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The Formulation of Quantum Statistical Mechanics Based on the

Feynman Path Centroid Density. III. Phase Space Formalism and

Analysis of Centroid Molecular Dynamics

Jianshu Cao and Gregory A. Voth

Department of Chemistry, University of Pennsylvania. Philadelphia. Pennsylvania 19104-

6323

ABSTRACT

The formulation of quantum statistical mechanics based on the path centroid variable

in Feynman path integration is generalized to a phase space perspective, thereby including

the momentum as an independent dynamical variable. By virtue of this approach. operator

averages and imaginary time correlation functions can be expressed in terms of an averaging

over the multidimensional phase space centroid density. The imaginary time centroid-

constrained correlation function matrix for the phase space variables is then found to

define the effective thermal width of the phase space centroid variable. These developments

also make it possible to rigorously analyze the centroid molecular dynamics method for

computing quantum dynamical time correlation functions. As a result. the centroid time

correlation function as calculated from ceptroid molecular dynamics is shown to be a well-

defined approximation to the exact Kubo transformed position correlation function. This

analysis thereby clarifies the underlying role of the equilibrium path centroid variable in the

quantum dynamical position correlation function and provides a sound theoretical basis

for the centroid molecular dynamics method.
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I. Introduction

In two papers-"2 (hereafter referred to as Paper I and Paper II) and a Communication.3

the formulation of quantum statistical mechanics based on the Feynman path centroid

was extensively studied. These efforts originated from the notion that the path centroid

variable' in equilibrium quantum systems is the most direct analogue to a classical variable

and should therefore possess both formally interesting and computationally useful prop-

erties. Paper I developed the formal "cornerstone" for the centroid-based formulation of

equilibrium properties, introducing many of the mathematical tools necessary for subse-

quent theoretical developments. For example, a formally exact theory was developed for

the equilibrium density4 associated with the centroid variable (the so-called "centroid den-

sity"). This analytical theory goes well beyond the Feynman-Hibbs variational theoryv4 for

the partition function by employing an infinite-order diagrammatic perturbation expansion

along with resummation and renormalization techniques. The analysis also explores the

diagrammatic representation of various approximation schemes 4'5 for the centroid density

and then systematically improves upon those schemes. In addition to the analytical the-

ory for the centroid density in Paper I, the quantum expressions for equilibrium operator

averages and imaginary time correlation functions were reformulated so that the centroid

density occupies the role of the underlying statistical distribution function. Taken together.

the developments in Paper I represent a unified view of equilibrium quantum statistical

mechanics from the centroid perspective.

In Paper II and the Communication. the path centroid perspective was significantly

-... extended to address the challenge of calculating quantum dynamical time correlation func-

tions. The most intriguing and promising result of the dynamical centroid analysis is a

method called centroid molecular dynamics (centroid MD).-' 3 Motivated by the appeal

of the centroid perspective, it was argued that the quantum position correlation function

can be related to a time correlation function for the centroid variable with the centroid

-trajectories- generated by classical-like dynamical equations on an effective, temperature-

dependent. centroid potential energy surface. A number of strategies were then developed

in Paper 11 to compute the time correlation functions of general coordinate-dependent oper-

ators. By virtue of the centroid AID approach. time correlation functions can. in principle.
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be computed for quantum many-body systems with a numerical effort that scales with

system size in the same manner as a classical molecular dynamics (NID) simulation. In the

companion paper.6 some numerical algorithms are presented for centroid MD calculations

in general physical systems which obey Boltzmann quantum statistics.

The formal analysis in the earlier papers.1- 3 was based on the Feynman path integral

formulation in coordinate space., Though it can be argued that momentum dependent

quantities can in principle be obtained by taking time derivatives of the position coordinate.

complications arise due to the time ordering of quantum operators. especially when mixed

position and momentum terms appear in those operators. A better treatment. therefore.

requires a path integral centroid formulation in phase space which would not only generalize

the earlier position centroid-based formulation.' 3 but also provide a remedy to the time

ordering problem. Such a formulation is contained in the present paper. In a fashion

similar to Paper I. the imaginary time-correlated operators are reformulated as Gaussian

averaged functions which are to be averaged over the centroid phase space density. The final

formulas resemble those in coordinate space. although they are defined here in phase space

through a compact vector-matrix notation. For completeness. the expressions are also

formulated for many degrees-of-freedom which is simply an extension of a one-dimensional

treatment.

In terms of the dynamical centroid variable perspective for quantum time correlation

functions. a complete analysis of centroid MD. and its justification. again requires a path

integral formulation in phase spaces so that momentum can be treated as an independent

dynamical variable. Indeed, the phase space centroid formulation in the present paper has

its most important application in the analysis of centroid MD presented in Sec. III. At the

time when centroid MD was proposed.2 .3 a relationship between the Fourier transform of

the real time position correlation function and the centroid time correlation function was

identified. This relationship is based on the analytical continuation of the variationally

Optimized local quadratic approximation"'a to the centroid-constrained imaginary time

position correlation function.' Since the Fourier relationship holds exactly if the centroid

correlation function is replaced by the Kubo transformed 9 position correlation function, it

was speculated that the centroid correlation function must therefore be an approximation
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to the Kubo transformed position correlation function. Through the phase space centroid

formulation developed herein, the relationship between the centroid correlation function

and the Kubo transformed position correlation function is found to be unique and cannot

be obtained unless the centroid is taken as the dynamical variable. In the end. centroid

MD turns out to be exact for the first two terms in the Taylor expansion of the correlation

function in time, and the systematic error in the method can be identified at all subse-

quent orders. The deviation from the exact quantum time correlation function is directly

proportional to the average thermal width of the centroid "particle", as well as higher-

order derivatives of the mean centroid force. Centroid MD is thereby shown to capture

the leading quantum dynamical behavior of the position correlation function to within a

well-defined error.

As a direct extension of the centroid MD theory in phase space. three strategies are

also presented in the present paper to calculate time correlation functions of general oper-

ators which may depend on both position and momentum. The derivations are relatively

straightforward given the similar results for the correlation functions of general coordi-

nate dependent operators published in Paper II. Nevertheless, the demonstration that the

momentum can be incorporated into the theory in the same fashion as the position is

significant both from the formal point of view and for actual numerical applications.

The present paper is organized as follows: In Sec. IL. the equilibrium formulatiosn

of the Feynman path centroid density, operator averages, and imaginary time correlation

functions in multidimensional phase space are described. In Sec. III, the phase space

centroid perspective is then used to analyze and more completely justify the dynamical

centroid MD method for the real time position correlation function. This theory is then

extended in Sec. IV to formulate three approaches for computing general quantum time

correlation functions. Some numerical examples are given in Sec. V. and concluding

remarks appear in Sec. VI.

II. Feynman Path Centroid Formulation in Phase Space

In Paper I. general imaginary time correlation functions were expressed in terms of

the coordinate space centroid density p,(qc) and the centroid-constrained imaginary time

-4-



position correlation function C,(r. q). Here. the formalism of Paper I will be extended

by a phase space path integral formulations so that the momentum appears as an inde-

pendent variable. The development will first involve the specification of the phase space

(entroid density. then the definition of the centroid-constrained position. momentum, and

cross-correlation functions, and finally the formulation of the expressions for equilibrium

operator averages and general imaginary time correlation functions. Unless specified oth-

erwise, the analysis will be presented for an N-dimensional system with the position and

momentum variables described by the N-dimensional column vectors iFand A3', respectively.

The generalized vector ( is defined as the collection of the 2N degrees of freedom in phase

space. i.e.. I- .q.

A. Phase Space Feynman Path Centroid Density

The phase space centroid density can be straightforwardly defined as

PC (Wc f J... J ý(-r)6(ý - o exp{-S(ý(r)i/h} (2.1)

where the path centroid vector in phase space is given by

' = r- ((7) (2.2)

The action functional for the imaginary time phase space path integral is given bvs

S[((r)] = dr I fl. (r)m-'. p-() - ip-(7). -(r) -- V[(r)}] (2.3)

where m is the diagonal particle mass matrix and q'(r) is understood as the imaginary

time velocity vector. The quantum partition function is related to Eq. (2.1) such that

Z = f dip,(ý,). The phase space centroid-constrained correlation functions", are defined

by the 2N x 2N matrix

•.(.•) = j....f j ((r) 6(¢- •)(ý() - 'o)(&')-) -o o) exp{-S[(-(r)]!}.I

f...Jf Dj (r)6( -oexp{-S[ý(7) h

Each element of this matrix with the indices "i.fj" is given explicitly by the 2x2 block
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= (ccc,(r)fPj(o).C) C,(P,(;)4j(0).*C) (2.5)

where ((r) is the quantum path fluctuation with respect to the centroid position yC, i.e..

'(r') = ( + ý(r). The elements of the centroid-constrained correlation function matrix

in Eq. (2.5) can also be obtained by adding linear field terms of the form -f-(r) • &-r)

and -g(r).- (r) to the action functional in Eq. (2.3) and by then taking the appropriate

second-order functional derivatives of -13F,4[f(r), §(r)] in the limit f(r) - 0 and g(r) -, 0.

where -3Fc[f(r), g(r)] = In {pj4f(r), g(r)]} is the centroid free energy as functional of the

two external fields. The centroid-constrained correlation function matrix in Eq. (2.5) is

independent of the momentum centroid 15c if the potential V is independent of the momen-

tum variable. This fact can be proven by considering the Fourier mode representation2 .3

of the phase space action functional in Eq. (2.3).

B. Operator Averages

It proves informative to first formulate the expression for the equilibrium average of

a general operator in the phase space centroid perspective. This simple analysis identifies

the centroid-constrained correlation function matrix in Eqs. (2.4) and (2.5) as providing

the effective centroid "width" factors in phase space. In the phase space path integral

perspective.` the equilibrium average of an operator A is given by the expression

\'A) = Z' fJ.. fJ V(r)A[((o)I exp{-S[(()j/h, (2.6)

Due to the cyclic invariance of the trace, the operator can be evaluated at any point along

the cyclic imaginary time path q(r). The average in Eq. (2.6) is first re-expressed so that

the centroid variable appears explicitly in the statistical averaging, i.e.."' 0

(A) = Z-' J dý [J ... f 'Dý((r) 6(% - (o) A[(&)] z (2.7)

The operator .4(c) is then represented in 2N-dimensional Fourier space. i.e..

I 1 f- -- -
2 12,v dkA(k) e'"' (2.8)
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where A( k) is the Fourier transform of the operator. k denotes the 2N-dimensional k-vector

(kp, kq). and k* represents the contraction k-. CI (k-p p kvq 2) Equation t 2.6

van then be re-written as

= Z-' Jfdpc(,c)

J dk f ...f* D((,r) e ik<(T( Sc((~/

x (2;-)-,N A(k) e'"' f. f V()et+()JA J,(2.9)
where the notation for the action functional "S[fC + ((r)]" is understood to mean path

integration over the fluctuations around a fixed phase space centroid at Q,. At this point.

a cumulant average of the term exprpik . ý(r)I in the brackets in Eq. (2.9) can be performed

in terms of the path fluctuation variable ((7). The cumulant average, for the present

purposes. is truncated at second-order, but it need not be, and it is assumed that the

variable ((r) exhibits symmetric fluctuations about the centroid. After performing the

inverse Fourier transformation by integrating over k in Eq. (2.7), the final result for the

operator average in the phase space centroid picture is given by 5 b

A) /((c ))p, (2.10)

where the effective centroid-dependent quasiclassical operator A, is given by

A =(c (A((c +

1 fdýA'ý + Z) ep C-( 0 4-) 2] (2.11
\/det t27rC,(0,,T,)j

Here. the vector variable ( is obviously a Gaussian vector associated with a width ma-

trix given by C,(0. q'). The above result is a generalization of an expression obtained

previously'1"0 for coordinate-dependent operators. This expression reveals the role played

by the centroid-constrained correlation function matrix (Eq. (2.5)1 in defining the effective

width factor in phase space for the centroid quasiparticle.
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C. General Imaginary Time Correlation Functions

A general imaginary time correlation function is defined as

C.ABtr) = (A('r)B(0))

= Z'1 J...] f)(,r) A[ý(r)IB[K(O)I exp{-Sf(ý(r)]/h} (2.12)

where the operators A and B are general functions of the 2N variables (q, q) and the

imaginary time interval is bounded such that 0 < r < Mi3. The goal here is to refor-

mulate the correlation function CAB(r) in terms of the phase space centroid density and

the centroid-constrained correlation function matrix C,(r. q,) of Eq. (2.4). Following the

analysis of Paper I. one first factorizes the expression to expose the integration over the

centroid density and then expresses the operators A and B as Fourier transforms. giving

(2= f A2

CAB' =Z- c 27r)2N J27r )e(k1+k2).N

x f" f 7(reIff•+"°)-S•+f'l ,(2.13)
f...f V(((r)e-s((c+(()llr/I

where k and k•.-Jare as defined following Eq. (2.8). The centroid-constrained average in the

bracketed term can be expressed as a cumulant expansion which. for the present purpose.

is truncated at the second order. The result is given by

(expfikf . i(r) + ik 2 .(0)]), exp - 2k 1 C,(04) k1

+ kI, Cv , (7, -2 + 2 Cc (T-,r )., + .Cc(0o,). k4 }.(2.14)

where the contractions can be explicitly written as

C,,7-. 4c) • "- =
.V .V\*.,

C 4i•,(r) j8(0).-*) C,(r) j(0). *) k.,
t----i 2 -- 8-



In order to carry out the integrals over k1 and k2 in Eq. (2.13). a phase space vector

rotation is first performed such that

(7r) (-)+=(~ 2

_(7) = [C(r)-C(O)1/V (2.16)

and new centroid-constramed correlation function matrices are defined as

C+(7.4j) = C.(o.4*) + C,(r7.)

c•-(r•,j) = cc(0,•) - c.(r.4•) (2.17)

After performing the integrals in Fourier space. one arrives at the following result for the

imaginary time correlation function in the phase space centroid density picture:

CAB(T) = (PAB(1, c))p. (2.18)

where the centroid-dependent imaginary time-correlated operator product PAB(". c) is

,lefined as the multiple Gaussian average

PAB(T, Cc = +A(ýc+(i)B((c +5))+ ) (2.19a)

Here. the vectors (, and (2 are related to the two Gaussian vectors (+ and (_, such that

.2 = • ± .-) (2.19b)

N/2

where C. and _ have Gaussian width matrices given by C'(r, (T) and C- (r. 4c). respec-

tively. It should be noted that if the cumuiant expansion is carried out beyond quadratic

order in Eq. (2.14). a more complicated analytical form of Eq. (2.19) would be obtained.

On the positive side. however, the expression in Eq. (2.19) simplifies considerably if the

operators A and B depend only on the coordinates and/or momenta of a single particle

-9-



of the system (i.e.. almost all of the Gaussian integrals can be -integrated out" of the

expression).

Due to the compact notation adopted in the preceding analysis, the final expressions

in Eqs. (2.18) and (2.19) resemble those appearing in Paper 1. Nonetheless. complications

arise when cross terms appear because of the noncommutation of position and momentum

operators. In fact, the two off-diagonal terms in the matrix C,(7. iý) are complex functions

and, in turn. complex conjugates of each other. In the expression for operator averages in

Eq. (2.10) and for the time correlated operator product in Eq. (2.19), different operator

orderings may lead to different values. Though the operator ordering is not explicitly taken

into consideration in the Fourier transforms in Eq. (2.13). the final expressions in terms of

the Gaussian averages should always be consistent with the original choice of the operator

ordering.

The multiple Gaussian average in the centroid-constrained operator product fEq.

(2.19)] may not be easy to evaluate, particularly if the operators A or B are not poly-

nomials or exponentials in the phase space variables. However, if one has an analytical

or numerical representation of the centroid density pc(ý,), a quadrature procedure can be

employed to evaluate Eq. (2.19) if the Gaussian averages cannot be evaluated analytically.

Alternatively. if a good approximation for the width matrix C,(0. if,) is in hand. a Monte

Carlo procedure can be adopted for evaluating Eq. (2.18) simultaneously with Eq. (2.19)

by using a combined importance sampling function based on both the centroid density and

the multiple Gaussian distribution of Eq. (2.19).

III. Phase Space Analysis of Centroid Molecular Dynamics

In the earlier papers. 2'3 the development of the centroid MD method was guided in

part by a variational analysis and. in part. by physical reasoning and intuition. In this

section. a more satisfactory analysis and justification will be provided. Centroid MD is

essentially a classical MD method defined on a quantum mechanical effective potential

energy surface. While the deterministic nature of a classical-like MD algorithm seems to

be at odds with the uncertainty inherent in quantum mechanics, this paradox is partially

resolved in centroid MD by the introduction of the centroid mean force which is obtained by

- 10-



first averaging over the quantum thermal path fluctuations. Moreover. the quasiclassical

form in centroid MD arises from a kind of quantum "*pre-averaging" procedure which

is specifically suued for the computation of the position time correlation function. The

evidence to date strongly suggests that centroid MD captures the major features of the

ensemble averaged correlations of the quantum dynamical position operator. However.

two important questions deserve some further attention. These are: (1) Can centroid MD

be shown to always give a well-defined approximation to quantum position correlation

functions? And. (2) Why does the equilibrium path centroid variable occupy such an

important role in dynamical correlation functions?

Important progress on the first question can be found in Paper II. In that paper. the

analogy of the equilibrium path centroid variable to a classical dynamical degree of freedom

was motivated within the context of a variational theory based on effective quadratic action

functionals in imaginary time. 1.5" Unfortunately, it is not possible to estimate the absolute

accuracy of the centroid MD method using the variational approach alone. Fortunately,

the hint of a different approach is found in the Appendix of Paper II where the analysis of

a centroid MD approximation for general correlation functions is presented in the context

of the Kubo transformed time correlation function.9 A similar approach will be developed

here to demonstrate that the centroid MD time correlation function is. in fact. always a

well-defined approximation to the exact Kubo transformed position correlation function.

For notational simplicity, the analysis is restricted to a two-dimensional phase space. but

it can be readily generalized through the vector-matrix notation of the previous section.

In centroid MD. the centroid v-ariable evolves according to the classical-like equation

of motion.-2' 3

qi(t) = pC(t)/m

fi (t) = F,() .(3.1)

where the instantaneous centroid force is defined by2 '3

F,(qc) = (qc + 4))c (3.2)

- 11 -



Here. the I = -dV/dq and the symbol (.. )c denotes the centroid-constrained average

with the phase space imaginary time path integral or. as an approximation. the effective

Operator representation in Eq. (2.11). With trajectories in hand obtained from the above

equations. the centroid MD time correlation function is given by 2.3

C*(t) = (qc(t)qc(O))p. (3.3)

where the bracket with superscript Pc means that the initial conditions of the centroid

trajectories are averaged with the phase space centroid density in Eq. (2.1). The compan-

ion paper12 is devoted to the development of several algorithms for evaluating centroid

dynamics (Eq. (3.1)I in general many-body systems.

After expanding C* (t) as a Taylor series in terms of t. and by taking into consideration

the time reversibility of correlation function, one obtains

C* (t) = tC(2n (3.4)(-n).

where the expansion coefficients are expressed as

- (qc~C q )pc . (3.5)

The operator L, is the classical Poisson bracket

4A = (A.H} (3.6)

for a classical-like centroid Hamiltonian defined by Hr = pC/2 + V,(qc) with the effective

centroid potential given by Vc(qc) = -kBTlnfpc(qC)/(m/2,rh 2 3)'/I].

At this point. it proves to be particularly informative to similarly analyze the Kubo

transformed position correlation function0

I ha"

c(t) = f (q(t + i-r)q(O))dr (3.7)

which is directly related to the quantum response function (cf. the Appendix of Paper

II) and the quantum dynamical position. momentum. and cross correlation functions.

- 12-



For example. by making use of the Kubo transformation and the commutator relation

p/m = 4q, Hi/lih. one can derive the following Fourier relations:

Cqq(W) (rI3w/2)[coth(h3w/2) + I! w(wi (3.8)

and

Cpq(W) = iwmCqq(W)

CPP(W) = W2 M20qq(W) (3.9)

where p and q stand for any two elements of the multidimensional vectors IF and •. Equation

(3.7) can also be written as a Taylor expansion. giving

p(t) = t2nZ= ( 2.) (3.10)

where the expansion coefficients are expressed as

(3111=p2] i' (q(r)£2"q(O))dr .(3.11)

Here. L is a commutator, the quantum analogue of the Poisson bracket. i.e..

1
CA = -[A,HI (3.12)

After making use of the definition of the centroid variable in Eq. (2.2) and the invariance

of trace. ones obtains

,12nI -- (q- ( 2nq)c) .c (3.13)

The centroid correlation function and the Kubo transformed correlation function take

a similar analytical form [cf. Eqs. (3.5) a'-. (3.13)], the difference being between the terms
,2n
, q, and (£ 2nq)c in Eqs. (3.5) and (3.13), respectively. These terms can be determined

explicitly and compared term-by-term. The first few terms are:

- 13-



n -0,

q)c = qc (3.14)

n~l

(C2q)c = (f/m) = F,/m (3.15)

n 2.

,41 () pf()ý 1plp
S4m. + 2pf 2 )p + ( + (3.16)

for the Kubo correlation function [Eq. (3.13)1, but for the centroid correlation function

[Eq. (3.5)],

,4 1 qt2)•3 - a c +c (3.17)

Therefore. the two leading terms of the Taylor expansions for the centroid and Kubo cor-

relation functions are the same. the difference between them beginning with the third term

(i.e.. at order t4 ). The latter term will now be taken as an example to show how to evaluate

the leading correction term to the centroid correlation function (i.e.. to demonstrate that

the centroid correlation function is a well-defined approximation to the Kubo correlation

function). The Gaussian representation of operators in phase space [Eq. (2.11)] proves to

be useful, though not essential, in the following analysis.

It is first noted that the centroid average of a product of operators can be written as

a product of the centroid averages of operators and a leading correction term. i.e..

(AB)c = .Bc + A'B'C, (3.18)

where terms higher order in the phase space width factor Cc [Eq. k 2.4)] have been omitted.

By virtue of the cyclic property of the trace, it can be shown in general that

C,,((O)4(O).qc) + C,((O)P(O). qc)= 0 (3.19)
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It is also noted that the application of the commutator £ of Eq. (3.12) four times in

Eq. t3.16) leads to a symmetrized arrangement of momentum and coordinate operators.

Combining this fact with Eqs. (3.18) and (3.19). it is seen that there will exist no centroid-

constrained correlation functions mixing momentum and coordinate operators-at least to

the order of the leading correction term. Thus. Eq. (3.16) becomes

( = q)c=1 f(f2)(p2 ), + 7(f(')f)c (3.20)

where fc,?) stands for the centroid-constrained operator average fc(II = (f(n)),. Equation

(3.18) is useful when comparing the second term on the right-hand-side of Eq. (3.20) with

the second term of Eq. (3.17). i.e.. ,f1)f)_c - F ) FC. The correction factor for this term

contains the width factor and second- or higher-order derivatives of the force. The focus

of the analysis can now shift to a comparison of the first term on the right-hand-sides of

Eqs. (3.17) and (3.20).

Because the centroid force F, is a function and f is a quantum operator. the n-th

order derivative of the centroid force. n), and the centroid-constrained average of the

n-th order derivative of the force. fc(n), are different even though the centroid force is equal

to the centroid-constrained average of the force. i.e., F, = (f),. Application of the chain

rule to Fn) reveals the difference between the force derivative terms as

- f, (n) - 4 Cc(')((0)4(0)..q) +.. (3.21)

-- where the derivative of the width factor appears here instead of the width factor itself. This

observation is particularly significant because it shows that an expression in terms of the

centroid force or its derivatives agrees with its quantum counterpart fc(n) to all orders in

the width factor Cc, with corrections coming only in the spatial derivatives of that factor.

From Eqs. (3.5) and (3.13). it is seen that the latter correction is then to be averaged

over the centroid density. so large deviations will occur only if the width experiences large

fluctuations which persist in the average sense.

Returning to the first term in the right-hand-side of Eq. t3.20), the quantum fluc-

tuations in momentum will contribute a further deviation from the similar term in the
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centroid correlation function jEq. (3.17)]. The difference between the two terms for all

powers of n is given by
,ýpR n -

(Ppn - (Pn)- Pf- = (pO)p(O).q (3.22)

where C,•{(0)P(0), qc) is the width factor for the momentum path fluctuations. The terms

associated with this correction have a value of n no smaller than 2. The average of the

term p,- 2 over the phase space centroid density will simply factorize and give a constant

since the distribution of the momentum centroid is the classical Boltzmann distribution

and independent of the higher-order path Fourier modes. 2.3

Taking into account all of the preceding considerations and generalizing them to terms

of higher order, one can sum up in general the difference between the Kubo transformed

position correlation function (Eq. (3.11)] and the centroid MD correlation function (Eq.

(3.3) to give

0(t) - C'(t) = a[2n) (3.23)
n=•2

with A being the difference between the two sets of coefficients. given by

A12hI = ,P2n) -- Cj2nj X (qcCc F~no )PC (3.24)

where at least one nj is no smaller than 2 and terms which involve the spatial derivatives of

the width factor C, have been neglected. The above result can be confirmed by dimensional

'..-analysis.

The preceding analysis confirms that the apparent success of centroid MD is by no

means incidental and is. in fact, both physically and mathematically understandable. A

few comments on the implications and significance of the analysis are as follows:

(a) At first glance. Eq. (3.24) confirms two properties of centroid MD which are already

Obvious. 2.3 Namely. the method is clearly exact if the potential contains no global anhar-

monicity (i.e.. F, = 0) or if the system is near the classical limit (i.e.. C, is small).

However. upon closer inspection Eq. (3.24) also reveals why centroid MD is a good ap-

proximation in other. less straightforward. situations. To be specific. the centroid force F,
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[Eq. (3.2)1 at the centroid position qc is computed by averaging the classical force over the

imaginary time Feynman paths around the centroid. This averaging tends to smooth out

rather dramatically any --kinks" in the potential energy function. at least over the length-

scale of the particle's thermal width. The more **quantum" the particle, the more the

averaging occurs. This behavior is very important and is one reason an effective quadratic

action functional can be so accurate in describing, e.g., the equilibrium properties of the

polaron1" and the hydrated electron. 12 Given that such local --smoothing" occurs, the

higher-order derivatives of the centroid force in Eq. (3.24) will tend to be small. giving a

small correction factor in Eq. (3.24) even though the quantum thermal width C, may be

sizable. In order for centroid MD to become inaccurate, the preceding argument suggests

that the locally nonlinear features of the effective centroid potential (i.e.. the effective an-

harmonic terms) must be large. Such behavior occurs if the local anharmonicities in the

physical potential near the centroid are large in the average sense and persist on a length-

scale greater than the thermal width factor of the centroid quasiparticle. Moreover, since

any correction terms are then averaged in Eq. (3.24) over the centroid distribution, the

effective anharmonic behavior must also be present to a significant degree in the regions

of greatest centroid density. Interestingly, as the system becomes more classical the effec-

tive anharmonicities (i.e., the higher derivatives of the centroid force) will indeed become

larger. but this effect will be compensated for by a greater reduction in the thermal width

factor C. in Eq. (3.24). (Recall that centroid MD always yields the exact classical limit.)

(b) The definition of the centroid force captures the major contribution of quantum fluc-

S. tuations and predicts the right quantum dynamics to within a tolerance proportional to

the averaged higher-order derivatives of the centroid force and the centroid thermal width

factor C,. Though most semiclassical approximations are expanded in terms of I. the

centroid MD correlation function already contains terms which are infinite order in A. The

leading corrections to the centroid dynamics depend on the thermal width factor for the

potential at hand (i.e.. not just the free particle width which is of order h2 ). In the nearly

classical limit, the centroid dynamics approximates the quantum dynamics to the order of

h2 instead of h as in the WKB approximation.

(c) In generai. the Kubo transformed position correlation function [Eq. (3.7)] is a well-

- 17-



defined quantum quantity which is an ideal candidate for any type of a classical-like ap-

proximation. This property arises because the integration over the imaginary time 7-

eliminates the imaginary part of the correlation function and also averages out certain

quantum fluctuations.

(d) To shed some light on the unique role of the centroid in formulating a classical-like

approach to the position correlation function. one can apply the Taylor expansion to the

symmetrized position correlation function 0'(t), giving

1 00 t2-
_(t)= ([q(t).q(O)]+) = _ •* q (3.25)

where i-.. 1+ is the anticommutator. If oie attempts to carry out a term-by-term analysis

as for the Kubo transformed position correlation function. difficulties immediately arise

with the first few terms because it is not clear how to define the momentum distribution

in the general case."3 (Note again tnat the centroid momentum distribution is simply the

Boltzmann distribution.2'3 ) Consequently, it is not clear from this analysis of Eq. (3.25)

how to define an accurate classical MD-like algorithm to compute the symmetrized quan-

tum correlation function for general potentials. Focusing instead on the Kubo transformed

position correlation function [Eq. (3.7)] reveals the factorization of the centroid variable

which. in turn. leads one to the factorization of the centroid constrained average in Eq.

(3.13). The subsequent identification of the centroid force in the Taylor expansion terms

._-,-of the correlation function supports the conclusion that the centroid variable can indeed

be viewed as a dynamical variable at a well-defined level of approximation.

(e) To improve its accuracy, it seems certain that centroid MD should be augmented by

an additional quantum factor. Because the correction to the centroid force begins at the

t4 term in the Taylor series expansion. such a term will not add linearly to the determin-

istic centroid force, but it might instead be constructed as some kind of time convolution

reflecting the non-deterministic nature of quantum mechanics. Apparently, this --quantum

memory function7 would depend locally on the width factor and the anharmonicity and

still d a time-reversible dynamics. Of course. this argument is purely speculation.
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IV. General Time Correlation Functions

In Paper II. three different centroid-based approaches were proposed for calculating

time correlation functions consisting of operators which depend on the coordinate vari-

ables. In this section. these strategies are modified to allow the computation of correlation

functions of general operators which may depend on both position and momentum.3c The

phase space centroid perspective, developed in Sec. I. will be employed to extend the

formulations of Paper II to general operators. The results in the present case will also be

given for a multidimensional phase space using the notation in accord with that introduced

in Sec. II. In addition. the companion paper6 describes several algorithms for computing

centroid MD trajectories.

A. Analytical Continuation of Centroid-Constrained Correlation Functions

One of primary results from Sec. II is the expression for general imaginary time

phase space correlation functions in the centroid-based perspective [Eqs. (2.12)-(2.19)].

In principle, the double Gaussian average in Eq. (2.19) can be performed for any func-

tional form and the resulting expression will then involve an average of functions which

depend on Co(r, •) over the normalized centroid density. At that point, the centroid-

constrained propagator can be analytically continued into real time (r -- it) to yield an

approximation to the real time correlation function CAB(t). Within the framework of the

approximate locally optimized effective harmonic theory,". the real time version of the

centroid-constrained correlation function matrix can be obtained by replacing 7 with it

-and the resulting expressions used in Eqs. (2.18) and (2.19).

As was pointed out in Paper II. this analytical continuation method may not be

completely satisfactory for two reasons: (1) The effective harmonic version of Eq. (2.4)

is dynamically accurate only for relatively short times. The anharmonicities in the real

potential will cause the analytically continued effective quadratic correlation function to

deviate from the exact behavior at long times even in the classical limit: (2) The correlated

operator representation in Eq. (2.18) is expressed at the level of a second-order cumulant

expansion. Though this approximation may be an excellent one for imaginary time cal-

culations, approximate real time correlation functions can be more sensitive to nonlinear
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interactions and thus less stable in their behavior at long times.

B. Cumulant E.vansion Combined w2th Centroid MD

As has been shown in Sec. III. the centroid MD correlation function [Eq. (3.31] gener-

ally provides an accurate representation of the exact Kubo transformed position correlation

function which. in turn, yields the real time correlation functions (-(t)((O)) through the

Fourier relations in Eqs. (3.8) and (3.9) after replacing w(w) with C" (w). Another strategy

for computing general correlation functions is therefore to first introduce the phase space

variable correlation functions directly into the expression for the general correlation func-

tion ýA(t)B(O)) and to then use centroid MD to calculate (ý(t)ý(O)) in that expression.

Though many of the following expressions in this approach are similar to those given in

Paper II. the derivation in phase space is included here for completeness.

To begin the derivation, one considers the general imaginary time correlation function

CAB(T) = (A(r)B(O)) and expresses it as

CAB(r) = k f .A.L. ... L A(k 1)BOk) (exptiik - (r) + kc2.)1 (4.1)
J (2ff)2NJI(2.,r)2

where the canonical path integral average in phase space is explicitly given by

... ) _ J.. (r)]/h.f (." f D(,r)exp{-S[((7r)]/1} (4.2)

The cumulant average of the exponential term in Eq. (4.1) can be performed and. for

_..simplicity. truncated at second order. giving

(exzpiki ,-(r) + ik 2 . •(0)1) -

exp I .ik + ik2. CIO) Z., . 67)T1

4- ý-2 C6(7). - 2. Cb(0). kj} (4.3)

where the imaginary time fluctuation correlation functions constitute a Hermitian matrix.

(lefined by the elements
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= (\ Pi(r)6pj(O)) '6pi(-r)6qj(O)) ([C•(r)]O = 6qi(r)6pj(O)) (6qj(7)6qj(O)11(44

where 6C - .). In order to perform the integrals over k1 and k2 in Eq. (4.1). new

imaginary time correlation function matrices are defined as

C± ('-) = C6(O) ± C6 (7) (4.5)

After performing the k-integrals in Eq. (4.3), the expression for the general imaginary time

correlation function is given by the double-Gaussian average

CABr) A() + 0,B((() + (2) (4.6)

where the vectors • and (2 are related to the two Gaussian vectors •+ and ( such that

=1.2 = - - (4.7)

The Gaussian vectors (+ and c.. have width matrices given by C' (r) and C' (7), respec-

tively, as defined in Eq. (4.5).

The imaginary time expressions for C' (r) can now be analytically continued via the

inverse Wick rotation r - it. The resulting approximate expression for the real time

correlation function CAB(t) is given by

"-- CAB(t) •-+ A ( )B(() + ý2) C(t),ct) (4.8)

where the real time-dependent Gaussian width matrices are given by

C•:(t) = C6(0) ± C6 (t) (4.9)

The correlation function elements of Eq. (4.9) can be calculated using the centroid MD

position correlation function C* (t) defined in Eq. (3.3) and the Fourier transform relations

in Eqs. (3.8) and (3.9) with w(w) replaced by C*(w). Equation (4.8), with Eq. (4.9). is the

central result of this subsection. It should be noted that Eq. (4.8) simplifies considerably
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if the operators A and B depend on only one phase space coordinate (i.e.. most of the

Gaussian integrals can be integrated out of the expression).

C. Centroid MD w•th Semiclasszcal Operators

A third algorithm is discussed in this subsection for calculating general time correlation

functions with centroid MD. This procedure. which is more approximate than the previous

ones. assumes a semiclassical representation of the quantum operators. the goal here being

one of computational utility.

The method called "centroid MD with semiclassical operators". introduced in Paper

II. centers around the computation of the real time correlation function C7AB(t), given by

C7B(t) = (Ac(t)B,(O))p. . (4.10)

where the initial condition averaging is performed with the (normalized) phase space cen-

troid density defined in Eq. (2.1). The semiclassical operators O(q,(t)) in Eq. (4.10) are

given by the time-dependent analog of Eq. (2.11), i.e..

oo((W = (O(((t) + O)CC(o) (4.11)

Here. C'(t) is the phase space centroid trajectory which obeys the centroid MD equation

of motion in Eq. (3.3), and the time dependent Gaussian width matrix C,(0, 4(t)) for the

vector • is given by the centroid-constrained correlation function matrix in Eq. (2.4) with

the position centroid qyo located at 4,(t).

As shown in the Appendix of Paper II, the general centroid correlation function in

Eq. (4.10) is an approximation to the Kubo transformed version of the exact correlation

function CABkt). Therefore, in order to calculate CAB(t) one makes use of the Fourier

relationship
2

CAB(W) z- (h3w/2)[coth(hf3w/2) + 11 C,0 Bý,;) (4.12)

The expression in Eq. (4.10) is intended to maximize the utility of the centroid MD method

in a transparent. though approximate. fashion for general correlation functions. The reader
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is referred to Paper II for further analysis and comments.

V. Numerical Examples

In this section. the accuracy of the centroid hID formulation is tested for correlation

functions other than the position correlation function. In these studies. a nonlinear oscil-

lator model is employed which is the same as one studied in Paper II. The potential for

this model is given by

V(q) = q+ cq3 + gq4 (5.1)

with the parameters c = 0.10. g = 0.01. h = 1.0. and m = 1.0. In these units. the inverse

temperature d is given as values of the dimensionless parameter k3Pw. The single minimum

of the potential in Eq. (5.1) is located at q = 0. The cubic anharmonicity is operational

for small deviations from the minimum, while the quartic anharmonicity influences the

larger deviations from the minimum. At low temperatures. the cubic anha:monicity is the

dominant perturbation. The energy gap between the ground and first excited vibrational

state for the potential in Eq. (5.1) is shifted to the red by 6% compared with the harmonic

limit of the energy spectrum. Such an anharmonic shift is equivalent to a (rather large)

shift of 180 cm- 1 for a 3000 cm- 1 C-H stretching mode or a 60 cm-I shift of a 1000 cm- 1

C-C stretching mode. A temperature of 3 = 10 was employed in the calculations which

is equivalent to a C=C double bond at 300 K.

The exact correlation functions for the potential in Eq. (5.1) were obtained by di-

- agonalizing the nonlinear Hamiltonian in a harmonic oscillator basis and employing one

hundred of the eigenstates in the dynamics calculations. The centroid forces and centroid

potential in the centroid MD calculations were calculated from the optimized harmonic

reference centroid density.'" 5 This approximation was shown in Paper I to be an extremely

good representation of the exact result. The centroid potential and forces were interpo-

lated from a 1000-point grid within the range [-10. 101. The centroid MD initial positions

were generated by Metropolis importance sampling from the position centroid distribution.

while the initial momenta were directly sampled from the Gaussian centroid momentum

distribution function. The evolution of 105 centroid trajectories were then calculated us-
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ing the leap-frog algorithm with a time step of 0.05. The classical MiD simulations were

performed in the same fashion except that the real potential and force were used instead

Of centroid quantities.

A. Momentum Correlation Functions

In Fig. 1. the momentum correlation function is shown for the nonlinear oscillator

in Eq. (5.1) at 3 = 10. The solid circles are the exact quantum results, while the solid

line is the centroid MD result.14 The latter method is clearly very accurate. It should be

noted that results of similar accuracy were reported in Paper II for the position correlation

function.

B. General Correlation Functions

In order to test the methods outlined in Sec. IV for calculating general correlation

functions in the phase space centroid perspective, the correlation function (p3 (t)p3 (0)) was

calculated for the nonlinear potential defined in Eq. (5.1). This correlation function is a

serious test for the approximate methods because of its nonlinearity and the fact that its

classical amplitude is almost completely negligible at lower temperatures. In Fig. 2. the

results for a temperature of 3 = 10 are shown. The solid circles are the exact quantum

results. the solid line is the cumulant expansion with centroid MD theory of Sec. IVB.

the dashed line is the centroid MID with semniclassicai operators result from Sec. IVC,

and the dot-dashed line is the classical MD result. The correlation function from the

.. cumulant expansion theory probably obtains the best agreement with the exact result.

although there is too much structure and symmetry in the oscillations. The centroid MiD

with semiclassical operators method is also accurate, but it does not seem to reproduce

the higher frequency oscillation. By comparison. the classical MD result is extremely

inaccurate. Qualitatively similar results were obtained in Paper II for the correlation

function (q3 (t'q3(0)). A discussion of the strengths and weaknesses of the cumulant with

centroid MD method was provided in Paper II. and this discussion is also applicable to

the phase space centroid formulation of this method.

In Fig. 3. the correlation function (A(t)B(O)). where .4 = pq and B = qp, is shown for
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the nonlinear potential in Eq. (5.1) at 3 = 10. The symbols and lines are the same as in Fig.

2. This correlation function presents another serious test of the various methods because of

the non-commutation of the position and momentum operators. Again. the classical _NiD

result is extremely inaccurate for this low temperature correlation function. The centroid

MD with semiclassical operators method does not reproduce the amplitude and negative

values of this correlation function. This feature of the latter method arises because the

correlation of the two operators at different times is ignored when the Gaussian averages

are performed. Consequently, the semiclassical operator approximation underestimates the

real time interference of the two quantum operators. On the other hand, the accuracy of

the centroid MD with semiclassical operator method is superior to the classical calculation.

Apparently, only the cumulant method can describe the quantum interference effects for

this correlation function, and it appears to do so quite well.

Though the centroid MD results are quite encouraging and far superior to classical

MD. it seems evident that none of the centroid MD approaches developed in Sec. IV for

general correlation functions are completely satisfactory under all circumstances. Future

research will be devoted to this important issue.

VI. Concluding Remarks

In the present paper. the formulation of quantum statistical mechanics t: sed on the

path centroid variable in Feynman path integration has been generalized to a phase space

perspective. By virtue of this perspective, one can express operator averages and imaginary

--- time correlation functions in terms of a classical-like averaging over the mudtidimensional

phase space centroid density. An imaginary time centroid-constrained correlation function

matrix for the phase space variables is seen to provide the effective width factors for the

phase space centroid variables. The most significant aspect of the phase space analysis is

that it facilitates a rigorous analysis and justification of the centroid molecular dynam-

ics method for computing quantum dynamical time correlation functions. 2.3 Specifically,

the centroid time correlation function calculated with centroid MiD is shown to be a well-

defined approximation to the exact Kubo transformed position correlation function. This

analysis thereby reveals the important and not completely obvious connection between
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the equilibrium path centroid variable and the quantum dynamical position correlation

function. Several strategies were then be developed for using centroid MD in the compu-

tation of general time correlation functions of quantum operators which depend on both

position and momentum. In addition, the companion paper6 describes several algorithms

for computing centroid dynamics in realistic many-body systems. Future publications will

be devoted to the application of centroid MD in the simulation of real systems. as well as

to the continuation of its formal development.

Acknowledgments

This research was supported by grants from the National Science Foundation and the

Office of Naval Research. GAV is a recipient of a National Science Foundation Presidential

Young Investigator Award. a David and Lucile Par' xd Fellowship in Science and Engi-

neering, an Alfred P. Sloan Foundation Researci' Pielowship, and a Dreyfus Foundation

New Faculty Award. The authors are indebted to John Lobaugh for his critical reading of

the manuscript.

- 26 -



References

(1) J. Cao and G. A. Voth. J. Chem. Phys. 100. xx.x (1994).

(2) J. Cao and G. A. Voth. J. Chem. Phys. 100. xxxx (1994).

(3) J. Cao and G. A. Voth. J. Chem. Phys. 99. 10070 (1993).

(4) R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals (McGraw-

Hill. New York. 1965); See in particular, pp. 279-286. See also Ref. 5.

(5) (a) R. P. Feynman and H. Kleinert, Phys. Rev. A 34. 5080 (1986); R. Giachetti

and V. Tognetti, Phys. Rev. Lett. 55. 912 (1985); Phys. Rev. B 33. 7647 (1986);

W. Janke and H. Kleinert. Chem. Phys. Lett. 137. 162 (1987), J. Cao and B. J.

Berne. J. Chem. Phys. 92. 7531 (1990). (b) See also the effective harmonic phase

space perspective in A. Cuccoli. V. Tognetti, P. Verrucchi. and R. Vaia. Phys. Rev.

B 45. 8418 (1992). Equation (2.11) is equivalent to their Eq. (24) if a variational

effective quadratic action functional is implemented in the former equation to for the

width matrix [Eq. (2.5)]. (c) The displacement time correlation function for quantum

lattices has been studied using moment expansion techniques and the centroid-based

effective quadratic theory of Refs. 5a and 5b to compute the average moments [See

A. Cuccoli. V. Tognetti. A. A. Maradudin. A. R. McGurn. and R. Vaia. Phys. Rev.

B 46. 8839 (1992); 48. 7015 (1993); A. Cuccoli. M. Spicci. V. Tognetti. and R. Vaia.

Phys. Rev. B 47. 7859 (1993)]. The latter work makes use of the earlier results of A.

Cuccoli. V. Tognetti, and R. Vaia. Phys. Rev. A 44. 2734 (1991).

-(6) J. Cao and G. A. Voth. J. Chem. Phys. (companion paper).

(7) See Ref. 4. Chap. 10. and R. P. Feynman, Statistical Mechanics (Addison-Wesley.

Reading. MNIA. 1972), Chap. 3. For reviews of path integral methods. both numerical

and analytical. see B. J. Berne and D. Thirumalal. Annu. Rev. Phys. Chem. 37.

401 (1986): J. D. Doll. D. L. Freeman. and T. L. Beck. Adv. Chem. Phvs. 78. 61

(1990): Quantum Simulations of Condensed Matter Phenomena. edited by J. D. Doll

and J. E. Gubernatis (World Scientific. Singapore. 1990): D. Chandler. in Liquides.

Cristallisarzon et Transition Vitreuse. Les Houches. Session LI. edited by D. Levesque.

J. P. Hansen. and J. Zinn-Justin (Elsevier. New York. 1991).

- 27 -



(8) See. e.g.. NJ. S. Swanson. Path Integrals and Quantum Processes (Academic Press.

San Diego. 1992). Sec. 4.2.

19) See. e.g.. R. Kubo. N. Toda. and N. Hashitsume. Statistical Physics II (Springer-

Verlag, Berlin. 1985), Chap. 4.

(10) G. A. Voth. Phys. Rev. A 44. 5302 (1991); See also Refs. 5b and 5c.

(11) See. e.g., R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA. 1972),

Chap. 8.

(12) See. e.g., D. Lania, D. Wu, and D. Chandler. J. Chem. Phys. 95, 4444 (1991), and

references cited therein.

(13) For the position correlation function of a one-dimensional nearly harmonic system.

an effective momentum distribution can be specified to formulate an alternative path

integral MD approach for the calculation of C(t) [G. J. Martyna (to be submitted);

See also Ref. 5b for relevant work]. However. for general nonlinear many-body systems

the appropriate effective momentum distribution in such an approach is unclear.

(14) The momentum correlation function can be calculated with centroid MD in two ways.

The first method is to compute the centroid position correlation function [Eq. (3.3)]

and to then use the Fourier relationships iad Eqs. (3.8) and (3.9) with 1(w) replaced by

C (w) to obtain the momentum correlation function. The second route is to calculate

the centroid momentum correlation function and then use its Fourier transform di-

rectly in Eq. (4.12) to obtain the momentum correlation function. It can be shown that

the two methods axe equivalent, although the latter is numerically preferable because

--- the former has a tendency to amplify the high frequency noise in the transform.

- 28 -



Figure Captions

Fig. 1: A plot of the real time momentum autocorrelation function for the nonlinear oscillator

described in Eq. (5.1) at a temperature of 3 = 10. The solid circles are the exact

quantum results, while the solid line is the centroid MID result.' 4

Fig. 2: A plot of the correlation function (p3 (t)p3 (0)) for the nonlinear potential in Eq. (5.1)

at a temperature ot 3 = 10. The solid circles are the exact quantum results, the solid

line is the cumulant expansion with centroid MD theory of Sec. IVB, the dashed line is

the centroid MD with semiclassical operators method of Sec. IVC. and the dot-dashed

line is the classical MD result.

Fig. 3: A plot of the correlation function (A(t)B(O)), where A - pq and B = qp, for the

nonlinear potential in Eq. (5.1) at a temperature of 3 10. The solid circles are

the exact quantum results. the solid line is the cumulant expansion with centroid MID

theory of Sec. IVB. the dashed line is the centroid AID with semiclassical operators

result from Sec. IVC, and the dot-dashed line is the classical MD result.

- 29 -



NI

A

0

ON

Q 0

*lo

dd

(•) I



00

0 ~

o',po .00.

IIW

/004

4010 A

00

00
0 0 0 0C

"VD0



4f

Von

of;
ou~

E0

4010

"VD


