known astronomical object.

Six sources out of seventeen that were observed for redshifted H I at Arecibo were found to be associated
with relatively nondescript external galhxies. Most of the sources do not appear on the Palomar Sky Survey.
Deep optical observations of eight fields revealed some fairly distant galaxies, one object with a very peculiar
optical spectrum, and several blank fields.

I. INTRODUCTION

IRAS 'cirrus' point sources (i.e., sources detected only in band 4, A - 100 pm) are suspected to
arise from the same stuff as the diffuse cirrus background, namely interstellar dust. Since dust and gas
are intermixed, we expect the presence of clumps of 21-cm emission at the positions of 'cirrus' point
sources. However, our first cursory inspection of the distribution of these sources (Figure I.C.4 in the
IRAS Explanatory Supplement, 1984) revealed that a small fraction are located in regions containing
very little interstellar gas. By 'little' we mean HI column densities smaller than 1020 cm- 2 , which is
very low-typical of values toward the Galactic poles, and in other regions containing the very lowest
column densities as measured with HI surveys using angular resolutions of 36 arcmin or more. This
made us suspect that they are, in fact, not associated with interstellar gas.

We developed a source list for further study using a two-stage selection process. In the first
stage, we included only those sources satisfying the following criteria. (1) reliable (quality 3) band 4
flux densities (P4); (2) P4/F$ > 5; (3) P4 > 2 Jy; (4) Galactic latitude hI > 10. This provided
more than 20000 sources. In the second stage, this was reduced to 293 sources by requiring F4 to be
larger than the limit determined from the H I column density described by equation (1) below.

From their locations in the sky, many of these sources are obviously associated with inter-
stellar gas. Some are pouitionally coincident with known astronomical objects, many of which are
galaxies. Some have no obvious association with known astronomical objects. Most sources have no
corresponding image on the Palomar Sky Survey (PSS).

II. STATISTICS

Most of the 20000-odd sources chosen from the first stage selection are associated with inter-
stellar gas. This is apparent from the scatter diagram of P4 v. N(H I) presented in Figure 1: for
N(H 1) ,` 150, the upper envelope of the densely-populated portion of the F4-N(H I) plane has a
1ThS paper Is based in part on observations performed at the iUck Observatory, operated by the University of California
at Santa OCrs.

Cud. LLocdale Perison (Editor)
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Figure 1. Scatter diagram of sources satisfying the first-stage selection process. F4 is the IRAS band
4 flux density in Jy; N(H I) is the H I column density in units of 9.96 x 1018 cm-2 , taken from Stark
et at. (1986) for the Northern sky and from Cleary, Heiles, and Haslam. (1974) for the Southern sky.
This diagram does not include the full range of each variable, but does include the vast majority of
the points. The solid line is the second-stage criterion of equation (1).

positive slope. For 74'. much larger than the majority, there is no obvious correlation with N(HI)
We assumed that all sources with 74 exceeding a linear function of N(H I) should be considered as
possible non-cirrus candidates, and determined the linear function by eye. The function, drawn in
Figure 1, is

P4 =0.1116 N(H 1) - 0.625 Jy, (1)

where the units of N(H I) are 9.96 x 10 1$ cm-2 , an on Figure 1.

The total number of sources satisfying the above criterion is 293. A bit fewer than half have
positional coincidences with objects in astronomical catalogs other than the IRAS point source catalog.
Th. distribution of the 293 sources on the sky is shown in Figure 2. The points tend to avoid low
Galactic latitudes; this is a result of equation (1), because high H I column densities tend to lie at low
latitudes.
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Figure 2. Distribution on the sky of sources above the solid line in Figure 1.

Some of the points are highly clustered. Five clusters can be identified with specific Galactic dust
regions or extragalactic objects, as follows: (1,b) - (122, -22°), M31; (1610, -19°), Perseus region;
(2080, -190), Orion region; (280, -340), Large Magellanic Cloud; (353, 170), Ophiuchus region. Two
clusters have no obvious identifications: (1, b) - (920, 38°), and the very sparse and possibly spurious
cluster covering the large area centered near (140%,50°). The former is located near the nondescript
external galaxies NGC 6223, 6226, 6238, and 6244, and near the nondescript Abell cluster 2232. It
is also located in a region containing high-velocity H I, but because other high-velocity H I regions
do not exhibit clustered sources there is probably no real association. Sources with the largest P4's
(> 50 Jy) are associated either with dense clouds of Galactic interstellar matter, the Large Magellanic
Cloud, or the external galaxy NGC 891.

Are these 293 sources unique or do they simply occupy thi tails of the distributions of P4 and
F4/F3? We are unable to tell. Our selected sources represent only a tiny fraction of all sources with
interesting IR properties; the lion's share was discarded using equation (1). Answering the question
would require generating a statistically unbiased list of IRAS point sources that are not associated with
interstellar gas on arcminute scales. This might be done using high-resolution 21-cm line observations
of a large unbiased sample, but this would be a tremendous undertaking.

III. GROUND-BASED OBSERVATIONS

A. 21-cm Observations

Equation (1) discriminates against regions of overall high H I column density, as measured with
the large beamwidths (-- 1*) used in the H I surveys. However, the possibility remains that small,
arcminute-sise clumps of H I exist within such regions. We used the NAIC Arecibo telescope1 with

t The NAIC is a national facility operated by Cornell University under contract with the National Science Foundation.
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its angular resolution of 3 arcminutes to check this possibility.

Out of 17 sources observed, 13 showed an H I column density excess relative to adjacent positions
smaller than 1019 cm-2 , and the rest smaller than 3 x 1019 cm-2 . These are strict, absolute, and in
many cases conservative upper limits. A point source with F4 = 2 Jy would produce an H I column
density of 1.2 x 1021 cm-2 if the relation of Boulanger, Baud, and van Albada (1985) applies--100
times more H I than the observed upper limits. The most straightforward conclusion is the expected

one, that these sources have nothing whatsoever to do with the interstellar gas.

We also used Arecibo to search for redshifted H I emission out to - 6000 km s. Of the sample

of 17 observed, 6 were detected. All 6 were positionally associated with ordinary nearby galaxies and
were so designated in the IRAS point source catalog. For these 6 galaxies, the ratios of H I mass
to IR luminosity were typically much higher than those of the JR-bright sample studied by Young et
al. (1986), by factors ranging from - 10 to - 1000. These large factors result from the combined
effects of our galaxies being overly abundant in H I and underluminous in the IR, with respect to
the optical brightnesses of that sample. Our 6 galaxies are very easily visible on the PSS, and are
therefore intrinsically different from the PSS blank-field objects discussed below.

B. Optical Observations

We used the CCD spectrograph in the direct imaging mode on Lick Observatory's Shane 3-m
telescope (Miller et at., 1983) to take optical images of fields centered on 8 PSS blank-field sources.
One and possibly one other showed the streaks characteristic of interstellar cirrus. Two fields clearly
contained external galaxies within the IRAS error ellipse: one a pair of galaxies, and one a compact
galaxy. One field, 1645+37, contained three very faint galaxies within the error ellipse. The other
three fields were blank with R Z 22.5 mag. The observations are summarized in Table 1, where the
optical flux densitiee are compared to the IR flux densitiee.

TABLE 1

PROPERTIES OF OPTICALLY-OBSERVED SOURCES

SOURCE IDENTIFICATION R MAG F4(Jy) F4/(R-BAND FLUX)

0917+69 cirrus - 3.5

1148+58 compact galaxy 18 2.4 1.3E4

1149+61 pair of galaxies 16,19 2.0 1.8E3,2.8E4

1150-09 cirrus? 21 2.9 2.6E5

1231-05 ? >22.5 2.2 >7.8E5

1324+16 ? >22.5 2.8 >1.0E6

1325+16 ? >22.5 2.1 >7.4E5

1645+37 three galaxies 21.0-23.5 2.4 2.6E5-3.4E6

We also used the CCD spectrograph to obtain low-dispersion spectra of the three galaxies
in the 1645+37 field. These data were taken very recently and are currently being analyzed. The
easternmost galaxy exhibits a clear emission line. If this emission line is [011] A3727, then the redshift
is 0.444 ± 0.002. With this redshift, the optical luminosity of the galaxy is roughly typical of L.
galaxies and the galaxy exhibits small internal reddening. The westernmost galaxy has a broadband
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spectrum similar to that of the easternmost galaxy, but exhibits no emission line. The central object
exhibits an unusual broadband spectrum, becoming spectacularly bright towards the blue.

There is a good a priori probability of finding the galaxies described in the above paragraph by
observing eight randomly-selected fields to the depth that we observed. However, the central object in
the 1645+37 field is very unusual, and the a priori probability of finding it in eight randomly-selected
fields would appear to be small. Further observations and analysis are needed to determine just how
unusual this object is.

C. 1.2 mm Continuum Observations

We used the NRAO 12-m telescope at Kitt Peak' to observe a selection of sources at 1.2 mm
wavelength. Our goal was restricted to determining whether the sources are nonthermal emitters,
i.e. similar to ordinary continuum radio sources with flux density rising toward lower frequencies.
Sensitivity was low because of power outages, hardware failures, basic errors in system software, and
(least of all) weather; the average 3o flux density limit was 5.5 Jy. No source was detected. Thus
no source was significantly stronger at 1.2 mm than at 100 pm. Any typical power-law synchrotron
source would have been easily detectable. The most straightforward conclusion is that the sources are
thermal emitters, perhaps modified by the wavelength-dependence of the emissivity of dust particles.

IV. DISCUSSION

Our 1.2 mm observations imply that the IRAS point-source emission is thermal. Nevertheless,
it would be remiss not to mention the unlikely alternative that the IR emission is produced by an as-
yet unspecified powerful process, making the situation analagous to the early days of radio astronomy
when virtually nothing was known about the basic characteristics of nonthermal radio sources. If the
radiation has a blackbody spectrum, (F4/F3) > 5 corresponds to T < 30.5 K; if the emission comes
from dust, which radiates less efficiently at long wavelengths, then the physical temperature of the
dust is smaller. For a blackbody emitter at T=30.5 K to produce F4 = 2 Jy, its angular diameter
> 0.6 arcsec; if the radiation is from dust, this is a lower limit.

With such angular diameters, most of the objects can hardly be anything but diffuse matter. If
Galactic, their lack of concentration toward the Galactic plane would imply that they are nearby, with
typical distances smaller than their z-heights above the Galactic plane. If extragalactic, they would
be truly spectacular because the ratios of IR to optical flux densities are enormous. For example, for
objects fainter than 22.5 mag, the ratio of F4 to optical R-band flux density is Z 10s. This is about
50 times larger than the corresponding ratio for the extremely far-IR bright starburst/Seyfert galaxy
Arp 220 (Rieke et a4., 1985; Soifer et al., 1984) and about 10 times larger than the ratio for the most
extreme example in the lists of Aaronson and Olszewski (1984) and Houck et al. (1985).

Finally, we mention ripe areas for future observational work. Most intriguing is the uniden-
tified cluster of sources, associated with diffuse cirrus, centered near (1,b) • (920, 380) or (a, 6)
(1647"',620). IR observations longward of 100 pm should be successful because of the rapid rise
of flux density with decreasing frequency, unless the radiation is line emission; very low-resolution
spectroscopy is the best approach for this test. If these sources obey the same statistical relationships
as external galaxies they should be detectable as radio continuum sources, typically with flux densities
> 3 mJy at 1.4 GHz (Helou, Soifer, and Rowan-Robinson, 1985) and as CO emitters, typically at

the level TAt Z 0.5 *K-km/s with the FCRAO 14-m telescope (Young et al., 1986). Finally, we will
continue our optical observations.

1The NRAO is operated by Associated Universities, Inc., under contract with the National Science Foundation.
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Properties of the Unusual Galaxy PSC 09104+4109

S.G. Kleinmanni and W.C. Keel2

ABSTRACT

The IRAS source PSC 09104+4109 is tentatively identified with a faint (mR '-- +19)
emission line galaxy having z - 0.442. Assuming this identification is correct, the total
infrared luminosity of this galaxy is estimated to be 5 x 1012 L0, among the highest for

galaxies detected by IRAS. This energy is concentrated at wavelengths les than

30 pm, and is -50 times greater than the estimated optical luminosity. The serendi-

pitous way in which this source was found in the PSC catalog suggests that many more

similar objects may be found at the lowest levels of the IRAS survey.

1. Introduction

During the startup phase of a redshift survey of sources detected at Xobs - 60 pm in the
IRAS survey, we found an object, PSC 09104+4109 (IRAS Point Source Catalog), worthy of

further study both for its high luminosity and its unusual infrared spectral energy distribution.
Particular interest in this IRAS source was first evoked because it was one of ten 60 pm sources,

out of a list of 500 located in a slice of the sky at high galactic latitudes, that was not located

near a bright (m < 18) star or galaxy. Houck et al. (1985) showed that many such sources
cou'd be identifieggwith distant luminous galaxies.

2. Optical Identification

In search of its optical counterpart, a deep R-band iirrge of the region surrounding

PSCO9104+4109 was taken at the 2.1-m telescope of the Kitt Peak National Observatory. A

cluster of faint (mR > 21) sources was detected on this plate, though none brighter than mR '

22 fell within the IRAS error box. Two brighter objects, each having mR - 19, were found just

outside the error box. One of the these (Object 1) lies near the periphery of the cluster of faint
objects, while the other (Object 2) lies near its center.

The PSC position for the infrared source is listed in Table 1; its error box, as given in the

Point Source Catalog, has dimensions ±11" x ±24" at P.A. 108 *. The positions of the two nearby

19 th mag. sources, which were measured on the two-axis Grant measuring engine at NOAO, are

also given in the Table; the rms error in the measurements of the system of standard stars on
the plates was 0.5". The distances of each of the objects in Table 1 from the center of the IRAS

err r box are listed in the table in units of the positional uncertainties of the infrared source.

IDepartment of Physics and Astronomy, University of Massachusetts.2Leiden Observatory.

Carol J. Lonsdale Persson (Editor)
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Table 1. Positions of Sources Near IRAS PSC 09104+4109

Designation RA (1950) DEC (1950) Offset From Offset From Total
Major Axis Minor Axis Offset

PSC 09104+4109 09 10 29.8 +41 09 04

Object 1 09 10 29.13 +41 09 22.0 1.4a 0.5a 1.5a

Object 2 09 10 32.92 +41 08 52.4 .0a 1.5& 1.5a

Spectra of the two red objects listed in Table 1 were obtained with the Cryogenic Camera

at the 4-m telescope at Kitt Peak. These showed that the cluster-center galaxy (Object 2) had
an absorption line spectrum at z - 0.3, while the object near the cluster's edge (Object 1) had a
strong emission line spectrum at z - 0.442. By analogy with many other 60 pm sources associ-

ated with faint optical objects, we have tentatively identified IRAS 09104+4109 with Object 1.
In any case, if this infrared source is extragalactic, it probably lies at z > 0.2, since less distant

galaxies should have been detected on the R-band image at a level brighter than mR - 22.

10 If H = - 100 km/s/Mpc, and q. - 1/2, the the total Blue luminosity is estimated to be 2 x

1010 L . About half of this light is due to emission lines of 0[1111] 5007 and 4959, Hft and H'Y.O

Weak emission from He II 4686 is also observed. These lines are all narrow; H# has a full width
at half maximum of <1000 km/s. This line width and luminosity are typical for Seyfert II galax-

ies.

3. Infrared Photometry

The "Add-Scan" program at IPAC was used to obtain high signal-to-noise photometry of
PSC 09104+4109 in the IRAS bands. Data from 11 scans of the object were co-added, yielding

significant detections in IRAS Bands 1, 2, and 3, but a low upper limit in Band 4. Flux densities

derived under the assumption that the observations were made in the rest frame of a source hav-
ing a spectrum F, -• zl (as in the PSC catalog) are given in Table 2. The upper limit quoted
for Band 4 corresponds to 3a. The low ratio of flux densities, S(100)/S(60) < 0.7, is one of the
most peculiar features of this source. In contrast, the high-redshift galaxies studied by Houck et
at. (1985) were all found to have S(100) Ž 2 S(60). Even higher ratios are typical of normal

galaxies detected by IRAS at X - 60 pzm (deJong et at. 1984; Soifer et at. 1984).

Also given in Table 2 are the corrected flux densities for a thermal source at z - 0.442. In
this case, the flux in each band was derived by assuming that the spectrum in adjacent bands is

produced by a blackbody having color temperatures 330 * K, 180 * K, and 137 °K at wavelengths

12pim to 25pm, 25pm to 601m, and 6Opm to 100pm, respectively.
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Table 2. Infrared Flux Densities for PSC 09104+4109

S(12pm) S(25pm) S(60pm) S(100l m)

z=-0; Fr" 1  0.17:0.03 0.39±0.03 0.55±0.05 <0.39
z-0.442; F-F(BB) 0.25 0.27 0.27 <0.17

The total infrared luminosity of PSC 09104+4109 is estimated to be 5 x 1012 Lo, most of it
emerging at X < 30 pm. This value is nearly 3 times greater than the infrared luminosity pro-
duced by Arp 220 or Markarian 231 (for the same cosmological constants).

If the energy per octave at optical wavelengths (0.36 < X(pm) < 1.0) is constant and equal
to that observed in the R band, then the total infrared luminosity of PSC 09104+4109 exceeds
its optical luminosity by a factor of nearly 50. This ratio is much larger than values characteris-
tic of quasars.

4. Conclusion

The IRAS source PSC 09104+4109 has an observed infrared energy distribution which is
peculiar both for stars and for galaxies, in that it peaks near X -obs - 60 prm. It also exhibits a
large ratio of LIR/L t (-50). It is tentatively identified with an emission line galaxy having mR

+19, and z - 0.402. Confirmation of this identification would show that this source is one of
the most luminous objects found in the survey. Further study is required to learn the extent to
which the ratio of infrared to optical luminosity can be used to distinguish the most luminous
galaxies found by IRAS, and what relationship exists between PSC 09104+4109 and other classes
of luminous galaxies.

Only a dozen of the 500 galaxies in the flux-limited sample from which PSCO9104+4109 was
drawn have been observed spectroscopically. That fact suggests that many more galaxies having
such high luminosity and peculiar flux distributions may be found among the faint sources
detected in the IRAS survey.

We would like to thank Don Hamilton for providing us with the spectra he obtained at the
KPNO 4-m, and Judy Young who obtained the Add-Scan photometry at IPAC. This work was
supported by grant # AFOSR 85-0057.
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A Redshift Survey of IRAS Galaxies

Beverly J. Smith 1 , S.G. Kleinmann1, J.P. Huchra2 , and F.J. Low3

ABSTRACT

We present results from a redshift survey 9f all 72 gaWxies detected by IRAS in Band 3
at flux levels > 2 Jy, and lying in the region 8" < a<17 , 23.50 < < 32.50 . The 60 pm
luminosities of these galaxies range from 1.4 x 108 L to 5.0 x 1011 Lo. The luminosity
function at the high luminosity end is proportional to L-• however, we observe a flattening at
the low luminosity end indicating that a single power law is not a good description of the
entire luminosity function. Only three galaxies in our sample have emission line spectra indi-
cative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is
not a strong contributor to the far-infrared flux. Comparisons between the selected IRAS
galaxies and an optically complete sample taken from the CfA redshift survey show that they
are drawn from different parent populations. The absolute blue luminosities of IRAS galaxies
are more narrowly distributed than those optically selected, in the sense that the IRAS sample
includes few galaxies of low absolute blue luminosity. We also find that the space distribu-
tions of the two samples differ, the density enhancement of IRAS galaxies is only -1/3 that of
the optically selected galaxies in the core of the Coma cluster.

1. Introduction
The study of IRAS galaxy source counts is important because IRAS offers the first all-

sky survey sufficiently sensitive to detect galaxies, but relatively insensitive to surface bright-
ness gradients. To interpret these source counts in terms of the space distribution of IR-bright
galaxies, it is necessary to know their infrared luminosity distribution. Towards this end, we
have exploited and extended the deep redshift survey carried out by de Lapparent, Geller, and
Huchra (1986) over a selected "slice" of the sky (the CfA survey).

2. Materials and Methods
Our sample includes all sources listed in the IRAS Point Source Catalog or the Small

Extended Source Catalog above flux limit of 2 Jy at 60 microns, and lying within the 1072
square degree region between 8 < c < 17 , 23.50 < 8 < 32.50. Eighty-six sources met the
selection criteria. Optical identifications were made on tue basis of positional proximity.
Thirteen are stars, one is a planetary nebula, and 72 are galaxies. Twenty-two of the galaxies
in our sample were found to occur in groups of two or more. In cases where more than one
galaxy falls in the quoted Point Source Catalog error box, the IRAS source was associated
with the brightest galaxy.

Spectra with a resolution of 6-7 A covering 4600-7200 A were obtained at the
F.L.Whipple 1.5m telescope and at the NMMT. Several galaxies were observed in the confused
cases; all of our pairs appear to be physically associated, i.e. at the same redshift. Redshifts

1Five College Astronomy Dept., University of Massachusetts, Amherst, MA 01003
2 Center for Astrophysics, 60 Garden St., Cambridge, MA 02138
3 Steward Observatory, University of Arizona, Tucson, AZ 85718

Carol J. Lonsdale Persson (Editor)
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and equivalent widths of the Ha, HP, [OlT] X5007, [01] X6300, and )NL] 76585 lines were
determined from these spectra. For galaxies brighter than mB - 15.7, blue magnitudes were
taken from the Zwicky Catalog. For fainter galaxies, eye estimates were made.
3. The 60 ptm Luminosity Function

We define the 60 micron luminosity as the energy in the band:

L = 4mr2FAv

where F is the IRAS flux density and Av is the bandwidth (=3 3.75 x 1012 Hz; Neugebauer
et al. l9'). We calculate r by assuming H = 100 kn/s/Mpc and correcting for 300 km/s
galactic rotation and deviation from the Hubble flow due to infall towards the Virgo cluster of
300 kni/s as in Huchra and Geller (1982).

The distribution of luminosities and the luminosity function

a 1 1

are shown in Figure 1. Here fL4n is the fraction of the sky covered by this survey, AL. is
the bin width, and V. is the volume of the universe out to which a galaxy of luminosity I• is
observed at our flux Arnit. Uncertainties in the luminosity function were calculated assuming
Poisson distribution errors, proportional to -MI. Thus we have ignored errors in the luminosi-
ties due to uncertainties in the infrared fluxes and deviations from Hubble flow which are not
completely eliminated by our corrections for Virgocentric motion. The data from Soifer et al.
(1986), corrected to our units, are shown for comparison.
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To describe this data in a useful analytical form, we have tried both a Schechter (1976)
function and a single power law. Neither yielded a good fit; at high luminosities the density
lies below that expected for a Schechter function, and at low luminosities the density is less
than expected for a single power law. However, the apparent flattening of the luminosity
function at the low luminosity end may be due to incompleteness due to low surface bright-
ness galaIes larger than 2 arcMIns. The2 line s. own '? a best fit power law to our data

above 10 0 of( 4L) = 3.5 x 10 (IL) Mpc "mag .The slope is confined to a range
of -1.7 to -2.1 with a 68% confidence. This fit is consistent with the fit derived by Soifer et
al. (1986) from a brighter sample.

4. Comparison with Optical Sample

Figure 2 shows the absolute magnitude distribution of our infrared-selected sample, the
Center for Astrophysics blue-selected sample from Huchra et al. (1983), and the CfA spirals.
This figure clearly shows that the galaxies in our sample have a narrower range of absolute
blue magnitude than those of an optically selected sample. The mean for this sample is -19.2
with a standard deviation of only 0.8. We find that IRAS undersamples galaxies of low abso-
lute blue luminosity. There also appears to be a deficiency of galaxies of high blue luminosity.
A Kolmogorov-Smirnov test gives an 95% probability that the two samples are not derived
from the same parent population.

, II ,I I I ' II * '

400 2
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ABSOLUTE BLUE MAGNITUDE

Figure 2. The absolute magnitude distribution of the IRAS sample (dashed histogram), the CfA blue-
selected sample (solid histogram), and the CfA spirals (dotted histogram).

We also see a difference in the blue magnitude distributions of IRAS galaxies and CfA
spirals. A Kolmogorov-Smirnov test gives a 99% probability that the IRAS galaxies are not
drawn from the same parent population as the CfA spiral galaxies. However, a Mann-
Whitney test shows that there is only a 1 sigma difference in the medians. We can thus

conclude that the distributions are different in that the IRAS sample excludes galaxies of low
blue luminosity, and therefore has a narrower range in blue luminosity.
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A possible explanation is low metallicity in low mass galaxies. Metallicity has been
shown to be correlated with blue luminosity, in ellipticals (Faber 1973) and in spirals (Bothun
et al. 1984). If dust content is a function of metallicity, then we would expect the observed
difference in the blue magnitude distributions of IRAS galaxies and CfA spirals. It is impor-
tant to note that the blue luminosity is enhanced by recent star formation; MIL of the IRAS
galaxies may differ from that of the CfA galaxies. It is thus not possible to conclude that
only more massive galaxies are detected by IRAS. It is also important to emphasize that the
infrared luminosity is both a function of the dust content and of the proximity of the dust to
the heating sources. It may simply be the case that galaxies of low blue luminosity have a
lower percentage of HU regions embedded in molecular clouds.

Two galaxies in this sample are Seyfert 2 galaxies; one is a Seyfert 1. The percentage of
active galaxies in this infrared selected sample is thus not significantly different from that of
the CfA sample. We find no correlation between [OIlH]/H-I and the infrared excess LW/LS,
again indicating that unobscured nuclear activity is not a strong contributor to the 60 i•m flux
in this sample.

Comparing the space distribution of our sample with that of the CfA sample, we find that
the IRAS galaxies follow the cellular pattern of galaxies observed by de Lapparent, Geller,
and Huchra (1986), however, a density enhancement in the core of Coma the size of the CfA
density enhancement is not observed. The IR density/B density ratio in Coma is -1/3 that of
the mean of the remainder of our box. This is most easily explained by the fact that IRAS
preferentially detects spirals (Wolstencroft et al. 1985), while Coma is dominated by E's and
SO's (Dressier 1980). We therefore expect that IRAS is systematically underestimating the
mass in rich clusters; this introduces errors into the gravitational dipole moment derived by
Yahil et al. (1985) and Meiksen and Davis (1986).

We would like to thank J.Peters, E.Horine, and S.Tokorz for help in obtaining and reduc-
ing the data. This work was partially supported by grant # AFOSR 85-0057 and by the Smith-
sonian Institution.
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ABSTRACT

The optical and infrared luminosity functions are determined for a 60pm
flux-limited sample of 68 IRAS galaxies covering a total area of 150 degrees
squared. The IR function is in good agreement with that obtained by other
authors. The shape of the optical luminosity function is similar to that of
optically selected galaxy samples. The integrated light of most objects in
our sample have [NI1] to He line flux ratios characteristic of HII-region
galaxies. In the absolute magnitude range M. . -18, -22 about 14% of
late-type galaxies are IRAS galaxies. The apparent companionship frequency is
about twice as large as that for a comparable sample of non-IRAS late-type
galaxies.

1. INTRODUCTION

The aim of this study is to construct the infrared luminosity function of
IRAS galaxies and to compare various properties of an infrared selected sample
of IRAS galaxies to those of optically selected non-IRAS galaxies.

We have selected all candidate galaxies listed in the IRAS Point Source
Catalog (Beichman et al. 1984) with high or medium quality 60um fluxes > 0.5
Jy in six 5* x 5* fields at galactic latitude Ibi > 30*. These fields ire
covered by the photographic plates of fields SF6, NP4, NP5, NP6, NP7, and NP8
used by Kirshner et al. (1978 (KOS), 1983 (KOSS)) to determine the optical
luminosity function of field galaxies. This yields a sample of 81 IRAS
candidate galaxies, 42 of which are previously catalogued galaxies, 38 are
identified as galaxies on the KOS/KOSS plates, and 1 appears to be a blank
field. The resulting density of these objects is ru 0.5 galaxy per degree
squared. Published velocities are available for 24 objects. We have
remeasured some of these (no discrepancies) and obtained new velocities for 45
galaxies, with an accuracy of 100 km/s, using the lIDS at the Kitt Peak 2.1--m
telescope. Velocities are still missing for 12 galaxies in our sample, half of
which are in field SP6, and most of which are optically faint.

Integrated optical magnitudes in the J band (KOS) have been measured with
the Yale PDSomicrodensitometer from the KOS/KOSS plates. The zero-points of
the photometry have been determined to an accuracy of 0.1 mag by comparing our
results to those of KOS and KOSS. Our final magnitudes have an accuracy of
better than 0.2 mag. They are corrected for galactic absorption as in KOS,
but no k correction is applied. With the magnitude of 1 galaxy still missing,
the sample of IRAS galaxies with available velocities and optical magnitudes
considered here consists of 68 objects. No corrections for incompleteness
will be made.

Carol J. LoWal Permo (Edior)
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Fig. 1. Velocity distribution of our Fig. 2. Cumulative number of IRAS
sample of 68 IRAS galaxies. galaxies versus f(60pm) (e) and of

KOS galaxies versus m.T (o). Solid
lines indicate the expected slope
for a complete sample.

2. THE INFRARED LUMINOSITY FUNCTION

The velocity distribution of our sample is shown in Fig. 1. A plot of
the cumulative number of galaxies versus 60m flux density shows that our
sample is complete at the faint end but is deficient in bright objects (Fig.
2). A similar behaviour appears in the optical sample (mJ < 14.9) of KOS/KOSS
in the same fields.

Absolute IR luminosities are calculated according to L(60m) - 4wD 2 (vf
(60Uim)), with D the distance of the galaxy assuming a uniform Hubble flow w~th
H - 75 km/s/Mpc. Our differential IR luminosity function (Fig. 3a) and those
obtained by Lawrence et al. (1986), Smith et al. (1986), Soifer et al. (1986),
and Weedman (1986) all agree within a factor of 2 when the same units and
scale factors are used.

3. THE OPTICAL LUMINOSITY FUNCTION

With only one exception all the objects in our IRAS sample can be
identified optically on the KOS/KOSS plates. We therefore construct an
optical luminosity function according to # (opt,i) - sum(j) Nij/Vj, where Nij
is the number of galaxies within absolute optical luminosity bin i and IR
luminosity bin j and VJ is the corresponding volume sampled in the infrared.
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Fig. 3. (a) The differential IR luminosity function of our sample (e), of
Lawrence et al. (1986, solid line), and of Soifer et al. (1986), +); (b) the
optical luminosity function of our sample (o) and of Kirshner et al. (1979,
solid line).

In other words, we assume that the volume sampling is determined by the IR
flux limit. This hypothesis can be tested to some extent by varying the IR
flux limit of our sample. We find that for 60Um flux limits ranging from 0.5
Jy (68 objects) to 0.9 Jy (31 objects) the optical luminosity functions thus
derived are identical within the errors. The results for our 68 IRAS galaxies
are displayed in Fig. 3b. The shape of this optical luminosity function is
similar to that obtained by Kirshner et al. (1979) for their optically
selected sample of field galaxies. For -22 < Mj < -18 the average ratio of
IRAS to field galaxies is 1/7.

4. SPECTRAL CHARACTERISTICS AND COMPANIONSHIP FREQUENCY

Our spectrophotometry was principally in the red, so that the spectral
diagnostics available are the Ha, [HII], and [SII] lines. The Ha line is
invariably the strongest. The [NII] A6584 to Ha line flux ratios lie in the
range 0.1 to 1.0 characteristic of HII region-like galaxies (Baldwin et al.
1981). This suggests that the integrated optical spectrum of the majority of
IRAS galaxies is dominated by starburst rather than nuclear activity. The
absolute Ha luminosity (uncorrected for internal extinction) is proportional
to the 60pm luminosity, but with a large scatter. Converting the Ha flux into
Lyman continuum flux using standard recombination theory and assuming that the
ionizing flux is solely due to OB stars (Salpeter IMF, mass range 6 to 40 MO)
whose optical luminosity is completely absorbed and reemitted at 60um, we
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predict a relation log L (He [erg/si) - log (L(60um)/L ) + 30.8. While M82
approximately does obey this relation, the galaxies in our sample have He
luminosities smaller than predicted by a factor of 20 on average. This is
probably due to much larger optical extinction in our sample and a possible
contribution to the 60m luminosity of the general underlying stellar
population besides that of the ionizing OB stars alone.

Enhanced star formation and nuclear activity are often found in
interacting galaxies (e.g. R.M. Cutri, this volume). We have compared the
frequency of apparent companions within a projected solid angle of 100 kpc for
our sample of IRAS galaxies to that of 40 non-IRAS late-type galaxies in the
same KOS/KOSS fields. We find that 43±8% of the IRAS galaxies have such a
companion as compared to only 23t8% of the non-IRAS galaxies. In spite of the
uncertainty due to projection effects, it is interesting that the apparent
companionship frequency among IRAS galaxies appears to be higher, at a
statistically significant level, than among the non-IRAS galaxies.

We have also compared the (J-F) colors of IRAS and non-IRAS galaxies in
the KOS sample (excluding E and SO galaxies). The difference is not
statistically significant: for the IRAS galaxies (J-F)avg - 0.84 ± 0.04, and
for the non-IRAS galaxies (J-F)avg - 0.78 ± 0.02.

5. CONCLUSIONS

Within an absolute magnitude range -22 < M < -18 about 14% of late-type
galaxies are IRAS galaxies. The integrated ligtt of IRAS galaxies mainly
reflects an enhanced star formation rate which, however, does not affect their
J-F color. The probability of a galaxy being an IRAS source seems to be
larger when a companion is present within a projected radius of 100 kpc.

A detailed account of this work will be submitted for publication to the
Astronomical Journal.

We thank Dr. A. Oemler for kindly making available to us the KOS/KOSS
plates and his PDS and photometry computer programs.
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ABSTRACT

We have observed a sample of 30 galaxies selected for their intense IRAS
flux at 60 and 100 pm using the Arecibo telescope at 21 cm to measixre the con-
tinuum and HI line luminosities. The centimeter-wave continuum correlates very
well with the far-infrared flux, with a correlation coefficient as high as that
found for other samples, and the same ratio between FIR and radio luminosities.
Weaker correlations are seen between the FIR and optical luminosity and between
the FIR and radio continuum. There is very little correlation between the FIR
and the HI mass deduced from the integral of the 21 cm line. The strength of the
radio continuum correlation suggests that there is little contribution to either
the radio or FIR from physical processes not affecting both. If they each
reflect time integrals of the star formation rate then the time constants must
be similar, or the star formation rate must change slowly in these galaxies.

BACKGROUND

In spiral galaxies the 60m and lO01im luminosity is closely tied to star
formation processes, as indicated by its tight correlation with star formation
tracers such as Ha emission, CO emission, and radio continuum emission. In this
study we concentrate on the correlation with radio continuum among galaxies
selected for their intense FIR (far-infrared) emission.

Correlations between FIR and centimeter-wave continuum have been found in
many samples of galaxies chosen by many criteria and in diverse environments.
Examples are spirals in clusters of galaxies (Helou et al. 1985, Dickey and
Salpeter 1984), FIR flux limited samples such as the point source catalog
(Gavazzi et al. 1986, Sanders and Mirabel 1985), and radio flux limited catalogs
(Condon and Broderick 1986).

The question we address here is whether this correlation extends to the
brightest FIR galaxies, and if so whether the radio continuum stays in the same
proportion to FIR luminosity. We use the list of galaxies in IRAS circular #6
(1984) supplemented by galaxies from the point source catalog with extremely
high FIR luminosity. This sample is essentially FIR flux-limited at 5 Jy, and
relatively complete for the Arecibo declination range. We have used the Arecibo
telescope to measure the 21cm line and continuum emission from these galaxies,
as well as the 18cm OH line emission and absorption. Measured fluxes are
tabulated and the spectra are shown and discussed in detail for each galaxy by
Garwood et al. (1986); in this presentation we give a brief description of the
major results. The most important result is that the same ratio of FIR to radio
luminosity holds for these galaxies as for more normal spirals, and that the
correlation is as good or better as for other samples.

Carol J. Lonidale Persson (Editor)
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Fig. 2 - The relationship between the HI line integral and the FIR flux.

The main result of this project is to show that active spirals with FIR
emission as high as 1038 watts may be described as having a higher level of
activity of processes similar to those operating in more ordinary spirals with
FIR of 1036 watts or less. The results imply that the same physical processes
link the radio and FIR emission in these most luminous IRAS galaxies as in
others. On the other hand, the intensity of the FIR is not simply a result of
a larger and brighter system overall. The HI masses of these galaxies are not
particularly large compared to ordinary spirals, indicating that these galaxies
do not simply have scaled-up disks. As shown in figure 2, there is little
correlation between HI mass and FIR luminosity, in contrast to CO emission
(Young et al. 1986) which traces the molecular component. As figure 3 shows,
the overall blue luminosity of these galaxies is somewhat correlated with
their FIR and 21cm continuum emission, but not as well as the latter two are
correlated with each other. This is partially due to high and variable
extinction, but must also be in part the effect of the longer time scale
(several times 108 years) associated with the population contributing to the
blue luminosity (Bothun 1982).

The high correlation coefficient and the consistency of q in many
samples has severe astrophysical implications. The total contribution to the
FIR emission from sources uarelated to radio synchrotron emission must be
small. Similarly, cosmic ray acceleration mechanisms which are unrelated to
the massive star formation rate must be negligible in spiral galaxies. Since
the characteristic energy loss lifetime for the cosmic ray particles emitting
the radio continuum is 1.5 to 2xlO8 years, this may indicate that variations
in the star formation rate do not occur much faster than this (Hummel 1986).
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Fig. 1 - The relationship between radio continuum luminosity and FIR luminosity.

Three values of q are indicated.

RESULTS

Figure 1 shows the relationship between luminosity at 21cm (watts/Hz) and
FIR (watts) defined as an average of the 60p and ION emission weighted by the
two bandwidths. The best fit slope is indicated by the line, which corresponds
to q = 2.16 where q is the average ratio of FIR to radio flux. The correla-
tion coefficient is 85%, deleting the two galaxies with lowest q's (labelled
04139+0238 and Z355.3+1826) the correlation coefficient increases to 94%. This
is as good a correlation as shown by most samples of normal spiral galaxies
selected by other criteria.

The q value of 2.16 is similar to that found for many other samples,
notably the Virgo cluster galaxies considered by Helou et al. (1985). As dis-
cussed by those authors this value is consistent with radio synchrotron
emission by high energy electrons generated (indirectly) by the supernovae
associated with a high rate of formation of massive stars. The FIR emission
in this case is from dust in and around their HII regions. The supernova
remnants are not the direct source of the radio continuum (assuming that they
obey a normal E-d relation, Ulvestad 1982) but only a small fraction of the
remnant energy is needed to power the radio emission through a secondary
acceleration process such as interstellar shocks.
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RADIO AND INFRARED OBSERVATIONS OF (ALMOST) ONE HUNDRED
NON-SEYFERT MARKARIAN GALAXIES

Linda L. Dressel
Department of Space Physics and Astronomy, Rice University

Houston, TX 77251

ABSTRACT. I have measured the 13 cm flux densities of 96 non-Seyfert
Markarian galaxies at Arecibo Observatory. Far infrared flux densities have
been published for 78 of these galaxies in the IRAS catalog. I have compared
the radio, infrared, and optical fluxes of these galaxies and of a magnitude-
limited sample of "normal" galaxies to clarify the nature of the radio
emission in Markarian galaxies. I find that Markarian galaxies of a given
apparent magnitude and Hubble type generally have radio fluxes several times
higher than the fluxes typical of "normal" galaxies of the same magnitude and
type. Remarkably, the ratio of radio flux to far infrared flux (i.e., the
synchrotron power per stellar ultraviolet thermal power) is nearly the same
for most of these "star-burst" galaxies and for normal spiral disks. However,
the compact and peculiar Markarian galaxies consistently have about 60$ more
radio flux per unit infrared flux than the other Markarian galaxies and the
normal spirals. It is not clear whether this difference reflects a difference
in the evolution of the star-bursts in these galaxies or whether there is
excess radio emission of non-stellar origin.

1. INTRODUCTION

Photometric and spectroscopic studies of Markarian galaxies (Markarian et
al. 1979 and references therein) have shown that, while some of them harbor
Seyfert nuclei or BL Lac objects, the vast majority are unusually blue because
of recent massive "bursts" of star formation. Although these galaxies have
been found in ultraviolet surveys, they are expected to emit more of their
radiation in the infrared, sinc, the star-forming regions show heavy
extinction by dust. They should also be unusually bright radio sources for
their Hubble type and optical luminosity, due to high supernova rates. The
relationships between radio, infrared, and blue luminosity can be used to
clarify how radio emission is produced in star-forming regions. Below, I
describe radio and infrared data for a large sample of bright nearby non-
Seyfert Markarian galaxies, and I use this data to interpret the nature of the
radio emission.

2. OBSERVATIONS

I have measured the 13 cm flux densities of 96 non-Seyfert Markarian
galaxies brighter than 14.5 pg mag at Arecibo Observatory. Thirty-eight of
the galaxies have flux densities above the conservative detection limit of 15
mJy (3a noise, 5a confusion). The measured flux densities below 15 mJy are
not very accurate individually, but they are still useful statistically. I
have compared this Markarian galaxy sample with the complete sample of

Carol J. Lonsdale Persson (Editor)
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galaxies brighter than 14.5 pg mag observed with the same system at Arecibo
(Dressel and Condon 1978).

I have obtained far infrared fluxes for 78 of the 96 Markarian galaxies
from the IRAS point source catalog (Lonsdale et al. 1985). (Five of the
galaxies were not observed by IRAS, 11 were observed but not detected, and 2
were obviously confused). I have compared the far infrared flux from 43 to 123
microns ("FIR" in the catalog) to the 13 cm flux density for these galaxies.

3. RESULTS

3.1. Radio-to-Optical Luminosity Ratios

The radio detection rate of the Markarian galaxies brighter than 14.5 mag
(40%) is much higher than that of the complete sample of galaxies brighter
than 14.5 mag (22%). It is particularly high for Markarian SO galaxies (44%)
relative to "normal" SO galaxies (12%). To make a more useful comparison of
the physical properties of Markarian galaxies and normal galaxies, I have
computed the ratio R of radio luminosity to optical luminosity for the
galaxies in both samples. R a S dex [0.4 (m - 12.5)] where S is the 13 cm
flux density in mJy and m is the corrected photographic magnitude (Dressel
1981).

Distributions of R are shown for Markarian galaxies of several Hubble
types (Nilson 1973) in Table I. They are displayed beside R distributions
derived for 370 SO galaxies, 820 spiral galaxies, and 225 peculiar galaxies in
the normal galaxy survey. To facilitate comparison, each normal galaxy
distribution has been normalized to have the same total number of galaxies as
the corresponding Markarian galaxy distribution, with Sa, Sb, and Sc
distributions being normalized separately within the spiral class. (Nilson's
S... class has not been included.) Markarian galaxies show a definite shift
away from the low R values found in many normal galaxies. The Markarian SO
and peculiar galaxies peak at "intermediate" R values (R - 20), with medians
several times greater than the normal galaxy medians. The Markarian spiral
galaxies peak at R - 10, which is twice the median R of normal spirals.

Table I. Numbers of Galaxies in the Markarian Sample and Normalized Numbers
of Galaxies in the Complete Sample as a Function of the Ratio R of Radio to
Optical Luminosity.

R SO Galaxies Spiral Galaxies Peculiar Galaxies
Markarian Complete Markarian Complete Markarian Complete

Sample Sample Sample Sample Sample Sample

(1.5 2 7.5 2 8.8 2 7.8
1.5- 4.5 0 2.8 9 6.2 2 3.7
4.5-13.5 5 2.9 8 8.0 5 7.7

13.5-40.5 9 1.6 7 3.7 16 8.8
40.5-122 0 0.7 1 0.5 6 3.0

>122 0 0.5 0 0.0 1 1.0
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3.2 Radio-to-Infrared Luminosity Ratios

The 13 cm flux densities and far infrared fluxes are strongly correlated
for the Markarian galaxies. Nearly all of the 28 galaxies with log FIR(W
m-a) 9 -12.7 were above the 15 mJy detection limit of the radio survey. For

these 28 galaxies, the mean difference A between log S (W m- 2 Hz" 1 ) and log
FIR (W m-2 ) is -15.07 ± 0.03, and the dispersion in A is 0.18. The
correlation persists at lower flux levels, where the radio flux densities have
relatively large but random errors (a - 3.6 mJy). For the 33 galaxies with
-13.2 6 log FIR (W m- 2 ) < -12.7 and with S generally less than 15 mJy, the
mean A is -15.15 ± .06 and the dispersion is 0.35. These values of A are not
significantly different from the mean A of the Sc galaxies in the magnitude-
limited complete sample, which is just the A of "normal" disk emission.

There are enough radio detections of Markarian galaxies in this sample to
permit separate examinations of SO, spiral, and peculiar galaxies. Peculiar
galaxies are defined here as those described by Nilson (1973) as "...

peculiar," "... compact," or merely "...". They are usually only 0.5 to 1.0
arcmin in diameter, while other galaxies brighter than 14.5 mag are usually
1.0 to 2.5 arcmin in diameter. Values of A are shown in Table II for the SO,
spiral, and peculiar galaxies detected at Arecibo and by IRAS. (Galaxies with
obviously confused or low quality IRAS fluxes have been excluded. Only 2
galaxies were detected at Arecibo but not by IRAS.) The median A for the SO
and spiral galaxies in Table II (excluding the anomalo,,s value for Mar 321) is
-15.10 1 0.03, and the dispersion is 0.10. The medt.an A for the peculiar
galaxies is -114.88 ± 0.02, and the dispersion is 0.07. The peculiar galaxies
thus emit roughly 60% more radio emission per unit infrared emission than the
SO and spiral galaxies do.

Table II. Values of A - log S(Wm- 2Hz- 1 ) - log FIR(Wmn2 ) for SO, Spiral, and
Peculiar Gal,. tes Detected at Arecibo and by IRAS.

SO Galaxies Spiral Galdxies Peculiar Galaxies
Markarian MarKarian Markarian

Number A Number A Number A

531 -15.21 319 -15.014 325 -1)4.93
5314 -15.0)4 321 -114.143 363 -114.92

1002 -15.20 323 -15.03 1418 -114.80
1088 -15.014 326 -15.12 1432 -15.02
1194 -15.14 14014 -15.02 1479 -114.81

5145 -15.03 518 -114.92
1183 -15.01 1027 -114.86
11466 -15.314 1233 -114.88

13014 -114.80
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4. DISCUSSION

Markarian galaxies typically emit several times as much radio luminosity
per unit optical luminosity as "normal" galaxies of the same Hubble type. This
implies that most of the radio emission in Markarian galaxies is related to
the "star-burst" population that produces their characteristically powerful
ultraviolet emission. Since most of the ultraviolet emission is absorbed by
dust and converted to infrared emission, the ratio of radio flux to infrared
flux in these galaxies is a measure of the radio luminosity produced per unit
of "star-burst" stellar luminosity. Remarkably, this ratio is similar to that
produced by the disks of "normal" Sc galaxies. Star-forming regions thus
appear to produce similar amounts of synchrotron power per unit stellar
ultraviolet thermal power (roughly, synchrotron power per star recently
formed) in a very wide range of physical conditions. This study confirms the
conclusions of Helou et al. (1985), who compared a much smaller sample of
"star-burst" galaxies to "normal" spiral galaxies.

The significant excess of radio emission per unit infrared emission of
the peculiar galaxies, relative to the SO and spiral galaxies, remains to be
explained. It is not due to any power-dependent selection effect: the galaxies
of each type span the same range in far infrared power. Nor is it due to
resolution of the radio sources in the somewhat larger SO and spiral galaxies:
flux errors due to resolution should be less than 10% in most cases (Dressel
and Condon 1978). The infrared fluxes are generally well above the level where
systematic errors are known to exist in the IRAS point source catalog.
The temperature-sensitive ratio of the fluxes at 60 and
100 microns covers the same range for the peculiar galaxies and the SO and
spiral galaxies. Since many of the peculiar galaxies are "disturbed" in
appearance (Nilson 1973), it is possible that tidal interactions are involved
in generating "extra" radio sources of non-stellar origin. Alternatively,
these compact galaxies may have stronger magnetic fields, or may produce a
higher proportion of supernova progenitors in their burst populations.
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Abstract: The recently established correlation between radio continuum and
far infrared emission in galaxies has been further investigated by comparing
normal spiral and blue compact dwarf galaxies. The puzzling result is that the
ratio of radio-to-far infrared luminosity "an its dispersion is the same for
both samples, although their ratios of blue-to-far infrared luminosity, their
radio spectral indices and their dust temperatures exhibit markedly different
mean values and dispersions. This suggests that the mount of energy radiated in
the two regimes is enhanced in the same way although the mechanisms responsible
for the two components are rather different and complex. The fact that the blue
light does not increase at the same proportion shows that both the radio and the
far infrared emission are connected with the recent star formation history.

1. INMODUCION

Soon after the successful HAS mission, several groups of investigators
reported a close correlation between the integrated radio continuum and far
infrared (FIR) emission from galaxies, with the radio continuum radiation being
predominantly of nonthernal origin (de Yong et al., 1985. Ielou et al., 1985.
Sanders and Mirabel, 1985). The most straight-forward Interpretation was in
terms of a close connection between dust heating and cosmic ray production via
recent star-forming activity. Buonel (1986), investigating this correlation for
a sample of Sbc galaxies, considered this relation as evidence for the validity
of energy equipartition between cosmic rays and magnetic fields in Sbc spiral
galaxies, with a uniform star formation rate during the past - 109 yrs.

A similar investigation was carried out by Kunth and Sevre (1986) for a
ample of blue compact dwarf galaxies (BCDGs), and again drawing the attention
to the amazingly tight correlation between radio and FIR emission, holding even
for this outstanding class of galaxies.

In order to investigate this intriguing and puzzling correlation further,
we have undertaken a comparison of the total radio and FIR emission from normal
spiral galaxies (NSGs) and BCDGs.

2. iK SAMPLES AND THE DATA

Radio continuum measurements of BCDGs have been accumulating during the
past decade, obtained primarily with single dishes (see the compilation of
Klein, 1986). In some cases measurements at two or more frequencies exist so
that (more or less accurate) spectral indices can be derived. Recently high-
resolution VLA observations have been carried out by several groups of

Carol J. Lonsdake Persson (Editor)
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investigators (e.g. Brinks and Klein. 1986, Wynn-Williams and Becklin, 1986,
Sramok andVoedman, 1986) which, besides allowing more detailed studies, are
indispensable as a check on the confusion problems naturally inherent to the
single-dish measurements. Some 40 BCDGs have so far been detected in the radio
continuum (mainly at 5 GON), and for a few of then upper limits have been
obtained. For nearly 30 of them spectral indices could be derived, but nearly
half of these are still rather unreliable. All of the flux densities
incorporated in the present work have been taken from the above-mentioned
literature, supplemented by more recent measurements carried out with the Bonn
100-m telescope (Klein, in prep.). FIR flux densities of the BCDGs have been
compiled by Knuth and Sevre (1986), in addition the work of Gondhalekar et al.
(1986) and of Wynn-Villiams and Becklin (1986) provided some more data. Blue
optical magnitudes have been adopted from the list of Thuan and Martin (1981).
All of the BCDGs for which radio continuum measurements exist have been used for
the present analysis. This 'sample selection' may therefore bear the danger of
being biased, but selection effects would probably have been more serious if the
sample had been chosen using FIR detections.

As a comparison sample to represent what one would call normal spiral
galaxies (in the sense that they have seen a uniform history of star formation
over at least the past - 109 yrs) we have chosen that investigated by Giois et
&l (1982) for which accurate flux densities over a wide frequency range and
therefore reliable spectral indices, are available. The FIR data have been taken
from the following sources: for all of the galaxies which are smaller than the
detector sizes (i.e. galaxies with angular extents smaller than about 6') the
data have been taken from the IRAS Point Source Catalogue (PSC). For those
galaxies which have sizes between about 6' and 8' the data have been taken from
the Small Scale Structure Catalogue, while galaxies larger than that have been
analyzed in the IRAS maps of the HCON1 survey. The blue magnitudes of the NSG
sample have been adopted from the list of Gioia and Gregorini (1980).

We have thus complete radio and optical data for the two samples
investigated here. FIR data (and spectral indices in case of BCDGs) are
available for only about 60% of the galaxies.

3. INTERAIRD RADIVO AND FIER PROPERTIES

In Figure la-d we present all of the properties relevant to the current
analysis for NSGs (upper row) and BCDGs (lower row). Some of the properties have
already been derived and discussed previously: it is known that the radio index
(ratio of radio-to-optical luminosity) of BCDGs is significantly higher than
that of NSGs, and that the average radio spectrum of BCDGs is such flatter than
that of NSG8 (see Klein et al., 1984). Here we have supplemented the previously
existing radio data with the more recent measurements mentioned in Section 2.
High-resolution observations with the VIA (see e.g., Brinks and Klein, 1986) at
120 cm and X cm revealed that some of the single-dish fluxes were confused by
nearby unrelated sources. The updated distributions of the radio index at ).6.3
on, R6 .3B, and the spectral index, a e, are plotted in Figures la and d.
Hyphens indicate spectral index uncertainties in excess of 0.2. Figures lb and c
display those histograms which incorporate the FIR data from the PSC. The ratio

.3B = . dex ((nB-12.5)/2.5) - 0.044 S6.3/SB, where S6.3 and SB are in
y3 ad 3
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%6sum of radio-to-FIR luminosity is shown in Figure lb, the dust temperature
in Fiare Io. The latter was derived from the ratio of the 100p-to-60p flux
densities and by assuming an F. ~ v1 '5 * BV(Td) dust emission law. The ratio
Rd.VIR was derived by computing the FIR luminosity using the l00p and 60p flux
densities which reflect the bulk of the FIR luminosity and following the
procedure of Helon et al. (1985). This ratio is then obtained as

log R6.3FIR -- 15.10 + log S6.3 -log(2.58 S6 0 + S100),

where 36.3 is in mJy and S6 0 and S800 are in ly. All of the mean values and
standard deviations given in each figure have been obtained by properly
weighting the individual data.

Let us first turn to the spectral indices, obtained by applying least-
squares fits to the data. As discussed by Gioia et al. (1982) the distribution
of a for NSGs is extremely narrow indicating that both the nonthermal spectral
indices (ant) as well as the thermal/nonthermal ratios (ft t(O) do not vary
among sNSGs. tihis certainly does not hold for BCDGs for which (in spite of the
large uncertainties still inherent to the data) the spectral indices show a
large scatter around a mean value, which as stated already by Klein et al.
(1984) suggests significantly flatter spectra for these than for NSGs. The
strong 'thermal' wing in Figure ld near a = 0 indicates that thermal emission
plays a major role in this galaxy type, but the spread of a down to about -0.8
implies that probably all combinations of ant and ftnt(V) may occur, in
particular nonthermal spectra which may be ulatt than those derived for NSGs.

There is also a pronounced difference between the distributions of dust
temperature of NSGs and BCDGs: BCDGs appear to host much warmer dust on average
than normal spirals do. The same conclusion had already been reached by Helon
(1986) who compared samples of BCDGs and Virgo spirals. Another interpretation
would be a lack of the cooler dust component in BCDGs which according to Cox et
al. (1986) delivers about 40% of the total luminosity of the dust emission in
the Milky Way. This cooler dust component, with a temperature range of Tc ~ 15-
25 K (note that Cox et al. used an F1 - 2 B (Td) law), is associated with

atomic hydrogen and heated by the general interstellar radiation field (ISRF),
while the warm dust component has TO c 30 - 40 K and is associated with ionized
gas in extended low-density (ELD) HII regions and heated by OB stars. According
to Figure le this latter component contributes a much larger fraction to the
total FIR emission in BCDGs than in NSGs, which once again emphasizes their
similarity to II1 regions, as was first pointed out by Sargent and Searle
(1970). In addition the dust temperatures in BCDGs appear to occupy a wider
range than those of NSGs.

What about the radio continuum - FIR relation? Looking at Figure lb we
immediately realize that there is W diffrnce a& £II between BCDGs and NSG*,
agithoe in the ma value an in their jjunga deviationj! This is a puzzling
result: it means that regardless of what is the predominant mechanism of dust
heating (O stars in ELD SIX regions or the ISRF for the diffuse component) and
regardless of what is the thermal/nonthermal ratio and the energy spectrum of
cosmic ray electrons, the ratio of radio-to-FIR luminosity is universal! Both
(thermal and nonthermal) radio as well as thermal emission from dust must
therefore be enhanced in the same way as the star formation activity increases.
This obviously applies only to the recent star formation history, since
otherwise we would expect the blue light to increase by about the same
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proportion, which according to Figure Is it does not.

It is remarkable that IZwl8 and IIZw4O, the BCDGs with the most extreme
properties (they are particulary metal-poor and exhibit very high gas contents,
IIZw40 has the highest radio index and the highest dust temperature) are well
within the distribution of radio-to-FIR luminosity.

4. CONCLUSIONS:

It is puzzling that the two emission processes ((thermal and nonthermal)
radio and FIR) which arise from very different mechanisms apparently follow the
same relation and probably increase at the same rate as the star formation rate
increases. The predominant dust heating process apparently has no influence on
the total amount of FIR emission, and neither has the thermal/nonthermal ratio
and the nonthermal radio spectrum on the total amount of radio radiation.

The lack of scatter in the radio-to-FIR ratios of BCDGs suggests that (at
least in this galaxy type) the (thermal and nonthermal) radio emission must be
connected with the most recent star formation as already stated by do long et
&1. (1985) because the - undoubtedly rapidly varying - star formation history in
BCDGs would otherwise have resulted in a variation of this ratio. Hence this
ratio is not very suitable for studying variations in recent star formation
histories. The situation must be different for NSGs: under normal conditions
(i.e., in the absence of tidal interactions, strong bars. etc.) their star
formation rates did not vary over the last 10-9 yrs. (Larson and Tinsley,
1978). Therefore the lack of scatter in the radio-to-FIR luminosity ratio of
NSGs was to be expected. The larger scatter in the ratio of radio-to-optical
luminosity for NSGs can be explained in terms of varying star formation rates
before that epoch, since the blue light is about equally shared by stars younger
and older than that. Consistent with this, the scatter in the radio-to-optical
luminosity ratio of BCDGs is somewhat larger than that of NSGs because in these
the relative contribution of young stars to the blue light is much higher than
in NSGs so that the scatter of 16.3B partly reflects the violent recent star
formation epoch.

Te can finally rule out any obvious underabundance of dust in BCDGs as
compared to NSGs because we would otherwise expect lower values of R6.3FIR for
the former, or at least a wing of lower values. Normal amounts of dust in BCDGs
would then contradict the view of them being 'young' galaxies (in the sense that
most of them are undergoing their first burst of star formation).
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A very tight correlation has been found between the radio emission and the
far infrared mission from galaxies. This has been found for various samples of
galaxies (de long at &1., 1985: Helou et al., 1985) and is explained in terms of
recent star formation. The tight correlation would imply that the total radio
emission (the sum of thermal and synchrotron emission) is a good tracer of star
formation.

In Figure 1 we show the correlation between the radio power at 5 OHz and
the far infrared luminc.rity. The galaxies are of various morphological types and
were selected from the various RAS circulars, hence the sample is an infrared
selected sample. Noticeable is that we corrected the far infrared luminosities
for the dust temperature. This turned out to be significant because it decreased
the dispersion in the correlation.

As can be seen the correlation is very tight over 4 decades! There is
strong evidence that the slope of the linear regression changes, in the sense
that it is steeper at higher infrared luminosities (LIr>5 x I0361). It could

also be that the objects of the minisurvey, which preferentially occupy this
region of the diagram, have a slight excess of radio emission.

The global correlation between radio power and far infrared emission is
also seen in individual galaxies. Figures 2 and 3 show the distributions of the
radio emission at 1.4 GBz (Baynes et al., 1986) and of the 100pm emission as
observed with IRAS. This shows (as in a number of other galaxies studied in
detail) an almost exact coincidence of the two kinds of emission. Note however
that most of ihe radio background sources are not visible at 100pm.

It turned out that the brightest regions in the radio continuum and at
100ps are related to HII regions. There the radio emission is dominated by
thermal emission as is indicated by the flat radio spectra. In the far infrared
these regions show the highest temperature (T5 - 400). The more extended
component is dominated by radio emission due to the synchrotron mechanism and by
far infrared emission from cooler dust (T - 200). The heating mechanism for
this hot dust and cooler dust is probably different. The hot dust is heated by
the radiation from hot, young stars, while the cooler dust can be heated by the
interstellar radiation field (Cox et al., 1986). These different heating
mechanisms have to be considered when relating the radio continuum emission (in
particular the nonthermal component) to star formation.

The separation between the nonthermal component and the thermal component,
which is possible locally for individual galaxies, is in principle also possible
for the integrated radio emission from galaxies. Assuming a nonthermal spectral
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Figure 2

Figure 3
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index, the observed spectral index could be a measure of the thermal fraction.
As seen before. the thermal fraction is expected to correlate with hot dust. In
this simplistic view one would expect a correlation between the observed radio
spectral index (a) and the far infrared spectral index (lo8(S 0 0 Mm/S 6 0 p)).
which is a measure of the dust temperature.
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In Figure 4 we show this diagram for the far infrared selected sample.
There is ma obvious correlation. This can have several causes:

Up to frequencies of S OHz the thermal fraction is in general still not
dominating the total radio emission from spiral galaxies.

The spectral index for the nonthermal component is not known exactly and
can in fact, in particular for galaxies in an active star-foraming phase,
vary from galaxy to galaxy. Note that SNR usually have a relatively flat
spectrum (a z 0.5) compared to the spectra of galaxies. Low frequency ( V(
1.5 GHO) and high frequency ( V) 10 GHz) measurements are needed to
accurately determine the thermal fraction.
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To conclude:

i) The thermal radio component is a good tracer of star formation. It is
related to the hot dust component.

ii) The coupling between star formation and the nonthermal component is less
direct, perhaps mainly due to the relatively long confinement time of
cosmic rays and to diffusion of cosmic rays.

iii) The nonthermal component probably contains information on the star forming
history of galaxies over a time scale of -108 yr (see Hummel, 1986: poster
by Klein and Vunderlich).

iv) A correlation between the thermal fraction of the radio emission and the
dust temperature is expected but not yet visible here because the spectral
index is not an accurate enough measure of the thermal fraction.
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Hummel, L.: 1986, Astron. Astrophys. M. L4
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EXTRAGALACTIC OH MEGAMASERS IN STRONG IRAS SOURCES
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From our OH and HI survey of the strongest far-infrared ( A= 60 or 100 jm)
IRAS sources, we have discovered 3 new powerful OH megamasers in Arp 148, IRAS
1510+0724 and in the uncatalogued IRAS source,IRAS 17208-0014 (Bottinelli et al.
1985b, 1986).

The HI line, the OH 1667 and 1665 Miz main lines and the 21-cm continuum
observations have been made with the Nangay radio telescope. The optical spectra
and images have been obtained at the European Southern Observatory (Fig.1).

~ ~ y: ; .". .':'. ZW 1510+0724

4-1

P. ~ C4 ~ : 4-g1 CDotie

%. Fig.- CCD picture obtained in R, at the ESO 2.20.
4. t'" C telescope (left) and calibrated IDS spectrum

• obtained at the ESO 3.60 m telescope (above)
-. >i for the galaxy ZW 1510+0724.

The spectra are displayed in the following figures (Fig. 2a-d) together with
the main IR and OH properties of the 8 megamasers detected up to now, including
IC 4553 (Baan et al., 1982), NGC 3690 and firk 231 (Baan, 1985), I-rk 273 (Bottinel-
li et al., 1985a) and III ZW35 (Chapman et al., 1986) (Figure 3).

Particularly striking features are
1- strong IR luminosity.
2- nearly edge-on optical inclinations.
3- evidences of large optical thicknesses as judged from the 12, 25, 60 and 100
tm flux ratios and optical spectra.

4- correlated IR and OH (1667 MHz) luminosities (Fig.3).
5- evidence of non-circular motions from HI absorption lines. Among all OH mega-

Carol J. Lonsdal Per"se (Edtor)
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Figure 2a: OH spectrum of A 1720 centered for the rest frequency of the 1667 Mhz
transition with a velocity resolution of 4.5 Km s-1. Radial velocities are given
in terms of heliocentric optical redshift csAX/ Xo. The central feature corres-
ponds to the 1667 Mhz transition. The redshif ted secondary feature corresponds
to the 1665 Mhz transition. Upper part: right circular polarization. Lower
part: left circular polarization. There is no evidence of circular polarization
larger than about 15%.

0

A 1510

-10

3500 4000

radial velocity (km s-1)

Figure 2b: HI profile of A 1510 with a velocity resolution of 10 Km s-1. Radial
velocities are given in terms of the heliocentric optical redshift cAA/ A0 .
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Figure 2c: OH spectrum of A1510 centered for the rest frequency of the 1667 Mhz
transition with a velocity resolution of 9 Km s-1. Radial velocities are given
in terms of the heliocentric optical redshift cA?/ X0. The secondary feature
(at about 4300 Km s- 1 ) corresponds to the 1665 Mhz transition.

Ill ZW 35

E
0

8000 8500

radial velocity (km s- 1 )

Figure 2d: HI profile of III Zw 35 with a velocity resolution of 10.5 Km s-1.
Radial velocities are given in terms of heliocentric optical redshift cAA/Xo.
(Note the absorption feature at about 8300 Km s-1.)

masers presented in Figure 3, these motions seem to be the largest for the stron-
gest IR emitters, thus suggesting a relation with the stronger star formation ac-
tivity.
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ABSTRACT

Near-infrared photometry at J, H, and K has been obtained for 82 galaxies from the IRAS minisurvey.
The near-infrared colors of these galaxies cover a larger range in J-H and H-K than do normal field spiral
galaxies, and evidence is presented of a tighter correlation between the near- and far-infrared emission in far-
infrared-bright galaxies than exists between the far-infrared and the visible emission. These results suggest the
presence of dust in far-infrared-bright galaxies, with hot dust emission contributing to the 2.2 pn emission,
and extinction by dust affecting both the near-infrared colors and the visible luminosities. In addition, there
is some indication that the infrared emission in many of the minisurvey galaxies is coming from a strong
nuclear component.

L INTRODUCTION

The IRAS minisurvey contained a total of 86 galaxies that were detected at 60 pm with galactic latitude
rol > 200, and that have visible counterparts on the Palomar Observatory Sky Survey (POSS) (see Soifer et
al., 1984, as well as Rowan-Robinson et al., 1984 for an explanation of the IRAS minisurvey). As such, the
galaxies in that survey represent a complete sample of infrared selected galaxies. Near-infrared observations
of the IRAS minisurvey galaxies and the corresponding results are discussed in detail by Carico et al. (1986),
and are summarized in what follows.

IL OBSERVATIONS AND DATA REDUCTION

The 86 galaxies analyzed by Softer et al. (1984) which comprise the minisurvey sample are listed in
IRAS Circular No. 6 (1984). Of these, 82 were observed at 1.27 pm (J), 1.65 pam (H) and 2.2 pm (K)
using the 5 m Hale telescope at Palomar Observatory. A solid nitrogen ccoled InSb detector was used for
the observations, and for most of the galaxies, a 10" diameter beam was used. Corrections were applied to
the observed magnitudes and colors, ranging from 0 to 0.03 mag in J-H and H-K, to account for wavelength
dependent distortions in the beam profiles. Statistical uncertainties in the observed colors are believed to be
<0.04 mag.

K-conections (from Neugebauer et a., 1985) and galactic reddening corrections were also applied to
the observed magnitudes of 80 galaxies for which redshifts were obtained or were available in the literature.
For the galactic reddening cofreetions, the values of the color excess EB-v were obtained for each galaxy
individually by determining the reddening at that location on the reddening maps of Burstein and Heiles
(1982), aid the values of EF-v/Av, Ej-HWAv, EH-K/Av, and AK/Av were taken from Cohen et al. (1981).
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The near-infrared data, as well as the redshifts and the values of EB-v for each galaxy, are tabulated in
Carico et al. (1986).

m. RESULTS

a ) Near-Infrared Colors

The near-infrared colors for the minisurvey galaxies, corrected for redshift and galactic reddening, are
plotted in Figure 1. There is one galaxy, 04210+0400 (0421+040P06), which is distinct from the rest of the
minisurvey sample with a value of 0.87 mag for H-K. This galaxy, which has near-infrared colors appropriate
for a Seyfert nucleus, is discussed extensively by Beichman et al. (1985). The region in Figure 1 enclosed by
a dashed line is the region occupied by the normal spiral galaxies of Aaronson (1977, converted to the CIT
photometric system of Frogel et al., 1978). Also included in Figure 1, indicated by the solid lines labeled
A through D, are the changes in the near-infrared colors due to the effects of dust within the galaxies.

The near-infrared colors of the minisurvey galaxies differ from the normal galaxies of Aaronson pri-
marily in that they represent a larger range in J-H and H-K than that spanned by the normal galaxy region,
resulting in somewhat redder average colors. As is indicated in Figure 1, this can be understood by invoking

SO.4

OD + c+
0.2

I+ + D
++ +

6 -+ + +

*" I , I * I * I

0 0 0.2 0.4 0.6 0.8

[H-K] (mag)

Figure 1 Near-infrared colors for the IRAS minisurvey galaxies. The region enclosed by a
dashed line is that occupied by the normal spiral galaxies of Aaronson (1977). The solid lines A
through D are from Aaronson (1977) and represent the effect of dust on the near-infrared colors.
Specifically, they are as follows: A corresponds to a reddening screen of purely absorbing dust,
drawn as a function of the optical depth at V, iv; B to reddening from dust that is uniformly
mixed with the emitting source, also drawn as a function of rv; C, D to 600 K and 1000 K dust,
respectively, with emissivity, c, given by e a s 2 , where v is the frequency. Lines C and D are
labeled according to the fractional contribution to the 2.2 pn emission, assuming zero contribution
from dust emission for a normal stellar population. All of the lines A through D are taken from
Aaronson (1977).
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the presence of dust in the minisurvey galaxies, affecting the near-infrared colors through absorption with
visual optical depths up to about 5, for the case of dust uniformly mixed throughout the galaxy, coupled with
hot dust emission. It can also be seen from Figure 1 that a large fraction of the minisurvey galaxies would
be well fitted by the normal galaxy region were it not for a slight shift, amounting to barely 0.02 mag in
both J-H and H-K. Considering the potential sources of systematic uncertainties inherent in the comparison
between the two samples, we consider such a small systematic effect with some skepticism.

b ) Near and Far-Infrared Luminosity Correlation

The near- and far-infrared luminosities ULmrnu and LFnt, respectively) have been calculated using the
flux densities given in the IRAS Point Source Catalog (1985). The corresponding distributions are plotted
in Carico et al. (1986), where it is found that the distribution of near-infrared luminosities has a mean
of log(LN•m/Le) = 9.6 with a dispersion of log(LNMf/L) of oant = 0.5, and the far-infrared luminosity
distribution has a mean of log(Lfnm/Lo) = 10.4 with a dispersion of log(LpnM/Lo) of opm = 0.5.

Galaxies detected by IRAS show little correlation between their far-infrared and blue luminosites (Soifer,
1986a). One would like to see whether the far-infrared luminosity is better correlated with the near-infrared
luminosity, which is more representative of the total stellar luminosity, and less affected by internal reddening,
than is the blue luminosity. Investigation of the ratio of far- to near-infrared luminosities for the minisurvey
galaxies indicates that the corresponding distribution has a mean of log(LFnM/LNnM) = 0.8 with a dispersion
of log(LFR/LNIR) of oo = 0.2.

It would be useful to compare the distributions of Lpm/LiR and Llqi/LB, where LB is the blue
luminosity, for the minisurvey galaxies. However, these galaxies have not yet been systematically measured
at visible wavelengths. Another sample of far-infrared-bright IRAS galaxies does exist for which blue
luminosities are available. This .iample, the IRAS bright galaxy sample (Soifer et al., 1986b), is similar to that
obtained in the minisurvey in that it represents a complete, flux-limited sample of infrared selected galaxies;
we assume that these galaxies will have similar properties to those in the minisurvey. The distribution of the
ratio of the far-infrared to blue luminosity for the bright galaxy sample has a mean of log(LFut/LB) = 0.6
with a dispersion of log(LnR/La) of obg = 0.6. Taking account of the possible differences between the two
samples, the larger dispersion in LfI/LB as compared to Lpm/Lm appears to be statistically significant,
indicating that far-infrared- bright galaxies have a tighter correlation between their far- and near-infrared
emission than between their far-infrared and blue light. Such a tighter correlation in the far-infrared to
2.2 pm luminosity suggests that extinction by dust is indeed significantly affecting the visible luminosity of
far-infrared- bright galaxies.

It has also been found that the dispersion of the distribution of log(LFnt/LNR) for the minisurvey
galaxies increases when an attempt is made to apply beam-size corrections to the near-infrared luminosities.
Such an increase in scatter indicates that the beam-size corrections are inappropriate, suggesting that the
far-infrared emission in the majority of the minisurvey galaxies may have a strong nuclear component.

CONCLUSIONS

Near-infrared observations of 80 galaxies from the IRAS minisurvey have produced the following
results:

1) The near-infrared colors of far-infrared-bright galaxies are similar to those of normal field spiral galaxies,
but show a larger range in J-H and H-K, possibly indicating the presence of dust in far-infrared-bright
galaxies. For the minisurvey sample, there is evidence for dust absorption of visual optical depths
ranging up to about 5, coupled with hot dust emission.
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2) The far-infrared emission of far-infrared-bright galaxies appears to be more tightly correlated with the
near-infrared emission than with the visible emission. This suggests the possibility of a significant
effect from dust absorption on the visible luminosity of these galaxies.

3) There is some indication that a substantial percentage of far-infrared-bright galaxies emit their infrared
luminosity primarily from a strong nuclear component.
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We have undertaken optical, near-infrared, radio-continuum and HI obser-
vations of the galaxies identified with IRAS sources in a few fields roughly of
the size of a sky survey plate. We present here results from two fields at
galactic latitude +270 and +430 over a total area of 100 square degrees (see also
Dennefeld et al. 1986).These regions contained 115 IRAS point sources, out of
which 26 were identified with stars and 81 with faint galaxies, 10 of which were
difficult to recognize on the Schmidt plates. A further 8 sources could not be
identified with any object down to the limit of the Palomar or ESO Sky Survey
Plates. As judged from the Cirrus Flaqs, at most 3 could be spurious sources. The
surface density of qalaxies lies between 0.6 and 0.9 qalaxies per square degree,
in accordance with other deteiminations (Helou, 1986). Our value is however of
little statistical siqnificance, especially because the field at b = +270 seems to
contain a qroup of faint calaxies.

Soectroscopy was obtained with the ESO telescopes at a resolution of about
ICA. The vast majority of galaxies have low excitation. spectra dominated by low-
ionization lines. These spectra are typical of HII-reqion type qalaxies, however
of much lower excitation (typically [O1IH ]/HP 4 1) than other starburst qalaxies
such as those described by Balzano 1983). Similar results have been found inde-
pendently by Allen, Roche and Norris (1985) and Elston, Cornell and Lebofsky
(1985). We stress here the importance of the reddeninq as determined from the
Ha/Hp ratio: the visual absorption Av ranqes from 2 to 6 magnitudes and as a
consequence the corrected LIR/LB ratios are considerably reduced if those
reddeninqaapply to the whole galaxy. Indeed 3-H, H-K colours can be reconcilied
with those of "normal" galaxies when such reddening corrections are applied. In
some cases, a substantial K-L excess remains, indicatinq a dust contribution even
at short wavelengths. The strong Na absorption line seen in some spectra is also
partly attributed to dust, in absence of any other late-type stellar feature.

Velocities up to 60000 km/s, resulting in largf 2 infrared luminosities, have
been found. Several objects have Ln of a few 10 solar luminosities, simi-
lar to the ones of Arp 220 or NGC 6200, which are thus not exceptional anymore.
If our numbers are representative, more than a thousand of such objects should
exist all over the sky. Star formation activity is believed to be the source for
this enormous IR emission. Evidence for this comes from the correlation between
IR and Ha luminosities (Dennefeld et al. 1986) or from the stronq Balmer absorp-
tion lines seen in the spectra. Radio-continuum observations of these extreme
objects (Karoji et al. 1986) show that the star-formation activity is located in

* Visitinq Astronomer, European Southern Observatory, Chile.

Carol J. Lon•dale Pernon (EMtor)
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Figure la - A CCD picture in r (Gunn) of A 09111-1007 obtained at ESO.
The eastern galaxy with two companions is not the IRAS source.
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Figure lb - A VLA map of A 09111-1007 at 20 cm. Peak brightness is
22 mJy/beam. This figure is taken from Karoji et al. (1986).
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Figure Ic -Spectra obtained at ESO for the two galaxies seen in fig. la.
The high-excitation eastern galaxy (Sey2) is not an IRAS source.
The western one has a typical spectrum of IRAS galaxies with low
excitation, high reddening and interstellar absorption lines
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Figure 2 - HI profiles of IRAS galaxies obtained at Nangay
Upper image is A12488-2051, lower one is A09234-1146
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the central reqions (unresolved at 6 koc diameter for our far-outlyinq qalaxies)
and that the radio/IR flux density ratio is typical of star-burst activity rather
then Seyfert 1 Indeed, very few Seyfert qalaxies or Liners have been found in
our survey (see fiq.1 for an illustration). It has been suqqested that interac-
tions between galaxies are more Frequent within IRAS qalaxies than elsewhere
(Lonsdale et al. 1984) and that this could reoresent the triqqerinq mechanism for
star formation. About 25A of our qalaxies have neinhhotrs within 2' but we still
need more analysis (velocities and imaqinq) to distinquish interactions from sim-
ole clusterinq. At least the fuel for star formation is available: about half tt•

objects have been detected in HI and have hydrogen masses in the ranqe in -in
Mo. Large central column densities are sometimeR oresent (see fia.2) as exoec-
ted for these hiqhly reddened objects. Rut it should he stressed that hiah star
formation rates are required (larger than inn Mo ner year) to exolain the larae
IR luminosities unless truncated mass functions are assumed (see the accomoanyina
paper by Belfort, Mochkovitch and Dennefeld, this volume).

It seems therefore that the overnll characteristics of faint IRAS qalaxies
are now well established from the spectral ooint of view. Enouqh so to distin-
quish from soectra alone an IRAS candidate from another (see fiq.1) One particu-
larity is the high reddeninq which no doubt explains why these fairly numerous
objects with stronq Ha emission line were not discovered in the objective prism
surveys mostly conducted in the blue
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NUCLEAR INFRARED EMISSION AND THE COLORS OF IRAS GALAXIES

Gary J. Hill 1

University of Hawaii, Institute for Astronomy
Honolulu, Hawaii 96822

ABSTRACT. J, H, K, L', and N observations of galaxies detected at 12 JM

by IRAS are combined with IRAS flux densities to investigate the relationship
between the infrared sizes and colors of galaxian infrared sources. It is
found that typical IRAS galaxies have 10 ftn radii of 0.5-2.0 kpc, while active
galaxies and galaxies with higher 25-60 Pm color temperatures are smaller. One
unusual object, 23060+0505, is at high redshift and has an infrared luminosity
of 1.5 x 1012 Le. Its 1-100 Pm energy distribution resembles that of a
Seyfert 1 galaxy, but it shows very little sign of broad-line emission in the
visible. Its properties suggest that it may be a prototype for a class of
highly obscured active galaxy.

1. INTRODUCTION

As part of an IRAS follow-up program, the group at the University of
Hawaii has been systematically obtaining redshifts, CCD imagery, and infrared
photometry of a sample of IRAS point sources identified with galaxies. This
paper presents some preliminary results from this large data base. In par-
ticular, a number of detections at N (10.1 Pm) allow us to investigate the 10
p. size of many galaxies for comparison with other properties.

Three samples are considered. Galaxies in the first sample are drawn
mainly from the preliminary P04 and P06 IRAS lists and constitute what we
believe to be a "representative" sample of IRAS galaxies. Those in the second
sample are from lists P11 and P16 and have "hot" (S25Pm/S60Pm > 0.3) far-
infrared energy distributions (some of these sources are from de Grijp et al.
1985). The third sample comprises those X-ray-selected active galactic nuclei
(AGN) in the sample of McAlary et al. (1983) that have both published ground-
based small-aperture N observations and IRAS detections at 12 Pm.

2. OBSERVATIONS

Details of the observations will be reported elsewhere. The redshifto
were obtained at the University of Hawaii 2.2 m telescope on Mauna Kea
using a grism spectrograph or the Faint Object Spectrograph. The spectrographs
and the Galileo/Institute for Astronomy 500 x 500 TI CCD were mounted at the
Cassegrain focus, giving resolutions from 8 to 16 A.

1Visiting Astronomer, Infrared Telescope Facility, which is operated by
the University of Hawaii, under contract with the National Aeronautics and
Space Administration.
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J, H, K, L', and N photometry was obtained at the NASA Infrared Telescope
Facility (IRTF) on Mauna Kea. Often the identification of the IRAS source was
made or confirmed by the presence of strong infrared emission detected at the
IRTF. These data were combined with flux densities either from the IRAS Point
Source Catalog (IRAS Explanatory Supplement), or for fainter sources, from
coadded IRAS scans processed at IPAC.

3. 10 Pm SOURCE SIZE

The sizes of the 10 Pm sources in these galaxies are characterized by a
"compactness" parameter. This is the ratio of the small-beam, ground-based 10
Ps flux density to that measured by IRAS at 12 Pm and color corrected to 10 Pm.
The color correction is obtained simply by extrapolating the 25/12 Pm flux den-
sity ratio down to 10 Pm. Since this procedure could have systematic biases
for individual sources, two standard corrections, a factor of 0.71 for the
steeper "representative" IRAS galaxy sample and 0.76 for the "AGN" and "hot"
IRAS galaxies, were adopted. These are based on the averages of the individual
galaxy corrections within each group.

Figure 1 shows the compactness as a function of distance (Ho = 75 km s-1
Hpc- 1 assumed throughout). Also plotted is a simple-minded model in which the
surface brightness of the infrared emission drops off exponentially with
radius, with a characteristic scale length of ro. A comparison with the obser-
vations can be made by synthesizing the compactness parameter for a series of
characteristic sizes over the range of distances observed here.

It is evident that there is a separation between the "representative" IRAS
galaxies and the AGN, with those IRAS galaxies having "hotter" far-infrared
energy distributions falling among the AGN. The characteristic size of the
"representative" IRAS galaxies is between ro - 0.5 and 2 kpc, while the AGN and
"hot" IRAS galaxies are generally <0.5 kpc. The smaller size of these sources
can be understood as a greater domination of the 10 Pm emission by a point
nuclear source, as would be expected in the presence of an active nucleus.
This interpretation Is confirmed for the "hot" objects by visible spectra that
show line ratios characteristic of nuclear activity (see also de Grijp et al.
1985).

3.1. Source Compactness and Color

We can also investigate the effect of size on the J, H, K, and L colors of
galaxies. The galaxies are divided into two groups--those smaller than and
those larger than 0.5 kpc. The J-L color characterizes the shape of the near-
infrared continuum, and the 25/60 pm flux density ratio, the far-infrared.
Figure 2 shows that the smaller sources have larger values of J-L (proportion-
ately more energy output at L) and, as would be expected from Figure 1, larger
25/60 Ps flux density ratios (i.e., they are hotter). The probability of these
correlations arising by chance are 0.025 and <<0.001, respectively. It is thus
very likely that there is an additional mid-IR (3-30 pm) continuum component in
the galaxies with smaller characteristic infrared size, and this component is
associated with the nuclear emission in these objects.
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Figure 1. The 10 IP "compactness" (see text) of IRAS sources plotted against
their distance in megaparsecs. The dashed lines represent a model in which the
surface brightness drops as exp(-r/ro) for a series of characteristic radii ro
In kpc. Data for the min sample of "representative" and "hot" IRAS galaxies
were obtained at the IRTF with a 5.5" aperture. Data on the X-ray-selected AGN
am taken fromNcAlary et al. (1983), with apertures ranging from 5" to 9".

4. IRAS 23060+0505P16: A HIGHLY OBSCURED 1.5 x 1012 Le AGN?

A particularly interesting source, discovered to have distinctive proper-
ties among the "hot" IRAS galaxy sample, is 23060+0505. At a redshift of z -
0.174, its luminosity is 1.5 x 1012 Lo, and its J-L' color is the largest
(5.12) of all the galaxies in this study. This gives it one of the steepest
near-infrared continua known (index a - 2.8, where Sv a v-a). Although its
energy distribution most resembles that of a Seyfert 1 galaxy, its visible
spectrum shows only weak evidence for the large broad permitted line flux
expected from such objects. It does, however, show a large 0 III X5007/Ho line
ratio characteristic of active galaxies, and it has a steep Balmer decrement.
The radio luminosity from unpublished VLA "A" array observations is log P -
22.5 V Hz-1 ster-1 at 6 ca, a value typical of Seyfert galaxies or radio quiet
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Figure 2. The distributions In J-L and 25-60 lim flux density ratio (S 2 5 A./
S6 0ps) for sources with characteristic 10 Pm radii ro >0.5 kpc and <0.5 kpc
(sources for which there are only L' rather than Lmeasurements have been
corrected).

QSOs (Ulvestad and Wilson 1984).2 Important clues to the nature of this object
can be found in a comparison between its 1-100. pm energy distribution and those
of different classes of extragalactic object (Figure 3).

4.1. The Energy Distribution

Figure 3a shows the energy distribution of 23060+0505 compared with the
range observed for typical starburst and interacting galaxies (Joseph et al.
1984; Balzano 1983), and Figure 3b gives a comparison to Seyfert 2 galaxies
(Rieke 1978). Both classes of galaxy are dominated at J, H, and K by the
photospheric emission from late-type stars, which causes a characteristic
inflexion in the energy distribution between 2 and 3 Pn. This feature is not
seen in 23060+0505, and it is evident that any stellar photospheric contribu-
tion to the near-infrared emission from this object is negligible compared to
that observed in star-forming or Seyfert 2 galaxies and that the energy source
is probably different.

2 The National Radio Astronomy Observatory is operated by Associated

Universities, Inc., under contract with the National Science Foundation.
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Figure 3. A comparison between the 1-100 Pa energy distributions of IRAS
23060+0505 and those of other representative objects. Hatching denotes the
range of values encountered for (a) starburat and interacting galaxies; (b)
Seyfert 2 galaxies; and (c) Seyfert I galaxies, quasars, and BL Lac objects.
Figure 3(d) shows 23060+0505 compared to the well-known active galaxies 3C234,
NCC 1068, and Mkn 231.
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A comparison to Seyfert 1 galaxies, QSOs, and BL Lac objects (Neugebauer
et al. 1979; Impey et al. 1982) is made in Figure 3c. It is striking that the
energy distribution bears a marked resemblance to that of the BL Lac object
with the steepest energy distribution, 1413+135 (Beichman et al. 1981).
However, the weakness of its radio emission is inconsistent with 23060+0505
being a BL Lac object. The result of the comparison between 1-100 PA energy
distributions is that 23060+0505 most resembles a Seyfert I active galaxy.

4.2. Interpretation

Infrared evidence points to 23060+0505 containing a hidden AGN. Higher-
quality spectra obtained with the Faint Object Spectrograph reveal only weak
evidence for a broad wing to the Ha line, not the strong broad permitted lines
characteristic of Seyfert 1 galaxies. This may be interpreted as being due to
dust obscuration. An image obtained through the Faint Object Spectrograph
shows a very compact morphology dominated by an unresolved nucleus.

An estimate of the reddening toward the region of line formation may be
obtained from the HM/HP line ratio, assuming an intrinsic case-B ratio of 2.8
(Osterbrock 1974). The observed ratio of ;10 yields a visible reddening in
excess of 4 magnitudes, indicating that the absence of strong broad lines,
and probably the steepness of the visible to 4 pm continuum, is due to dust
obscuration. Here a comparison to other broad-line AGN where large extinctions
have been measured through observations of infrared recombination lines is
enlightening (Figure 3d). The broad-line radio galaxy 3C 234 shows a strong
Paschen-a line consistent with large reddening (Carleton et al. 1984), and it
has a steep infrared continuum similar to 23060+0505 (Elvis et al. 1984). The
highly luminous reddened broad-line AGN Markarian 231 (Rieke 1978; Lacy et al.
1982) most resembles 23060+0505 with its steep continuum and reddened hydrogen
recombination lines.

The fact that this object was discovered in a survey of a relatively small
number of candidates (=20) argues that it may be a prototype of a significant,
previously undetected, population of highly obscured AGN with luminosities
approaching those of quasars. The selection effects against even slightly red-
dened AGN in optical and UV surveys are well documented (see Keel 1980 and
Lawrence and Elvis 1982 for example), and it has been shown that there exists a
significant population of active galaxies, mainly Seyfert 2' missed by other
surveys but detected in the infrared by IRAS (de Grijp et al. 1985). It is
possible that some of these galaxies, classified as Seyfert 2 on the basis of
optical sptctroscopy, are similar to IRAS 23060+0505 and contain hidden Seyfert
1 nuclei. It has been demonstrated here that near-infrared colors are a very
useful and efficient way to identify such objects.
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ENHANCED STAR FORMATION - THE IMPORTANCE OF BARS IN
SPIRAL GALAXIES

P. J. Puxleyl T. G. Hawarden 2 , C. M. Mountain 2 and
S. K. Leggett1

IDepartment of Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ.
2 Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ.

1. ABSTRACT

We have found that amongst an IR-luminous subset of nearby spiral galaxies, nearly
&al of the systems with IRAS colours and luminosities indicative of enhanced star
formation are barred. Radio continuum and IR-spectroscopic results support the hypothesis
that this emission originates within the central 2kpc; possibly in a circumnuclear ring.
We also find that outer rings are over-represented amongst these barred systems and
suggest possible reasons for this phenomena.

Our recent investigation (Hawarden et al 1986) of the IRAS database for a large
sample of 186 spiral galaxies indicates that nearly all of the systems with excess 251ma
flux are barred. The sample includes all of the spirals in the Revised Shapley Ames
Catalogue (Sandage & Tammann 1981, 'RSA') between SO/a and Scd (inclusive) and which
were detected by IRAS in all four bands. We have excluded from our rniain sample those
galaxies which are extended at 100pm or with Seyfert 1,2 or LINER spectra.

Figs. 1(a), (b) and (c) show the distributions of the ratios fv25/fvl2 vs fvl00/fv25,
for barred (SB), unbarred (SA) and mixed-type (SAB) galaxies in our sample.
Approximately one third of all the barred/mixed systems have large 25pm!/12pm and
relatively small 100pm/25pum ratios which are indicative of emission from the warm dust
commonly found in starforming regions. Furthermore, these "25/am-excess" barred galaxies
(hereafter referred to by using the prefix 'h') are considerably more luminous (typically
4.5 x 1010 Lo, with Ho - 75 kms"1 Mpc-1) than the other barred and unbarred systems
(hereafter prefixed by '1) which have typical IR luminosities of 2 x 1010 Lo.
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Figure 1 (a). (b) & (c)

The distribution of SB, SAB and SA galaxies in the IRAS 2-colour diagram,
fv 2 5 /fv 1 2 against fvlOO/fv25.
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To support our conjecture that the extra IR emission is due to enhanced star
formation we have constructed simple models using the avera e IRAS fluxes of a group of
unresolved HII regions in Cygnus. Addition of about 10T such objects to a mean '1'
galaxy accurately reproduces the spectral shape and luminosity of an 'h' system. Only the
12prm emission is underestimated but our models so far omit the extended 12pm flux
which is seen throughout the Cygnus region and which has been attributed to emission
from small grains (eg Wynn-Williams & Becklin 1985).

The resolution provided by IRAS was too coarse (1-2 arcmin) to enable us to
determine the exact location of the source of the extra IR emission in our barred galaxies.
However, recent radio continuum results (Puxley et al, in preparation), together with those
of Hummel (1980), show that Ill of the barred aalaxies with enhanced star formation are
centrally concentrated (less than 20 arcsec) at 20cm. The distribution of radio properties
as a function of morphology is shown in Table 1. We have adopted the classification
scheme of Hummel such that 'C' refers to galaxies with the unresolved central component,
'E' to those with extended (ie disk) emission and 'ND' refers to non-detections. Less than
one third of 'V spirals have centrally concentrated radio emission.

Table I

Distribution of radio classifications with morphological type

Galaxy type C or CE E ND

hSB & hSAB 20 (100%) 0 (%)0 ( )

ISB & ISAB 14 ( %) 13 (4Z2) 4 (11%)

ISA 11 ( 260) 19 (44%) 13 (_%)

We have also obtained 2.1 pm-2.2pm spectra of a small number of galaxies in our
sample. The aperture (20 arcsec) was chosen so as to include any nuclear ring.
Preliminary reduction of the spectra indicates that Brackett gamma was detected in the
hSAB galaxies NGC4536 and in NGC3310 (whose positions are shown in Fig.l) but not in
the ISA system NGC473o. As NGC4536 and NGC4736 have similar continuum flux
densities -3.5 Jy at 25prm) we interpret the Brackett gamma line emission in NGC4536 as
arising from star formation which dominates the IRAS fluxes of this galaxy.

The positions of the two well-studied systems NGC1097 and NGC3310 are also
indicated in Figs. l(a) and l(b). Both of these galaxies have been mapped at 10pam by
Telesco and Gatley (1981, 1984) who find that the extra IR emission originates in a ring
(diameter about 2kpc) of Hi! regions around the nucleus. Observations of HI (Sancisi,
Allen & Sullivan 1979) and optical spectroscopy (Pence & Blackman 1984) implies that, in
barred systems, there is an inflow of gas/dust due to the non-axisymmetric bar potential.
Numerical models (eg Combes & Gerin 1985) suggest that the "circumnuclear" rings are
idfasted near one of the inner Lindblad resonances where material swept inwards would be
expected to accumulate. In addition, Fig.l(a) exhibits a noticeable "split" at fv2 5/fv 12 -2
which we speculate arises due to 'switching-on', of the enhanced star formation once some
critical density of the ISM is exceeded.

We have also found a strong correlation (see Table 2) between the occurrence of
g=tr rings (classified R.. or P.. in RSA) and enhanced star formation for our complete
sample (ie including 33 Seyfert's and LINER's) of 219 galaxies. Table 2 shows that,
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Table 2 Incidence of outer rings with morphological type

Galaxy type No. of galaxies No. with
in sample outer rings

SB/SAB _wth vigorous 59 9 (15%)
star formation

SB/SAB without vigorous 72 1 (1%)
star formation

SA with vigorous star 2 0 (0%)
formation

SA without vigorous 86 10 (12%)
star formation

amongst barred systems, those with outer rings also have IRAS colours which we have
attributed to a vigorous burst of star formation. Numerical models of barred spirals (eg
Schwarz 1984) indicate that outer rings form near the outer Lindblad resonance due to the
outward transport of disk material by a spiral density wave exterior to forotation. The
existence of outer rings in these systems suggests that there is much interstellar material
available for transport. Intrio to corotation, any gas and dust may be fed inwards
towards the centre by the bar-like density wave where it can form a circumnuclear ring.
Table 2 also shows that outer rings are also found in unbarred galaxies and we expect a
similar process to occur in these systems (with the inflow/outflow being driven by the
spiral density wave) except that the lack of a bar may result in a less efficient flow, and
hence we do not see vigorous star formation. This model is similar to that proposed by
Simkin, Su & Schwarz (1980) who found that outer rings are a feature of many Seyfert
galaxies.

In Fig. 2 we show the 2-colour diagram for the Seyfert galaxies which exhibit a
remarkably similar distribution to that of the normal spirals in Fig. 1. In agreement with
our assertion what the distribution in Fig. 1 is the result of circumnuclear star formation,
Rodriguez Espinosa, Rudy & Jones (1986) find that the mid- and far-IR emission from
Seyferts is extended and suggest that this is due to a vigorous burst of star formation
around the active nucleus.
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THE PROPERTIES OF HIGHLY LUMINOUS IRAS GALAXIES

R.D. Woistencroft', P.J. Puxley 2, J.N. Heasley3,
S.K. Leggett 2, A. Savage 1, H.T. MacGillivray',

and R.G. ClowesI
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From a complete sample of 154 galaxies identified with IRAS sources in a 304 deg 2

area centered on the South Galactic Pole, a sub-sample of 58 galaxies with LIR/LB > 3
has been chosen. Low resolution spectra have been obtained for 30% of the sub-sample
and redshifts and relative emission-line intensities have been derived. As a class these
galaxies are very luminous with <LIR> - 2.9 x 1011 LE and (LIR) max - 1.3 x 1012
L. CCD images and JHK photometry have been obtained for many of the sub-sample.
The galaxies are for the most part newly identified and are optically faint (16 <B<21), with
a majority showing evidence of a recent interaction. Radio continuum observations of all
galaxies of the sub-sample have recently been obtained at 20 cm (VLA) with about 75%
being detected in a typical integration time of about 10 minutes.

I MITROUfCTION

We are engaged in a systematic, large-scale program of optical identification of IRAS
sources (see Savage et al., 1986, and Wolstencroft et al, 1986), one of whose principal
motivations is to establish a large and complete infrared selected sample of galaxies
detected by IRAS (so-called IRAS galaxies). With such a sample we can carry out
unbiassed studies designed to elucidate the origin of the high infrared luminosity (LIR
;.101 1Lo) found in many of these galaxies. We have recently begun a study of such a
sample that comprises 154 IRAS galaxies identified in a 304 deg 2 area centred on the
South Galactic Pole (Wolstencroft et al., 1986), and this paper describes current progress.

In the first stage of this study we have selected a sub-sample of galaxies likely to
contain a high proportion of the most infrared luminous galaxies in the complete sample.
For an infrared selected sample, LIR/LB is correlated with LIR but not with LB (Soifer et
al., 1986), which implies that much of the variation seen in LIR/LB in such a sample (0.2
to 200 in our case) is due to changes in LIR. Our sub-sample comprises 58 galaxies with
LIR/L.B > 3 : the LIR/LB histogram is shown in figure 1. In this paper we give some
preliminary results of follow-up studies in progress, which include low dispersion
spectroscopy, CCD imaging, near infrared photometry and radio continuum mapping.

II FOLLOW-UP STUDI]W

Redshifts have been obtained so far for 30% of the sub-sample, using either the
grism/CCD combination on the 2.2m University of Hawaii telescope (5000 to 6900A, 4A
resolution) in long slit mode, or the low dispersion spectrograph and reticon detector on the
1.9m SAAO telescope (3500 to 7500A, 6A resolution). For this limited sample the infrared
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luminosity falls in the range 3.8 x 1010 L(0 to 1.1 x 1012 LO with <LIR> - 2.9 x 1011
LE : the LIR histogram is shown in fig 2. The properties of a few selected galaxies are
given in Table 1.

Table 1

Properties of Selected Galaxies

IRAS z LIR/LO LIR/LB B K J-K H-K B-K
Name

00308-2238 0.0378 2.0 x 1011 25 17.0 12.71 1.43 0.51 4.3
00335-2732 0.0670 1.1 x 1012 46 17.2 14.16 0.65 0.08 3.0
00402-2350 0.0229 3.3 x 1011 13 14.5 10.22 1.29 0.37
01050-3305 0.0347 2.5 x 1011 35 17.0 11.72 1.32 0.42

LR/Ls1/ _, 1 'I I 1
40

30

ate Hig Lm/L. sub-samp
* 31(]0% of tOtaO,

S2020
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0 1 2 1112
log (Ln/Le) log (LE/L 0 )

Figure 1. Histogram of LIR/LB for the Figure 2. Histogram of LIR
complete sample of 154 IRAS galaxies for the sub-sample.
in the SGP field, and for the sub-sample
(LIRA/LB > 3).
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From visual inspection of the images on the UKST plates (see Plate 1 of Wolstencroft et
al., 1986) it is clear that at least half of the galaxies in the sub-sample are 'interacting',
based either on the presence of bridges, tails, double nuclei or other signs of disturbance,
or on the presence of a galaxy of comparable brightness that is very close on the sky.

Broad based CCD images and low resolution spectra have been obtained, for about 30% of
the sample, and these will allow a more quantitative test of this suspicion. A particularly
interesting source is IRAS 00335 - 2732 which is identified with the most luminous galaxy
in the sub-sample with LIR - 1.1 x 1012 LO. There are two galaxies 6 arc sec apart at
the position of the IRAS source, with diffuse emission extending between the two galaxies
and also north of the fainter galaxy (see fig 3). The redshift of the brighter (B - 17.2)
of the two galaxies is z - 0.0670, corresponding to a separation of 8Kpc between the
galaxies (1Ho - 75 kmi sec- 1 Mpc- 1) if they are truly interacting. The correlation between
log (LIR/LB) and log (F1 00/F 60 ) for the complete sample (Wolstencroft et al., 1986) may
be interpreted (de Jong et al., 1984), in its simplest terms, as a combination of two
components : (1) contributions by warm dust (T-60K) heated by young stars, and (2)
cooler dust heated by the general interstellar radiation field (i.e. cirrus). In the case of
IRAS 00335 - 2732, which has the most extreme temperature of the sample (F6 0/F1 0 0 =
1.44), the warm dust completely dominates the far infrared emission.

Figure 3. CCD image of IRAS
00335-2732 taken in the R band
and with the Galileo CCD camera
at the Cassegrain focus of the
2.2m University of Hawaii
telescope. North is up and East
is to the right. The faint galaxy
6 arc sec due east appears to be
interacting with the brighter
compact galaxy.
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Near infrared colours (J-K, H-K) of a few of these galaxies have been measured on
UKIRT with a 20 arc sec aperture. Some typical results are shown in fig 4. For
comparison we show the range of colours found by Wolstencroft and Davies (in
preparation) for an optically selected sample of normal Sbc galaxies (defined by the dashed
rectangle). There is a wide spread in colours, with the extreme cases ranging from the
most luminous galaxy IRAS 00335 - 2732 (J-K - 0.65, H-K - 0.08), which has very blue
colours, to two galaxies with unusually red H-K colours, IRAS 01358-3300 and
01199-2307. Although all three galaxies show very clear signs of interaction, so also do
the sources contained in or close to the normal galaxy sequence (galaxies in the latter
sequence have colours that may perhaps be explained primarily as a mixing of bulge and
point nucleus colours). If interactions have any significant influence on these near infrared
colours it is most likely to occur near the peak of a burst of star formation when the
maximum blueing takes place. Clearer discrimination between galaxy types using near
infrared colours should be possible for those galaxies bright enough for L' measurements to
be made.

' ' ' ' i I ' I ' ' I

H-K o3S-33oo(Io)

01199-2307038)9 / •
00456-2904178)0 / ,S/ ,~, /

I.,, ,,
/1

,// ..,/

01330-2256(l)_"
0.5 A4 J-'00308-2230251

Figure 4. Near infrared colours (H-K, J-K) I// 9
measured in a 20 arc sec aperture of selected 4 OIQ05-3305S)
galaxies with LIR/LB > 3. The values of LIR/LB 400402-2350t13)
are shown in brackets after the IRAS name. For
comparison the range of colours are shown //
(dashed rectangle) for an optically selected / /

sample of normal Sbc galaxies (with 0.1 <LIR/LB ( /

< 1.6) measured with concentric apertures between N/
5 and 20 arc sec (Wolstencroft and Davies, in
preparation). The aperture dependence for three * 00335-2732(46)
normal galaxies are indicated. 0

0.5 1 1.52
J-K

Radio continuum mapping of all galaxies of the sub-sample has been completed
recently but analysis is still at a very preliminary stage. With exposures typically of 10
minutes with the A/B array of the VLA (3 arc sec resolution) about 75% of the sample
are detected above a limit of about I mJy at 20 cm. It will of great interest to see
whether the correlation between radio continuum and far infrared emission (see e.g. Helou
et aL, 1985) holds for our sample of high infrared luminous-galaxies.
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Using S1ITF to Study Extragalactic Star Formation

Edward L. Wright
UCLA Department of Astronomy
Los Angeles, CA 90024

SIMTF, the Space Infrared Telescope Facility, is a NASA mission to provide a
long lifetime, sensitive and flexible infrared observatory in space. SIRTF will
be able to study selected objects with a sensitivity over 5,000 times better than
the IRAS survey limits, and will provide photometric and low to medium resolution
spectroscopic data over almost nine octaves from 1.8 to 700 Am wavelength.

The baseline SIRTF design has an 85 cm telescope with optics and control
system designed for diffraction limited operation at 4 im and longer wavelengths.
For wavelengths shorter than 4 pa, the beam size should equal the 4 #m
diffraction limit, so ?" (FNBM) imaging will be possible at 2.5 pm. SIRTF will
use a 28 inclination 900 km altitude orbit, and a superfluid helium dewar will
cool the optics to 3 K and the baffles to about 10 K, allowing natural background
limited operations at 5-135 pm at all times, and at 200 pm for 25 percent of the
time.

SIRM will be able to measure important cooling lines from neutral regions,
such as the 157 pm [C III line, and lines from H II regions such as the 88 Pm
[0 zriI line. The SIRTF spectrometer will be able to measure the [C III line in
100 seconds from spiral galaxies 50 times fainter than the IRAS survey limit.

SIRT? will be able to survey small areas of the sky to the confusion limit
in the 3-700 pm region. At 60 pm such a survey can reach a density of 10,000
sources per square degree by using a small degree of super-resolution. This
count limit should be reached at a flux of 50-100 pJy, while the super starbust
galaxy Arpd 220 at a redshift z - 1.4 in a critical density Universe would have an
easily detectable flux of ^300 AJy. At 4 #m a SIRT? survey will reach 500,000
sources per square degree ai a flux of 0.7 #Jy, while Arp 220 at z - 1.4 would
have a flux > 14 pJy. Because the redshift is moving the peak of the starlight
into the 4 pm pasaband, most sources in this survey will be high redshift, nearly
normal galaxies. Spectral synthesis studies by Chokshi (1986) have shown that
for z < I the 121-141 pm color of normal galaxies depends mainly on z, but for
x > 1 the color depends on the star formation history of the galaxy. The 60 Am
survey, on the other hand, will be an efficient way to pick out galaxies with
very active star formation, because the peak wavelength of the far infrared
mission from normal galaxies is longer than 60 pm, and is made even longer by
the redshLft, while starburst galaxies such as M82 and Arp 220 have substantial
emission at shorter rest wavelengths.

% "tram, _ _ This paper summarizes the work of the SIRTF Science Working
Group and the membrs of the instrument teams. ELW is supprted in part by grant
mIber 1W32-315 from the MM Ames Research Center.

(&Acks"i, A. 1986, Ph.D. Thesis, UCLA.
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THE RELATION BETWEEN STAR FORMATION AND ACTIVE NUCLEI

G. H. Rieke
Steward COservatory

University of Arizona
Tucson, Arizona 85721

ABSTRACT

Three questions relevant to the relation between an active nucleus and
surrounding star formation are discussed. The infrared stellar CO absorption
bands can be used to identify galaxies with large populations of young,
massive stars and thus can identify strong starbursts unambiguously, such as
in NOC 6240, and can help identify ccorposite active/starburst systems such as
Arp 220. An active nucleus is probably not required for LINER spectral
characteristics; dusty starburst galaxies, particularly if they are nearly
edge-on, can produce LINER spectra through the shock heating of their
interstellar media by supernovae combined with the obscuration of their nuclei
in the optical. The Galactic Center would be an ideal laboratory for studying
the interaction of starbursts and active nuclei, if both could be demonstrated
to occur there. Failure to detect a cusp in the stellar distribution raises
questions about the presence of an active nucleus, which should be answered
by additional observations in the near future.

INTRODUCTION

The interaction between classic galaxy activity - the presence of a
nonthermal source that dominates the energetics of the galaxy nucleus - and
star formation in the galaxy is a topic on which there is a certain amount of
speculation but relatively little relevant observation. IRAS should bring
insights to this interdependence because much of the lun- nosity of both active
nuclei and starbursts emerges in the infrared. However, obscuration by the
interstellar dust associated with a starburst can hide the galactic nucleus in
the visible and ultraviolet, making it necessary to develop new tools to
distinguish and study these processes. This talk deals with three issues in
this area: the use of stellar CO bands to identify powerful starbursts, the
generation of LINER (Low Ionization Nuclear Emission Region) spectra by
starbursts, and the possibility of observing the interaction of an active
nucleus and a starburst in intimate detail in the Galactic Center.

USE OF CO BANDS TO IDENTIFY STARBURSTS

Traditionally, the presence of a large population of young, massive stars
in a galaxy has been identified through observations in the blue or
ultraviolet, such as an ultraviolet excess or the presence of Balmer lines in
absorption. However, in powerful infrared starburst galaxies, the optical
depths in interstellar extinction in the blue can be immense, so these
indicators are inadequate. One example is the historical difficulty in
identifying the type of activity in the prototype infrared starburst galaxy,

1M82.

Virtually al 1 types of cool stars have CO absorption bands in their
spectra between 2.3 and 2.Mun, where they can be readily observed. The depth

Carol J. Lonsdale Perwon (Editor)
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of these bands depends on the stellar luminosity and metallicity (e.g., Frogel
et al. 1978; Frogel, Cohen, and Persson 1983). Luminous galaxies without
recent star formation have nearly identical CO band strengths (Frogel 1985 and
references therein), indicating that the the infrared outputs are dominated by
stellar populations with red giants of cmparable mass and metal l icity from

galaxy to galaxy, corresponding to a main sequence turnoff slightly above one

solar mass.

A starburst adds to this quiescent stellar population an additional
population of much more massive stars. As soon as these stars evolve to the

red supergiant phase, they will tend to produce abnormally deep CO absorption

in the galaxy spectrum. If the starburst luminosity is large enough compared

with that of the pre-existing quiescent stel lar population, this deepening

should be detectable. In fact, such deepening has been observed in M82, NG

253, and NOC 6240, requiring that their near infrared spectra be dominated by
the young, massive stars produced in starbursts.

Th-ere is evidence for very strong reddening in all three of these
galaxies. However, all of them have H - K colors that are too red compared
with their J - H colors for any reasonable stellar population plus foreground
reddening. For NGC 253 and NGC 6240, it has been suggested that this red color
arises from a normal quiescent stellar population, plus an infrared excess at

2un contributed by a nonthermal nuclear source or by thermal reradiation by

dust(Scoville et al. 1985, DePoy, Becklin, and Wynn-Williams 1986). Such an

excess could only dilute the CO band strength; the observed strengths require
that the 2ur emission be dominated by starlight from massive stars. The red H
- K colors can be explained if the interstellar dust is mixed with the stars
in the galaxy, so there are optical depth effects in the source, or if the
extinction varies over the extended source region. J, H, K images of the three
galaxies show strong color variations, which are almost certainly due to
extinction variations over the sources. These data are illustrated tn Figures

Figure 1. Images of M82 at J, H, and K (left to right). The frames are 27
arcsec on a side and the pixels are 0.85"; the data have been smoothed to a
final resolution of L7". At K, the image shows a reasonably symmetric, smooth
distribution of stars that suggests an edge-on disk around a brighter nucleus.
Note the strong distortions from interstellar extinction as the wavelength
becomes shorter.
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Figure 2. H and K Images of NOC 253 and Their Ratio (left to right). The
frames are 27 arcsec on a side and the pixels 0.85". In the ratio K/H, there
is an extended peak centered on the galaxy nucleus, indicating it is bluer
than the surrounding regions.

13- 3. At least from these examples, the strong infrared excesses typical in
starburst galaxies appear to be a minor part of their emission at wavelengths
as short as the 2um CO bands.

M82, NGC 253, and NOC 6240 have luminosities from red suergiants
respectively of 2.5 fC 1010L L (Rieke et al. 1980), 1.3 X 1l0 Lo (Rieke et al.
op. cit.) and 2 X 101' Lo (Rieke et al. 1985, but with Av setJ• 7, from th?,H
- K excess), ,•pred with far infrared luminosities of 3 X 10i Lo, 3 X 10
L., and 5 X 1" Lo. Thus, the stellar luminosities deduced directly from the
near infrared can account for 30 to 40% of the total infrared luminosity of

the galaxy. This result arises because a coeval population of massive stars
evolves in a few million years to emit a substantial fraction of its
luminosity from red supergiants.

In contrast to starburst galaxies, the near infrared continua of Seyfert
galaxies seem to be dominated by featureless continua; the CO bands when
present are diluted substantially compared with those in galaxies with
quiescent stellar populations (e.g., Cutri et al. 1981). Where relatively
strong CO bands are detected along with indications of an active nucleus, the
system is likely to be a composite. Arp 220 is an example; despite
spectroscopic exidence for a Seyfert nucleus, its CO bands are stronger than
those of quiescent galaxies (Rieke et al. 1985). Assuming A- = 7
(corresponding to the H - K excess), a stellar luminosity of 6 X 1010 Lo is
detected directly in the near infrared. Assuming a ratio of red giant and
supergiant to total stellar luminosity similar to those in M82, NGC 253,and
NGC 6240, the starburst accounts for 15 to 20% of the total luminosity of Arp
220.

LINER SPBCTRA IN LATE TYPE GALAXIES

LINER spectra were originally thought to arise by shock heating, but it
has recently become popular to ascribe then to the presence of a weak,
powerlaw excitation spectrum produced by an active nucleus. Most of the
evidence for this interpretation comes from observations of early type
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galaxies. However, similar spectra are observed in late type galaxies where
there are many indications of starburst activity. These galaxies raise the
question of whether starbursts can produce a LINER spectrum.

We have considered this question in detail for NOC 253 (Rieke, Lebofsky,
and Walker 1986). The high supernova rate in the nucleus of this galaxy
repeatedly snocks the low density interstelar medium with supernova blast
waves that produce the starburst wind seen in the x-ray (Fabbiano and
Trinchieri 1984) and discussed by Chevalier and Clegg (1985). The molecular
clouds in the nucleus are immersed in this medium, while extranuclear clouds
surround it. The nuclear starburst region is heavily obscured by these clouds
- in the case of NGC 253, there is an average Av of about 12. The radius of
the Strcxgren sphere for the nucleus does not extend beyond the region of
heavy obscuration except where the interstellar medium is of low density.
However, the low density ISM is dominated by supernova driven shocks. Thus,
optical spectra do not probe the region of HII type excitation; they reflect
conditions in a part of the ISM where a LINER spectrum might be expected.
Heckman (this conference) reports that the filaments out of the plane of M82

also have a LINER-like spectrum, as would be expected from these arguments.

Because the extinction will tend to be concentrated in the galactic
plane, a situation similar to that in NGC 253 could be expected to hold in
other nearly edge on, late type, starburst galaxies with LINER spectra, such

as NGC 660 and NGC 3079. In face-on galaxies, a LINER specrum can still result
whenever the HII region lies behind heavy obscuration. NOC 6240 is probably a

good example; from the H - K color, the strong CO bands, and the extremely red
color of the dominant nuclear component in Figure 3, most of its red
supergiant population and presumably much of the other starburst activity lie

behind extinction of approximately Av 7.

C)

Figure 3. Image of NGC 6240 at H. The frame is 8 arcsec on a side and the
pixels are 0.25". Coaparison with the I image published by Fried and Schulz
(163) uhows that the southern nuclear component is much redder in I - H than
the northern one.
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THE GALACTIC CENTER

The Galactic Center could be an ideal place to observe the interaction
between an active nucleus and a starburst. Unfortunately, the presence there
of either a starburst or an active nucleus has been extremely controversial.
The strongest evidence for a starburst is the spectroscopic and photometric
classification of a number of stars within 40 arcsec (2 parsecs) of the
Galactic Center as red supergiants (Lebofsky, Rieke, and Tokunaga 1982). We
have •ade images at H and K of 24 square arcmin centered on this region and
find many additional bright red stars that are likely to be red supergiants,
although spectroscopic confirmation is not yet available (Lebofsky 1986).

The evidence for a black hole (and hence an active nucleus, even if a
dormant one) rests largely on the velocities of the NeII clouds (Serabyn and
Lacy 1985). Given the short lifetimes of the low density gas clouds seen in
neon emission, it is not certain that their motions are in equilibrium with
the gravitational field; confirming evidence for the black hole is therefore
desirable.

The cusp in the stellar distribution reported by Allen, Hyland, and Jones
(1983) would tend to support arguments from the velocity field for the
presence of a black hole. However, the image of the much larger field
mentioned above confirms the presence of large nonuniformities in the
extinction in this region, as suggested previously by Rieke, Telesco, and
Harper (1978), and Lebofsky (1979). The central parsec of the galaxy
happens to lie in a minimum of the extinction and furthermore has a number of
2urn sources that are not part of the general red giant and supergiant
population (Rieke and Lebofsky 1986). These two circumstances can lead to an
artificial appearance of a cusp. Moreover, Allen and Sanders (1986) suggest
that the compact radio source does not coincide with any sufficiently bright
near infrared source to be identified with the core of a stellar cusp.
However, this argument depends very strongly on the precise location of the
ccmpact radio source relative to the infrared maps. Various determinations of
this location are plotted on a new, hign resolution image of source 16 in
Figure 4; the possibility still remains that the source coincides with a faint
peak in the infrared emission.

An alternate way to look for a cusp is to measure the surface b!ightness
beteen the bright stars. Assuming a central density of about 4 X 10 stars
pc-, (Bailey, 1980), there should be about 4000 stars per square arcsec. Most
of these stars will contribute a diffuse, unresolvable background which should
be an extremely accurate reflection of the distribution of stellar mass in the
region. Searches for a cusp in this diffuse component will also be insensitive
to the precise registration of the infrared maps relative to the position of
the radio compact source.

By chance, there is a "valley" in the source distribution that comes
within about 2 arcsec of the compact radio sr irce (see Figure 4). The minimum
in this valley has been compared with the minima on 32 X 32 camera frames
centered on the compact source but with different pixel scales - 0.25" (Fig.
4), 0.85", and 1.3". The lowest surface brightness on these frames lies in a
small region of very high extinction first noted by Lebofsky (1979) about 20"
Wet of the central source complex. If this region is set to zero and the
bottom of the valley set to 100%, most of the remaining region between bright
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Figure 4. Image of Source 16 in the Galactic Center at K. The frame is 8
arcsec on a side and the pixels are 0.25". The cross with a dot is the
location of the compact radio source according to Henry, DePoy, and Becklin
(1984), while that without a dot is according to Forrest, Pipher, and Stein
(1986). The "valley" referred to in the text extends from the middle of the
western edge of the frame toward the southeast, ending about 2 arcsec west of
the compact radio source.

sources is at a surface brightness of 50 to 75% (see Figure 5). Because the
valley appears to be affected by source crowding, the true diffuse brightness
there may be have been overestimated; it is also likely that the surface
brightness in the zero reference region is actually larger than zero. Both of
these effects will tend to reduce the true contrast between the valley floor
and the surrounding regions compared with our estimate. Thus, there is an
upper limit of about L5 to the increase in surface brightness between a
distance of 1 pc and one of 0.1 pc from the compact radio source.

The apparent absence of a strong cusp in the stellar distribution leaves
the question of "activity" in the Galactic Center open, but an answer should
be possible soon. An improved understanding of the stellar distribution will
be possible as soon as the extinction has been mapped; infrared camera images
such as those described here and by Lebofsky (1986) should be capable of doing
so, although the large region of extremely high extinction to the east will
require images of signficantly greater sensitivity than are now available. The
velocity field can be measured from spectral features in individual stars. In
the 24 square arcuin field already imaged but outside the central 40 arcsec,
there are 81 stars brighter than K = 9.5. Improvements in near infrared
spectroscopy should soon allow velocity measurements for these stars and
remove the uncertainties in the velocity field that arise because of the short
lifetimes of the gas clouds measured in Ne II.

Since the Galactic Center is 1000 times closer than any classical active
galaxy, even the presence of a very weak active nucleus there would help
inmmmmely in determining the interaction of such an object with the
immediately surrounding galaxy.
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L L

Figure 5. Image of the Galactic Center at K. The frames are 27 arcsec on a
side and the pixels are 0.85". The left frame shows the sources in this
region; the brightest just to the northwest of the center is source 7. In the
right frame, the diffuse background between the sources is displayed, with the
source 16 frame (Fig. 4) superposed. Regions where the diffuse background is
75 to 106% the surface brightness in the valley in Fig. 4 are indicated
hatched. Regions where the surface brightness -50 to 75% that in the valley
are shown solid.
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QUESTIONS

T. J. Jones: One of the reasons not everbody has picked up on the
interpretation of the 2urn sources near the galactic center as M
supergiants is because not everyone believes they are true supergiants. I
believe they are mostly upper A(G stars (Mbol = -6 to -7) with main
sequence progenitors from 3 - 7 Moo

Answer: The spectra show a range of spectral types. Source 7, Kobayashi 9, and
probably source 12 appear to be very luminous and massive supergiants and
are inconsistent with your interpretation. The other stars with spectra
are of lower mass and could have 3 to 7 Mo progenitors. However, all of
the brighter objects appear to be massive enough that their progenitors
must be relatively young (< 3 X i08 years), indicating that the 2un
sources formed in an extended period of recent star formation.

M. Shull: Your limits on a possible black hole in the Galactic Center depend
on an equilibrium stellar cusp. If the stellar density is not sufficient,
the stellar relaxation time is too long for this cusp tc be established,
so you might still be able to have a massive campact object.

Answer: It seems likely that the two-body relaxation time for the galactic
center is too long for a fully developed cusp (i.e., stellar density as
radius to the -1.75). Nonetheless, a slightly more shallow cusp would be
expected (P. J. Young 1977, Ap.J., 217,287).

J. Frogel: 1.) Galactic star clusters of near solar metallicity are all
extremely star poor so that the brightest giants you can see in them are
about 2 magnitudes fainter than the brightest stars you would expect to
see in a large population; 2.) In Baade's window at b = -3.90 there are
M6-9 giants as bright as K = +6. These have Mbol of about -4.5 and, in a
super metal rich environment, can still have an age of 1010 years.

Answer: Stars like the brightest in Baade's window will account for the
fainter objects in the Galactic Center images. Taking an extinction of AV
= 30, they will have an apparent magnitude of K > 9.4; since the
extinction for most of the Galactic Center regiornis higher, over most of
the area they will be even fainter. Six of the seven stars with spectra
have K < 8.1, and three of these six are of spectral types M1 to M4,
where t~e Baade's window stars are fainter still.
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Frogel: Stars with age a few Gyr can have very strong CO indices. These are
AG8 stars with Mhol on the order of -6. Such stars are found in large
numbers in the Magl lanic Clouds. Although in the Magellanic Clouds many
of these are C stars, in a more nearly solar metallicity environment they
would be M stars.

Answer: I don't believe the existence of these stars affects the arguments
that the strong CO bands arise from a difference in stellar population
that is most plausibly connected with a recent powerful episode of star
formation. In determining the CO band strengths, comparison is made to
galaxies with similar luminosities and metallicities, so some other
difference must exist in the stellar populations.

P. G. Mezger: There is an HII region, Sgr A West, surrounding IRS 16. What, in
your opinion, provides the ionization for this HII region?

Answer: The ultraviolet flux from the hot stars that should accompany the red
supergiants appears to be adequate to ionize all the gas in this region.
Some more exotic ionizing source may also contribute, but if such an
object accounts for all the luminosity of the region, it is surprising
how difficult it is proving to be to establish its existence for sure.

E. E. Becklin: Is it not a problem to assume a normal IMF in a region like the
Galactic Center - especially the very central region?

Answer: Of course, the process of star formation should be modified by
conditions in these regions. There is evidence, for example, that low
mass stars form in much lower relative numbers in starbursts than in the
solar neighborhood. One would expect that the modifications would get
larger as one approached the nucleus; yet, in NGC 253 most of the
starburst appears to lie within 20 parsecs of the nucleus, so there is no
evidence for a cutoff in the process of massive star formation.

M. Harwit: Have you looked at the time scale over which a dust shroud
surrounding a concentrated, higly luminous (1011 LO) group of stars would
become disrupted by the strong radiation pressure which should dominate
gravitational attraction?

Answer: No. I suppose it would depend on some parameters that we don't have
good estimates of, such as the magnetic field. Perhaps with more work on
the timescalas for the starbursts in N.C 6240 and similar galaxies, we
could make sor, progress in this area.
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GROUND-BASED 1- TO 32-i' OBSERVATIONS OF ARP 220:
EVIDENCE FOR A DUST-EMBEDDED "AGN"?

E. E. Becklin and C. G. Wynn-Williams
University of Hawaii, Institute for Astronomy

Honolulu, Hawaii 96822 USA

ABSTRACT. New observations of the 10- and 20-Pm size of the emission region in
Arp 220 are presented. We also give ground-based photometry from 1-32 Pu
including measurements of the strength of the silicate feature at 10 Im. The
results show that the 20-p. size of Arp 220 is smaller than 1.5 arcsec (500
pe); comparison of IRAS and ground-based observations show that IRAS 12-Pa flux
measured with a large arcmin beam is the same as that seen from the ground with
a 3-aresec aperture. At 10 Pam a deep silicate absorption feature is seen that
corresponds to a visual extinction of about 50 mag.

These results suggest that a very significant portion of the 1012 Le
infrared luminosity from Arp 220 comes from a region less than or of the order
of 500 pc in diameter. When these results are combined with recent measurement
of a broad Brackett-a line by DePoy and an unresolved 2.2-Pm source by
Neugebauer, Matthews and Scoville, a very attractive possibility for the pri-
mary luminosity source Arp 220 Is a dust-embedded compact Seyfert-type nucleus.

INTRODUCTION

Arp 220 (IC 4553) is a relatively nearby galaxy that IRAS found to be
extremely luminous at infrared wavelengths (Soifer et al. 1984). It has a
total luminosity of 1012 Lo at a distance of 70 Npc (Ho - 75 km/sec/Npc). It
emits 50 to 100 times more luminosity at infrared than visible wavelengths.
Optically the galaxy appears highly disturbed and has been classified as a
merger (Joseph and Wright 1985). It contains several compact radio sources
(Norris 1985) and at visual wavelengths shows a thick dust lane across its
center (Schild 1985).

Arp 220 appears to be one of a number of galaxies discovered by IRAS that
have a total luminosity > 1012 Lo. The space density of these galaxies is as
high or higher than optical, radio, or x-ray selected galaxies or QSOs (Soifer
at al. 1986). A critical question to be answered is the dominant source of
energy in Arp 220. A number of suggestions have been made such as (1) a burst
of star formation (Rieke et al. 1985; Joseph and Wright 1985), (2) a dust-
embedded active galactic nucleus "AGN" (Soifer et al. 1984; Norris 1985), and
(3) mechanical energy from a collision of two galaxies (Harwit et al. 1986).
In this paper we present new observations that suggest that a dust-embedded
"AGN" is the most likely explanation for the luminosity in Arp 220.

OBSERVATIONAL RESULTS

We present previously unpublished results on the size of the emission
region at 10 Pi (N) and 20 Pm (Q). The data were obtained on the IRTF in March
1985 and 1986 using the facility photometer with a Ga:Ge bolometer and standard
interference filters.

Carol J. Lonjdae Person (Editor)
Sup Fonatldon in Galares 643
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Figure I shows a 20-Pm profile of Arp 220 along a north-south line made
with a 3-arcesec aperture. The data have been folded about the central point.Also shown is the profile of a star. Similar data also exist in the east-west
direction. These data show that the galaxy and stellar profiles are similar;
in other words Arp 220 is unresolved. Assuming that the two profiles areGaussian in shape, the Arp 220 source has a characteristic size (FWHH) which isless than 1.5 arcsec. This corresponds to <500 pc at the distance of Arp 220.
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Figure 1: North-south profile at Figure 2: North-west profile at
20 Pa taken with a 3-arcsee beam. 10 Pm taken with a 5.5 arcsec beam.

A 10-pm profile with 5.5-arcsec resolution along a north-west direction isshown in Figure 2 along with the profile of a star; again Arp 220 is unre-
solved. These data disagree with the results of Rieke et al. (1985) whose dataare also shown in Figure 2. Both observations were made with the same system
on the IRTF; we do not understand the discrepancy. The 20-Pm profile and the12.5-Pji aperture growth curves discussed below would suggest that the presentresults, which show that the source is unresolved at 10 pm, are correct.

Figure 3 is an aperture growth curve at 12.5 Pm, i.e., flux versus
aperture size. It includes ground-based observations with beam diameters of3.0, 5.5, and 7.0 arcsec and the IRAS data with a beam >1 arcmin in diameter.
The IRAS point has been corrected for the different filter responses using the
energy distribution for Arp 220 given below. The result Is that >90% of the
12.5-pa flux measured by IRAS is observed in a 3-arcsec-diameter aperture.

In Figure 4 we present the energy distribution of Arp 220 from 7.8- to12.5-Pm observed with a 5.5-arcaec aperture and standard IRTF filters with
AV• -- 0.1. There is an obvious deep absorption feature at 10 Pm. The shape
of the feature agrees with that seen in other galactic and extragalactic
sources and Is ascribed to silicate dust (Roche et al. 1986). The shape of thespectrum indicates an absorption optical depth of 'r 3, implying a visual dust
extinction of Av 50 mag.
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Figure 5 shows the complete spectrum of Arp 220 from 1 tim to 350 pm plot-
ted as log vSv vs log v; both IRAS and ground-based data are shown. The 1.65-,
2.2-, and 3.8-Psa points are unpublished University of Hawaii measurements In a
4-arceec aperture that have had an estimated stellar contribution subtracted.
All of the points from 7.8 to 32 Psi were made with a 5.5-arceec aperture on the
IRTF. The 350-lam point Is from Emerson et al. (1984). The energy distribution
shows that:

1) The energy peaks at about 50 Pm; the distribution corresponds to
a blackbody at a temperature of 62 K (Soifer et al. 1984).

2) Silicate absorption is a dominant feature.

3) The .RAS fluxes at 25 and 60 Pi are consistent with the observed
ground-based fluxes at 20 and 32 twe measured with a 5.5-arcsec
aperture.
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A 6-cm VLA map with 0.4-arcsec resolution is shown in Figure 6. It shows
two slightly resolved sources (0 -0.2 arcsec) separated by about I arcsec in
right ascension. The structure we see at 6 cm differs significantly from the
triplet morphology found by Norris (1985) using the MERLIN array at 18 cm. We
have not yet established whether this difference is attributable to time varia-
bility, spectral index variations, or to differences in the data reduction pro-
cedure. The compact 10- and 20-Pa source lies within 1 arcsec of the midpoint
of the radio peaks; this has been determined by offsetting the IRTF from nearby
AGK 3 stars.
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Figure 6: VLA 6-ca map. 23'4014"
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NEW OBSERVATIONS BY OTHERS

A student of ours at the Institute for Astronomy (D. DePoy) has measured
the Brackett-a line at 4.1 PIs on the UKIRT using CGS2 with a 5.5-arcsec beam.
From his results, presented at this conference (DePoy 1986), he finds that the
line is broad (-1300 km/sec FWHM). The line strength implies an infrared
excess [Lbol/LLya -1] 300. Correction for the reddening based on the sili-
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cat* absorption depth would reduce the excess to about 100. Because the 32-I'm
flux originates from a region (Figure 5) with the same angular diameter as the
beam used for the Ba measurements, no correction for aperture size is
necessary.

The Palomar infrared group has made slit scans of Arp 220 at 2.2 Im using
the 200-inch telescope (Neugebauer, Matthews, and Scoville 1986). These data
are shown in Figure 7 along with a scan of a star; the slit width was -1.0 arc-
see. Model fits with Gaussian profiles indicate that there is an unresolved
source at the center with a limit to the full width at half maximum of 0.2 arc-
sec and a 2.2-Pm flux of 8 mJy. Correcting for the reddening discussed above
implies an intrinsic 2.2 Pm-flux of 500-1000 mJy.

,Arp 220 Star

Figure 7: Slit scan at 2.2 Pm

from the 200-inch (Neugebauer,

Matthews and Scoville f98b). = 0.5

0 .

0 100 200
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DISCUSSION

A. Thermal Infrared Component

The energy distribution shown in Figure 5 suggests that the emission mech-
anism in Arp 220 is thermal emission from dust (Soifer et al. 1984). If half
of the 20-le flux observed in the 3-arcaec beam is coming from a region whose
diameter is equal t) or less than 1.5 arcsec, then the brightness temperature
at 20 Pom is greater tMan or equal to 60 K. From the spectrum the color temper-
ature is about 62 K (Soifer et al. 1984). Thus the optical depth in emission
at 20 Pam is close to one. This agrees well with the depth of the silicate
absorption feature at 10 Pm if T9.7 ~ 2 Tl8; such a relationship is observed in
galactic sources (Forrest et al. 1979).

Because the source is thick at 20 Pm and emits approximately like a black-
body at its 20-Pm brightness temperature, it is very probable that much of the
longer wavelength emission near the peak of the energy distribution is coming
from a region e - 1.5 arcsec (-500 pc in diameter). Although radiative trans-
fer effects could make the emission region at 50 Pm somewhat larger than at 20
Pop, it should be noted that this size is consistent with a 50-Pm upper limit to
the size of 8 arceec measured by Joy at al. (1986) from the KAO and our 32-pm
measurement with a 5.5-arceec beam (Figure 4). The infrared radiation from
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Arp 220 appears highly concentrated toward the center.

B. 1- to 3-Vm Infrared Component

Both the 2.2-pm scan on the 200-inch telescope and our unpublished aper-
ture studies from the IRTF, show that there is a component in the 1.65- to
3.8-pm range which may not be stellar; it is observed to be about 10 mJy at
2.2 Pm or 500 iJy when corrected for reddening. If this component has a spec-
trum similar to the QSO 3C273, then its total luminosity would be of the order
of 1012 L..

C. Collisional Energy

The present observations can be used to test the various luminosity
sources in Arp 220 that have been suggested to date.

The model of Harwit et al. (1986) which predicts the amount of mechanical
energy converted into infrared luminosity when two galaxies merge does not give
a size for the emission region. Such a mechanism would not appear to naturally
explain the emission size that we observe.

D. Star Formation

The hypotheses that a burst of star formation is the primary energy
source in Arp 220 has a number of problems in light of the present set of
observations.

One of the strongest arguments used to support star formation has been
extended 10-pm emission (Rieke et al. 1985; Joseph and Wright 1985). The
observation of extended 10-pm emission in Arp 220 appears to be in error. The
surface density of star formation that is required in Arp 220 is 25 times
larger than in M82; prior to IRAS, 482 had one of the highest densities of
nuclear star formation. Is it reasonable to have such a rate of star formation
in such a limited volume? Also a region of star formation in the central 500
pc of Arp 220 should have a corresponding 500-pc diameter radio source, but
only two sources <50 pc diameter are seen at 6 cm.

Several parameters that are used to determine the amount of star formation
have also been measured in Arp 220. These include the Brackett-a line strength
which gives the number of ionizing photons (DePoy 1986), the CO line strength
which gives an estimate of the interstellar material (Sanders and Hirabel
1985), and the 2.2-pm continuum which gives a limit on the number of M super-
giants. In each case, if one scales from M82 using the total luminosity, one
finds that the star formation indicators are a factor of 10 less than expected.
There appears to be very little evidence for star formation producing more than
10Z of the observed luminosity in Arp 220.

E. An Active Nucleus

There does appear to be a number of observations that suggest that a
compact active nucleus is the primary luminosity source in Arp 220. It is the
easiest and most natural way to explain the compact infrared morphology. This
includes both the direct size measurement and the deep silicate absorption
feature. It is also the easiest way to explain the compact radio sources, the
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broad Brackett-a line, and the preseuce a point-like 2-Pi source. The latter
source, in fact, could contain enough energy to produce the observed infrared
luminosity, if it is a power law source in the uv and x-ray region.

In summary, the present observations are consistent with the idea that
more than 902 of the luminosity in Arp 220 originates from a radio quiet active
nucleus.

SPECULATION

Based on Arp 220, MKN 231, NGC 6240, and NGC 1068 it appears that both a
burst of star formation and an active nucleus are present in luminous IRAS
galaxies. A burst of star formation produces L - few x 1011 L.. If L - 1012
Le, the dominant source of luminosity is a radio quiet active nucleus. Since
interstellar material certainly feeds the star formation, it is natural to
speculate that it also feeds the active nucleus.
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DISCUSSION

HARWlT:
The small size of Arp 220 is impressive. In the model we presented yesterday, we took 2 kpc diameter x

0.1 kpc thick disks colliding with each other in order to accommodate 1010 Me of H2 at a normal molecular

density of n , 103Cn-3. We know that Arp 220 has that much gas from CO observations. Its compactness
simply says densities are higher, but that does not affect the way such a model works. Higher densities tend
to lead to higher luminosities for a given size so'-rce.
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BECKLIN:
That is the nice thing about a theoretical model, it can always be fixed up to agree with observations.

UNGER:
The radio continuum emission at 1 8cm has an extent of about 1.5 arcsec, rather larger than at 6cm. You

give an upper limit to the angular extent at 20pm of 1.5 arcsec - can you push this upper limit any further to
say that the radio and 20jrm emission aren't coincident?

BECKLIN:
That is unlikely, since if the source is thermal, it cannot be made smaller than 1.5 arcsec.

ELIAS:
Since you know the approximate size of the 20 micron source, and also that it has an optical depth of at

least 1, what is the minimum amount of dust required?

BECKLIN:
About 107 Me in dust. If the dust to gas ratio is 0.01 by mass, this corresponds to 109 M0 in gas, not

too different from the amount estimated from the CO.

YOUNG:
Could you please elaborate on the point that the CO is too low by a factor of 5. Given the M(H2) and

the dust temperature in Arp 220, the LnR/M(H 2) ratio is precisely what you expect for a galaxy with AMp
220's S0o/Sio ratio.

BECKLIN:
For a 'typical' star forming region there is a 'standard' LIR/M(H.) ratio. If L.,/M(H2) is larger than

this ratio, physics demands that the dust temperature increase (unless MWg/M(H2) were also larger). As
pointed out by Phil Solomon, your relationship has physical significance, but not astrophysical significance.
Astrophysically, Arp 220 has a larger Lm/M(H2) ratio than 'standard' star forming galaxies.

TELESCO:
As you know, in NGC 1068 the l0pm emission comes from a very compact region, whereas the far-

infrared luminosity originates from a much larger region. So you have to be careful in concluding that all the
luminosity of Arp 220 comes from a region 500 pc in size.

BECKLIN:
I know very well that we have not proven a thing. However, unlike NGC 1068, Arp 220, from its

spectrum, appears to have only one component, which is thick at 20nm.
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SPATIAL DECONVOLUTION OF IRAS GALAXIES AT 60 UM

Frank J. Low
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ABSTRACT

Using IRAS in a "slow scan" observing mode to increase the spatial sampling
rate and a deconvolution analysis to increase the spatial resolution, several
bright galaxies have been resolved at 60 um. Preliminary results for M 82, NGC
1068, NGC 3079 and NGC 2623 show partially resolved nuclei in the range 10 to 26
arcsec., full width at half maximum, and extended emission from 30 to 90 arcsec.
from the center. In addition, the interacting system, Arp 82, along with Mark.
231 and Arp 220 were studied using the program "ADDSCAN" to average all
available survey mode observations. The Arp 82 system is well resolved after
deconvolution and its brighter component is extended; the two most luminous
objects are not resolved with an upper limit of 15 arcsec. for Arp 220.

INTRODUCTION

In the design of the IRAS survey array the requirement for the highest
possible spatial resolution was sacrificed in order to achieve wavelength and
area coverage. However, a special observing mode was devised to utilize the best
detector in each band coupled with the excellent pointing performance of the
space craft to recover some of the lost resolution for bright sources.
Unfortunately, only a few observations were obtained this way but most of
those results are now available in preliminary form and are reported here since
they provide important information on the size, structure and surface brightness
of several bright infrared galaxies. It is also shown that many more results on
the sizes and structures of extragalactic systems, especially those that are
interacting, may be obtained by using a special method of processing for the
survey data. After properly combining all available survey mode scans, each of
which is under sampled, it is possible to recover enough information to
construct a properly sampled scan of an object so that the powerful techniques
of spatial deconvolution may be applied. This report includes very preliminary
but interesting data obtained by this method and suggests that it should be
applied to a much larger sample of galaxies.

THE "SLOW SCAN" PROGRAM

In order to deconvolve scans of bright objects to produce one dimensional
images with resolution near the ultimate limit of the telescope system, three
conditions must be met. First, the stability and reproducibility of the
modulation transfer function, MTF, must be assured and it must be accurately
measured using known point sources. Obviously, the MTF, or the point spread
function, PSF, as it is often termed, should be fully optimized but this was not
the case with IRAS for reasons explained above. Even though the IRAS detectors
were too broad for best performance, if the second requirement of adequate
sampling in the spatial domain were met, it should be possible to perform the
deconvolution with success. This was accomplished for a limited set of
observations by slowing the scan rate to one eighth of the normal survey rate,
hence the name "slow scan". It was not possible to alter the set sampling rate
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in the time domain. Fortunately, the redundant observations which make up the
vast body of survey mode data offer another viable solution to this under
sampling problem and that approach will be discussed below. The third
requirement for successful deconvolution is that of high signal/noise, thus,
only bright sources were included.

TABLE 1. SLOW SCAN PROGRAM OBJECTS

GALAXIES STARS POINT SOURCES

M 82 STAR BURST alpha Lyr alpha Boo
N 1068 SEYFERT alpha PsA beta Gru
N 2623 INTERACTING beta Pic Hygia
N 2992 INTERACTING
N 3079 INTERACTING

Table 1 lists the complete set of "slow scan" sources and Table 2
summarizes the relevant parameters of IRAS. The choice of extragalactic objects
fer this program was dictated by an interest in the size and structural features
or the brightest infrared galaxies and by the idea that it should be possible to
resolve a number of interacting systems and, thereby, shed light on the
mechanism of the interaction as it promotes excess infrared emission. During the
mission the Vera phenomenon was discovered, Aumann et al (1984), and Fred
Gillett wisely included the brightest objects of that class in this program. At
this time only the 60 um observations of galaxies will be discussed in more
detail.

TABLE 2. IRAS PARAMETERS FOR DIFFERENT MODES OF OBSERVATION

L L/D DET. SAMPLING INTERVAL
WIDTH SURVEY STD. AO SPE. AO SLOW SCAN

(um) (sec) (sec) (sec) (sec) (sec) (sec)

12 4.3 45 14.4 7.2 3.6 1.8
25 8.9 45 14.4 7.2 3.6 1.8
60 21 90 29 14.4 7.3 3.6

100 35 180 58 29 14.4 7.3

Note: Detector lengths vary from 4.5 to 5 arcmin.

These observations consist of scans a few arcmin. in length which were
repeated either 6 or 9 times by reversing the satellites' motion. In each band
the best behaved detector in that band was used. It was found that non-linear
and time dependent effects were present in the IRAS detectors which limited
their performance in this application by more than the usual problem of
signal/noise. For example, there are asymmetries in the scans which depend on
the scan direction. By averaging the scans in both directions these effects
largely cancel. It also is likely that "hysteresis" effects are present to some
degree and serve as a degradation in +he reproducibility of the MTF. The PSF
also varies from detector to detector .id as a function of cross-scan position
for each detector. Normally each observation set was repeated at least once,
providing both an opportunity to check for reproducibility and a second set of
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data to average. Thus the minimum number of scans averaged for a single object
was 6 and the maximum was 12. The raw data were position reconstructed at JPL by
a process which effectively gives 1 arcsec pointing accuracy for these
measurements, and they were then uniformly re-sampled at 2 arcsec. intervals.
After baseline subtraction the scans were normalized to their peak values and
they were aligned for coadding using the midpoints between their half
amplitudes. After averaging all the scans from an observation, they were
resampled at 6 arcsec. intervals before further analysis.

DECONVOLUTION TECHNIQUES

When the 60 um IRAS detector, of dimensions 1.5 arcmin by 4.7 arcmin, was
scanned across a small area source, the measured profile or "measured source
function", MSF, was expected to be a linear convolution of the "true source
function", TSF, with the PSF. Thus the MSF may be expressed as:

MSF = PSF ** TSF

where the double asterisk stands for execution of the convolution integral.
Then, in order to recover the TSF from this instrumental convolution there must
be an inversion of the convolution, a procedure which may be symbolized as:

TSF = MSF // PSF.

In those cases where the diameter of the TSF is less than the diffraction
limited width of the PSF, as is true for most of our objects here, it is
necessary to invert the convolution integral by an iterative process of
successive approximations. The result of a deconvolution, the TSF, is tested by
comparing the actual MSF with the calculated convolution of that TSF with the
PSF. The two deconvolution procedures used here arp one-dimensional versions of
the Richardson-Lucy algorithm, R-L, discussed by Heasley (1984) and the "maximum
entropy method", MEM, of Frieden (1972) as described by Gull and Daniell (1978).
As discussed in Appendix A, the R-L algorithm is simple and fast to execute on a
small computer (IBM AT) and was modified from a program in Basic written by
George Aumann at IPAC. The MEM algorithm was written in Fortran by Mike Cobb at
Steward observatory and is run on a Data General MV 10000. Quite comparable
results were obtained with both techniques. For these simple cases other methods
may work as well.

An important check on the entire procedure is presented in Figure 1 where
the four observations of two point sources, alpha Boo and beta Gru, which had
been averaged together to make up the PSF, were individually deconvolved by
running 1000 iterations of the R-L algorithm. The excellent agreement between
these four independent observations is an indication that the technique gives
highly reproducible results on bright sources and that results for the FWHM down
to 9 arcsec are to be regarded with some degree of significance. This is about
0.3 of the " diffraction limit". In this sense IRAS has demonstrated the power
of "super resolution" as a practical way of increasing the angular resolution
of infrared telescopes. The reason that the observations of Hygia are not
combined with the two stars is that it was observed with a different detector
and is used here as the point source for the observations of NGC 1068.
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Figure 1. The dashed line represents the 60 micron PSF. The four solid lines
represent the four independent observations of the two stars, alpha Boo and beta
Gru, deconvolved individually with the PSF. North is to the left.

RESULTS FOR THE "SLOW SCAN" GALAXIES

Figure 2 shows the slow scan PSF, which is the unweighted average of the
two point sources, and the NSF curve for M 82 obtained from the two independent
observations. When reduced independently there is quite excellent agreement
between the two N82 observations. Close examination of Figure 2 reveals the
characteristic differences that exist between the point source and the extended
source, with the NSF narrower at the top and wider at the base than the PSF. The
FWHM for the PSF is 85 arcsec., slightly less than the geometrical width of the
detector, as designed and built, of 90 arcsec. The two M 82 observations were
taken on successive days and the scan direction was essentially perpendicular to
the major axis of the galaxy. As discussed above the obvious asymmetries in
these data are not fully understood and it is not yet clear why the extension on
the north side of the galaxy appears greater than on the opposite side. Indeed,
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Figure 2. The dashed line represents the 60 micron PSF. The two solid lines
represent the MSF and TSF for M 82. North is to the right.

further analysis is needed to determine whether the extended emission, more than
one arcmin, from the nucleus, is a real property of the galaxy or a result of
instrumental effects. Perhaps these effects are produced by the detector's non-
linear behavior, although no satisfactory model has been found to explain this
in detail. The measured FWHM is listed in Table 3. Although it is difficult to
assess with certainty, the accuracy here would appear to be +/- 1 or 2 arcsec.
These IRAS results, in so far as they can be directly compared, are consistent
with published airborne measurements of Telesco and Harper (1980).

Figure 3 again shows the PSF for reference and includes the TSF results for
NGC 2623, NGC 1068 and NGC 3079, in order of size. NGC 2623 is not clearly
resolved but appears to be slightly larger than the PSF. NGC 1068, which was
observed with a different detector, was deconvolved using Hygia as the point
source; it too shows an asymmetry which is not yet understood from an
observational point of view. NGC 1068 is the second brightest source observed
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Figure 3. The dashed line represents the 60 micron PSF. The three solid lines
Ii• represent the TSF for, starting with the smallest source, NGC 2623, NGC 1068 and

r NGC 3079, respectively. Note that NGC 1068 was deconvolved using Hygia as the
i P.SF and only 500 iterations of R-L were used. North is to the right.

I but Hygia is only slightly fainter and does not show any significant differences
from the weaker point sources. At this stage of the analysis it is possible thatthese two galaxies, M 82 and NGC 1068, both have 60 um emission extending

Iioutward from their nuclei in an asymmetric fashion and in directions
perpendicular to their major axes. Further analysis of these data and study of

S~other IRAS observations are needed to confirm or deny this result. Fortunately,
M 82 is so bright that it should be possible to use the Kuiper Airborne
Observatory to test this unexplained result.

Finally, the well resolved TSF for NGC 3079 is a classic example of the
"core-halo" structure with strong evidence for a second core only 40 arcsec from
the brighter core. In this system the enhanced IR activity is spread over very
large distances even though most of the infrared emission is, like that of
other luminous infrared galaxies, concentrated near the bright nucleus. It
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appears that we have an opportunity here to study both members of a strongly
interacting pair of galaxies.

ADDSCAN OBSERVATIONS

As mentioned above, it is possible to combine the 8 or more redundant
survey scans of a given source to construct a well sampled MSF despite the fact
that each scan is badly under sampled. It can be seen in Table 2 that the
interval between samples is 29 arcsec., almost 3 times the minimum requirement
of 10.5 arcsec. to satisfy the Nyquist condition. The computer program used for
this work was developed at IPAC and carries the name ADDSCAN. When the position
reconstruction is carried out on a series of scans, the signal for each sample
is placed in bins only 6 arcsec. apart. Because each scan samples at different
locations on the sky, a median average of the 8 or more survey scans effectively
fills the gaps by randomly distributing the information in the 6 arcsec. bins.

Using the same stars, alpha Boo and beta Gru, a PSF was constructed from
ADDSCAN data and compared to the PSF from the slow scan observations. A slight
degradation in the width and shape of the function is apparent but it still
contains most of the spatial frequencies present in the slow scan PSF.

Using this new PSF and the MEM algorithm, three galaxies of interest were
deconvolved and the results are shown in Figure 4 and in Table 3. The two most
luminous objects, Mk 231 and Arp 220 are not resolved and the upper limits are
listed in Table 3. The interacting pair, Arp 82, is well resolved, as shown in
Figure 4, where it can also be seen that the brighter of these two galaxies is
extended. Fortuitously, the scan direction is favorably placed, nearly along the
direction of separation, and the measured separation in the IR is within 2
arcsec. of the optical separation. Again it is possible to resolve the two
components of a strongly interacting system. The flux density of the brighter
component is only 3 Jy. This means that a rather large number of galaxies, of
order 2000, can be studied by this technique; of course only a fraction of the
total sample will be resolved but this should add extensively to our knowledge
of the size and surface brightness of IRAS galaxies.

Table 3. SUMMARY OF RESULTS

GALAXY DISTANCE DIAMETER EXTENT FLUX DENSITY SCAN ANGLE
(Mpc) (arcs.) (Kpc) (arcs.) (Kpc) (Jy) (deg.)

1 82 3 24 0.35 150 2.2 1170 -37
N 1068 12 20 1.16 60 3.5 185 18
N 2623 53 <11 <3 -- -- 31 -16
N 3079 18 18 1.6 >120 >10 35 -35

Arp 82 44 40 8.5 180 35 3 --
Arp 220 60 <15 <4.5 -- -- 104 --
Nk 231 120 <26 <15 .. .. 33 --

Note: DIAMETER - FWHM; EXTENT = the maximum extent of the TSF.
Ho - 1 E 2 km/s/Mpc. Scan angle = position angle measured north
of south in the clockwise direction.
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Figure 4. The result of combining all 60 micron survey scans of
Arp 82 using "ADDSCAN" and the resulting deconvolution wtth a 60
micron PSF based on ADDSCAN observations of point sources.

APPENDIX A: The R-L Algorithm

The task of deconvolution is best accomplished by use of a so-called "nonlinear"
method of successive approximations. As a practical matter the R-L algorithm
offers a number of advantages including simplicity, speed of execution and
predictability. Its use here is very much like that of Heasley (1984) except
that it is limited to one dimension and the number of iterations used is very
much larger. The following brief explanation may serve to remove any ambiguities
about the method used, with the largest unsettled question the establishment of
an objective criterion for determining the "proper" number of iterations.

Let:
PSF - P(x)
NSF - M(x)
TSF - T(x).

658



SPATIAL DECONVOLUTION OF IRAS GALAXIES

Then:

T(x)k - T(x)k-l[(M(x)/(T(x)k-1 * P(x)) ** P(x)]

Where:

T(X)I - M(x)[(M(x)/(M(x) ** P(x)) ** P(x)].

The data arrays, P(x) and M(x), must be carefully aligned or "phased" and the
first iteration simply begins with M(x) as the initial "guess" at T(x); neither
array can have zero or negative values. In executing each iteration the
convolution integral, which consists of only eight lines of code in Basic, is
used twice, first to form the quotient, T ** P, and then to smooth the ratio,
M/(T ** P). Progress is rapid for the first few iterations and can be monitored
by summing the absolute values of the differences between successive
approximations. When tested on perfect data sets, such as the inversion of
convolutions of simple functions, there is no tendency to oscillate or to
overshoot and 1000 iterations are both productive and practical in terms of run
time. The effects of various types of noise and/or distortion and of different
degrees of oversampling are relevant to the results given here but are beyond
the scope of this brief report.
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DISCUSSION
GEZARI:

What is the uncertainty in the deconvolved source diameters you presented?

LOW:
I believe the error is about ±2 arcsec on the diameter for the bright 'slow scan' observation at 60sAm.

JOY:
On the 60pm graph of M82, you show that the point source profile is broader than the M82 profile over

the central arcmin or so. How can it be concluded that M82 is resolved on any scale?
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LOW:
The simplest way to assure yourself that the effect you mention is real is to consider the case of two

step fAnctions, each of width w, convolved together. The result in a triangle of base 2w and half width of w.
aeardy, the upper half of the triangle is of width < w.

TELESCO:
M82 and NGC 1068 have already been resolved in the far-infrared on the Kuiper Airborne Observatory

and these results are already in the literature. Are your requests consistent with those observations?

LOW:
At present, I believe the IRAS results and the KAO results are in agreement with respect to the sizes of

the cores in M82 and NGC 1068. Because the KAO systems use chopping to subtract the background, I do
not expect they will agree on the 'wings' of sources.
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Star Formation Around Active Galactic Nuclei

William C. Keel
Sterrewacht Leiden

Leiden, The Netherlands

Emission-line images and high-dispersion optical spectra have been used
to investigate star-forming regions in the vicinity of active galactic nuclei,
including objects covering a wide range in luminosity of the central source.
Rings of HII regions around the nucleus on 100-500 pc scales occur
preferentially in galaxies with active nuclei, perhaps indicating a common
response to gas flow in certain potential shapes. Multiaperture spectra of
nearby HII-region nuclei shows many to have centrally condensed LINER-like
components, suggesting that such configuration may be quite common.

The stellar population, and its history, may be probed in some of the
most favorable cases. Observed stellar absorption features and crude
starburst models imply ages - 108 years and < 3x10 7 years for the starbursts
around the nuclei of NGC 1068 and 7469, respectively. These are in rough
concordance with lifetimes of the nuclear activity based on radio structures;
if a direct link between nuclear activity and surrounding starbursts can be
demonstrated, this could become an important way to study the history of
individual objects. A somewhat different situation is found in I4kn 231, where
the whole galaxy (merger?) exhibits optical colors and spectra suggesting
either an IMF deficient in OB stars or a sudden turnoff of star formation, on
scales so large that it is unlikely the nucleus is directly responsible.
There thus appears to be evidence of at least two kinds of links between AGN
and star formation.

Active galactic nuclei (Seyfert nuclei and their relatives, in which
nonstellar sources of energy are important) and intense star formation can
both deliver substantial amounts of energy to the vicinity of a galactic
nucleus. Many luminous nuclei have energetics dominated by one of these
mechanisms, but detailed observations show that some have a mixture. Seeing
both phenomena at once raises several interesting questions:
1) Is this a general property of some kinds of nuclei? How many AGNs have
surrounding starbursts, and vice versa?
2) As in 1), how many undiscovered AGNs or starbursts are hidden by a more
luminous instance of the other?
3) Does one cause the other, and by what means, or do both reflect common
influences such as potential-well shape or level of gas flow?
4) Can surrounding star formation tell us anything about the central active
nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of
the ISM?

These are important, and perhaps crucial, points in our understanding of
activity and star formation in galactic nuclei. Unfortunately, the

Coro J. Loxad Peruson (Editor)
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observational ways of addressing them are as yet not well formulated. I
report here some preliminary studies aimed at clarifying at least the issues
involved in study of the relationships between stellar and nonstellar
excitement in galactic nuclei.

HII.Rings and Active Nuclei

Many spirals, particularly of intermediate Hubble type, show
substructures in the nuclear region often termed "hot spots" (e.g. Sersic and
Pastoriza 1967). A large fraction of these show a very regular morphology
upon more detailed study: a nucleus with late-type (old) stellar population
and Seyfert or LINER emission spectrum, surrounded by an elliptical ring of
luminous giant HII regions. Such rings may be associated with inner
resonances in the stellar orbits (see, for example, Sanders and Huntley 1976,
Sanders and Tubbs 1980). Relatively few such objects are known; at the
redshifts of even most Markarian Seyferts, they would be blended with the
nucleus in ground-based observations. Galaxies in which this morphology is
well-established are listed in Table I (after Hummel, van der Hulst, and Keel
1986). Note that only one of these (NGC 5427) does not appear in the lists of
Sersic and Pastoriza. Typical appearances of these are illustrated in Figure
1, by an Ha image of the nucleus of NGC 5248 (from the KPNO 2.1-m with TI
CCD).

TABLE 1

Galactic Nuclei with HII Rings

NGC Ring Diameter (kpc) Nucleus Rubble Type

1097 1.1 LINER/Sy2 SBb
2297 0.4 LINER? SABc
3351 0.4 LINER SBb
4303 0.3 LINER/Sy2 SABbc
4321 1.4 LINER/Sy2 SABbc
5236 0.3 HII SABc
5248 0.7 LINER SABbc
5427 1.9 Sy2 Sc

From the data summarized in Table 1, it appears that galaxies with
nuclear rings of HII regions are more likely to have indicators of nuclear
activity fSeyfert or LINER spectra) than the norm for the Hubble types
involved. Particularly noteworthy is the presence of such activity even in

!The LINERS here are not the "blue LINERS" that are often associated with
starbursts (Rieke, these proceedings); the nuclei here (except the HII
nucleus of M83) show no real evidence of current star formation inside the HII
rings.
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Figure 1. Continuum-subtracted He + [NIl] image of the nuclear region of NGC
5248. The ring of HII regions around the actual nucleus is evident. The
field is 160" square, with north at the top.

Sc galaxies, in which it is rare among magnitude-limited samples (e.g. Keel
1983). The available sample clearly points to some kind of connection between
HI rings and nuclear activity, both perhaps formed by certain kinds of
potential shapes that induce radial gas motion. Complete surveys of the
incidence of such rings and properties of the associated nuclei will be
important, but can be complicated by several effects. The resolution effect
mentioned above means that present data would have difficulty finding such
configurations at the distances characteristic of very luminous Seyferts; in
such cases, spectroscopic identification of an HIl-region component or use of
IR colors to infer a star forming region might be possible, but difficult due
to to the great luminosity of the nucleus. Second, in such very active
objects, some of the signatures of HII rings can be lost. In the type 2
Seyfert NGC 5728 (M. M. Phillips et al., private communication) there is
dynamical evidence of a gas ring, but its ionization is dominated by radiation
from the nucleus. Very detailed study is needed for such objects; more HII
rings will likely emerge from detailed studies of individual active nuclei.
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histories of Star-Forming Regions around Seyfert Nuclei

The presence of "starburst disks" - regions of Intense star formation on
scales of a few kiloparsecs is well established for a few nearby Seyferts.
They may be recognized from emission-line properties (Morris et al. 1985,
Alloin et al. 1983), infrared mapping (Cutri et al. 1984), and radio-source
morphology (A. S. Wilson, these proceedings). The properties of these regions
are of interest as possible probes of the history of the AGN itself, if it can
be established that the onset of extensive star formation and the turn-on of
the nucleus are roughly contemporaneous (admittedly a tall order, and a large
question for the future). To explore the possibilities of learning the age
and history of these "starburst disks", spectra of -1A resolution have been
obtained for the Ha, HO, [0III] 15007 regions in nuclei showing a range of
activity and some evidence for surrounding star formation. The observations
used the IPCS at the 2.5-m Isaac Newton Telescope on La Palma and CCDs .at the
INT and the Kitt Peak 4-m.

Figure 2 shows the HO-X5007 regions approximately 16" SW of the nucleus
of NGC 1068. This region has been studied in the UV by Weedman and
Huenemoerder (1985), and shows HlI-region emission in the images by Balick and
Heckman (1985); a discrete near-IR source here also suggests a local clump of
star formation (Telesco et al. 1984). The present data shows, in addition to
narrow HC emission from the HII region and broad [OIII0 associated with the
nucleus (see the kinematic analysis by Alloin et al. 1983), stellar absorption
features of HO, MgI, Hy, and the G-band. These features, and the Balmer
emission diagnostic of the stellar Lyman continuum, have very different
weightings with stellar age in an aging burst, and for a given burst model can
serve as age or history diagnostics.

To illustrate this approach, consider a simple model of star formation
with a Salpeter IMF turning on at some time and retaining a constant star-
formation rate thereafter. INT blue spectra of the circumnuclear regions of
NGC 1068 and 7469 may be roughly compared with such a model. In NGC 1068, CS
and MgI - X5175 are seen with equivalent widths of 7 and 3 A, while neither is
detected in KGC 7469 at a level -2 A. These data imply ages of -108 and < 107
years, respectively. These are at least consistent with timescales needed to
produce the extended ratio excess in each case (following de Bruyn and Wilson
1978). More detailed work, including more objects, emission-line results, and
varying star forming histories, is in progress.

Star Formation in Markarian 231

The nucleus of Mkn 231 shows a number of unusual properties, including
broad, blueshifted absorption, strong continuum reddening, and very strong IR
euission (Adams 1972, Boksenberg et al. 1977, Rieke and Low
1972). The surrounding galaxy is also peculia-rin- morphology and
spectroscopic properties and may be a nearby example of the conditions seen
in, for example, 3C 48 (Boroson and Oke 1982). This section describes a study
of the host galaxy of Mkn 231, conducted in collaboration with D. Hamilton
(CTIO).
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N1068 S 40-89

500 1000 1500 2000

Figure 2. INT + IPCS spectrum in the 4300-5200 A range, for the "starburst
disk" of NGC 1068 16" SW of the nucleus. Stellar absorption of HO (a broad
feature -!mderlying the narrow emission line) is strong; other identifiable
absorption lines include HgI, Hy, and the G-band. [0III1 emission redward (to
the rijht) of B, 1smoely due to the effects of the Seyfert nucleus.

Multi-color imaging shows the galaxy to be very asymmetric, with smooth
amorphous condensations and, at very faint levels, a pair of probable tidal
tails. A large region of nearly constant surface brightness west of the
nucleus offers a good opportunity to study the stellar population. A low-
resolution spectrum of this region was obtained with the Cryogenic Camera at
the KPNO 4-m, and shows relatively strong HB as well as MgI and %gH
absorption, indicating a large contribution from stars of types A and F. In
itself, this indicates active star formation within the last -5 x 108 years.
However, the current star formation rate must be much smaller, as deduced from
the lack of Ho attributable to lII regions in the disk and lack of direct
observation of such regions in Ha images. Using the precepts of Kennicutt
(1983), the SFR has dropped more than fourfold in this period.

It would be remarkable for a whole galaxy (of extent > 30 kpc) to turn
off star formation everywhere in this time. The alternative is equally
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remarkable, an IMF deficient in high mass stars. This is just the opposite of
the case usually inferred for starburst galaxies. The stellar population here
does appear similar to those in a few other active galaxies such as 3C 48 and
3C 459 (Miller 1981). The physics of star formation during galaxy mergers
could provide important clues to what is seen here; Hkn 231 shows a pair of
tails, and most giant radio galaxies, including 3C 459, show morphological or
kinematic evidence of being merger products (Heckman et al. 1986). Mkn 231,
at least, raises the possibility that conditions in some merging galaxies may
favor formation of low-mass stars. If so, some interpretation of observations
of many interacting and post-interaction systems would be much more
complicated than previously thought.

Future Directions

The most pressing needs in understanding star formation around active
nuclei are solid indications of how often, and at what levels, it occurs, and
a detailed study of representative objects that could provide clues to the
physical operation there. Schemes exist that could have a link between the
phenomena going in either direction, or with both as a result of host galaxy
properties. Weedman (1983) has considered the fate of condensed stellar
remnants from a starburst; if they can reach a compact enough configuration,
relativistic effects (Shapiro and Teukolsky 1985) could rapidly produce a
single massive central object. Weedman notes that the process might be so
rapid that both would be seen simultaneously.

In the other direction, active nuclei could induce surrounding star
formations through shocks, perhaps via jets. There is clear evidence of jet-
induced star formation on larger scales, in Cen A and Minkowski's Object (van
Breugel et al. 1985, Brodie, Bowyer and McCarthy 1985, Graham and Price
1981). Finally as discussed for HII regions above, some kinds of potential
might efficiently funnel gas both into kiloparsec and parsec scales, fuelling
star formation and nuclear activity at the same time.

Surveys for extranuclear star formations might take several forms. IR
colors (Rodriguez-Espinosa et al.,, these proceedings) are relatively unbiased
and reddening-free, but from the IRAS database it is not clear that the star
formation is on a small enough scale to be connected with the nuclei. Ha
studies (imaging or slit spectroscopy) complement IR studies in spatial
resolution, but can be of limited use when the nucleus is so luminous as to
dominate the gas ionization at relevent distances within the disks. Finally,
the work of Wilson et al. (these proceedings) suggests that radio morphology
may be an additional useful diagnostic. All these kinds of surveys should be
pursued.

More detailed studies of individual objects are in part available, and
will continue as byproducts of studies of active nuclei.

Observations described here have been obtained at the Isaac Newton
Telescope, now happily ensconced on the island of La Palma, and at Kitt Peak
National Observatory and Cerro Tololo InterAmerican Observatory, National
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Optical Astronomy Observatories, operated by A.U.R.A. under contract with the
National Science Foundation. I am especially grateful to Susan Davidson for
helping produce this manuscript on time.
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DISCUSSION

WILSON:
In our study of the circum-nuclear starburst in NGC 7469 (to be published in Ap. J. Nov. 1986), we

do find evidence of HP absorption in some locations. Presumably, this would make the starburst somewhat
older than you estimated.

KEEL:
This emphasizes an important issue in the study of these systems - spatial resolution and averaging. My

data so far pertain only to limited slices through the circum-nuclear regions; since present star formation is

obviously patchy, stars too young to have completely diffused will also have more or less 'lumpy' distributions.
A more proper observational approach would involve mapping absorption features at many positions around

the nuclei.
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An analysis of the IRAS data for a sample of classical (optically selected)
Seyfert galaxies is presented. The IRAS fluxes at 25 pn, 60 Mn, and 100 pm are
found to be uncorrelated or only very weakly correlated with the UV/Optical
continuum flux and the near and mid IR flux at 3.5 and 10 pm. To investigate the
possibility that star formation accounts for the far IR flux, the IRAS
measurements for the Seyfert galaxies are compared to IRAS observations of a
sample of normal spiral galaxies, and a sample of Starburst galaxies. It is
shown that the far IR luminosities and far IR colors of Seyfert galaxies are
indistinguishable from those of the Starburst galaxies. Besides, normal galaxies
are an order of magnitude less luminous than both the Seyfert and the Starburst
galaxies. This indicates that star formation produces the bulk of the far-
infrared emission in Seyfert galaxies.

1 . INTRODUCTION

For quite a few years now, it has been known that Seyfert galaxies are
strong near and far-IR sources (Rieke 1978). In this classical paper, Rieke also
inferred that Seyfert galaxies might also be strong far-IR sources, and
moreover, that a large fraction of their total luminosities is emitted in the
infrared at wavelengths longer than -30 pm. However direct ground-based
observations of the far-IR output of these sources was not feasible due to the
opacity of the atmosphere. In some instances balloon and aircraft observations
of a few bright objects were carried out. That is the case for NGC 1068
(Telesco, Harper and Loewenstein 1976; Telesco and Harper 1980), NGC 4151 (Rieke
and Lebofsky 1979) and NGC 4051 (Smith et al. 1983). It is interesting that in
all these cases the far-IR output was interpreted as arising from emission by
warm dust heated in regions of star formation. However it is only in the post-
IRAS era that the far-IR emission from larger samples of objects can be studied.

Concerning Seyfert galaxies the first question to be asked is: what is
the role of the active nucleus in the far-IR? It is well known that the nucleus
is responsible for most of the properties of Seyfert galaxies. However, very

Carol J. Lonsdale PerSson (Editor)
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recently we (Rodriguez Espinosa et al. 1986; Paper I) have concluded that the
far-IR emission from the active nucleus does not account for the bulk of the
emission from Seyfert galaxies observed by IRAS. Our claim was based on two main
points:

i) the far-IR emission originates in an extended region.

ii) in most Seyfert galaxies the non-thermal UV-optical continuum luminosity is
not large enough to account for the far-IR emission via dust-reradiation of
the UV-optical continuum.

Here we would like to explore further the relationship between the nucleus and
the far-IR properties of Seyfert galaxies.

2. THE DATA

For our study we have considered a sample of optically selected Seyferts
consisting primarily of those galaxies in Rieke (1978) and Yee (1980), most of
which are overlapping. The 3.5 pm and 10 pm data are from Rieke while the UV
data are from Yee. We have increased the sample with objects measured in the IR
by Rudy et a!. (1982) and Rudy and Rodriguez Espinosa (1985). In total there are
96 objects in the sample. Of these, 58 were detected by IRAS, and 2 objects
(Mrk 304 and NGC 4151) were not observed. As for the objects not detected most
of them are at redshifts such that more likely their IR emission is below the
IRAS sensitivity limits.

3. RESULTS

Correlation analysis has been used to explore possible relationships of
the far-IR emission of Seyfert galaxies with the active nucleus. The active
nucleus is considered responsible for the UV-optical continuum emission (Weedman
1977) and for the near (3.5 pm) and mid-infrared (10 pm) emission (Rieke 1978;
McAlary, McLaren and Crabtree 1979). These have been correlated with the IRAS
data at 25, 60 and 100 pM with the following results:

i) Only the 25 pm emission correlates to a high degree of confidence with the
3.5 pm and 10 pm emission, indicating that whatever mechanism powers the
near and mid-IR emission is also responsible for a large part of the
emission from these objects at 25 pm.

ii) The UV-optical continuum emission from Seyfert galaxies does not correlate
with the far-IR emission detected by IRAS.

iii) The 60 and 100 pm IRAS emission from Seyfert galaxies is uncorrelated or
only weakly correlated with the 3.5 pm and 10 pm infrared emission from
these sources, suggesting a weak or, at most, indirect relation between the
mechanism producing the near and mid-IR emission and that responsible for
the far-IR fluxes detected by IRAS.

These results underscore the idea proposed in Paper I that a large fraction of
the far-IR emission from Seyfert galaxies originates in a source other than the
active nucleus (see also Neugebauer, Soifer and Miley 1985).
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4. STARBURSTS IN SEYFERT GALAXIES

To investigate the possibility that star formation accounts for a large
fraction of the far-IR output from Seyfert galaxies, we have compared the IRAS
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Fig. 1. The far-IR luminosity distribution of NGC spiral galaxies (top),
Starburst galaxies (Voron-Cetty and V~ron HII galaxies; middle), and
Seyfert galaxies (bottom). In the top histogram those NGC spirals
undergoing starbursts are represented by the shaded area. Note that
the Seyfert galaxies are, on the average, an order of magnitude
brighter than normal NGC spirals, and comparable in far-IR luminosity
to the starburst galaxies.
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measurements of these objects to the IRAS observations of both a sample of
normal spiral galaxies and a sample of HII region galaxies. The samples of
spiral galaxies and HII galaxies are those of Keel (1983) and V6ron-Cetty and
V6ron (1984). An examination of the far-IR (IRAS) luminosity distribution of the
spiral galaxies shows that on average, in the far-IR, spiral galaxies are an
order of magnitude less luminous than Seyfert galaxies (Fig. 1). Moreover, the
majority of the spiral galaxies whose far-IR luminosity is comparable to the
far-IR luminosity of the Seyfert galaxies are what Keel (1983) described as
galaxies having HII region-like spectra.

The central diagram of Figure 1 shows the luminosity distribution of the
V'rou-Cetty and VUron (1984) HII region galaxies. Note the striking similarity
with the far-IR luminosity distribution of the Seyfert galaxies (Fig. 1,
bottom).

The far-IR spectral indices for the Seyfert and the Starburst (HII)
galaxies have also been examined. Figures 2 and 3 show the 60 through 100 pm,
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Fig. 2. The 60 thrr ,jh 100 pm Fig. 3. The 25 through 60 pm
spectral index distribution for the spectral index distribution for the
starburst objects (top) and the starburst objects (top) and the
Seyfert galaxies (bottom). Note Seyfert galaxies (bottom). The Seyfert
again the very clear similarity of galaxies show much bluer spectral
these two distributions, indices due to the emission from the

active nucleus at the shorter
wavelength.
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a(60-100), and the 25 through 60 pm, a(25-60), spectral index distributions for
the two types of galaxies. Note the great similarity between the a(60-100)
spectral indices (Fig. 2) of both the Seyfert and the Starburst galaxies. Note
at the same time the large dispersion in the values of a(60-100) for both the
Seyfert and the Starburst galaxies. This dispersion can be explained by assuming
that most of the 60 and 100 pm emission is due to radiation by warm dust at
temperatures ranging from about 35 to 75*K (X- 1 emissivity). Furthermore, these
temperatures are typical of dust heated by young stars in regions of star
formation (e.g. Harper 1974).

Coming now to the 25 through 60 pm spectral indices we find much bluer
indices in the Seyfert galaxies than in the Starburst galaxies. But this is not
surprising since we would expect the strong emission from the active nucleus to
reveal its presence at the shorter (25 pm) wavelength. The Starburst galaxies on
the contrary show a very steep rise at the short wavelength (Fig. 3). The
large dispersion seen in the a(25-60) spectral indices of the Seyfert galaxies
is probably related to variations in the relative contributions of the active
nucleus and the Starburst component at these two IRAS bands.

5. CONCLUSION

From the high similarity between the far-IR properties (luminosity and
spectral index) of Seyfert and Starburst galaxies we conclude that a large
fraction of the emission at far-IR wavelengths of Seyfert galaxies is produced
by star formation episodes in regions around the active nucleus. Besides, the
high incidence of large far-IR output among the Seyfert population suggests the
existence of a causal link between the active nucleus and the presence of bursts
of star formation.
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DISCUSSION
EDELSON:

Your sample is both optically and infrared selected (only approx. 60% IRAS detections), so dusty objects
will be over-represented compared to a true optically selected sample. Also, you study generally nearby low
nuwlear luminosity AGNs because of your stringent IRAS limit. You find larger values of S12m/Slop than
other AGN samples because the ratio of nuclear/galaxy luminosity is unusually low. The relatively steep
60-100pm IRAS spectra seen are caused by a mixture of the steep spectrum emission from the underlying
galaxy mixing with the flat nuclear component. These is no evidence for sturbursts in most high luminosity
AGNs.

RODRIGUEZ ESPINOSA:
I think that the sample is really optically selected. It consists mainly of Markarian Seyfcrts, which by

definition are not dusty objects, and a few classical NGC Seyferts. Your question is nevertheless very relevant.
I agree that in very high luminosity objects it is difficult to find evidence of starbursts, but is it because they
are not there or because we do not see them? It may well be that you can see starbursta only in a certain
luminosity range, in the same way that it is difficult to observe the galaxy envelope in high redshift QSOs.

DEVEREUX:
What evidence do you have that the star formation is near the nucleus? Be wary when using IRAS colors

because they reflect the nucleus/disk contrast and so you need spatial resolution to separate the nucleus and
disk emission.

RODRIGUEZ ESPINOSA:
Presently, no high spatial resolution far-infrared data are available and hence the only information we

have is from optical, near and mid-infrared photometry and radio work for a small set of well known sources
(NGC 1068, NGC 7469...)

Concerning the far-infrared contributon of the galaxy disk we have shown that 'normal' galaxy disks
are n the average one order of magnitude less luminous than either Seyfert or stazburst galaxies.

BEGELMAN:
Based on the spectropolarimetry of Antonucci and Miller, one can make a strong case that NOC 1068

contains a normal type I Seyfert nucleus, which is obscured by a ring of gas which is so optically thick that it
may well be molecular. If Seyfert 2's differ from Seyfert l's in the presence of absence of a thick molecular
disk, one might expect starbursts to be associated preferentially with Seyfert 2's.

RODRIGUEZ ESPINOSA:
That is an interesting point, although I do not think that the difference between type I and type 2 Seyferts

is as simple as that.

DENNEFELD:
One should be careful in using the 'HIU region galaxies' from the VCV catalogue as a comparison sample

because it contains only the few objects which have at some time been considered as AGN and disregarded
later. They might well have some peculiarity (faint or hidden active nucleus, hotter gas, ...). The luminosity
or 0(60,100) histograms of 'normal' galaxies are much broader the fact that your histograms for HII region
type or active galaxies from the VCV catalog coincide might just be a selection effect

RODRIGUEZ ESPINOSA:
An important consideration that went into choosing the VCV 1H11 region galaxy sample is that their

redshifts are comparable to the redshifts of the optically selected Seyferts and therefore one avoids the
problems associated with beam size effects. You are right, however, in that one should be cautious when
using the VCV sample of HI! regions. I shall look into that....
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ABSTRACT. Observational diagnostics for the recognition of circumnuclear star
formation in Seyfert galaxies are described and illustrated. These methods
include: a) spatially resolved optical spectroscopy, which allows the
emission lines from HII regions to be separated from those originating in gas
ionized by the Seyfert nucleus, b) radio continuum mapping, where the "linear"
radio sources characteristic of the nuclear activity may be distinguished from
the "diffuse" morphology of multiple supernova remnants generated in a
starburst, c) infrared spectroscopic searches for emission features of dust,
which are seen in starbursts but not in Seyfert nuclei, and d) the shape of the
IRAS spectrum. These various diagnostics agree well as to the presence or
absence of ongoing star formation. The IRAS spectra of a significant fraction
of Seyferts are dominated by emission from dust heated by stars, not the
Seyfert nucleus itself, In these cases, the spectrum is curved, being steep
between 25 and 6 0a and flatter between 60 and 100ps. When the Seyfert nucleus
dominates, the 25-IOOMa spectrum is much flatter (a > -1). It is suggested
that the location of a Seyfert galaxy in the IRAS color-color diagram [a(60,25)
vs a(100,60)] reflects primarily the relative contributions of the active
nucleus and dust heated by stars (circumnuclear or disk) to the infrared
fluxes.

1 . INTRODUCTION

The topic of star formation in active galaxies is of interest for two main
reasons. First, it has been suggested that much of the far infrared emission
observed by IRAS from Seyfert galaxies may result from an extended, non-nuclear
component, perhaps dust heated by hot stars (e.g. Rodriguez-Espinosa, Rudy and
Jones 1986). Much of the continuing controversy about the origin of luminous
infrared emission focusses on the separation of nuclear and extended
components, and on the emission mechanism of the nuclear component itself
(thermal vs. non-thermal). Second, there are hints that the nuclear activity
seen in objects like Seyfert galaxies and quasars may somehow be connected with
enhanced star formation in the circumnuclear or galaxy-scale environment. No
clear view of this possible relation exists, but discussions favoring it have
fallen into one of two categories. In the first, the entire active nucleus
phenomenon is attributed to star formation and its consequences (stellar winds,
supernovae, supernova remnants, compact stellar remnants etc.). While few
would argue that all the properties of Seyfert type 1 galaxies and quasars can
be so explained, the idea that stars provide the ionizing radiation in Seyfert
2 galaxies has been widely discussed (e.g. Adams and Weedman 1975; Harwit and
Pacini 1975). Pronik (1973) suggested that a mixture of the central stars of
planetary nebulae and normal hot main sequence stars is the ionizing source,
while Terlevich and Melnick (1985) have recently argued that the presence of

ssive stars with effective temperatures of more than 100,000 K (extreme Wolf-
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Rayet stars) can result in emission line spectra which resemble Seyfert 2-s or
LINER's. Another, more speculative, suggestion is that starbursts may evolve
into Seyfert galaxies if the compact stellar remnants resulting from the former
settle into nuclear regions of radii - 1 pc, and then act as the accretors of a
"conventional" active nucleus (Weedman 1983). In this view, a single massive
black hole is not required, although the multiple accretors may mimic one in
terms of many observational manifestations. In the second category of models,
the active nucleus really does contain a "classical" supermassive black hole,
but the black hole activity is triggered by, or triggers, a surrounding
starburst. For example (see paper presented by C.A. Norman at this meeting),
the starburst may facilitate dissipation of the angular momentum of
interstellar gas, leading to enhanced accretion onto the black hole.
Alternatively, the impact of high velocity nuclear ejecta, such as emission
line clouds, winds or jets, on dense molecular gas could trigger a starburst.

As emphasised above, the properties of the putative nuclear starburst in
the first category of models must be very different from those of "normal" star
forming regions. Possible reasons include a high stellar and gaseous density
in the nucleus which may, for example, lead to overlapping stellar winds and
supernova remnants, and other unfamiliar phenomena. Yet in the outskirts of
such a starburst, there must surely be relatively normal HII regions.
Similarly, in the second category of models, when an evolutionary sequence from
starburst to black hole activity (or vice versa) occurs, careful observations
should reveal "composite" nuclei, unless the first form of activity completely
disappears before the second one begins. Thus both categories of models
predict an excess of circumnuclear star formation in comparison with non-active
galaxies of similar morphological type, luminosity, etc. The key test of all
of the above conjectures involves an observational check of this prediction.

In this paper, I should like to review a number of methods by which
intense circumnuclear star formation may be diagnosed in Seyfert galaxies. The
results of these different methods generally turn out to be in excellent
agreement. In particular, I shall emphasize how the high spatial resolutions
available at radio and optical wavelengths allow a clear separation of the
effects of the nuclear activity proper from star formation going on around it.

2. MANIFESTATIONS OF STAR FORMATION IN SEYFERT GALAXIES

2.1 Optical Emission Line Studies

The ideal method of investigating the presence of hot young stars is to
observe emission lines from their HII regions. A wide body of both low (e.g.
Osterbrock 1977; Koski 1978) and high (e.g. Beckman et al. 1981; Whittle 1985)
dispersion spectra exist on the nuclei of Seyfert galaxies. These data are
unsuitable for detection of circumnuclear starbursts, because emissior• from
the HII regions are usually swamped by the Seyfert nucleus. Although V* rn et
al. (1981) were able to deduce the presence of HII regions in the nuclei of the
Seyfert galaxies NGC 7496 and NGC 7582 by noting that Ho is narrower than
[OIIIJ]5007, spatially resolved spectra are usually needed. Separation of the
emission lines of the HII regions from those of gas ionized by the Seyfert
nucleus can then be achieved in two ways. First, the line ratios, as
determined through low dispersion optical spectra, are quite different in the
two types of nebulosity (e.g. Baldwin, Phillips and Terlevich 1981). Second,
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the HII regions generally lie in a rotating disk or flattened distribution
which is coplanar with the stellar disk further out, while the kinematics of
the Seyfert excited gas ("narrow line region") are dominated by radial (inflow
or outflow) motions (e.g. Heckman et al. 1981). In the following, I describe
examples of the separation of Seyfert and starburst excited gas with each of
these two methods.

2.1.1. bmission line Ratios. Recently, Baldwin, Wilson and Whittle (1986) have
performed an extensive study of NGC 1068 by means of long slit spectra at about
30 locations over the face of the galaxy. The resulting = 1500 spectra have
been used to study the kinematics and ionization structure of the gas. Some of
the results are illustrated in Fig. 1, which gives plots of ratios of emission
lines ([OIII]X5007/HP vs [OII]X3727/[OIII]•X5007; [NIIIX6584/Ha vs
[OIIX3727/[OIII]XX007; [OIII]X5007/U,8 vs [NII]X6584/Ha) which are useful for
diagnosing the ionization mechanism. Each plotted point represents the line
ratios at one location in the galaxy. The line ratios have been corrected for
reddening assuming an intrinsic HO/U ratio of 2.86 (Brocklehurst 1971) and the
reddening law of Whitford (1958). The regions of the diagrams occupied by
normal HII regions, power law ionized gas and LINER's are indicated by the
bands and oval shaped regions. As may be seen, the points range between the
region occupied by HII regions and that which is characteristic of power law
photoionized gas. Baldwin, Wilson and Whittle (1986) discuss the possibility
that some of the gas is shock ionized, but prefer the idea that we are
observing two components projected on top of each other. One gaseous component
is ionized by the Seyfert nucleus and the other by hot stars in the starburst
disk of NGC 1068; the exact location of a point in Fig. 1 then reflects the
relative contributions of the two components along any given line of sight.
There are other pieces of evidence supporting this view, including an early
stellar population in the low excitation regions, differences in velocity field
and line profiles between HO and [0IIIJX5007, and differences between the
spatial distributions of the gases emitting these two lines.

2.1.2. Emission Line Kinematics. A recent investigation (Wilson et al. 1986)
of the circumnuclear region of the type 1 Seyfert galaxy NGC 7469 illustrates
the different kinematics of the nuclear starburst and the high excitation
narrow line region. From long slit, high dispersion mapping of the emission
lines HP, [0III]XX4959, 5007, Hm and [NII]XX6548, 6584, we reached the
following conclusions:

a) In addition to the spatially unresolved broad line region, two blended
components of extended emission line gas are found. The first component is of
high excitation ([OIItJX5007/Hp >> 1, [NII]X6584/Ha - 1) and is presumably
photoionized by the Seyfert nucleus, while the second is of low excitation and
appears to arise in circumnuclear HII regions.

b) The high excitation component dominates the [01III lines, which are broad,
show strong, blueward-slanting profile asymmetries and have a velocity field
with a minimum near the nucleus. The kinematics of this component are thus
dominated by radial motions. The low excitation component, as seen in HM, HO
and [NII] outside the immediate vicinity of the nucleus, emits much narrower
lines and follows rotational motion in or parallel to the plane of the stellar
disk of the galaxy. The difference between the line profiles of HW and
[0IIII)5007 may be seen in Figs. 2a and b, which shows their distribution over
the circumnuclear region.

678



CIRCUMNUCLEAR STARBURSTS IN SEYFERT GALAXIES

NGC 7469 [OIII] X5007
I I I

65 t6 33E 15 8N SE E4 6E 15 16f IF

k 9gBE 16 4 SE 15 23A 14 2 2E 14 69E 15 34E 16

20E 16 23E6 9E 1 6 5 CIE 16 1 0E 16

6 OE 16 87E 15 25E 16

5 0 -5
Right Ascension (arc sec)

Figure 2a Prtofiles of [OIII];X5007 in NG 7469. Each profile is normaliz-ed
so that the difference between the maximum and minimum monochromatic fluxes
over the range of wavelengths plotted is the same physical height. The total
range of velocity plotted is 3400 km s-1. The nominal position of the nucleus

is indicated by the asterisk and the arc line shows the instrumental response.

6

•: 67W
(0 4L.4Lg



A. S. WILSON

NGC 7469 H,8

I II

18 9r761 27?E 16 4 1E 16 39E- 16 2 E 6 E

32E-16 12E-15 23E-15 34E-15 47E-15 54E-16

56E-16 18E-15 506 15 476-15 26E-15 12E 16

4 7 t-6 1OE- 15 29E-15 40E-15 3 4E'-15 6 3E- 16

24E-16 45E-16 6 4E-15 23E-16

0
0 73E-17 70E-11 30E- 16 38E- 16 19E-16
C"

5 IE-16 52E- 6

I 7E- 16

55E-17

-I0 586
58SE- 17

I I

5 0 -5
Right Ascension (arc sec)

- Profiles of HP in NGC 7469; see caption to Fig. 2a and Wilson et
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c) The observed excitation ratio [OIII]X5007/Hp decreases from 7.5 at the
nucleus to < I at the edge of the nebulosity, indicating an increasing relative
contribution from the HII regions towards larger radii.

d) The recession velocity of the lines at the nucleus tends to be below
systemic, as defined by the mean of the flat portions of the rotation curve or
the HI 21 cm single dish line profile. Both this blueshift and the nuclear
linewidth are higher for [0111] than for [NI1], and higher for [NIl] than for
Ha. This asymmetric location of the nucleus in the velocity curve and the
different nuclear linewidths of the different species reflect a mixture of the
high excitation, broad blueshifted component and the low excitation, narrow
rotating component, the relative contributions of each component varying from
line to line.

e) The total luminosity of hot itars has been estimated from the Balmer line
emission of the low excitation component, and may approach the luminosity of
the mid/far infrared emission of NGC 7469, as measured by IRAS. The spectral
shape of this infrared emission is typical of galaxies with nuclear HII regions
(see Section 2.4), and differs from most Seyferts, supporting the idea that it
represents emission from dust heated by the hot stars. In NGC 7469, taien, we
have a case in which the infrared luminosity of the starburst overwhelms the
infrared luminosity of the type 1 Seyfert nucleus.

Fig. 3 shows part of a long slit spectrum of Mark 315, another galaxy with
two components of extended emission line gas. The different structures of H•
and [OIII]XK4959, 5007 are clearly apparent. Other Seyferts known to have
composite circumnuclear spectra include NGC 1365 (Phillips et al. 1983a), NGC
7582 (Morris et al. 1985), and Mark 509 (Phillips et al. 1983b).

2.2 Radio Continuum Morphology

Ulvestad and Wilson (1984a, b) have mapped two samples of Seyfert galaxies
with the VIA at 6 and/or 20 cm. The spatially well resolved sources may be
classified as either "linear" (L) or "diffuse" (D). The L class sources, which
are in the majority, comprise doubles straddling the optical continuum nucleus,
triples or jet-like morphologies and are considered to be fuelled by the
nonthermal active nucleus in a low power version of the radio galaxy
phenomenon. These linear radio sources are morphologically associated with the
high ionization narrow line region (e.g. Wilson 1986; Whittle et al. 1986) and
are presumably unrelated to processes of star formation. The D class objects,
of which only a handful are known, exhibit a "blob-like" radio morphology which
appears not to be directly related to the nuclear activity itself. Figure 4
shows a comparison of isophotes in low excitation emission lines and radio
continuum radiation for four of these D class objects. Each pair of maps of a
given galaxy is reproduced to the same scale. The similarities in scale and
morphology of the thermal and synchrotron emitting gases are striking. In all
of these objects, the off-nuclear optical emission lines exhibit the two
component structure noted above - a low excitation, rotating disk with narrow
lines is seen superposed on a high excitation component in radial motion and
showing broad lines. The D class raaio sources are thus associated with the
starburst, presumably representing the integrated effects of multiple
supernovae and supernova remnants (e.g. Condon et al. 1982; Ulvestad 1982). It
is important to bear in mind that some of the D class sources may also contain
more compact radio emission which is fuelled by the Seyfert nucleus. The
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Figure 3 - Part of a long slit spectrum of Mark 315. The slit was oriented
east-west and displaced 2" south of the nucleus. The individual spectra shown
are separated by V165 along the slit and the spectrum which is closest to the
nucleus is indicated by the horizontal arrow on the left (from A.S. Wilson and
J.A. Baldwin, in preparation).

classic galaxy with both L and D class radio sources is NGC 1068, in which a
13" jet-like source is projected inside a starburst disk (Wilson and Ulvestad
1982, 1983; Wynn-Williams, Becklin and Scoville 1985). Also NGC 7469 and NGC
7582 show unresolved radio sources which are coincident with the optical
nucleus and are probably associated with the nuclear activity proper.

2.3. Dust Emission Features

Aitken and Roche (1985) have pointed out the existence of prominent
emission features due to gas and dust in the 8-13 pm spectra of starburst
nuclei and the general lack of these features in the nuclei of active
galaxies. It is noteworthy, however, that several of the Seyferts deduced
above to possess circumnuclear starbursts do show dust emission features.
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Figure 4 - Seyfert galaxies with circumnuclear starbursts. The left column
shows the continuum subtracted isophotes of either HP, Ha or Ha + [NIIJXX6548,
6584. On the right is given contours of nonthermal radio emission at either 6
or 20 cm. Each pair of diagrams of a given galaxy is drawn to the same
scale. A close morphological similarity between the two types of emission is
evident. NGC 1068 (Seyfert type 2) - No isophotes from Baldwin, Wilson and
Whittle (1986), 20 cm isophotes from Wynn-Williams, Becklin and Scoville
(1985); NGC 7469 (Seyfert type 1) - Ha + [NII] isophotes from Heckman et al.
(1986), 6 cm isophotes from Ulvestad, Wilson and Sramek (1981); Mark 315
(Seyfert type 1) - Ha + [NII] isophotes from MacKenty (1986), 20 cm isophotes
from Ulvestad, Wilson and S-amek (1981); NGC 7582 (Seyfert type 2) - Ha and 6
cm isophotes from Morris er il. (1985). These references should be consulted
for the contour levels.
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These galaxies include NGC 1365 (Aitken and Roche 1985), NGC 7469 (Aitken,
Roche and Phillips 1981; Rudy et al. 1982; Cutri et al. 1984) and NGC 7582
(Roche et al. 1984). In at least NGC 1365 and NGC 7469, the dust emission
features are spatially extended on the scale of the starburst, as determined
from the distributions of radio continuum and low excitation optical emission
lines. These dust emission features then clearly result from dust heated by
hot stars, not from the active nucleus.

2.4. Far Infrared Spectra

Miley, Neugebauer and Soifer (1985) have investigated the far infrared
(IRAS) colors of Seyferts by plotting the spectral index between 60 and 25tim
against that between 100 and 60pm (Fig. 5a; spectral index a defined by
S cc Va). They find that, although Seyfert galaxies scatter widely in this
plot, they have spectra which are much flatter (bluer), particularly between 60
and 25pm, than those of non-active spirals. Different species of emission line
galaxy are found to have different spectral characteristics. Seyfert 1
galaxies are distributed widely in Fig. 5a, but the lower right (steeper
spectrum between 60 and 25%m than between 100 and 6 0 pm is populated mainly by
objects with Seyfert 2 and nuclear HII region spectra. In histograms of the
spectral curvature parameter, a(60,25) - a(100,60), the Seyfert I's distribute
evenly about zero, while the Seyfert 2 distribution shows a preference for
negative values, and the nuclear HII region spectra are even more curved (see
Fig. 5a). Miley, Neugebauer and Soifer (1985) discussed these trends in terms
of a mixture of three components - (i) a cold (- 30K) disk component having
spectral indices similar to those of "normal" spirals, (ii) a nonthermal
nuclear component with a power law spectrum, and (iii) a mid infrared nuclear
component which is probably thermal in origin and is located within the central
hundred parsecs of the nucleus. If this last component does represent heated
dust, the heating source could be either the nonthermal nuclear continuum or
hot young stars. The segregation, albeit with a good deal of overlap, between
the Seyfert 2's and the nuclear HII regions, implies a different distribution
of dust temperatures between these two classes. Examination of Fig. 5a
suggests the infrared spectra of nuclear HII regions lie within the zone
a(60,25) < -1.5 and a(100,60) > -1.1. It is then of interest to ask whether
the Seyfert galaxies in or near this zone also possess circumnuclear HII
regions with hot star-heated dust contributing to or
dominating the infrared emission.

Figure 5b shows a similar diagram in which only Seyfert galaxies known to
possess off-nuclear HII regions are plotted. It should be emphasized that no
attempt was made to select any particular spatial scale; the HII regions may be
circumnuclear or in the galaxy disk. Also the study has not been made to any
particular line flux level, nor were the galaxies selected in any well defined
manner. The points in Fig. 5b show a considerable amount of scatter which
presumably reflects differing ratios of nonthermally generated nuclear
radiation (synchrotron radiation or dust heated by it) to that from dust heated
by hot stars, either in the disk of the galaxy or in a circumnuclear
starburst. It seems likely that the exact location of a Seyfert galaxy in this
diagram is simply a function of the relative strengths of these two processes,
the points lying along a "mixture band" joining the Seyfert nucleus
and star-heated dust regimes. High spatial resolution infrared mapping is
needed to confirm this hypothesis. The diagram confirms the dominance of a
nuclear starburst in generating the far infrared emission of such objects as
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Figure 5 - Plots of the spectral index between 60 and 25g.m [a(60,25)] vs. that
between 100 and 601.m [az(10060)J for Seyfert galaxies and nuclear 1111 regions
following Miley, Neugebauer and Soifer (1985). a) Seyfert galaxies and
nuclear HII regions listed in "Cataloged Galaxies and Quasars Observed in the
hAS Survey (1985)." b) Seyfert galaxies which are known to have
circumnuclear HII regions. The references for the existence of HII regions are
given in Section 2.1, when published. Unpublished long slit spectroscopy of HP
and [0IIIIXX4959, 5007 by Wilson and Baldwin has also been used. c) Seyfert
galaxies with known radio structural class. The symbol L refers to "linear"
structure, the symbol D to "diffuse" structure and the symbol L+D is used for
galaxies with both linear and diffuse components. Most structures are from our
series of Ap. J. papers on radio properties of Seyfert galaxies (Ulvestad and
Wilson 1984b being the most recent), plus Ulvestad and Wilson (1986, for HCG 8-
11-11), Morris et al. (1985, for NGC 5643), Sandqvist, Jorsater and Lindblad
(1982, for NGC 1365) and Phillips, Wilson and Baldwin (unpublished, for NGC
5728).
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NGC 7469 (a type I Seyfert) and NGC 7582 (a type 2).

In Figure 5c I plot the far infrared color-color diagram for Seyferts with
established radio morphology. By and large, the infrared spectral properties
correlate well with the radio morphology. The objects with both a(60,25)
and a(100,60) greater than -1 tend to contain linear radio sources and their
infrared emission seems to be dominated by nuclear activity. Several of them
(e.g. Mkn 3, 78) have spatially very extended optical emission lines of high
excitation, reflecting ionization by a central nonthermal source. If the far
infrared emission were shown to be spatially extended in these objects, the
most likely origin would involve dust coexistent with this extended narrow line
region and heated directly or indirectly by the central nonthermal source.
Alternatively, very compact infrared emission would likely be of synchrotron
origin. Only 1 out of the 9 objects with a(60,25) > -1 - NGC 1068 - shows
evidence for a starburst. As already noted, the radio emission of NGC 1068
exhibits both a "linear" jet-like source and a "diffuse" galaxy-wide disk
component.

In contrast to the flat infrared spectra of the "linear" sources, 8 out of
the 10 galaxies with a(60,25) < -1.4 show a "diffuse" radio component.
Although 4 out of these 10 contain "linear" radio sources, I conclude that
their infrared emission is likely radiated by dust heated by the hot stars, and
is not directly related to the nonthermal active nucleus. A Wilcoxon rank-sum
test indicates that a(60,25) is larger (60-25pm spectrum flatter) for L than
for D type sources at the 99.8% confidence level, if the L+D's are included
with the D's, or at the 96% confidence level, if che L+D's are included with
the L's. The trend for the L's to have flatter 100-60gm spectra than the D's
is much less significant. This infrared spectral distinction between L and D
class objects is not related in a simple way to Seyfert type; both radio
morphology classes contain both types 1 and 2.

The LRAS detectors were larger at longer wavelengths, with typical sizes
of 0O76x4-: at 12 and 25pm, 1'5x4'75 at 60pM and 3x5 at 100pm. If the
significant Infrared emission is spread over scales larger than the smallest
aperture, the spectra obtained will be too steep because of the extra emission
in the long wavelength aperture. L is, therefore, important to check that the
distribution of points in Fig. 5c is not strongly influenced by this effect.
The mean redshift for the flat spectrum group (a(60,25) > -1.0) in Fig. 5c is
6695 + 3925 km a-1 (population standard deviation, not standard deviation of
mean) while that for the steep spectrum group (a(60,25) < -1.4) is 4134 + 4072
kl s-1. Thus the difference in mean distances is such that the nearer objects
have steeper spectra, in the expected sense for the resolution effect. The
mean apparent spectral index for the flat spectrum group is a(60,25) - -0.60 +
0.20 and that for the steep spectrum group a(60,25) - -1.95 + 0.32, with the-
quoted errors again being the population standard deviation. Attribution of
this difference of mean indices completely to a resolution effect would

require = 68% of the observed flux of the steep spectrum objects at 604, to
originate from scales intermediate between the 25 and 60m apertures,
if the flat spectrum objects are spatially unresolved at both wavelengths. If
the flat spectrum objects are also partially resolved at 25gm, this percentage
becomes larger. While we have little direct information on the true spatial
extent at these wavelengths, the mean difference 4n distances of the two groups
is probably not large enough to ascribe their d -nt infrared colors to
resolution effects.
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3. CONCLUSIONS

I have shown that star formation - either circumnuclear or in the galaxy
disk - in Seyfert galaxies can be diagnosed through a number of observations.
First, spatially resolved optical spectroscopic studies can distinguish the
narrow, low excitation emission lines of HII regions from the broad, high
excitation emission of the Seyfert nucleus. Either the line ratios or the
kinematic properties of the gas may be used to separate the two components, the
latter method relying on the result that the HII regions generally lie in a
rotating, flattened system, while the gas ionized by the Seyfert nucleus
follows radial motion (inflow or outflow). Second, an extended, "diffuse" or
"blob-like," nonthermal radio source is observed in a minority of Seyfert
galaxies and probably represents the integrated radiation of multiple supernova
remnants generated by the starburst. This morphology may be contrasted with
the "linear" (double, triple or jet-like) radio structure associated with the
nuclear activity proper. Third, regions of star formation generally exhibit
emission features of gas and dust in the 8-13pm spectral range, while these
features tend to be absent in Seyfert nuclei (Aitken and Roche 1985). Seyfert
galaxies which do show these features contain circumnuclear starbursts.
Fourth, the IRAS band colors of Seyfert galaxies seem to correlate with the
presence or absence of star formation. Seyferts with prominent disk or
circumnuclear star formation show steep spectra between 25 and
60om (W(60,25) < -1.4) and flatter spectra between 60 and 100pm. The far
infrared emission of Seyferts without significant star formation is dominated
by the active nucleus and may represent direct incoherent synchrotron radiation
or dust heated by it. Such galaxies show flat spectra (a > -1) over the 25-60-
1001a band. It seems likely that the far infrared colors of any given Seyfert
galaxy are primarily a function of the relative strengths of the hot-star and
nuclear-powered components.

It is notable that < 20% of well resolved, circumnuclear radio sources in
Seyfert galaxies are domTnated by the "diffuse" component. This result
provides a crude limit on the occurrence of very intense circumnuclear star
formation. A similar statement cannot be made for the disk component, because
our radio measurements were made mainly in the -A' configuration of the VLA and
are relatively insensitive to ver, cý ended radio emission. Our result is,
however, entirely consistent witl- -ý conclusion of Roche and Aitken (private
communication) who find that < 10X Seyferts show dust emission features.

In order to assess whether star formation is more prevalent in Seyfert
galaxies than in otherwise similar, non-active galaxies, we need to construct a
luminosity function of some measure of the star formation in both Seyferts and
a comparison sample. Such a luminosity function was shown at this meeting by
Rieke, who assumed that excess infrared emission seen by the low resolution
IRAS detectors, in comparison with ground-based photometry through a small
aperture, was indicative of star formation. If it is true that the effects of
the active nucleus are entirely confined within the few arc sec apertures
typical of ground-based infrared observations, Rieke's luminosity function
indicates an excess of star formation in Seyferts over normal spirals. This
conclusion should be checked using some of the other indicators of star
formation that I have described.
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DISCUSSION

EDELSON:
Two comments:
1) The Miley, Neugebsuer and Soifer result you quote, that Seyfen Is, Seyfert 2s, and HH regions lie

an different regions of color-color diagrams, becomes even clearer when optically selected AGNs are used.
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There is a strong tendency for objects along the sequence quasar-SY1-SY2-HII regions to have increasingly
steep slopes, presumably due to a larger ratio of thermalAion-thermal luminosity.

2) Our studies of optically selected Seyferts show a tight correlation (at the 99.99% confidence level)
between Lm and Lam for Seyfert Is, and a weaker one (99.95% confidence level) for Seyfert 2s. These
results confirm the hypothesis that the far-infrared emission from most quasars and low-reddening Seyfert Is
is primarily non-thermal in origin, while that from Seyfert 2s and other AGNs with high dust indicators is
primarily thermal.

WILSON:
1) The Miley, Neugebauer and Soifer result is for optically selected AGN's.
2) We still don't have a convincing explanation for this well known correlation in Seyfert galaxies. It is

very dangerous to assume that the 60 and 100pm IRAS observations of Seyferts are dominated by the nucleus.
As I have tried to show, the far-infrared emission from circum-nuclear or extra-nuclear star forming regions
overwhelms the emission from the nucleus in a significant fraction of Seyfert galaxies. The IRAS flux can
be either be nuclear dominated or disk/starburst dominated, the exact ratio varying from galaxy to galaxy.
This effect must first be sorted out before the IRAS data can be used to study the emission mechanism of the
nucleus.

CUTRI:
Based on your kinematical studies, can you determine whether the extended HII regions are physically

distinct from the narrow-line emitting region, or could there be a transition region which might imply that the
two share common material?

WILSON:
Generally speaking, we can account for the kinematic and ionization properties in terms of a mixture

of a Seyfert-like component and a normal HII region component, the relative proportions of the mix varying
from place to place. It's very difficult to pick out gas which has a true intermediate spectrum. There is,
however, a hint that the sources of gas in the two components may be related since the high-excitation and
low-excitation morphologies are sometimes similar.

SARGENT:
There is a further diagnostic for circum-nuclear starbursts in Seyferts. High resolution (6") CO observa-

tions of NGC7469 made with the Owens Valley Millimeter Wave Interferometer show that the molecular gas
is offset from the nucleus and is more or less coincident with the narrow emission line region.

WILSON:
High-resolution interferometric CO maps will, indeed, be a most valuable technique for identifying

circum-nuclear starbursts. I look forward to seeing more of these fascinating results and their relation to the
other diagnostics I mentioned.

BEGELMAN:
In NGC 1068, there is a compact thermal IR source which probably results from reradiation of the non-

thermal continuum, in addition to a larger component, associated with the starburst. What are the prosp-cts
for distinguishing between these two components in other objects?

WILSON:
Quite good, I think. In NGC 1068, the compact (arc sec) nuclear component is the hotter one and the

extended, cooler component is associated with the 'starburst' disk (Teleso et al. 1984, ApJ., 282, 427).
Comparison of ground based measurements at 10pm and 20pm made with a small aperture with the large
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aperture IRAS measurements at 12/Am and 25/pm can separate nuclear and disk components in other galaxies.
I have shown how a disk or circum-nuclear 'starburst' component of the IRAS fluxes in Seyfert galaxies can
be identified via optical line studies, radio continuum mapping, infrared spectroscopy near 1Opm and the IRAS
spectral shape itself. All of these methods can be used to separate nuclear from non-nuclear components in
active galaxies.
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ABSTRACT. IRAS Additional Observations have been used to obtain a sample of
point sources at much fainter flux levels than hitherto available through the
IRAS Point Source Catalog (hereafter PSC). This sample is being used to compile
an incomplete but representative catalog of faint IRAS candidate AGN's and to
study the evolution of the infrared bright galaxies. Ground based follow up
observations (optical spectroscopy) are mainly hampered by identification
confusion.

1. INTRODUCTION

We have previously shown that IRAS colours are a remarkably efficient
predictor of nuclear Seyfert activity (de Grijp et al. 1985). By investigating
the properties of sources in the IRAS Point Source Catalog (PSC) which have
similar "warm" IR spectra to those of known AGN's, we compiled a catalog of 563
IRAS AGN candidates. Optical spectroscopy has now been carried out on several
hundred of these objects, of which 69% have Seyfert spectra, most of them
previously unknown.

It is clearly of great cosmological interest to extend this study to lower
flux levels. We have begun to do this by examining serendipitous sources In the
IRAS Additional Observations (AOs). These AOs reach sensitivities of between -5
and -15 deeper than the PSC. The median redshift of 0.03, and highest of 0.9
obtained for the "strong" IR Seyferts from the PSC, extrapolate to redshifts of
0.12 and 2.0 respectively for intrinsically similar objects observed to be a
factor 15 fainter. It is hoped that this will bring us into realms where
cosmological evolution is important.

2. AO-GRIDS AND DATA REDUCTION

To extend our survey to weaker sources we considered all AO observations
carried out in the "DPS" observational mode. Each of these observations was made
using a raster scan resulting in a map of a region typically 0.5 by 1.5 degrees
around an object for which deep IRAS observations were deemed desirable. In
addition to the source under study, each of these fields usually contained as
"bonus" a few serendipitous sources. It is these sources in which we are
interested here.

Many fields were observed more than once; overlapping grids were added to

Carol J. Lopsdakl Pers$on (Editor)
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obtain maximum signal/noise. Up to 11 grids of the same field were added; at
this level the maps started to become confusion limited. The standard IRAS
source extraction program (which was originally derived from the Leiden-
Westerbork image processing system) was used on the IBM 3700 computer at Leiden
to extract point-source data from the 4 bands and a band merging algorithm
developed by D. Gregorich was used to compile a list of sources observed in at
least 2 of the 3 longest wavelength IRAS bands (25, 60 and 100 microns).These
longer wavelengths are most sensitive to galaxies.

Data covering 1040 fields were considered in this study. These fields were
distributed throughout the sky and comprised all available data except for
fields at low galactic latitude (Ibl<200) where contamination by galactic
sources is significant. The outer 2 arcminutes of each field was omitted from
consideration because of edge effects. To minimize problems with cirrus, grids
containing more than 20 sources at 100 microns were ignored.

All sources that passed the above selection criteria were flux-calibrated
as described by Young et al. (1986) and manually checked for confusion and
reliability; cases where the source extraction algorithm was confused by nearby
sources or cirrus were omitted. Figure 2c shows a colour-colour distribution for
the 900 resultant sources detected in all 3 bands.

3. COMPARISON OF PSC AND AO SOURCES

Whereas the PSC encompasses -95% of the sky above 200 galactic
latitude (-27000 square degrees), the AO grids have a total extent of -800
square degrees. However, because the AO grids are on average -10 times deeper
than the PSC (fig. 1), both datasets include a comparable volume of space.

Fig 1: Noise statistics of AO grids
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Figure 1: Each AO grid has different noise levels and size. This figure gives an
overview of the total area covered at different noise levels. The
lowest noise figures are reached for grids that are averages of up to
11 originals grids.

The colour-colour distribution (fig. 2a and 2c) of PSC and AO sources is
virtually identical (see also next section); the major difference between them
is an excess at a(25,60)--1, a (60,100)- -3. These very cold sources are
probably due to cirrus.
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F1g 2: Colour - colour distribution of sources
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Figure 2: Source density distributions in the 25 - 60 - 100 micron colour-colour
diagram. This figure shows that AGN's have flatter spectra than normal
galaxies, and that faint source counts are similar to counts for
bright sources. A contour representation of binned data was chosen
rather than a scatter diagram to assist in a quantitative analysis of
sourca counts. Tht source density units are sources per square degree
per unit colour bin; the spectral index a is defined as
S a v3. The counts in f~g. 2c are weighted with a factor (flux limit
P.S.C./Flux limit AO)-'*"; so that if the counts are from a non-
evolving population, they should be the same. Furthermore, the source
counts are corrected to a uniform sensitivity at 60 microns; the other
bands do not limit the sensitivity in this diagram.
a - Point Source Catalog sources above Ibl-20 degrees; stars are

concentrated at a(25,60)-2.0, a(60,100)-2.0 (Rayleigh-Jeans
limit); galaxies cluster around a(25,60)--2.5, a(60,100)--1.5.
The contour levels are linear increments of 0.02.

b - Point Source Catalog sources that were identified with AGN's
(Veron-Cetty & Veron, 1985). Note that they extend to much flatter
spectra than normal galaxies. Contour levels are linear increments
of 0.001.

c - AO sources. The similarity with fig. 2a is obvious; differences
are a number of stars with IR excess (probably due to mass loss),
and an excess of very cold sources, which is probably due to
cirrus. Contour levels are as in fig. 2a.

The galaxy counts in f N 2a and 2c are consistent with a non-evolving
population with N

4. SOURCE COUNTS; EVOLUTION

A detailed examination of fig. 2 can be used to assess the amount of
evolution as revealed in the source counts. As shall be discussed In the next
section, redshifts for most of the sources under consideration are so low that
K-corrections are still unimportant. Therefore it is possible to directly
compare figures 2a and 2c: a spot in the colour-colour diagrams refers to sources
with the same intrinsic spectral shape, but at different flux levels. Overlaying
these figures reveals no significant differences between them other than an
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excess of very cold AO sources discussed in section 3. This comparison is not
meaningful for stars, of course, since at the galactic latitudes concerned
distant stars are not as numerous.

As a whole these source counts do not show evidence of evolution. In the
next section we will investigate the redshifts probed, and thus the level up to
which evolution does not seem to play an important role.

5. OPTICAL FOLLOWUP

Our original AGN detection criterion implemented on the PSC was based on
the spectral indices between 25 and 60 microns of -1.5<a(25,60)<0.0 (de Grijp
and'kiley 1986). From the AOs we have compiled a source list of more than 100
sources which have the same colours and we are simultaneously carrying out a
program of follow up optical spectroscopy.

Spectra for a number of the discussed sources have been obtained at the
European Southern Observatory (3.6 m telescope + EFOSC) and at Roque de los
Muchachos Observatory (2.5-m Isaac Newton Telescope + faint-object
spectrograph).

Fig 3: Spectrum of Seyfert I galaxy IRAS0622-645, ESO 3.6M + EFOSC
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Figure 3: Spectrum of a previously unknown Seyfert 1 galaxy obtained at ESO.
This elliptical galaxy was iden.ified by taking a slitless spectrogram
for a 2 x 3 arcmin field around the IRAS position. This emission line
object was less than 20" from the IRAS position.
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Uncertainties in the IRAS positions have so far proved to be the major
difficulty in identifying optical counterparts. Since experience with the PSC
showed that 90% of all objects with -1.5<a(25,60)<0.0 are emission-line objects,
this can in principle be used as a secondary identification criterion. Slitless
spectroscopy with EFOSC proved to be a boon in this respect.

Although the sample observed is by no means statistically complete, the
redshifts found are on average 3 times higher than for objects in the PSC, and
AGNs cluster in the same part of the colour-colour diagram. As 20% of them have
redshifts above z-0.2, careful selection of the sources in the deepest grids may
yield a luminosity function for Seyferts at redshifts of -0.3. Also a number of
sources at redshifts of 1 to 2 can be expected.

We conclude that although uncertainties in the IRAS positions is a major
limitation in identifying optical counterparts, high redshift objects obtained
from the AO data may prove to be important for investigating cosmological
evolution of AGNs.
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8. DISCUSSION

MALKAN: To find a reasonable number of AGN's you adopt quite restrictive IRAS
colour criteria. Our work on an unbiased sample of Seyfert galaxies shows that
you exclude about 80% of all AGN's. How, then, is it possible for you to
construct a meaningful AGN luminosity function?

DE GRIJP:You are correct that we can only construct a luminosity function for
AONs whose IR spectra are consistent with our colour-criteria. This is about 70%
of all Seyfert-like AGNs. Comparison with optical/UJ-selected samples of AGN's
(Neugebauer et al. 1984, Miley et al. 1985) shows that we miss 25-30%, mainly at
the steep spectrum side of the adopted colour range. Presumably these steep
spectrum AGN's are dominated by cold disk emission, in other words their nuclei
are relatively faint. So we expect that a luminosity function constructed on the
basis of our colour criterion might be underestimated at the low luminosity end,
but essentially complete at high luminosities.

WINDHORST: You mentioned in your talk that your AO source counts do not support
(cosmological) evolution. Hacking yesterday claimed from somewhat deeper 60
micron counts evidence for evolution. Do your and his counts agree in amplitude
and slope?

DE GRIJP: I have not yet been able to compare Hacking's figures with mine in
detail. From what I understood about his talk, it is not the source counts as
such that are high, but the prediction of the number of faint sources that is
low. This is because for his model Hacking used a luminosity function of Rowan
Robinson that is low by a factor of 2 (Weedman, private communication) as
compared to more recent results. (Editor's note: Hacking in fact used the
local luminosity function of Soifer et al. (these proceedings)).

WINDHORST: What fraction of your 60 micron galaxies is at cosmological distances
(z>0.1)? Namely, if this fraction is considerable, even a Euclidean slope of
-1.5 would be indicative of a non-uniform source distribution in a relativistic
universe.

DE GRIJP: Some 20% have redshifts over 0.2, and a (small) number should have
redshifts over 1.0 (based on extrapolation from the Point Source Catalog). So
although there is a fraction of sources at high redshifts, I don't think that
source counts alone will be enough to make a hard claim of evolution because of
the low numbers involved.
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SPECTROPHOTOMETRY OF BRACKETT LINES IN VERY LUMINOUS IRAS GALAXIES

D. L. DePoy
University of Hawaii, Institute for Astronomy

Honolulu, Hawaii 96822 USA

ABSTRACT. Observation of the Brackett-a and Brackett-y hydrogen recombination
lines have been made in a sample of galaxies chosen from the IRAS catalog to
have high luminosities at infrared wavelengths. Most have strong Brackett line
emission indicating large numbers of high mass stars; the formation of these
stars may hence be the underlying source for the galaxies' luminosities.
However, there are at least two exceptions that may not be explained in this
manner: NGC 6240 and Arp 220. Additional evidence indicates that each of these
exceptions may be more closely related to Seyfert-type galaxies or other active
galactic nuclei.

INTRODUCTION

IRAS has shown that there are many galaxies that have high luminosities at
wavelengths around 80 Pm. This luminosity can be extremely high, sometimes
greater than 1012 Le, which is similar to that of Seyfert galaxies and other
active galactic nuclei (AGN).

The cause of this luminosity is subject to debate. One possibility is that
very intense episodes of star formation are producing large amounts of ultra-
violet radiation from high-mass stars that subsequently is absorbed and reradi-
ated at longer wavelengths by dust associated with the star formation sites
(Rieke et al. 1985; Joseph et al. 1985). Another is that an AGN underlies the
galaxy and whatever powers an AGN is powering the infrared emission (see DePoy,
Becklin, and Wynn-Williams 1986). Other causes have been postulated (e.g.,
Harwit in these proceedings).

If high-mass stars are the source of the luminosity, then observations
similar to those made in galactic star formation regions should reveal their
presence. These can include observations from X-ray to radio wavelengths.
However, severe limitations hamper many techniques. For example, X-ray observa-
tions are curtailed by the lack of a satellite, radio studies are complicated
by nonthermal processes, and submillimeter data are limited by beam sizes that
require stringent assumptions about filling factors. Observations of hydrogen
recombination lines are useful in quantitatively measuring the number of hydro-
gen ionizing photons, but optical lines are obscured by dust and, until
recently, infrared lines have been difficult to detect.

Advances in infrared instrumentation have been made, however, that allow
the infrared lines to be more easily detected. The Bry (n - 7 to 4) and the Bra
(n - 5 to 4) lines offer the best observational possibilities because both are
situated in unobscured portions of the atmosphere and, especially Bra, are at
wavelengths long enough to be only slightly affected by dust extinction.

Carol J. Lonsdale Persson (Editor)
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Presented here are the results of a study of Bra and BrY line strengths in
a number of galaxies specifically chosen to have high luminosities in the
infrared.

SAMPLE AND OBSERVATIONS

The galaxy sample was chosen from the IRAS Point Source Catalog (IRAS
Explanatory Supplement 1985). The objects from the catalog had to have been
detected in the 12 Ps and 25 Pm bands and have the sum of the fluxes in the
60 Pm and 100 Pm hands greater than 35 Jy. This limit was chosen so that if the
object had a ratio of 100 om plus 60 pm flux to Brackett line strength similar
to that found In 182 and NGC 253, it would be possible to detect with a signal-
to-noise ratio >5 in a 1 hr integration. Each object also had to be an opti-
cally cataloged galaxy with a redshLft greater than 2000 km s-1 . Finally,
the declination limits of the sample were -40* to +60.

There were 25 galaxies that met the above criteria. They range in lumi-
nosity from 5 x 1010 L, to 2 1012 L9. Four of the sample galaxies have been
detected in one or both of the Brackett lines previous to this study: NGC 1614
(Aitken, Roche, and Phillips 1981), NGC 3690 (Fischer et al. 1983), Arp 220
(Rieke et al. 1985), and NGC 6240 (DePoy, Becklin, and Wynn-Williams 1986;
Rieke et al. 1985).

All of the observations have been made on the United Kingdom Infrared
Telescope (UKIRT) with a seven-element cooled grating spectrometer (CGSII). A
633 lines mm-I grating was used that gave a resolution of about -550 km s-1
around Bra and -1200 km s-1 around Bry." The 5.5" beam was always centered on
the peak of each galaxies' 2 lim continuum.

RESULTS

The data on 15 galaxies were collected during two observing runs (January
and April 1986). Of the 15, 13 were detected in the Bra line and 7 in Bry. A
run in September 1986 is planned to complete the sample.

A convenient measure of the amount of star formation in a galaxy is the
"Infrared Excess" (IRX), defined as

(Lbol/LLya) - 1,

where Lbol is the bolometric luminosity of the source and LLya is the luminos-
ity of the Lya line (Jennings 1975). The bolometric luminosity of a galaxy can
be estimated from the IRAS data ('IRAS Explanatory Supplement 1985) and the
luminosity of the Lya line from an extinction corrected hydrogen line strength
and recombination theory (see Wynn-Williams 1984).

In H II regions the IRX is typically 5-10 (Jennings 1975); in starburst
galaxies such as M82 and NGC 253 the IRX is slightly higher, closer to 20 or 30
(Simon et al. 1979 and Rieke et al. 1980, respectively). In AGN, however, the
IRX is usually much higher, partly because for a given amount of luminosity the
much flatter UV spectrum of an AGN produces far fewer photons near the ionizat-
ion energy of hydrogen (see Cutri, Rieke, and Lebofsky 1984).
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Figure 1. The infrared excess (IRX) vs. the bolometric luminosity of various
objects and the sample galaxies. X's are from the literature, closed circles
are program galaxies with both Bra and Bry measured (and hence with extinction
derived), and open circles are program galaxies with only the Bra measured.

Figure 1 shows the IRX of the program galaxies versus their bolometric
luminosities. Also shown are the positions of some other galaxies whose
Brackett lines have been reported in the literature (Beck, Beckwith, and Gatley
1984; Cutri, Rieke, and Lebofsky 1984; Hall et al. 1981; Phillips et al. 1984;
Rieke et al. 1980).

Typically, the program galaxies have IRXs that are similar to or slightly
higher than the starburst galaxies. In general, the galaxies with the IRXs
that are slightly larger than the starburst galaxies are those with poorly
determined extinctions or that are at the low redshift end of the sample. This
may imply that the IRX in those cases has been overestimated, since either
larger extinction or extended emission would give a larger intrinsic line
strength and, hence, a lower IRX. Therefore, it appears that most of the pro-
gram galaxies may be similar to starburst galaxies in their ratio of Lyman-a
luminosity to bolometri luminosity. In any case, the implied hydrogen ionizing
photon flux indicates a large number of high-mass stars; therefore the lum-
inosities of the program galaxies may arise from the formation of these stars.
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Figure 2. Br=X line data on Arp 220. The dots and connecting line are the data
smoothed with a three-point running mean; the dashed line is a X2 fit of a
Gaussian and a linear continuum to the data. The Gaussian fit has a FWH of"~1300 km -1.

There are, however, two notable exceptions, NGC 6240 and Arp 220. A thor-
ough discussion of the data on NGC 6240 can be found in DePoy, Becklin, and
Wynn-Willilams (1986), in which it is argued that NGC 6240 has many properties
similar to AGN. Arp 220, in addition to its very high IRX, has at least two
other pieces of information that indicate that it is likely to be an AGN.
First, the detected Br• in this source is very broad, about 1300 km s-1 F
(see Figure 2). Second, the 10 and 20 i.n emission is unresolved spatially (see
Becklin's paper in these proceedings). Therefore, Arp 220 may harbor an AGN.

CONCLUSIONS

A sample of 14 galaxies luminous in the IRAS bands have been observed for
Bra and Bry emission. The results indicate that, in general, the program galax-
ies have luminosities that are probably explained by the formation of high-mass
stars. Two of the galaxies, however, do not fit the pattern. They urny be more
easily understood as AGN.
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EVIDENCE FOR EXTENDED IR EMISSION IN NGC2798 AND NGC6240
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ABSTRACT

Extended emission at 10 and 20 pm can be used to distinguish starbursts from
"monsters as the underlying energy source driving the luminous infrared emission in the
central regions of galaxies. We have investigated the spatial extent of the mid-infrared
emission in the interacting galaxy NCG2798 and the merger NGC6240. The 10 and 20 pm
profiles of the IR source in NGC2798 are significantly wider than beam profiles measured
on a standard star, supporting a starburst interpretation of its IR luminosity. For NGC6240
there is marginal evidence for an extended 10 pm source, suggesting that a significant
fraction of its IR luminosity could be produced by a burst of star formation.

I. INTRODUCTION

One of the outstanding questions in extra-galactic IR astronomy is the nature of the
underlying energy source powering the large IR luminosities found for many interacting
galaxies.

Evidence is emerging that bursts of star formation of exceptional intensity compared
to normal spirals and canonical "starburst" galaxies are responsible for the IR activity in
interacting galaxies (cf. Joseph et al. 1984, Lonsdale et al. 1984, Cutri and McAlary 1985).
Moreover, the subset of interacting galaxies in which a merger of the two participating
galaxies has occurred are among the most luminous IR galaxies known (Joseph and Wright
1985) and it appears that the merger has resulted in a "super-starburst!. However, this
interpretation is open to debate because the interaction may provide the material to feed an
accretion disk around a collapsed object in the nucleus. This "starbursts and monsters"
debate (cf. Heckman et al. 1983) is especially controversial for the ultra-luminous merging
galaxies such as NGC6240 and Arp220, although it applies to all the IRAS galaxies to some
degree.

Potentially one of strongest arguments in favour of a starburst interpretation is
spatially extended mid-IR emission. For a single central source heating a dust cloud, the
dust can be heated sufficiently to radiate at 10 pum only if it is within a few pc of the
source. So, measuring the extent of the IR emission discriminates between a compact
source heating a dust cloud and luminosity sources distributed over several hundred pc, the
latter being expected if the underlying energy source is a burst of star formation.

H. OBSERVATIONS

Observations of the interacting galaxy NGC2798, for which LIR - 6 x 1010 Le, and
the merger NGC6240 which has LIR - 1012 Le, were made at UKIRT in February 1986.
N-S and E-W profiles of the IR sources were made by obtaining photometry on the optical

Carol J. Lonual Peruson (Editor)
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nucleus of the galaxy and then moving off the central pixel 0.75 arcsec at a time, using
the UKIRT TV crosshead to obtain as accurate an offset as possible. To minimise
systematic effects, such as drifts, each step out from the central pixel was made first to
one side and then to the other. Observations of a nearby standard star were obtained
using exactly the same method, so any residual systematic effects should be the same for
both the galaxy and the star observations. A chopper throw of - 30 arcsec perpendicular
to the offset direction was used for all the observations.

m. RESULTS

Profiles of NGC2798 in a N-S direction were obtained at both 10 and 20 ptm and in
an E-W direction at 10 pm. NGC6240 was observed with offsetting in a N-S direction at
10 pm. Figure 1 shows the profiles of the galaxies compared to the profiles of a nearby
standard star. The position marked (0,0) is the position of the optical nucleus. The
horizontal error bars are an estimate of the pointing error relative to the (0,0) position,
based on the degree of consistency of the standard star profiles and the ease of guiding on
the TV. The profile of the standard star has been scaled to give the best fit to the peak
flux, and centred to produce the best alignment of the profiles. It is evident from these
figures that the data for the galaxies indicate a wider profile than the beam profiles
measured on a standard star. To estimate the significance of the difference between the
galaxy profile and that of the star, we have calculated the significance with which each
point lies outside the beam profile by comparing the point to profile distance with the
error ellipse. The overall significance of the evidence for spatial extent is obtained by
summing in quadrature the significances of each point. The significance levels of the
spatial extents indicated in the galaxy profiles are given in Table I.

Table I

The significance of the difference between the galaxy and standard star profiles

NGC2798 NGC2798 NGC2798 NGC6240
20 pn N-S 10 /um N-S 10 pm E-W 10 pn N-S

4.5 o 4.5 o 3 a 3

We have also explored the likely size of the sources, by convolving the beam profile
with a top hat function of variable width and adjusting the width of the top hat, the
scaling of the profile and its alignment to obtain the best fit to the data points. This
gives a source size of approximately 4 arcsec for all the profiles.

IV. DISCUSSION

For NGC2798 there is good evidence for extent at both 10 and 20 pm, and this is
consistent with our multi-aperture photometry at 10 pm. We find a flux of 190 ± 18 mJy
in a 5 arcsec beam and 520 t 105 mJy in an 8 arcsec beam. The IRAS data (770 and
3130 mJy at 12 and 25 pin respectively) when compared with our 10 and 20 pm data are
also consistent with a spatially extended IR source. Non-equilibrium heating of small dust
grains by a compact underlying energy surce is unlikely to be producing this extended
emission because there is extent at 20 pum, where such grains would radiate less effectively,
on a similar scale to the 10 pm emission. The spatial extent inferred for the source, - 4
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arcsec, corresponds to 660 pc in NGC2798. This is much larger than the - I pc source
size expected if the dust is heated by a single nuclear source. A burst of star formation is
thus the most natural interpretation of the IRAS luminosity of NGC2798. The results for
NGC6240 are more marginal than those for NGC2798. Nevertheless they indicate that for
this ultra-luminous IR galaxy the nuclear source may be extended. This suggests that a
massive burst of star formation could be the underlying energy source for a significant
fraction of the enormous IR luminosity of this galaxy.

V. CONCLUSIONS

The data presented provide good evidence for spatially extended 10 and 20 Pm
emission in NGC2798 supporting a starburst interpretation for the 6 x 1010 Le IR
luminosity of this interacting galaxy.

For NGC6240 there is marginal evidence (- 3 o) for an extended 10 Pan source.
This suggests that this ultra-luminous IR galaxy may indeed be the result of a super
starburst, a conclusion which would be strengthened by the detection of extended 20 pum
emission.
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MODELS RELATING THE RADIO EMISSION AND IONISED
GAS IN SEYFERT NUCLEI

A. Pedlar, S.W. Unger, D.J. Axon and J.E. Dyson
University of Manchester, England

SUMMARY

We discuss possible models in which the radio emitting components
in Seyfert II nuclei can compress and accelerate the ambient nuclear
medium to produce the characteristics of the narrow line region. A
first order model (Pedlar, Dyson & Unger 1985), which considers only
the expansion of the radio components, is briefly described. However,
in many Seyfert nuclei it appears that the linear motion of the radio
components is also important. This can result in sbock heating of the
ambient medium, and if the cooling time is long enough, can lead to a
displacement between the radio component and the associated [01111
emission lines. This effect may be present in NGC1068 (Meaburn & Ped-
lar 1986), and NGC5929 (Whittle et al. 1986) and by considering ram
pressure balance and the cooling length it is possible to estimate
lobe velocities and ambient densities.

i) INTRODUCTION

The relationship between the radio continuum and the optical
forbidden line regions (FLR) was first investigated by de Bruyn and
Wilson (1978) who showed that a correlation existed between the 21cm
radio continuum power and the luminosity of the.5007A [OIII] line.
High resolution studies using MERLIN and the VLA have confirmed that
the two regions are physically associated as not only do they have
similar linear extent (100-10OOpc), but also there appears to be

approximate pressure balance (-10-9 dynes cm-2) between the
relativistic electrons/magnetic fields and the thermal electrons in
the FLR gas.

Many Seyfert nuclei show elongated or double radio structure
which strongly suggests that collimated ejection from the optical
nucleus is taking place. By analogy with classical radio sources this
has lead to the suggestion that a collimated beam is responsible for
the radio emission. Hence, models involving the interaction of such
beams with FLR clouds (Wilson 1983, Booler, Pedlar & Davies 1982) have
been used to account for the relationship between the radio continuum
emission and the FLR. There are, however, theoretical difficulties
with such models, as the FLR clouds are unlikely to remain coherent
entities whilst being accelerated to velocities many times their
internal sound speed (Nittman et. al. 1982). Furthermore, in those
cases where the [OIII] lines are well resolved (eg NGC1068 Meaburn &
Pedlar 1986), there seems little evidence to support such a model.

As the very existence of such beams is in doubt, their parameters
are, of course, highly uncertain. As the masses and sizes of the FLR
clouds are also unknown, the combination of these two phenomena leads

Carol J. Lonxdale Persson (Editor)
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to somewhat unconstrained series of models. Unlike the proposed
beams, the properties of the radio emitting components are reasonably
well defined (Unger et. al. 1986) and it seems much more reasonable to
consider initially the interaction of these components with the
nuclear environment.

ii) RADIAL EXPANSION OF THE RADIO COMPONENTS

The pressure of the relativistic gas in some of the radio
emitting components appears to be greater than the thermal pressure of
the ionised gas in the forbidden line region (Unger et. al. 1986).
This led us to develop a simple model (Fig. 1) in which the radio
components expand radially in a stationary medium, and in doing so
shock heat and compress the ambient medium in the nuclear vicinity

(see Pedlar, Dyson and Unger 1985). When the gas cools to -104K it
will be ionised by photons from the optical nucleus. This model
readily explains the close physical connection between the radio
emission and the FLR gas and can account for a number of global FLR
properties such as linewidths, filling factors and densities. Also,
as the gas is compressed by shocks rather than existing as individual
clouds, it does not require a confining medium.

PHOTOIONIZED
AMBIENT GAS

SWEPT UP
SHELL OF GAS RADIO EMITTING

PLASMONS

UV PHOTONS

\ý,fBEAM?

SEYFERT NUCLEUS<0.1 pc

500 pc

Fig. 1 Schematic diagram for the expanding radio component model.
See Pedlar et. al. (1985) for a full discussion of this model.

This model predicts that much of the FLR gas will be associated
with individual radio components, and that line splitting up to
-1000km/s could be observed. Unfortunately, although the radio
structure is well resolved, conventional optical techniques do not
have the angular resolution to determine whether the FLR components of
most Seyfert II nuclei are associated with the radio components. One
exception is the nucleus of NGCl068, which has an angular extent of
-8 arcsec. In this case it appears that the NE east radio component
is associated with Walker's (1968) clouds I and III and exhibits line
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splitting of order 1000km/s (Meaburn & Pedlar 1986). The radio
structure of this component (Wilson & Ulvestad 1983), however,
suggests that linear motion, as well as radial expansion is taking
place which should be taken into account. We have surveyed a number
of Seyfert nuclei using long slit spectroscopy and in a number of
cases we have found evidence that FLR components are associated with
individual radio components. The clearest example is NGC5929
(see Fig. 2) in which the FLR structure closely matches the radio
double, showing two distinct velocity components.

NGC 5929 PA 60 NGC 5929 PA 330

N 1NW W4A-51

:1A610 LAI
sw 60 SE L

Fig. 2 [OIII] 5007A profiles along and orthogonal to the :adio axis of
NGC5929. See Whittle et. al. (1986) for further details.

These components lie in the same position angle as the radio
components but lie slightly inside them. These observations are
described in full by Whittle et. al. (1986). The linewidths of the
individual FLR are relatively narrow and much smaller than would be
expected to be produced by the radial expansion of stationary radio
components. We suggest that the radial expansion is reduced by ram
pressure due to their linear motion through the ambient gas, which, as
we shall show below, can also account for the displacement between the
radio and FLR components.

iii) LINEAR MOTIONS OF THE RADIO COMPONENTS

The model described by Pedlar, Dyson, and Unger assumes that the
radio components expand into a stationary ambient medium. If the
radio components bave been ejected from the nucleus then this
approximation will only be valid after they have been braked by ram
pressure of the ambient medium. Hence, in the early stages they are
ram pressure confined and their linear velocity will be greater than
their expansion velocity. We shall, therefore, consider the effects
on the nuclear environment of linear, supersonic motions of the radio
emitting components. As in the previous model we will assume that
there are sufficient UV photons from the optical nucleus to ensure
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that gas in the vicinity of the radio components is completely
photoionised. Hence, as the emission line intensity increases as the
square of the density, compression of the ambient medium due to
interaction with the radio lobes will result in a local enhancement of
r0oIII emission (Fig. 3).

RADIO EMITTING
COOLING LENGTH (I OPTICAL NUCLEUS COMPONENTS

"V

AMBIENT MEDIUM /uv PHOTONSSHOCK HEATED /U POTN
TO:107K

SHOCKED GAS

COOLS TO 104 K

Fig. 3 Schematic diagram for the moving radio component model. The
ambient medium is shock heated and compressed into a shell, and cools

downstream to -104 K after which it is photoionised by UV photons from
the continuum nucleus.

In order to confine the radio components the pressure of the
relativistic particles in the lobe (Prel) must be approximately
balanced by ram pressure of the lobe moving through the ambient
medium. Hence,

Prel=fv 2=1.7 x 10 14naVs2 dynes cm-2 (1)

Where na is the ambient proton density in cd-3 and Vs is the lobe

velocity in km/s. As the lobe velocity will, in most cases, be
supersonic it will drive a shock into the ambient medium. This will
shock heat the medium in the vicinity of the lobe to

T -14 V 2 K (2)

with an associated cooling time

t -3.2 x 103 n -1T 3/2 (3)c s s

Where ns =4na is the immediate post shock density. Thus, if the lobe

velocity exceeds 270km/s the gas will be shock heated to >106K and
will have relatively long cooling times. Even in the presence of a
strong UV field such gas will not emit significant optical lines until
it cools. During this cooling period the radio component will move a
distance -tcVs and, consequently, there will be a linear displacement
between the radio lobe and the gas which has cooled sufficiently to
emit optical spectra. This cooling length will be approximately given
by

lC -tcVs-l. 4 x 10" 9na-IVs 4 pC (4)
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From the displacement between the [0III] and radio components in
NGC5929 we can estimate the cooling length to be -50pc, and, hence,
from equations 1 and 4 and the value of Prel derived from the radio
continuum parameters we can estimate Vs to be -700km/s and Na to be 7
cm-3. If we interpret the 200pc displacement between the front of the
radio lobe and FLR gas in NGC1068 (Meaburn & Pedlar 1986) also as a
cooling length then using Prel from Pedlar et. al. (1983) we can
derive a lobe velocity of 600km/s and an ambient density of 0.7 cm-3.
Note that for lobe velocities of this magnitude, even components of

the interstellar medium with temperatures as high as 106 K
(ie sound speed -150 km/s) will be compressed by a strong shock.

More detailed modeling of the ram pressure confined radio lobe
and its interaction with the ambient medium are required to predict
the detailed velocities and line profiles of the [01111 emitting gas.
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STRUCTURE IN THE NUCLEUS OF NGC 1068 AT 10 MICRONS

R. Tre1ch-FienbergI, G. G. Fazio1 D. Y. Gezar2, W. F. Hoffmann 3

G. M. Lamb 2 , P. K. Shu 2 , and C. R. McCreight 4

New 8 - 13 Jm array camera images of the central kiloparsec of Seyfert 2
galaxy NGC 1068 resolve infrared source structure which is extended and
asymmetric (2.1 x 0.7 arcesec FW1HM), with its long axis oriented at position
angle 33*. Infrared emission 1-2 arcsec to the northeast of the very center of
the galaxy appears coincident with a weak, barely resolved, discrete source in
the kiloparsec-scale jet detected in published radio continuum maps of the
galaxy.

Very Large Array (VLA) observations show a linear, clumpy structure some
10-15 arcsec (- 1 kpc) long, extending to the NE and SW of the nucleus. This
feature is usually described as a jet (Wilson and Ulvestad 1982, 1983; Pedlar
et al. 1983) though at sub-arcsec resolution the emission nearest the center of
the galaxy is asymmetric in position angle (van der Hulst, Hummel, and Dickey
1982; Wilson and Ulvestad 1983). Condon et al. (1982) reject the jet
hypothesis altogether, arguing instead that the radio emission arises from
supernovae in regions of intense star formation.

There is clear evidence of star formation in the disk of NGC 1068. The
infrared (IR) spectrum of NOC 1068 resembles thermal IR spectra seen in
galactic HII regions and molecular clouds. About 981 of the galaxy's
bolometric luminosity is emitted between 1.5 pm and 3 mm (Rieke and Low 1975;
Telesco, Harper, and Loewenstein 1976; Hildebrand et al. 1977; Telesco and
Harper 1980). A 10 pm map and far-IR aperture photometry (Telesco et al. 1984)
show that about 101 of the flux density at X < 20 pmt, and virtually all of the
longer wavelength IR radiation, arises principally from the galactic disk at
3 < r < 18 arcsec, in a region where CO emission also has been detected
(Rickard et al. 1977; Scoville, Young, and Lucy 1983).

The infrared images of NGC 1068 (Figure 1) were used to derive maps of the
spatial distribution of 8 - 13 pm color temperature (Figure 2) and warm dust
opacity (Figure 3). The results suggest that there exist two point-like
luminosity sources in the central region of NGC 1068, with the brighter source
at the nucleus and the fainter one some 100 parsecs to the northeast. This
geometry strengthens the possibility that the 10 pm emission observed from
grains in the nucleus is powered by a non-thermal source. In the context of
earlier visible and radio studies, these results considerably strengthen the
case for jet-induced star formation in NGC 1068.

1 liarvard-Smithsonian Center for Astrophysics
2A Goddard Space Flight Center3 Steward Observatory, University of Arizona4 NASA Ames Research Center
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Figure 1--Calibrated isophotes for the array came, a images of NGC 1068.

In each case, the lowest contour level is 3u above the mean background

intensity in the periphery of the field of view, which has been subtracted from the map.

The hatched square represents one 0.78 x 0.78 arcsec IR CID pixel. The contour level

spacing is 1.5a at all wavelengths: 8.3 pm (upper left), 9.8 x 109 Jy ster- 1 ; 9.7 Am

(upper right), 9.1 x 109 Jy ster-1; 11.2 pm (lower left), 1.3 x 1010 Jy ster-'; and 12.4

om (lower right), 1.6 x 1010 Jy ster- 1 .
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10pm NUCLEAR STRUCTURE IN NGC 1068

The imaging observations of NGC 1068 were made at the Infrared Telescope
Facility (IRTF) on Mauna Kea, Hawaii, on 1983 August 16 using the Goddard
infrared array camera system, which is based on a 16 x 16 pixel Si:Bi charge
injection device (CID) array (Lamb et al. 1984; Gezari et al. 1985; Tresch-
Fienberg 1985). The images were obtained in four bandpasses, with effective
wavelengths of 8.3, 9.7, 11.2, and 12.4 jum and bandwidths of about 10% (Figure
1). The field of view of the array for these observations was 12.5 x 12.5
arcsec, corresponding to approximately 0.9 x 0.9 kpc.

Atmospheric conditions during the observations were very favorable; visual
seeing was better than 1 arcsec. At the IRTF, the optical plate scale at the
detector is 0.78 arcsecpixel, and the diffraction-limited FWHM instrumental
profile of a point source ranges from 0.9 to 1.1 arcsec between 8.3 and 12.4 Om
(compared with XID - 0.7 arcsec at 10 Jim). The actual spatial resolution of
the camera system, determined from the size (FWHM) of point source calibration
images, was 2.3 arcsec in R.A. and 1.3 arcsec in Dec. at all wavelengths.

The presence of a distinct IR source NE of the nucleus was tested by
subtracting an instrumental point spread function (obtained from images of the
reference star P Peg, c.f. Figure 5) from the array camera images and examining
the remaining emission. This is appropriate because the galaxy is known to
contain a compact source at its very center, based on speckle interferometry
(Heaburn et al. 1982, McCarthy et al. 1982) and radio mapping (van der Hulst,
Hummel, and Dickey 1982; Wilson and Ulvestad 1983).

All the images of NGC 1068 show substantial residual emission following
the subtraction of a point source from the nucleus. This emission is
concentrated in a small region 1.7 + 0.4 arcsec to the NE of the nucleus at
position angle 39" + 3. Within the uncertainties of measurement, this region
coincides with the apparent extranuclear color temperature peak; it appears to
be the IR counterpart of the weak radio feature described above. This new IR
source emits 35% + 10% of the total 10 jam flux density within the central 7
arcsec of the galaxy, or 7.3 + 2.1 Jy. This demonstrates that a substantial
fraction of the 10 jam emissio7n from the central region of NGC 1068 is
associated wih the radio Jet outside the galaxy's core.

Close inspection of the 6 cm maps of Condon et al. (1982) and Wilson and
Ulvestad (1983), as well as the 18 cm map of Pedlar et al. (1983), reveals a
weak but clearly present peak in the radio continuum jet, 1.4 + 0.2 arcsec NE
of the nucleus at position angle 41* + 9. The 10 pm emission-NE of the
nucleus extends to the positi.on of this faint radio peak, and the new color
temperature and dust density maps described above indicate that there is a
luminosity source there.

The existence of the NE source may be further confirmed by comparing the 8
- 13 jam appearance of the nuclear region of NGC 1068 with a simple model.
Figure 4 shows a contour diagram of an IR array camera image that could result
at the IRTF when observing two point sources separated by 1.6 arcsec at a
position angle of 35, with the NE source 54% as luminous as the primary
source. Comparison of the real and synthetic galaxy images shows that the
10 jm morphology is reproduced quite well by this model.

719



R. 7RLSCHi-FIEBERO ET AL

11CC 1066 8.3/12.4 gum Tc 1C16

-00*1326' -00'13'26

I 0013'30r - j *1*

-0013*34 -00'1334"

T37007703 710 6ý7
OLO 40009b 40

Right Ascension (1950) Right Ascension (1950)

Ptur 2 -Map adof the~n m-lo ees.tporatee aw the vochuve of MCC ION6. duhuiW Fhup 3-Map of the emission op"ha depth (and, by infarsace. the relative dust do&-

hogn h. 4.3 mad 124pso argeaswn a Ioin CoaM-i -u p~ne at UK5 WINV dip) the md am s atbes of C IM6, derived hrow the 8.3 pmn latessity map and th.

boasrow NOd dE10. 10"h he Peak iMOMtture IS this NZ Of thesM sy. lae mpwatuss amkp. Coatouze are, pina" hed fr -6. x 10-4 to 2.33 x 10-4. with

11CC 10668 Peg

11CC 1066 (synthetic) 6.3 um 10

0.5

a 1-0.7-

0.6-

j ~00330 0.5-

0.2

-00'13'W 0.1

7!3 710 OC?0. 43221 0 1 234 432 10 1 23 4
09k 40" Pixels from Peak Pixels from Peak

Right Ascension (1950) (North) (South) (North) (South)

Fjrea4-Cmowwdiagram 49aeyaikh-Vl ImPe-eWAd by eumptlngtUseR M ay Fkpum 5-hmtaeely prfias of 11CC 1066 (left) and 0 Peg (right) at 8.3 pm (circle).

gamament o. ahe *(oeuemp~dtwuopalot objechatseipur~at 9.? pm (aquaria), 11.2 pm (triangles), and 12.4 pim (diamnonds). Theen were generated

byIA arse ata ea tio, a slt of atVW, ith theNZ @am 6496 asluU-a h wing a Ix Spbsel (0.10 x3.9 arcstseealitmadescribed in thetexttto simulate the

pelymaaom aeamipatial remiutionat 10pjm *(about 1.8 Weac(the avmeraeof the2.3 declinatlom a&i seca= of Doglin dat. (19?3). All Kass have been normalized to 1.0 at

sad 1.3 wages roinolutinao in RA. sand Dec. actually achieved during the a~ebmatloIm of the peak. A sample erors bar (representing only the statistical measuring uncertainty) is

11CC 106 In Aiauut 1im3). The positisn atthbe pelmarly M-Mif so the arry coresipods ibmm Ws 11C 1066; the uncertaintie s. fo Peg are smaller than the plotted symbol*..

to the owarne paeitioaa at the plaxay' mautim In the 6-3 pm UMy gamers map (FIgureS)

720



10pm NUCLEAR STRUCTURE IN NGC 1068

The principal conclusions of this work are:

1. Direct images reveal an asymmetric IR source consisting of a bright
peak plus extended emission several arcsec toward the NE at position angle 33*.
If the IR peak is assumed coincident with the visible/radio nucleus, then the
10 pm morphology may be interpreted as a superposition of at least two sources
- one at the very center of the galaxy and another some 1.5 arcsec to the NE in
the radio jet, coincident wih a weak radio continuum peak.

2. Maps of 8.3/12.4 am color temperature and IR emission optical depth
(i.e., dust density) suggest that at least two sources of luminosity are
required in the central few hundred parsecs of the galaxy. The new data are
consistent with the 8 - 13 pm radiation arising from thermal emission by dust
grains, but a compact, non-thermal source may be responsible for some of the
grain heating.

3. These results suggest that the extra-nuclear radio/IR source could be a
region in which star formation has been triggered by the ejection of matter in
a jet from the Seyfert nucleus.
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FAR-INFRARED PROPERTIES OF OPTICALLY-SELECTED
QUASARS AND SEYFERT GALAXIES

R.A. Edelson

Owens Valley Radio Observatory, California Institute of Technology

and

M.A. Malkan
Department of Astronomy, University of California, Los Angeles

Pointed IRAS observations and ground-based observations are used to
determine the infrared properties of optically-selected Seyfert galaxies and
quasars. The use of complete, unbiased, optically-selected samples means that
statistical tests can be applied to probe the underlying properties of active
galactic nuclei (AGNs).

We have studied the near-infrared-to-millimeter spectral energy
distributions (SEDs) of the CfA Seyfert galaxies, a well-defined, unbiased sample
of 25 Type I and 23 Type 2 Seyfert galaxies selected by optical spectroscopy.
Spectroscopic selection allows low-luminosity, red Seyfert 2 galaxies to be found
with a much higher success rate than in ultraviolet-excess surveys such as the
Markarian survey. All but one of the objects observed by IRAS were detected at
60 ft, and 70% were detected at all four IRAS frequencies. A subsample of the
ten brightest of the PG/BQS quasars with B 4 15.00 and MB 4 23.0 were studied at
infrared and radio wavelengths. Ninety percent were detected in at least three
TRAS observing bands.

These data show strong trends in the infrared SEDs. Optically-selected
quasars tend to have very flat infrared spectra with -12p_60pa -0.69 ± 0.41
(Fv Ns, EMS scatter for individual objects), and a2.2M_25P. - -1.09 ± 0.16.
Seyfert 1 galaxies have relatively flat infrared spectra with c12y-60v -
-1.08 ± 0.44 and a2.2P1_25P. - -1.15 ± 0.29. The infrared spectra of Seyfert 2
galaxies are much steeper, with (%M 2 m 60 m - -1.55 ± 0.36 and a2.2um-25pam -

-1.56 ± 0.34). Figure I is a plot of Q2.2wi-25um versus a12m-60p , which
shows that quasars and most Seyfert I galaxies occupy a different region from
Seyfert 2 galaxies.

This is strong evidence that the infrared spectra of Seyfert 2 galaxies are
dominated by thermal emission from warm dust, while nonthermal emission is more
important in the spectra of quasars and luminous Seyfert 1 nuclei. Objects with
infrared SEDs dominated by thermal dust emission (starburst galaxies, Seyfert 2
galaxies, normal galaxies, etc.) almost always have steep infrared SEDs, while
objects known to be dominated by nonthermal emission (such as BL Lacertae objects
and OVV quasars) usually have flat SEDs. Edelson and Malkan (1986, Ap. J., 308,
in press) found that Seyfert galaxies believed to be dominated by nonthermal
emission in the infrared had 0 2.2f_-25um > -1.25, while those thought to be
dominated by thermal dust mission usually had a 2 . 2 m_ 2 5 m < -1.25. All the
optically-selected quasars and most of the high-luminosity Seyfert 1 galaxies
have 02.2yt_25ft > -1.37 and al2im-60pm > -1.25, while all the Seyfert 2 galaxies
and the highly reddened, low-luminosity Seyfert I galaxies have
G2 . 2 m-M2 5 p < -1.37. Edelson and Malkan (1986) also found a strong correlation

CwWJ. LLoida Peruon (Editor)
Sm-r' FPsam In Gaa••es 723



X. A. EDELSON AND MX A. MALKAN

0 I I

0-

Figure 1. Color-color diagram of AA
a2.2um125pm versus al21sm/6011m.

Quasars are denoted by stars, Sey- -1fert 1 galaxies are denoted by tri- E =E @ /

angles, and Seyfert 2 galaxies by Z Z *
circles. A point which lies on the W .-
dashed line has a,2. 211m/250m -
acl2um/6Oim. Quasars and Seyfert 2

galaxies occupy different regions, r
and most Seyfert I galaxies lie #
somewhere in between. -

U/

-2 -I

a25 um
aK

between reddening and infrared spectral slope. Seyfert 2 galaxies and dusty
Seyfert 1 galaxies tend to have large reddenings and steep infrared SEDs, while
quasars and high-luminosity Seyfert 1 galaxies have little or no detectable
reddening and flat infrared SEDs.

The fact that the quasars and unreddened Seyfert 1 galaxies have straight or
gently curving infrared SEDs, which extrapolate smoothly to near-infrared
wavelengths, is also indicative of nonthermal emission. OVV quasars and
BL Lacertae objects have infrared SEDs of this type. Dusty objects usually have
infrared SEDs which curve sharply downward to higher frequencies. This is
because dust cannot survive at temperatures hot enough to radiate primarily at
near-infrared wavelengths.

Finally, the large 60 to 100 Um luminosities are further evidence of the
dominance of nonthermal infrared emission from luminous Seyfert 1 galaxies and
quasars. Assuming that the far-infrared emission from luminous quasars is
thermal emission from dust, the emitting regions must be a few kpc in size. The
high turnover frequencies found would imply dust high temperatures, Td > 70 K.
The sizes and masses are too large to be associated with the narrow-emission-line
region, yet the high temperatures suggest that the dust could not lie outside the
narrow-line region.

Almost one-half the Seyfert galaxies and seven of the nine quasars detected
in three or more IRAS bands have far-infrared spectra which turn over between 30
and 100 P. The nonparametric Breslow (logrank) test indicates that quasars have
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higher values of the turnover frequency, Vt, than Type 1 (or Type 2) Seyfert

galaxies, at the 99.4% confidence level. Furthermore, most of the least luminous

Seyfert galaxies have undetected turnovers (i.e., vt < 3 THz). A simple

explanation is that both Seyfert 1 galaxies and quasars have relatively high

turnover frequencies, but that cold dust emission from the disk of the underlying

galaxy masks or shifts it to lower frequencies in lover-luminosity Seyfert
galaxies.

The turnover can be used to determine source parameters, depending on the

emission mechanism assumed. Under the assumption that the far-infrared spectra
are dominated by emission from a synchrotron self-absorbed source, with

TB- 1011-12 K (as appears to be the case with quasars and luminous Seyfert
galaxies) source sizes of the order of a light day are derived for quasars and

luminous Seyfert 1 galaxies. These sources are typically 100 to 1000

Schwarzschild radii across, similar to the size of the hypothesized accretion
disk.

For the Seyfert 2 galaxies and other dusty objects, the turnover can be used
to determine minimum dust sizes and masses. This calculation yields minimum dust

temperatures of 35 to 70 K. This is significantly warmer than dust in normal

galaxies. Minimum source sizes of order 100 pc are derived. This suggests

that the infrared emission from Seyfert 2 galaxies and dusty Seyfert galaxies
arises in the narrow-line region.
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INFRARED-ULTRAVIOLET SPECTRA OF AGTIVE GALACTIC NUCLEI

M.A. Malkan
Department of Astronomy, University of California, Los Angeles

and

R.A. Edelson
Owens Valley Radio Observatory, California Institute of Technology

Data from IRAS and IUE were combined with ground-based optical and infrared
spectrophotometry to derive emission-line--free spectral energy distributions
(SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 ya. The IRAS
data were scaled down to account for extended emission. These correction
factors, determined by comparing small-aperture ground-based 10.6 um data with
large-aperture IRAS 12 Pm fluxes, were usually less than 25%. These corrected
SEDs are shown in Figure 1.

Although the contaminating effects of reddening and emission from stars and
dust in the underlying galaxy are significant in some SEDs, they usually can be
corrected adequately. Several good indicators of nuclear dust in AGNs are
identified, all of which are well correlated: 1) Steepness of infrared spectral
index; 2) Reddening derived from the shape of the ultraviolet continuum;
3) Strength of the 2200 1 dust absorption feature; 4) Line ratios, such as Ha/OB
and Lya/HB; and 5) Line-free continuum colors, such as f 4 2 2 0 /f 1 7 7 0 and
f 4 2 2 0 /f 1 4 5 0 .

Dust does not play a major role in many of the Seyfert 1 galaxies and
quasars in this sample. The SEDs of these objects are generally well described
by a simple model consisting of four spectral components, each of which dominates
over a different wavelength region. Figure 2 is a plot of the model fits to
three AGNe, decomposed to show the individual components. The first, which
usually contains mst of the total luminosity between 0.1 and 100 Ya, is a
power-law with -- 1- -1.36 ± 0.21 (RMS scatter for individual objects). This
power-law often has a sharp low-frequency cut-off between 40 and 100 ua, and in
most of the remaining objects, the SEDs are constrained to turn over by - 300 um.
The simplest explanation is that the infrared luminosity is dominated by
synchrotron emission from a self-absorbed source a few hundred Schwarzschild
radii across, about the size of the hypothesized accretion disk. There is a
strong correlation between the luminosity from this power-law at 5450 1 and the
2 keV X-ray luminosity, which suggests that the power-law may extend at least
from X-ray to far-infrared wavelengths (5 1/2 decades of frequency).

The second component, which was detected in over one-half the SEDs, was a
broad near-infrared excess, described by a parabola centered at 5.2 um, with a
FM of 3.3 frequency octaves. Although it contains less total energy than the
Balmer continuum, it can account for up to 40% of the total luminosity between
2.5 and 10 ft. Its strength is well correlated with total luminosity and
HI/[O 111 ratio.

The far-ultraviolet emission is dominated by a component which was described
as a blackbody with T - 26,000 ± 4,000 K (individual scatter). The fitted Balmer
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Figure I (a-d)
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Figure 1. Fits to the infrared/optical/ul]traviolet SEDs of 29 AGNs are
presented in Figure I. Observed binned continuum fluxes are shown with vertical
error bars. The lines show the best-fitting models with a power law,
near-infrared bump, and ultraviolet blackbody (including corrections for
reddening, starlight and recombination radiation). Vertical scale is logarithm
of VFv, so that a power-law of slope -1 (with equal power per decade) would
appear as a horizontal line. The large vertical bar shows a factor of 2 in
flux.
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IR-UV SPECTRA OF AGN

Figure 1 (e) Figure 2
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Figure 2. DetaiJl of model fit~s t~o SEDs of X 273, M 335, and NC 4151.

The individual components shown are the infrared power law (dashed line, which
dominates the far-infrared), the near-infrared bump (dotted line; not detected in
NGC 4151), the galactic starlight (dot-dash line, not detectable in 3C 273), the
recombination continuum (solid line-only the Balmer continuum and a little of
the Paschen continuum are strong enough to show in the figures), and the
ultraviolet blackbody (dot-doz-dash line). All components have been reddened by
galactic and internal reddening. The sum of these components equals the fitted
model, shown by the upper solid line.

continuum/He ratio for the Seyfert 1 galaxies is 2.1 ± 0.6, under the assumption
that the emission is optically thin with Te - 13,000 K. This ratio is
significantly greater than the prediction of Case B recombination, and shows no
correlations with other AGH properties. Seyfert 2 galaxies have a lower Balmer
continuum/He ratio than Seyfert 1 galaxies.

Although the power-law model fitted the relatively dust-free objects well,
it failed to reproduce the SEDs of Seyfert 2 galaxies and Seyfert 1 galaxies with
large reddenings and other strong dust indicators (i.e., NGC 3227, HOC 7469, and
Nkn 231) because their fluxes beyond 10 Um are significantly contaminated by
thermal emission from dust. They have minimum dust temperatures of 35-60 K,
which is warmer than in normal spiral galaxies. The thermal emission appears to
arise from - 100 M@ of dust in a volume similar to that of the narrow line
region. Low-luminosity active galaxies with 100 Ym fluxes dominated by dust
emission from the underlying galactic disk showed large differences between
small-aperture ground-based 10-0m. and large-aperture IMAS 12-ma fluxes, and steep
spectral indices between 60 and 100 Pm.
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IRAS Observations of BL Lac Objects

C. Impey and G. Neugebauer
Palomar Observatory

Califoria Institute of Technology
Pasadena, California 91125

G. Miley
Space Telescope Science Institute

Homewood Campus
Baltimore, Maryland 21218

Abstract

IRAS data has been analyzed for 35 LL Lac objects selected from a complete 5GHz
radio sample, using the coadded survey database. The detection rate is 50 % with more
than 40 % detected in more than one band. This compares with only 15 % of these sources
that are included in the IRAS Point Source Catalog. High luminosity BL Lac objects
generally have smooth energy spectra over four or five decades in frequency, consistent
with incoherent synchrotron emission from 1 cm to I ;m. However, many low luit,, osity
BL Lac objects have discontinuous spectra, with a large range in the spectral index at
IRAS wavelengths. For BL Lacs with a total luminosity of less than 10"4 ergs sa-, most of
the far infrared energy probably originates from dust heated near the galaxy nucleus. The
energy budget shows that the majority of the power per unit bandwidth (vSv) emerges in
the infrared (1 - 100pm).

]Introduction

BL Lac objects are compact radio sources that are distinguished by their rapid vari-
ability and high linear polarization at optical and infrared wavelengths. They are among
the most energetic radiators in the universe, and apparently provide the most direct and
unobscured view onto the compact engine that powers many types of active galactic nuclei.
A variety of evidence indicates that relativistic motion is affecting the observed properties
of the most luminous BL Lac objects. For the purposes of this study, we have included
highly polarized quasars, since they share with BL Lac objects the same continuum prop-
erties of a polarized, variable core.

Methods

Few extragalactic radio sources are strong enough to be included in the IRAS Point
Source Catalog (PSC), and there are two ways of reaching fainter detection limits. Ap-
proximately 40 % of the mission was devoted to pointed additional observations (AOs)
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which achieved a sensitivity gain of three to eight. However, the coverage of pointed ob-
servations in this sample is very patchy. In addition, the high completeness of the survey
can be traded for additional sensitivity by coadding the survey database, giving a typical
sensitivity gain of a factor of three. The typical limiting sensitivities (1 o) using survey
coadds are : 12 &m - 25 mJy, 25 &m - 35 mJy, 60 pm - 35 mJy, 100 pm - 90 mJy.

The absolute calibration of flux density is based on asteroids and a set of fundamental
reference stars with high quality ground-based data and good photospheric models. The
following bandwidths were assumed to convert instrumental fluxes to flux densities (mJy)

12 pm - 13.48 x 1012 Hz, 25 pm - 5.16 x 1012 Hz, 60 Im - 2.58 x 1012 Hz, 100 pm
- 1.00 X 1012 Hz. These factors apply to sources with energy distributions S,, oc v-1, for
other continuum shapes a color correction has been applied. Several nonlinear correct*,-
factors have been included, along with a correction based on the positional and saml
uncertainties from the coaddition of separate flux grids. The absolute calibration is g.
to 2 %, 5 %, 5 % and 10 % at 12 pm, 25 pm, 60 pm and 100 pm, but a reasonable estimate
of the final uncertainty in the survey coadded fluxes is 15 %. However, many of the
uncertainties in IRAS data are not normally distributed, so the contour plots and source
extractions for each source have been carefully checked for anomalies, such as nearby strong
sources, tracks due to bad detectors, cirrus sources at 60 pm and 100 pm, unusual source
shapes, poor correlation coefficients for the template flux, and large differences between
the median and local signal-to-noise in the field.

The absolute accuracy of the lRAS positions, established by a grid of -- 10,000 SAO
stars, is 2.8 arcsec in-scan and 15.6 arcsec cross-scan. The mean differences between the
IRAS positions and radio positions (accurate to 1 arcsec) for the detected sources are :
12 Am - 22 arcsec, 25 pm - 35 arcsec, 60 pm - 25 arcsec and 100 pm- 58 arcsec.
These differences are no more than a single beam width in each waveband. The surface
density of point sources down to the faint limit of the detections (- 35 mJy at 60 pm)
is roughly 54 per square degree. This assumes a surface density of 0.6 sources per square
degree with S(60 pm)/S(25 pm) > 1 at a galactic latitude greater than 30°, and uses
the observed Euclidean source counts of log N c( 1.5 log S. The probability of a chance
coincidence between an unassociated source and the radio source position is less than 0.01
%. Therefore, the misidentification rate in this sample of 35 will be small.

Discussion

No complete sample of BL Lac objects exists, but we can get a representative idea of
the properties by studying the energy distributions of BL Lacs selected from a complete
radio sample. About 40 % of a sample of strong, compact radio sources show the strong
optical polarization characteristic of BL Lac objects; the rest are identified with quasars
and radio galaxies. The energy distributions divide easily into two classes on the basis of
the morphology of the radio/infrared energy distributions. In one set of sources the infrared
emission joins smoothly onto the compact radio emission, in the sense of a smooth and
monotonic change of the spectral index a, where a = dlog Sv/dlog P. These sources
generally include the high luminosity BL Lac objects or blazars (Figure la). The other
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group of sources show a discontinuity between the radio and infrared emission, in the sense
that the (generally steep spectrum) radio emission projects to a flux density well below the
level of the IRAS data. Therefore, the spectral index must change sign at submillimeter
wavelengths. These sources generally include the low luminosity BL Lac objects embedded
in nearby elliptical galaxies (Figure Ib). The radio energy distributions in Figures la and
Ib are taken from Kuhr et al (1981) or Owen et al (1980), with the IRAS data plotted
on the high frequency side of the figure. The comparison of nonsimultaneous radio and
infrared data does not prevent a discussion of the average spectral shape of a coilection of
sources. Note that the IRAS data almost fills in the spectrum from 103 Hz to 1014 Hz.

The spectral energy distribution alone cannot pin down the emission mechanism for
the infrared energy in BL Lac objects. The sources in Figure la have smooth continuous
spectra between radio and infrared wavelengths, indicating a single emission process oper-
ating. These sources also show variability at both millimeter Lad near infrared wavelengths,
and often linear polarization which points unambiguously to the synchrotron process. Some
conclusions can be drawn about the synchrotron process in these high luminosity BL Lac
objects. Two useful parameters can be calculated. One is the spectral index in the range
10 - 100 pm, and the mean and rms dispersion of this slope for the luminous BL Lacs is
am = 1.02 ± 0.19. This is close to the canonical mean slope that has long been quoted
both for quasars (Neugebauer et al 1979) and BL Lac objects (Cruz-Gonsales and Huchra
1984), but the dispersion is surprisingly small. For example, the range of infrared slope
for the low luminosity radio galaxies is very large, am = 1.74 ± 0.81. In addition, the
optical spectral indices of a similar set of radio strong quasars (Neugebauer ed at1979) give
a value a.ot = 1.89 ± 0.79, a steeper slope with much larger scatter. Second, the wave-
length at which the spectrum turns down can be calculated. In the sychrotron model this
would be associated with the most compact synchrotron component becoming optically
thin. In some cases the energy spectra show a smooth and continuous curvature, and a
polynomial or parabolic functional form is equally valid in fitting the spectra. In addition,
there is a small scatter in the distribution of va, the break frequency which has a mean
and dispersion of log &,B = 11.73 ± 0.71. Therefore, there is a homogeneity in the syn-
chrotron spectra of objects with a wide range of apparent luminosity (relativistic motion
in some of these sources may reduce the range of intrinsic luminosity). Since energy loss
mechanisms act to steepen the spectrum at high energies in the ultraviolet, there will be a
larger scatter in the optical and UV spectral indices (some of this increased scatter is also
due to the contribution of the broad UV bump seen in many quasars). However, at lEAS
wavelengths the uniformity in am must reflect a uniformity in the energy spectrum of
the accelerated electrons. Similarly, the narrow dispersion in YB may reflect a uniformity
in the physical conditions in the synchrotron core. Note that variability or errors in the
extrapolation used to determine va will increase rather than decrease the scatter. From
basic synchrotron theory, even a monoenergetic electron distribution will integrate into a
spectral energy distribution with a width of 3/2 decades in v/vc where me - ,yB is the
critical frequency where most of the synchrotron power emerges. Therefore, any feature
such as a turnover or kink in an electron energy spectrum will integrate into a feature at
least as broad as the rms of vt for the luminous BL Lacs. On the other hand, if &,B is
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regulated by the opacity of the source, then this result may point to a narrow range in the
value of the equipartition magnetic field in the cores of sources of very different luminosity.

The high luminosity BL Lacs have bolometric luminosities in the range 1045 - 104s
ergs a-1, and 20 - 30 % of the luminosity is emitted in the infrared. For the low redshift
BL Lacs, the energy spectra (Figure 1b) indicate a component with half power width
of three decades of frequency and a peak in the range 100 jam to 1 mm. The lack of
a smooth an.terface between the radio and infrared data is not due to variability, since
these radio galaxies mostly have steep radio spectra with a small fraction of the flux in a
compact variable core. Therefore it is likely that dust in the nucleus of the host galaxy
is reradiating the moderate infrared power (Lp _,U 1043 - 1044 ergs s-1) seen at IRAS
wavelengths. Because of the steep infrared slope and inversion at millimeter wavelengths,
a high fraction of 40 - 60 % of the radio galaxy luminosity can emerge in the infrared. The
weaker correlation between radio and infrared power in radio galaxies does not rule out the
existence of some galaxies where nonthermal radiation dominates at IRAS wavelengths.
For instance, Heckman et at (1983) and Elvis et al (1984) have shown that radio galaxies
with broad emission lines tend to have nonthermal power laws in the 1 - 20 pm. In
general, there may be both thermal and nonthermal components in the infrared emission,
and the energy distribution alone is insufficient to disentangle them. For example, in NGC
1052 the lack of 10 pm variability and steep infrared power law indicate a strong thermal
component (Becklin et al 1982), while the significant 2 pm linear polarization means that
there is also an embedded synchrotron source (Rieke et at 1982). For BL Lacs with LIR

< 1044 ergs sa-, the relative contributions of thermal and nonthermal radiation must be
decided on an individual basis.
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ABSTRACT

A revised method of classification of narrow-line active galaxies and H II region-
like galaxies is proposed. It involves the line ratios 10 I] )X5007/Hp, [N II] X6583/Ha,
[S H1] (AA6716+6731)/ Ha, and [0 T] X6300/Ha. These line ratios take full advantage
of the physical distinction between the two types of objects and minimize the effects of
reddening correction and errors in the flux calibration. Large sets of internally consistent
data are used including new previously unpublished measurements. Predictions of recent
photoionization models by power-law spectra and by hot stars are compared with the
observations. The classification is based on the observational data interpreted on the
basis of these models.

I. Introduction

Possibly the best way we have to test our understanding of the different mecha-
nisms responsible for the ionization in emission-line galaxies is to consider a large sample
of these objects with well measured spectra, and try to determine which spectral fea-
tures differentiate objects in which the photoionization is by hot OB stars from objects
in which the photoionization is due to a "non-thermal" or "power-law continuum". We
know that H U region-like galaxies can be distinguished from Seyfert 2 galaxies by the
weakness of low-ionization lines like IN III X6583, IS II] X.X6716,6731, and especially [0 I]
.X6300. It is the basis of the classification scheme of Baldwin, Phillips, and Terlevich
(1981, BPT).

In the present discussion we propose a revised method of classification of
narrow-line AGNs and H II region-like galaxies based on line ratios involving [0 qn
,\5007, [N nI X6583, [s n] )`6716,6731, [0 i] )6300, and the Balmer lines. It excludes
reddening-sensitive line ratios such as [0 II \3727/[O MI )5007 used by BPT. Since
that paper appeared, large sets of data on emission-line galaxies have been published by
Keel (1983) and Balzano (1983). These and other recent data will be included in our
analysis. Our theoretical understanding of emission-line galaxies has also improved con-
siderably during the past five years. Important publications of photoionization models
by power-law spectra and by hot stars will be discussed as they can help discriminate
between the two classes of objects.

I. Results and discussion

The reddening corrected line ratios of the objects in our sample are presented
in figures 1-6. In these figures, NLRG stands for narrow-line radio-galaxy and NELG
for narrow-emission-line galaxy (Shuder and Osterbrock 1981). In figures 1, 2, and
3 the four short dashed lines are H II region models of Evans and Dopita (1985) for
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SPECTRAL CLASSIFICATION

To= 56 000 K, 45 000 K, 38 500 K and 37 000 K from top to bottom, respectively. The
long dashed curve is the H U region model of McCall, Rybski, and Shields (1985).

In figures 4, 5, and 6 the short dashed curves are power-law models of Ferland
and Netzer (1983) for solar and 0.1 solar abundances (upper and lower respectively).
The ionization parameter varies along each curve from 10-1.5 to 10-4. The long dashed
line is the composite, two-component (N. = 102 and 106 cm- 3 ) model of Stasinska
(1984). The ionization parameter varies along the curve from 10-2 to 10-4. The shock
models of Shull and McKee (1979) are presented as the dot-dashed curve. Shock velocity
increases along the curve from less than 80 km s-1 to 130 km s-1.

In all six figures the solid curve divides narrow-line AGNs from H II region-like
objects. A clear separation between the two classes of emission-line galaxies is apparent,
especially in figures 3 and 6. The distribution of NELGs however, is not like the distri-
bution of either class of objects. Instead some NELGs are clearly H II region galaxies
while others are narrow-line AGNs.

Finally, a few objects in our sample (half-filled circles in figures 4-6) fall in the
region of H H region galaxies in some diagram(s) but in the region of AGNs in some
other diagram(s). Many of these objects have uncertain line ratios; others are "transi-
tion objects" where both ionization mechanisms might be operating. The "outstanding"
NLRG in the first three figures was thought to be 3C 178 by Costero and Osterbrock
(1977). However, a more recent accurate radio position determined by Haschick et at.
(1980) shows that the object Costero and Osterbrock observed is not the radio galaxy
3C 178. The object they observed is an H II region galaxy that is by no means excep-
tional, while 3C 178 is presumably a much fainter and still unidentif •d quasar. This is a
striking confirmation of the classification scheme.

This method of classification of emission-line galaxies is discussed in greater de-
tails in Veilleux and Osterbrock (1986).
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SUMMARY OF SYMPOSIUM: LOW LUMIJNOSITY SOURCES

FRANK H. SHU
Astronomy Department, University of California, Berkeley, CA 94720

INTRODUCTION

Together with Eric Becklin I have the unenviable job of trying to summarize a very diverse
and productive conference. To break the job down to more manageable proportions, we have
decided that I would cover the low-luminosity sources, and Eric the high-luminosity sources.
Rather than try to encapsulate the many papers presented on the former subject, I shall
begin my review with a summary of some major themes and end with a few speculations on
possible theoretical mechanisms.

ORIGIN OF INFRARED EXCESSES OF IRAS GALAXIES

One of the most basic issues addressed at this meeting is surely the question of the origin
of the infrared excesses of IRAS galaxies with large ratios of infrared to optical luminosities.
Three leading contenders were put forward as the fundamental energy source powering the
phenomenon:

(a) the physical collision of two nuclear disks,

(b) a burst of star formation in the central kpc of a galaxy,

(e) reprocessing of the light from an active galactic nucleus (AGN).

In particular, Martin Harwit started his presentation of the model developed by himself
and his colleagues with some strong philosophical arguments why candidate (a) should be
favored over candidate (b). Now, I personally am very susceptible to such an appeal, and am
persuaded that the only viable counter to a good philosophical point is another good one.
Let me therefore give what is probably the standard party line on this point, namely, the
consideration of energy efficiencies.

(a) If one has a gram of matter and one wishes to generate light, dropping this matter down
a galactic potential well characterized by a velocity of 300 or 500 km/s (i.e., roughly 10-
the speed of light) will yield a kinetic energy (which can be coverted to heat and photons in
inelastic collisions) of - 10-e mc2 .

(b) Dropping the same gram of matter onto the surface of a main-sequence star will liberate
about the same potential energy as dropping it through a large galaxy, but if this (hydrogen-
rich) matter later undergoes fusion reactions, the efficiency increases to about 1%. Of course,
in high-mass stars, only about 10% of the entire mass is ever burned, so the overall energy
release is more like -o 10-s rc 2 .

(c) One can do better by dropping thb same gram down a black hole. The efficiencies are
not known accurately, but most estimates for swirling accretion in a disk geometry yield an
energy release of about 10- mc2 .

The argument now proceeds that if one wishes to explain the most energetic members of
any clan of phenomenon, it pays to be as efficient as possible in the use of matter to create

Corol J. Lonsda Persnon (Ftor)
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energy. From this point of view, when considering the most luminous of the IRAS galaxies, it
is natural that one should first examine the AGN possibility represented by the last member
of the above list. For lower and lower luminosity sources, one can perhaps safely proceed
further and further back on the list. But the penalty for using one of the earlier mechanisms
to explain a very high luminosity source is that the fundamental energy supply cannot last
very long, and therefore the likelihood of seeing the phenomenon at any given time becomes
small.

Nevertheless, I believe that ample evidence was presented at this meeting that starbursts
are behind many of the less energetic examples of strong infrared-emitting galaxies. The
most compelling argument concerned the spatial location and extent of the infrared emission
and the associated molecular gas. Sofue, Lo, and Turner showed us beautiful maps that
indicated large amounts of molecular gas, the raw material for star formation, are found in
the central few hundred parsecs of candidate starburst galaxies. The total amounts of gas
in these galaxies deduced from CO observations, as reported by Dave Sanders and others, is
often disturbingly large - in excess of 1010 Me in some cases. The associated far infrared
emission, as detected from multi-aperture studies, is frequently spatially extended, ranging in
scale from 10-1 kpc to 101 kpc. And, as we learned from Frank Low's discussion, the IRAS
observations themselves used in a super-resolution mode can sometimes rule out pointlike
(i.e., AGN) models for the source of the warm dust emission.

Equally conclusive for me were the many correlations with indicators of star formation: hy-
drogen recombination lines, especially the Brackett lines recommended by Paul Ho - shocked
molecular hydrogen, as reported upon by Dr. Joseph and others - various spectroscopic di-
agnostics of young massive stars, especially the CO bandheads associate I with M supergiants
discussed by George Rieke - etc. The correlation with radio covtinuum emission was also
good - in fact, inexplicably good - and I thought I heard a collective sigh of relief from the
audience when Dr. Eales reported that the correlation of nonthermal radio continuum with
far infrared emission may, after all, have more scatter than originally thought.

DEFINITION OF A STARBURST

Another topic which occupied much of the attention of this conference's participants seemed
to be the question of the proper definition of a starburst galaxy. Dan Weedman offered a
particularly sweet definition in his talk, but I gathered that most people favored a definition
that would take into account some notion of a high star formation efficiency. An operationally
useful measure of the rate of star formation per unit mass of raw material is the ratio

lit /Mr,,1

where LoaOfs ts the part of the (far) infrared luminosity of a galaxy which can reasonably
be attributed to OB star formation and M. is the total mass of (molecular) gas in the
galaxy. Many of the papers of the conference addressed the issues of how to derive either the
numerator or the denominator of the above ratio.

The best determinations of LOBs Of involved physically motivated decompositions of the
infrared emission seen in the four IRAS bands. The m, 4els discussed by Peter Mezger, Jean-
Loup Puget, and reviewed by George Helou on behalf of Michael Rowan-Robinson and Tieje
de Jong, had various combinations of the following four elements in their decompositions:

L, Le + + +L., (2)
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where L* is a cold or "disk' contribution which comes from H I and cold H2 gas, Lw is a
warm or OB stars contribution which can be associated with a "starburst* in the extreme
cases, LA is a hot or small-grain component associated with non-equilibrium heating of PAH
particles, and LAGN is a Seyfert component associated with dust heating by a central engine.
The consideration of PAHs is mostly important at 12 pm; strong emission at 25 pm may need
to invoke an AGN component, but as Carol Persson has argued, the main contributors at 60
and 100 pm, where the bulk of the radiant energy is generally emitted, are the "warm' and
"cold' components in most galaxies. Although the details differed somewhat, I gathered the
impression that most of the workers in this field got results in reasonably good agreement with
one another. For example, as a rule of thumb, roughly half each of the far infrared emission
from a anormal' spiral galaxy comes from the warm and cold components. In principle, then,
we now have the numerator L" "! as the integral of Lw over frequency P.

The determination of the denominator M. in equation (1) turned out to be more contro-
versial. Dr. Krugel is correct, in principle, when he says that the best method for estimating
the total gas mass is from measurements of the submillimeter and millimeter luminosities.
At submillimeter and millimeter wavelengths, the thermal emission from dust grains can be
assumed to be optically thin, and the Planck function can be approximated accurately by its
Rayleigh-Jeans limit, so that the total thermal emission is proportional to an integral of the
dust temperature Td over the mass distribution of the dust. If a single value of Td dominates,
we have

L. oc MdTd, (3)

where Md is the total dust mass and where the proportionality constant (essentially the dust
emissivity) is a function only of the bulk optical constants of the grains and not of their sizes
(if the grain radii are small in comparison to the wavelength). Since L, can be measured and
Td can be modeled, equation (3) allows a straightforward deduction for Md, from which one
can obtain M. if one assumes a (standard) ratio for the gas to dust. The procedure sounds
foolproof; however, one must remember that interstellar dust emissivities at submillimeter
and millimeter wavelengths are not yet perfectly known; residual uncertainties of factors
of 2 to 3 still exist, although this situation should improve with time as better empirical
calibrations are established.

Until these calibrations are available, it would probably be wise to continue to use other
methods in parallel with the one above. The CO method commonly assumes that the lumi-
nosity in the 12CO line is proportional to the total amount of (molecular) gas:

Lco = C 1 M, (4)

where C1 is a constant whose value can be obtained by calibration on nearby clouds. The
question has been raised at this conference how it is valid to use optically thick radiation to
estimate masses. On the face of it, this criticism sounds devastating. However, a good defense
exists for the procedure; indeed, the technique did not originate with CO observers - optical
astronomers use radiation from optically thick objects to estimate masses all the timel Stars
like the Sun have a total optical depth of about 1012 through their centers, yet this does not
prevent optical astronomers from gathering the integrated starlight from a galaxy to estimate
its mass. What is needed, of course, is a calibration of the mass to light ratio, i.e., the notion
that in some sense one is counting stars of a common population of types. Similarly, if one is
counting clouds of a fixed population of types, the use of equation (4) is justified. However,
variations of C1 (with gas temperature T., etc.) cannot be easily discounted.
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Checks for the CO procedure do exist for the Milky Way. As discussed by Phil Solomon,
the masses ). of individual giant molecular clouds (GMCs) can be obtained both by the
above conversion procedure and by application of ths virial theorem. Within factors of 2 or
so, the results seem in good agreement:

.NGMO jmGUO
0o Pd •T (5)

In external galaxies, an indirect check exists in Judy Young's work. She finds a correlation
between the total far infrared emission (not decomposed in the manner described earlier) and
the CO emission of the form:

LI, = C2,Oo, (6)

where the exponent P is a pure number with a quoted range between 0.8-0.9 and C 2 is a
constant for galaxies of a certain type. She also finds that the types of galaxies ("normal,*
"starburets,* ... ) can be separated out in bands in the log(LzR)-log(Loo) plane according to
their dust temperatures, i.e., C2 is really a function of Td. This conclusion, I believe, worries
a number of people, for if the characteristic dust temperature T4 can vary from galaxy to
galaxy, why not the characteristic gas (CO) temperature as well? In other words, is C 2 really
a function of Td, To, and yet other variables? How does this affect the determination of
the exponent P? Despite these reservations, I believe everyone can agree that the observed
systematic displacement of *starburst" galaxies from "normal" ones (as classified by other
techniques) in the log(LIR)-log(LCo) plane is reassuring.

The substitution of equation (4) into equation (6) y .,do the correlation

LIR -- c "O (7)

The indirect check on the whole procedure arises by noting that P is close to unity, which
suggests that for a given galaxy type (given C, and C2), the total star formation rate (oc LIR)
is (almost) linearly proportional to the total amount of molecular gas Mg, i.e., star formation
occurs (almost) independently in individual molecular clouds. The reasonableness of this
conclusion speaks in favor of the CO method for determining gas masses; however, it should
be noted that the argument is somewhat flawed by the result that the best fit for # is not
unity and by the possible variability of C, and C2 . As I shall argue toward the end of my
summary, in some of the more extreme starburst galaxies, the CO observations cannot be
counting molecular clouds - at least not of the variety with which we are familar in the
Milky Way. In any case, within the context of equation (7), the issue of enhanced star
formation efficiencies manifests itself in the need for the net coefficient CPC1 to be a factor
of 4 to 5 larger for "starburst" galaxies than for 'normal* spirals. Given the uncertainties
inherent in the various calibrations, I personally am unsure how seriously to take the implied
interpretation that starburets have a star formation efficiency "only" a factor of 4 to 5 larger
than normal galaxies. The ratio L&°B 'I/M, could be appreciably larger than 4 to 5 if L 1t'
virtually equals the total LIR in starbursts but is only half of LzR in normal galaxies, and
if Mg has been systematically overestimated in the former because the gas temperatures T.
are higher than in the latter.

The gas mass deduced for the central kpc of some of the most active starburst candidates
is so large in some extreme cases (,-- 1010 Me) that it should dominate the gravitational field
of the region. Since the gas likely forms a rotating disk, rotation curves from resolved H I
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or CO studies may yield good values for the total mass contained in the nuclear regions. It
would be useful to compare such dynamically derived masses with the very large estimates
for M• that result from application of the techniques discussed above.

TRIGGERS OF OB STAR FORMATION

Another major area addressed by this conference was the discussion of mechanical triggers
of OB star formation. Scoville and Kaufman talked about the effect of spiral arms; Devereux
and Lo talked about bars and oval distortions; and a large number of speakers talked about
interacting galazies. In the last case, as Alar Toomre reminded us, there are a number of
different levels of interactions. At the lowest level, there are gravitationally induced orbit
craekingr, at the next level, there are thefts of the fuel for star formation or nuclear activity;
and at the most violent level, there are mergers. The common underlying theme in all of the
proposals seems to be the idea that if one somehow gathers enough gas in a confined space,
there will be enhanced OB star formation: the better this is done, the more spectacular will
be the resulting starburst.

While this intuitive idea has considerable merit, and the empirical evidence for some sort of
effect now seems overwhelming, a few words of caution may still not be out of place. The first
caveat concerns the role of mergers in making starbursts in the central kpc of a galaxy. Ajar
Toomre emphasized how the dissipativeness of interstellar gas would enable it to settle deeper
than the stellar component in the gravitational potential well of a merger product. However,
there may be a more serious difficulty than binding energy, and that is how to get rid of the
excess angular momentum in one or a few orbit crossings. Colin Norman gave a formula for
angular momentum transport which indicated very short timescales, but it should be noted
that his formula works best near resonances, and that his numerical estimate for the drag
coefficient -y invoked the observed nuclear conditions of starburst galaxies. Getting all that gas
there in the first place is the real problem. Perhaps the resolution of this problem will come
from natural selection, namely, that only those mergers involving appropriate combinations
of orbits and spins as to give large amounts of gaseous matter with nearly zero angular
momenta will naturally produce nuclear starbursts. (With a flat rotation curve, to reach
1 kpc from 10 kpc, matter needs to have cancelled 90% of its specific angular momentum.)
The other combinations may give mergers which do not yield nuclear starbursta, and it would
be interesting to work out what the statistics of mergers and starbursts have to say on this
possibility.

Jay Frogel in his talk likened the large-scale problem of galactic star formation to the study
of a "forest.' This analogy raises the caveat that it is not at all obvious how the supposed
"trigger" of starbirth is supposed to work on the level of the "trees.' For example, OB stars
are observed to form not just anywhere in Galactic molecular clouds, but only in the densest
cores where the ambient pressure in the form of density times temperature, nT, exceeds 10%-
10s in cgs units. Think of the Becklin-Neugebauer object, or W3 (OH), as studied by Jean
Turner and Jack Welch, if you want to visualize the extreme interstellar conditions under
which OB stars are born. It is the formation of these kinds of regions that one must induce
if one wants to trigger OB star formation.

The final caveat begins by noting that the subject of starbursts did not begin with the IRAS
discoveries of infrared-bright galaxies. Zwicky may well have known about the phenomenon
in 1937; certainly in the early 1970s, Sargent and Searle were actively calling astronomers'
attention to the problem of blue compact dwarf galaxies. Such dwarf galaxies can evidently
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undergo starbursts, and as Jay Gallagher and Deidre Hunter have frequently emphasized,
some of these systems seem to have none of the gravitational trigger mechanisms enthusias-
tically embraced at this meeting.

BIMODAL STAR FORMATION

An idea implicit to many people's discussion at this conference, but mentioned explicitly
only in the talks by Scoville and Montmerle, is bimodal star formation. By bimodal star
formation, I mean the notion first introduced by Peter Mesger and Lindsey Smith, and sub-
sequently expanded upon by Rolf Gusten, Richard Larson, and many others, that somehow
the modes of formation of low-maws stars and high-mass stars are different and take place
more or lees independently of each other. The idea is intrinsic to many of the papers presented
here because starbursts appear to be primarily a phenomnenon of enhanced OB etar forms-
tion. Indeed, in many active regions of OB star formation, a normal initial mass function
will give an untenable number of accompanying low-mass stars.

From observations of star forming regions in the Galaxy, it is known that the formation
of low-mass and high-mmn stars take place in morphologically different kinds of cloud cores.
In regions like the Taurus or Ophiuchus molecular clouds, the small cores from which low-
mass stars form have gas temperatures T,,, 10-30 K and visual extinctions Av - 101-10s
mag. This is to be contrasted with the large dense cores in giant molecular clouds with
gas temperatures T. - 50-100 K and visual extinctions Av - 101-10s mag. Clearly, this
morphological distinction deserves investigation as a basis for a physical theory of bimodal
star formation.

Considerable evidence has now accumulated that the birth of low-maem stars is not exter-
nally triggered. A relatively complete and satisfactory theory exists, in my opinion, for how
such stars form. And, as has been shown by Chas Beichman, Charlie Lada, Phil Myers, and
their coworkers, there are many IRAS sources which look like the theoretical models for low-
mass protostars. The remaining empirical question for the issue of bimodal star formation is
therefore: Is the formation of high-mass stars externally triggered?

CONSTRAINTS ON STAR FORMATION TRIGGERS

One constraint on the nature of star formation triggers in the context of starburst galaxies
is the need for global .imtdtaneitg. It does not help to make a starburst if one has a mechanism
which only works on one molecular cloud at a time; one needs to make all (or, at least, a
lot) of the molecular clouds go off more or less simultaneously. Providing global timing may
be one role (perhaps tho primary one) of gravitational mechanisms like spiral density waves,
bars and oval distortions. and interacting galaxies, but one still needs to ensure that the
relevant processes act qdi•kly enough to produce the conditions necessary for OB starbirths.
This may be a potential problem for the random agglomeration picture proposed by Struck-
Marcell and Scalo. As long as they stick to one-zone models, they can get impressive bursts
of star formation because in a one-zone model everything is the same everywhere and stays
well synchronized. As soon as they go to multi-zone models, they encounter difficulties, as
has been reported at this conference. The bursts in individual zones lose coherence, and the
integrated light does not show impressive variations. Gathering clouds by fast instabilities
rather than by random agglomeration may offer a solution to this problem.

There is a more subtle constraint on the nature of star formation triggers when one comes
to the microscopic level of individual star-forming clouds. Historically, it was thought that
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external triggers were necessary because it was thought that stars formed from H I clouds.
H I clouds are not self-gravitating. Clearly, it would be very difficult to form stars out of
gravitationally unbound material; therefore, something seemed needed to compress or to
gather H I clouds to bring them to a self-gravitating state.

Currently, it is known that star formation occurs from H2 clouds. H2 clouds are strongly
self-gravitating. Consequently, it is important not to be trapped by an antiquated viewpoint,
to be misled by an H I perspective when we live in an H2 world. In a sense, the original
problem needs to be inverted.

The point is that the star formation efficiency in H2 clouds is observed to be generally quite
low; Nick Scoville and others quote an efficiency of ~ 1% over the free-fall time at the mean
density of a giant molecular cloud. Thus, once H2 clouds have been formed (by whatever
mechanism one favors), the main theoretical problem is not how to trigger star formation, but
how to prevent it from happening even fater. This is the issue, of course, of the mechanical
support of molecular clouds. If we understand how this works, the enhancement of star
formation efficiency amounts to the removal of the natural obstacle to rapid star formation.

SPECULATIONS ON PHYSICAL MECHANISMS

What is this obstacle to rapid starbirth? What supports molecular clouds in bulk against
free-fall collapse? The last is a controversial question, but all workers, at least, are agreed
on one thing: it is not thermal pressure. Thermal pressure could be important in the cores
but not for the cloud as a whole. Another way of saying the same thing is that the Jeans
mass M., at the average conditions of a molecular cloud, is much less - by a few orders of
magnitude - than the cloud mass M,1. This implies, of course, that Jeans mass arguments
have less to do with the actual problem of star formation in molecular clouds than generally
thought in many theoretical discussions on the subject.

Could the support of molecular clouds be due to turbulent pressure? Many astronomers
would answer yes, but I belong to that school of thought - headed by Leon Mestel and
Telemachos Mouschovias - which believes that magnetic fields play the dominant role.

Why magnetic fields? First and foremost, unlike turbulence, magnetic fields are not easy
to get rid of. Because the universe lacks magnetic monopoles, magnetic fields cannot be
shorted out as electric fields can be by electric charges. The longevity of magnetic fields
makes them a natural candidate for a resistant obstacle to rapid star formation. The critical
mass M., of conducting fluid that can be supported by a magnetic flux t threading it is
given approximately by the well-known formula,

M.m0.15"/G1/2 105 Me ( B R (8)
~Op ; (8)

i.e., even a GMC of mass 10i Me and radius 20 pc can be supported against its self-gravity
entirely magnetically if the mean field strength threading it were 30 pG. The same formula
can be roughly scaled to any subclump inside it, so hereafter the subscript "cl' can refer
either to "cloud" or to "clump." Equation (8) provides a second reason for believing that
magnetic fields can play an important role in cloud support because tens of pG fields are now
commonly measured by the Zeeman effect in the denser regions of interstellar space by Carl
Heiles, Dick Crutcher, Tom Troland, and their colleagues. Finally, Fred Vrba, Steve Strom,
and others have shown by mapping interstellar polarization vectors in nearby dark clouds
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that manetic fields are well ordered over the dimensions of the clouds. This provides a third
remon to believe that magnetic fields are strong enough, at least in the smaller molecular
clouds, to prevent bad tangling by any turbulent velocity fields that may also be present.

Magnetic fields ameliorate the problem of the rotational braking of molecular cloud cores.
The acceptance of their reality also has the virtue of making supersonic (but subalfvenic)
"turbulence' in molecular clouds explicable. In this picture, cloud turbulence is simply the
superposition of many MHD waves with the perturbations of the fluid velocity associated
with the waves generally less than or comparable to the Alfven velocity VA. The idea is
that clouds have many sources of chaotic fluid motions (stellar winds, cloud collisions, etc.)
which will generate a wide spectrum of MHD waves. However, waves with superalfvenic fluid
motions will generate compressive shocks that diespate the waves rapidly. Thus, an arbitrary
spectrum will quickly decay mostly to Alfven waves with fluid motions v! that are Alfvenic
or less. There is a tendency for CO observers to see the largest motions because of photon
trapping (Peter Goldreich, private communication); therefore, observations tend to select for
v! - VA. But it is easy to show from equation (8) that cloud support by magnetic fields near
the critical state implies that the characteristic Alfven speeds are of the magnitude needed
for virial equilibrium, i.e., B' GM,1 (9

,, - ~ -VT

Thus, V! - VA implies that v/ - W.T., i.e., cloud sturbulenceP automtically has a tendency
to look sufficient for virial equilibrium. Pushing this line of argument further, one sees that
there should even be a rough correlation tf cc p-1/2 if the magnetic field B does not vary
strongly from region to region. With B held constant, the critical state is characterized by a
constant mean column density (see eq. [10]), i.e., the mean volume density of clouds (outside
of cores) will cale as p oc R-I. Thus might arise the correlation cited by Phil Solomon: v!
oc R1/2.

For the issues of more immediate concern here, once one accepts the dynamical importance
of magnetic fields in cloud support, one can also immediately deduce that there are logically
two regimes of interest for the problem of star formation. In the .subcriticl regime, Mj, < MA,,
one cannot trigger gravitational collapse (star formation) by any amount of increased external
load (external pressure) if 0 is conserved (field freezing) because the mass-to-fIlux ratio M.1/1
would remain fixed and subcritical. The problem is that although one may compress the
cloud, one also compresses the field B, and the restoring magnetic forces rise in tandem with
the increasing gravitational attraction (assuming quasi-spherical compression). To get star
formation in this situation, one strategy is obviously to decrease 4 (by ambipolar diffusion)
at more or less constant M.1 . Ambipolar diffusion, even in a largely neutral medium like a
molecular cloud, is a slow steady process, and I have suggested that this provides the mode
for low-mass star formation. In this mode, the production of low-mass stars would proceed
at a regulated pace virtually independent of external conditions if the condensing cloud cores
are well separated from one another.

In the .spevcritical regime, M.1 > M.,, the cloud's self-gravity can overwhelm the magnetic
support even if the fields. were to remain frozen in tke flvid. (But, of course, ambipolar
diff•usion would also take place concurrently and hasten the collapse process.) Fred Adams,
Susana Lizano, and I have proposed that this forms a natural scheme for getting efficient star
formation and/or high-mass stars. The details are vague because the relevant calculations are
not yet available, but the general idea is that a supercritical cloud would be able to generate
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the large, dense, and warm cores evidently needed to produce high-mass stars. It should be
noted in this regard, as mentioned earlier and as many people have commented upon before,
that the condition M., > M., is equivalent to the existence of a critical surface density:

M_. >80 - (o (10)

The supercritical condition corresponds to the onset of relatively rapid contraction; it gives
only a lower limit on the average conditions in a cloud needed to form the dense warm cores
that give rise to high-mass stars. Nevertheless, if one were to put even a healthy fraction of 80
ME in a square parsec into 0 and B stars, one might expect to get areal luminosity densities
of i. 104_-I0 Le pc- 2 , which is getting close to that seen in the region of the Trapezium
stars in Orion. Fred Lo and his colleagues reported limiting areal luminosity densities of ,,
I05 Le pc-2 for starburst galaxies. Does this number owe its explanation to the existence
of a critical surface density needed by self-gravity to overwhelm cloud magnetic fields of a
plausible mean strength?

For a canonical gas to dust ratio, equation (10) is equivalent to a critical mean visual
extinction:

Av,> 4mag( 3 -B#) (11)

The figure 3OG may typify the average conditions only in relatively small dark clouds;
GMCs, and especially their dense cores after gravitational contraction, may wen have con-
siderably larger values. Thus, it is interesting to note the following observed progression:

(a) The Taurus molecular cloud has cores with Av - 10 mag; it is a region of low star-
formation efficiency and seems tobe fannim an unbound association of low-masm stars.

(b) The densest portion of the Ophiuchus molecular cloud has cores with Av - 102 mag; it
has a high star-formation efficiency and may be forming a bound cluster containing mostly
low-mass stars but also a B star or two.

(c) Massive GMCs have large dense cores with Av - 10" mag; these sites produce an abun-
dance of OB stars.

To complete the conjecture, however, we must specify how the supercritical state is ever
reached. After all, if one started initially with a distribution of clouds, some supercritical
and some subcritical, one would imagine that all the supercritical ones would quickly collapse
on a magnetically diluted timescale. How does one then proceed today to get clouds with
M,5 > M., from a collection whose members all have M61 less than M.,.? The answer may
be simple: the build-up of M.1 by agglomeration. Consider two identical clouds (either H
I or H2 ) suspended on parallel sets of field lines. If these two clouds collide head-on across
their average field directions, in the aggregate, M,1 would have doubled and so would have
0. Thus, there has been no gain on the critical mass-to-flux ratio. Now consider colliding
two identical clouds head-on along mutually shared field lines; M,1 would again be doubled
but 0 would remain the same. There has now been a gain on the critical mass-to-flux ratio.
Although the examples considered are idealized, a little thought shows that even random
agglomerations will tend to increase the ratio Ma/O, and therefore, (portions of) very large
aggregates are likely to become supercritical sooner or later. Is this the reason that OB stars
tend preferentially to be formed from the largest GMCs?
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The same train of thought reveals that the quickest route to achieving supercritical con-
ditions is not to gather clouds randomly, but to gather them along field lines (perhaps by
the action of instabilities triggered by the gravitational mechanisms described previously). Is
this the route to trigger coherent waves of OB star formation and starbursta? Clearly, more
investigation is needed. What has been put forward here does not constitute a real theory
so much as a suggestion of a possible physical approach to a complex astronomical problem.

A FEW RANDOM OBSERVATIONS

Let me end my summary with a few random observations. First, if it is true that some
extreme starburst galaxies have 1010 Me in the central kpc, then the mean surface mans
density must be

10 0 MS/r(l kpc)3 mM00 Me pc-2 , (12)

which is as dense as the densest regions of the Ophiuchus molecular cloud. Unless molecular
clouds are packed several deep in the vertical direction of the nuclear disk (which is difficult
to sustain mechanically), there is no room in the central regions of these galaxies to store
molecular clouds of the type with which we are familar in our own galaxy. We cannot be
counting ordinary molecular clouds in these extreme cases, and the use of equation (4) in its
standard form (constant C1 ) cannot be correct in principle.

Second, efficient star formation under the condition described by equation (12) is quite
plausible if we judge from the example of Ophiuchus. If, unlike Ophichus, numerous OB
stars are also formed (perhaps because of higher intrinsic gas temperatures in the cores),
then feedback from vigorous star formation under very cramped quarters will undoubtedly
play an important role, as has been alluded to by Tim Heckman and others at this conference.
Unfortunately, rigorous consideration of all the relevant effects is likely to be quite complex -
the feedbacks on star formation itself could be negative as well as positive. Solid theoretical
progress will be difficult; this aspect of the field may long remain primarily an observer's
domain.

Finally, we should not forget the blue compact dwarf galaxies. How do starbursts work in
them? Perhaps a clue exists in their not possessing much differential rotation. According to
present ideas, a body undergoing only solid-body rotation will not amplify magnetic fields
via dynamo action. Could dwarf galaxies possess anomalously low magnetic fields so that
they lack this natural inhibitor to rapid star formation? Or is H I gas, after all, the principal
rservoir forforming stars in such galaxies? Or is the constraint of global simultaneity
relaxed for dwarf galaxies because the total number of cloud complexes is small enough to
allow statistical fluctuations to play more of a role? Clearly, more discussion is needed of
these enigmatic objects. They may provide a clue to the problem of primordial star formation,
which probably took place in a high temperature environment free of magnetic fields.

752



MORPHOLOGY OF LUMINOUS IRAS GALAXIES:
SUMMARY TALK

E. E. Becklin
University of Hawaii, Institute for Astronomy

Honolulu, Hawaii 96822 USA

As my part of the summary I will discuss the morphology of luminous IRAS
galaxies and make a few comments about where we go from here in our
unders tand ing.

MORPHOLOGY OF LUMINOUS IRAS GALAXIES

I will define a luminous IRAS galaxy as one with a luminosity of
>3 x 1010 Le, corresponding to the break in the galaxy luminosity function
(Soifer et al. 1986). 1 will discuss the morphological properties of three
subgroups, each separated in luminosity by about a factor of ten.

For galaxies just above the break at L - 3 x 1010 to 1011 L., there appear
to be two dominant types. First, there are luminous Sc galaxies in which most
of the emission is coming from the disk of the galaxy. Significant infrared
emission is seen both from interstellar grains and grains in giant molecular
clouds (Perseon and Helou 1986; Meager et al. 1986). For these galaxies the
infrared to blue luninosity ratio is similar to galaxies of a lower luminosity.
Second, there appears to be a class of optically barred galaxies (-10I of all
barred galaxies) that show significant infrared emission in this luminosity
range (Hawarden at al. 1986). The galaxies have been discovered by their
strong 25-Pe euission, but also show a blue (hot) 60- to 100-Pm color.
Devereux (1986) has shown that these "hot" barred galaxies appear predominantly
in earlier types. Observations by Devereux (1986) and Hawarden et al. (1986)
indicate that the emission is nuclear in origin and probably from a burst of
star formation. The galaxies NGC 253 and M82 may be nearby examples. Very
interesting results on M82 indicate a ring structure and an outflow (Sofue
1986; Lo et a1.1986).

For galaxies with luminosities at L - 1011 L. to 5 x 1011 Lo, we find
that galaxy interactions cad mergers become much more important (Joseph and Wright
1986; Cutri 1986; Lonsdale et al. 1984). It appears from previous work and
papers presented here by Keel (1986); Rodriguez-Espinosa at al. (1980; Wilson
066); as well as the review by Rieke (1980, that we see both nuclear star forma-
tion and an active nucleus in the form of Seyfert-type activity. Surprisingly,
the amount of luminosity seen in star formation and a Seyfert-type nucleus
appear almost equal. This occurs collectively in a sample of galaxies and also
in many individual galaxies such as NGC 1068. At this point we do not know
which phenomenon is more fundamental. Put simply, we do not know the relation-
ship between star formation and an active compact nucleus. The results pre-
sented certainly indicate that there must in fact be an important connection.
Is it as simple as the fact that both are fed by interstellar material?

COW J. Loudale Peruan (Editor)
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At a luminosity at or greater than 1012 L. we find the following
properties.

1) Infrared selected galaxies have as high or a higher space density, at
a given luminosity than objects selected from optical, x-ray, or radio
surveys (Soifer et al. 1986, and references therein).

2) Most or all of the galaxies have a high LIR/LB(>10). These are true
infrared galaxies.

3) Most or all are interacting or merging.

4) There is evidence for great amounts of interstellar material from the
interstellar reddening, CO line observations (Young 1986; Sanders et
al. 1986) and submillimeter continuum measurements (Emerson et al.
1984; Chini et al. 1986). Most interesting, the region of strong CO
emission is, in some galaxies, very compact (Sargent et al. 1986).

5) I would speculate based on a few nearby galaxies (Becklin and
Wynn-Williams 1986) that most of the infrared radiation from this
class of galaxy comes from an active compact nucleus.

Finally, at a luminosity of > 1013 L., we do not presently know the space
density of infrared objects, alttough a few appear to have been found
(Klauann and Keel 1986).

COMMENTS ON FUTURE OBSERVATIONS OF LUMINOUS IRAS GALAXIES

I would like to make some points about observations of high-luminosity
infrared galaxies like Arp 220.

1) Understanding of these objects will probably be critical in solving
QSO-Seyfert-energy source problem. The explanation of these phenomena
may require an understanding of new physical processes (for example
Harwit et al. 1986).

2) We will be better off if we study a moderate number of galaxies in
great detail rather than gathering large quantities of statistics.

3) The objects will be difficult to study at optical, near infrared, and
x-ray wavelengths because the optical depth in dust is too large.
This was nicely pointed out by Rieke in his review.

4) We need infrared diagnostics and tools to make these studies. The
primary diagnostic will be infrared spectroscopy with high angular
resolution. The spectroscopy is important to understand the physical
environment and to get velocity information. High quality observa-
tions will be necessary in conjunction with theoretical and laboratory
studies of molecular and atomic lines.

FACILITIES FOR FUTURE OBSERVATIONS

As regards tools for these studies, ground-based, suborbital, and space-
based platforms will all be important. From the ground, infrared use of the
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new large telescopes like the Keck 10-meter will be extremely important. This
is especially true with the use of multi-element detectors at infrared wave-
lengths, both for imaging and spectroscopy. Also the new submillimeter tele-
scopes, presently under construction, will be of extreme importance in studying
these galaxies in the continuum and in spectral lines. Another important tool
will be the proposed 3-meter airplane telescope, SOFIA. This instrument will
provide a large collecting area for spectroscopy above the earth's atmosphere
and will allow high angular resolution for imaging in the far-infrared.

In space, the second generation of instruments on HST will include an
instrument that extends the wavelength coverage to 2.5 pm. Because of the
extreme high angular resolution possible with HST this instrument will be very
important. This is particularly true for the Pa line that cannot be seen from
the ground.

The reduced background of a cryogenic telescope in space increases the
sensitivity of an infrared telescope many orders of magnitude. Therefore, ISO
and SIRTF will be critical in studies of these galaxies. I have a political
concern about where these projects are headed. ISO is approved, but is now
making many critical compromises because of funding. These compromises will
seriously jeopardize the science return. SIRTF does not appear to be able to
get in the long NASA queue of approved projects. As an outsider, I have the
following question: Is it not scientifically reasonable to bring the two
projects together and create the best of both projects? It seems especially
relevant to discuss this today at the scientific meeting discussing the results
of the extremely successful European-USA project IRAS.

SUMMARY

A year ago Malcolm Longair reviewed the first IRAS conference and con-
cluded that the most important new result discussed at the conference was the
existence of small grains or large molecules--a discovery that, in fact, was
not made by IRAS. This year I am happy to report that IRAS has brought infra-
red astronomy into the "big league" with respect to luminous phenomena in
galaxies. It now seems clear that in the luminosity range from 1012 to 1013 Lo
there is a large density of luminous infrared galaxies. In this luminosity
range, the space density of galaxies selected by their infrared emission
appears larger than the corresponding objects selected on the bases of their
optical, radio, or x-ray emission. More important, I personally believe that
it will be the detailed studies of these infrared galaxies that will give us
the answer to the energy source in all luminous objects such as Seyfert galax-
ies and QSOs.
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clouds 67, 113, 117, 161, 164, 343, 637, 676, collisions, galaxies 387, 428, 457, 465, 515,

745 517,643
clouds, diffuse 113 collisions, galaxies, off-cenw 457
clouds, dark 346,749 collisions, nuclear disks 387, 743
clouds, dust 71, 133, 144, 164, 485, 707 color, B-H 293
clouds, dynamics 37, 67 color, bulge 626
clouds, giant 44, 109, 227 color, far infrared 63, 73, 95, 126, 155. 253.
clouds, HI 103, 134. 749 278, 320, 328, 479, 547, 560, 611, 619. 693
clouds, high latitude 113 color, infrared 63, 66, 278, 280, 320, 328, 479
clouds, identification 113 color, near infrared 164, 293, 482, 601, 625,
clouds, infrhaed 753 634
clouds, lifetime 457 color, optical 155, 293, 303, 401,479, 572, 661
clouds, molecular see molecular clouds color, ultraviolet 479
clouds, molecular, giant - see giant molecular color-color diagram 21, 64, 97, 134, 136, 319,

clouds 320, 436, 507, 675, 686, 694
clouds, Nenl 637 color-magnitude diagrams 162, 293
clouds, quiescent 24 column density, H2 344, 375
clouds, structure 38, 439 compact acemers 352
clouds, surface density 42 compact galaxies 136, 222, 556, 579, 582, 583,
cloudy density wave model 227 592,747
clumped extinction 238 compact galaxies, blue dwar 128, 583, 592,
clumpy galaxies 259, 264 747
clumpy structure 227, 717 compact galaxies, emission-line 128
clusters, cirrum sources 553 compact HII regions 65, 66, 168, 242, 384,
clusters, galaxy 277, 283, 555, 568 compact objects, emission-line 161
clusms, globular. 161 compact sources, infrared 163, 243, 719
clustes, 0 star 68, 75, 77 compact sources, radio 367, 473, 643, 731
clumers, old 67 compactness, 10 microns 127, 612
chuss, star 76, 161 composite nuclei 676
chums, young star 67, 107, 249, 367 cool dust 63, 125, 133, 235, 319, 585, 589, 625
04O cycle 209 cool stars 164, 633
CO absorption 421, 633 core-hal structure 656
CO abumdance 163, 182 cores, clouds 6, 81, 23, 748
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oinao-iays 42. 377, 390, 576, 583, 593 dust, warm - wee warm dust
nemology 351 .355,38 547,693. du-powr galaxies 326

S- see IS Copped Photo- metric Chan- dust-io-ps ratio 104, 253
adt dusty filaments 368

cyiical cloud mass 442 dusty gal-Aes 170, 327, 358
ckical dewsity • m• verse 629 dusty Sayfert galaxies 725
critical srce dewily 751 dusy starburst galaxies 633
CS 79 dwarf, brown 247
cusp, Qalactic Ceow 633 dwarf alwxes - see galaxes, dwaf
cusp, M83 305 dynamics, clouds 38, 67
dtk clouds 346, 749 B galaxies, see galxies, elliptical
dark I.e 80, 183 E-SO galaxies 280
deme clouds 23, 264, 676 early S-sar 158
density waves 227, 315, 229, 307, 438 early-type glaxies - see lxies, early-type
dfifae clouds 113 early-type mrs 66, 261
diffuMe emission, far infrmed 21, 23, 93, 97, 99, eccentricity 534

103 edte-on galaxies 128, 179, 186, 276, 633
diffuse interstellfa medium 75, 113, 125, 153, ISrEIN fluxes 357

273,275 ELD - extended low dewity HI regions 100
disks, acretion 707, 725, 727, 743 eectron densites 236
disks, circummuclear 462 lectron energy spectrum 228
disks, counte-rotating 417 electron tempmauure 247
disks, HI 200, 228, 283, 285 electrons, relativistic 126, 228, 711
disks, molecular 3, 80, 367, 462 ELFS - extremely luminous far infrared sources
disks, nuclear 179, 387, 743 387
disks, rotaing 81, 678, 746 elliptical Salxies 128, 136, 273, 278, 331, 333,
disturbed galaxies 280, 413, 643 517, 568, 572, 734
double lobed radio sources 533 emission features, dust 682
dust 97, 117, 141, 153, 168, 245, 246, 249, 267, emission line kinenatics 678

293, 316, 351,411, 525, 577, 579, 633, 675, emission-line galaxies 128, 737
676,701,727.754 emission-line galaxies, compact 161

dust clouds 71, 133, 144, 164, 485, 707 emissivity - we dust emissivity
dust emission features 682 ESO/SERC plates 113
dust emissivity 83, 154, 157,279, 280, 324, 745 evolution, galmxes 161, 167, 461
dust grains 23, 75, 78, 93, 104, 109, 113, 134, evolved objects 164, 242

254, 301, 319, 323, 557, 708, 745, 753 evolved stmas 336, 515
domt laimig 301, 363, 497, 501, 583, 681 excess, infrared - see infrared excess
dult lane 68. 309, 499, 643 exteanded low densiy HI! regions 100
dot mas 146,207 exended molecular disks 367
dust scaaming 463 extinctio 63, 129, 133, 141, 156, 168, 235,
dust shells, circunslellar 23, 128, 135, 141, 274, 296, 323, 363, 501, 515, 518, 572, 576,

161,549 579,601,616,633,643
dusmutuw e qP 3, 12, 15, 71, 73, 83, 95, 104, extincton curve 115, 251

156, 197, 204, 207, 211, 289, 324, 363, 414, extinction, clumped 238
583, 745 extinction, Ha 153

dek, cold - we cold dust extinction, very high 637
dust, cool - we coal dust extragalactic HI! region 263, 436
dmst, grphilte 24, 119 extragalactic HU regions, glint 261
dust, high glectic latitude 33 extreme ultraviolet 387
dut, hot - see hot dost extremely luminous far Infrared sources (ELF)
dut, shock heated 83 387
dutg, silce 24, 251, 644 FAber-Jacksmn law 57

dust, d 4klat-bomted 84 ftbry-ferot spectometw 310
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faceon SlaxIes 197, 345, 491,636 galaxies, blue irregular 259, 295
fa&M emisson-line galaxy 559 galaxies, CPA 353
faN alexies 357. 605, 623, 693 galaxie, CFA Seyfert 723
fant micle 698 galaxies, clumpy 259, 264
far InfMared perture phoometry 717 galaxies, clusters 277, 283, 555, 568
fr inared color - swe color, far infrared gaxies, CO-bht 179
far infrared emission 12, 26, 75, 83, 93, 99, galaxies, colliding - we galaxy 179lisi

153, 235, 243, 245, 246, 255, 267, 270, 276, galaxies, colliding ring 435
277, 289, 292. 293, 315, 319, 323, 387, 401, galaxies, compact 136l 2i 556g 579, 582, 5834
409, 483, 501, 507, 547, 565, 575, 579, 583, 592, 747
589,629,669,675,681,731,744 galaxies ompact on-line 128, 583

far infared emission, diffuse 23, 93, 97, 99, galaxies, compactness 222
103 galaxies, ops n merged 413

far infrared luminosity 3, 12, 37, 51, 57, 75, 83, glaxies, distant 171, 253
126, 153, 167, 220, 250, 267, 294, 364, 412, galaxies, distuae 280, 4,643
463,471, 531,599 galaxies, dust-poo 2 6

fr infrared spect 133, 137, 217, 297 galaxies, dust-poor 326
far infrared-o-blue luminosity ratio 128, 275, galaxies, dusty 170,327 358

277,321, 352, 501,753 galaxies, dusty Seyfert 725
far ultraviolet 119, 247, 377,727 galaxies, du7Vy swbst 633
1F1I lines 421.431 galaxies, dwarf 110, 128, 161, 171, 245, 253,
field frezig 750 263, 267, 331,395,436,479, 583, 592,747
FIR - see far infrared galaxies, elliptical 128, 136, 273, 278, 331, 333,
Fisher-Tully law 57 517, 568, 572, 734
flat spectrum radio seoure 473 galaxies, B-SO 280
FLR - see fxbidden line region galaxies, early-type 124, 126, 141, 200, 219,
fluorescence 115, 422 278,326,333
fodden line region, optical 711 galaxies, edge-on 128, 179, 186, 276, 633
formation, glaxies 461 lxies emission line 128,737
fossil gabxies 336 galxies, energetic 269
free radicals 119 glaxies evolution 161, 167
fre-fail - callo 4, 749 galaxies, extrue IA 504

wfref emission 26, 31, 228, 235 galaxies, ace-on 197. 345, 491,636
fee-free luminity 8 galaxies, faint 357, 559, 605, 623, 693
fuel theft 747 galaxies, fossil 336
fuel, star formation 224 galaxies, gs-rich 387, 399, 421, 517
g-bamd 664 galaxies, gIant 171, 253, 267
O-K stars 86 - , giant radio 666
o-type star 422 glaxies, gmand design spiral 227, 343
galactic muclei - see nuclei of galaxies and ac- galaxies, MI-deficient 210, 278, 283, 287

ie nuclei galaxies, high-redshift 560, 611
Galactic star formaton 3, 37, 63, 67, 71, 79, galaxies, highly obscured active 611

83,99,633 galaxies. I-I 136, 479, 482, 510
galaxies, active - see active nuclei galaxies, hot 127,753
galaxies, active, highly obscured 611 galaxies, Im 110, 158,
galaxies, amorphous 171, 253, 259 galaxies, lm clumpy 259
gplaxies, aemic 283,436 galaxies, Wrared-brIght 205, 363, 651, 747
glies, Arp 136, 401 galaxies, infraed-luminous 274, 367
glaxies, Ibrred 125, 127, 217, 219, 247, 307, galaxies, infrared-selected 323, 482, 533, 589,

483,619,681,753 601,754
galaxies, blue 167, 2193, 356, 583, 592, 747, galaxies, interacting 3, 37, 51, 56, 57, 175, 197,

753 207, 245, 277, 280, 283, 387, 401, 406, 409,
galaxies, blue compact 128, 583, 592, 747 416, 421,431,436, 457, 471, 501, 515, 533,
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572, 609,614. 625, 652, 657. 707. 747, galaxies, Sa-Sm 30, 126, 158, 179. 182. 197.
753 199, 217. 219, 225, 235, 274, 280, 283, 287,

plkdmd kmqug 136, 161, 167, 171, 197. 245, 335, 395, 498, 500, 580, 583, 592. 619. 626,
25& 263, 283, 334. 387. 401,436, 592 753

galaxies, kzd umorplam 171 plaxies, SO - see Plaxies, lnicular
gbxies, kfewgi, bluo 259, 295 paxies, Seyfat 154, 219, 223, 351, 389, 412,

galaxies, kuupd dsta 171 421,429, 431,523, 527, 534, 579. 602. 609.
alxis kregu dwarf 171,436 619, 643, 652, 661, 669, 675, 693, 701, 723,

gamis kmgub SIgM 171 753
pkdw ktWw m. i 2.59 pglxies, Seyfut-1 135, 136, 510, 568, 611.
axiW, baslid 37, 51, 56, 57, 197, 212, 401. 675, 723,727
406, 409, plxies, Seyfett-2 136, 510, 568, 608, 614,

pblxim Imup 269 676, 717, 737

plaxies, b*4-ype 126, 219, 273, 275, 406, 569, plaxies, Shqley-Ames 323
S plaxies, splrW 75. 125, 153, 161, 182, 198,

gaxies buiocer 128, 136, 273, 274, 278, 200, 219, 235, 253, 281, 283, 287, 297, 326,
M 333, 335, 336, 568, 572, 580, 619 333, 336, 343. 376, 383, 401, 510, 515, 567,

33a5, 33g6,aw 515 575, 579, 3, 619,662,707
plaxks, lgwale 1 200, 351 gpalxies, staesbum 125, 136, 223, 327, 351, 356.
glxies, low mass 25 , 399, 427, 431, 435, 485, 501, 507, 523, 527,
gaxies, low s c b s 436534, 571, 579, 605, 614, 633, 652, 669, 675,

plsxiek, low f itye 294 6 703, 707,723, 737, 744, 7518abxie low emaki 29galaxies, stipped 210,2"/77,283, 28'7

paies, Inodnms 167, 172, 197, 200, 292, gxies, supet20,u277t 517, 707

531,623,634,701,754 plaxies, UC 2'73

slasdM mWHi k bregw 259 plaxies, ukltmlnu 411,415,471, 517
gaaie Mmbam 125, 351. 3539,57.,579 pbxies, Viro 126, 210, 225, 525

662 galxies, Verasov-Velyuminov 136
pbaxis Matbrim ao-Seyfut 527 galaxies, Zwicky 136, 436, 747
galaxies, Murm Seyf•t 62 Galaxy, diffuse emission 23, 93, 97, 99. 103,
pglaxiet Mg blu 579 plaxy clumrs 227, 283. 550, 568
Sdmc meWr nmnamg 436 alay collsiom 387, 428, 457. 465, 515, 517,
pg i, megn 54, 58, 197, 2D7. 212, 378, 643

413,421,431,457,465, 515, 517, 643, 648, galaxy evoluion 161, 167, 461
661,707,753 pglxy fmnato 461

gaxies m agblg IDiDm 515 galaxy nuclei 129, 211, 343,421.498,643
axes, meal poor 254, 586 gmma-rays 41, 391

gaaie N 539 ps compmasion 8, 227, 246
* pbAn- nwnow lir 737 ps dqd 449

Spk s, nemby 196, 356, 383. 565 ps dep1 dmcads 209. 305, 333, 336

plxies, no"mal 125, 134, 153, 252, 253, 273, gas dynumics 79, 267, 376, 435
387, 501, 527, 534, 560, 575, 579, 583, 602. gas flows 225, 661
605,626,629,707,723 gas infabW 344, 447

glxies, olbucutd, ac"Ive 611 gas inflow 395
pglaxes, opically-faint 465, 569, 623 gas mass 23, 217, 254, 287, 745
plximes, cdcaly-.eýleed 273, 525, 533, 723 gas mss density 452
plhies, opically-Mick 273 gas surface demity 303
O ,peculir 186, 217, 274, 280, 327, 49, gas wemperatm 289, 374

579, 664 gas, ionized 67, 75, 259, 309, 311, 316, 364,
ghies pjuM 351, 358 383, 390, 678,711
galx qukucax 135 ps, nmleula - see molecular ps
galxies, raft 66 737 ps, optcal emssb-o -i 463
pgxe rh4g 450,46, 515 gas, X-ray emiattng 465
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ps-rich glaxift 387, 399, 421, 517 He÷/H* abunda ratio 247
gas-loedout ratio 24, 72, 101, 109, 163, 207, heating, dust 83, 301, 363, 497, 501, 583, 681

211,751 heating, radiative 84
galnt cloud complexes 67, 153, 309, 438 heating, ultraviolet 170
giat clouds 44, 109, 227 heavy elements 357
giat galaxies 171, 253, 267 H1 3, 5, 26, 50, 75, 79, 99, 100, 103, 109, 119,
giut HU regions 227, 239, 241, 252, 261, 298, 128, 164, 198, 200, 210, 227, 241, 245, 246,

662 263, 287. 230, 292, 309, 331, 333, 334, 383,
giant irregular galaxies 171 390, 421,492, 494, 498, 553, 575, 605, 620
giant molecular clouds 3, 21, 24, 55, 57, 67, 70, HI absorption lines 597

97, 153, 162, 289, 359, 367, 385, 746, 753 IN anus 230
giant radio g-laxi 666 H bridge 109
giant stars, late-type 23, 164 HI clouds 103, 134, 749
globular clusters 161 HI deficiency 210, 278 283, 287
OMC - see giant molecular clouds HI disks 200, 228, 283, 285
grain mantles 116 HI distribution 109, 200, 242, 344
grain, dust -wsee dust grai HI holes 5, 200
pains, dust, heated 319, 301 HI line width 293
grains, graphite 24, 115, 119 HI mass 197, 575
r, silicate 24, 251, 644 H[/optical diameter ratio 285

gans, umall 117,620, 708,755 1H regions 201
grai, very small 23, 120 HI rich 336
grand design spiral galaxies 227, 343 H ring 230
graphite grains 24, 115, 119 E] stripping - see HI defiiency
Ha 125, 153, 167, 172, 197, 201, 210, 211, HI superipigls 374

227, 253, 292., 303, 310, 321, 333, 401,414, H uesel 7HI surface density 197, 263, 283, 305
491, 501, 569, 575, 616, 737 HI, Outer Galay 103

Ha emission line star 80 hi, veloy 103
Ha extinction 153 high velocity ougalow 463
Ha images 263, 306, 465, 662 high-redilo galaxies 560, 611
He intensity contours 303 HII complexes 21,309, 388Ho lumninosity 24, 60 1111 galaxies 136, 479, 482, 510
Ha s tropot 2mt6y0 125 HUI regions 3,23, 38, 58,63,64,67,75,79,
H surfa•e photometry 235 95, 97, 99, 128, 153, 162, 163, 168, 172,uejvo ratih 23 235, 241, 245, 247, 259, 263, 298, 311, 320,He/H/3 line ratio 616,678,727 321, 333, 336, 364, 384, 388, 412,414,427,H/M 560, 664, 676, 616 436,465, 510, 543, 569, 577, 585, 605, 620,HP 5, 64 6661, 666, 675, 717, 737H -1/ 5 6 0 , 6 6 4H U r g o s b i h t 7
H2 3, 37, 99, 162, 186, 291, 471,491,745 []I regions, bright 62
H2 abundance 163 HU region, cmpact 65, 66, 168, 242, 384
H2 colmnn density 344, 346 Hi regions, distribution 334

H2 emission 388, 427 HIU regions, extended low density 100

H2 lines 422, 431 HIU regions, giant 241, 52,261, 298, 662

H2 mass 29, 205, 211, 289, 315, 414 HII regions, giant radio 227, 231
H2 surf• densIties 198, 200, 492 HI1 regions, radio 3, 241

H2/CO ratio 163 HNI rings 662
H20 indices 164 hot cirrus 301

H20 masers 246 hot dust 23, 63, 319, 323, 351, 414, 482, 518,
halo population 161 589,601
halos, gamma-ray 391 hot galaxies 127, 753
halos, radio 91 hot gas 352
halos, X-ray 391 hot molecular cloud 6, 79, 383
He ionization 247 hot spot nuclei 225, 483, 518
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bh MM 133, 168, 259, 309, 351, 364, 589, initial mass function 31, 101, 163, 168, 245,
675,737 249. 250, 259, 261, 303, 324, 344, 363, 479.

IM - Nh resolution imager 487 501.664
hyskocubam mum 25 instability 438, 748

- c density 'wave model 227, 307 instabilift, bar 429
I-bo 227, 231,491 inter-arm regions 5, 211
ice mnies 24 -ract gaaies - wee p-axier, m
ICR - we lwtnclutr medium interactioI-induced spiral waves 457
ImSO Plx 110, 158 intercloud medium 438
Im galaxius. clumpy 259 inte'aromeric observations 368, 471,491
IMP - see initial mass functim intergalactc medium 468
lnaored - see also newamld~far infrared intermediate age stars 162
infrared acjift, nulear 427 intermediate mass suns 163
infrared color - see color, infrared interstela extinction curve 115, 251
inrered emission 11, 12, 21,46,97, 103, 113, interstellar gas - aeegs

117, 125, 133, 163, 183, 206, 245, 247, 275, interstellar medium 23, 75, 99, 104, 113, 125.
319, 352, 359, 363, 383, 411,431,499, 556, 162, 164, 260, 287, 305. 309, 323. 367,468,
50 561, 571, 579, 611, 616, 646, 652, 669, 491, 633, 648,753
675,701 interstellar medium cycling 491

infrared emission, diffuse 21, 23, 93. 97, 99, interstellar medium, dense 359
103 interstellar medium, diffusn 273, 275

infrared emission, extended 83 interstellar medium, neutral - see HI
infrared emission, spatial distribution, galaxies interstellar polarization vectors 749

128, 219, 241, 297, 497, 515, 611,643, 651, interstellar radiation field 21, 23, 104, 134, 141,
707,717 153,235,247,273,275, 301,320,323, 585,

infaredmexcess 62, 84, 99, 117, 155, 247, 250, 589,625
278,301,507,652,702,743 interstelar reddening - see reddening

inflared galaxy luminosity function 125. 358, intracluste medium 210, 277, 283, 287, 399
569 ionization 67, 99, 250, 352, 678, 739

infared luminosity 83, 100, 167, 197, 204, 206, ionized gas 67, 75, 259, 309, 311, 316, 364,
211,219, 321,364,409,498,499, 597, 605, 383, 390,678,711
619, ionized stellar wind 79

labored mapping 497, 664 ionizing radiation 70, 163, 235, 243, 363, 648,
fard reddeni 246 675

labored sources, compact 163, 243, 719 IR/B luminoity ratio 128, 275, 277, 321, 352,
iaed spectra 142, 793,717,723 501, 523,753
infrared spectral idex 507,727 IRAS - see also far infrared, infrared
iafored spectroscopy 129, 363, 421,619, 675, IRAS Additional Observations 83, 247, 297,

754 547,651,693
infrared spectrum 693, 717 IRAS Chopped Photometric Channel 83, 128
infared structume 107 IAS extended mission mapping 107
infaredcircular lsophofes 113 IRAS minisurvey 141, 147, 323, 482, 531, 589,
intored,eces 84 601

agxiesW 205, 363 IRAS Point Sourmce Catalog 135, 319, 523, 547,
InfmwP-esninig galaxiaes 138 559, 565
infired-loud quam 418 IRAS Pointed Observations - see IRAS Addi-
infared-mluminous galaxies 245, 274, 351, 367 tional Observations
in d-,nrmal laxies 277 IRAS Sky Brightness Images 63
i~Nfe-selected galaxies 323, 482, 533, 589, IRAS Small Extended Sources - see IRAS

601,754 Small Scale Structures
Infiared-o-e luminosity ratio 128, 275, 277, IRAS Small Scale Structures Catalog 523, 565

321,352, 523,753 IRAS Small Scale Structures 135
infred-to-radto flux 356 IRAS spectral synthesis 133, 319, 323
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E - Ifwe d excess luminosity, infrared 23, 83. 167, 197, 204, 206,
IRR - wse -Waxies, irregular 211, 219, 559, 597, 605, 619
irregular - - we -iuli, irregular luminosity, infrared, ar 515
IRX - see infrare excess luminosity, Lymana 155
ISM - see interstellr medium luminosity, Lyman continuum 168
ISO telescope 755 lumniosity, millimeaer 745
isolated galaxies 37,51,56,57,197,212,401, luminosity, OB star 75, 364

406, 409 luminosity, OH 597
ISRF - us interstela radiation field luminosity, optical 133, 575, 601
WE 259 luminosity, radio 168, 531, 575
J-F - se optical color luminosity, stellar 23, 31, 197, 363, 601, 634
J-H - see near infed color luminous galaxies 167, 172, 197, 200, 292, 531,

jet-induced star formation 395, 666 623, 634, 701,754
jets 384, 398, 465, 666, 676, 681,717 luminous galaxies, ultra 411, 517
JHK - see new infrared luminous stars 164

Kuacrhentseaf catalog M8 Lyc - see Lyman continuum

Keck 10-metm lescope 755 Lyman bands 422

kinetic energy 428, 743 Lymana 248, 363, 387, 727

L(FM) - see far infrared luminosity Lymana abso ityion 248

late-type galaxies 126, 219, 273, 275, 406, 569, Lymana luminosity 100, 155
5"72 LymanaffHf ratios 727
572e-type giats 23, 164 Lyman continuum 31, 168, 246, 363, 430, 501,

late-ype gants519, 571
late-type stars 135, 153, 162, 164, 261,541, Lyman continuum luminosities 168

614 Lyman-line raditon 388

lentcular galaxies - see galaxies, lenticular Lyma-lian rasiation 388

Lindblad resouance 230, 620 M stars 2

LINER 412, 417, 461, 609, 633, 661,662, 676, M stars 162

678 M stars, extreme 539
LINE8s, blue 662 M supergiant stars 648, 744

local superclue 2 magellanic irregular galaxies 259
local •etniverw 1,48 52 3 magnetic bubble 86
local universe 411,418, 523 magnetic fields 87, 107, 126, 228, 439, 582,
lock-up rate 32 711,749,750
long-tailed galaxies 515 magneutohydrodynamic waves 750
low luminosity galaxies 125, 200, 351 main sequence stars 260, 675, 743
low ms galaxies 568 main sequence turnoff 634
low mass stars 343, 501, 748 mapping, CO 184, 197, 224, 369, 462, 491
low mass young sun 10 mapping, HI 385
low metalliciy galaxies 294 mapping, infrared 497, 664
low redshift quasar 539 mapping, millimeter 79
low surface brigihtness galaxies 436 mapping, radio 367, 675, 717, 719
luminosity fumctions 125, 162, 236, 352, 358, maps, temperature 15, 74, 103

523,547, 565, 569 Markarian galaxies 128, 351, 353, 527, 579,
luminosity, blue 133, 141, 225, 560 662
luminosity, bolometric 76, 83, 127, 169, 248, Markani galaxies, non-Seyfert 527

411,523,703 Markarian Seyfert galaxies 662
luminosity, cluster 37, 78, 197, 204, 206, 267 masers 87
luminosity, CO 37, 57, 197, 204, 206, 246, 267, masers, H20 246

269,289 masers, mega- 321, 597
luminosity, far infrahw see far infrared luminos- masers, OH 87, 246

ity mass inflow 395
luminosity, free-free 8 mass outflows 397, 428, 461,462
luminosity, Ha 246, 605 mass, dust 146, 207
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moo, p 23, 217, 254, 287, 745 molecular gas 4, 6, 8, 67, 79, 141, 179, 198,
asts, HI 197, 575 241, 287, 292, 331, 336, 367, 368, 384, 411,

m , alesculargas 12, 51, 78, 186, 207, 471 744
mas-4-Ul& ratlo 174, 479, 745 molecular gas distribution 344
massive cloud lifetime 457 molecular gas mass 12, 51, 78, 186, 207, 471
msive molecular clouds 289 molecular gas phase, lifetime 287
massive star frmation rate 303, 491 molecular gas tracer 289
massive stas 63, 75, 77, 137, 161,259, 323, molecular gas, compression 4

343, 351, 367, 479, 501, 507, 577, 675 molecular gas, dense 676
massive young stars 57, 267, 319. 633, 744 molecular hydrogen - see also H2
megmuasen 321, 597 molecular hydrogen 3, 26, 37, 42, 99, 162, 182,
merger remnants 413, 436 186, 230, 246, 291, 388, 421,471, 491, 745
maging galaxies - see galaxies, merging molecular hydrogen surface density 198, 200,
metal abundances 163, 296 492
meta-poor -laxies 254, 586 molecular lines 80,754
metal-poor stars 161 molecular ring 5, 12, 21, 42, 97
metallicity 162, 247, 254, 294, 341,399, 568, molecular spiral patterns 203

634 molecular surface density 493
metallicity gradient 235, 263 molecular-to-atomic ratio 200
MgI 664 molecules, large 755
mid lnfred - see also infrared monsters 707
mid infrured emission 245, 319, 409, 497, 669, N galaxies 539

681,707 N-body simulations 227,444
millime'er luminosities 745 Na absorption line 605
millimetr-wave observations 79, 411. 723, 734 narrow line galaxies 737
minisurvey Salxies - see IRAS minisurvey narrow emission lines 479,725
Mira variables 539, 541 narrow line galaxies 737
model stellar atmospheres 247,261 narrow-line region 133
molecular abundances, low 162 near infrared emission 164, 293, 409, 413, 421,
molecular annulus 199 431, 482, 515, 601,605, 613, 623, 669, 725,
molecular bar 183, 303 734
molecular cloud complex 58,67, 100, 153 near infrared colon - see color, near infrared
moecular cloud cores, warm 38 near infrared emission 164, 409, 431,482, 515,
molecular cloud formation 211, 270, 494 601,605,623,669
molecular cloud population 303 neor infrared energy distributions 243,297,723
molecular cloud. hot 79 nea infrared mapping 515
molecular cloud, mass spectrum 37 nearby galaxies 198, 356, 383, 565
molecular clouds 3, 11, 12, 37,57, 71, 75, 79, nebula, bipolar optical 80

95,97,99, 103, 113, 119, 134, 149, 197, nebulae, dark 253
203, 206, 211, 243, 320, 323, 343, 390, 417, nebulae, emission-line 67, 247, 461
491,501,717,746,749 nebulae, reflection 80

mlecular clouds, dense 23 nebulae, planetary 65, 135, 675
molecular clouds, dynamics 37 nebulae, X-ray 462
molecular clouds, Sigm - see giant molecular nebulae, young planetary 135

clouds nebulosity, blue reflection 119
molecular cloud, luninosities 37 Nell clouds 637
molecular clouds, mass spectrum 44 NELO - see nmow line galaxies
molecular clouds, m mses 37 neutral atomic hydrogen - see HI
molecular clouds, quiescent 24 neutral disks 319
molecular clouds, wam 51 neutral gas 81, 375, 383
molecular density 305 neutral gas, dense 79
molecular disks 3, 80, 367, 462 neutral phase 99
molecular emission 303 NIR - see near infrared
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NLRO - see narrow line galaxies OH luminosity 597

NLTE tar amnospher 247 OH masers 87, 246
non-Seyfat Markarian galaxies 527 OH megamasers 597

InftlrUml emission 126. 235. 383, 583, 723, OH stars 23
737 OH/JR stars 135. 164

nontherMal emission ridge 228 OM emission lines 711
n m al processes 471 old clusters 67
nonthermal radio arms 227, 228, 232 old disk population 153
nonthermal radio components 287, 383, 744 old stars 156. 161, 231, 289, 498, 518
nontheinal sources 311, 351, 411, 417, 497, old stellar population 517, 662

589. 633, 681 optical colon - see color, optical
nonthermal UV/optical continuum 670 optical continuum 352, 413, 669, 681
normal galaxies 125, 134, 153, 252, 253, 273, optical depth 71, 169, 175, 255, 319, 320, 488,

387. 501. 527. 534, 560, 575, 579, 583, 602, 754
605, 626. 629, 707, 723 optical emission 107, 183, 235, 328. 351, 383,

North Ecliptic Pole 547 401, 409. 515, 556, 569, 579, 605
North Galactic Pole 549 optical forbidden line regions 711
nuclear activity - see active nuclei optical identifications 164, 243, 601,623, 697
nuclear bulge 201 optical luminosity 133, 575
nuclear disk 179, 387, 743 optical luminosity functions 569
nuclear disks, collisions 387, 743 optical nebula, bipolar 80
nuclear ejecta 676 optical nebulosity 117, 120, 538
nuclear emission 333, 463, 753 optical spectra 164, 223, 259, 325, 359, 414,
nuclear regions 26, 364, 517, 676, 747 417, 461, 501, 553, 620, 661, 675, 681, 723
nuclear sources, nonthernal 634 optical specmum, peculiar 553
nuclear star formation 383, 401 optical surface brightness 255
nuclear starburst 154, 223, 336, 395, 411, 678 optical thickness 289, 324, 364, 597, 745
nuclei - see also active nuclei optical thiness 384, 745
nuciei of galaxies 3, 129, 211, 343, 359, 383, optically thick disks 18

385,421,498,643,661 optically thick emission 331
nuclei, composite 676 optically thick galaxy disks 273
nuclei, double 625 optically ,iolent variables 723
nuclei, faint 698 optically-faint sources 465, 569, 623
nuclei, hot spot 225, 483, 518 optically-selected galaxies 273, 525, 533, 723
nuclei, quasar-like 135, 319, 430 optically-selected quasars 411, 723
nuclei, radio 721 orbit crashings 747
nuclei. Seyfert - see galaxies, Seyfert and active orbit crowding 3

nuclei orbit damping 457
nuclei, starburst - see galaxies, starburst and Outer Galaxy 103
nuclei, s nuclte 717 outflow, high velocity 463
nucleon 292 outflows 395, 397, 428, 461, 753

O stars 25,63. 97, 172, 209, 246, 261,363, OW - see optically violent variables

374,479,751 oxygen abundance 247, 254, 479

OB associations 134, 158, 259, 374 oxygen-rich dust envelope 540

OB star clusters 68, 75, 77 PAH - see polycyclic aromatic hydrocarbons

OB star luminosity 75, 36.W Palomar Observatory Sky Survey 547, 601

OB stars 3, 23, 26, 75, 1Wt. 153, 162, 168, 324, Palonmr-Green QSOs 418, 723
363. 383, 395, 399, 571, 585, 661, 737, 744, particles - see also grains
747 particles, graphite 119

OB-star formation 6, 23, 744 particles, Plan 119
objective prism observations 354 particles, relativistic 126
obscuration 80, 515, 611, 616, 633 Paschen lines 430, 744, 755
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peclar plx 186, 217, 274, 280, 327, 499, quiescent molecular clouds 24
579, 664 quiescent galaxies 135

peculr optical spectrum 553 radial gas distributions 200, 343
pe1laion11 m pioCess 4 radial motion 663, 681
parpac& passages 457 radiation pressure 418, 428

n p gravi 227 radiative heating 84, 113
models 737 radio H1I regions 3

sentri-esee • under specific wave- radio components, compact 473
length bands radio continuum 63, 99, 107, 126, 183, 197,

pholons, ionizing 65, 163, 701 201, 227, 235, 247, 289, 292, 311, 352, 383,
photons, Lyman continuum 168 388, 409, 413, 437, 463, 473,483, 491,499,
photons, ultraviolet 422, 713 575, 579, 583, 589, 597, 605, 619, 623, 711,
photospheric emission 128, 614 744
Planck function 65, 83, 157, 297, 524, 745 radio continuum arms 227
planetary nebulae 65, 135, 675 radio emission thermal 168, 235, 243, 321, 363,
plasma 245. 534 592
Platt particles 119 radio emission, excess 364
Point Source Catalog - see IRAS Point Source radio galaxies 737

catalog radio galaxies, giant 666
point spread function 651 radio HII regions 3, 227, 231, 241
Pointed Observations - see IRAS Additional radio loud objects 525

Obsations radio luminosity 168, 531, 575
polarization, OH moe 87 radio mapping 367, 675, 717, 719
polarization, quaNs/BL Lacs 731 radio nonthermal sources 525, 576
polycyclic aromatic hydrocarbons 23, 116, 148, radio nuclei 721

301, 320,745 radio quiet active nuclei 613, 649
positio/velocity maps 315 radio source morphology 664
POSS - see Palomar Observatory Sky Survey radio source, flat-spectrum 473
power law 133, 140, 525, 557, 565, 649, 737 radio sources 351, 661, 681
power law ionized gas 678 radio sources, compact 462, 731
power law spectral indices 507 radio sources, double lobed 533
pie-main sequence objects 63. 243 radio sources, time-variable 462
primordial galaxies 351, 358 radio spectral line surveys 71
primordial star fnrmation 752 radio strong quasars 734
progenitors, supernova 582 radio supernova remnants 371
proeostars 134, 246, 748 radio surface brightness 534
prolostellar objects 163 radio-to-optical luminosity 580
PSC - see IRAS Point Source Catalog radionmfrared relation 125, 531, 575, 579, 583,
Q-branch spectrum, H2 426 589
QSO - see quasar radius, Abell 281
quadrupole vibratioalotation lines, H2 422 ram pressure 283,711
quasar-like nucei 135, 319, 430 RDD0 anemics 283
quasar nucleus 417 red continuum 236, 402
quasars 142, 144, 351, 357, 389, 507, 616, 675, red giant stars 634

723,727 red stars 540
quasars, infrared-loud 418 red stars, old 518
quasars, low redshift 539 red supergiant stars 634
quasars, optically selected 411 reddening 246, 253, 413, 430, 605, 616, 634,
quasars, OW 723 646,664,678,725,727,754
quasi, Palomar-Green 418, 723 redshift 353, 358, 401, 412, 547, 560, 565, 601,
quasars, polarized 731 611,623,629,697
qaars, radio quiet 613 reflection nebulae 80, 108, 119
quasars, radio strong 734 relativistic effects 666
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relativistic electrons 126. 228, 711 shocks, spiral density wave 228
relativistic gas 126,712 Si IV 260
relativistic univere 698 Sn lines 571
relaxation time 457 silicate absorption feature 246, 643
relaxation, violent 518 silicate grains 24, 251, 644
remnants, merger 413, 436 SJRTF 629, 755
remnants, stellar 32, 343, 666, 676 Sky Brightness Images (IRAS) 63
ring galaxies 450, 456, 515 Small Extended Source Catalog (IRAS) - see
ring, molecular 5, 12, 21, 42, 97 Small Scale Structures Catalog
rings, circumnuclear 619 Small Extended Sources (IRAS) - see Small
rings, HII 662 Scale Structures
rotating disk 81, 678, 746 small galaxies 267, 402
rotation curve 179, 181, 519, 746 small grains 23, 117, 120, 620, 708, 755
rotational braking 750 Small Scale Structures (IRAS) 135, 236
RR-Lyrae stars 161 Small Scale Structures Catalog (IRAS) 523, 565
RSA - see Shapley Ames SNR - see supernova remnants
S stars 158 Sofia 754
SO galaxies - see lenticular galaxies solar neighborhood 76, 97, 157, 479
Sa-Sm galaxies - see galaxies, Sa-Sm and galax- solid-body rotation 343

ies, spiral source counts 351, 355, 547
SB galaxies - see galaxies, barred South Ecliptic Pole 547
Salpeter initial mass function 324, 664 South Galactic Pole 623
scattering, cloud 486 space densities (galaxies) 353
scattering, dust 463 spectra, cirrus 321
scattering. X-ray 486 spectra, cloud mass 444
Schechter function 525, 567 spectra, discontinuous (BL Lacs) 731
Schmidt law 436 spectra, electron energy 228
Schwarzschild radius 725 spectra, emission line 259, 619, 676
serendipitous sources 693 spectra, line 619
SES - see Small Scale Structures spectra, LINER 414
Seyfat activity - see active nuclei and Seyfert spectra, low excitation 605

nuclei spectra, optical, peculiar 553
Seyfat galaxies - see galaxies, Seyfert spectra, power law 140,
Seyfert galaxies, dusty 725 spectra, Q-branch 426
Seyfert galaxies, Markarian 662 spectra, steep 675, 723, 734
Seyfert nuclei 133, 154, 223, 319, 429, 499, spectra, stellar 261, 364

525,579,661,675,711 spectra, very red 540
Seyfeat nuclei, mini 228 spectra, X-ray 351, 357
SPE - see star formation efficiency spectral index 228, 384, 429, 507, 583, 592,
SFR - see star formation rate 671,727,734
Shapley-Ames galaxies 323 spectral synthesis, IRAS 133, 319, 323
shell 8, 70, 164 spectrophotometry, Ha 125
shell, circumstellar 23, 128, 135, 141, 161, 549 spectroscopy 57, 247, 462, 579, 605, 629, 693
shock diagnostics 427 spectroscopy, far infrared 133, 137, 217, 297
shock emission 449 spectroscopy, infrared 129, 142, 363, 421, 619,
shock excitation 422 675, 693, 717, 723, 727, 754
shock focusing 307 specuoscopy, long slit 678, 713
shock heating 83, 461, 633, 711 spectroscopy, low dispersion 623
shock ionization 678 spectroscopy, millimeterwave 723
shock region 311 spectroscopy, multiapertue 428, 661
shock velocity 84, 228, 427, 739 spectroscopy, near infrared 297, 515, 723
shocked gas 309, 744 spectroscopy, optical 164, 223, 259, 325, 359,
shocks 4, 83, 422, 431, 577, 666 414, 417, 461, 501, 553, 620, 661, 681, 723
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spectmscep, slit 666 star formation, runaway 58, 368
speclromff, sltess 697 star formation, spontaneous 31
spiral arms 3, 38, 95, 100, 181, 203, 230, 235, star formation, suppression 457

303, 309, 315, 747 star formation, vigorous 253
spiral deusky wave shocks 228 star formation, violent 586
spiral density waves 263, 303, 309, 343, 429, starbirth 747

431,438,748, starburst activity, intense 534
spirad l es - wee galaxies. spiral starburst component 133, 145
spirl galaxies, active - see active nuclei starburst galaxies - see galaxies, starburst
spiral galaxies, barred - see galaxies, barred starburst galaxies, dusty 633
spiral galaxies, fosil 336 starbunt mechanisms 445
Spiral galaxies, grand design 227, 343 starburst models 661spiral galaxies, omil - see galaxies, noramua mdes 6spiral galaxy nuc ale -seenuclef galaxies. n lstarburst nuclei 154, 223, 336, 395, 411, 678spiral laxy nuclei - see nuclei of aaxiessuper 517spiral gvhation perturbation 226 starbursts 32, 161, 167, 274, 275, 336, 363,
spiral shocks 227, 231, 267 373833374741494541
spiral waves, interaction-induced 457 367, 378, 383, 397,417,421,429,435,461,
spontaneous star formation 31 633, 643, 707
star clusters 76, 161 stars, A 153, 158, 209, 301,426, 601
star clusters, OB 68, 75. star, B 25, 70, 97, 158, 162, 209, 261,363,
star clusters, young 67, 107, 249, 367 377, 422, 751
star formation 31, 37, 67, 87, 99, 110, 125, 161, stars, blue 29, 331, 540

217, 219, 227, 245, 263, 277, 283, 287, 303, stars, bright 164, 637
319,323, 333, 336, 363, 367,395,401,409, srs, carbon 162, 539
435, 436, 461, 501, 515, 517, 527, 531, 534, stars, cool 164, 633
572, 589, 597, 605, 633, 661,669, 701, 743 stars, early-type 66, 261

star fomation burst - see also starburst 173, stars, evolved 336, 515
473,479,579 stars, extreme spheroid 341

star formation disks 225 stars, field 164
star formation efficiency 70, 197, 204, 211, 267, stars, G-K 86,422

303,344,436,471,494 stars, giant 23, 164
star formation fuel 224 stns, Ha emission-line 80
star formation rate 23, 167, 197, 250, 255, 274, stars, hot 133, 168, 259, 309, 351, 364, 589,

293, 305, 323, 333, 336, 402,409, 436,499, 675, 737
501, 534,575 sun, hot young 364, 589, 676

star formation rate, massive 303, 491 stars, intemnediate age 162
star formation rigger 8, 227. 263, 395, 401, stars, litemeyie 23, 135, 153, 162, 164, 261,

407, 517, 666, 747 541, 614
sa formation, active 320 541,61 4
star formation, bimodal 339, 748 stars, low mass 343, 501,748
star formation, enhanced 197, 457, 619 stars, luminous 164
star formation, Galactic 3, 37, 63, 67, 71, 79, stars, M 162, 744

83,99,633 stars, M giant 23
star formatin, global 2 stars, M, extreme 539
star formation, high mass 3, 235, 259 stan, main sequence 260, 675, 743
star formation, induced 31 stars, massive 75, 77, 161, 323, 343, 351, 367,
star formatol intense 127, 717 479, 501, 507, 577, 675,701,743,748
star formation, nuclear 383 stars, massive luminous 390
sta fornation, OB 6, 23, 744 stars, massive young 57, 267, 319, 633, 744
star formation, primordial 752 stars, metal-poor 161
sr formation, rapid 364 stars, Mira 541
star fomdon, recent 583 stars, 0 25, 63, 97, 172, 209, 246, 261, 363,
stamr formation, recent violent 586 374,479,751
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son, OB 3, 23, 26, 75, 101, 153, 162, 168, supemova rate 126, 431, 579
324, 363, 364, 383, 395, 399, 571, 585, 661, supernova remnants 4, 126, 236, 247, 352, 367,
737, 744, 747 371, 431, 463, 534, 540, 548, 577, 675

stars, OHAR 135, 164 supernova-driven wind 164, 517
stars, old 161,231, 289, 498 supernovae 191, 246, 367, 395, 399, 461, 519,
stars, old disk 156 534, 577, 633, 717
stars, old red 518 supershells, molecular 372
stars, red 540 superstarburst galaxies 517, 707
stars, red giant 634 superwinds 461
stars, RR-Lyrae 161 surface brightness 108, 117, 255, 275, 436, 533,
stars, supergiant 162, 164, 260, 634, 648, 744 637
stars, thin disk 341 surface density, atomic 493
stars, variable 161, 539, 541 surface density, critical 751
stars, very hot 261 surface density, HI 263, 283, 305
stars, Wolf-Rayet 261 surface density, H2 57, 198, 200, 492
stars, young 10, 83, 323, 343, 351, 363, 383, surface phmetry, Ha 235

497,626 synchrotron emission 126, 228, 364, 383, 589,
stars, young massive 57, 267, 319, 723, 744 681, 727,731
steep infrared continuum 616, 723 synchrotron mechanism 589,734
steep spectrum 675, 734 synchrotron power 579, 582
stellar absorption 169, 421, 633, 661 synchrotron self-absorbed source 725

stellar associations 134, 158, 162, 259, 374 temperature fluctuations 97
stellar atmosphere model 247, 261 temperature, dust 3, 12, 15, 71, 73, 83, 95, 104,
stellar bar 219, 367 156, 197, 204, 207, 211, 289, 324, 363, 414,
stellar CO 421, 633 583,745
stellar emission-line objects 164 temperature, far infrared color - see color, far
stellar lifetime 168 infrared
stellar luminosity 23, 31, 75, 197, 363, 601, 634 tempetature, gas 289, 374
stellar mass 70, 168 thermal electrons 711
stellar mass distribution 482 thermal free-free emission 235
stellar objects, young 79 t radio emission 168, 235, 243, 321,363,
stellar populations 38, 153, 167, 296, 363, 501, 592

572, 661,678 threshold star formation 284, 444stellar remnants 32, 343, 666, 676 tid distortion 231
stellar spectra 261, 364 tidal interactions 191, 364, 375, 401,456, 515,
stellmr wind, ionized 79 582
stellar winds 70, 367, 418, 675, 7 tidal tails 413,665
Stokes components 87 tidal tils d13, 280
stripping 210, 277, 283, 287 tidally-induced disruption 280
structure, clouds 38, 439 timescales, clod collision 457
structure, nuclei 717 timescales, gas depletion 209, 305, 333, 336
submillimeter emission 4, 93, 154, 217, 325, Tio bands 164

734 tracers, star fornation 292
submillimeter emission, diffuse 23 trigger, star formation 8, 227, 263, 395, 401,
submillimet luminosities 745 407, 517, 666, 747
Supucluster, local 525 turbulence 438,750
super•ritical loud 750 UBV photomety - see color, optical and optical
supergiant M stars 648, 744 emission
supergiant stars 164, 260 UGC galaxies 273
supergiant stars, red 634 ultraluminous galaxies 411, 415, 471, 517
supernova blast waves 636 ultraluminous infrared source 428
supernova explosions 418 ultraviolet bump (quasars) 734
supernova 1NC)enitios 582 ultraviolet colors 479
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ulaviolet emission , 16,75, 117, 120, 163, X-ray scattering 486

183, 352, 364, 377, 582, 664, 669, 698, 701 X-ray sources 358
ultraviolet excess 633, 723 X-ray spectra 351, 357
ultraviolet fluorescence 422 X-ray-emitting gas 465
ultraviolet heating 84, 170 X-ray-seleted active galactic nuclei 611
ultraviolet lines 427 young massive stars 57, 633
ulrviolet obscuration 633 young planetary nebulae 135
Ultraviolet pholtons 363, 422, 713 young star clusters 67, 107, 249, 367
ultraviolet region 649 young stars 10, 83, 323, 343, 351, 363, 383,
ultaviolet selection 527 497,626
ultraviolet spectra 259, 702 young stars, massive 57, 267, 319, 633, 744
ultraviolet surveys 579, 616 young stellar objects 79
ultraviolet, extreme 387 ZAS = zero age sequence 480
ultravioet, shock-duced 84 zodiacal background 103
univers, critical density 629 zodiacal dust 24
Universe, local 523 zodiacal emission 46, 97, 99, 113, 297
universe, nonevolving 547 Zwicky catalog 566
univemrelativistic 698 Zwicky galaxies 136, 436, 747
utresolved radio source 682
upper mass cut-off 261
variability, rapid 731
varidable stars 161, 539, 541
very small grains 23, 120
violent relaxation 518
Vifrgo glaxies 126, 210, 225, 525
virtal equilibrium 57, 750
virlal mass 9, 37, 57, 68
virlal thorem 746
virialized clouds 345
VLA objects 63
VLA survey 531
Vromntsov-Velyaminov galaxies 136
warm dust 23, 75, 235, 267, 323, 497, 585, 626,

717,723,744
warm galactic cirus 301
Weaver-Williams Hi survey 103
Weane bands 422
wind 399, 461, 676
wind, bipolar, galxies 462
wind, stellar 70, 367, 395, 418, 750
wind, Melar, ionized 79
wind-driven bubble 70
windows, atmosperic transmission 421
winds, supernova-driven 164
Wolf-Raye stars 261
X-ray background 351
X-ray halo 391
X-rmy in 485
X-My lminosity 133
X-My nebulae 462
X-ray obsvations 183
X-My properties 351
X-ray region 649
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0134+32 733 Beta Gru 652
0238-08 733 Beta Pic 652
0316+41 733 Cancer Custer 277
0521-385 733 Carina arm 68
1226+02 733 Carina OB1 67
13454+12 733 Cartwheel Galaxy 450
1404+28 733 Cemaums A 398,666
1413+135 616 Ciainaeleon cloud 113
1514-24 733 Coma Cluster 277,565.568
1641+40 733 CPG 330 268
1807+69 733 Cr 228 67
2200+42 733 Cygnus region 620
2223-05 733 Cygnus clouds 50
3kpc ring, NOC 1068 146 DDO 50 262
17 Tudi 118 DDO 66 108
20 Turi 118 DDO 75 (Sextans A) 264
23 Tauri (Merope) 118 DDO 154 268
30 Doradus 241,263 DDO 216 (Pegasus) 264
3C 48 664 Draco 547
3C 84 728 q Carinae 67
3C 120 728 Hao 1 592
3C 234 615 Haro 2 268,592
3C 273 137,729 Ham 3 268
3C 390.3 728 Hao 15 592
3C 459 666 Ham 28 592
A 1510 598 Hercules Custer 277
A 1720 598 Hygia 652
A 09111-1007 606 IC 10 268
S A09234-1146 608 IC 135 685
A 12488-2051 608 IC 342 128,179,187,188,199, 376
Abell 262 277 377,383,385,416
Abell 1367 277 IC 410/S236 76
Abell 1656 (Coma) 277,565,568 IC 443 431
Abell 2147 277 IC 694 416,421,471
Abell 2151 (He-=.) 277 IC 1613 264
Abell 2232 555 IC 1848 76
Alpha Boo 652 IC 2581 67
Alpha Lyrae 652 IC 4329a 140
Alpha P&A 652 IC 4553 - see Axp 220
Aakealian 120 728 IR 298.2-0.4 74
Arp Ring 107 IR 298.2-0.8 74
Arp 55 416 IR 298.9-0.4 74
Arp 82 651 IRAS 00193-4033 539
Arp 148 515,597 IRAS 00300-2234 626
Aip 220 (IC 4553) 54,145,206,212, IRAS 00335-2732 625

354,359.363,376. 377,397,412,421, IRAS 00344-334 140
461,465,471,473, 577,592,597,605, IRAS 00402-2350 626
629,633,643,651, 701,707 IRAS 00456-2904 626

Ajp 299 55 IRAS 01050-3305 626
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IRAS 01091-382 140 Kleinman-Low nebula 180
IRAS 01199-2307 626 L 1542 115
IRAS 01228-7324 242 L 1551 83
IRAS 01330-2256 626 L 1780 113,115
"IRAS 01358-3300 626 Large Mag. Cloud 161,215,241, 245
"IRAS 02069-233 140 247,555,591
IRAS 0402+212 532 Lk Ho 101 79
IRAS 0404+101 504 Lindsey-Shapley Ring 450
IRAS 0409+054 532 M6 685
"IRAS 0413+081 327 M8 363,384
IRAS 0413+122 504 M16 15
IRAS 04139+0238 577 M17 15
IRAS 0414+001 327 M17B 48
IRAS 0421+040 533,602 M31 128,135,148,200,206,331,374
IRAS 0518-25 412,523 534,555
IRAS 05216-6753 242 M33 128,147,199,206,236
IRAS 0622-645 696 M34 685
IRAS 08171-250 140 M51 6,129,179,197,199,203,235.
IRAS 08341-261 140 303,309,315,383,416,534
"IRAS 0857+38 418 M78 685
"IRAS 0857+39 412 M79 685
"IRAS 09104+4109 559 M81 107,148,227,375,485,534
IRAS 0917+69 556 M81, disk 108
IRAS 10299-2803 538 M82 108,126,174,179,189,259,
"IRAS 1148+58 556 367,377, 383,416,421,447,462,471
IRAS 1149+61 556 485,503,534,572, 633,651,702,753
IRAS 1150-09 556 M83 6,179,181,199,303,309,377,
IRAS 1211+03 412 385,498,662
IRAS 1231-05 556 M87 287
"IRAS 13197-162 140 MIO0 199,297,416,534
IRAS 1324+16 556 M185 332
IRAS 1325+16 556 Maffei 2 363,384
"IRAS 1334+24 418 Magellanic Clouds 161,241,245,247,
IRAS 1434-14 412 555,591
IRAS 1510+0724 597 Markarian 3 144,728
IRAS 15194-5115 540 Markarian 6 685,728
IRAS 1525+36 412 Markarian 9 728
"IRAS 1645+37 556 Markarian 34 685
IRAS 1713+53 416 Markarian 59 592
IRAS 17208-0014 597 Markarian 71 592
IRAS 1752+329 532 Markarian 78 685
IRAS 20243-022 140 Markarian 79 685,728
"IRAS 20481-571 140 Markarian 86 268,592
"IRA 20551-425 140 Markarian 158 148
"RAS 2249-18 412 Markarian 169 592
IRAS 23060+0505 611,613 Markarian 171 354
"RAS 23128-591 140 Markarian 207 592
"IRAS 23260-413 140 Markarian 231 54,144,354,412,359,
Jupiter 94 597,615,651,661,664,685
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Makmiu 273 412,597 NGC 105 249
Maad 279 728 NGC 106 143
Madkwl 304 670 NGC 159 163
Markaria 313 592 NGC 185 268.331
Maskaria 314 592 NGC 205 268
Markaria 315 681,682,683.685 NGC 214c 249
Markari 319 581 NGC 224 -se M31
Markarim 321 581 NGC 253 179.206,375,377 383384,
Markarian 323 581 416,426,428,429,461,463,
Markarian 325 581 702,753
Markarian 326 581 NGC 281 76
Maukarian 331 416 NGC 335 662
Markarian 335 729 NGC 473 335
Madrarian 348 728 NGC 520 206,363,416
Markarian 363 581 NGC 598 - see M33
Markarian 370 592 NGC 613 483
Markarian 376 728 NGC 660 363,636
Markarian 404 581 NGC 680 335
Markarin 418 581 NGC 694 334.335
Markarian 432 581 NGC 695 416
Muamian 463 142 NGC 746 661
Markarian 478 418,729 NGC 828 416
Markarian 479 581 NGC 834 416
Markarian 509 143,681.685,729 NGC 841 416
Markarian 527 268,592 NGC 891 128,179,180.181,
Markauria 531 581 193,200,555
Markarian 534 581 NGC 936 335
Markarian 545 581 NGC 992 416
Markarian 573 685 NGC 1023 335
Markarian 578 581 NOC 1068 137,146,201,352, 376,377,
Maikarian 817 728 416,421,474,615,651,661.669,683,685,
Maiarian 841 729 711,717,728
Markarian 1002 581 NGC 1068, 3kpc ring 146
Maikatia 1027 581 NOC 1097 620,662
Madian 1088 581 NGC 1140 259,260,261,262
Markauian 1183 581 NGC 1275 140,143,144
Mdkauian 1194 581 NGC 1300 483
Markaria 1233 581 NGC 1365 143,681,684,685
Madkarian 1304 581 NOC 1377 140
Markarian 1466 581 NGC 1386 143,144,685
MOX3 8-11-11 685 NOC 1530 224,416
"Meompe 118 NGC 1569 156,207,212,268
Milky Way 3.6,37,161,179, 197,199, NGC 1614 140,363,424,429,503,702

245,320,377,416,534,746 NGC 1620 416
N&;wwukl's object 398,666 NOC 1624 76
?0C.23 416 NGC 1667 685
!OC 44 247 NOC 1705 259,262
NOC Sk 242 NOC 1800 259,262
NOC 91 247 NCO( 1808 498,499
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NOC 1893 76 NGC 4214 264
NOC 2076 140 NGC 4238 334
NOC 2110 685 NGC 4303 662
NOC 2146 327,416 NGC 4314 483
NOC 2175 76 NGC 4321 662
NOC 2276 416 NGC 4385 335.336
NGC 2297 662 NGC 4388 685
NGC 2339 416 NGC 4418 140.144,145,206
NGC 2388 55 NGC 4449 156,158,259,260,261,
NGC 2403 199 262,264,268
NGC 2445 503 NGC 4507 143
NOC 2623 416,503,515,651 NGC 4527 498,499,500
NGC 2633 416 NGC 4536 499,500.620
NGC 2683 592 NGC 4548 303
NGC 2782 143,503 NGC 4605 268
NGC 2798 429,707 NGC 4666 502
NGC 2814 268 NGC 4670 334,335
NGC 2841 200,201 NGC 4736 158,0,0,384,416,620
NGC 2903 129,377 NGC 4750 140
NGC 2976 268 NGC 4826 416
NGC 2992 652 NGC 5055 416
NGC 3031 - se M81 NGC 5078 140
NGC 3034 - see M82 NGC 5194 - see M51
NGC 3077 55,109,206 NGC 5195 363
NGC 3079 359,363,416,651 NGC 5236 - see M83
NGC 3090 702 NGC 5248 662
NGC 3147 416 NGC 5253 140,143.144
NOC 3221 416 NGC 5256 416
NOC 3227 416,429,728,729 NGC 5363 416
NGC 3239 264 NGC 5371 592
NGC 3256 517 NGC 5383 483
NGC 3274 268 NGC 5427 662
NGC 3293 67 NGC 5437 662
NGC 3310 129,206.207,416,620 NGC 5447 299
NGC 3324 67 NGC 5455 299
NGC 3372 (il Car.) 67 NGC 5457 - see MIOI
NGC 3504 143,416,503 NGC 5461 299
NGC 3516 728 NGC 5462 299
NGC 3690 359,363,416,421,425, NGC 5471 299

471,507,597 NGC 5506 268
NGC 3709 636 NGC 5530 140
NGC 3738 268 NGC 5548 685,728
NGC 3783 143,144 NGC 5631 335
NOC 3893 416 NGC 5643 685
NGC 3938 592 NGC 5656 140
NGC 4047 140 NGC 5728 685
NOC 4051 669,685,728 NGC 5929 711
NGC 4138 335 NGC 5936 416
NOC 4151 421,669,728,729 NGC 6090 416
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NOC 6223 555 Orion, KL nebula 180
NOC 6225 555 Pegasus Galaxy 264
NGC 6226 555 Pegasus Cluster 277
NOC 6238 555 Perseus Region 555
NOC 6240 55,142,143,147,206. PG 0906+48 728

376,377.416,421,423.429,467,471 PG 1351+64 728
507,577,605, 633,701,702,707 Pleiades 117

NOC 6244 555 PSC 09104+4109 559
NGC 6249 427 Red Rectangle 116
NOC 6286 416 S87 79
NOC 6501 335 S106 79
NOC 6543 135,548 S142 76
NGC 6552 140 S184 76
NGC 6574 416,502 S187 63
NGC 6643 416 S199 76
NOC 6701 416 S212 76
NGC 6764 144,685 S236 76
NGC 6822 264 S252 76
NGC 6921 416 Sagittarius arm 8,51
NOC 6946 128,179,197,199, Small Mag. Cloud 161,241

201,202,206,211303,343,363,376, Scutum arm 8,51
383,416,534 Sextans A 264

NOC 7013 334,335336 Taurus Mol. Cloud 748
NGC 7180 335 TON 1542 418
NOC 7280 335 Tr 14 67
NGC 7331 200,201 Tr 16 67
NOC 7380 76 'ITapezium 367
NOC 7469 55,143,144,354, Trapezium stars 751

416,471,683,685,728,729 UGC 3426 140
NGC 7479 416 UGC 4203 140
NOC 7496 676,685 UGC 5101 412
NOC 7541 416 UGC 8058 140
NGC 7552 143 UGC 8335 140
NOC 7582 .676,681,683,685 UGC 8850 140
NGC 7624 140 UGC 9412 140
NOC 7625 416 UGC 12713 334,335
NOC 7674 416 Vega 652
NOC 7714 363 Vela ring 450
NOC 7742 335,336 Venus 94
NOC 7743 334,335 Virgo Cluster 126,198,283,285,287,
NOC 7771 416 294,402,538,577
NOC 7800 268 Virgo galaxies 205,210,225,285,525
NOC 7817 140 W5/S 199 76
Oplijudm Complex 141,149, Z355.3+1826 577

555,746 Zw 1510+0724 597
Olin Region 367,428,479,519,555 I Zw 1 142,418,728

751 1 Zw 18 586,592
Odin MoL. Cloud 42 I Zw 33 268
Orion A 179,182 I Zw 89 268
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U Zw 40 128,173,175.268,586
1 Zw 70 592
H Zw 136 418,729
l Zw 3s 597

El Zw 102 268
VIU Zw 506 147
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