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The Formulation of Quantum Statistical Mechanics Based on

the Feynman Path Centroid Density. IV. Algorithms for

Centroid Molecular Dynamics

Jianshu Cao and Gregory A. Voth

Department of Chemistry, University of Pennsylvania. Philadelphia. Pennsylvania 19104-6323

Abstract

Numerical algorithms are developed for the centroid molecular dynamics

(centroid MD) method to calculate dynamical time correlation functions for

general many-body quantum systems. Approaches based on the normal mode

path integral molecular dynamics and staging path integral Monte Carlo

methods are described to carry out a direct calculation of the force on the

centroid variables in the centroid MD algorithm. A more efficient, but ap-

proximate. scheme to compute the centroid force is devised which is based on

the locally optimized harmonic approximat:3n for the centroid potential. The

centroid MiD equations in the latter method can be solved with the help of an

iterative procedure or through extended Lagrangian dynamics. A third algo-

- l,= rithm introduces an effective centroid pseudopotential to approximate the full

many-body centroid mean force potential by effective pairwise centroid inter-

actions. Numerical simulations for both prototype models and more realistic

many-body systems are performed to explore the feasibility and limitations

of each algorithm.



4.

I. INTRODUCTION

In a series of previous papers. [1-4] an intriguing perspective on quantum statistical

mechanics has been extensively developed. This perspective involves the path centroid vari-

able (51 in Feynman path integration. i6-121 (Hereafter. three of the preceding papers j2-41

will be referred to as Papers I. I1. and III, respectively.) Perhaps the most interesting and

promising result of the aforementioned research is an approximate method for computing

quantum dynamical time correlation functions called "centroid molecular dynamics" (cen-

troid MD). [1.3.4] The central concept of centroid MD was first introduced in Ref. [1] and

then extensively analyzed and extended in Paper II. Paper III. which precedes the present

paper. introduces a phase space centroid perspective and provides a definitive theoretical

basis for centroid MD. Though a single one-dimensional quantum particle has largely served

as the numerical example for centroid MD in the previous papers. (1,3,41 the method is by

no means limited to such a simple prototype model. As a matter of fact, one prominent

-advantage of the method is the feasibility of its application to more complicated physical

systems such as solvated quantum particles, high frequency vibrations of condensed phase

polyatomic molecules, clusters and fluids consisting of quantum particles, and nonlinear

quantum phonons. However. a central challenge is to first develop practical numerical al-

gorithms for computing centroid MD in general many-body quantum systems. The present

paper is devoted to this issue.

Before describing the algorithms for centroid MD, it is first necessary to briefly review

the key developments in the earlier papers. In Paper I, the quasiclassical role for the path

centroid variable and centroid density [5.13-15] in defining the equilibrium properties of

quantum systems was fully elucidated. Then. building on the insights of an earlier commu-

nication. [1] the path centroid perspective was extended in Paper II to the realm of quantum

dynamics. In that paper, a centroid-based perspective was uncovered for the calculation of

quantum time correlation functions. A centroid time correlation function was introduced in

those papers as an approximation for the Kubo transformed (161 position correlation func-
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rion. The centroid correlation function is thus related to the usual quantum time correlation

function through the Fourier transform relationship

0(w) = (h3w/2) [coth(h3wl/2) + 1] &(',) .1.1)

where C* denotes the centroid time correlation function. [1,3,4] It was argued that C*,t)

should be computed from classical-like dynamics for the centroid variable on the mean

centroid potential energy surface such that

C *(t) = (qc(t)qe(O))p.: (1.2)

where qc(t) is the centroid trajectory for a given particle degree-of-freedom. The

3N-dimensional centroid trajectories for a general system are generated by the effective

classical equations of motion [1,3,4]

d2
m W-2 (t) = , (1.3)

where {(t) is the 3N-dimensional column vector of centroid positions, m is the diagonal

particle mass matrix, and P4(4i) is the quantum mechanical centroid mean force vector.

The latter quantity is expressed as the operation of a 3N-dimensional gradient vector in

centroid configuration space. V ', on the mean centroid potential V,(ic), i.e..

, =
= _ ... f ZDq"(-r)b(fc-Co){VV[q-'(O)l}exp{-5[q'(v)]/riI (1.4)f.. . f... f q-(r) 6({c-Vo) exp {- S[q(r)]/h }

Here. S[q(r)J is the imaginary time action functional [6-9] and the imaginary time position

centroid vector defined in Eq. (1.4) is

(TO = 1 drjq"r) ,1.5)

The effective temperature-dependent centroid potential V,(T) in Eq. (1.4) is defined by

(N
S= -kBTln r ,(i.)/[J(mi/27rh23)] 3/2  .1.6)
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where the multidimensional position centroid density pt*) is given by j2.5]

)= J"" Vq"r)6(•-,fo)exp{ -S'q(T)i/..} (1.7)

In the centroid correlation function 1Eq. k1.2)], the initial condition averaging denoted bv

... "Pc is formaily performed with the phase space version of Eq. i1.7) [1,3,4] in which the

centroid momentum distribution simply factorizes into the classical Boltzmann momentum

distribution.

In Paper III. the centroid formulation in multidimensional phase space allows one to

prove that the centroid MD position correlation function is a well-defined approximation

to the Kubo-transformed position correlation function. [4] The agreement between the two

correlation functions can be demonstrated uniformly to all orders in a time expansion. with

an error being proportional to the effective thermal width of the particle and the average

anharmonicitv of the mean centroid potential. The reader is referred to the preceding pa-

per (Paper III) for an extensive discussion on this subject. In addition to this analytical

justification. an earlier justification f1,3] was based on the analytic continuation of correla-

tion functions obtained from the effective harmonic representation of the centroid density.

[2.13-151 Moreover. centroid MD has been tested numerically for some non-trivial nonlinear

systems and found to give excellent agreement with the exact result for the quantum posi-

tion correlation function. [1,3] Several centroid MD strategies were also developed in Papers

II and III to compute general quantum time correlation functions of the form (A(t)B(O)),

where A and B are general quantum operators.

Although centroid MD appears to be a substantial breakthrough in the computation

of (approximate) quantum time correlation functions, the determination of the centroid

force in Eq. ,1.3). as defined by Eq. (1.4), represents an algorithmic challenge for realistic

many-body systems. Equation (1.4) shows that the centroid force is given by the average of

the local potential gradient over quantum path fluctuations about the constrained centroid

variables. Of course. all numerical path integral simulation techniques [17.18] can be adapted

to compute t1is average, but the real issue is one of computational efficiency so that the

4



centroid force can be readily computed "'on the fly" during the real time integration of the

centroid MD equations [Eq. ( 1.3)]. This computation is not trivial for quantum many-body

systems. (It is. however, clearly easier than a numerical "frontal assault" on the many-body

time dependent Schr6dinger equation or on real time Feynman path integrals. [61)

In the present paper, several algorithms will be developed and explored for the efficient

computation of the centroid force in the centroid MD equations. Two of the approaches will

be direct, or "brute force", numerical path integral approaches (17.18] in which the path aver-

aging in Eq 1) is performed explicitly. These approaches will be based on a normal mode

path integral MD algorithm (191 and'a staging path integral Monte Carlo (MC) algorithm.

[20.21] with several numerical tricks introduced to speed up the computations. A rather

different, and more efficient, direction will also be taken which approximates the centroid

force within the framework of the locally optimized effective harmonic perspective. [2,13-151

The numerical details of solving the transcendental equations in the variational quadratic

approximation are explored in some detail, and two independent algorithms are developed

to optimize the variational parameters while simultaneously propagating the centroid MD

variables in time. In addition, several schemes are proposed to simplify the evaluation of

the Gaussian averages explicit in the variational theory. [2.13-15] Yet a third algorithm for

centroid MD involves the calculation of the excess centroid free energy as a function of the

separation between a pair of particles, representing this free energy by pairwise centroid

pseudopotentials. and then running centroid MD simulations for an effective many-body

system which interacts only through such pairwise interactions. The latter approximation

reduces the full centroid mean potential hypersurface to the superposition of two-body cen-

troid potentials and thus ignores static many-body quantum correlations. Nevertheless. the

latter approach will provide a simple and effective alternative for centroid MD simulations

of nearly classical or weakly interacting systems. All of the aforementioned algorithms are

tested on several systems to demonstrate their overall feasibility and limitations.

The present paper is organized as follows: In Sec. IIL two algorithms are described for the

direct numerical calculation of the centroid force during a centroid MD simulation. Then.
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in Sec. III an alternative and more numerically efficient method is explored which is based

on the effective quadratic (i.e.. approximate) theory for the centroid force. Several different

aspects of the implementation of this algorithm are also discussed in some detail. Section

IV then contains a description of the centroid pseudopotential method. while numerical

implementations of all of the algorithms are presented in Sec. IV. Concluding remarks are

given in Sec. V.

I. DIRECT CALCULATION OF THE CENTROID FORCE

In the discretized version of the Feynman path integral. [17.18] the centroid force in Eq.

(1.4) is written as

F,(q) f...ffl'r1 -.jdq 6(qo-qo)V'(ql,.... qp)exp[-Sp(qi,. .qp)/h(

f . ". f'-l=P dqj 6(qc - qo) exp [-Sp(q, . . . qp)/lt (2.1)

where, from the cyclic invariance of the trace,

_1 P dr (q)
V'(ql, .  qp) P d ) (2.2)

and the centroid variable in discrete notation is given by

'P

q0= - 4 ~q . (2.3)

The discretized path integral action functional is given by

Sp(q1 ,... . qp) = ( -q) 2 +"" ) (2.4)

Here, the discretization parameter is given by P and. for notational simplicity, the expres-

sions are written for a single degree-of-freedom. An extension to many degrees-of-freedom

is straightforward. although notationally more cumbersome.

In a path integral Monte Carlo iPIMC) calculation, the centroid force can be readily

calculated from Eq. (2.1) by using the importance sampling function exp[-Sp(qj, ... qp)ih]

and pairwise .IC moves to enforce the centroid constraint. For a path integral molecular
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dynamics (PIMDI) calculation. [221 one defines fictitious momenta p, for each of the quasipar-

ticles q, and then runs an MD simulation with Hamilton's equations based on the fictitious

Hamiltonian

r XmP [ 2.5H =P 2m'"p +7 ýqi+i - (I?.) V(qi) (2)-5)

where. in the case of centroid MD. m' must equal m/P so that the centroid variable has the

physical particle mass m. [1,3,4] If the PIMD trajectory adequately samples the canonical

ensemble. then a particular time average over that trajectory will yield the centroid force.

i.e.,

Fc(q,) T - 0 dT(V'[q(r)])c

1 r IJ d P. dV(q)
limr fq d (q ) , (2.6)T-00T d •i- dq 1q=qj(t),qo=qc

where (..")' denotes a centroid-constrained path integral average [cf. Eqs. (1.4) and (2.1)].

In a PIMD calculation, the centroid constraint must be enforced through, e.g., a holonomic

constraint.

While a direct numerical path integral computation of the centroid force as outlined above

will undoubtedly provide an accurate value of the centroid potential surface, the relevant

question here is how to affect such a computation within the context of the time-integratinc

of the centroid MD equations [Eq. (1.3)]. For low dimensional systems, the centroid force

can indeed be first calculated for each point in space and stored on a grid in computer

memory to be later recalled in the centroid MD calculation. As the dimensionality of the

system increases, however, this straightforward procedure is no longer feasible due to the

exponential growth of the required memory space. Consequently, for many-body systems

one is forced to repeat a PIMD or PIMC calculation of the centroid force at each centroid

MD time step ior over the interval of each time step). As it turns out, neither of the

straightforward numerical path integral methods outlined above is feasible for this purpose.

In the following two subsections, some more specialized algorithms for the calculation of the

force in centroid MD are presented.
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A. Normal Mode Path Integral Molecular Dynamics

One possible approach to the computation of the centroid force during a centroid MD

calculation is based on the normal mode path integral molecular dynamics (NMPIMD)

algorithm. Though NMPIMD has been discussed at length in a different context. 4191 it

will be presented here within the framework of centroid MD. In the NMPIMD algorithm.

the centroid variable naturally separates from the other Feynman path modes. This feature

provides an important simplification of the computation of the centroid force [Eq. (1.4)] and

in distinguishing the sampling inherent in that computation from the real time propagation

of the centroid variable. Moreover. the normal modes corresponding to the path fluctuations

about the centroid can be assigned a smaller fictitious mass than the physical particle mass.

leading to a more rapid convergence of the centroid force.

The basic idea of NMPIMD is to diagonalize some significant part of the Feynman action

functional via a normal mode transformation, defined by

P

q= E aexp(-2irijn/P) (2.7)
n=1

where a, is the normal mode coordinate. In order to shorten the computational time to

perform the transiormation in Eq. (2.7). one can take P to equal 2 k. where k is an integer.

and then make use of the fast Fourier transform technique. By virtue of the orthonormality

relation E 1 ecp[2=rim(I - n)/P] = P6,,, the above transformation will diagonalize any

°=quadratic action functional. It should be noted that the normal mode propagator is different

from the Fourier path integral (FPI) propagator [12,231 which is continuous in coordinate

space but truncated in Fourier space. Unlike the convergence of the normal mode propagator

which depends on the discretization parameter P, the convergence of the FPI propagator

depends on the truncation parameter of the Fourier modes km,".

Clearly, the computational effort implicit in NMPIMD refies on the efficiency of the path

integral algorithm which, in turn. depends on the accuracy of the propagator used in the

sampling. For example. it is advantageous to include the quadratic part of the potential

8



energy function in the definition of the NMPIMD propagator. The imaginary time action

functional for a linear harmonic oscillator LHO) is given in the discretized notation by

P Pm R
So(q 1 ,... . qp)/h = - 2 3 sh( R)J(qý + qý 1 )cosh(R) - 2q,q,_ij 2.S)

where R = tdi P. with w being the LHO frequency. If the normal mode transformation in

Eq. (2.7) is applied to this action, one obtains

So(al ..... ap)/h P I an--'

(P12)-i (a R) 2 + (al 2
2  (a)

= _ , + 2A + 2 (2.9)

where An is the thermal width of the n-th normal mode. defined as

A2

2P 2[1 - cos(27'n/P)] + bý (2.10)

Here, the redefined parameters according to the exact LHO propagator in Eq. (2.8) are given

by

A2 112/ sinh(R) (.1
m R (2.1)

and

b,= hw 3Wsinh(R/2)

(R/2) (2.12)

It is obvious from Eq. (2.9) that the Gaussian widths for the real part an and imaginary

part a. of the first P12 - 1 modes are given by An. On the other hand. ap/2 and ap are

real variables with widths V2AP/2 and v\'Ap, respectively. The normal mode variables from

(P/2) + 1 to P - 1 can be obtained by taking the complex conjugate of the first (P/2) - I

variables according to the relation a; = ap_,.

From the above equations. it becomes apparent that the normal mode ap in Eq. (2.9)

is the centroid variable q0 from Eq. i2.3) which is to be held constant during a NMPIMD

calculation of the centroid force. One can therefore define an effective "'Hamiltonian- for

the remaining path modes by assigning them a set of fictitious momenta and masses. i.e..

9



HPq) WJ 7 _j. +~~ + AV(qj) (2.13)

where p,, is the conjugate fictitious momentum for the normal mode a, and .AV is the

residual potential. defined by

AV(q) = V(q) - 5 rnw-(q - q:)2  (2.14)

Molecular dynamics can now by computed from Hamilton's equations based on this effective

Hamiltonian. and the quasiparticle coordinates {qj } obtained as a function of time from Eq.

(2.7). For the sake of efficiency, the fictitious masses are chosen as m,, = m'/O3A2 so that

all the normal modes oscillate with the same unit frequency. Otherwise. the NMPIMD time

step will be determined by the timescale of the fast mode and the numerical integration of

the slow modes becomes ineffective. To assure a canonical ensemble average over the normal

modes, one can attach a Nose-Hoover chain to each of the mode variables. [241

lo our knowledge, this is the first attempt to implement a NMPIMD algorithm in any

context. It should be noted that a very similar algorithm, called staging PIMD. [25] has

already been implemented with considerable success for equilibrium path integral calcula-

tions. However. the NMPIMD algorithm is preferable for centroid MD calculations because

the centroid variable is naturally identified from the normal mode transformation. Further-

more. the programming of NMPIMD is straightforward. A comment is in order. however.

regarding the actual implementation of the NMPIMD centroid force algorithm for multidi-

mensional systems. In such cases, the residual potential in Eq. (2.14) should be defined as

the deviation of the exact potential from the quadratic potential which arises from only the

diagonal elements of the Hessian matrix. The NMPIMD expressions given herein will thus

basically be the same for each degree of freedom. Otherwise. a diagonalization of the Hessian

matirx is first required at each centroid position in order to implement the NMPIMD algo-

rithm as it has been presented. The numerical overhead inherent in such a diagonalization at

every centroid .iD time step is likely to be prohibitive within the context of the dynamical

calculation. On the other hand. although the NMPIMD calculation of the centroid force

10



nmust eventually converge at each centroid position. the neglect of the off-diagonal terms of

the Hessian matrix in the definition of the residual potential may siow the convergence. In

such cases. NMPIMD can no longer be considered the method of choice for the computation

of the centroid force and an alternative should be implemented (see the following sections ).

The NMPIMD algorithm can be incorporated into a centroid MD calculation in two ways:

The first is to calculate the centroid force using Eq. (2.6) at each time step in the centroid

MD calculation. In this approach. the centroid force computation is algorithmically distinct

from the centroid MD time integration. The second approach is to. in effect, compute the

centroid force "'on the fly" within the centroid MD algorithm. [261 This calculation can. in

principle, be accomplished by making the fictitious masses m, = m'/3A' of the normal

mode variables small enough so that the centroid force is convergently computed on the

(longer) timescale of the centroid motion. In this case, the centroid force on that timescale

is essentially given by

F, (qc) I f,4 dt I ZdV(q q=qi(t),qo=qc (2.15)Fcq) - at, dt - dq

where At, is the time step needed to accurately integrate the slow centroid motion. Clearly,

the average must converge on the timescale At,. This algorithm is a kind of "extended

Lagrangian" technique like the Car-Parrinello algorithm. [27.281 but there is an important

difference. In the latter case, the goal is to have the parameters (e.g., plane wave coefficients)

oscillate quickly and "tightly" around the minimum (i.e., the adiabatic ground state Born-

Oppenheimer surface). In a centroid MD calculation, however, the idea is to have the path

fluctuation modes sample their full canonical equilibrium distribution (and to do so quickly).

Again. the canonical sampling can be facilitated by attaching a Nose'-Hoover chain to each

of the path fluctuation modes. (24]

Several other techniques can also be implemented to improve the convergence of the

NMPIMD calculation of the centroid force in a centroid MD calculation. For exampr.e.

(a) The reference potential for defining the residual potential (Eq. (2.14)] can be updated

at each time by setting the effective harmonic frequency j2.13-151 for the centroid force

11



calculation to be the frequency computed at the previous centroid time step, i.e..

rTMW; It - (Y")c it-Ate (2.16)

The curvature oi centroid potential can be evaluated along with the centroid force at any

given centroid time step.

(b) If the reference potential is constantly optimized. the residual potential AV will be

small and hence the MD motion of the normal modes will be dominated by the harmonic part.

Therefore. a multiple time step procedure (29] seems most promising for such a calculation.

In such a procedure. the linear motion of normal modes is integrated over a small time step,

whereas the residual force is taken into account at much larger time intervals.

(c) In the case of an optimized reference potential. the effective anharmonicity of the

residual potential should be small and the centroid force can be expanded linearly as

F(qc) = Fc(q) + dF,(q,) (q' - qc) (2.17)
dqc

where the centroid force gradient dF,(q,)/dq, is the curvature of the centroid mean potential.

given by

dF,(qc) 2Vc(q)
dq, aq2

-q2 \ [ ( )3 )V'[q(T) ) - dTV'[q( )r)] . (2.18)

The imaginary time integrals in this expression can be readily expressed in discrete path

integral notation (cf. Eq. (2.6)]. All the terms in Eq. (2.18) can then be evaluated along

with the centroid force for a given centroid position. From Eq. (2.18), the deviation of the

centroid force F,.(q' ) at a new configuration q• from the exact centroid force F,(qc) at the old

configuration a,. can be assigned some tolerance, above which a new NMPIMD is initiated

ro calculate a new centroid force. etc.. for the new configuration. In addition. the predicted

centroid force F.., q') could also be compared to the classical force at qc, the latter being used

if the difference from the predicted centroid force falls below some tolerance.

The above iist of numerical "tricks" is by no means exhaustive. There is a great deal of

room for future aigorithmic development in centroid MD.
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B. Staging Path Integral Monte Carlo

As was pointed out earlier, the centroid force can be evaluated by either a PUMC or PIMD

algorithm. A major drawback of the NMPIMD method is the consumptive computational

effort involved in the normal mode transformation (Eq. (2.7)1 at each time step to transform

back to the quasiparticle coordinates. This transformation can become rather problematical

if the number of path integral discretizations P is large. As an alternative, a centroid MID

algorithm based on staging PIMC [20,21] is explored in the present subsection which is

particularly advantageous if the number of discretizations is large.

The particular implementation of the staging algorithm in the present work follows closely

the method discussed at length in Ref. [301. However, it is helpful to first incorporate the

effective harmonic reference system into the definition of the transition probability distri-

bution function for selecting trial configurations of the path integral quasiparticle chain.

[20,21,30] A LHO thermal propagator is given by

( m R )1/2 { m R 2 t
po(q, q', 7) = 2 / n ) exp - sinh(R) [(q2 + q'2)cosh(R) - 2qq']

(2.19)

with R = tIL.r. It can be shown that the transition probability function for a point q

intermediate between two points q, and q2 is given by

p(q) = po(q 1 , q, r 1)po(q, q2 , 72)
po(ql, q2 , 7r1 + r 2)

= ex[2 (q )2p 2A2 (2.20)

where q' is the center of the Gaussian distribution, given by

q qlsinh(R2) + q2sinh(RI)
sinh(R1 + R2)

and A is the width of the Gaussian distribution, given by

1 n [ 1 1 1

X2 Lhtanh(R,) +tanh(R 2 )j (2.22)
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The above expressions can be reduced to the more standard free particle case j301 in the

limit of R - 0. In the context of the staging algorithm. Eq. (2.20) defines Levi's recursive

scheme for directly sampling conditional Brownian motion paths which are then subjected

ro the acceptance probability, determined by the residual probability

p(qlq2, ,qP) = exp '- i_ AV(q)) (2.23)
po(ql, q2," .qp)

where AV is given by Eq. (2.14).

An algorithmic challenge is to "smoothly" incorporate staging PIMD into the centroid

MD time integration. An accurate centroid MD calculation may require a small enough

time step so that the force difference in the numerical MD integrator becomes similar to

the statistical error in the PIMC sampling of the centroid force. To deal with this issue, a

single centroid MD time step At can be divided into N.V¢c segments. As a new MC chain

configuration is sampled for a fixed centroid. the centroid can then be moved according

to a much smaller time step 6t = IAt/Npc using the force of the instantaneous MC path

integral configuration. The NMc staging PIMC samplings which are, in principle, to be

performed at the beginning of each time step At. now become evenly distributed on a fine

MD grid of spacing 6t so that the PIMD evolves "'on the fly" with the centroid MD motion.

Such an approach should be more numerically effective than simply computing the centroid

force at the beginning of each time step. Though the fluctuations of the centroid force

can be observed on the fine timescale 6t. the centroid trajectory becomes smooth on the

larger timescale At. To some degree. this behavior is analogous to the stochastic motion

of a heavy particle solvated in a light solvent, namely, Brownian motion. [31] The manifest

diffusion of a Brownian particle consists of numerous collisions with light solvent particles.

As the Brownian particle becomes heavier, the jigsaw behavior becomes less detectable.

This is precisely the behavior of the centroid variable in centroid MD. In the extreme limit

of N.•jc - oc. one recovers the mean force average according to the PIMD case of T - so

in Eq. (2.6). In this case. the force fluctuations on the centroid will become completely

smoothed out so that the centroid feels the mean centroid MID force.
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The complete staging PIMC centroid MD algorithm can be summarized as follows:

(1) Generate a MC chain segment (i.e.. moves of a subset of quasiparticles) by the staging

method based on Eq. (2.20).

(2) Uniformly adjust the positions of all quasiparticles to fix the centroid position.

(3) Accept or reject the new configuration by comparing the change in the residual potential

IV according to Eq. (2.23).

(4) Calculate the instantaneous centroid force for the resulting quasiparticle configuration

and move the centroid accordingly for a small time step 6t = Ait/N.lc in the velocity Verlet

algorithm.

(5) Repeat steps t1)-(4) N.kc times to complete one centroid MD time step At within the

framework of the centroid MD integration.

The complete centroid MD simulation should to be carried out for different values of

N.•vl so that convergence of the the mean centroid force can be assured. Moreover, in the

staging part of the algorithm [part (1)], the number of quasiparticles moved in each chain

segment should be adjusted to achieve a reasonable MC acceptance ration in part (3). As

in the NMPIMD method, the effective harmonic reference propagator in Eq. (2.19) for a

multidimensional system can be defined from the diagonal terms of the Hessian matrix in

order to avoid a costly diagonalization procedure.

C. General Considerations for the Direct Calculation of the Centroid Force

Clearly, the path integral average of the centroid force at each time step is the major

workload of both path integral algorithms. Fortunately, the effort to sample the centroid

force is much reduced in regions of low anharmonicity, for nearly classical systems. and/or

for weakly interacting particles. This assertion can be demonstrated by explicitly expressing

the centroid force fluctuations as

, f[( a ac C (2.24)
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where f(q) = I '(q). In the above equation. the first equality comes from the rearrangement

of Eq. k2 .18) and the second expression arises from the locally optimized effective harmonic

approximation. ;2.13-15] The resulting expression indicates that the quantum fluctuations

Of the centroid force are proportional to (f")•, which arises from the averaged anharmonicity

of the potential. and from C, which measures the effective quantum thermal dispersion of

the particle. [2-41

As a final point in this section. it is noted that in a direct path integral centroid MD

calculation one can also explicitly compute the centroid-constrained path integral average of

a quantum operator at each time t in the time integration (i.e.. a Gaussian approximation for

the averaged operator [3,4.321 can be avoided). Such averages are required in the method

called "'centroid NID with semiclassical operators" developed for the computation of the

approximate centroid correlation function C.B(t) [cf. Eqs. (4.10) and (4.11) of Ref. (4]], so

it is fortunate they can be obtained so directly.

II. EFFECTIVE HARMONIC COMPUTATION OF THE CENTROID FORCE

An alternative, highly efficient, algorithm for computing the centroid force in centroid

.ID makes use of the variational effective quadratic theory for the centroid potential.

[1-4.13-15] This approach, which is'approximate. represents the centroid potential as a

locally optimized quadratic potential centered at the centroid position. The effective poten-

-- tial is then constantly updated as the centroid propagates in the MD time evolution.

Following the multidimensional formalism presented in Paper III, an effective quadratic

centroid force constant matrix can be introduced as

S= ýK (fc + &

Vdet[2rC,(O, )c(0 f dq K(, + q) exp [-PJ. C,'(O. c). -/2] (3.1)

where the Gaussian width factor matrix C,(O, f), in this case. is the position sub-block of

-he generalized centroid-constrained correlation function matrix in Eq. (2.5) of Paper III.
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The Hessian matrix in Eq. (3.1) is defined by

'K(T O'V(q-)
[K(t )jI = dVqi)qj (3.2)

On the level of the effective quadratic approximation. the Gaussian width matrix is formally

expressed as.

cQ(O,4) = [Omnj + K.()] (3.3)

where m is the 3N-dimensional particle mass matrix and 12, = 2irn/h(3. A centroid-

dependent unitary matrix U(i) can be found to diagonalize the mass-scaled centroid force

constant matrix Kc(&), giving the eigenfrequencies

2 ~w (3.4)
U t (') R, (4*) U (T) = I" C- 34

where L is the column vector of centroid-dependent eigenvalues and I is the

3N-dimensional identity matrix. The Gaussian width factor matrix in Eq. (3.1) can be

determined from the relation

Co(o0, j) = U(4) [I. U()] (4c) (3.5)

where the individual elements of the normal mode thermal width factor vector are given by

(*t) = {I tan(hiw,.1/2) 1} (3.6)

and the mass-scaled unitary matrix U(4) is given by

U(,f) = m-'1 2 U(q) (3.7)

Thus, the set of optimized frequencies {wd.i } are variationally obtained as the self-consistent

solution to the transcendental matrix equations (3.1)-(3.8) for a given centroid position.

A. Evaluation of the Gaussian Averages

A central algorithmic challenge in using the effective harmonic theory is the computation

of the Gaussian averages inherent in the variational expression for the centroid potential.

L2-4.13-151 The latter expression is given by
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JKdý V(rl,+ ) ecrpf-iC(a) (3.8)

V'det(27rC,(0, q4)1

From this expression. one can obtain the effective harmonic approximation to the centroid

force, given by

S= - V~(Vc + 1C (3.9)

where the notation " c." indicates that the centroid derivatives in the gradient do not

act on the width matrix C,. The elements of the centroid-dependent force constant matrix

in Eq. (3.1) can be similarly expressed as

02
-

[Kj= *. - V(1 + ': (3.10)

It should be pointed out that the Gaussian-averaged potential at the centroid 4c in Eq.

(3.8) is different from the effective centroid potential introduced in Eq. (1.6). However. the

centroid force in Eq. (3.9) can be shown to be the effective harmonic approximation to the

exact centroid force in Eq. (1.4).

Many systems can be well described by pairwist (or site-site) potentials. If such is the

case. the Gaussian average in Eq. (3.8) can be expressed in terms of the summation over all

pair interactions. i.e..

N N

) = (3.11)

where fij is the three-dimensional vector connecting the i-th and j-th particles. For a specific

pair of interactions, the other degrees of freedom can be integrated out of the average, leading

to a Gaussian average in a lower-dimensional space:

Mf Jdj))f = eI f dt F,.,, + f-) exp (-'. •'(q) -/2] (3.12)-" et27C, t!~i WC)c

where the 3-dimensional. centroid-dependent submatrix C'.Cj (q') can be reduced from the full

matrix width factor C,.,,(0, f). The expression for CG., (ýe) and its derivation can be found

in the Appendix. The above simplification reduces the computational effort considerably for
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systems described by pair potentials. It must be noted. however, that the submatrix C',tj ýqC)

still depends on the global configuration of the particle centroids. In practice. however, it

can be assumed that the effective widths of a pair of particles will not be affected by a

change in the position of those particles if they are beyond some cut-off separation.

The Gaussian average in Eq. (3.8) can only be carried out analytically for polynomials.

Gaussian potentials. exponentials. and their combinations. Gaussian averages of other func-

tions cannot be expressed in closed analytical forms. The numerical integration of even a

three-dimensional Gaussian average (cf. Eq. (3.12) is time consuming and would reduce the

efficiency of the effective harmonic algorithm for centroid MD. These difficulties are magni-

tied when several iterations are required to achieve a convergent solution to the variational

transcendental equations. The best strategy therefore, is to represent the physical potential

by a set of functions which can be Gaussian averaged analytically. Several such approaches

are discussed below which may be appropriate under different circumstances.

1. Taylor Series Expansion

In the nearly classical regime. the Gaussian width matrix. i.e.. the centroid-constrained

propagator matrix Cc(O, i), is a small quantity so the Taylor expansion of the force constant

matrix K(e + 4) in Eq. (3.1) can be truncated at the first nonvanishing term. giving

Ke(4) = K(qj) + 2Cc(O,•): [,9jajK(4)]. (3.13)

where 0,8 1K('c) is a fourth-order tensor. The centroid force expression is of a similar form.

but with the matrices K, and K replaced by the vectors Fc and F. respectively. For pairwise

interactions, the force constant expression can be reduced to one in three-dimensions with

C' replacing C, in Eq. (3.13).
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.2. Gaussian Fit of the Potential

Few physicai potentials resemble a Gaussian function. However. by least-squares fitting

the potential data. Gaussian functions can be used to represent any physical potential. i.e..

M,

V(O) = -•,I exp d-l(-d) .A7 (j-,d,)/21 .3.14)

where A, is the Gaussian width matrix for a given index 1. Since the set of Gaussians does not

rigorouslr form a complete set. Eq. (3.14) is not an expansion but is instead an approximate

fitting of representative points in the range important for the particle interactions.

With the above expression in hand. one can easily complete the Gaussian integration in

Eq. (3.8). giving explicitly

NI

MV( + )e ex= [det- -)(A,+C)exc--'- ½4)' A+C -'qc-)/2 (3.15)
1=1 d(A7 'Cc + (A1)iij (.5

which indicates that the Gaussian averaging broadens the original Gaussian fitting width. If

the interaction is described by a pairwise central force, the Gaussian average can be carried

out for each pair in Eq. (3.11), giving

7= + 1) exp [- (a, (+ +C')-+ .,j2] (3.16)

Here. a, = all. where ai is a constant for a pair potential. In particular. the pair potential

between two sites is fit by Gaussians as

N,
u(r) = Z-yi e- 2 /a (3.17)

This expression represents the simplest possible Gaussian fit in which the origin of each

Gaussian is taken to be r = 0. The fitting procedure can obviously be generalized to use

distributed Gaussians.

3. Hermite Polynomial Representation of Pair Potentials

In principle, any pair potential can be rigorously expanded in terms of the complete

-et of eigenfunctions of the linear harmonic oscillator. These functions are the product of
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Hermite polynomials and a Gaussian function. Thereby, the Gaussian averages of those basis

functions in Eq. (3.8) can be written as combinations of Gaussian functions. polynomials.

and error functions. This approach. because of its rigor, has an advantage over the previous

two approximations. However. it will be more complicated both anaiyticaUy and numerically.

The details oi this approach will be left for future investigations.

4. Plane Wave Representation of Pair Potentials

A given pairwise interaction between particles or molecular sites can also be expanded

in terms of a discrete set of planewaves. In this case, the pair terms in Eq. (3.11) can be

expressed as

v(F,) = • 'j.exp(ik f.j ) (3.18)

where VI is the three-dimensional Fourier transform of the pair potential for the discrete

wavevector k. After performing the Gaussian averaging explicit in Eq. (3.12), one obtains

for the terms in Eq. (3.11) the expression

= Z1.exp (i. r-.ij - .CG(q' )- k/2. (3.19)

This approach is both mathematically rigorous and simple to implement. but it can become

computationaldy expensive if a large number of planewave basis functions are required to fit

---. the pair potential.

Having discussed strategies for computing the Gaussian averages explicit in the effec-

tive harmonic theory, two algorithms will now be described for carrying out centroid MD

calculations using the effective harmonic representation of the centroid force.

B. An Extended Lagrangian Method

The optimal parameters for the effective harmonic approximation to the centroid poten-

tial I(U) [Eq. (1.61 are determined bv a variational minimization of V,() with respect
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to those parameters. [2.13-15] This minimization is accomplished with the help of a Gibbs-

Bogoliubov variational principle for the centroid potential (i.e.. centroid free energ,). "331

Therefore. an extended Lagrangian technique [27.281 can be employed to minimize the erfec-

tive centroid potential and the resulting centroid force while simultaneously propagating the

centroid variables in time. The similarity between centroid MD with the effective harmonic

theory for the centroid force and the Car-Parrineilo (CP) extended Lagrangian method

[27.28] is clear: The centroid motion is the analogue to the CP nuclear motion, the varia-

tional parameters in the effective harmonic theory are the analogues to the CP planewave

coefficients. and the centroid potential is similar to the ground state CP adiabatic energy

functional. In order to outline the extended Lagrangian method as it applies to centroid

MD. the following discussion will be restricted to a one-dimensional problem for simplicity.

The algorithm for multidimensional systems is described at the end of the section.

In the effective harmonic approximation, [2,13-15] the centroid potential in Eq. (1.6) is

given by

Vc(q,;)= -kBTln[(b/2)/sinh(b/2)] + (V(qc + )), - mwc2Cc(O, qj)/2 (3.20)

where b = h3wc, with w, being the frequency of the effective harmonic potential. and

the effective harmonic expression for C,.(0. qj) is given in Eq. (3.3). The parameter ý is the

variational parameter which is optimized to minimize the centroid potential. The parameter

can be chosen to be the centroid frequency w, or the width factor C,.

,--- At this point, one can introduce the extended Lagrangian

Lex,(4c, = 5mq* + m• - V,(qc; (3.21)

where • is the velocity associated with the variational parameter c, and mf is its fictitious

mass. The above Lagrangian forms the basis for the centroid MiD equations in which the

variational parameter ý and. in turn. the centroid force are computed simultaneously with

the centroid motion.

If the variational parameter ( is taken to be the frequency w,. one obtains the nonlinear

equation for the fictitious force on that variable. i.e..
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F ~ (q(q,•

hg!b)! [(b) V(qc + -+w•] 3.22)

where 0, is the partial derivative with respect to the centroid variable, and

1 1 bg(b) = b 4 taah(b/2) 8 sinh 2(b/2) (3.23)

The centroid constrained average in Eq. (3.22), which depends on w,, is given from Eq.

(3.1). The variational solution for the optimized centroid free energy [2,13-15] can obtained

by setting Eq. (3.22) equal to zero and self-consistently solving for the variational parameter

•,,. at a given centroid position. This variational solution provides the initial condition for the

c trajectory generated by the Euler-Lagrange equations based on the extended Lagrangiaa

[Eq. (3.21)].

If the variable ý in the extended Lagrangian is instead taken to be the Gaussian width

factor Cc, one ootains the fictitious force
Fcý, (qc, C0) cV(q%; co)

ac,

. [(aV(qo + 4)), -"mw1 (3.24)

in which the following relation has been used:

ac, Pt
=.g(b) .(3.25),

Since the width factor C, is in this case the dynamical variable instead of w,, the centroid

frequency can be obtained from Cc through the one-dimensional versions of Eqs. (3.5) and

(3.6). As in the case of ý = w,, the optimal variational value for C, is obtained by setting

Eq. (3.241 equal to zero and self-consistently solving for C,. For a given centroid initial

condition. this value of C, would provide the initial condition for the variable C, in the

extended Lagrangian simulation.

Though the choice of the variational parameter , in Eq. (3.21) is equivalent for the

minimization of the centroid free energy, Eq. (3.24) is much easier to generalize to multidi-

mensional systems. giving
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;Cr) 'Kr(qc) - U(K),..T. Ur(q'c) (3.26)

where the relevant quantities here are defined in Eqs. (3.1)-(3.8). For a system of 3N

degrees of freedom, there are 3N(3N + 1)/2 independent variational variables (i.e.. elements

of the matrix C ). The multidimensional trajectory from the extended Lagrangian generates

the width factor matrix C,(t) as a function of time. In order to compute the force in Eq.

(3.26), the matrix trajectory C,(t) is used in Eq. (3.1) to compute the first term on the

right-hand-side of Eq. (3.26). The second term is extracted from C,(t) by inverting Eq.

(3.5) to get the elements a1((j) and. in turn, by solving for the vector WC from Eq. (3.6).

The latter vector, along with the transformation matrix U(q), is then used in the second

term on the right-hand-side of Eq. (3.26).

The essence of the extended Lagrangian method [27,28] is to cO.oose such small fictitious

masses {mc} in the multidimensional version of Eq. (3.21) that the fictitious variables {f}

rapidly oscillate around the minimum of the centroid free energy surface Eq. (3.20). The

centroid variables should then exhibit an adiabatic, conservative motion because there is

little energy exchange between them and the fictitious de;Tees of freedom. One useful

technique is to associate a Nose-Hoover chain (241 to each fictitious variable to keep it from

heating up.

C. An Iterative Method for the Centroid Force

While the extended Lagrangian method discussed above is quite elegant. it turns out

that a simple iterative solution is quite feasible for the multidimensional effective harmonic

variational equations [i.e.. Eq. (3.26) set equal to zero]. This algorithm is rather straight-

forward: Solve the transcendental equation iteratively at a fixed centroid until convergence.

calculate the centroid force and move the centroid accordingly in the MD integrator, and

repeat the procedure for each time step. Manv fewer iterations are required if the optimal

parameters from the previous time step are used as the initial guess at the current time step.
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Provided the centroid displacement is small, the convergence of the iterative scheme should

be fast.

One difficulty associated with the iterative method occurs when negative curvatures are

present in the classical Hessian matrix for a given centroid configuration (i.e.. at inflection

points or in a barrier region). If the initial guess of parameters is poor. the iterative scheme

may not converge, even though the Gibbs-Bogoliubov variational principle [331 insures the

centroid potential is finite and therefore that a solution must exist. If such a problem arises

in the convergence of the iterative algorithm at a given time step, the iterative process can

be re-started with a smaller value of h and that parameter can then be adjusted until the

neighborhood of a fixed point is located. For h = 0. the classical force is obtained which,

of course, is well-defined. It should be noted that the effective quadratic theory is being

implemented here within the context of the local centroid force for each time step in the

centroid MD integration. This local instantaneous centroid potential is not being used to

extrapolate the dynamics to long times. If such were the case, unphysical instabilities in the

centroid dynamics might indeed be present.

IV. A PSEUDOPOTENTIAL METHOD FOR THE CENTROID FORCE

For a system consisting of particles interacting through pairwise potentials. the three-

body quantum correlations will diminish as the distances increase. Therefore, at relatively

dilute densities only the pairwise interactions need to be treated quantum mechanically.

This approximation in the centroid theory is analogous to a treatment of many-body elec-

tronic polarization interactions through only a pairwise London-like attraction force, thus

neglecting the higher-order many-body dispersion terms. The analogy in this case is drawn

between the quantum path fluctuations about the particle centroids and the electronic fluc-

tuations about the mean particle wavefunctions. The latter many-body dispersion problem

has been systematically studied (34! through a quantum Drude oscillator model [351 and it

was found that at low densities the two-body interaction is by far the dominant one.
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The exact excess free energy of the centroids of a many body system can be approximated

as the superposition of the excess free energy of the pair centroid interactions. i.e..

N N
FZ veu(rci) (4.1)
i=1 i>i

where the effective centroid pair potential Veff (r,.ij) is computed from the expression for

two particles:

ezpj- 3Veii(rý. 12 )]

_ --. f Th1(r)D (r)6(r ,2 -f12) exp
f-... f £TI(r)DVT2(r) 6(r,1 2 - fl2 )exp{-Sfp[4i(r),•z(r)]/t} (4.2)

Here. qj and 4'2 are the three-dimensional vectors for par.ý ..es "'1" and "2". respectively.

S[•T(T). *(Tr)! is the action functional for the interacting .:srticles. Sfpi[,l(r), eq2(r)j is the

free particle action functional, and

r2 fjdr 1ji(r)- -(r) (4.3)

The effective centroid pair potential veff (re,,,), which is a central force and a function of

temperature as well as mass, can be calculated accurately by the direct PIMC sampling

methods discussed in Sec. II and saved on a one-dimensional grid. The centroid MD equa-

tions jEq. (1.3)1 can then be integrated using the centroid force computed from the pairwise

centroid pseudopotential. Obviously. this scheme will be most effective for nearly classical

systems where many-body quantum correlations are negligible, or for weakly interacting

systems where there is a low probability for three particles to be mutually within the some

relevant interaction range. For highly condensed phases of strongly quantized particles, the

compact structure insures that there will be several neighbors for each quantum particie

and thus the contribution from many-body quantum correlations becomes significant. In

such cases, one of the more rigorous centroid MD algorithms described in the previous two

sections will be necessary.

In passing. we note that three-body centroid correlations (or "dispersion") might be

incorporated by titting the excess centroid free energy due to the three-body interaction to
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some functional form having a few adjustable parameters. This procedure is analogous to

the determination of pseudopotentials from ab inztio quantum chemistry calculations.

V. NUMERICAL RESULTS

In this section. the accuracy and efficiency of the various centroid MD algorithms is

examined for both prototype low-dimensional models and more realistic many-body systems.

Due to limitations in the available computational resources. not every model has been studied

with every algorithm. Nevertheless. the numerical studies below clearly illustrate the major

strengths and weaknesses of each approach. Applications of centroid MD to actual physical

systems will be the subject of future publications.

The numerical examples and associated discussion are presented in the order that the

algorithms appear in the previous sections. All of the algorithms are essentially the same in

the numerical MD propagation of the centroid variable(s), except for the way in which the

centroid force is calculated. As specified by the centroid MD algorithm, [1,3,41 the initial

centroid positions were generated by Metropolis importance sampling from the centroid

distribution, while the initial momenta were directly sampled from the Gaussian centroid

momentum distribution. In most cases. the centroid correlation functions were plotted

along with the exact Kubo transformed correlation function. (161 if available. If required.

the Fourier relation in Eq. (1.1) can be used to convert the centroid correlation functions to

-- the usual ones. [3]

A. Normal Mode Path Integral Molecular Dynamics

In order to test of the convergence of the algorithms on a simple model for which exact

quantum dynamics can be obtained, the same one-dimensional anharmonic potential has

been studied as in Paper 11. This potential is given by

V(q) = 1 - eqq (5.1)
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with the parameters c = 0.10. g = 0.01. r, = 1.0, and m = 1.0. In these units. the inverse

temperature 3 is given in terms of the dimensionless parameter 3hw. The potential has a

single minimum at q = 0. exhibiting a cubic anharmonicity for small deviations from the

minimum and a quartic anharmonicity for larger deviations from the minimum. At low

temperatures where mode quantization effects become important. the cubic anharmonicity

is the dominant perturbation. The anharmonicities in Eq. (5.1) perturb the energy gap

between the ground and first excited vibrational state downward by 6% from the harmonic

limit. This corresponds to a large anharmonicity for a typical molecular vibration. The

temperature employed in the calculations is 3 = 5 which is typical of a C-C single bond at

300 K. For this one-dimensional model, the exact results were obtained by first diagonalizing

the nonlinear Hamiltonian in a harmonic oscillator basis set to find its eigenvalues and

eigenvectors. Then. one hundred eigenstates were employed to calculate the exact Kubo-

transformed time correlation functions. [3)

In the first case. the centroid force was calculatcd by normal mode path integral MD

averaging at each time step. As discussed in Sec. II, the fictitious masses of all P - 1 normal

modes except the centroid mode were chosen to be m,, = m'/3A•, where mn' = 3, so that

the normal modes all oscillate with unit frequency. Nose-Hoover chains consisting of two

thermostats with fictitious masses of 1.0 and a fictitious temperature of 1.0 were attached

to each path integral normal mode. [24] The multiple time step method [29] allowed the

integration of the motion due to the residue potential AV(q) for every 10 steps of linear

motion of the reference harmonic path integral normal modes. The centroid motion was

integrated in terms of the normal modes using the velocity Verlet algorithm with a time

step of 0.05. The Nose-Hoover chain dynamics were calculated for 10i steps with a time-

step of 0.005. and the centroid force [Eq. (2.1)], as well as the centroid curvature 1Eq.

(2.18)1] and force fluctuations [Eq. (2.24)]. were accumulated during the simulation. For the

position correlation function of the prototype model in Eq. (5.1). the dynamics of 10" centroid

trajectories were averaged unless otherwise specified. To speed up the convergence of the

centroid force. the frequency of the harmonic reference potential was constantly updated
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according to Eq. k2.16). Moreover. since the force changes smoothly with the centroid

motion, the centroid force could be evaluated via the gradient correction in Eqs. (2.17) and

(2.18) if the change were within some tolerance. By setting this tolerance to 20%-beyond

which a new NMPIMD calculation of the centroid force was initiated-the speed of the

centroid MD integration could be increased by a factor of two to three. The use of a smaller

fictitious mass in the spirit of an extended Lagrangian simulation was not implemented in

the present work. but such an approach has been explored recently with good success by

Martyna for centroid MD. [26]

In Fig. 1. the centroid position correlation function is shown for the nonlinear oscillator

of Eq. (5.1) at J = 5. The solid circles are the exact quantum results. the solid line is the

NMPIMD result for the discretization parameter of P = 20. the dashed line is the NMPIMD

result for P = 10. and the dot-dashed line is the result from the effective harmonic approxi-

mation for the centroid force. [31 The improvement due to the increased value of P is evident,

and the brute force NMPIMD calculation is superior to the effective harmonic approxima-

tion. However. the computation time increases substantially with increasing P. Obviously,

calculating the centroid force exactly using NMPIMD at each time step provides the most

accurate dynamical result, but the method as presently applied will become time consuming

for many-body systems having a large number of beads. (The NMPIMD calculations in Fig.

1 took approximately 50 CPU hours on an IBM RISC/6000 Model 370 workstation.)

As an aside, we note that the results shown in Fig. 1 provide further evidence that

centroid MD is a method valid for general nonlinear potentials and is not intrinsically "wed-

ded" to the effective harmonic perspective. (The latter perspective simply helps to justify

centroid MD. .1.31) The results in Fig. I show that a centroid MD calculation will be more

accurate when the centroid force is computed exactly, as opposed to when it is approximated

by the effective harmonic expression. The analytical justification of centroid MD for general

systems is. of course. the subject of the companion paper. '4]
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B. Staging Path Integral Monte Carlo

As discussed in Sec. IIB. another strategy for computing the centroid force in centroid

MD is the the staging path integral MC method. The specific staging algorithm introduces

a stochastic dynamics, which in the limit of NJ.%c - oc [cf. Sec. IIB] gives exactly the

centroid force and centroid MD. To test the efficiency and convergence of this method. the

centroid position correlation function for the potential in Eq. (5.1) was calculated at 3 = 5.0

as in Fig. 1. A harmonic reference propagator of frequency w = 1.0 and P = 10 was used

in the staging path integral MC with the number of trial chain quasiparticles in the staging

algorithm adjusted to yield an acceptance rate of 50%. The staging centroid MD calculations

converged to a degree comparable to that shown in Fig. 1 for a value of NMc = 10. taking

only a few CPU minutes on the IBM workstation. This calculation is therefore considerably

faster than the one performed with NMPIMD. Since the staging PIMC method approximates

the centroid MD asymptotically, the averaging of the centroid force is much less demanding.

In addition. the normal mode transformation in the NMPIMD algorithm, which consumes a

large portion of CPU time for a large value of P, is completely avoided in the staging PIMC

method for centroid MD as described in Sec. IIB.

The above result strongly suggests the feasibility of using centroid MD to simulate the

dynamical time correlation functions of quantum particles in many-dimensional systems

As a test case. the self-diffusion process of a quantum particle in a classical solvent was

--- studied. The solvent in this case was a Lennard-Jones fluid with the parameters a = 2.556

A. e = 10.22 K. and the solute-solvent pair potential had the simple form [301 v(r) =

[B/(C + r6) - 1](A/r 4 ), where A = 0.665. B = 89099, C = 12608 (in atomic units). The

simulation consisted of 512 total particles at a temperature T = 309 K and a reduced

density of p" = 0.3. The solute was assumed to be a quantum particle having the electron

mass m, but Planck's constant A was reduced by a factor of 10 so that a discretization

number of P = 100 was adequate in the simulation. The dynamics of 200 centroid .ID

trajectories were calculated for 150 time steps with an increment of 0.01 with N.ItC = 10
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in the staging/ centroid MD algorithm. All of the data was scaled by the Lennard-Jones

potential width a. depth f. and the electron mass mi.. The mean-squared displacement of

the quantum solute is plotted in Fig. 2 for the centroid MD with staging PIMC method

(solid line) and for classical MD (dashed line). The quantum effect is clearly manifested.

though the quantum solute is far from localized [30,36]. This calculation took approximately

one day of dedicated CPU time on the IBM RISC/6000 Model 370 workstation.

Though quite promising, the staging/centroid MD results are certainly preliminary.

Longer computer runs and better statistics are required to evaluate diffusion constants to

a acceptable degree of accuracy. Furthermore, to simulate an actual solvated electron will

require a value of P = 1000 to converge the quantum effects. Nevertheless, this exam-

ple demonstrates it is possible to carry out centroid MD calculations for realistic physical

systems using the "brute force" algorithm based on staging PIMC.

C. Effective Harmonic Method: Extended Lagrangian Approach

The effective harmonic method for centroid MD [cf. Sec. IIIA] can be implemented

with the extended Lagrangian approach of Sec. IIIB. This approach will produce centroid

MD if the fictitious mass is sufficiently small so that the fictitious variable, namely the

Gaussian width factors C, in the present case, rapidly average the dynamics about the

minimized centroid potential surface. As a test of this approach, the nonlinear potential in

Eq. (5.1) was studied to determine the dependence of the extended Lagrangian method on

the fictitious mass mf and the time-step At. In Fig. 3, a single centroid trajectory is plotted

for mf = 0.1 and At = 0.01. Shown is the total energy (dot-dashed line), the centroid

"kinetic energy ksolid line) and the fictitious kinetic energy on an enlarged scale by a factor

of 103 (dotted line). Clearly. under the chosen conditions. the fictitious dynamics have little

effect on centroid dynamics except to generate the centroid mean force. For this study,

stable results were obtained until the values mE = 0.5 and At = 0.1 were used. The -'rule

of thumb" is to choose m, small enough so that the fictitious kinetic energy is less than one
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percent of the total energy and to make At small enough so that the total energy does not

drift more than a few percent at the end of a single trajectory. Although not shown here.

the centroid position correlation function calculated with the extended Lagrangian method

was found to be the same as the effective harmonic result shown in Fig. 1 (the latter result

was obtained by representing the effective harmonic centroid potential on a one-dimensional

grid). Since for this example (and the following one) the Gaussian averages can be expressed

in closed form. the extended Lagrangian calculation takes very little CPU time. Thus. the

numerical effort implicit in this method is negligible compared to either of the direct (brute

force) path integral centroid MD methods.

As a more challengng test. the effective harmonic theory with the extended Lagrangian

-algorithm was applied to a three-dimensional particle in a non-separable potential well. given

by

V(ql, q2 , q3 ) = 2 E(qi + gq•) + cqlq2q3 (5.2)
i= I

with the parameters g = 0.1, h = 1.0. m = 1.0. and fi = 5.0. The extended Lagrangian

centroid dynamics were carried out for the three centroid variables and the six dynamical

elements of the Gaussian width factor matrix with a time step of At = 0.01 and a fictitious

mass of m, = 0.1. The quantum position correlation function (not the centroid correlation

function) is shown in Fig. 4 for c = 0.1 along with the classical MD result. The extended

Lagrangian simulation for this example was both stable and efficient. and the quantum

.-- effects are seen to be significant.

D. Effective Harmonic Method: Iterative Approach

The method is rather straightforward and was the original algorithm used in the previous

calculations published in Papers II and III. In fact. the iteration method works extremely

well for the examples discussed in the previous subsection (i.e.. even better than the extended

Lagrangian) and will not be reproduced here. Instead, the focus will shift to a more realistic

many-body system.
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As has been pointed out in Sec. IIIB. the most serious potential difficulty associated

with solving the transcendental equations in Eqs. (3.1)-(3.3) in many-dimensional space is

the evaluation of the Gaussian averages. Several approaches were proposed and formulated

in Sec. III. For the present purposes. the Gaussian representation of pair potentials in Eq.

(3.17) is the most convenient and efficient. A set of five of Gaussian parameters was found

to be accurate in representing a Lennard-Jones pair potential. [37) In order to demonstrate

the validity of the effective harmonic approximation and the Gaussian representation of the

Lennard-Jones potential, in Fig. 5 the centroid force thus calculated is plotted (solid line)

along with the results of an exact PIMC calculation (solid circles). The parameters were

taken to be 3 = 1.0. m = 1.0. and h = 0.1. so the PIMC calculations were performed for

P = 20 with 103 NIC passes. The results are in remarkably good agreement.

Next the effective harmonic theory with the iterative algorithm for the centroid force

was applied to study a quantum particle solvated in a pairwise Lennard-Jones classical fluid

similar to that described in Sec. VB. The Lennard-Jones interaction between the quantum

particle and the solvent particles was also represented by five independent Gaussian func-

tions. The well depth and width of Lennard-Jones potential were taken as the natural units.

and a unit mass was assumed for both the solvent and the solute. A total of 125 solvent

particles in a periodic cubic were used to model the solvent at a reduced density 0.8 and

at a reduced temperature 1.0 The quantum nature of the solute particle was adjusted by

varying the Planck's constant h from h = 0.0 to h = 0.3 in the reduced units. The dynamics

of 103 independent centroid trajectories were then integrated for 500 time steps of duration

0.01. At the initial stage of the centroid MD simulation. 10 - 20 iterations were needed for

convergence in computing the centroid force at each time step. After the centroid began to

move. the self-consistent parameter set from the previous time step was taken as the input

to the iterations at the current time step and. accordingly, only 1 - 3 iterations were needed

to converge the centroid force.

The mean square displacement of the solute is plotted in Fig. 6 for centroid MD (solid

line) and for cassical MD (dashed line). The diffusion constant measured from the siope
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of the displacement curve shows a 20% decrease due to quantum effect in this case. The

effective harmonic centroid MD method with the iterative approach was found to be stable

and highly efficient. The results in Fig. 6 were obtained in several hours of CPU time on

the IBM RISC,'6000 Model 370 workstation.

E. Centroid Pseudopotential Method

First of all. it is important to examine the suggestion in Sec. IV that an effective pairwise

centroid potential can capture the dominant quantum effects in the many-body centroid

potential surface. Since only the force is relevant to centroid MD. the following results will

be expressed in terms of the centroid force instead of the centroid potential. For convenience.

a Lennard-Jones potential was employed with the reduced parameters a = 1.0, e = 1.0,

m = 1.0. 3 = 1.0. and h = 1.0. The computational procedure is described as follows:

(1) The centroid force between a pair of quantum particles interacting via the Lennard

Jones potential was calculated as a function of separation between their centroids in a

PIMC simulation.

(2) The total centroid force between the three particles arranged on an equilateral triangle

was then calculated in a similar fashion by uniformly changing the distance of the three

sides of the triangle.

(3) The pairwise pseudopotential method was then applied to the same three-particle system

with the pair potential obtained from step (1).

The results from the direct simulation in step (2) and the pseudopotential approximation

in step (3) are plotted in Fig. 7 and agree quite well except at very close (and improbable)

distances.

In paper II. the self-diffusion process in fluid neon (381 was studied with centroid MD

by including the leading correction in the pair centroid potential. The same calculation has

been carried out here using the pseudopotential method. The parameters of the system and

details of the centroid MD simulation can be found in Paper II (cf. Sec. IV C and Table I
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in that paper). To illustrate the difference between the two approximations, in Fig. 8 the

pair centroid pseudopotential force used in this calculation is plotted (solid line) against the

approximate centroid force used in the Paper II (dot-dashed line) and the classical Lennard-

Jones force (dashed line). Then. in Fig. 9 the centroid velocity time correlation function

is plotted for quantum neon (solid line) using the pseudopotential method and for classical

neon (dashed line). Evidently, the more repulsive centroid force shown in Fig. 8 leads to

the decrease in the quantum diffusion constant seen in Fig. 9 (i.e.. through the integral of

the centroid velocity autocorrelation function in the Green-Kubo formula for the diffusion

constant [31).

VI. CONCLUDING REMARKS

This paper is solely devoted to the development of numerical algorithms for centroid MD

and. in turn, it sets the stage for a broad spectrum of applications. Though centroid MD

makes the study of quantum dynamics in many-body systems a possibility, the numerical

integration of the centroid MD equations is by no means trivial. This is because the centroid

force F,(4,) in Eq. (1.4) is a quantum mean force which cannot be evaluated exactly by simple

analytical expressions. Therefore. several algorithms for centroid MD have been outlined and

tested in the present paper. Though these algorithms have been described in considerable

detail, some remarks are in order regarding the outlook for their application in realistic

-.- simulations.

Strictly speaking, the quantum imaginary time path fluctuations about the centroid Nari-

able must be completely averaged in order to compute the centroid force in Eq.(1.4) at each

time step in the centroid MD integration. The NMPIMD/centroid MD algorithm in Sec.

IIA will essentially produce the exact centroid force at each time step, but the prelimi-

nary results reported in Sec. VA suggest its application to a real many-body system will be

formidable in any practical sense. Perhaps a more complete examination of the extended

Lagrangian aspects of the NMPIMD algorithm will provide a more optimistic prognosis for
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the method. [26! On the other hand. the results from the staging PIMC/centroid .iD al-

gorithm developed in Sec. IIB suggest that a brute force centroid MiD calculation is indeed

within the realm of possibility for realistic systems. The staging PINIC/centroid MD scheme

is simpler and faster than NMPIMD/centroid MD algorithm. The preliminary results sug-

gest that a singie quantum particle immersed in a classical solvent with P = 100 - 1000. or

an ensemble of quantum particles, each with P • 20 - 30. can be treated with the staging

PIMC/centroid NMID algorithm on a higher-end computer workstation. Of course, computer

performance is rapidly increasing, so optimism is clearly in order. Moreover, the outlook for

implementing centroid MD on a massively parallei computer seems most promising, though

such algorithms remain to be explored.

For systems which are presently beyond the reach of the brute force path integral cen-

troid MD methods, the effective harmonic centroid MD algorithm of Sec. III is an attractive

option. In fact. this algorithm will always provide a highly efficient alternative to the brute

force methods in systems where the quantum modes are predominantly influenced by pos-

itive curvature in the potential (i.e.. so that the minimization of the effective harmonic

potential is efficient). The vibrational dynamics and relaxation of condensed phase poly-

atomic molecuies. or perhaps the dynamics of quantum clusters. may be ideal candidates

for the effective harmonic algorithm.

Due to its simplicity and flexibility, the centroid pseudopotential method described in

Sec. IV is particularly attractive for very large systems, provided those systems are not too

quantum in nature or have low densities. For example, the transport coefficients of nearly

classical fluids, simulations of quantum friction, and calculations of quantum solvent spectra

could all be investigated with this method (and probably with the others as well-at least

in time).

As a final point. we note that the algorithms described in the present paper might be

combined to greatly enhance the capability of centroid MD for the study of real systems.

Consider the example of proton exchange dynamics between two solutes in a quantized

solvent such as water. The proton centroid dynamics might be treated by one of the brute
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force path integral methods. the solute intramolecular centroids could be integrated through

the effective harmonic approach. while the solvent-solute and solvent-solvent interactions

could be approximated by the centroid pseudopotential method. The feasibility of such an

algorithm is insured by the so-called free energy Born-Oppenheimer approximation. i191 A

,v-ariety of applications of centroid MD will be reported in future publications.
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APPENDIX A: EVALUATION OF THE SUBMATRIX C' IN EQ. (3.13)

In general. the centroid-constrained correlation function in Eq. (3.3) and Eq. (3.5) is a

(3N x 3N)-th order matrix for an N-body system in three dimensional space. For the

simplicity of notation. the three space indices will be eliminated here. Thereby. for a particle

with three spatial components the matrix C, is re-defined below as an N-th order matrix.

with each element understood to be defined as

(011. cl.012.

c0.2. 0. . (Al)

Here, the subscripts denote the particle index and the superscripts denote the three spatial

dimensions. It is also to be noted that all elements of this matrix depend on the centroid

variables of the N-body system. One can now partition the inverse of the matrix Co,

defined as B, such that

C-= B= (b b12  (A2)

b21 b922

Here. b11 = B,! is treated as a matrix element [which is. according to Eq. (Al), actually a

matrix of order 31. b12 = (B12 , B 13 ,.. BIN) is like a row vector. b21 is like a column vector

such that b2_ = b',, and b 22 is like an (N - 1) x (N - I)-th order matrix.

With the above notation in hand. all of the other variables {q2, -... qN} in Eq. (3.8)

can be integrated out to give a reduced Gaussian average [cf. Eq. (3.12)], with the reduced

Gaussian distribution given by

P(ql) -z= 2 f dqj exp (- i-[. B .- /2)

J'dqexp(-rT" B. T/i2)
det(27rb-) ]= [de(2B-'2 exp - ,1 (bil - b, 2b2-b 2 j)ql/2] A3)

On the other hand. one has the matrix element from Eq. (Al), i.e..

C. 11 = fB-')1 1 = det(b 2,)/det(B) A4)
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where the denominator, after some algebra. can be written as

det(B) = (bil - b 2b'b 21 )det(bi_2) (A5)

Therefore. the reduced matrix Cc' C,.,, can be introduced so that the reduced Gaussian

distribution in Eq. (A3) reads as
1

P(qj) = e(r•Z exp(-qj-.C•. qj/2) (AM)

where according to the notation used here C' is a matrix of order 3 and q, is a three-

dimensional vector.

As stated in the main text. a pair potential only depends on the relative position of the

pair particles. Therefore, the preceding result should be expressed in terms of i, - q-,

the vector connecting particles i and j. Thereby, an uniform transformation is required to

obtain the relevant matrix element. i.e.,

C'- ()" C. - 2C'.- + C-! (A7)

4

which defines the reduced Gaussian distribution for the variable Fj in Eqs. (3.11) and (3.12).

39



REFERENCES

11] J. Cao and G. A. Voth. J. Chem. Phys. 99. 10070 (1993).

r2] J. Cao and G. A. Voth. J. Chem. Phys. 100. xxxx (1994).

;3] J. Cao and G. A. Voth, J. Chem. Phys. 100. xxxx (1994).

[4] J. Cao and G. A. Voth. J. Chem. Phys. xx. xxxx (1994).

[51 See Ref. [6], pp. 279-286.

[6] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals (McGraw-Hill

Book Company. New York. 1965).

[7] R. P. Fevnman. Statistical Mechanics (Addison-Wesley, MA, 1972), chap. 3.

[81 L. S. Schulman. Techniques and Applications of Path Integration (John Wiley and Sons,

Inc.. New York. 1986).

[9] M. S. Swanson. Path Integrals and Quantum Processes (Academic Press, San Diego,

1992).

1101 D. Chandler. in Liquides. Cristallisatzon et Transition Vitreuse Les Houches. Session

LL edited by D. Levesque. J. Hansen. and J. Zinn-Justin (Elsevier. New York. 1991).

[11] B. J. Berne and D. Thirumalai. Annu. Rev. Phys. Chem. 37. 401 (1986).

"[12] J. D. Doll. D. L. Freeman. and T. L. Beck, Adv. Chem. Phys. 78. 61 (1990).

[13] R. P. Feynman and H. Kleinert. Phys. Rev. A. 34. 5080 (1986).

'14] R. Giachetti and V. Tognetti. Phys. Rev. Lett. 55. 912 (1985).

"151 J. Cao and B. J. Berne, J. Chem. Phys. 92. 7531 (1990).

[16] R. Kubo. N. Toda. and N. Hashitsume. Statistical Physics II (Springer-Verlag, Berlin.

1985).

40



[17] For reviews of numerical and analytical path integral methods. see Refs. [10-121.

r18] J. D. Doll and J. E. Gubernatis. Quantum Simulations of Condensed Matter Phenomena

(World Scientific, Singapore. 1990).

L19] J. Cao and B. J. Berne. J. Chem. Phys. 99. 2902 (1993).

[201 E. L. Pollock and D. M. Ceperley. Phys. Rev. B 30. 2555 (1984).

[211 M. Sprik. M. L. Klein, and D. Chandler, Phys. Rev. B 31, 4234 (1985).

[22] M. Parrinello and A. Rahman. J. Chem. Phys. 80, 860 (1984).

[231 R. D. Coalson. D. L. Freeman. and J. D. Doll, J. Chem. Phys. 85. 4567 (1986).

[24] G. J. Martvna. M. Tuckerman. and B. J. Berne, J. Chem. Phys. 98. 1990 (1992).

[25] M. Tuckerman. B. J. Berne. G. J. Martyna, and M. L. Klein. J. Chem. Phys. 99, 2796

(1993).

[261 G. J. Martyna, (to be submitted. 1994). This author also suggests using the extended

Lagrangian approach to calculate centroid MD trajectories.

[271 R. Car and NI. Parrinello. Phys. Rev. Lett. 55. 2471 (1985).

f28) D. K. Remier and P. A. Madden. Mol. Phys. 70, 921 (1990). this reference contains

a good review and discussion of the Car-Parrinello extended Lagrangian technique for

"first-principles molecular dynamics simulations.

[29] NI. Tuckerman. G. J. Martyna. and B. J. Berne, J. Chem. Phys. 97. 1990 (1992).

[301 D. F. Coker. B. J. Berne. and D. Thirumalai. J. Chem. Phys. 86. 5689 (1987).

[31] B. J. Berne and R. Pecora. Dynamzc Light Scattering (Wiley-lnterscience. New York.

1976).

[321 G. A. Voth. Phys. Rev. A 44. 5302 (1991).

41



[33] See Ref. (6]. pp. 303-307. and Ref. [7], pp. 86-96.

[34] 3. Cao and B. J. Berne. J. Chem. Phys. 97. 8628 (1992).

[35] M. J. Thompson. K. S. Schweizer. and D. Chandler. J. Chem. Phys. 76. 1128 (1982).

[361 D. Chandler. Y. Singh, and D. NI. Richardson, I. Chem. Phys. 81, 1975 (1984).

[371 G. J. Martyna. (private communication).

[38] D. Thirumalai. R. W. Hall. and B. I. Berne, J. Chem. Phys. 81, 2523 (1984).

42



FIGURES

FIG. 1. A plot of the centroid position correlation function for the nonlinear oscillator of Eq.

(5.1) at d = 5. The solid circles are the exact quantum results, the solid line is the NMPIMD

result for P = 20. the dashed line is the NMPIMD result for P = 10. and the dot-dashed line is

the result of the effective harmonic approximation for the centroid force (see Paper II)

FIG. 2. A plot of the mean square displacement for a quantum particle solvated in a classical

neon fluid. The solid line is the stochastic centroid MD with staging PIMC described in Sec. IIB

while the dashed line is for classical MD.

FIG. 3. A plot of the energy data for a single trajectory for the potential in Eq. (5.1) as

calculated with the extended Lagrangian centroid MD method of Sec. IIIB. The dot-dashed line is

the total energy, the solid line is the centroid kinetic energy, and the dashed line is the fictitious

kinetic energy enlarged by a factor of 103.

FIG. 4. A plot of the real time position correlation function calculated by the extended La-

grangian centroid MD method of Sec. IIIB for the three-dimensional potential given in Eq. (5.2)

at a temperature of 3 = 5. Also shown is the classical MD result.

FIG. 5. A plot of the centroid force for a Lennard-Jones potential. The solid circles represent

exact results from a PIMC simulation. while the solid line represents the effective harmonic approx-

imation from Eqs. k3.1)-(3.3) with the Gaussian representation of the Lennard-Jones potential in

"-Eq. (3.17).

FIG. 6. A plot of the mean squared displacement of a quantum Lennard-Jones particle solvated

in a classical Lennard-Jones fluid. The solid line is the centroid MD result obtained with the

effective harmonic centroid force solved iteratively (cf. Sec. IIIC). while the dashed line is the

classical MID result.
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FIG. 7. A p-nt of the total centroid force between three Lennard-Jones particles distributed on

ai equilateral triangle. The solid circles are the exact PIMC simulation results. while the solid line

is the pseudopotential approximation of Sec. IV.

FIG. S. A plot of the pair force between two Lennard-Jones particles as a function of separation.

The solid line is exact pair centroid force used in the pseudopotential calculation. the dot-dashed

line is the approximate pair centroid force used in Paper II. and the dashed line is the classical

Lennard-Jones force.

FIG. 9. A plot of the centroid velocity autocorrelation function for fluid neon. The solid line

is the centroid MD result calculated with the centroid pseudopotential approximation. while the

dashed line is the classical MD result.
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