| AD-A279 217
RLTR-04.28 LT

Final Technical Report -
April 1994

SOLUTIONS TO THE
POLYINSTANTIATION
PROBLEM

Qeorge Mason University
Sushil Jajodia and Ravi Sandhu

APPROVED FOR PUBLIC RELEASE; DISTRISUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

94-13934 T

g’a% 04 5 ¢

A

AL 4 2 P RS . mry

o
&

This report has been reviewed by the Rome Laboratory Public Affairs Office
.(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS ic will be releasable to the general public, including foreign nations.

RL-TR-94-28 has been reviewed and is approved for publication.

APPROVED: Séﬂh"?léz vh/ézg¢£:l__~

JOSEPH V. GIORDANO
Project Engineer

FOR THE COMMANDER: %%’W .

JOHN A. GRANIERO

Chief Scientist
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organizationm,

please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | s aaraoseies

Public reporting burden for this colaction of information is estimated to sverage 1 howr per respones, Nciuding the time for reviewing Fstructions, SeEChINgG EXIStNG Gata SOLICeS.
gathenng and maintaining the data nesded, andt cormpisting and reviewing the calaction of rfarmation. Send carryments regarding this burden setimsts o any other aspect of ths
colection of irfosmation, Inchxing suggestions for reducing this burden, to Washington Heacdusrters Services, Orectorate for irformation Operations andReports, 1215 Jefferson
Davie Highway, Subs 1204, Aringgon, VA 222024302, and to the Office of Maregemert arel Bucigst, Peperwark Reduction Project (0704-0188), Washington, OC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED
April 1994 Final -~ ==~ -
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-92-Cc-0002
SOLUTIONS TO THE POLYINSTANTIATION PROBLEM PE - 33401C
& AUTHOR®) o odes
Sushil Jajodia and Ravi Sandhu
WU - P7
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
George Mason University REPORT NUMBER
Center for Secure Info Systems & Dept of Info &
Software Systems Engineering N/A
Fairfax VA 22030-4444
9. SPONSORING/MONITORING AGENCY NAME (8) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3AB) - AGENCY REPORT NUMBER
525 Brooks Road
Griffiss AFB NY 13441-4505 RL-TR-94-28

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Joseph V. Giordano/C3AB/(315) 330-3681

122 DISTRIBUTIONAVALABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13, ABSTRACT Mmséveam 200 worcs)
Polyinstantiation has generated a great deal of controversy lately. Some have argued

that polyinstantiation and integrity are fundamentally incompatible, and have proposed
alternatives to polyinstantiation. Others have argued about the correct definition

of polyinstantiation and its operational semantics. The purpose of this report is

to provide a tutorial on the subject. The report begins by reviewing the concept of
polyinstantiation followed by a survey of various ways that have been proposed to deal
with it. Finally, the impacts of various MLS DBMS architectures are discussed relative
to polyinstantiation strategies. The report specifically discusses the differences
between trusted subject and trusted computing base (TCB) subset with respect to
polyinstantiation. '

14. SUBJECT TERMS 1&MAB&?FPMES
Database Security, Multilevel Security 2

18 PRICE CODE

17. SECURITY CLASSKFICATION 18. SECURITY CLASSIFICATION |19 SECURITY CLASSKFICATION |20. UMITATION OF ABSTRACT

CLASSTFIED Tctass e e et as et im oL

~200-4500 StMnGmG F O 208 (Rev. - 80

by ANSI Std 23218

zz

Acknowledgments

This work was partially supported by the U.S. Air Force, Rome Laboratory under
the contract # F30602-92-C-0002. We are indebted to Joe Giordano for his support

and encouragement which made this work possible.

Niiz

DYiC

Argargi - For

L e g
) - ;
CORET .—{“

Uoanz:
JEsLt L e

oy —_
ddd P

R |
DTl M6

9

By

Biat

Avwit

W;

L Dayr vt tangoe

fapilyw) i
;i-"""‘ gevdar)

}
hrealed i
¢
H
¥

J

]
H

b erer wom——

Table of Contents

Abstract
Chapter 1. Introduction

Chapter 2. What is Polyinstantiation?

2.1 Types of Polyinstantiation
2.2 How polyinstantiationoccurs
2.3 Visible Polyinstantiation Example
2.4 Invisible Polyinstantiation Example

Chapter 3. A Simple, but Unacceptable, Solution
Chapter 4. An Example

Chapter 5. Solutions to the Polyinstantiation Problem

5.1 Propagation of Polyinstantiated Tuples
52 Derived Values.
5.3 VisibleRestrictions
5.3.1 TheBelief Approach
5.3.2 The Insert-Low Approach e e e e e e e e ..
533 Prevention
5.3.4 Explicit Alternatives Approach

Chapter 8. Architectural Consideration
Chapter 7. Conclusion

References

Page

iii

-~ Uv Ut W W

10

15
15
20
25
25
28
31
35

39

42

43

Chapter 1

Introduction

What distinguishes a multilevel database from ordinary single level ones? In a mul-
tilevel world as we raise a user’s clearance new facts emerge; conversely as we lower a
user’s clearance some facts get hidden. Therefore users with different clearances see
different versions of reality. Moreover, these different versions must be kept coherent
and consistent—both individually and relative to each other—without introducing
any downward signaling channels. .

The caveat of “no downward signaling channels” poses a major new problem
in building multilevel secure database management systems (DBMSs) as compared to
ordinary single-level DBMSs. Its considerations has lead to the notion of polyinstanti-
ation in multilevel relations. The need for polyinstantiation was first identified in [17];
the term “polyinstantiation” was coined by the SeaView project [7]. Polyinstantiation
comes in several different flavors (7, 16, 18, 19, 20, 22, 23, 25, 27, 28, 30, 31, 32, 33).
There are significant differences between these approaches and debate continues about
the correct definition of polyinstantiation and its operational semantics. However, in
each case polyinstantiation significantly complicates the semantics of multilevel rela-
tions (particularly for high users). As a result, recently some solutions have appeared
which attempt to do away with polyinstantiation completely {3, 31, 38].

In this report, we first carefully review how the need for polyinstantiation arises
in multilevel relations, followed by a survey of methods that have been developed for
dealing with it.

The rest of this report is organized as follows. Chapter 2 reviews the concept
of polyinstantiation from an intuitive point of view, with the objective of identifying
the sources of polyinstantiation. Chapter 3 presents as a strawman a simple, but
unacceptable solution. Chapter 4 introduces an example used to compare different
approaches to polyinstantiation. Chapter 5 then discusses different approaches to

polyinstantiation. Chapter 6 discusses the architectural considerations that affect
polyinstantiation. Chapter 7 concludes the report.

Chapter 2

What is Polyinstantiation?

In this chapter we show by means of examples how polyinstantiation arises. We
assume that the readers are familiar with the basic concepts of the standard (single-
level) as well as multilevel relations, as explained in (22].

In multilevel relations, access classes can be assigned to data stored in relations
in four different ways. One can assign access classes to relations, to individual tuples
in a relation, to individual attributes (columns) of a relation, or to individual data
elements of the tuples of a relation. Polyinstantiation does not arise explicitly when
access classes are assigned to relations or individual attributes of a relation and,
therefore, we consider the cases when access classes are attached to tuples or the data
elements themselves.

2.1 Types of Polyinstantiation

A multilevel relation is said to be polyinstatiated when it contains two or more tuples
with the same apparant primary key values (7, 22]. There are two different types of
polyinstantiation:

¢ Eatity Polyinstantiation

e Attribute Polyinstantiation

Entity polyinstantiation occurs when a relation contains multiple tuples with
the same apparant primary key values, but having different access class values for the
apparant primary key. As an example, consider the relation SOD given in figure 2.1.

Starship Objective Destination
It S e St Sttt
Enterprise U | Exploration U [Talos U
Enterprise S [Spying S | Rigel S

Figure 2.1: A Multilevel Rela.tion with Entity Polyinstantiation

In figure 2.1, as in most of our examples, each attribute in a tuple not only
has a value but also a classification. We assume that the attribute Starship is the
apparant primary key of SOD.

Now, the relation given above contains two tuples for the same starship Enter-
prise, resulting in entity polyinstantiation. These tuples can be regarded as pertaining
to two different real-world entities or a single real-world entity. We cannot tell im-
mediately by looking at the relation which is really the case.

The relation in figure 2.2 illustrates attribute polyinstantiation:

Starship Objective Destination
Enterprise U | Exploration U | Talos U

Enterprise U | Spying S |Rigel S

Figure 2.2: A Multilevel Relation with Attribute Polyinstantiation

With attribute polyinstantiation, a relation contains two or more tuples with
identical apparant primary key and the associated access class values, but having
different values for one or more remaining attributes, as shown in the above relation.
In the above multilevel relation, both tuples refer to a single Starship Enterprise; a
S-user sees different values for its objective and destination.

As we indicated, explicit polyinstantiation can also occur with tuple level
labeling instead of element level labeling. Let us consider the same example when
access classes are associated with each tuple instead of each element. The S-user will
see the mulltilevel relation shown in figure 2.3.

Notice that with tuple level labeling, we can no longer distinguish the entity
polyinstantiation from attribute polyinstantiation. In our example relation, it is
possible that both tuples relate to the same starship Enterprise; the U-tuple is merely

Starship | Objective IDestina.tion l TC

Enterprise | Exploration | Talos

Enterprise | Spying

Figure 2.3: A Multilevel Relation with Tuple-Level Labeling

the cover story. At the same time, it is also possible that there are two comy. etely
different starships; however, they have been given same name, possibly by error.

2.2 How polyinstantiation occurs

Either type of polyinstantiation can occur in basically two different ways which we
call visible and invisible polyinstantiation respectively for mnemonic convenience.

1. Visible polyinstantiation occurs when a high user* attempts to insert data in a
field which already contains low data. Since overwriting the low data in place
will result in a downward signaling channel, the high data is inserted by creating
a new tuple to store the high data.

2. Invisible polyinstantiation occurs in the opposite situation where a low user at-
tempts to insert data in a field which already contains high data. Since rejecting
the update is not a viable option because it establishes a downward signaling
channel, the updated tuple is polyinstantiated to reflect the low update.

The next two sectionss make visible and invisible polyinstantiation clearer by
considering some examples. The examples illustrate attribute polyinstantiation only;
examples illustrating entity polyinstantiation can be constructed similarly.

2.3 Visible Polyinstantiation Example

Let us now consider a concrete example to make visible and invisible polyinstantiation
clearer. Consider the following relation SOD where Starship is the apparent primary
key.

*Strictly speaking we should be saying subject rather than user. For the most part we will loosely

use these terms interchangeably. Where the distinction is important we will be appropriately precise.

Starship Objective Destination

Enterprise U | Exploration U {null U

Now consider the following scenario.

1. A U-user updates the destination of the Enterprise to be Talos. The relation is
therefore modified as follows.

Starship Objective Destination

Enterprise U | Exploration U | Talos U

2. Next a S-user attempts to modify the destination of the Enterprise to be Rigel.
Since we do not wish to deny entry of legitimate secret data, this update is not
rejected. However, since we cannot overwrite the destination in place because
that would create a downward signaling channel, we polyinstantiate and modify
the relation to appear as follows, respectively for U- and S-users. Note that U-
users see no change.

Starship Objective Destination

Enterprise U | Exploration U | Talos U

Starship Objective Destination

F terprise U | Exploration U | Talos U

Enterprise U | Exploration U | Rigel S

What are we to make of this last relation given above. There are at least two
reasonable interpretations.

o Cover Story. The destination oi Talos may be a cover story for the real desti-
nation of Rigel. In this case the database is accurately mimicking the duplicity
of the real world. There are, however, other ways of incorporating cover stories
besides polyinstantiation. For example we may have two attributes, one for
cover-story destination aad one for the real destination. Debate on the relative
merits and demerits of these techniques is outside the scope of this report.

e Temporary Inconsistency. We have a temporary inconsistency in the database
which needs to be resolved. For instance the inconsistency may be resolved as
follows: the S-user who inserted the Rigel destination latter logs in at the U
level and nullifies the Talos value, sc thereafter the relation appears respectively
as follows to U- and S-users.

Starship Objective ll Destination

Enterprise U | Exploration U | null U

Starship l Objeciive Destination
=
Enterprise U I Exploration U | Rigel S

It is important to understand that this scheme does not create a downward sig-
naling channel from one subject to another. The nullification of the destination
at the U level is being done by a U subject. One might argue that there is a
downward signaling channel with a human in the loop. The human is however
trusted not to let the channel be exercised without good cause. The real threat
is to entity integrity: the U-user who executed step 1 of the scenario may again
try to enter Talos as the destination, which brings us within the scope of the
invisible polyinstantiation.

2.4 Invisible Polyinstantiation Example

Our example for invisible polyinstantiation is similar to the visible polyinstantiation
example with the difference that the two update operations occur in the opposite
order. So again consider the following relation SOD where Starship is the apparent

primary key.

Starship Objective Destination

Enterprise U | Exploration U |null U

This time consider the following scenario.

1. A S-user modifies the destination of the Enterprise to be Rigel. The relation ic
modified to appear respectively as follows to U- and S users. Note that U-users
see no change in the relation.

Starship Objective Destination]
Enterprise U l Exploration U { null U

Starship Objective Destination
Enterprise U | Exploration U | Rigel S

2. A U-user updates the destination of the Enterprise to be Talos. We cannot reject
this update on the grounds that a secret destination for the Enterprise already
exists, because that amounts to establishing. a downward signaling channel.
Thus we have only one of the following two options left: We can overwrite the
destination field in place at the cost of destroying secret data. This would give
us the following relation for both U- and S-users.

Starship Objective Destination
m
Enterprise U | Exploration U | Talos U

For obvious reasons this alternative has not been seriously considered by most
researchers. That leaves us the option of polyinstantiation which will modify
the relation at the end of step 1 to the following for U- and S-users respectively.

Starship Objective Destination
Enterprise U { Exploration U|Tales U

Starship Objective Destination

Enterprise U | Exploration U | Talos U

Enterprise U | Exploration U | Rigel S

This is exactly the same relation as obtained at the end of step 2 in our visible
polyinstantiation example. The possible interpretations are therefore similar, i.e., we
either have a temporary inconsistency or a cover story. The temporary inconsistency
can be corrected by having a U subject (possibly created by a S-user logged in at
the U level) nullify the Talos destination. But the inconsistency may recur again and

again.

Chapter 3

A Simple, but Unacceptable, Solution

There are two obvious “secure” alternatives to both visible and invisible polyinstanti-
ations. These alternatives are secure in the sense of secrecy and information flow and
preserve primary key requirements in multilevel relations; but unfortunately, they
suffer from denial-of-service and other integrity problems.

1. Whenever a high user makes an update which violates the uniqueness require-
ment, we simply refuse that update.

' 2. Whenever a low user makes a change that conflicts with the uniqueness require-
ment, the conflicting high data is overwritten in place by the low data.

It is not difficult to see that this simple solution preserves the uniqueness
requirement in multilevel relations. This solution is secure in the sense of secrecy
and information flow. It is our view that while this solution may be acceptable in
some specific situations, it is clearly unacceptable as a general solution; it can lead
to serious denial-of-service and integrity problems. Therefore, we now look for other
alternatives which do not suffer from these problems.

10

Chapter 4

An Example

Next chapter will describe several solutions to the polyinstantiation dilemma, some
of which allow polyinstantiation in multilevel relations, while others seek to eliminate
polyinstantiation completely. To appreciate the differences between various solutions,
this chapter develops an example in more detail. Consider once again the relation
SOD which has three attributes, Starship, Objective and Destination with Starship
being the primary key.

Attribute I Classification Range
Starship {U, U]
Objective (U, §]
Destination (U, S]

Tuple Class (TC) [U, S}

Apparent Key: Starship

Figure 4.1: A scheme for the multilevel relation SOD.

If we were living in a single level world, for each starship there will be at
most one tuple in this relation giving us that starship’s unique objective and unique
destination. For example, the tuple <Enterprise, Exploration, Talos> denotes that
the starship Enterprise has set out to explore Talos. We say that this entire tuple
gives us the mission of the Enterprise.

Next consider a multilevel relation which attempts to represent the same in-
formation, i.e., the objective and destination of starships, but in a multilevel world

11

where some facts are classified. Assume that there are just two levels, U for unclassi-
fied and S for secret. To further simplify the example let us say the Starship attribute
is always unclassified. Therefore, the classification range of the Starship attribute has
lower and upper bounds of U. On the other hand let the classification range of the
Objective and Destination attributes have a lower bound of U and upper bound of S.
Let us call the resulting schema SOD with the resulting schema summarized in figure
4.1. In this chapter, we will, for convenience, augment a relation scheme with a tuple
class or TC attribute. This attribute is computed to be the least upper bound of the
classifications of the individual data elements in the tuple. Thus, the value of TC
gives the classification of the entire tuple.

The apparent primary key of SOD is specified as Starship. Intuitively this
means that if only unclassified data is stored in SOD then Starship would be the
actual primary key of the relation. Similarly, if only secret data is stored in the
Objective and Destination attributes Starship would be the actual primary key. On
the other hand if a mix of secret and unclassified data is stored in these attributes
the actual primary key of SOD is Starship along with the attribute classifications.
Instance 8 of figure 4.2 contains four tuples for the starship Ente. . 'e. What makes
each tuple distinct is the classification of the Objective and Destination attributes.

An instance of SOD is likely to contain different tuples at different levels.
Therefore, it is important to distinguish between the U-instance of SOD, visible to
unclassified users, and the S-instance, visible to secret users. As an user’s clearance
increases, it is reasonable to keep all previously visible information intact and perhaps
add some new facts visible only at-that level. To be concrete consider the U-instance
of SOD given in figure 4.3. It contains exactly one tuple telling us that, as far
as unclassified users are concerned, the starship Enterprise has set out to explore
Talos. In figure 4.2 we enumerate eight different S-instances of SOD, all of which are
consistent with the U-instance of figure 4.3. Their common property is that the single
tuple of the U-instance appears in all eight S-instances. We regard each tuple in an
instance of SOD as defining a mission for the starship in question. A U-instance of
SOD allows only one mission per starship. S-instances on the other hand allow up to
four missions per starship, three of which are secret and one unclassified.

We now demonstrate there is a practically useful and intuitively reasonable
interpretation for each of the eight S-instances of figure 4.2. Consider each S-instance
in turn as follows.

1. The S-instance is identical to the U-instance. There is therefore no secret aspect
to the Enterprise. This is the simplest case and needs little explanation.

12

No. Starship

[B T

2 || Enterprise U
Enterprise U

3 |l Enterprise U
Enterprise U

4 || Enterprise U

Enterprise U

Enterprise U
Enterprise U
Enterprise U
Enterprise U
Enterprise U
Exiterprise U

Enterprise U

Enterprise U
Enterprise U
Enterprise U
Enterprise U
Enterprise U
Enterprise U

Objective
Exploration U
Exploration U
Spying S
Exploration U
Exploration U

Exploration U
Spying S

Exploration U
Exploration U
S

Spying
Exploration U
Spying S
Spying S

Spyfng S
Exploration U

Exploration U

Spying S
Exploration U
Spying S

Exploration U | Tales U

Destination | TC

Talos U | U
Talos U { U
Talos U { S
Talos U [U
Rigel S ;
Talos U | U
Rigel S S

Rigel S
Talos U
Talos U
Rigel S

Talos U
Rigel S

mmmc:mmc:lmmc:mmc‘.

Talos U
Talos U
Rigel S
Rigel S

Figure 4.2: Eight S-instances of SOD.

13

Starship Objective Destination | TC

Enterprise U | Exploration U} Talos U | U

Figure 4.3: A U-instances of SOD.

In each of the next three cases there is a single tuple in the S-instance in addition
to the tuple of the U-instance. This secret tuple defines a secret mission for the
Enterprise in addition to its unclassified mission.

2. The S-instance reveals the secret mission to be spying on Talos. Presumably
the unclassified exploration mission to Talos is a cover story to hide the secret
spying mission. To maintain the integrity of the cover story, the Enterprise
will probably expend resources on exploring Talos. Conceivably the bulk of its
resources might be devoted to useful exploration of Talos with the secret spying
mission added on as a low profile, low marginal cost and opportunistic effort.
We obviously cannot resolve this issue without further knowledge about the
real situation, such as a competent user might have. The main point is that
the Enterprise does have two distinct missions: the unclassified one of exploring
Talos and the secret one of spying there.

3. The S-instance reveals the secret mission to be exploration of Rigel. This case

" is very similar to the previous one in that only one attribute has a secret value.

Clearly the desire to explore Rigel under cover of exploring Talos is a realistic

one, not only in the national security arena but also in a competitive commercial
context.

4. The S-instance reveals the secret mission to be spying on Rigel. This case is
similar to the previous two in that there is only one secret mission. It is dif-
ferent in that the objective and destination of the secret mission are now both
classified.

-Each of the three preceding cases presents a distinctly different secret mission—
secretly spying on Talos, secretly exploring Rigel and secretly spying on Rigel. These
three secret missions do share the common property that exploring Talos is an ac-

. ceptable unclassified cover story. The next three cases present situations where two
' of these three secret missions are concurrently in progress.

5. The S-instance reveals two secret missions—to ezplore Rigel and to spy on Rigel.
Both secret missions are concerned with Rigel. Whether the principal one is

14

to explore it or spy there or the two missions are equally important, cannot be
ascertained without further information. The secret exploration of Rigel may
simply be a convenient damage control story, should the secret destination of
the Enterprise be leaked. Conversely, spying on Rigel may be an opportunistic
and relatively unimportant add on to its secret exploration.

The S-instance reveals two secret missions—to spy on Talos and to spy on Rigel.
This is similar to the previous case and once again we cannot a priori decide

" which, if any, is the principal secret mission.

The S-instance reveals two secret missions—to spy on Talos and to explore Rigel.
This may appear strange at first, but it is perfectly proper. For instance, there
may be no life-forms on Rigel worth spying on while there are indications of
vast quantities of Uranium. This S-instance does point out problems with simple
rules such as “give the value with the highest classification for each attribute.”
Such a rule would manufacture the secret mission of spying on Rigel which does
not exist in the relation.

As the reader may have guessed by now our final S-instance specifies that the three
secret missions identified in instances 2, 3 and 4 are all concurrently in progress.

8.

The S-instance reveals three secret missions—to spy on Talos, to explore Rigel
and to spy on Rigel As before, without further information and knowledge, we
cannot say very much about the relation of these three secret missions to one
another. All we know is that they share the same cover story of exploring Talos.

To summarize then eight S-instances of SOD can be partitioned into three

classes as follows:

1.
2.

Instance 1 has no polyinstantiation and is therefore straightforward.

Instances 2, 3, and 4 are also relatively straightforward. Instance 2 has a cover
story for the objective, but the U destination is correct. Instance 3 on the
other hand has a cover story for the destination, while the objective is correct.
Instance 4 has a cover story for both the destination and the objective.

Instances 5, 6, 7, and 8 are confusing to interpret if it is assumed that the higher
level data correctly represent the real world. Nonetheless, it is possible to give
a meaningful and consistent interpretation and update semantics for both the
objective and the destination.

15

Chapter 5

Solutions to the Polyinstantiation Problem

There are a number of different approaches to implementing polyinstantiation in a
database management system, reflecting divergent perspectives on the meaning and
uses of polyinstantiation within an MLS environment. Each perspective has its pro-
ponents and detractors, and each is suited to particular types of applications. It is not
our intent to promote certain approaches or to dismiss others, but instead to discuss
the perspective motivating each of them. It is our belief that different organizations
and real-world enterprises will choose to model their understandings of multilevel data
in distinct ways. Our goal here is to present multiple approaches and their rationales
so that each organization may choose the most appropriate implementation for its
requirements.

This chapter starts with those approaches that view polyinstantiation (and
the concomitant addition of tuples) as an integral part of an MLS database. Next,
the chapter presents strategies that compose new tuples to answer queries based on
the security levels of underlying tuples. Finally, it discusses approaches that include
explicit restrictions on users’ views of data.

5.1 Propagation of Polyinstantiated Tuples

One perspective in dealing with the tension between multilevel security and data
semantics is to regard polyinstantiation as an inevitable and integral part of multilevel
secure information. Users at different security levels may see different attribute values
for the same real-world tuple (e.g., Secret vs. Unclassified objectives for the same
starship), and the users must be allowed to update these values differently. This
perspective leads to an approach to polyinstantiation in which new tuples are added
to reflect the combinatorial explosion of attribute values. For simplicity, we will call

16

this approach the propagation approach to polyinstantiation.

The propagation approach faces two key challenges: (1) ensuring that keys
still function to identify distinct real-world entities, and (2) controlling the propaga-
tion of tuples to include only meaningful combinations of attribute values. The first
challenge is met by augmenting the apparent key with a security level and enforcing
the standard key uniqueness property over this augmented key. The second challenge
is more complex and researchers are still debating which types of combinations are
meaningful. In general, multivalued dependencies (see [5] for more detailed explana-
tion) are used to define the particular combinations allowed by a specific solution.
While many variants are possible, the SeaView project (7, 8, 9, 26, 27, 28| and the
proposed modifications of Jajodia and Sandhu [18] provide the basis of this approach.
First we present the original SeaView approach, then Jajodia’s and Sandhu’s proposed
modification, and finally some new techniques proposed by the SeaView project.

The SeaView project began as a joint effort by SRI International and Gemini
Computers with the goal of designing and prototyping a MLS relational database
management system that satisfies the Trusted Computer System Evaluation Criteria
for Class Al [1]. Currently the project is in the final phase of a prototype imple-
mentation using GEMSOS as the underlying trusted computing base along with the
ORACLE relational DBMS [27].

SeaView solves the problem of polyinstantiation of key attributes themselves
by defining an entity integrity property. This property requires all attributes in a key
to be uniformly classified. That is, for any instance R, of a multilevel relation schema,
for any tuple ¢t € R., and for any attributes A; and A; in the apparent primary
key Kn of R, t[Ci] = t[C;]. Notice that this means that it is possible simply to
define a single attribute C to represent the classification level of all attributes in the
apparent primary key. Further, no tuples may have null values for key attributes. This
restriction ensures that keys can be meaningfully specified and checked for uniqueness.
In addition, all non-key classification attributes must dominate Cx. This restriction
guarantees that if a user can see any part of a tuple, then he or she can see the key.

To meet the first challenge, that of using keys to determine when tuples model
distinct real- world entities, SeaView defines a polyinstantiation integrity property.
The formulation of polyinstantiation integrity in SeaView consists of two distinct
parts. The first part consists of a functional dependency component whose effect is
to prohibit polyinstantiation within the same access class. The second part consists
of a multivalued dependency requirement.

SeaView Polyinstantiation Integrity Property: A multilevel relation R, satis-
fies polyinstantiation integrity (PI) if and only if for every R, there are for all A; € Kr

17

1. Ka,Ck,C; — A;
2. Kg,Cx —— A, C;

The PI property can be regarded as implicitly defining what is meant by the
primary key in a multilevel relation. The primary key of a multilevel relation is
KpU Ck U Cr (where Cr is the set of classification attributes for data attributes
not in KRg) since from PI it follows that the functional dependency Kr — Apr holds
(where AR consists of all attributes that are not in Kg).

Of the eight instances defined in figure 4.2, this definition of polyinstantiation
integrity allows only two combinations of these eight instances within a single relation
scheme (18]. Specifically a SeaView relation can accommodate either instances 1, 2,
3, and 8 or instances 1 and 4 within a single scheme in the absence of the uniform
classification constraint. SeaView admits only instances 1 and 4 if the Objective and
Destination attributes are uniformly classified (i.e., either both are classified U or
both S).

The inclusion of the multivalued dependency in the definition of polyinstanti-
ation integrity means that one update may result in a number of tuples being added
to the relation. To illustrate, consider the situation in which an S user attempts to go
from S instance 1 to S instance 4 in figure 4.2 by inserting the secret tuple specifying
the secret mission of spying on Rigel. SeaView will interpret this as a request to go
from S instance 1 to S instance 8, thereby manufacturing two additional missions for
the Enterprise. Unfortunately, this increases the potential for such additional infor-
mation that may not reflect true data to be retrieved from the database by users
with higher clearances. It is easy to see that, in the worst case, the number of man-
ufactured tuples materialized grows at the rate of [security-lattice|* where k is the
number of non-key attributes in the relation. For example, figure 5.1 shows a TS-
instance of a relation similar to SOD, except that it has a range of four security levels
for the Objective and Destination attributes. The particular TS instance shown there
describes four missions for the Enterprise, one each at the unclassified, confidential,
secret and top-secret levels. The definition of polyinstantiation integrity in SeaView
requires that this information be represented by the sixteen missions shown in figure
5.2. Users with clearance U, C, S, and TS will respectively see 1, 4, 9, and 16 missions
with the SeaView approach.

In [18], Jajodia and Sandhu proposed dropping the multivalued dependency
from the polyinstantiation integrity property defined in the SeaView model. They
argued that the multivalued dependency prohibits the existence of relation instances
that are desirable in practice. Specifically, it is possible to accommodate all eight

18

Starship
Enterprise
Enterprise
Enterprise

Enterprise

U
U
U

U

Objective
Exploration
Mining
Spying
Coup

U

C

S
TS

Destination

Talos U
Sirius C
Rigel S
Orion TS

TC

S
TS

Figure 5.1: A TS-instance of SOD with 4 missions.

Starship Objective Destination | TC
Enterprise U | Exploration U |[Tals U | U
Enterprise ‘U Exploration U |Sirius C | C
Enterprise U | Mining C|Taes U | C
Enterprise U | Mining C|Sirius C | C
Enterprise U | Exploration U |Rigel S | S
Enterprise U | Mining C|Rigl S { S
Enterprise U | Spying S |Tales U | S
Enterprise U | Spying S |Sirius C | S
Enterprise U | Spying S | Rigel S S
Enterprise U | Evploration U | Orion TS | TS
Enterprise U | Mining C | Orion TS | TS
Enterprise U | Spying S | Orion TS | TS
Enterprise U | Coup TS| Tales U | TS
Enterprise U | Coup TS | Sirius TS
Enterprise U | Coup TS| Rigel S | TS
Enterprise U | Coup TS | Orion TS | TS |

Figure 5.2: The SeaView materialization with 16 missions.

19

instances of figure 4.2. Jajodia and Sandhu give formal operational semantics for
update operations in multilevel relations in [22, 23].

Based on this proposal, the SeaView team began a reexamination of the Sea-
View definition of polyinstantiation integrity. In (28], Lunt and Hsieh develop a se-
mantics for the basic database manipulation operations (insert, update, and delete).
Based on these semantics, they propose a different definition for polyinstantiation
integrity consisting of two separate pieces: a state property containing the same
functional dependency component and a transition property concerning a new dy-
namic multivalued dependency component. Although Lunt and Hsieh do not define
the latter property precisely, the basic idea can be illustrated informally by way of
an example from [28].

Cousider the multilevel relation scheme R(A,,C,, Az, C3, A3,C3,TC) where
each A; is an attribute, each C; is the classification attribute for A;, and TC is
the tuple class attribute. The attribute A, is the apparent primary key of R. An
instance R, at a classification level ¢ is assumed to satisfy the two constraints of the
PI property.

Now, consider the following relation instance Ry:

A Ci A C |43 G| TCY
a Uib Ulx Ul U

Suppose a Confidential user changes the value of A; to d, as shown here:

A Ci|A C A G| TC
a Ulb Uflx Ul U
a Uld c|x UlcC

* Under the update semantics of [28], whenever an update involves some, but not
all, of the nonkey attributes, certain dynamic multivalued dependencies are enforced
in the multilevel relations. In the example, the dynamic multivalued dependencies
are:

Ah Cl = A21 CZ'A‘% C3

where the notation X —— Y'|Z denotes the multivalued dependencies X —— Y and
X =2

e T

20

Next, suppose a Top Secret user updates the value of A3 to equal “v.” As
before, since this update involves some (but not all) of the nonkey attributes, the
dynamic multivalued dependency property causes two more tuples to be added to the
relation: '

A, CilA Cy|A3 G| TC
a U|b U}jx U} U
a Ufd C|x U]|C
a Ulb U|]v TS|TS
a U|ld C|fv UJTS

At this point suppose a Secret user changes the value of the second attribute
to "q.” The following relation instance results:

A, Ci|A Ci A C3|TC
a Uib U]lx U|U
a Ujd C|{x U|C
a Ulb Ulv TS|TS
a U}jd Clv U|TS
a Ujq S|x U|TS
a Ujd C|v U|TS

As stated in [28], the way in which an update occurs determines wheLcr or not
the multivalued dependency should be enforced. Essentially, if two or more attributes
were updated in a single update statement, the multivalued dependency would not be
enforced. However, if the two attributes were updated in two independent operations,
the multivalued dependency would be enforced.

This dynamic approach is not yet formalized, nor is it being incorporated in
the SeaView prototype.

5.2 Derived Values

A second perspective on polyinstantiation is that although a multilevel relation may
have several tuples for the same real-world entity, there should be only one such

21

tuple per classification level. Instead of a classification level C; for each attribute A4;,
the schema R, includes a single classification level for each tuple, TC. When a user
wants to update only certain attributes at a particular level, the values of the other
attributes are derived from values at lower security levels.

Consider the following relation SOD where Starship is the key:

, Starship l Objective l Destination I TC
l Ent.erprisel Exploration I Talos l U

Now suppose an S-user wishes to modify the destination of the Enterprise to
be Rigel. He or she can simply do so by inserting a new Secret tuple to SOD as
follows:

(Enterprise, U, Rigel, S)

The symbol I is to be interpreted as follows: For this S tuple the value of the
Objective field is identical to the corresponding value in the U tuple of SOD. As a
consequence, when a S user asks for the SOD relation to be materialized, he or she
will see the following: ’

Starship l Objective | Destination I TC

Enterprise | Exploration Talos U

Enterprise | Exploration Rigel S

The relation will appear unchanged to the U-user.
The Lock Data Views (LDV) project [16] follows this derived data approach.

The derived data approach has been implemented for the U.S. Transportation
Command Air Mobility Command MLS Global Decision Support System (GDSS) [29].
This implementation, the MLS GDSS , limits polyinstantiation in a multilevel relation
to at most one tuple per security class. Information is labeled at one of two levels, U
or S. The design is based on the organization’s assumption that when S and U data
are integrated into a single S response the S data takes precedence over the U data.
This design can be extended to environments with more than two strictly ordered
security levels. Organizations for which this strict hierarchical rule does not apply,
such as many compartmented environments, would have to incorporate substantial
changes into this design in order to use it.

22

In the MLS GDSS application, trusted application software functionally ex-
tends the commercial off-the-shelf (COTS) MLS DBMS to manage tuple level polyin-
stantiation. Before inserting an S tuple, the trusted software ensures that a U-tuple
exists with the same key. If it does not exist, the insertion of an S tuple is not
permitted. If a U-tuple with the same apparent primary key does exist, the trusted
application software examines each S-tuple attribute value, except the apparent key
value, and determines if it replicates the attribute’s value in the U-tuple. If so, the
value is not replicated in the S-tuple but instead set to null, minimizing data replica-
tion. The U-tuple thus serves as the foundation upon which the S-tuple is built. The
MLS GDSS solution is best explained with several examples. Consider the following
relation: '

TC
Talos U

Starship | Objective | Destination

Enterprise { Exploration

Now suppose an S-user wishes to modify the destination of the Enterprise to
Rigel. The S- user directs the system, through the trusted software, to insert an
S-tuple into the SOD as follows:

S-USER:
Insert into
(Starship, Objective, Destination)
Values (‘Enterprise’, ‘Exploration’, ‘Rigel’)

The U and S tuples are now stored in the relation as:

Starship | Objective | Destination | TC
Enterprise | Exploration Talos U
Enterprise Null Rigel S

By reducing the replication of data across polyinstantiated tuples, the prob-
ability of maintaining the integrity of the database improves. Additionally, except
for the key value, the sensitivity level of all attribute values contained within the
stored tuple are equivalent to the TC value. Given this equivalence to the TC value,
trusted application software derives attribute value labels from the TC value. Users
operating at the U-level are presented with a display showing the derived attribute
value labels as follows:

23

Starship Objective Destination

Enterprise U | Exploration U | Talos U

Users operating at the S level are presented with a single composite display of
a materialized tuple. This materialized tuple comprises S and U data as follows:

Starship Objective Destination

[e e e e e e e e e et
Enterprise U | Exploration U | Rigel S

One of the major impacts of the polyinstantiation approach as implemented
in the MLS GDSS, involves the DBMS join operator at the S level. Figure 5.3
illustrates the simplest form of the problem. A typical join operation between two
tables matches and retrieves rows based on the primary key Starship. In order to
retrieve data residing at the same security level, and thus permit proper collapsing of
the rows into a materialized tuple, the join is further qualified by the row’s security
label attribute T'C.

S-USER:
Select * _
FROM Tablel, Table2
where Tablel.Starship = Table2.Starship
and Tablel.TC = Table2.TC

An important functional requirement in the MLS GDSS is that S users expect
to see S data as the end product of a retrieval, if S data exists; otherwise, U data
is returned. Case 1 in figure 5.3 shows a join between two tables that produces the
correct materialized tuple for an S user. Case 2 illustrates the anomaly associated
with the join. In this case, table 2 contains only U data. Since the query requires
that the tuple labels match, the query does not return the S row of table 1 joined
with the U row of table 2. Thus, if data does not exist at the same security levels in
each table, then S information may be lost during the join operation.

In this simplified example, one might argue that removing the qualification
that the tables be joined by tuple labels would permit joins. Doing this would return
two rows in Case 2, one containing only U information, the other containing S and U
information. If this approach were taken, the tuple materialization process becomes
more complex and would need to extract multiple tuple labels and assign them to

24

Case 1:

Starship | Objective | Destination | TC
Enterprise | Exploration Talos U
Enterprise null Rigel S

Starship Type Propulsion | TC
Enterprise | Starship Photon U
Enterprise | Battlestar | Queller Drive | S

Objective

Enterprise U | Exploration U | Rigel

Destination

Type

S

Battlestar S

Propulsion’

Queller Drive S

Case 2:

Enterprise

Enterprise | Exploration

null

Starship l Objective Destination | TC

Talos
Rigel

U
S

Starship I Type | Propulsion l TC

Enterprise | Starship | Photon U

Starship Objective Destination Type Propulsion
Enterprise U | Exploration U | Talos U | Stasship U | Photon U

Figure 5.3: Joins in GDSS

25

the appropriate columns in the row that was returned. Also, the join example shown
in Case 1 would result in four rows of data returned from the server, instead of just
two. The complexity of the problem and the work required of the DBMS server would
increase significantly as more tables are joined. Database server performance would
decrease accordingly, perhaps to unacceptable levels.

In order to ensure the correct materialization of a logical joined tuple, the MLS
GDSS system does not currently use the join capabilities of the COTS MLS DBMS.
Instead, tuples are selected from individual tables, and then joined outside the DBMS
by trusted application software. While this operation does result in some processing
overhead, it ensures that data are not accidentally excluded from the S-user.

5.3 Visible Restrictions

The third perspective on polyinstantiation is that users are aware that data are re-
stricted to certain levels. In practice, this perspective means that users know the
levels of data that they can see and update. The goal is to provide a more “honest”
database without compromising security. This perspective can lead to many different
strategies; this chapter presents four different approaches.

5.3.1 The Belief Approach

One approach to polyinstantiation is motivated by the idea that data at each level
reflect the “beliefs” of users at that level about the real world {35} For simplicity,
we will call this work the belief approach. The belief approach differentiates between
data that a user sees and data that a user believes. Updates reflect beliefs about.the
real world; they are regulated by the following property.

Update Access Property: Data at a particular level can only be inserted,
modified, or deleted by users at that level.

Thus, data at each level reflects the beliefs of the users who maintain it. Users
may see the data that they believe as well as data believed by users at lower levels
(i.e., users see all data that they could read under the Bell-LaPadula model).

At the heart of this property is a model that takes a stand between entity-
and attribute-level polyinstantiation. Keys may be classified at a different level than
other attributes within the same tuple, but all non-key attributes within a single tuple
share a classification level.

26

Starship K. | Objective Destination | T,
Voyager U | Shipping Mars U
Enterprise | U | Exploration | Vulcan U
Enterprise | U | Diplomacy | Romulus C
Zardor S | Warfare Romulus S
Voyager S | Spying Rigel S

Figure 5.4: Example of SOD in the Belief Model

Given a relation schema R, the multilevel relation R. used in the belief model
includes two additional classification attributes: a key classification level (K.) and a
tuple classification level (T.). The model imposes two restrictions:

1. In any tuple, T, must dominate K.

2. For the set of key attributes K and for all non-key attributes A, ..., A, in R,,
K,I(c,Tc -— A;',- -.,An

Intuitively, then, tuples with the same values for key attributes but different
key classification levels refer to different real-world entities. Tuples that are identical
in key attributes and key classification levels but differ in tuple classification levels
represent different beliefs about the same real-world entities. To maintain this dis-
tinction, users at a particular level are not allowed to reuse key attribute values for
new entities.

Given the relation SOD in figure 5.4, U-users believe the first and second
tuples. C-users believe the third tuple, and S-users believe the fourth and fifth tuples.
Since the first and fifth tuples refer to the same real-world entity, the first tuple
indicates a cover story (or simply erroneous information on the part of a U-user).

The second and third tuples in figure 5.4 refer to the same real-world starship,
but U- and C- users have different beliefs about its objective and destination. The
first and fifth tuples refer to different starships.

U-users can see only the first two tuples in figure 5.4, C-users can see the first
three tuples, and S-users can see all five tuples.

27

Although users are allowed to see all tuples at levels dominated by their belief
) levels, the query language includes the optional keyword BELIEVED BY to allow
users to further restrict queries. Thus, S-users can ask to see all allowable tuples, or

only those believed by C- and S-users, etc.

So, the query “Display the destination of all starships named Enterprise” is

expressed as
SELECT Destination
FROM SOD
WHERE Starship = “Enterprise”

BELIEVED BY ANYONE

The result of this query when issued against the relation in figure 5.4 is:

| Destination I TC
| Vulcan | U

for a U-user, and

Destination | TC

e
Vulcan U
Romulus C

for all users at levels C or higher.

The query “Display the beliefs of U-users as to the destination of all starships
named Enterprise” is expressed as:

SELECT Destination
FROM SOD
WHERE Starship = “Enterprise”

BELIEVED BY U

The result of this query when issued against the relation in figure 5.4 is:

28

| Destination | TC I
| Vulcan | U |

for all users.

The query “Display the classification level and destination of all starships
named Voyager” is expressed as:

SELECT K., Destination
FROM SOD
WHERE Starship = ‘Voyager’

BELIEVED BY ANYONE

The result of this query when issued against the relation in figure 5.4 is

K, | Destination I T.

U Mars | U

for U- and C-users, and

K. | Destination | T

Mars
S Rigel S

 for all users at levels S or higher.

5.3.2 The Insert-Low Approach

Another variation of explicit restriction, the insert-low approach, has been adopted by
the SWORD project at the Royal Signals and Radar Establishment in England [38].
Briefly, this approach works as follows:

Each relation is assigned at the time of its creation a table usage classification,
abbreviated as table class . Each attribute is assigned a column classification which
must dominate the table class.

29

The purpose of the table class is two-fold: First, any insertion or deletion of
tuples in a relation can be made by those users whose clearances equal the table class
of the relation. Second, the table class controls exactly how the updates involving
an access class that dominates the table class are made to the relation. This will be
explained in greater detail below.

Consider once again the relation schema SOD. Say the table classification of
SOD is U. ‘

A typical instance of SOD is given as follows:

Starship Objective Destination

Enterprise U | Exploration U | Talos U
Voyager U | Spying . S | Rigel TS

In this case, SWORD will show the entire relation to TS users, while for those
at lower levels SWORD will substitute <not cleared> whenever a user has insufficient
clearance to view a value. Thus, for example, a C-user will see the following instance:

Starship Objective Destination
Enterprise U | Exploration U | Talos ’ U
Voyager U | <not cleared> <not cleared> TS

To see how SWORD avoids tuple polyinstantiation, consider once again the
relation SOD with U as its table class. Suppose the initial database state is as follows:

Starship Objective Destination

Enterprise U | Exploration U | Talos U

Suppose some U-user inserts the tuple (Voyager, S, Spying, U, Talos, U) to
SOD. SWORD allows lower-level users to insert values at higher levels as long as
the attribute value classifications are dominated by the appropriate column classifi-
cation. In this example, the column classification for Starship would have to be S
or higher. Furthermore, since the table classification of SOD is U, this constitutes
a legal insertion, and as a result U-users and S- users will see the following states
respectively:

30

Starship Objective Destination
Enterprise Exploration U | Talos U
<not cleared> Spying U|[Talos U

Starship Objective Destination

Enterprise U | Exploration U | Talos U
Voyager S | Spying U|Tales U

At this point, suppose a U-user wants to make an insertion (Freedom, U,
Mining, U, Mars, U) to SOD. Since the Starship attribute of all tuples in SOD are
not visible to the U-user, there is always a possibility that the Starship value of
the tuple to be inserted equals that of the existing high tuple, leading to attribute
polyinstantiation (or tuple polyinstantiation in the case of attributes constituting the
primary key). SWORD avoids this by prohibiting U-users from inserting or modifying
values in this attribute. In the case of key attributes, like Starship, this means that
all further insertions by U-users are forbidden. However, since the table classification
is U, only U-users can insert tuples into SOD. As a consequence, no further insertions
can be made to SOD at all. In SWORD applications, then, the column classifications
for all attributes constituting the primary key must equal the table class, or users
may be able to prohibit future insertions.

: The following instance illustrates in more detail how attribute polyinstantia-
tion is avoided in SWORD:

Destination

Talos U

Starship Objective

Enterprise U | Exploration U

Next suppose a TS-user wishes to modify the destination of the Enterprise
to be Rigel. This is accomplished in two steps. First, the TS-user must log in as
a U-user and change the classification of Talos from U to TS. Having done so, the
TS-user can log in at his level and then make the desired update. As a result, the U
instance and TS instance will become as follows:

Starship Objective Destination

Enterprise U | Exploration U l <not cleared> TS

31

Starship Objective Destination

Enterprise U | Exploration U | Rigel TS

Given the database state shown immediately above, suppose an S-user wants
to insert a Secret destination for Enterprise. He may do so by first logging in as a
U-user, changing the classification of the attribute Destination from TS to S. As a
result of this change, all users, including the TS-user, will see the following relation:

Starship Objective Destination
Enterprise U | Exploration U | <not cleared> S

Now, the S-user can log in at classification level S and make the appropriate

change.

5.3.3 Prevention
The third variation of explicit restriction relies on preventing polyinstantiation com-

pletely. In [24, 31, 32], Jajodia and Sandhu describe three basic techniques for elimi-
nating entity polyinstantiation.

1. Make all the keys visible. In this method the apparent primary key is required
to be labeled at the lowest level at which a relation is visible. For example,
suppose that the designer requires that all keys be unclassified. Consequently,
the following relation:

Starship I Objective Destination | TC
U

Enterprise U | Exploration U | Talos U

Enterprise S | Spying S { Rigel S S

would be forbidden. Note that the two relations, called USOD and SSOD, in
figures 5.5 and 5.6, represent the same information.

- In other words, USOD and SSOD horizontally partition the original SOD rela-
tion, with all the U-Starships in USOD and all the S-Starships in SSOD.

32

2.

UStarship Objective Destination | TC

| Enterprise U l Exploration U l Talos U | U

Figure 5.5: USOD

SStarship Objective | Destination | TC
L I IR

Enterprise S | Spying S| Rigel S S

Figure 5.6: SSOD

Partition the domain of the primary key. Another way to eliminate entity
polyinstantiation is to partition the domain of the primary key among the var-
ious access classes possible for the primary key. For our example, suppose that
the application requires that starships whose names begin with A-E are unclas-
sified, starships whose names begin with F-T are secret, and so on. Whenever
a new tuple is inserted, the system enforces this requirement as an integrity
constraint. In this case the secret Enterprise must be renamed, perhaps as
follows.

Starship Objective Destination | TC
—a =
Enterprise U | Exploration U | Talos U | U
Enterprise S | Spying S| Rigel S S

The DBMS can now reject any attempt by a U-user to insert a Starship whose
name begins with F-Z, without causing any information leakage or integrity
violation.

Limit insertions to be done by trusted subjects. A third way to eliminate entity
polyinstantiation is to require that all insertions are done by a svstem-high user,
with a write-down occurring as part of the insert operation. (Strictly speaking,
it is only necessary to have a relation-high user, i.e., a user to whom all tuples
are visible.) In the context of the example this means that a U-user who wishes
to insert the tuple: (Enterprise, Exploration, Talos), must request a S-user to
do the insertion. The S-user does so by invoking a trusted subject which can

33

check for key conflict, and if there is none, insert a U-tuple by writing down. If
there is a conflict the S-user informs the U-user about it, so the U-user can, for
example, change the name of the Starship to Enterprise’.

The first approach is available in any MLS DBMS which allows a range of
access classes for individual attributes (or attribute groups), by simply limiting the
classification range of the apparent key to be a singleton set. The second approach is
available to any DBMS that can enforce domain constraints with adequate generality.
The third approach is always available but requires the use of trusted code. Note that
although there is some leakage of information, it is with a human in the loop. This
type of information flow cannot be completely eliminated [1]. The best approach will
depend upon the characteristics of the MLS DBMS and the application, particularly
concerning the frequency and source of insertions.

The prevention approach also proposes techniques to prevent attribute polyin-
stantiation without compromising on confidentiality, integrity, or denial-of-service re-
quirements. The basic idea is to introduce a special symbol denoted by “restricted” as
the possible value of a data element . The value “restricted” is distinct from any other
value for that element and is also different from “null.” In other words the domain
of a data element is its' natural domain extended with “restricted” and “null.” [31]
then defines the semantics of “restricted” so as to be able to eliminate both visible
as well as invisible polyinstantiation.

Consider again the visible polyinstantiation scenario of Chapter 2.3. Begin
with the following relation:

Starship Objective Destination | TC

Enterprise U | Exploration U |Talos U | U

Next suppose an S-user attempts to modify the destination of the Enterprise
to be Rigel. This update does not cause any security violation. But now suppose
that the new destination is classified Secret. The prevention approach requires the
S-user first to login as a U-user® and to mark the destination of the Enterprise as
“restricted” giving the following relation:

*Alternately the S-user logs in at the U-level and requests some properly authorized U-user to
carry out this step. Communication of this request from the S-user to U-user may also occur outside

the computer system, say by direct personal communication or a secure telephone call

34

Starship Objective Destination | TC

restricted U | U

Enterprise U | Exploration U

The meaning of <restricted,U> is that this field can no longer be updated by
an ordinary U- user.! U-users can therefore infer that the true value of Enterprise’s
destination is classified at some level not dominated by U. The S-user then logs in as a
S-subject and enters the destination of the Enterprise as Rigel giving us the following
relations at the U- and S-levels respectively:

Starship Objective Destination | TC

Enterprise U

Exploration U

restricted U

Enterprise U
Enterprise U

Exploration U
Exploration U

restricted U
Rigel S

Starship Objective Destination | TC
-————
U

Note that this protocol does not introduce a signaling channel from an S-
subject to an U- subject. There is an information flow, but from an S-user (logged in
as an U-subject) to an U-subject. This is an important distinction. As mentioned in
the Orange Book (1], there is the possibility that subjects may themselves constitute
Trojan Horses. This type of information flow, which includes humans in the process,
cannot be completely eliminated.

Next consider how the invisible polyinstantiation scenario of chag ier 2.4 works
with the restricted requirement. In this case the Enterprise can have a secret desti-
nation only if the destination has been marked as being restricted at the unclassified
level. Thus one possibility is that the S- and U- users respectively see the following
instances of SOD:

Starship - Objective Destination | TC

restricted U

Rigel s| s

Enterprise U | Exploration U

Enterprise U | Exploration U

TOnly those U-users with the “unrestrict” privilege for this field can update it. See [31] for details.

35

Starship Objective Destination TCI
Enterprise U I Exploration U | restricted U | U l

Alternatively, both S- and U-users may see the following instance:

Starship Objective Destination | TC
Enterprise U | Exploration U l null U I U I

In the former event an attempt by a U-user to update the destination of the
Enterprise to Talos will be rejected, whereas in the latter event the update will be
allowed (without causing polyinstantiation).

The concept of the “restricted” mark is straightforward, so long as the clas-
sification lattice is totally ordered. In the general case of a partially ordered lattice
some subtleties arise. How to completely eliminate polyinstantiation using restricted
is discussed at length in [31]. In general, updating the value of an attribute to “re-
stricted” cannot cause polyinstantiation. On the other hand, updating the value of
an attribute to a data value, say, at the C-level can be the cause of polyinstantiation.
If polyinstantiation is to be completely prohibited, this update must require that the
data element is restricted at all levels which do not dominate C. The fact that the
data element is restricted at all levels below C can be verified by the usual integrity
checking mechanisms in a DBMS [31]. However, it is tricky to guarantee this at levels
incomparable with C. In preparing to enter a data value at the C level, the system
would need to start a system-low (really data-element-low) process which can then
write up. A protocol for this purpose is described in [31].

5.3.4 Explicit Alternatives Approach

The fourth approach described here allow: the application developer to choose among
explicit alternatives for polyinstantiation. In [33] Sandhu and Jajodia brougnt to-
gether a number of their previously published ideas, along with some new ones, to
define a particular semantics for polyinstantiation called polyinstantiation for cover
stories (PCS). PCS allows two alternatives for each attribute (or attribute group) of
a multilevel tuple:

{1t should be noted this protocol works for arbitrary lattice, and does not require any trusted
subjects. The use of trusted subjects will allow simpler protocols for this purpose.

36

1. No polyinstantiation, or

2. Polyinstantiation at the explicit request of a user to whom the polyin-tantiation
is visible.

PCS strictly limits the extent of polyinstantiation by requiring that each real-
world entity be modeled in a multilevel relation by at most one tuple per security
class. The goal of PCS is to provide a natural, intuitive and useful technique for
implementing cover stories, with run-time flexibility regarding the use of cover stories.
A particular attribute may be used for cover stories for some tuples and n:.t for others.
Even for the same real-world entity, a particular attribute may be polyinstantiated
at some time and not at other times.

PCS combines the “one tuple per tuple class” concept with the “restricted”
concept of Chapter 5.3.3. The basic motivation for PCS can be appreciated by con-
sidering the following instance of SOD:

|l Starship I Objective | Destination l TC

’Enteiprise U | restricted U | Talos U
Enterprise U | Spying S|Rigel S

In this case the Destination attribute of the Enterprise is polyinstantiated, so
that <Talos,U> is a cover story for the real S destination of Rigel. The Objective is
not polyinstantiated.

Consider the occurrence of polyinstantiation due to invisible polyinstantiation,
as discussed by example in Chapter 2.4. This example begins with S- and U-users
respectively having the following views of SOD:

I Starship I Objective IDestination I TC
,Enterprise U , Exploration U l Rigel S , S

Starship Objective Destination | TC

Enterprise U | Exploration Ujnull U U

So far there is no polyinstantiation. Polyinstantiation occurs in the example
when a U-user updates the destination of the Enterprise to be Talos.

The PCS takes a slightly different approa«’ to this example. According to the
PCS approach, polyinstantiation does exist in the S-instance of SOD given above.
PCS shows this instance as:

37

Starship Objective Destination | TC

Enterprise U | Exploration U

Enterprise U | Exploration U | Rigel S S

In this approach, polyinstantiation already exists prior to the U-user updating
the destination of the Enterprise to be Talos. This update merely modifies an already
polyinstantiated relation instance to be:

Starship Objective Destination | TC
|

Enterprise U | Exploration U | Talos U

Enterprise U | Exploration U | Rigel S S

With this approach, element polyinstantiation can occur only due to visible
polyinstantiation. Invisible polyinstantiation simply cannot be the cause of element
polyinstantiation. Consequently, polyinstantiation will occur only by the deliberate
action of a user to whom the polyinstantiation is immediately available. In other
words, polyinstantiation does not occur as a surprise.

The PCS approach treats null values like any other data value (except in the
apparent key fields where “null” should not occur). Previous work on the semantics
of null in polyinstantiated databases has taken the view that nulls are subsumed by
non-null values independent of the access class [18, 30]. In this case the first tuple in
the following relation available to S-users:

Starship Objective Destination | TC
U

Enterprise U | Exploration U | null U

-Enterprise U | Exploration U | Rigel S S

is subsumed by the second tuple, resulting in the following relation for S-users used
in the invisible polyinstantiation example of Chapter 2.4:

Starship Objective Destination l TC |

Enterprise U | Exploration U | Rigel S S

38

Under the explicit alternative approach, the former relation is completely ac-
ceptable. The latter can be acceptable, but only if the lower limit on the classification
of the destination attribute is S.

To further illustrate the semantics of null in PCS, consider the following rela-
tion:

Starship Objective Destination | TC

Enterprise U | Exploration U |null U U

Enterprise U | Exploration U {null S S

PCS considers this to be a polyinstantiated relation. The fact that there are
nulls rather than data values in the polyinstantiated field has no bearing on the
treatment of this relation. The semantics of null in (18, 30] require all null values to
be classified at the level of the apparent key (U in this case), thereby deeming the
second tuple illegal.

The PCS approach leaves many of the choices of whether or not to polyinstan-
tiate to the application designer. It differentiates between updates that cannot cause
polyinstantiation and those that can. The PCS design uses two different keywords
(UPDATE and PUPDATE) to make the distinction explicit. The PCS approach also
relies on the distinguished data value “restricted.” The meaning of this data value
is that users at the associated classification level may not modify the value of the
restricted attribute. As in the prevention approach (chapter 5.3.3), PCS includes
special privileges for imposing and lifting such restrictions.

39

Chapter 6

Architectural Consideration

The architecture of an MLS DBMS affects the choices of polyinstantiation strategies
that are available to the database administrator (DBA). There are two fundamentally
different architectural alternatives available in building an MLS DBMS. The details
of these architectures are beyond the scope of this report (see [2] for more details), but
we present them briefly in order to point out their implications for polyinstantiation.

Figures 6.1 and 6.2 illustrate the two approaches. Figure 6.1 illustrates the
Trusted Computing Base (TCB) Subset architecture. In this architecture, data at
each classification level are stored in a separate database. Users at each level interact
with a separate DBMS, and each DBMS has access to all databases at its level or
lower.

Figure 6.2 illustrates the Trusted Subject architecture. In this architecture,
data at multiple levels is stored within the same database. Users at multiple levels
interact with the same DBMS, and the DBMS is trusted io protect the data according
to their classification levels.

The potential for polyinstantiation is inherent in the TCB Subset architecture.
The DBMS running at the lower level has no knowledge of data stored in higher level
fragments, unless all keys are classified at the same (low) level. Unless specific mea-
sures are taken to cope with the problem (as, for example in the approach described
in 5.3.2), polyinstantiation due to low users cannot be prevented. Attribute polyin-
stantiation may be allowed by defining logical relations which span multiple levels.
The underlying databases would store single- level fragments of the relations. Restric-
tions on fragmentation are the first method to control the types of polyinstantiation
semantics allowed within a system.

Various polyinstantiation strategies have been proposed to control the recom-
position of relations at the time of data retrieval. The DBMS must determine how

40

Low DBMS
High User FI8h DBMS Process Low User

Trusted Operating System

High Low
Database Database
F Fragment

Figure 6.1: Trusted Computing Base Subset Architecture

Figure 6.2: Trusted Subject Architecture

41

to combine the data received from the underlying databases into a single answer for
the user. The approach may be to perform joins and return combinations of data (as
in the SeaView approach, chapter 5.1), to choose the data with the highest classifica-
tion level whenever there are polyinstantiated data (as in the MLS GDSS approach,
chapter 5.2), to return data at the classification levels explicitly requested by the user
(as in the belief approach, chapter 5.3.1), or some other strategy.

Under the Trusted Subject architecture, a DBA has more flexibility to trade
strict security enforcement for data integrity. If the DBA chooses to use polyinstanti-
ation rather than to permit disclosure channels, then the trusted DBMS must enforce
its own barriers between data at different levels. In effect, the barriers that were
imposed by the TCB Subset architecture are being reinstated through software in the
trusted DBMS. Under the Trusted Subject architecture, the DBA may also choose
to allow lower-level users to see some information about the existence of higher-level
data in order to enforce data integrity. Since the trusted DBMS has access to data

at all levels, it is able to impose restrictions on lower- level updates.

42

Chapter 7

Conclusion

The design of an MLS DBMS must take into account the problem of polyinstantiation.
When data items exist at multiple classification levels, there is the potential for
inconsistent values for the same data item at different levels. Polyinstantiation may
occur over tuples or attributes, and it may arise through updates at low or high
classification levels. Researchers have developed a number of different approaches to
polyinstantiation; no one solution is best for all applications. This report outlined.
approaches in which the system :

o Propagates polyinstantiated tuples to reflect valid combinations of values (chap-
ter 5.1),

e Shows users derived tuples based on underlying polyinstantiated tuples (chap-
ter 5.2), and

o Informs users explicitly of restrictions or inconsistencies present in the data so
that polyinstantiation can be controlled (chapter 5.3).

43

References

[1] “Department of Defense Trusted Computer System Evaluation Criteria.” De-
partment of Defense, National Computer Security Center, (December 1985).

(2] “Multilevel Data Management Security,” Committee on Multilevel Data Manage-
ment Security, Air Force Studies Board, National Research Council, Washington,
DC (1983).

(3] Rae K. Burns, “Referential Secrecy.” Proc. IEEE Symposium on Security and
Privacy, Oakland, California, May 1990, pages 133-142.

[4] David D. Clark and David R. Wilson, “A Comparison of Commercial and Mili-
tary Computer Security Policies.” Proc. IEEE Symposium on Security and Pri-
vacy, April 1987, pages 184-194.

[5] C. J. Date, An Introduction to Database Systems. Volume II, Addison-Wesley,
(1983).

[6] Dorothy E. Denning, Cryptography and Data Security. Addison-Wesley, Reading,
Mass., (1982).

[7] Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, Mark Heckman, and
William R. Shockley, “A multilevel relational data model.” Proc. IEEE Sympo-
sium on Securily and Privacy, April 1987, pages 220-234.

[8] Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, William R. Shockley,
and Mark Heckman, “The SeaView security model.” Proc. IEEE Symposium on
Security and Privacy, April 1988, pages 218-233. -

[9] Dorothy E. Denning, “Lessons Learned from Modeling a Secure Multilevel Re-
lational Database System.” In Database Security: Status and Prospects, (C. E.
Landwehr, editor), North-Holland, 1988, pages 35-43.

{10] Judith N. Froscher and Catherine Meadows, “Achieving a trusted database man-
agement system using parallelism.” Database Security II: Status and Prospects,
(C. E. Landwehr, ed.), North-Holland, 1989, pages 151-160.

44

(11] C. Garvey, “Multilevel Data Storage Design.” TRW Defense Systems Group
(1986).

[12] Cristi Garvey, Thomas Hinke, Nancy Jensen, Jane Solomon, and Amy Wu, “A
layered TCB implementation versus the Hinke-Schaefer approach.” In Database
Security III: Status and Prospects, (D. L. Spooner and C. E. Landwehr, eds.),
North-Holland, 1990, pages 151-165.

[13] Richard Graubart, “ A comparison of three secure DBMS architectures.” In
Database Security III: Status and Prospects, (D. L. Spooner and C. E. Landwehr,
eds.), North-Holland, 1990, pages 109-114.

[14] Patricia P. Griffiths and Bradford W. Wade, “An authorization mechanism for
a relational database system.” ACM Trans. on Database Systems, Vol. 1, No. 3,
September 1976, pages 242-255.

[15]) M. J. Grohn, “A Model of a Protected Data Management System.” Technical
Report ESD-TR-76-289, L.P. Sharp Associates Ltd., (1976).

[16] J. T. Haigh, R. C. O’'Brien, and D. J. Thomsen, “The LDV Secure Relational
DBMS Model.” Database Security IV: Status and Prospects, S. Jajodia and C.
E. Landwehr (editors), North-Holland, 1991, pages 265-279.

[17) Thomas H. Hinke and Marvin Schaefer, “Secure Data Management System.”
Technical Report RADC-TR-75-266, System Development Corporation (1975).

(18] Sushil Jajodia and Ravi Sandhu, “Polyinstantiation integrity in multilevel re-
lations.” Proc. IEEE Symposium on Security and Privacy, Oakland, California,
May 1990, pages 104-115.

[19] Sushil Jajodia and Ravi Sandhu, “A formal framework for single level decom-
position of multilevel relations.” Proc. IEEE Workshop on Computer Security
Foundations, Franconia, New Hampshire, June 1990, pages 152-158.

[20] Sushil Jajodia and Ravi Sandhu, “Polyinstantiation i‘ntegrit.y in multilevel rela-
"~ tions revisited.” Database Security IV: Status and Prospects, S. Jajodia and C.
E. Landwehr (editors), North-Holland, 1991, pages 297-307.

[21] Sushil Jajodia and Ravi Sandhu, “Database security: Current status and key
issues,” ACM SIGMOD Record, Vol. 19, No. 4, December 1990, pages 123-126.

{22] Sushil Jajodia and Ravi Sandhu, “A novel decomposition of multilevel relations
into single-level relations.” Proc. I[EEE Symposium on Security and Privacy,
Oakland, California, May 1991, pages 300-313.

45

[23] Sushil Jajodia and Ravi Sandhu, “Toward a multilevel secure relational data
model,” Proc. ACM SIGMOD Int’l. Conf. on Management of Data, Denver,
Colorado, May 29-31, 1991, pp. 50-59.

(24] Sushil Jajodia and Ravi S. Sandhu, “Enforcing primary key requirements in mul-
tilevel relations,” Proc. {th RADC Workshop on Multilevel Database Security,
Little Compton, Rhode Island, April 1991. To be published as a MITRE Techical

Report.

[25] Sushil Jajodia, Ravi Sandhu, and Edgar Sibley, “Update semantics of multilevel
relations.” Proc. 6th Annual Computer Security Applications Conf., December
1990, pages 103~112.

(26] Lunt, T.F. et al. Secure Distributed Data Views. Volume 1-4, SRI Project 1143,
SRI International (1988-89).

[27) Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Mark Heckman, and
William R. Shockley, “The SeaView security model.” IEEE Transactions on
Software Engineering, Vol. 16, No. 6, June 1990, pages 593-607.

[28] Teresa F. Lunt and Donovan Hsieh, “Update semantics for a multilevel relational
database.” Database Security IV: Status and Prospects, S. Jajodia and C. E.
Landwehr, (editors), North-Holland, 1991, pages 281-296.

[29] Doug Nelson and Chip Paradise, “Using polyinstantiation to develop an MLS ap-
~ plication,” Proc. IEEE 7th Annual Computer Security Applications Conference,
December 1991, pages 12-22.

[30] - Ravi Sandhu, Sushil Jajodia, and Teresa Lunt, “A new polyinstantiation integrity
constraint for multilevel relations.” Proc. IEEE Workshop on Computer Security
Foundations, Franconia, New Hampshire, June 1990, pages 159-165.

{31] Ravi Sandhu and Sushil Jajodia, “Honest databases that can keep secrets,” Proc.
14th NIST-NCSC National Computer Security Conference, Washington, D.C.,
October 1991, pages 267-282.

[32] Ravi S. Sandhu and Sushil Jajodia, “Eliminating polyinstantiation securely,”
Computers & Security, Vol. 11, 1992, pages 547-562.

[33] Ravi S. Sandhu and Sushil Jajodia, “Polyinstantiation for cover stories,” Proc.
European Symp. on Research in Computer Security, Toulouse, France, Springer-
Verlag Lecture Notes in Computer Science, Vol. 648, 1992, pages 307-328.

;
b
:
!

46

[34] M. Schkolnick and P. Sorenson, “The Effects of Denormalization on Database
Performance.” The Australian Computer Journal, Vol. 14, No. 1, February 1982,
pages 12-18.

(35] Ken Smith and Marianne Winslett, “Entity modeling in the MLS relational
model,” Proc. 18th Int’l. Conf. on Very Large Data Bases, August 1992, pages
199-210.

(36] Paul D. Stachour and Bhavani Thuraisingham, “Design of LDV: A multilevel
secure relational database management system.” IEEE Trans. on Knowledge
and Data Engineering, Vol. 2, No. 2, June 1990, pages 190-209.

[37] D. C. Tsichritzis and F. H. Lochovsky, Data Models. Prentice-Hall, (1982).

[38] S. R. Wiseman, “On the Problem of Security in Data Bases.” In Database Se-
curity III: Status and Prospects, (Spooner, D.L. and Landwehr, C.E., editors),
North-Holland, 1990 pages 143-150.

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence; Signal Processing,

Computer Science and Technoiugy, Electromagnetic Technology,
Photonics and Reliability Sciences.

