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Bodies of Revolution Preface

PREFACE

The preface appearing in Volume 1 of the Handbook of Super-
sonic Aerodynamics defines the Handbook's purpose and also traces the
sequence of events leading to its undertaking. In accordance with the
criteria established at that time, the subject matter of the Handbook
is selected on the basis of anticipated usefulness to all who are ac-
tively concerned with the design and performance of supersonic vehicles.
Essential to this subject matter are the properties of fluids in which
a vehicle operates or is tested and the flight characteristics of the
vehicle itself. Each section of the Handbook therefore presents appro-
priate theory and relevant data which are basic to supersonic aerody-
namics and which conform to the practical requirements imposed by the
criteria.

A complete list of Handbook sections and their status appears
on the facing page. The unpublished sections, now being prepared by
individual authors and the Handbook Staff, will be published separately
as they become available.

Volume 3, presented in three Handbook sections, is devoted to
the theoretical and experimental investigations of the flow fields sur-
rounding aerodynamic surfaces and bodies as well as their aerodynamic
characteristics, such as lift, drag, and moments. The material on two-
and three-dimensional airfoils is contained in Sections 6 and 7, both
of which were published previously. Section 8, "Bodies of Revolution,"
is presented herewith. It should be noted that vehicle components and
their characteristics are considered separately in Volume 3. The in-
teraction effects of these components are treated in Volume 4.

Section 8 was prepared by D. Adamson, E. A. Bonney, and
I. D. V. Faro, each of whom was a member of the Handbook Staff at the
time of writing. Specific subsections of the manuscript were reviewed
by L. L. Cronvich, H. H. Hart, H. Ginsberg, P. T. Pilon, L. E. Tisserand,
and E. T. Marley, all aerodynamicists at the Applied Physics Laboratory.
Many of the excellent suggestions offered by these reviewers have been
incorporated in the final revision.

The subject matter appearing in the Handbook is selected and
reviewed by the Technical Reviewing Committee at the Applied Physics
Laboratory, headed by L. L. Cronvich. Constructive criticism or recom-
mendations relating to the inclusion of suitable material in the Hand-
book should be directed to:

Editor, Aerodynamics Handbook Project
Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

The Handbook is printed and distributed by the Bureau of Naval
Weapons, Department of the Navy. It is available for public sale (see
Title Page) and is also distributed without charge to an approved list
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of facilities and institutions actively engaged in national defense re-
search and development. Correspondence relating to the distribution of
the Handbook should be directed to:

Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.

Improvements in the format, adopted for Section 18 and con-
sisting for the most part of a more concise running head and consecu-
tively numbered pages, are continued herein. It has been judged that
these changes enhance the usefulness of the sections and offset any
sacrifice to uniformity in the whole series.

The Handbook of Supersonic Aerodynamics is edited and pro-
duced by the Handbook Staff, which includes Mrs. Doris McCeney, repro-
duction copy typist; Thomas Timer, Mathematical Assistant; and Anthony
Strank, Associate Editor.

lone D. V. Faro, Editor
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Introduction 1.1

BODIES OF REVOLUTION

1. Introduction

This section of the Handbook presents data on the aerodynamic
characteristics of bodies of revolution for an angle-of-attack range of
zero to almost ninety degrees throughout the supersonic and hypersonic
flight regimes.

Basic theories governing the pressure distributions on bodies
of revolution and in their surrounding flow fields are discussed and
evaluated. To provide a basis for the selection of theoretical methods
to be used in specific calculation the reliability and accuracy of these
theories are compared at different Mach and Reynolds numbers. Actual
step-by-step development is omitted except where it is essential to an
understanding of resultant expressions. In all cases, however, sources
containing full derivations are referenced.

To permit comparison or extension of the theoretical methods,
experimentally-derived data in many instances are also presented. For
those cases in which there is discrepancy between theory and experiment,
empirical Iormulae are given together with the limiting values of the
parameters within which the particular formula is valid.

Techniques for incorporating the effects of skin friction and
heat transfer (treated fully in Sections 13 and 14 of the Handbook) are
also given.

No attempt has been made to extrapolate the data (gathered
from unclassified literature) beyond the range for which they were in-
itially obtained. In many areas, e.g., Magnus forces, too few refer-
ences were available to establish appropriate generalizations. In such
cases the material is merely presented and conclusions are left to the
reader.

1.1 Organization

Each of the six following subsections are devoted to a parti-
cular characteristic of flow, i.e., pressure, normal force, drag, etc.,
with various body shapes serving as the parameters. Subsections 2 and
3 present the various theoretical methods available for the evaluation
of flow fields about bodies at low and high angles of attack. Subsec-
tion 4 disr-usses the external surface pressure distribution of basic
shapes, including solid and ducted bodies. Subsection 5 presents theory
and corresponding data on normal force, pitching moment, and drag due
to normal force for the same shapes. Subsection 6 deals with pressure
drag and skin friction. The last part, Subsec. 7, presents available
base drag information together with the effects of variations in the
parameters which affect the afterbody drag.

Within each subsection, particularly in the last four, the
development is introduced by a discussion of appropriate theories which
are then compared with each other and with representative experimental
data. Many references are made to appropriate literature on the develop-
ment and application of relevant theories as well as to experimental re-
sults which supplement those presented herein.

1!



Flow Characteristics at Low Angles of Attack 2.1

2. Flow Characteristics at Low Angles of Attack

The solution of complete differential equations of flow is a
complex undertaking, even when the effects of viscosity and heat con-
duction are disregarded. By means of certain simplifying assumptions,
however, it is possible to obtain both first and second-order solutions
for slender bodies at small angles of attack. Solutions may also be
obtained by means of numerical and graphical integration. The method
of characteristics, generally accepted as the most accurate of the lat-
ter, is practicable only for the cases of two-dimensional and axially
symmetric flows, but even these cases require the expenditure of much
time for computations. Simplified techniques of flow evaluation will
therefore be treated, and the accuracy of the various methods of solu-
tion will be evaluated by comparing their results with experimental
data.

2.1 Mathematical Formulation of Problem

A convenient method for studying the inviscid flow past a
body ot revolution utilizes cylindrical coordinates (x, r, 0), wherein
the x-axis is aligned along the body axis and the origin is located at
the nose of the body as shown below.

0

For the development of this method the following simplifying
assumptions are made.

1. The body is slender, i.e., the slope of the meridian contour
is nowhere greater than F, where e « 1 (this implies that the
body is either pointed or has a sharp lip);

2. The angle of attack is small;

3. The free-stream Mach number is moderately supersonic.

Subject to these assumptions, the flow can be shown (e.g., see
Ref. 1) to be irrotational within the accuracy of the solutions being
sought. The velocity potential, 9, associated with the flow field is
assumed to be made up of two parts: first, that associated with the
uniform flow field in the absence of the body; and second, a perturba-
tion velocity potential, 4, induced by the presence of the body. Thus,

O(x,r,O) = U [(x cos a + r sin a cos 8) + 4 (x,r,8)] (2-1)
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The perturbation potential, , can be shown to satisfy the
following differential equation (Ref. 25.

•rr + r- +x r-- to - 2 xx+ + K+ 0)

49' x2 r2 '2

S(Ox cos a + 4r sin a cos -- sin a sinG) + 4 T+ +

+ x (2§x cos a + x2 _ sin2 a) + rr (4 r + sin a cos 0)2

4_E (4 sin a s )2 + 20xr4 + Cos a) (4 + sin a cos 0)
r rxr rx rr

+ 2 x_ (0 + Cos fa) - - sin a sin 0 + 2 - (r + sin a cos 9)

--K si )} o
X ~ - sin a sin - 2 sin a - sin a sin sin + co"r G r/\

(2-2)

The solution of Eq. 2-2 must satisfy the following upstream
and boundary conditions:

1. All flow perturbations vanish everywhere upstream of the
body, i.e.,

§ (O,r,9) = Ox (Or,') = 0 (2-3)

2. The flow is everywhere tangent to the body surface, i.e.,

Ir (x,R,0) + sin a cos e = [cos a + I (xR,0) (2-4)

where
R = R(x) defines the body surface.

Although the differential equation (Eq. 2-2) taken together
with the above boundary conditions can be shown to have a unique solu-
tion, its determination in any specific case presents considerable dif-
ficulty. In practice, therefore, approximate solutions must be accepted.

4
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2.2 First-Order Theory

Because the body is slender and at a small angle of attack,
the perturbation potential, 4, is small. A reasonable approximation
can then be obtained by discarding all second-order and higher-order
terms in Eq. 2-2, so that

+r + 0 2 =0 (2-5)
rr r + xx

r

where

For the special case of axially symmetric bodies, a solution in the

following form is sought.

0 (x,r,9) = 0o (x,r) cos a + 0I (x,r) sin a cos 0 (2-6)

where 0o and 0are also solutions of Eq. 2-5 corresponding respectively

to the axial and cross-flow components of the perturbation velocity.

The axial-flow potential, 0o) may be obtained from

S+ or0 (2-7)
orr r - oxx

and the cross-flow, 01, from

+lr _ Ole 2

-lrr xx 0  (2-8)
r

The tangential boundary condition given in Eq. 2-4 may also be separated
into conditions for the axial and cross-flow components, i.e.,

_dR
€or 1 -X( + 0ox (2-9)

and

@lr + 1 - 'd@R lx (2-10)
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A further restriction is introduced by assuming that the body is slender
enough to allow Oox and Olx - 0; hence the boundary conditions may be
replaced by

_ dR

Oor - d (2-11)

and

O1r + 1 = 0 (2-12)

2.2.1 Evaluation of First-Order Potentials

The general solutions (Ref. 3) of Eqs. 2-7 and 2-8 which also
satisfy the free-stream conditions are, for the axial case,

x-Or

00(x,r) = - f() d• (2-13)
0 /x -4)2 - € r2

and, for the transverse 4ase,"

x-Or

~1x, r) '-= jr (x - ) g(t) dt
2r 2 2(- (2-14)

0 x -)2 -_ r2

The functions f and g are determined from the boundary conditions. De-
tails of the methods required for the solution of these equations are
presented in Refs. 3 to 6.

2.2.2 Application to Open-Nosed Bodies

The methods just described can be applied to open-nosed bodies
provided that there is no "spill-over" at the lip, i.e., when all of the
air in the free stream within the diameter of the inlet passes into the
bddy (see Ref. 7).

2.3 Linearized Theory

The first-order solutions discussed in the preceding subsection
are frequently, but incorrectly, referred to as linearized solutions.
Lighthill (Ref. 1), the first to consider the strictly linearized solu-
tions to the flow equations, has pointed out that the characteristic
surfaces associated with the first-order equations (which are conical
in form) remain aligned with the axis of the body as the body is moved

6
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to an angle of attack. On the other hand, those associated with the
linearized equations remain aligned with the free-stream direction.
The former is in better accord with the actual flow conditions in the
immediate neighborhood of the body, and it is this region which is
usually of interest. Thus, in the evaluation of pressure distributions,
the first-order solution would be expected to yield the greater accuracy.
This is confirmed by the first-order and linearized approximations to
(dCN /da)oO for a cone of 10-deg semi-apex angle. These approximations

are compared with the values obtained by use of exact theory in Fig. 2-1
(derived from data in Ref. 2). Since, as demonstrated by this figure,
the linear theory gives such a poor approximation of the exact values,
it remains of academic interest only.

2.4 Van Dyke's Hybrid Theory

Though the use of the first-order approximation yields a solu-
tion of adequate accuracy in many applications, there are times when
higher accuracy is required. The possibility of deriving second-order
solutions by a process of iteration has been investigated by Van Dyke.
By means of the second-order solution obtained for axial flow the aero-
dynamic characteristics of cone flow are shown to be much nearer the
values obtained from the exact theory than those obtained by the first-
order solution. This is shown in Fig. 2-3, where the pressure coef-
ficients for two cones are determined by the three methods. Van Dyke
then derived the second-order cross-flow equations and found that solu-
tions were only possible for the simple case of conical flow. Re-exam-
ination of the usual approximations made in first-order theory led
Van Dyke to a refinement of these approximations and consequently to
much improved agreement with exact calculations. A comparison of
(dCN/da)==O obtained by these different methods is given in Fig. 2-2

for a 10-deg cone.

Encouraged by this improvement in first-order solutions,
Van Dyke proposed a "hybrid" solution for the body at an angle of at-
tack. This theory combines the first-order cross flow with the second-
order axial flow. The result of one such calculation is also shown in
Fig. 2-2. The good agreement with the exact solution may be noted over
a wide range of Mach numbers. This method has the advantage that it may
be used for discontinuous contours.

The full development of these theories, as well as many more
examples, is given in Refs. 2 and 8. In Ref. 9 Van Dyke reduces the
second-orde- method for axial flow to a routine computation. He also
presents tables of basic functions and standard computing forms as well
as a sample calculation. The procedure is summarized so explicitly that
the computations may be carried out even though all the details of the
underlying theory have not been mastered.

. 2.5 Slender-Body Theories

The first-order approximations, which depend on the solution
of Volterra-type integral equations, cannot in general be obtained in
closed form. Realizing this, Von Karman (Ref. 10) suggested that the
asymptotic solutions of the equations for the case of very slender bodies
would yield results of sufficient accuracy to serve most needs. Such
asymptotic solutions to the first-order differential equations are termed

7
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"first-order slender-body approximations." Lighthill (Ref. 11),
Laitone (Ref. 12), and others have gone further and declared that the
replacement of Eq. 2-2 by Eq. 2-5 introduces errors of a magnitude com-
parable to the disparity which exists between the exact and asymptotic
solutions of the first-order equations. In other words, considering
the simplifications that have been intr%.duced in setting up the first-
order equations, the slender-body theory represents as accurate a solu-
tion as can be hoped for. However, even though this statement may be
true for a mathematically slender body, the actual practical type of
body cannot, as Van Dyke points out, generally be considered a slender
body and therefore may not validly be included in this comparison of
accuracies. To expand these conclusions, Van Dyke classifies super-
sonic-body flow problems as follows:

1. Slender bodies at moderate Mach numbers.

Se 0(1)

~E «1o(

2. Slender bodies at hypersonic Mach numbers.

e <<=10(1/E)

= o(1)0

3. Bodies of moderate fineness ratio at moderate Mach numbers.

E =0(1)

where

e = maximum slope of meridian contour

For a logically complete classification, bodies of moderate thickness
at hypersonic Mach numbers should also be included. However, since
this case involves detachment of the nose shock, it is not embraced by
the perturbation theory and is therefore excluded from consideration in
this subsection.

Slender-body theory, since it is based on the order estimates
of Class 1, is restricted in its application to problems falling within
this class. But cases of practical import frequently fall into Class 3,
and it is here that the first-order solutions represent a marked improve-
ment over the slender-body solutions.

8
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The preceding remarks are equally applicable to the higher-
order slender-body theories of Broderick (Ref. 13) and others since,
in all of these analyses, both E and PC are assumed to be small

* quantities.

Although the slender-body approximation has been introduced
in the preceding discussion as the asymptotic solution to the first-
order differential equations, it can be shown that it is completely
equivalent to the supersonic counterpart of the slender-body cross-flow
theory developed by Munk in Ref. 14. The merit in Munk's presentation
is that it emphasizes the physical implications of the theory.

Despite its limitations, in those cases in which it is appli-
cable, slender-body theory possesses the distinctive virtue of being
easy to apply.

2.5.1 Munk's Slender-Body Theory

By assuming that the body is slender, the angle of attack
small, and the gradient of the velocity potential in the flow direction
negligible, Munk obtained the following expression for the normal force
coefficient.

CN = (K 2 - K1 ) sin 2a (2-15)

where

K1 and K2 = virtual mass coefficient in longitudinal and
lateral motions

On the basis of a more detailed examination of the slender-
body hypothesis, Ward in Ref. 15 concluded that it is more exact to
assume that the resultant force is inclined at an angle a/2 to the
vertical in a downstream direction. Hence, in this instance, Eq. 2-15
becomes

CN = (K2 - K1 ) sin 2a cos a/2 (2-16)

Lamb (Ref. 16) gives an expression for deriving K1 and K2 for various
ellipsoids. The values of K1 , K2 , and K2 - K1 for ellipsoids of revo-

lution with various length-to-diameter ratios are tabulated on the fol-
lowing page.

Although the coefficients are evaluated specifically for el-
lipsoids of revolution, they give a good approximation to any axisymmet-
ric body with comparable fineness ratio. For slender bodies the value
of K - K1 = 1 gives results of sufficient accuracy for most practical
purposes.

9
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Table 2-1

Virtual Mass Coefficients

1/d K1 K2  K2 - K1

1.0 0.500 0.500 0

1.5 0.305 0.621 0.316

2.0 0.209 0.702 0.493

2.5 0.156 0.763 0.607

3.0 0.122 0.804 0.682

4.0 0.082 0.860 0.778

5.0 0.059 0.894 0.835

6.0 0.045 0.917 0.872

7.0 0.036 0.933 0.897

8.0 0.029 0.945 0.916

9.0 0.024 0.954 0.930

10.0 0.021 0.960 0.939

S0.000 1.000 1.000

2.6 Method of Characteristics

By means of simplifying assumptions some solutions have been
found in special cases for the general differential equation of poten-
tial flow. Several methods of arriving at a solution of the general
equation have been devised, utilizing numerical integration or a com-
bination of numerical integration and graphical construction.

One of the most useful is the method of characteristics,
which has been applied to many basic types of flow field. The deter-
mination of the flow characteristics in the region between an attached
shock wave and the pointed axially-symmetric body which creates the
shock wave has been treated by Tollmein and Schafer in Ref. 17. A de-
tailed description of the step-by-step procedure as well as a fully
worked example which extends the calculations into the region of a
curved shock-wave (assuming isentropic flow between shocks) is given by
Cronvich in Ref. 18. Although this method requires much tedious work,
it has been used with success for determining the pressure distribution
over arbitrary nose shapes and for determining the contour of the inner
body of a ram-jet engine for a given compression ratio. In supersonic
diffuser studies the characteristics method has been used successfully
to find the additive drPg (due to spill over) by analyzing.the field
over the specified contour at Mach numbers below the design Mach number.

A procedure by which the method of characteristics may be used
to design axially symmetric supersonic nozzles is presented in Ref. 19.

By assuming P distribution pattern of the vorticity downstream
of a shock wave, Ferri in Ref. 20 has extended the application of the
method of characteristics to supersonic rotational flow.

10
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The accuracy of a characteristics calculation is dependent
upon the fineness of the "mesh" employed and the number of iterations
to which the calculations are taken. The optimum spacing of the ini-
tial points should be a function of the rate of change of the param-
eters in the flow field being investigated and of the desired accuracy
in the end results.

2.7 Conical Flow Solutions

Solutions of potential flow fields about conical bodies have
been found by several independent methods. The solutions are more
easily obtained for conical flow because the pressure, velocity, and
density are constant in irrotational flow over conical surfaces having
the same vertex as the conical body.

2.7.1 Taylor-Maccoll and Kopal Methods

Taylor and Maccoil (Ref. 21), using the equation for poten-
tial flow (Eq. 2-2), calculated the flow parameters along conical rays
from the vertex by means of a numerical integration which starts from
known flow along the cone surface and progresses through angular incre-
ments. At the same time they calculated the pressure change that would
occur across an oblique shock of the same inclination as each ray. The
point of agreement between the values of pressure ratio from each set
of calculations determined the location of the shock wave for the par-
ticular cone angle and surface velocity ratio chosen. The scope of these
calculations was very much extended under the direction of Kopal. Ref-
erence 22 presents tabulated data for the characteristics of the flow
fields about cones whose semi-vertex angle ranges from 5 deg to 50 deg
for Mach numbers up to infinity.

2.7.2 Tangent-Cone Method

The pressures on arbitrarily shaped bodies of revolution may
be estimated by means of the flow parameters for cones whose shapes
correspond to those of the body surface from point to point. In the
simplest application of this method the slope of the body is averaged
over segments of any desired length and the pressure is taken to be
that of the equivalent cone. This assumes a different total head pres-
sure for each segment, i.e., a pressure loss due to the bow shock as-
sociated with the corresponding cone at the free-stream Mach number.
Thus the nose segment is the only one which has the pressure referred
to the correct stagnation pressure.

A second method of applyiLg the cone-tangent method is to cor-
rect the local total head pressure for each segment by comparing the
assumed conical shock with the actual bow shock of the curved body.

The relative accuracy of the two methods is dependent on the
Mach number and the fineness ratio of the nose and the distance from
the vertex. This is shown in Fig. 2-4, where the pressure distribution
(taken from Ref. 31) for tangent-ogives of fineness ratios of 1.5, 2,
and 3 calculated by both methods at Mach numbers of 1.5, 2, 3, and 6
is compared with that obtained by the method of characteristics.

All the necessary conical flow information for both methods of

application is given in Ref. 22.
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2.8 Shock-Expansion Method

The generalized shock-expansion method proposed by Eggers
and Savin (Refs. 23 and 24) is an extremely simple and vergatile method
for determining the flow field about bodies in supersonic flow. This
method is somewhat limited in the range of Mach numbers and fineness
ratios which can be treated; however, the inherent simplicity of the
method merits special attention. It is assumed that the flow field in
the vicinity of the vertex of the ogive can be obtained from conical
flow theory. Therefore, the flow properties at the surface immediately
behind the bow shock wave are considered as known quantities and pro-
vide initial conditions for the Prandtl-Meyer type flow which follows.
Thus, the flow field about an ogive-cylinder can be determined in two
steps:

1. The flow conditions at the vertex can be obtained from exist-
ing solutions for conical flow (e.g., Ref. 22);

2. The flow downstream of the vertex can be computed by means of
the Prandtl-Meyer equations or tables (e.g., Ref. 28 or 29).

Comparison of solutions obtained by the generalized shock-
e:nansion method with exact solutions indicates that the method yields
accurAte pressure distributions over ogival noses only if the hyper-
sonic sin~i'rity parameter (Subsec. 2.10.3) is greater than approxi-
mately 1.2 or _'3 (Ref. 25). A weakness of this method is that it can-
not take into' account the known pressure drop at the shoulder (see
Fig. 4-1) of an ogive cylinder. If a cylindrical afterbody is long,
then the constant pressure predicted by the shock-expansion method will
yield moment and normal-force derivatives that are considerably in
error even though the hypersonic similarity parameter is much greater
than 1.2. The simplicity and accuracy of the method for the ogive por-
ticii of the body at large values of the hypersonic similarity parameter
make it extremely valuable and useful.

2.8.1 Second-Order Shock-Expansion Method

The generalized shock-expansion method is so convenient and
simple that any attempt to extend its range of applicability is likely
to be worthwhile. Syvertson and Dennis (Ref. 26) offer a second-order
shock-expansion method which successfully extends the range of use-
fulness of the shock-expansion method to include values of the hyper-
sonic similarity parameter less than unity. It should be mentioned,
however, that the second-order shock-expansion method is tedious to
apply because the numerical computations are relatively complex.

2.8.2 Modified Second-Order Shock-Expansion Method for Use with
Ogives

An accurate and simple scheme for obtaining pressure distri-
butions and lift and moment curve slopes for ogival nose-cylinder com-
binations by simplifying the second-order shock expansion method has
been developed by Fenter (Ref. 27). Assuming that the exponent in the
relation for the pressure over any segment of such a shape varies in-
versely with the hypersonic similarity parameter, the following rela-
tion for the pressure distribution may 1%e obtained.

12
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p- Pcn P- E- (2-17)
p pN

where

s = distance along the meridian line from the origin of each
segment (see sketch below)

IN = length of the nose section

K = hypersonic similarity parameter, Md/f

d = body diameter

2= length of body

= condition at the most forward point of a segment of the
equivalent tangent body (s = 0)

and subscripts

n = specific segment of equivalent tangent body

d = condition on the equivalent tangent cone

The values of p' and MI are found by means of a Prandtl-Meyer expansion
through (8n - an+1) deg (see tables in Ref. 28)

2 Point of Tangency for Segment 2

Body Vertex Actual Body Shape

This method has been shown by experiment to give good results over a
wide range of the hypersonic similarity parameter and for Mach numbers
as low as 2. Its agreement with the method of characteristics for
various conditions of the similarity parameter, specific Mach number,
and nose length is given in Figs. 2-5 to 2-7 (derived from Refs. 25
and 27).

2.9 Relative Merits of the Various Methods

The selection of any one of the several methods (described
in preceding subsections) for evaluating the flow about bodies will be
determined primarily by the accuracy required and the time available
for calculations. Most of the methods are compared in Fig. 2-8 (from
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Ref. 31) which shows their general limitations and optimum areas of ap-
plication. In this figure, errors in pressure drag associated with
the application of these various theories have been plotted against

the similarity parameter, K or T (see Subsec. 2.10.3). The "standard"
N d

pressure drag, i.e., the zero error drag, is calculated by means of
characteristics. It may be seen that the second-order theory gives the
most accurate results for K < 1.2 and the conical-shock-expansion theory
is best for K > 1.2. Linearized theory is poor for K > 0.5.

The value of such a curve is limited becluse it is based on
integrated pressures rather than a pressure distribution. Instead of
being indicative of a close approximation to the actual pressure distri-
bution, the smallest drag error may possibly be due to compensating
errors. This may be exemplified by a comparison of the pressure and
drag curves for the tangent-cone method in Figs. 2-4 and 2-5.

The Fenter method (published more recently than Ref. 31 and
therefore not included in Fig. 2-8) has been shown to have a pressure
distribution very close to that obtained by the characteristics method
for values of K > 1.

The generalized shock expansion, the Newtonian flow, and the
tangent-cone methods are perhaps the simplest and quickest to use, but
they are more accurate in the hypersonic range than at lower supersonic
Mach numbers (see Subsec. 2.10). The Fenter method is rapid and only
slightly more involved than the above-mentioned methods and has the
added advantage of a larger range of usefulness (as low as M = 2).

2.10 Hypersonic Flow

The hypersonic regime may in general be considered as an ex-
tension of the supersonic continuum, and the theories developed for
supersonic flow should be valid for the hypersonic case as long as the
fluid retains the properties of an ideal gas with a constant value of
the ratio of the specific heats. Even in the case of an ideal gas
there are limiting values of the combination of flow properties and
model geometry within which the supersonic theories may be used. These,
discussed in Subsec. 2.10.3, are shown in Fig. 2-12. In the limit the
density becomes so low that the boundary layer is of the same order of
magnitude as the mean free path, and the gas may no longer be regarded
as a continuum but must be considered as made up of discrete particles.
The Newtonian impact theory provides the solution for most problems in
this regime, which is fully treated in Section 16 of this Handbook
(Ref. 170).

One of the first requirements then is to define (usually in
terms of temperature) the conditions under which the gas imperfections
may no longer be neglected. For the most common medium, air, the ther-
mal imperfections are no longer negligible at temperatures greater than
1200-R. Up to 5000-R, corrections for these imperfections may be ap-
plied to the isentropic flow equations to give results of adequate ac-
curacy for most purposes. Equations, graphs, and excellent tables for
this purpose are given in Ref. 29. At temperatures greater than 50000 R
the effects of oxygen dissociation make it necessary to re-formulate
the basic equations.

14



Flow Characteristics at Low Angles of Attack 2.10.2

The definition of the hypersonic slender body given in Sub-
sec. 2.5 limits the value of 00 (or fk) to the order of 1. By so doing
it confines the combinations of flow speed and shock-wave angle to
values which preclude excessive temperatures behind the bow shock wave.
Subsequent subsections present the actual values of the parameter 00,
for which the various supersonic theories may be extended into the hy-
personic regime.

Aerodynamic characteristics have been determined experimen-
tally at very high Mach numbers in wind tunnels which have limited
stagnation temperatures and which avoid dissociation effects by the
use of monatomic gases. Consequently, care should be used in applying
such data to similar bodies in free flight, where the minimum ambient
temperature is 390OR and the temperature behind the bow shock may
rapidly produce non-ideal gas conditions.

2.10.1 Hypersonic Boundary Layer

At high Mach numbers the shock waves and expansion fans sub-
tend shallow angles with the body surface, and the regions of flow dis-
turbance are limited to relatively thin layers, often termed the "hyper-
sonic shock layers." The sketch below illustrates this for a slender
body in hypersonic flow.

1 2Expansion

Shock Layer
M -* Boundary Layer

Compression

At the vertex, region 1 of the sketch, the shock lies so close
to the surface that the boundary layer equations are no longer valid.
In region 2, although the shock and boundary layer interaction is still
very strong, the Prandtl boundary-layer equations give a reasonably ac-
curate description of the flow conditions. As the flow progresses along
the body the interaction becomes weaker. In this thin region of the
shock and boundary layers the normal components of the pressure and ve-
locity gradients are steep. Furthermore, since even for slender bodies
the shocks are strong, the entropy gradients are also significant.

In many respects the hypersonic shock layer resembles the con-
ventional type of-viscous boundary layer. Lees (Ref. 43) found solu-
tions for the viscous flow over a flat plate and a wedge at hypersonic
velocities by applying approximations that were similar to those which
Prandtl introduced in his treatment of the viscous boundary layer. In
his work, Lees also includes'skin-friction and heat-transfer calculations.

. 2.10.2 Method of Characteristics

The method of characteristics may be applied to hypersonic
flow since it represents an exact solution of the non-viscous equations.
However, the rapid changes in flow variables make a fine mesh imperative
and add to the labor of the calculations. Moreover, the entropy gra-
dients imply significant rotational flow which may not be neglected.
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Rossow in Ref. 25 has developed a method whereby the effects of rota-
tion may be superimposed on an irrotational solution. The effect of
such an addition is shown in Figs. 2-10 and 2-11.

2.10.3 Hypersonic Similarity Rule

For slender bodies (where 0 is small) the shock wave angle, f,
is small and the quantity (0 - 0) is also small. Under these assump-
tions and those of a perfect gas with constant y, the shock wave
equation

M2 sin -1= M2 sin • sinG (2-18)

cos (f- 0-)

may be reduced to

+ 1_)2 + 1

+ =) 2-+(+ (2-19)

Similarly, the Prandtl-Meyer relation for an expansion becomes

%-= 1 + 1 (%0) (2-20)M

It may be seen that both compression and expansion may be expressed
solely in terms of (M10). This quantity, known as the hypersonic simi-
larity parameter and often designated by K, is expressed in several
slightly different forms, i.e.,

d
0 tan 0 - Moo d (2-21)

N

The pressure coefficient may be expressed as

P- POD P - Poo

"YT PooM

, '(2-22)

- 2 2j + (-y 1) k-1

- O 2 + ( y- 1) m2 . - 1

By the use of Eqs. 2-19 and 2-20 when M.0 and M are large, Eq. 2-22 re-
duces to

2

C -- [(1 + xj8 0 "-) 1-i (2-23)
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i.e.,

2

Cp :9 f (M• 9) (2-24)

or

C () f, (K) (2-25)

This hypersonic similarity rule was first enunciated by Tsien (Ref. 32)
and is based upon the equations of irrotational flow. Hayes (Ref. 33)
has shown that the rule is equally applicable to rotational flows.

Ehret, Rossow, and Stevens (Ref. 30) examined the applica-
bility of the rule to non-rotational flows, and Rossow in Ref. 25 did
the same for the rotational case. The usefulness of the rule for the
purpose of correlating pressure data at particular values of K is shown
in Figs. 2-9 to 2-11.

The range of M, IN/d, and K within which the hypersonic simi-

larity rule will predict pressure to within 5% of the exact value is
shown in Fig. 2-12 (taken from Ref. 30).

Van Dyke in Ref. 34 has shown that the hypersonic rule may be

extended into the supersonic regime by substituting 0 = Y for M
in the similarity parameter. The effect of this transformation is shown
in Fig. 2-13 where the pressures on three cones are reduced to a single
curve when the flow is supersonic.

2.10.4 Hypersonic Small-Disturbance Theory

Van Dyke in Ref. 35 has shown that by use of the similarity
parameter, hypersonic small-disturbance equations may be derived. How-
ever, their solution cannot be obtained without further simplification
and therefore their practicality is limited to providing pilot solutions
to new problems.

2.10.5 Shock-Expansion Method

As the domain of disturbance surrounding a slender body in
hypersonic flow becomes thinner, the flow perturbations assume a two-
dimensional character. Thus, if the flow at the vertex of a slender
body may be assumed conical, the ensuing flow on any streamline may be
approximated by means of Prandtl-Meyer expansions (tables of which are
presented in Refs. 28 and 29). The method for non-lifting bodies is
given by Eggers and Savin in Ref. 23. A comparison of the pressures
on ogival noses calculated by the shock-expansion method and by the
method of characteristics is given in Fig. 2-14 (taken from Ref. 23)
for K = 0.5 to 2.0. As K increases, the agreement becomes very close.

Savin, in Ref. 24, extends the method to bodies at angles of
attack up to 15 deg. The method of calculation is fully detailed and

17
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substantiated by comparison with experimental data for ogives whose
N,/d is 3 and 5 at Mach numbers of 3 to 5. The agreement is good for

K= 2 1 and q/0 5 1/2

where

a= angle of attack

0 = semi-vertex angle

Beyond these values the agreement is only fair. The use of this method
is also discussed in Refs. 27 and 37.

Zienkiewicz and Bolton-Shaw (Refs. 38 and 39) extended the
range of applicability of this simple shock-expansion theory by the use
of an empirical factor with the Prandtl-Meyer relations.

2.10.6 Newtonian Impact Theory

The Newtonian concept of flow assumes that the shock wave
lies on the body surface and that the component of momentum normal to
the surface is fully transferred to the body. This condition is at-
tained when M,. -- • and y - 1.

The pressure coefficient through an oblique shock is given by

p = - Po_ 2 sinesino (2-26)
pD q OD Cos ( t)(-6

where

shock wave angle

0 = angle through which the flow is turned

i.e., 0 = local slope of body surface

In hypersonic flow 0 - 9, and hence Eq. 2-26 reduces to

Cp = 2 sin2p 2 sin2o (2-27)

Ivey, Klunker, and Bowen in Ref. 40 have modified the Newtonian theory
to include the pressure relief due to centrifugal force when the meri-
dian line of the slender body is curved, e.g., in ogives and parabolic

18
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shapes. They give the pressure coefficient as

C - 2f 2  + ff (2-28)
+ f (1 + f,2)3/2

which may be reduced to

Cp = 2f'2 + ff't  (2-29)

since f, 2 is small compared to 1. The body shape is defined by
r = f(x) and f' and f'' are the first and second derivatives with
respect to x. This method is only valid in the region of positive
pressures, which is roughly the portion forward of the maximum diam-
eter. The method is often applied successfully to the nose section
of blunt bodies as well as to slender bodies (see Subsec. 4.6).

From Fig. 2-8 it may be seen that the accuracy of the New-
tonian method is satisfactory for values of K > 2. The accuracy of
the method is discussed further in Subsec. 6.8 and illustrated in
Fig. 6-42 where two curves show, for a typical example, that the un-
modified Newtonian equations are closer to the exact solution than is
the case when the centrifugal forces are included (see also Ref. 41).
Eggers, Resnikoff, and Dennis in Ref. 42 calculated the effect of the
centrifugal forces on minimum drag bodies (see Subsec. 6.7). They
showed that the modified Newtonian theory gives slightly better pre-
dictions of pressure distribution than the simple impact theory for
those bodies which have blunter noses than tangent ogives.

2.10.6.1 Assumption of V = 1

The assumption of y = 1 in the Newtonian method may be justi-
fied because the pressure coefficient through both a compression shock
and an expansion fan is independent of y. This suggests that the sim-
plification may be applied throughout the hypersonic range. Van Dyke in
Ref. 100 compares the pressure coefficient on several cones for a wide
range of similarity parameters and shows that when y = 1 the values are
about 3% less than those for the same cones when y = 1.4.

The physical implications of using y = 1 are beyond the scope
of this section of the Handbook. The assumption that all entropy and
temperature changes take place in the shock itself simplifies the mathe-
matical model and enables results to be predicted that are accurate
enough for design studies.

2.10.7 Tangent-Cone Approximation

The tangent-cone method described in Subsec. 2.7.2 may also
be used in the hypersonic regime. It may be seen in Fig. 2-8 that when
the total head pressure ratio Is corrected for each segment the accuracy
remains good for increasing values of the hypersonic similarity parameter.
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2.10.8 Comparison of Methods for Hypersonic Flow

The pressure coefficient for a tangent ogive with IN/d = 3

at M = 6, i.e., for K = 2, has been calculated by several methods and
the results shown in Fig. 2-15 (taken from Ref. 31). It may be seen
that the tangent-cone method (with local total head pressure), the
Newtonian impact method, and the application of shock-expansion theory
all give a pressure distribution in very good agreement with the exact
(characteristics) solution.
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Fig. 2-3. Comparison of first-order and second-order solutions
with the exact solution for the pressure coefficients for
10-dog and 20-deg half-angle cones. (Source: Ref. 2)
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3. Flow Characteristics at Low to High Angles of Attack

The application of potential flow theory must necessarily be
restricted to those cases wherein separation effects are small. The
observed separation of flow on the leeward side of bodies of revolution
at all but the smallest angles of attack severely limits the applica-
bility of strictly potential theory to the body case. This is indicated
by a comparison of experimental data obtained on bodies of revolution
with estimates based on potential theory; the divergence in certain in-
stances may appear at angles of attack as low as 4 deg. Allen and
Perkins (Refs. 44 and 45) were the first to attempt to make due allow-
ance for such viscous effects. Subsequently, Hill (Ref. 46) and Kelly
(Ref. 47) introduced refinements into the Allen method, thus extending
its useful range. The first part of this subsection is devoted to a
description of the Allen-Perkins method, and following parts deal with
the refinements proposed by Hill and Kelly.

3.1 Allen-Perkins Viscous Cross-Flow Theory

Munk (Ref. 14) was the first to draw attention to the simi-
larity of cross flow around slender bodies of revolution and the flow
developed about two-dimensional cylinders started impulsively into
motion from rest. Jones (Ref. 48) examined in some detail the laminar
flow about infinite two-dimensional yawed cylinders and showed that the
flow in planes perpendicular to its axis is uninfluenced by the axial
flow. In other words, the cross flow is solely dependent on the com-
ponent of flow perpendicular to the axis. A similar result was obtained
by Young and Booth (Ref. 49) for the case of turbulent boundary-layer
flow. These results encouraged Allen and Perkins to extend and apply
Munk's hypothesis to the case of viscous fluids.

In predicting the characteristics of inclined bodies of revo-
lution, Allen assumed that the total cross-force exerted on a body's
transverse segment is made up of two parts: (1) a contribution from
potential cross-flow and (2) a contribution from viscous cross-flow.

The relation for CN arising from potential cross-flow has

been derived in Subsec. 2.5.1 for pointed afterbodies. For blunt-based
bodies, Allen gives

Sb

CN = (K2 - KI) -V sin 2a cos (3-1)

and
[V -Sb (12- xm)1

Cm = (K2 - KI) I SL )sin 2a cos - (3-2)

* where

K1 = virtual mass associated with the axial motion of the body

K2 = virtual mass associated with the transverse motion of the
body

Sb = base area
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t = length of body

xm = distance of moment center aft of nose

S = reference area for coefficient definition

L = reference length used in definition of moment coefficient

v = volume of the body

The contributions of the viscous cross-forces must now be
evaluated.

Point about which moment• xm is taken

•r

V s in aai

The viscous force (vis) acting on the shaded segment of the
body (above) may be expressed by

dN = C 2r 1 V2 sin2 a dx (3-3)vis D

The section drag coefficient, CD , is a function of both the
cross-flow Reynolds number, c

Rec = 2r V sin a (3-4)

where

v = kinematic viscosity in the free stream

and the cross-flow Mach number,

M = V sin a (3-5)Mc a

where

a = velocity of sound in the free stream

A summary of the available data on the drag coefficients, CDc,

of infinite two-dimensional circular cylinders is presented in Figs. 3-1
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and 3-2. Figure 3-1 gives the drag, CD , as a function of Reynolds
c

number based on cylinder diameter. Within the range of most practical

applications, i.e., Re from 104 to 105 , the cross-flow drag coefficient
is relatively insensitive to Re and approximately equal to 1.2. It may
drop to 0.35 for a critical Reynolds number region. Figure 3-2, which
is derived from the combined data of Refs. 45 and 54, shows the effect
of the cross-flow Mach number on the cross-flow drag coefficient. The
coefficient values in both these figures are for infinite cylinders in
steady-state flow.

The normal force resulting from viscous cross-flow is ob-
tained directly by integrating Eq. 3-3, with due regard to the assumed
constancy of CD , i.e.,

c

Nvis = PV 2 sin2 a C A (3-6)visD pc

where

A - planform area of the body
P

i.e.,

Ap s2
CN vis = CDc -g-sin (3-7)

and

C CD A L sin2 V (3-8)
C

where

xp distance from the nose to the centroid of the planform area

In the caae of strictly potential flow, Munk made due allow-
ance for the effects of the forward and aft parts of the body in his
expressions for normal force and pitching moment by introducing into
both the factor (K2 - K1)" A corresponding reduction factor for the

viscous terms has been evaluated by Goldstein (Ref. 50). The ratio
(n) of the force on a finite cylinder (transverse to the flow) to the
force exerted on the same length of an infinite two-dimensional cylin-
der (transverse to the flow) in terms of fineness ratio is plotted in
Fig. 3-3 (from Ref. 45).

Equations 3-7 and 3-8 thus become

C A P sin2 a (3-9)CN vis = 77 CD -T-
c
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and

C vis 1 71 CD S - sin 2 a (3-10)

The expressions for total normal force and pitching moment are thus

Sb A p 2
CN= (K2 - K1 ) -g- sin 2a cos + ? CDc -S- sin a (3-11)

and

K- ) [v -Sb (1 - xm)] a

CA (K 2 - KSL sin 2t cos

+77C p (x m p sin a2 (3-12)Cc

It is within the error of the simplifying assumptions on which
this method is based to replace sin at by ao, and cos a/2 by 1. Moreover,
the fineness ratios of most practical bodies is sufficiently large to
justify the use of (K 2 - KI) = 1.

With these simplifications Eqs. 3-11 and 3-12 become

CN =.2 (')7(+ 7 CD (?) a (3-13)
c

Iv - Sb (" - Xm)] Ap - x 23
Cm 2 SL m a + t/ CD _. \2L /a 2  (3-14)

Equations 3-13 and 3-14 represent a significant improvement
over the potential flow method for the-prediction of body characteris-
tics at moderate and high angles of attack.

3.2 Modifications to the Viscous Cross-Flow Theory

In general it may be stated that the cross-flow theory is
most accurate for moderate supersonic speeds (around M a- 1.5) and is
progressively impaired in the higher supersonic speed range. At low
subsonic speeds the Allen theory overestimates CN and at high super-

sonic speeds it underestimates CN. With a view to improving its accur-

acy at low and high speeds, certain refinements have been introduced in
the method. These are described in the following subsections.
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3.2.1 Hill's Refinements

Hill (Ref. 46) pointed out that only the flow external to
the boundary layer is potential in nature. To make more accurate
evaluation of the potential-flow contributions to the normal force and
pitching moments he suggests that one should employ a hypothetical body
whose surface is defined by the exterior of the boundary layer on the
actual body.

This correction is significant only where the viscous layer
is thick enough to produce an appreciable change in the body diameter.
It is usually negligible where the boundary layer is laminar and no ex-
tensive regions of separation are present.

3.2.2 Kelly's Refinements

In addition to incorporating the modifications proposed by
Hill, Kelly (Ref. 47) made two further amendments to Allen's method.
The first improvement concerns the use of a constant cross-flow drag
coefficient along the entire length of the body. In the case of in-
finite two-dimensional circular cylinders started impulsively from
rest, the experiments of Schwabe (Ref. 51) have shown that the drag ro-
efficient grows from 7ero to a peak value which is twice the steady-
state value (see Fig. 3-4).

On the basis of the "cross-flow" hypothesis a similar distri-
bution along the axis of a body of revolution at angle of attack should
be used. Both Allen and Hill were aware of this, but apparently be-
lieved that the errors resulting from the assumr on of uniform steady-
drag value along the entire length of the body would in most practical
applications be small.

Kelly approximated the Schwabe curve of drag growth by the
formula

X3  3 5 0CD C (0.49 r tan a - 0.0056 -r tan3 o + 0.00003 1r tan a)
c s r r

(3-15)

where

= steady-state cross-flow drag value (assumed as unity in
CDs this expression)

Equation 3-15 is plotted in Fig. 3-4 (from Ref. 47).

It is implicit in the Kelly approach that variations in
Reynolds number and Mach number change only the value of CD , i.e.,

growth of the drag coefficient is essentially independent of both Re
and M.
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When Eq. 3-15 is substituted in Eq. 3-3 and a substituted for
tan a and sin a (for angles of attack less than 10 deg), one then ob-
tains, after integration,

2CD

CN vis - - (AN + BN + CN

X - X
When the factor L is introduced into Eq. 3-3 one may obtain

2 CDs 35

Cm vis - S (Am a +Bm a 5 + Cm a) (3-17)

where A, B, C are functions of x/r, i.e., of body shape (see Ref. 47),
and are usually normalized for C = 1.20 rather than for 1.0 as in

Eq. 3-15. When 21/d tan a < 3, only cubic terms must be retained; for
3 5 21/d tan a 6, both cubic and fifth power terms-must be retained;
for 21/d tan a 6, all terms must be retained. A further refinement
to this technique has been developed which makes the use n these co-
efficients unnecessary (see Subsec. 3.2.3).

Kelly also proposed the use of n = 1 in Eqs. 3-9 to 3-14 for
the case of blunt-based bodies. He justifies this on the grounds that
marked departures from the cross-flow hypothesis are likely to occur
only over the nose portion of the body, where the viscous effects are
known to be small. Deviations from the cross-flow hypothesis would
also occur over the boattailed afterbody, where the viscous effects are
maximized and hence, in this case, n = 1.

The refinements introduced above justify the use of the best
available theories in evaluating the potential terms. Thus, in the
supersonic regime, it is suggested that Van Dyke's second-order theory
be used in place of the simpler Munk theory. (Values of (dCN/da)c•=0

and (dCm/da)a 0,0 predicted by the Van Dyke theory for a wide range of

body shapes have been computed and presented in Ref. 30.)

3.2.3 Use of Cross-Flow Drag Coefficient

Perkins and Jorgenson (Ref. 52) and Mello (Ref. 53) carried
out extensive studies of the pressure and normal force distributions
over bodies of revolution and placed special emphasis on the develop-
ment of a reliable method for applying the cross-flow drag correction
discussed in the previous subsection. In measurements of cross-flow
drag as a function of dis~ance from the vertex, they found that the
drag rose steadily for a distance along the body and then declined
slowly to a steady-state value. The peak value occurred in the region
along the body at which second-order theory predicted the lowest local
normal-force coefficient.

They also found that the ratio CD /CDs could in general be

expressed as a function of distance from the vertex, independently of
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angle of attack within a close range of Reynolds numbers. Such a curve
is shown in Fig. 3-5. Since the maximum value of CD /CD and the lowest

value of the potential cross-flow occur at approximately the same posi-. tion, the use as a norm of the position at which the latter occurs would
improve the correlation of the data.

It must be noted that Refs. 52 and 53 present results for
two Mach numbers (1.5 and 2.0) and most particularly for angles of at-
tack from 8 to 23 deg. At low angles of attack the viscous contribu-
tion is relatively small and insensitive to the method used. Figures 3-6
to 3-8 compare the measured normal-force coefficient and center of pres-
sure with values computed by the methods of Refs. 52 and 53. In all
cases it is assumed that laminar flow existed over the entire body. It
can be seen that the agreement is very good in this limited Reynolds
number and Mach number range. Within the limits of present knowledge,
a simple procedure by which aerodynamic characteristics may be computed
may be summarized as follows:

1. Compute the local normal-force coefficient, cN, versus x from

the potential flow distribution, using one of the basic methods
described in Subsec. 2, i.e., Eqs. 2-15 or 2-16. This compu-
tation determines 2m' the value of x at which cN is a minimum.

2. From Fig. 3-5 and Im find CDc/CDs versus x.

3. From Figs. 3-1 and 3-2 determine the appropriate values of
CD

s

4. Then compute

CNvis 2C sin~a fr(• )Dc x

= C Ds S f r (CDs) dx

0 s

and (3-18)

Cm vis CDs sin2 af r (CD (xm - x) dx

0 s

5. The total normal-force and pitching-moment coefficients are
then given by

CN f cN dx + CNvis

0

and (3-19)

C= cN (x - x) dx + CCm L (XN m m vis

0
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3.3 Flow Conditions on Leeward Side of Body

The success achleved by the viscous theory in predicting the
aerodynamic characteristics of bodies up to high angles of attack in it-
self demonstrates to some degree the validity of the basic hypothesis,
i.e., that even in the case of viscous fluids there exists a close simi-
larity between the perturbed motions of the fluid particles in planes
transverse to the flow direction and the motion of fluid particles in
the corresponding unsteady two-dimensional problem.

Additional verification of the hypothesis is provided by com-
parison of the cross-flow patterns developed on the leeward sides of
bodies with those developed in the wakes of cylinders started impul-
sively from rest (Ref. 51). In the case of a cylinder started from
rest shortly after the initiation of the motion, two vortices begin to
form at the rear stagnation point. In the case of a circular cylinder
the time interval which elapses between the start of forward movement
and the onset of separation is given by

t = 0.351 r/V sin a (3-20)

As the vortices increase in strength, they move outwards symmetrically
along well defined loci as indicated by the broken line in the left-hand
sketch below.

Path of Symmetrical
Vortex Pair-or

Eventually they reach a point at which they become unstable with re-
spect to asymmetric flow disturbances. This marks the transition to a
Bernard-von Karman vortex street as depicted in the right-hand sketch.
These stages of evolution are indicated in the vapor screen photographs
shown in Fig. 3-9 (from Ref. 56).

Attempts have been made to define the point at which symmetric
vortices begin to form on bodies of revolution aft of which the pressure
distribution becomes appreciably modified by the separation. Some re-
sults are presented in Fig. 3-11, where the theoretical curve (Eq. 3-20)
is added for comparison. The large scatter is attributed to the fact
that the separation points were estimated from examination of schlieren
photographs, wher separation may have occurred to some degree before it
became recognizaT e as such.
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Flow Characteristics at Low to High Angles of Attack 3.3

The cross-flow analogy should be applied with caution. In
many cases, shortly after the appearance of asymmetric vortex patterns
on bodies of revolution, unsteadiness of flow sets in and manifests
itself as a switchover of vortex patterns from one side of the body to
the other (see Fig. 3-10). Such unsteadiness, though having negligible
effect on the body characteristics as such, assumes importance when con-
trol surfaces are attached to the body since it then gives rise to ap-
preciable fluctuations in rolling moment and imposes additional and per-
haps intolerable demands on the roll control system. Tests have re-
cently been made (Ref. 56) to correlate the onset of unsteadiness with
body nose geometry and other relevant parameters. Some of the results
are summarized in Fig. 3-12. The scatter is large in this figure, and
neither of the parameters used is entirely satisfactory as a basis of
correlation. Though the phenomenon of instability is far from under-
stood and definitive criteria for predicting its onset cannot be made
at present, the following general statements are appropriate.

1. For the case of conical-nosed bodies, the smaller the vertex
angle the lower the angle of attack at which instability
sets in.

2. Noses other than conical are compared with a cone of the same
fineness ratio in order to determine their stability phenom-
ena. If the apex angle is larger than that of the equivalent
cone the flow will be more stable than that of the cone. If
it is smaller, the flow will be less stable.

3. The actual shape of the afterbody, unlike that of the fore-
body, appears to have little influence on the nature of the
separated flow. Its length, however, is definitely signifi-
cant. Even though assymetry (hence instability) is not pres-
ent for a given nose shape and afterbody, it may be produced
by lengthening the afterbody provided always that the cross-
flow Reynolds number is such that instability would occur on
an infinitely long circular cylinder.

4. Increase in Mach number decreases the amplitude of the un-
steady fluctuations and probably delays the onset of in-
stability.

According to the results reported by Gowen in Ref. 58, the
vortex configuration may prove to be sensitive to the slightest rota-
tional asymmetries of the body in the immediate neighborhood of the
apex where the boundary layer is extremely thin. If this sensitivity
is verified, it offers significant possibilities.

It is evident that the development of asymmetric vortex pat-
terns on the leeward side of bodies at high angles of attack are unde-
sirable because they give rise to large induced rolling moments as a
result of their interaction with aerodynamic surfaces mounted on the
body. Even worse is the situation in which the rolling moments vary
erratically. Means have therefore been sought to alleviate this situa-
tion by enforcing the formation of symmetric vortex patterns. Mounting
separation strips along the side of the body in order to fix the separa-
tion points proved inadequate.

43



Flow Characteristics at Low to High Angles of Attack Fig. 3-1
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Flow Characteristics at Low to High Angles of Attack Fig. 3-4
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Flow Characteristics at Low to High Angles of Attack Fig. 3-6
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Flow Characteristics at Low to High Angles of Attack Fig. 3-8
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Fig. 3-9. Vapor-screen photographs Fig. 3-10. Vapor-screen sequence
of the wake on the leeward side showing fluctuation of vortices
of a cone-cylinder model for on the cross-flow wake of an in-
various angles of attack; M = 2, clined body with an ogival nose;
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(Source: Ref. 56) (Source: Ref. 58)
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Flow Character..stics at Low to High Angles of Attack Fig. 3-11

0

-I-4

MýNNIN
010

____ ______ 'W

(44 as

I .
I)4-

G~.4 -___r-_

0 C 0I

4j 0

14.
0

04> 1
CM 0

_~~C _ I _D4~-I .. a t

_2p 70 I-'-tv oalu

53
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Pressure Distribution 4.1.1

4. Pressure Distribution

Detailed information on the manner in which pressure is dis-Stributed over various types of aerodynamic configurations moving at
supersonic speeds is needed for many reasons. Among the more signifi-
cant, it is necessary for an understanding of the contribution of
various parts of the body (i.e., nose, mid-body, or boattail) to the
over-all characteristics of aerodynamic forces and moments and to es-
tablish the strength requirements of both the skin and the load-carrying
structure within the body. The design of joints, auxiliary structures
such as radomes, and special equipment which must be mounted on or in
the surface of the body is critically dependent on expected pressure
distributions.

Practical body designs violate many of the underlying assump-
tions of the theories given in Subsecs. 2 and .3. In this subsection
the theories are compared with test data for many bodies other than
slender ones, and the effects of detached shocks, blunt noses, and flow
separation are discussed. Modifications to the basic theories are sug-
gested and where possible empirical relations are derived in order to
extend the range within which realistic pressure distributions may be
predicted.

The qualitative characteristics of the longitudinal pressure
distributions at zero angle of attack of some of the bodies of revolu-
tion to be discussed in this subsection are shown in Fig. 4-1.

4.1 Cones and Cone-Cylinders

When the nose shock is conical in form a.-i attached to the
apex, the fluid properties and the velocity components remain constant
along each ray emanating from the apex of the cone. Such a feature
renders this type of flow particularly amenable to theo; tical evalua-
tion. Figure 4-2 shows the free-stream Mach number at which the shock
detaches as a funcLion of the semi-angle of the cone.

Basing their work on the Taylor-Maccoll method of calculating
the properties of the flow field around cones at zero angle of attack
(Ref. 21), personnel at MIT have made numerical computations of the
flow fields around cones for the 5- to 50-deg range of cone semi-apex
angles over the entire Mach number range, from that at which the shock
attaches to infinity. Their results are presented in tabular and
graphical form in Ref. 22. References 55 and 66 extend this work to
include small angles of attack a? high angles of attack, respectively
(see Subsec. 4.1.2). The tables R Ref. 22 give exact solutions to
the non-viscous, ideal gas equations and will therefore need modifica-
tion where viscous forces and gas imperfections are no longer negligi-
ble. Some representative pressure coefficients, taken from the exten-
sive tables in Ref. 22, are plotted in Fig. 4-3 for Mach numbers at. which the bow shock is attached.

4.1.1 Cone-Cylinder Combinations at Zero Angle of Attack

Characteristic solutions of the flows about an extensive
family of cone-cylinders (all at zero angle of attack) have been ob-
tained by Clippinger, Giese, and Carter and the results tabulated in
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Ref. 63. From these tables the pressure distribution along the surface
of a cylindrical afterbody was plotted for cone s-mi-apex angles of 10,
20, 30, 40, and 50 deg at various Mach numbers. These curves appear in
Figs. 4-4 to 4-6. (Pressures on the conical surfaces may be obtained
from Ref. 22.) The typical below-ambient pressure immediately aft of
the shoulder returns gradually to the free-stream value. With the
smaller cone angles, as the Mach number increases the flow must trav-
erse a greater length of afterbody before the pressure finally returns
to the free-stream value. At higher cone angles, the calculations were
not carried far enough along the body to show the trends. It may be
noted that many of them exceed the ambient value even at the shoulder.

4.1.2 Cone-Cylinder at Angle of Attack

When a cone is no longer aligned with the free-stream flow
the circumferential pressure distribution will be a strong function of
angle of attack and Mach number. Van Dyke (Ref. 2) calculated the
longitudinal pressure distribution for the meridian rays along the top,
bottom, and side of a cone-cylinder having a 10-deg conical nose and
mounted at a 12-deg angle of attack in a free-stream flow of Mach num-
ber 2.0. The results are shown in Fig. 4-7 together with experimentally
determined pressure coefficients for the same conditions. It may be
seen that the Van Dyke hybrid theory (Subsec. 2.4) predicts the pres-
sure with good accuracy for about 2 diameters downstream of the shoulder.

Exact solutions for the pressure distribution in non-viscous,
ideal gas flow have not yet been obtained for the general case of cones
at an angle of attack. Among the several approximations to the flow
about yawed cones, Stone's first-order theory (Ref. 64) and second-order
theory (Ref. 65) represent the most determined attack on the problem.
In effect, Stone resolved the perturbation in the flow properties (re-
sulting from the yawing of the cone) into its Fourier components and
reformulated equations for the flow properties. Utilizing Stone's equa-
ýions, Kopal and his associates tabulated the first and second-order
perturbations. Their tables appear in Refs. 55 and 66. Young and
Siska in Ref. 68 made improvements in the method of Stone's calcula-
tions, and Ferri in Ref. 59 corrected an error that occurred near the
cone surface in the Stone solution. However, Roberts and Riley in
Ref. 60 showed that though these corrections were logically necessary,
they may be neglected in practice as is demonstrated in Figs. 4-8 and
4-9, which compare measured and predicted pressure distributions at
widely differing Mach numbers around yawed cones. It should be noted
that the MIT Tables (Refs. 55 and 66) are given in terms of the wind
axes rather than the more usual body axes. Equations for transforma-
tion of the axes are given in Ref. 62 by Van Dyke, Young, and Siska.

The results of a systematic experimental study by Holt and
Blackie (Ref. 67) of the pressure distribution around 15- and 20-deg
cones at M = 3.53 and angles of attack from zero to 25 deg are pre-
sented in Figs. 4-10 and 4-11. It may be noted that the pressure on
the underside (0 = 0) of the 15-deg cone is smaller than that for the
20-deg cone at corresponding values of a + 0. The pressure on the
sides (0 = 90 deg) decreases slightly as the angle of attack is in-
creased, while the pressure at • - 80 deg is virtually independent
of a.

Similar data obtained by Young and Siska for 10- and 15-deg
cones at a Mach number of 2.0 are presented in Ref. 68 and plotted in
Fig. 4-12.
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The distribution around nearly any cone at moderate angles
of attack can be approximated with reasonable accuracy for a wide range
of Mach numbers. Values for the pressure coefficient for cones at zero
angle of attack can be obtained from Ref. 22 or a similar source and
the character of the circumferential pressure distribution for an angle
of attack determined by cross plots of Figs. 4-8 to 4-12. Experimental
data on cones at angles of attack are given by Cronvich in Ref. 61.

4.1.3 Cones of Elliptical Cross-Section

Under certain design conditions, it may be desirable to use
conical shapes of other than circular cross-section. The pressure dis-
tribution, force and moment characteristics, and drag of cones of ellip-
tical cross-section are discussed by Ward in Ref. 15, Kahane and Solarski
in Ref. 69, Ferri, Ness, and Kaplita in Ref. 70, and Ferri in Ref. 71.
The pressure distribution calculated by three different methods is shown
in Figs. 4-13 to 4-16 and in one case is substantiated by measured
values. Reference 70 also includes the pressure distribution over a
drop-shape cone and a faired triangular prism at Mach numbers of 1.6
to 9.1. These are shown for the zero angle of attack case in Fig. 4-17.
The normal-force characteristics of elliptical cones are presented in
Subsec. 5.2.1 and the pressure drag in Subsec. 6.6.

4.1.4 Double Cones

The primary advantage of using a double cone in a body of
revolution is that the pressure losses which accompany a given loss in
velocity are considerably less for two successive compressions than
they are for a single compression. One of the principal uses for such
a configuration is for the supersonic diffusion of the inlet air of a
turbo-jet, ram-jet, or other type of engine whose efficiency depends
on a high-pressure recovery of the incoming air. In Ref. 185, Kennedy
has calculated the flow field surrounding biconic noses having angles
of 25/40, 20/40, and 25/35 deg for Mach numbers between 2 and 4.

The double-cone nose is subject to a distinctive real-fluid
effect which is illustrated by the sketch and pressure distribution of
Fig. 4-18 (from Ref. 88). The pressure rise caused by the second cone
inhibits boundary-layer stabilization so that the flow tends to separ-
ate, thus making the effe.-tive angle of the first cone to be consider-
ably larger than its actual angle. The change in effective angle will
depend on the geometry (length and angle of both cones), the Mach num-
ber and Reynolds number, as well as the condition of back pressure at
the base of the second cone in the presence of an air inlet. Under the
conditions of Fig. 4-18, the effective cone angle due to separation was
more than double the initial cone angle. Much of the advantage to be
gained by the use of a double cone is lost under such circumstances.
In the case illustrated, an extreme combination of angles was chosen
in order to indicate the importance of checking this condition under
realistic environmental conditions for any given configuration.

This "bridging" phenomenon has a critical effect on the per-
formance of high-altitude ram-jet vehicles since it affects both pres-
sure recovery and air capture. Experimental investigations by Konrad
(Ref. 72) of a 15-deg isentropic spike at a Mach number of 4.8 and
simulated high altitude have shown that the separation always occurs
in the laminar boundary layer and that its effect may be reduced by

57



4.1.4 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

tripping the boundary layer. (Early boundary-layer transition may pro-
duce other unwanted effects.) Figure 4-19 shows the large separation

at Re/ft = 3.2 X 105 (a simulated free-flight altitude of 109,000 ft).

Figure 4-20 shows the decreased separation region at Re/ft = 6.7 X 105

(95,000 ft), and Fig. 4-21 shows the very much decreased separation

with the addition of a trip ring at Re/ft = 7.8 X 105 (91,000 ft).

4.2 Ogives and Ogive-Cylinders

The planform shape of an ogival nose is defined by the arcs
of a circle as shown in the sketch below.

CT

d/2

Secant ogives, the name applied to any general ogival shape, are com-
pletely defined by two criteria:

1. The radius of the ogival contour or arc in terms of the body
diameter, rs/d;

2. The distance of the center of curvature of the ogive aft of
a line normal to the centerline of the ogive at its base,
again expressed in terms of the body diameter, (C - fN)/d.

When C > 2NI the intersection of the nose with a cylindrical

afterbody will form a corner. When C = 2N the nose will form a continu-

ous line wit-h a cylindrical afterbody at the junction and is referred
to as a tangent ogive.

An ogive has the advantage of providing without increased
drag a larger apex angle and greater nose volume than a cone of the
same length-to-diameter ratio. The drag of a tangent ogive is slightly
larger than that of the inscribed cone, while secant ogives have less
than either (see Fig. 6-2).

Theoretical techniques for calculating the pressure distribu-
tion over ogives are discussed in Subsec. 2, and the pressure distribu-
tions for a family of tangent-ogive-cylinder bodies at zero angle of
attack are presented by Ehret, Rossow, and Stevens in Ref. 30. (These 0
pressure distributions were obtained by use of the method of character-
istics and in terms of the hypersonic similarity parameter.) Later,
Rossow presented corrected data (Ref. 25) for the effect of flow rota-
tion which he found could be calculated separately and added to the
non-rotational solution. The corrected data are presented in Figs. 4-22
and 4-23 in the form of plots of the pressure ratio, p/pc,, against the
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Pressure Distribution 4.2

hypersonic similarity parameter, K (where K = Md/1N), for various per-

centages of the nose length aft of the apex. On the basis of these
curves, the following empirical expression has been developed (Ref. 30)
for surface pressure on a tangent ogive:

mx

P= Pex 10 N (4-1)P-0 ýPjpex

where

= ratio of surface pressure to free-stream pressure at

poo)a pex the apex

- ratio of cone pressure to free-stream pressure on a
cone whose vertex angle is equal to the apex angle
(values may be read from top curve of Fig. 4-22)

2N = nose length

d = body diameter

m = a parameter given by the empirical relation,

m = - 0.62 (K - 0.113) (4-2)

As Eqs. 4-1 and 4-2 are empirically derived, their validity is limited
to the range of the test data, i.e., 0.5 < K < 2.

Fenter in Ref. 27 points out that although thp hypersonic
similarity rule is taken in general to apply only to high Mach numbers
and very high fineness ratios, it may be applied with reasonable ac-
curacy down to Mach numbers of two.

The pressure distribution over a tangent-ogive-cylinder with
an over-all length of 10 diameters and a nose length of 3 diameters has
been obtained experimentally by Perkins and Jorgensen and compared with
theory for a Mach number of 2.0 at various angles of attack from zero
to 20 deg (Ref. 52). The data are plotted both longitudinally and cir-
cumferentially for all conditions. The longitudinal data for various
radial positions and angles of attack are plotted in Figs. 4-24 to 4-31,
and the circumferential distributions are plotted against radial angle
for various stations and angles of attack in Figs. 4-32 to 4-34.

Figure 4-24 shows that the experimental data agree well with
the theories at ze.o angle of attack with the exception that the first-
order theory is poor near the apex. In subsequent figures only the
first-order theory and the Van Dyke hybrid theory are compared with
the experimental results. For all angles of attack and for most cir-
cumferential angles, the hybrid theory predicts too large a value of
the pressure coefficient at the vertex. Good agreement between theory
and experiment over most of the body is obtained only up to a 5-deg
angle of attack, the differences between theory and experiment becoming
progressively greater as the angle of attack increases. Because of the
good agreement between second-order theory and experiment at zero angle
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of attack, the failure of the hybrid theory even for moderate angles
of attack is probably attributable to inaccuracies inherent in the
first-order cross-flow contribution. Flow separation which occurs at
all but the lowest angle of attack is the principal cause of the poor
agreement between theory and experiment for the flow over the top, or
leeward, side of the cylindrical afterbody.

At all angles of attack above 5 deg, effects of cross-flow
separation are indicated in the circumferential data plots (Figs. 4-32
to 4-34). As the angle of attack increases from 5 to 10 deg, a region
of separated flow is formed on the leeward side of the body at the aft
section. With further increase in the angle of attack, the separated
flow region moves forward and also progresses toward the windward side
of the body until at 20-deg angle of attack it encompasses almost the
entire leeward side. In this separated flow region, secondary flow ef-
fects associated with the body vortices are also observed. A slight
flow asymmetry on the leeward side of the body is indicated by a com-
parison of the flagged and unflagged symbols in Figs. 4-32 to 4-34.

Changes in the pressure distribution at any angle of attack
result principally from changes in the characteristics of the boundary-
layer separation, i.e., whether separation takes place under laminar or
turbulent conditions. Hence the boundary-layer transition is an index
of the Reynolds number effect. Since an increase in the turbulence
level of an air stream is known to induce effects which are qualitatively
similar to those resulting from an increase in Reynolds number, an ef-
fectively high Reynolds number may be achieved in a wind tunnel by in-
creasing the free-stream turbulence. This result has been obtained by
using a special grid mounted in the tunnel's stilling section in com-
bination with a maximum pressure. The pressure distributions obtained
under these conditions together with the data collected at low tunnel
pressures without the turbulence grid provide a fairly wide range of
effective Reynolds numbers. It may be noted from Figs. 4-35 to 4-37
that large Reynolds number effects are evidenced only by the data for
10-deg angle of attack. For angles of attack of 15 and 20 deg, Reynolds
number effects are present but much less pronounced. The changes in
the pressure distributions on a cylindrical afterbody which accompany
the increase in Reynolds number at 10-deg angle of attack are qualita-
tively the same as those which result from boundary-layer transition
on a circular cylinder. When boundary-layer transition occurs ahead
of the point at which laminar separation would usually occur, the sepa-
ration point moves toward the leeward side of the cylinder and the pres-
sure recovery on that side increases. On the cylindrical afterbody of

the same model, the increase in Re/in. from 0.13 X 106 to 0.39 X 106

is accompanied by a movement of the flow separation point toward the
leeward side of the body and an increase in the pressure recovery on
that side. From these data, for Re/in. of 0.39 X 106 at a = 10 deg,

it is inferred that boundary-layer transition occurred on the inclined
body near the junction of the nose and the cylindrical afterbody.

The results of a theoretical study of the pressure distribu-
tions over tangent-ogive-cylinder bodies at 0 to 9-deg angles of attack
are presented by Dunn in Ref. 73. This study includes nose lengths of
1.5 to 4.0 diam in the Mach number range of 1.25 to 4.0 for all cases
where the value of Md/f N was less than 1.0. In all the figures pre-

sented herein, the pressure coefficient is plotted as a function of the
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distance from the nose. The parameters, however, are varied from one
group of figures to another in order to demonstrate their effects on
the pressure distribution and to facilitate interpolation where required.
The parameters and constants for these figures are listed below.

Variable Parameter Constants Figures

a, Up, fN/d 4-38 to 4-45

M a, 0, IN/d 4-46 to 4-49

I•/d M, o, 0 4-50 to 4-53

a M, IN/d, r 4-54 to 4-56

These IBM calculations covering a wide range of Mach numbers and nose
lengths, are based on Van Dyke's second-order theory. It should be
remembered that this theory does not include viscous effects and is in-
valid in the presence of any flow separation.

Although experimental confirmation of the results of this
study are not included in RJf. 73, appropriate experimental data has
been taken from Ref. 52 and compared with Dunn's calculations in
Figs. 4-57 and 4-58. The agreement is good.

Theoretical and experimental determinations of the pressure
near the vertex of an ogive-nosed body of revolution were also made by

Dye (Ref. 74). The equation for the ogive is r = 0.2x - 0.1x 2 , where
r is the radius at a distance x from the vertex. This is roughly a
25-caliber tangent ogive with IN/d = 5. The Mach number is 2 and the

angle of attack range is +12 deg, and ten values of 0 were taken around
the nose.

4.3 Pressure Distribution on Ducted Bodies

Ducted or open-nosed bodies of revolution are required for
air-breathing engines either in the body of the vehicle or in special
pods mounted apart from the main body. Several methods are available
for calculating the pressure distribution, lift, drag, and moment char-
acteristics over the nose of such a body.

4.3.1 Methods for Calculating Pressure Distributions

The techniques listed below offer satisfactory agreement with
experimentally determined pressure distributions on unity mass-flow-
ratio cowls for combinations of contours and flow parameters that lie
within certain boundary conditions.

O Linearized-Source Distribution Method (Refs. 7 and 75).--This
method (see Subsec. 2.2.2) gives satisfactory results for slender bodies
at moderate supersonic speeds but increases in error as either the Mach
number or the surface slope becomes too large.
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Characteristics of Rotational Flow (Ref. 20).--Although ac-
curate, this method of characteristics is tedious and time-consuming
and requires modification in the presence of detached shocks. The
method is discussed in Subsec. 2.6.

Van Dyke's Second-Order Method (Ref. 8).--Van Dyke's method
(Subsec. 2.4T is limited to contours whose slope is everywhere less

than 0.94 (M2 
- 1)- 2 . This condition corresponds to maximum surface

angles of 28, 18, and 13 deg at Mach numbers of 2, 3, and 4, respec-
tively.

Two-Dimensional Shock-Expansion Method (Refs. 23, 26, and
76).--With this technique, treated in Subsec. 2.8, the three-dimensional
shock effects are neglected as are also the reflection of small disturb-
ances originating at the surfaces. These effects introduce only small
errors, however, so long as the lip angle is small and the lip shock is
attached.

Linearized Characteristics Method (Refs. 5 and 77).--The re-
sults obtained by this method (see Subsecs. 2.2 and 2.6) approach those
of the source-distribution method, but for results of the same degree
of accuracy the characteristics method requires much more time.

Heaviside Operational Method (Ref. 78).--The Heaviside opera-
tor is applied to the linear perturbation theory for supersonic flow
past a cylindrical tube of nearly constant radius. Solutions are de-
rived for the cases of zero and non-zero angle of attack.

4.3.2 Comparison of Calculated and Experimental Pressures

The linear theory was used by Kennedy in Ref. 79 to calculate
the external pressure distributions and wave drags of several families
of ogive-cone noses at various Mach numbers. For the basic configura-
tion illustrated in Fig. 4-59 the pressure distribution is given in
terms of inlet radius, ri; Mach number; inlet-to-maximum-area ratio,

Ai/S; ogive caliber, R; and cone angle, 0. The ogive is tangent to the

cone at the point of junction. A typical set of results for zero angle
of attack is shown in Fig. 4-59.

The source-distribution method was used by Jack in Ref. 75 to
calculate the surface pressure on conical and curved cowlings both with
and without spill-over and having an innerbody cone half-angle of 25 deg
in all cases but one, the exception being 20 deg. The pressure distri-
butions for the conical cowls are shown in Fig. 4-60, normalized to be

independent of Mach number by use of the factor 0 = jM2- i. For the
range of tip angles studied (0.5 to 3.0 deg) the pressure has two-
dimensional values near the lip and decreases rapidly toward the ex-
pected conical flow value. Close to the lip the modified pressure co-

efficient, 032 Cp, was found to vary linearly with (P tan 0). Further

from the lip the variation was proportional to (P tan 0) loge(O tan 0).

The variation of 02 Cp with x/Ori can be expressed as

S2 Cp = fl.(P tan 0) - f2-1[0 tan 0)2 loge (P tan 0)] (4-3)
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where e is expressed in radians, and f, and f2 are functions of x/Ori

(Fig. 4-61). This technique for calculating the pressure distribution
along conical cowlings will provide reasonably accurate results over
the range oZ (0 tan 0) for which the linearized theory is valid. Fig-
ure 4-62 gives the value of the pressure coefficient close to the lip
for three Mach numbers and lip angles up t 15 deg and shows the mag-
nitude of the error incurred by using the ,earized characteristics
method rather than the more accurate shock expansion technique.

Bodies for which the shock wave from a central body passes
upstream of the cowl lip (spill-over) were also considered in order to
obtain the effect of additive drag for a free-stream Mach number of 2.0.
(Additive drag, as defined by Ferri and Nucci, is the integral of the
pressure coefficient along the bounding streamline between the conical
shock and the cowl lip.) The coordinates and contours of the inlets
used to investigate these effects are given in Fig. 4-64. Although
the curves were chosen arbitrarily, the lip of each body was faired
into a streamline of the conical field produced by the central body.
The design parameters selected for the body were

Free-stream Mach number, M = 2.0
Area ratio, Ai/S = 0.539

Fineness ratio, IN/d = 4.0

Cone half-angle, e = 25 deg

The linearized pressure distributions for the three inlets having cowl
positioning angles, 0, of 32, 36, and 40 deg are shown in Fig. 4-65.

Illustrated in Fig. 4-63 are the variations of pressure dis-
tribution with Mach number for a conical cowling (1.9-deg angle) de-
signed for the conditions noted above, with the lip at x/ri = 0.159.

At M = 2.0, this configuration produces a shock that intersects the lip.
At Mach numbers below 2.0, the pressure distribution upstream of the
lip produces an additive drag because the conical shock is upstream of
the cowl lip. As the Mach number increases, the pressure ratios of the
cowl become higher.

The coordinates and contours for a series of non-conical in-
lets are shown in Fig. 4-66. The design parameters are the same as
those noted above for the conical case. The initial lip angle for
three of the four contours is the same as the flow-deflection angle be-
hind the conical shock emanating from the central body. The results
may be somewhat in error because of the large slopes of the lips; how-
ever, the linearized theory should predict the drag trends of these
bodies. Pressure distributions for the curved contours of Fig. 4-66
are given in Fig. 4-67.

Comparisons of pressure distributions obtained with linearized
characteristics and with the more accurate source distribution methods
for various cowl configurations are given in Figs. 4-68 and 4-69.

Pressure coefficients were determined experimentally by
Samanich (Ref. 80) for a family of nine cowls in a Mach-number range
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of 1.98 to 4.90. Details of the configuration are presented in
Fig. 4-70, and the experimentally determined pressure coefficients are
given in Table 4-1. The pressures were also calculated by means of
the two-dimensional shock-expansion theory. Agreement between the mea-
sured and calculated values was good at the lower cowl projected areas,
but the difference increased as the cowl area ratio increased or as
the shock detachment at the cowl lip was approached. Figure 4-71 is a
typical plot of the results for three of the cowls at one Mach number.

Because many more boundary conditions and parameters are in-
volved in ducted body pressure calculations than in those for a solid
body, no attempt has been made to interrelate the three studies
(Refs. 75, 79, and 80) on the ducted bodies that have been described.
The over-all aerodynamic characteristics have also been calculated in
these references. Normal forces and moments will be discussed in Sub-
sec. 5, and drag characteristics in Subsec. 6.

Theoretical techniques for determining the external contours
of ducted bodies of minimum drag will be found in Refs. 81, 82, and 83.

4.4 Pressure Distribution over Boattails

Detailed experimental studies of the pressure distribution
over conical and ogival boattails at test velocities of M = 1.5, 2.0,
and 2.5 are reported by Maxwell and Shutts in Ref. 165. The configura-
tions tested in this investigation are illustrated in Fig. 4-72. For
the case of conical boattails the results show that the pressure de-
creases at the beginning of the ogive by an amount corresponding to a
two-dimensional expansion for the given angular change and initial Mach
number ahead of the corner. Immediately after the corner, however, the
three-dimensional effect is sensed and the pressure tends to return to
a higher value. For the case of a faired or ogival boattail with a
gradual change in direction of body contour, the combination of these
two effects results in a completely different pressure distribution, as
would be expected. The pressure distribution curves in Figs. 4-73 to
4-75 illustrate these effects.

Another study of the pressure distribution over boattails in
a free stream at M = 1.91 and angles of attack up to 6 deg is reported
by Cortright and Schroeder in Ref. 150. Figures 4-76 and 4-77 present
experimental pressure distributions over and slightly ahead of the boat-
tail configuration. The mean distributions for all of the configura-
tions for the case of zero angle of attack are compared with both lin-
earized theory (Ref. 7) and the method of characteristics (Ref. 20) in
Fig. 4-78. In this figure the variation of pressure coefficient with
axial distance is given for both sides of the boattail break (i.e., the
start of the boattail) to facilitate comparison of the pressure distri-
butions of other configurations. The agreement between the experimental
measurements obtained with different boattails of equal angle is gen-
erally quite good. The mean distributions obtained with boundary-layer
transition at the tip of the body (i.e., by use of a wire) show small
departures from the natural transition case. Figure 4-78 also shows
that the pressure distribution predicted by the method of characteris-
tics is parallel to the experimental value and slightly more negative,
which would be expected qualitatively in the presence of the body bound-
ary layer. Figure 4-78 also indicates that the linearized theory of
Ref. 7 was less satisfactory for predicting the pressure distributions,
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particularly for the larger boattail angles, than the method of char-
acteristics. In connection with the linearized theory, however, it
should be pointed out that the use of an approximate form of the pres-
sure coefficient,

Cp =- (4-4)

resulted in an improved prediction of the average pressure level on
the boattail.

The distribution of calculated pressure coefficients along
boattails of 2.5 to 17.5 deg for M = 3.24 are shown in Fig. 4-79 (from
Ref. 140).

4.5 Bodies of Continually Varying Diameter

The longitudinal pressure distribution over bodies of revolu-
tion of continually varying diameter was measured at test Mach numbers
of 1.62, 1.93, and 2.41 by Bromm and Goodwin (Ref. 84) in connection
with investigations of body shapes for minimum wave drag (discussed in
Subsec. 6.7). The configurations employed during this study are shown
in Fig. 4-80 and the pressure distributions over the various bodies
are presented in Figs. 4-81 and 4-82. As indicated in the figures,
the variation of pressure distribution with Reynolds number is very
slight. Conclusions concerning the drag characteristics appear in Sub-
sec. 6.7. These data provide additional experimental information for
ogival noses and boattails in the supersonic speed range.

The pressure distribution for a parabolic-arc body whose
cross-section is elliptical has been derived by Kahane and Solarski and
reported in Ref. 69. The method is based on the Ward slender-body
theory of Ref. 15. The results of the calculations for M = 2 are shown
in Fig. 4-83 for both circular and elliptical eccentricity (e = 1/3)
cross sections.

4.6 Blunt-Nosed Bodies

Although a pointed-nose configuration is generally accepted
as the optimum one for supersonic flight, it is nevertheless often
necessary to use blunt-uosed bodies to accommodate radomes and to re-
duce heat-transfer effects at very high speeds, e.g., for re-entry
bodies. The detached shock wave associated with such noses creates a
condition of mixed flow over the forward portion of the nose. At the
foremost point the flow is subsonic and the pressure is equal to the
stagnation value behind a normal shock wave for the given free-stream
Mach number and ambient pressure conditions. The local velocity then
increases and passes through the sonic value as the air flows around
the curved surface of the body, and the pressure and density decrease
accordingly.

Much information, both theoretical and experimental, is avail-
able for simple blunt-nosed shapes such as spheres, flat faces, spherical-
nosed cones, truncated cones, and general oval shapes. Such information
can be found in Refs. 85 to 91.
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4.6.1 Spheres

The distance between the detached shock and the nose of the
body is a function of the free-stream Mach number and the nose shape.
The methods used to calculate this "stand-off" distance are reviewed
by Van Dyke in Ref. 85, which also shows that existing theories are in-
adequate for rigorous calculations. However, a numerical method out-
lined therein, may be used to survey the field between the shock wave
and the body. Van Dyke's application of this method compares well with
experimental measurements as is shown in Fig. 4-84. Corresponding ex-
perimental results obtained by Kendall (Ref. 87) for flat-faced three-
dimensional bodies are presented in Fig. 4-85.

The pressure distributions for a hemisphere in the Mach num-
ber range of 2.0 to 18.8 have been collected from Refs. 54, 88, 187,
and 191 to 194 by Julius (Ref. 86) and are plotted in Fig. 4-86. As
indicated by these data, the ratio of local surface pressure to stagna-
tion pressure behind the shock wave is independent of Mach number and
is approximated very closely by the following simple expression, derived
from the Newtonian impact concept.

C

P - cos 2  0 (4-5)Cp max

where 0 is the angle between the surface and the normal to the free
stream. The agreement becomes poor at low Mach numbers when 0 ap-
proaches 90 deg. Virtually identical pressure distributions were ob-
tained when the Reynolds number was varied by a factor of 3 or 4. When
the simple Newtonian equation, Eq. 4-5, is modified to account for the
surface curvature, the agreement with experimental data (Kendall, Ref. 87)
is not as good as in the case of the unmodified equation.

The Mach number distribution is shown in Fig. 4-87. In the
lower Mach-number range, it may be noted that the local Mach number at
the 90-deg station exceeds the free-stream value. The angular location
of the sonic line on the body may be approximated by the following em-
pirical expression.

0s(rad) = 0.690 + 0.263 (4-6)
s ~M -1_

The experimentally determined shape of the sonic lines for various Mach
numbers is shown in Fig. 4-89, where it is compared with Van Dyke's
calculated sonic lines for M 2 and 6 (Ref. 184). The general shape
is in better agreement at M = 6 than it is at M = 2. The slope of the
shock wave and radius of curvature at the vertex are shown in Figs. 4-88
and 4-90, and the estimated velocity distribution along the axial stream-
line is shown in Fig. 4-91 (all from Ref. 87).

4.6.2 Flat-Faced Cylinders and Disks

Information similar to that given for spheres is presented
in Figs. 4-92 to 4-100 (from Ref. 87 except where noted) for flat-faced
cylinders and disks placed in supersonic streams with their flat faces
normal to the flow direction. It may be seen in Fig. 4-92 (from Ref. 86)
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that the pressure on such a face is not constant but begins to decrease
at a radial distance about half-way between the stagnation point (disk
center) and the outer edge until near the outer edge it is about 80% of
stagnation value. The Mach number distribution over the face of a disk
is virtually independent of the free-stream Mach number (Fig. 4-93).
The pressure distribution along the sides of a cylinder with a flat
face headed into the stream is shown in Fig. 4-94. The flow around the
edge of a disk (Fig. 4-94) like the flow over the face (Fig. 4-95) is
nearly independent of the free-stream Mach number. The pressure aft of
the corner is governed strongly by viscous effects. Along the cylindri-
cal body the flow becomes Mach-number dependent and rapidly approaches
the free-stream static pressure.

Figure 4-95 shows the slope of the shock wave and indicates
that the shock wave is parabolic for M < 2 and non-parabolic for M > 2.
It may also be seen from Fig. 4-95 that the slope of the shock wave is
almost independent of M (for M > 2) in the region of the front face.
In like manner the shock-wave curvature near the vertex is almost in-
dependent of Mach number at Mach numbers greater than about 2.5
(Fig. 4-96). The velocity distribution near the vertex and the sonic
lines at the shoulder are shown in Figs. 4-97 and 4-98.

Pressure distributions on a flat-faced cylinder at an angle
of attack of 4 deg and at Mach numbers of 1.88 and 2.86 were obtained
experimentally by Potter, Shapiro, and Murphy (Ref. 92). The circum-
ferential distribution at 3 stations along the cylindrical surface are
plotted in Figs. 4-99 and 4-100. It may be noted that at the higher
Mach number (2.86) the pressure on the windward side has almost returned
to the static pressure at 1/2 d from the shoulder.

4.6.3 Spherical-Nosed and Truncated Cones

Flat or rounded axisymmetric truncated-cone-configurations
have the advantages of aerodynamic stability and good heat-transfer
characteristics on both the front face and afterbody. The low velocity
on the front face and low density on the conical afterbody are both
conducive to minimizing the over-all heat transfer. Such configura-
tions were studied extensively (Refs. 87 and 89) in the Mach number
range of 1.75 to 8, with several variations in the basic configuration.
The resulting pressure distributions are presented in Figs. 4-101 to
4-107. Shadowgraph tracings of the flow and shock-wave pattern over a
44-deg truncated cone are shown for M = 1.82 and 2.81 in Fig. 4-102 to
illustrate the condition of over-expansion just aft of the shoulder
and to show the effect of shock stand-off and conical shock-wave char-
acteristics on the shock-wave pattern and flow conditions at different
Mach numbers.

In general, for all of the configurations investigated, the
data indicated a slight increase in velocity along the front face as
the contour length from the stagnation point increases. Similar tests
with a spherical-nosed cone are described in Ref. 88 and the results
are shown in Fig. 4-108. Along the circular arc connecting the front
face and the conical portion, a rapid acceleration occurs which may or
may not result in a localized over-expansion at the start of the conical
portion, depending on the Mach number, cone angle, and angle of attack.
The strongest over-expansion occurs at the lowest Mach numbers, gener-
ally less than Mach 3. Examination of the shadowgraphs shows the shock
waves which result from the over-expansion and induce boundary-layer
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separation. Plots of the ratio of static pressure on the surface to
stagnation pressure after the shock wave show that the pressure distri-
bution over the face and corner is relatively unaffected by Mach number.
However, Mach number effects are evident on the conical porticn at the
lower Mach numbers. In no case was the conical section leng enough to
achieve the limiting pressure, i.e., that which would exist on a sharp-
nosed cone of the same apex angle. It has been shown that increasing
the shoulder radius results in an alleviated pressure gradient in the
corner region and in a smaller over-expansion.

The pressure distribution over the rounded blunt shapes o! a
limited family were measured at M = 4.95 by Cooper and Mayo (Ref. 90).
The model dimensions and resulting pressure distributions are shown in
Fig. 4-109.

4.6.4 Noses with Elliptical Planform

Holder and Chinneck (Ref. 93) have measured the pressure dis-
tribution, drag, and shock-wave geometry of noses which are elliptical
in planform (the centerline of the body is the major axis of the half-
ellipse). The length-to-diameter ratio of the i)se ranged from zero
(blunt) to 4.0. The pressure distributions in terms of the axial posi-
tion are shown in Fig. 4-110. The curves in this figure show clearly
that the pressure coefficient not only becomes more negative at the
shoulder as the nose becomes more blunt, but that the negative region
extends farther down the body. Figure 4-111 gives a more detailed
pressure distribution over the nose in terms of the radial rather than
the axial dimension. Figures 4-112 and 4-113 give the shape of the
shock wave for the various noses and also the stand-off distance of the
shock waves from the nose.

4.6.5 Blunt Bodies at Very High Mach Numbers

During preliminary evaluation of the design of a re-entry
vehicle the ability to predict the pressure distribution under a wide
range of ambient conditions acquires prime importance. The extent of
heat-transfer effects are not fully known. Henderson in Ref. 91 shows
that existing aerodynamic and blast-wave theories are adequate for cal-
culating the direct and induced inviscid pressures on simple axisymmet-
ric bodies at zero angle of attack. The extent to which viscous effects
can change the pressures is also indicated. Measured and calculated
pressures are compared quite favorably in Fig. 114 for three blunt-body
shapes at Mach numbers of 15.6 and 19.0. The tests were conducted in
hypersonic tunnels under perfect-gas conditions and thus are not com-
pletely representative of free flight in the atmosphere at these high
Mach numbers.

4.7 Cylinders Alone at 90-De Anle of Attack

The pressure distribution around cylinders placed at 90 deg
to a superso,,ic stream have been measured experimentally at relatively
high and at very low Reynolds numbers (Refs. 88 and 94). Measurements
at M - 5.7 have been taken from both references and compared in
Fig. 4-115 in order to show the slight effect of a large change in
Reynolds number.
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Pressure coefficients for Mach numbers of 1.32 to 5.73 (from
Ref. 94) are presented in Table 4-2. Although the Reynolds numbers
are very low (from 37 to 4100), the relative pressures as a function
of both M and 0 may prove useful. They show that the zero pressure co-
efficient moves from the 72-deg position at M = 1.32 to 126 deg at
M = 5.73 and that the pressure coefficient drops to -0.77 at M = 1.32,
whereas the lowest value at M = 5.73 is -0.020.
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Pressure Distribution Fig. 4-1
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Fig. 4-1. Qualitative characteristics of the longitudinal pres-
sure distribution on various bodies of revolution.
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Pressure Distribution Fig. 4-3
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Fig. 4-3. Pressure coefficient as a function of Mach number and

conical nose angle. (Source: Ref. 22)
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Pressure Distribution Fig. 4-5

00

4)ý

*~ $4

0 0

03

o 0-

$4V

4-4CI

00

4J0'

.9 -3

C42 4-
ULIML

LIL Q)

IL 11 1 4J

I I - I IL I l%

0 00G
r- U.3 V

-- -- ---- - 79



Fig. 4-6 NAVWEPS Report 1488 (Vol. 3, Sec. 8)
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Pressure Distribution Fig. 4-7
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Fig. 4-7. Comparison of hybrid theory and experiment for a 10-deg
cone cylinder; M = 2, a = 12 deg. (Source: Ref. 2)
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Pressure Distribution Fig. 4-9
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Fig. 4-10 NAYWEPS Report 1488 (Vol. 3, Sec. 8)
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Pressure Distribution Fig. 4-13
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Pressure Distribution Fig. 4-16
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Fig. 4-16. Variation of pressure coefficient around elliptical
cones of varying eccentricity; M = 2.78, a = 6 deg.
(Source: Ref. 70)
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Pressure Distribution Fig. 4-18
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Fig. 4-18. Pressure distribution on a double cone with varying
stagnation pressure; M 5.8. (Source: Ref. 88)

89
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Fig. 4-19. Isentropic spike in flow at M = 4.8; simulated

altitude = 109,000 ft, Re/ft = 3.2 x 105.
(Source: Shadowgraphs from Ref. 72)
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Fig. 4-20. Isentropic spike in flow at M U 4.8; simulated

altitude = 95,000 ft, Re/ft = 6.7 x 105.
(Source: Shadowgraphs from Ref. 72)
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Fig. 4-21. Isentropic spike in flow at M = 4.8 with trip ring
5

added; simulated altitude = 91,000 ft, Re/ft = 7.8 x 10
(Source: Shadowgraph from Ref. 72)
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Pressure Distribution Fig. 4-22
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Pressure Distribution Fig. 4-25
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Fig. 4-24. Comparison of theoretical and experimental pressure
distribution on a tangent-ogive cylinder at zero angle of
attack; M = 2. (Source: Ref. 52)
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Fig. 4-25. Comparison of theoretical and experimental pressure
distribution on a tangent-ogive cylinder at various angles
of attack; M = 2, 0 = 0 deg. (Source: Ref. 52)
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Pressure Distribution Fig. 4-29
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Fig. 4-28. Comparison of theoretical and experimental pressure
distribution on a tangent-ogive cylinder at various angles
of attack; M = 2, • = 90 deg. (Source: Ref. 52)
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Fig. 4-29. Comparison of theoretical and experimental pressure
distribution on a tangent-ogive cylinder at various angles
of attack; M = 2, =120 deg. (Source: Ref. 52)
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Fig. 4-30. Comparison of theoretical and experimental pressure
distribution on a tangent-ogive cylinder at various angles
of attack; M = 2, @ = 150 deg. (Source: Ref. 52)
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Fig. 4-31. Comparison of theoretical and experimental pressure
distribution on a tangent-ogive cylinder at various ngles
of attack; M = 2, @ = 180 deg. (Source: Ref. 52)
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Pressure Distribution Fig. 4-32
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Fig. 4-32. Circumferential pressure distributions on a tangent-
ogive cylinder at various angles of attack at x/d = 0.56

06

and 2.06; M = 2, Re/in. = 0.39 X 10. (source: Ref. 52)
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Fig. 4-33. Circumferential pressure distributions on a tangent-
ogive cylinder at various angles of attack at x/d = 4.OC

and 5.84; M = 2, Re/in. = 0.39 x 106. (Source: Ref. 52)
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Pressure Distribution Fig. 4-34
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Pressure Distribution Fig. 4-36
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Pressure Distribution Fig. 4-38
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Fig. 4-38. Calculated pressure distributions on tangent-ogive
cylinders at a = 0, 5, and 9 deg; M = 1.5, 1 N/d = 2.
(Source: Ref. 73)
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Fig. 4-39. Calculated pressure distributions on tangent-ogive
cylinders at a = 0, 5, and 9 deg; M = 2, 2 N/d = 2.
(Source: Ref. 73)
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Pressure Distribution Fig. 4-40
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Fig. 4-40. Calculated pressure distributions on tangent-ogive
cylinders at a :- 0, 5, and 9 deg; M = 1.5, lINd = 3.
(Source: Ref. 73)
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Fig. 4-41. Calculated pressure distributions on tangent-ogive
cylinders at a = 0, 5, and 9 deg; M = 2, IN/d = 3.
(Source: Ref. 73)
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Pressure Distribution Fig. 4-43
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Fig. 4-44. Calculated pressure distributions on tangent-ogive
cylinders at a = 0, 5, and 9 deg; M = 2, fN/d = 4.
(Source: Ref. 73)
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Pressure Distrioution Fig. 4-45
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Fig. 4-45. Calculated pressure distributions on tangent-ogive
cylinders at a = 0, 5, and 9 deg; M = 3, N /d = 4.
(Source: Ref. 73)
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Fig. 4-46 NAVWEPS Report 1488 (Vol. 3, Sec. 8)
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Pressure Distribution Fig. 4-49
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Pressure Distribution Fig. 4-53
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Pressure Distribution Fig. 4-56
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Fig. 4-56. Angle-of-attack effect on pressure distribution along~nr ~d= 2.5, M 2, • 180 deg.atangent-ogive cylinder; IN/d = ., M= 2,1 0 d g
(Source: Ref. 73

115



Fig. 4-57 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

00011-i : - -- - ,,•-o--
-040a

"_ - - - -I -d 0 - -

+•"!!~~V tie!I "4-0000 0

0.

&40

%4 $4

P-4 I,

~4I

46 44 b-4

0.

0 b

.. 0 0 c0 0

JO W. . VI

k 0

d 'suqTaTjjao;3 •ansSaOd
-14



Pressure Distribution 
Fig. 4-58
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Pressure Distribution Fig. 4-61
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Fig. 4-62. Comparison of lip pressure coefficient as a function
of lip angle as calculated by two methods. (Source: Ref. 75)
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Fig. 4-63. Mach-number effect on pressure distribution over a
cowling designed for M = 2. (Source: Ref. 75)
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Pressure Distribution Fig. 4-64
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Fig. 4-64. Details of cowling inlets used to investigate additive
drag. (Source: Ref. 75)

121
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Fig. 4-65. Pressure distribution over streamline and body contour,
with additive drag. (Source: Ref. 75)
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Pressure Distribution Fig. 4-66
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Fig. 4-66. Design details for non-conical inlets. (Source: Ref. 75)
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Fig. 4-67. Pressure distributions over non-conical cowlings.
(Source: Ref. 75)
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Pressure Distribution Fig. 4-69
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Fig. 4-68. Cowling pressure distributions calculated by the
characteristics method and source distribution method;
M 1.5, Ai/S = 0.393. (Source: Ref. 75)
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Fig. 4-69. Cowling pressure distributions calculated by the
characteristics method and source distribution method;
M = 1.8, Ai/S = 0.490. (Source: Ref. 75)
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Pressure Distribution Fig. 4-71
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Fig. 4-72. Boattail configurations employed in pressure dis-
tribution investigations. (Source: Ref. 165)
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Fig. 4-73. Comparison of theoretical and experimental pressure
distributions over a family of boattails; M = 1.5, a = 0 deg.
(Source: Ref. 165)
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Pressure Distribution Fig. 4-75
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Fig. 4-76. Pressure distributions over three complete boattails;
M = 1.91, a = 0 deg, db/d = 0.506. (Source: Ref. 150)
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Pressure Distribution Fig. 4-77
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Fig. 4-77. Pressure distributions over three partial boattails;
M = 1.91, a = 0 deg, db/d = 0.704. (Source: Ref. 150)
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Pressure Distribution Fig. 4-79
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Fig. 4-79. Boattail pressures in terms of boattail angle calculated
by small disturbance method and characteristics method; M = 3.24,
a = 0 deg. (Source: Ref. 140)
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Fig. 4-80 NAYWEPS Report 1488 (Vol. 3, Sec. 8)

v 0
o go0

II IIn

II
eq Go 4

4)-

In c

'a4
"" 4 0 -I

4o 0N N 0

N x

uj m

CDD

133

r.4

0 E0

C) 0

om 00

0. 0 .0

134*



Pressure Distribution Fig. 4-81
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Fig. 4-81. Pressure distributions for varying Mach numbers and
Reynolds numbers for minimum drag bodies,, models 1 to 4.
(Source: Ref. 84)
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Fig. 4-82. Pressure distributions for varying Mach numbers and
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Pressure Distribution Fig. 4-84
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Fig. 4-85. Shock-wave stand-off distance for a flat-faced cylinder.
(Source: Ref. 87)
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Fig. 4-86. Compilation of pressure distributions around a hemi-
sphere for varying Mach numbers. (Source: Ref. 86)
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Pressure Distribution Fig. 4-87
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Fig. 4-87. Mach-number distributions over a sphere for various
free-stream Mach numbers. (Source: Ref. 87)
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Fig. 4-88. Local shock-wave angle for a sphere at various free-
stream Mach numbers. (Source: Ref. 87)
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Pressure Distribution Fig. 4-90
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Fig. 4-91. Estimated velocity distributions along an axial stream-
line between a sphere and its shock wave. (Source: Ref. 87)
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Fig. 4-92. Comparison of experimental and theoretical pressure
distributions on a flat-faced cylinder at M = 4.95.
(Source: Ref. 86)
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Pressure Distribution Fig. 4-94
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Fig. 4-93. Local Mach-number distribution over the face of a disk
for various free-stream Mach numbers. (Source: Ref. 87)
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Fig. 4-94. Pressure distribution over a flat-faced cylinder for
various Mach numbers. (Source: Ref. 87)
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Fig. 4-95. Shock-wave angle for a flat-faced cylinder at various
Mach numbers. (Source: Ref. 87)
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Pressure Distribution Fig. 4-97

0 >'0

. 4- / '4 A,,

0
v l o

4) W04)

w 4- La2

@14
4-1

U12
000

Go >

., • B I,.+ l $,,.

4P-

0~~ GoC C -4 1

;164

0

4) C
A rq

4-

0 0 0 c 0call1

41 0) 0) 00

ca4

*.4J A

ca 14.

wl a

0)

1)4c
_ _ _ C 14-)(

.0
~ c A ) V-4C

145



Fig. 4-98 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

0

M 1.85

2.20

2.81

3.52

4.76

Stagnation Point

Flow
Direction

Fig. 4-98. Location of the sonic line between a flat-faced
cylinder and the shock wave for various free-stream
Mach numbers. (Source: Ref. 87)
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Pressure Distribution Fig. 4-100
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Fig. 4-101. Pressure distribution over a truncated cone at
several Mach numbers. (Source: Ref. 87)

Fig. 4-102. Shock-wave pattern of a truncated cone at M = 1.82
and 2.81. (From schlieren shadowgraphs, Ref. 87)
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Pressure Distribution Fig. 4-103
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Fig. 4-104 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

4J

0

0 C
O

CC4

o• a
eq

IF V

I ---- o $o

r'4 00

0 >

4j-

0

tE $.Ir4

ao

M .

01S-0

0 $4

,- 0
$40

0 04 ~e

4 -4
0.

CD ~

150.



Pressure Distribution Fig. 4-105
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Fig. 4-105. Effect of corner radius on pressure distribution over
a faired truncated cone at M = 1.79; r'/r = 0.8.
(Source: Ref. 89)
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Fig. 4-106. Effect of corner -adius on pressure distributions over
a truncated cone at M = 7.2; r'/r = 0.1. (Source: Ref. 89)
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Pressure Distribution Fig. 4-107
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Fig. 4-107. Pressure distribution on a truncated cone; a• 6 deg,
M = 5.1. (Source- Ref. 89)
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Pressure Distribution Fig. 4-109

Nose No. 1 Nose No. 2 Nose No. 3 Nose No. 4

S r

X X Y x y x2 ...L

0.0`4 0.353 0.019 0.417 0.014 0.320 0.011 0.386
0.047 0.464 0.038 0.524 0.028 0.422 0.023 0.486
0.071 0.543 0.057 0.598 0.042 0.495 0.034 0.555
0.094 0.606 0.076 0.656 0.056 0.554 0.046 0.610
0.118 0.659 0.095 0.703 0.071 0.604 0.057 0.656
0.141 0.704 0.113 0.744 0.085 0.648 0.069 0.696
0.165 0.744 0.132 0.779 0.099 0.687 0.080 0.731
0.188 0.779 0.151 0.810 0.113 0.723 0.092 0.763
0.212 0.810 0.170 0.838 0.127 0.755 0.103 0.791
0.235 0.839 0.189 0.863 0.141 0.786 0.115 0.818
0.259 0.864 0.208 0.885 0.155 0.813 0.126 0.842
0.282 0.887 0.227 0.905 0.169 0.840 0.138 0.864
0.306 0.908 0.246 0.922 0.183 0.864 0.149 0.885
0.329 0.926 0.265 0.938 0.197 0.887 0.161 0.905
0.353 0.943 0.284 0.952 0.212 0.908 0.172 0.923
0.376 0.958 0.303 0.965 0.226 0.929 0.184 0.940
0.400 0.971 0.321 0.976 0.240 0.948 0.195 0.957
0.423 0.982 0.340 0.985 0.254 0.966 0.207 0.971
0.447 0.992 0.359 0.993 0.268 0.984 0.218 0.986
0.470 1.000 0.378 1.000 0.282 1.000 0.230 1.000

0Nose No. ,Nose No. 2
8Newtonian Pt (psi)

KTheor _ o 600

460.6 
0060"s a i l" 1500 20

S0.4 _ Modified - 2-00
Newtonian \ I,

0.2 - Theory _ -0.2 Model

0 Base

1.01 -- Nose No. 3 - - . Nose No. 4

0.8 ,

. 0.64 -,-
•0.4

0.2

0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6

s/r s/r

Fig. 4-109. Comparison of theoretical and experimental pressure
distributions over various rounded noses; M = 4.95.
(Source: Ref. 90)
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Fig. 4-110. Experimental pressure distributions on elliptical
planform noses of various fineness ratios; M = 1.42, 1.6,
and 1.82. (Source: Ref. 93)
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Pressure Distribution Fig. 4-111
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Fig. 4-112. Observed bow waves for elliptical noses; M = 1.42,
1.6, and 1.82. (Source: Ref. 93)
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Pressure Distribution Fig. 4-113
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Fig. 4-113. Shock-wave stand-off distance for elliptical noses
of various fineness ratios in terms of free-stream Mach
number. (Source: Ref. 93)
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Pressure Distribution Fig. 4-115
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Force and Moment Characteristics of Simple Bodies 5.1

5. Force and Moment Characteristics of Simple Bodies

It is possible to integrate the pressures obtained by means
of the theories or methods outlined in Subsecs. 2, 3, and 4 and thus
calculate the forces over any body for which a pressure distribution
can be established. Such a task, however, is tedious and gives in-
creasingly questionable results as the angle of attack increases be-
yond the limit allowed by the simplifying assumptions of the various
methods. The calculation of total forces on bodies is also hampered
by the lack of any completely realistic theory for the pressures at or
near the body base or anywhere in the presence of separated flow.

Since it is therefore necessary to rely on experimentally de-
termined force and moment characteristics, this subsection will be de-
voted for the most part to a presentation of experimental studies of
various configurations. Very little correlation between sets of data
is possible since configurations vary considerably, depending on the
purpose and particular interests of the study as well as the Mach num-
ber and Reynolds number ranges available at the facility at which the
tests were made. General trends will be noted and wherever possible
test results will be compared with theoretically derived values sup-
ported by empirical relationships. The range of flow parameters and
geometric configurations is wide enough to allow interpolation and ap-
plication to most required body designs. The measured values of the
normal-force coefficient and the position of the center of pressure at
high angles of attack are of particular interest since this is the
region in which the theories are least reliable. Operation at high
angles of attack in the case of tactical missiles is very necessary in
order to develop high maneuverability without recourse to large aerody-
namic surfaces. Knowledge of high angle-of-attack performance charac-
teristics is also required for estimating the effects of lateral or aft
launching of a missile from an aircraft in flight.

5.1 Normal-Force Characteristics of Slender Bodies

The distribution of the local normal-force coefficient (per
inch per unit angle) for a tangent-ogive-cylindrical body at angles of
attack of 5, 10, 15, and 20 deg is given in Fig. 5-1. The experimental
data at M = 2 collected by Perkins and Jorgensen (Ref. 52) are compared
in this figure with three different theoretically derived potential flow
values. It may be seen that even as far forward as the aft part of the
nose section the divergence between experiment and theory is greater
than that between the different theories. Over the cylindrical section
the inadequacy of the potential flow theories at all but very low angles
of attack is clearly demonstrated by these comparisons. Although both
the Tsien and Van Dyke methods predict the general shape of the load
distribution curve, it is evident that the lift carried on the cylindri-
cal afterbody even at a 5-deg angle of attack is considerably greater
than that predicted by potential flow theories. At high angles of at-
tack, the largest part of the difference between theory and experiment
is attributed to separation effects. In Figs. 5-2 and 5-3 the experi-
mental data is compared with three different cross-flow calculations:
(1) the Allen-Perkins cross-flow theory (Subsec. 3.1) with Van Dyke's
hybrid potential flow (Subsec. 2.4); (2) the Allen-Perkins theory with
Tsien's potential flow theory; and (3) the Kelly cross-flow theory
(Subsec. 3.2.2) with Van Dyke's hybrid theory. Although none of these
methods give very good agreement with the distribution of the normal-
force coefficient, except at low angles of attack, they have been shown
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to give reasonably good prediction of the total normal force. To check
the influence of the Reynolds number on these separation effects, tests
were re-run with an extra turbulence grid in the stagnation chamber.
The addition of this grid moved the transition point from about 7.5
diameters to 6 diameters from the nose but produced little change in
the normal-force coefficient except at a = 15 deg. When the Reynolds

number was reduced from 0.39 x 106 to 0.13 X 10 6 /in. there was a sig-
nificant increase in normal force over the cylinder at a 10-deg angle
of attack but much less at 15 deg. Even though they cover a very limi-
ted range of test parameters, these results indicate the importance of
experimental data at high angles of attack and point out the need for
improved theoretical treatment of the subject.

The total normal-force coefficient, C for families of cone-

cylinders and tangent-ogive-cylinders is given in Figs. 3-9, 5-4, and
5-5 (from Refs. 47 and 95) for a wide range of all flow parameters and
body configurations. The early departure from linearity of CN with a

is clearly exhibited in these figures. In fact, it may be seen that
the linear range of CN does not extend much beyond a = 4 deg, whereas

in the case of two-dimensional shapes such as wings, the linear char-
acteristic is retained to much higher angles of attack. The marked
departure from linearity of C versus c is due principally to the oc-
currence of the cross-flow drUg discussed in Subsec. 3. The fact that
these forces vary in proportion to the square 6f the cross-flow ve-

locity (i.e., to a 2 ) explains the almost parabolic variation of CN with

a. The most significant trend that may be observed in these figures is
the increase in CN with increase in body length for angles of attack

greater than about 4 deg. This is to be expected since the additional
length is subjected to additional cross-flow drag. The nose fineness
ratio has only a minor influence on CN except in the case of very slender
noses at high Mach numbers.

The normal-force coefficient slope for a tangent-ogive-cylinder
and a cone-cylinder with the same nose length and at zero angle of attack
is shown as a function of fineness ratio in Fig. 5-6 for a range of Mach
numbers (Buford, Ref. 98). The experimental data for the ogive are com-
pared with the first-order theory of Van Dyke (Ref. 2) to which the
cross-flow correction has been added. The agreement is reasonably good
for short bodies but very poor as the length is increased. Figure 5-7
(also from Ref. 98) compares experimental values of dCN/da at a = 0 for

a 10-deg half-angle cone with the exact theory. Here the agreement is
relatively good over the test range of 1.2 < M < 4. The measured value
of dC N/da at the shoulder of the 10-deg cone (approximately 0.31) taken

from Fig. 5-6 agrees well with the nearly constant value predicted by
the Stone-Kopal theory as shown in Fig. 5-8. The initial slope of the
normal-force curve is shown as a function of nose length and over-all
fineness ratio for several Mach numbers in Fig. 5-9. The curves in
Fig. 5-9 show clearly the increase in dCN/da with Mach number for all

body lengths greater than the nose length. It may also be seen that
the maximum vaiae of dC,/da is associated with slightly longer bodies

as the Mach number increases. These values (from Ref. 96) are calcu-
lated by means of the linearized theory and should be compared with ex-
perimental data such as that shown in Fig. 5-6, which indicates that
once the peak value of dCN/da has been reached the values do not drop
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off. Measured values for cone-cylinders are shown in Fig. 5-10 (from
Ref. 95).

40 5.1.1 Center of Pressure of Slender Bodies

The experimentally determined distance of the center of pres-
sure from the nose vertex as a function of the free-stream characteris-
tics and the body geometry is given in Figs. 5-11 to 5-14 (from Refs. 95
to 99). Experimental values for a tangent-ogive-cylinder are compared
with first-order theory in Fig. 5-13. For low angles of attack and
short bodies the flow is predominantly potential and the center of pres-
sure remains constant. As the angle of attack is increased above ap-
proximately 4 deg the transverse forces arising from cross flow and
separation on the leeward side of the body become increasingly effec-
tive, and the center of pressure moves aft. In the case of cones for
which the flow over the surface is everywhere supersonic, the pressure
is constant along each ray emanating from the apex of the cone; hence
the center of pressure of a cone alone is theoretically located at a
point approximately two-thirds of the cone length aft of the apex.
Actually, second-order effects cause the center of pressure to be some-
what aft of this position by an amount which increases as tte cone angle
increases.

Figure 5-14 (from Ref. 99) shows that for Reynolds numbers of

2 x 106 to 15 x 106 there is no significant change (at this Mach number,
3.12) in the position of the center of pressure with respect to Reynolds
number. The general trends that may be noted are that an increase in
Mach number or in body length results in an aft movement of the center
of pressure and that nose fineness ratio and Reynolds numbers have only
slight effects on the center of pressure of slender bodies.

5.1.2 Pitching Moment

Calculated values of the pitching-moment slope, dCn/da at

S= 0, are shown in Fig. 5-15 for tangent-ogive cylinders of various

configurations and Mach numbers of 1.4 to 3.5. The values of dCM/da

at a = 0 corresponding to the data from Refs. 47, 95, and 96 may be
easily obtained from the equation

( dCm ,dCa x - cg c~p.(5-1)
da 0/=0 =ao0  d

where the terms are illustrated below.

* *Moment Reference

d6 d
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Usually, x cg is taken as the centroid of the planform. The pitching

moment is often a complex function of the angle of attack and generally
must be determined experimentally. f'or an estimation of the stability
characteristics of a simple axially symmetric body, the value of dC/da @

at a = 0 is a useful tool. Figure 5-16 (from Ref. 99 by Jack and Burgess)
indicates that the effect of Reynolds number on the pitching moment is
very slight.

5.1.3 Force Characteristics of Pure Cylinders

The aerodynamic characteristics of a geometrically complex
missile are usually approximated by the simple process of adding the
contribution of component parts. Hence, despite its seemingly imprac-
tical shape, it is often desirable to know the.aerodynamic characteris-
tics of a pure cylinder moving with its longitudinal axis inclined at
small angles of attack to the air stream. Such a configuration with an
f/d ratio of 5.76 was tested at Mach numbers of 1.88 and 2.86. The re-
sults are reported by Potter, Shapiro, and Murphree in Ref. 92 and
plotted in Figs. 5-17 to 5-19.

5.1.4 Force Characteristics of Skirted Bodies

A theoretical technique for '-etermining the lift, pitching
moment, and drag of cone-cylinder bodivs whose aft section is a cone
frustum has been developed by Deep and Henderson (Ref. 101). This
study was based entirely on linearized theory (but since the experi-
mental data curiently available is classified, it is not possible to
discuss the accuracy of the results). No allowance wps made for effects
of flow detachment at the beginning of the skirt or for any real-fluid
effects. The configurations and stream properties for which the calcu-
lations were made are shown in Fig. 5-20, while representative results
appear in Figs. 5-21 to 5-24. The normal-force characteristics were ob-
tained by numerical integrations of the basic pressure data. The center-
of-pressure positions were determined from both the pitching moment due
to normal force and the effective pitching moment which includes the
moment due to axial force. For large contour slopes the latter effect
cannot be neglected. The effect of frustum geometry appears to have
greater influence on dCN/da than does the cylinder length. The effect

of Mach number depends greatly on the geometric parameters. As would
be anticipated, the center of pressure is strongly affected by the
separation distance between the nose and the cone frustrum. Although
the absolute value of the characteristics has not been verified, these
figures indicate the extent and nature of the variations that will oc-
cur due to changes in the geometry and flow parameters.

5.1.5 Correlation of Normal Forces by Means of the Hypersonic
Similarity Parameter

The hypersonic similarity rule states that the normal force
and pitching moment on two bodies are related and their flow fields
are similar provided that the bodies have the same thickness distribu-
tion and the same similarity parameter, i.e., two bodies, A and B, with

( N) = (T )B
A B
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will have similar characteristics when

( (a/IN) A = (2 a/'N) B (5-2)

where

Ia length of the afterbody

f = length of the nose

Van Dyke has shown (Ref. 34) that by replacing M in the hypersonic simi-

larity parameter by 0 = VM- 1, the range of application is much ex-
tended (see Subsec. 2.10.2).

Dorrance and Norell (Ref. 102) have correlated experimental
results from many tests in a Mach number range of 1.57 to 4.24 by means
of the hypersonic similarity parameter. The correlations are shown in
readily usable forms in Figs. 5-25 to 5-41. The variables, parameters,
and constants for each graph are tabulated below.

Variable Parameter Constant Figure

OCN and OCm vs Pa M Ia/'N = 0 5-25*
K = 0.6

OCN and PCm vs Pa M Ia/IN = 0.62 5-26

K = 0.6

dCN vs K IaN = 0 5-27

dC
d--'M-vs K Ia/N = 0 5-28

vs K ofN = 0 5-29

S•a N aK5-

OCN Vs fa/fN OU K 0.25, 5-30 to

0.5,1.0,2.0 5-33

Cm vs fa/fN PaK = 0.25, 5-34 to

2 
0.5,1.0,2.0 5-37

Nd vs IaOc K = 0.25, 5-38 toO d(-x/d) v a/fN •0.5,1.0,2.0 5-41

where

K = Od/IN rather than the more usual Md/tN

Figure 5-25 presents data for a cone, and Figs. 5-26 to 5-41 deal with
cone-cylinder configurations.
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After the values of la/IN and K have.been determined for any particular

configuration and Mach number it is possible by use of a single cross
plot to determine the normal-force coefficient or the pitching-moment
coefficient as a function of the angle of attack. The longitudinal
distribution of the normal force on the body may be found by a similar
procedure. The accuracy of the charts was tested by comparing them
with coefficients obtained from experimental data. Figure 5-42 shows
one such comparison with satisfactory agreement. Figure 5-43 shows the
range of parameters which were used to compile the charts and beyond
which the reliability has not been established.

5.2 Lift and Drag

Up to this point the forces acting on a body have been con-
sidered in terms of the body axes, with CA the force coefficient in the
axial direction and CN that in the direction normal to the body axis.

It is sometimes more useful to relate the forces to the wind axis (see
below), in which case the drag force is in the direction of the free
stream and the lift force is normal to it in the plane of the body
symmetry.

CLC

7 
_- .

,__1cN_

CA

These forces are related as follows:

CL = CN Cos a - CA sin a

CD = CN sin + CA cosa

The axial part of the drag force (usually known as wave drag,
pressure drag, or zero-lift drag) will be discussed in Subsec. 6. The
normal-force contribution to the drag (often known as drag due to lift
or drag due to normal force) is proportional to sin a or, since a is
usually small, to a. However, second-order effects, non-symmetrical
configurations, and open inlets will modify this conclusion slightly.
In cases where these characteristics must be known within accuracies
of 10 to 15%, actual measurements should be obtained.

5.2.1 Lift and Drag of Cones of Elliptical Cross Section

Pressure distribution and the pressure drag of cones of el-
liptical cross-section are given general treatment in Subsecs. 4.1.3
and 6.5, respectively. However, one graph is included here since it
compares (at one Mach number and angle of attack) the lift, drag,
normal-force and axial-force coefficients for a limited family of
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elliptical cones. The values are calculated by Ferri, Ness, and Kaplita
by means of the superposition of linearized conical-flow solutions upon
the solution of the nonlinear flow around a circular cone. The work is
reported in Ref. 70 from which Fig. 5-44 is taken.

5.2.2 Lift, Pitching Moment, and Center of Pressure of Ducted
Bodies

The theoretical pressure distribution of a specific family
of ogival cone-cylinder ducted bodies was given in Subsec. 4.3 together
with a diagram (Fig. 4-59) showing the details of the configurations
that were considered. In Figs. 5-45 to 5-47 (from Ref. 79) typical
plots are given for the lift coefficient slope, the pitching-moment
slope, and the ratio Cu/CL for the family of curves at M = 2 and a - 0.

From the last figure the position of the center of pressure may be :;l-
culated by using

X -x
Cm/CL = cg d C.p. (5-4)

max

Usually xcg is taken as the centroid of the planform. The wave-drag

characteristics of these configurations are treated in Subsec. 6.3.

5.2.3 Lift-Drpg Ratio

Since the lift-to-drag ratio of a body may be regarded as a
measure of its aerodynamic efficiency, it is necessary to obtain the
ratio as frequently as the force measurements themselves. The maximum
lift-to-drag ratio to be expected from a pointed body of revolution of
practical shape inclined at an angle of attack to a supersonic stream
will be between 2.5 and 4.0, depending on Mach number, angle of attack,
nose and boattail shapes, and the distribution of the body cross-sec-
tional area. The maximum L/D usually occurs when the angle of attack
is between 6 and 10 deg. At this attitude the potential flow still
predominates; hence the nose and boattail shapes are important factors
in determining L/D. Cross-flow lift is present and becomes increasingly
important as the body length is increased. At a given Mach number any
fore and aft body shape will have an optimum length for maximization of
L/D. Radical departures from the usual circular cross-sectional shape
will also affect the lift-to-drag ratio.

Figure 5-49 (from Ridyard, Ref. 103) shows how an increase in
the fineness ratio of a cylindrical body aft of 10 and 20-deg half-
angle conical noses affects L/D at M = 6.86. At this Mach number the
peak value of L/D is achieved with an afterbody fineness ratio of about
6. However, as can be seen, the variation about this maximum is not
very great and the body length is not very critical.

0 Sanger and Bredt (Ref. 104) predicted that the use of flat-
bottomed bodies, in addition to improving lifting characteristics,
would result in an increased value of peak lift-drag ratios. The data
shown in Fig. 5-48 (from Ref. 103) confirms this prediction at one Mach
number (6.86) and one fineness ratio (6). It may be noted that in this
case the cross section of the body is almost square. Dennis and
Cunningham (Ref. 95) measured lift and drag and computed the lift-drag
ratio for a family of flat-bottomed cone-cylinder models for Mach numbers
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of 3, 4.25 and 6.28. The maximum lift-drag ratio of these models is
compared with that of cones of the same over-all fineness ratio
(f/d = 10) in Fig. 5-50. From this rather sparse data one may see
that the improvement in lift-drag ratio by means of a flat bottom is
dependent on Mach number and the fineness ratio of the cylindrical
afterbody. The technique seems most successful at high Mach numbers.

5.3 Non-Steady Normal-Force and Pitching-Moment Derivatives

The effects of oscillatory movement in finless missiles trav-
elling at supersonic speeds assume increased importance when the prob-
lems of dyna,,aic stability are considered. Dorrance in Ref. 105 treated
the effects of four types of unsteady motion on a slender pointed body
and derived expressions for the normal-force and pitching-moment sta-
bility derivatives in each case. The body for which the calculations
were made was generated by a parabolic arc about the 'longitudinal axis.
The equation for the arc is

r = 0.02 (10x - x ) for 0 ! x 5 8 (5-5)

This corresponds roughly to a 25-caliber tangent ogival nose with a
fineness ratio of 5 and over-all fineness ratio of 8. The four cases
which were considered for this body are given below.

5.3.1 Periodic Pitching about a Fixed Point

The center of rotation of the pitching moment was chosen at
x = 4.78 dmax' which is typical of certain rocket-propelled missiles.

The values of the unsteady derivatives CN. and Cm. are shown as a func-

tion of the Mach number in Fig. 5-51. These derivatives are dimension-
less forms given by

C acN and
N T (2/V) mnd Cm6 a&(I/V)

where

2 = missile length

V = free-stream velocity

It may be seen from Fig. 5-51 that the inclusion of the first-order
frequency terms in the oscillating velocity potential gives values that
are higher than those from slender-body theory. In the Mach number
range presented, the normal-force derivative is 5 to 11% greater than
slender-body values, and the pitching-moment derivative is 40 to 150%
greater.

5.3.2 Periodic Normal Oscillation

The values given by Dorrance for C N. and Cm., where w is the
w w

periodically varying upwash velocity, and the values derived by slender-
body theory are also given in Fig. 5-51. The difference between the
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steady and unsteady pitching-moment derivatives is very large.

aCN C

C is defined as and C as
ai*(2/V 2 ) ai( /V

5.3.3 Steady Pitching about a Fixed Point

As before, the fixed center of rotation is x = 4.78 dmax*

The pitching velocity about this point is q. The values of C N and C
versus Mach number are shown in Fig. 5-52. q mq

aCN 8Cm

CN is defined as ac N and C as aq(c/V)
q mq

In dynamic stability analyses the steady pitching derivatives) CN and

C , are usually employed in place of the unsteady derivatives) CN& andmq

C m A comparison of Figs. 5-51 and 5-52 shows that when this proce-

dure is followed, not only the magnitude of the derivatives but also the
Mach number trend will be in error. In both cases, however, the sign
of the pitching-moment derivative is such as to indicate a damping mo-
ment due to pitching angular velocity.

5.3.4 Steady Angle of Attack

This case was treated in Subsec. 5.1.2 but is included here
so that it may be readily compared with steady pitching and harmonic
pitching. As indicated in Fig. 5-52 the pitching moment coefficient,
Cm is not greatly different from that predicted by the slender-body

theory, but the normal-force coefficient, CN , differs widely, especial-
ly as the Mach number is increased. a

5.3.5 Effect of Boattail Flaring on Stability Derivatives

The effect of a flared aft section in place of the boattail
was also considered by Dorrance. The relation between the two bodies
is shown in the sketch below and the stability derivatives are presented
in the table that follows.

r 2• -

4-deg Flare
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Body CN Cm CN Cm CN. C . CN. Cm.
a 1 q q a a w w

1 0.82 0.93 0.33 -0.13 1.58 -0.13 1.25 -0.002

2 3.63 0.15 1.47 -0.48 3.08 -0.59 1.61 -0.114

The values in the table are those derived from slender-body theory only
ano serve to provide a qualitative comparison of the stability of the
two configurations. The addition of the flared skirt has (1) increased
the lift, (2) moved the static center of pressure rearward and thus im-
proved the margin of static stability, and (3) increased the damping in
pitch. In general, it appears that increasing the base area of a body
of revolution improves its steady and non-steady lift and pitching-
moment characteristics in the Mach number range of 1.3 to 2.3.

5.4 Magnus Moments

Magnus moments (named after Wilhelm Magnus) result from the
combination of the incremental normal forces which occur on a body of
revolution due to its spinning motion and those due to the cross flow
caused by the inclination of the body centerline to the oncoming air-
stream. The circulation created by the rotational motion of the body
in a real fluid when resolved with the normal component of the forces
due to the forward velocity creates forces distributed along the body
at right angles to the mean flow. When the rotational rate is high,
as in the case of shells or certain types of guided or ballistic mis-
siles, the forces and resulting moments thus created may be quite large
(but still considerably less than the usual normal force and moment due
to angle of attack alone). Such forces can also be created by surfaces
placed well forward on a body which could be deflected to produce a
swirl on the body aft of the surfaces, assuming that the body is subject
to angles of attack at the same time as the surfaces. Within the range
of realistic spin ratios, the Magnus forces and moments of a configura-
tion will generally be about 1/15 or 1/10 the usual normal force and
pitching moment due to angle of attack. However, such small effects
may seriously alter the flight path of a projectile, particularly when
it is launched in the presence of high side winds.

In Ref. 107, Greene has summarized the experimental Magnus
force and moment characteristics of 7 and 5-caliber bodies of revolu-
tion at speeds ranging from subsonic to M = 2.87.

It was found that within the test range of the spin parameter,
pd/2V, the Magnus forces acting on these bodies were linearly related
to the spin rate, p. The variation of the Magnus slope coefficient,
C , with angle of attack and supersonic Mach number is shown in

Figs. 5-53 and 5-54 for the 5-caliber and 7-caliber missiles, respec-
tively. Figure 5-55 gives the Magnus slope coefficient for a wide range
of Mach numbers at several angles of attack. From these three graphs
it may be noted that Cyp (see Figs. 5-53 and 5-54) increases with angle

of attack, a, up to about 12 to 16 deg, where it then either decreases
or remains relatively constant. The effects of both angle of attack
and Mach number are less critical as the Mach number increases. Refer-
ence 107 presents no data on the effect of Reynolds number at the higher
Mach numbers. The effect in the low Mach number range as shown in
Fig. 5-57 indicates that the Reynolds number is a very important param-
eter and that the data given in Figs. 5-53 and 5-54 must be regarded as
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giving qualitative rather than quantitative results since the Reynolds
number varies throughout.

The effect of nose shape and spin parameter are both shown in
Fig. 5-56 for M = 1.75 and the 5-caliber body. There is a progressive
increase in the Magnus force as the bluntness of the nose is increased,
this effect being most marked above 8-deg angle of attack. The absence
of a discontinuous shoulder in the Haack-Sears configuration appears to
increase the Magnus force.

Figures 5-58 and 5-59 indicate the center-of-pressure posi-
tions of the Magnus force of both the 5 and 7-caliber bodies to be be-
tween 1 and 2 calibers forward of the base at almost all test Mach num-
bers. For the 7-caliber body, the center of pressure remains essentially
at 2 calibers from the base in the Mach number range noted. As pointed
out previously for the case of the cone, the Magnus moment may be in-
fluenced by the type (or types) of flow over the body and by the loca-
tion of the transition point between laminar and turbulent flow. Al-
though the Reynolds number effect is likely to be greater than that of
the Mach number, a quantitative value has not yet been established.

The marked decrease in Magnus force for the 5-caliber length
relative to the 7-caliber length and the more aft location of its cen-
ter of pressure also should be noted. As indicated in Figs. 5-60 and
5-61, the reduction in Magnus force is much greater between the two
lengths than would be expected from a comparison of the relative plan-
form areas of the two configurations. It should be noted that the cen-
ter of pressure in both cases, although nearer the base for the 5-caliber
body, is actually located at about the same point when the measurement
is made in terms of the total length of each body.

Figure 5-62 shows the effect of various test nose shapes on
the Magnus center of pressure for the 5-caliber body at varying angles
of attack. It may be seen that there is little or no change in the
center of pressure above approximately 8 deg. Even though the data at
small angles is relatively uncertaih, it can be seen that the center of
pressure below 8 deg is moved rearward rather abruptly when the nose
shape is changed from the cone or.typical projectile nose to the tangent
or Haack-Sears shapes. The addition of No. 100 grit to a portion of the
cone nose produces a fairly large shift in the center of pressure at
angles of attack below 6 deg. While this shift is similar to that ob-
served for some of the blunter nose shapes, the Magnus force coefficient
is little changed. It thus appears that a fairly strong viscous effect
is changing the force distribution over the body at the smaller angles
of attack.

Since varying Reynolds number may have a significant effect
on the Magnus moments and complete information is not available, partic-
ular configurations should be tested for this characteristic in the ap-

* plicable range of Reynolds numbers.

In their attempts to develop a rotational fluid theory that
could be applied without many simplifying assumptions to the prediction
of various rotation effects, Nicolaides and Brady (Ref. 106) investigated
Magnus moments on pure cones in supersonic flight. Their studies demon-
strated that the size and the sign of the Magnus moments may be criti-
cally dependent on the nature of the boundary layer, i.e., whether it is
laminar, turbulent, or mixed. For the 20-deg cone used in these tests,
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the value of the Magnus moment slope was found to be a function of the
mean transition distance and could be expressed, with a probable error
of 0.080, as

C = 0.38 - 0.18 it (5-6)
pa

where
m pa

C = slope of Magnus moment coefficient = PI -

pa qS da

it = mean transition distance, in diameters, from the nose

and the subscripts

p = rate of roll

a = angle of attack

A comparison of the probable error with the constants in the
above equation shows that this expression is not very accurate. This
inaccuracy is attributed to (1) the difficulty of determining the mean
transition point from the photographic data (vertical spark shadowgraph),
(2) the distribution and nature of the range data, and (3) the chaotic
nature (alternating turbulent and laminar flow, probable unsteady con-
ditions, etc.) of the boundary layer on many of the rounds.
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Fig. 5-2. Comparison of experimental and theoretical normal-force
distributions for a tangent-ogive cylinder; M = 2, a = 5 and
10 deg. (Source: Ref. 52)
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Fig. 5-6. Comparison of theoretical and experimental values of
initial normal-force slope versus fineness ratio for ogival-
nosed and conical-nosed cylinders at various Mach numbers.
(Source: Ref. 98)
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Fig. 5-14. Effect of Reynolds number on center-of-pressure
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with near-parabolic nose; M = 3.12. (Source: Ref. 99)
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Fig. 5-21. Calculated initial normal-force slope versus base-to-
body diameter ratio; M = 1.8. (Source: Ref. 101)
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various Mach numbers; K = 0.6. (Source: Ref. 102)
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Fig. 5-37. PCm versus fa/"N for cone-cylinders at various angles

of attack; K = 2.0. (Source: Ref. 102)
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(Source: Ref. 102)
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Pressure Drag and Skin Friction 6.1

6. Pressure Drag and Skin Friction

The drag force, as defined in Subsec. 5.2, is the total force
acting in an aft direction parallel to the free-stream direction. The
relationship between lift, drag, normal force, and axial force has also
been stated (Eq. 5-3). Where the angle of attack is small the drag due
to lift is negligible; hence the axial force is an approximate represen-
tation of the drag, and the terms are often used interchangeably. The
over-all drag force may be considered as made up of three components:
(1) pressure, wave, or form drag; (2) skin-friction drag; and (3) base
drag. The first two components will be discussed in this subsection and
the third, base drag, in Subsec. 7.

For bodies with pointed noses, moderate boattailing, and over-
all fineness ratios of 8 to 12 in the range 1 < M < 3, the pressure drag
will constitute one-tenth to one-fourth of the total drag. The skin
friction and the base drag may each contribute about one-third to two-
thirds of the remainder, their proportions depending on the configura-
tion, flight speed, and Reynolds number. As the Mach number is increased
the pressure and skin-friction drag also increase, and the base drag de-
creases until, at about Mach number 5, it becomes negligible in compari-
son with nose drag.

There are two general approaches to the study of the pressure
or wave drag of bodies operating at supersonic speeds. In the first
and simplest approach, the drag may be considered as the integrated
axial component of the pressure over the body. It may then be calcu-
lated in all cases for which a theoretical pressure distribution may be
obtained. The theories, outlined in Subsecs. 2 and 3, are in general
limited to slender bodies at moderate Mach numbers. They give reliable
drag forces over the forward portion of a body but may not be applied
where there is separated flow. A second approach to the drag problem
considers the conservation of energy in the fluid itself. The contri-
bution of the body drag may be equated to the change in energy across
the shock waves, giving rise to the term wave drag. As subsequent dis-
cussion will show, this method may be used for the case of blunt bodies,
where the assumption of small perturbations crnnot be made. The disad-
vantages of this method will also be discussed.

6.1 Pressure Drag of Cones

The zero-lift pressure-drag coefficient for right-circular
conos will be equal to the value of the constant pressure coefficient,
Cp ý(p - pO)/q•, over the cone when the drag coefficient is referenced

to the base area of the cone. The pressure coefficient is tabulated in
Ref. 22 for a wide range of Mach numbers and cone angles; representative
values are shown in Fig. 4-3, which also clearly indicates the points
of shock detachment. A plot of the cone semi-apex angle corresponding
to shock detachment as a function of M (assuming a = 0) appears in
Fig. 4-2. The shock wave is detached for any combination of nose angle
and Mach number above the curve shown in this figure. Figure 4-3 may
also be used with reasonable accuracy for ogives or any other pointed
bodies if the apex angle is substituted for the cone angle. In Sub-
sec. 5.2 it was shown that the increase in drag due to angle of attack
may be expressed as CN sin a or CNa, and as such has been discussed in

Subsec. 5. The axial force on pure cones decreases as the angle of at-
tack increases, as illustrated for two Mach numbers in Fig. 6-1, which
compares the experimental data of Cronvich and Bird (Ref. 178) with the
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theory of Young and Siska (Ref. 68). Both data and theory are in rea-
sonable agreement.

6.2 Pressure Drag of Ogives

The parameters which define ogive geometry are shown in a
sketch in Subsec. 4.2. The geometric variations may be expressed in
terms of

N rrtNd and --

an r

where

IN = nose length
rt = radius of tangent ogive

r = radius of given ogive

Use of these parameters permits a particularly compact and informative
presentation of zero-lift pressure drag data. Such data, presented in
Fig. 6-2, indicates the following conclusions.

1. The drag coefficient for a tangent ogive (rt/r = 1) is only

slightly larger than that of the inscribed cone (rt/r = 0),
and the difference decreases as IN/d increases.

2. The radius of a secant ogive of minimum drag is approximately

twice that of the corresponding tangent ogive for a given
fN/d ratio, i.e., rt/r - 0.5.

3. The minimum pressure drag of a secant ogive is about 83% of
the drag of a cone having the same fN/d, i.e., an inscribed
cone.

Zienkewicz in Ref. 108 has suggested the use of an empirical
expression for estimating the zero-lift pressure drag of an ogive in
terms of the drag, CD I for a cone whose semi-vertex angle is equal to

that of the ogive, i.s.,

C 0.326 + 0.674 1 - (6-1)

c

where 1N' C, and d are defined in a sketch in Subsec. 4.2. This expres-

sion may be used in the ranges of

C/d > 2, M > 1.6, and Md 1
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Pressure Drag and Skin Friction 6.3

Figure 6-3 (from Ref. 93) shows the zero-lift pressure drag
as a function of YN/d for bodies whose noses are ellipsoids of revolu-

tion. This drag was obtained by the integration of measured pressures
at Mach numbers of 1.42, 1.60, and 1.82. The pressure distribution for
these bodies is presented in Figs. 4-110 and 4-111.

6.3 Pressure Drag of Ducted Cones

Methods of calculating the pressure distribution of ducted
bodies of revolution and the typical distributions over such bodies are
presented in Subsec. 4.3. In the case of conical ducted bodies, the
pressure at the leading edge of the lip is virtually a two-dimensional
or wedge pressure which decreases with distance along the cowl until it
approximates the three-dimensional or cone value. As the inlet-to-base-
diameter ratio increases, the projected area of the cowl decreases.
However, the effective area over which the two-dimensional pressure acts
is increased. Because of this, the drag does not decrease in proportion
to the frontal area, but instead remains nearly constant with increasing
inlet size until the inlet-to-base-diameter ratio is greater than about
0.6. This is illustrated in Fig. 6-4 (from Ref. 110) which gives the
calculated drag coefficient as a function of the inlet-to-base-diameter
ratio.

The wave drag of a series of ducted bodies with ogive-cone
cowls was determined by Kennedy (Ref. 79). The study was carried out
for the following combinations of parameters. (See Fig. 6-5 for nomen-
clature and basic geometry.)

ri/r* R/2r* Ai/S M 0 (deg)

0.37 1 0.25 1.50 2

0.40 2 0.50 2.00 3

0.47 3 2.25 4
5 2.50

7.5

However, the method was not applicable for the 18 combinations listed
below.

ri/r* R/2r* At/S M 0 (deg)

0.37 1 0.25 2.25 2
0.50 2.50 3

4
0.40 1 0.25 2.50 2

0.50 3

4

Representative results of the calculations are given in Figs. 6-5 to
6-10. Though they do not cover all the cases given in Ref. 79, they
will permit interpolation for similar shapes.
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The wave drag of a family of conical cowls calculated by Jack
in Ref. 75 is shown in Figs. 6-11 to 6-13. The cowl angles may be de-
rived from

tan 0 = 2•/d (6-2)

It may be noted that the coefficient of wave drag decreases as fineness
ratio, Mach number, or area ratio increases. The dependence of the wave
drag on Mach number is relatively small compared with its dependence on
fineness ratio or area ratio. Although the wave drag decreases with an
increase in fineness ratio, the friction drag (discussed in Subsec. 6.8)
increases. For large fineness ratios, the friction drag becomes the
predominant part of the total drag; hence, this fact must be considered
when designing an optimum cowling.

The wave drag for one of the cowlings is shown as a function
of Mach number in Fig. 6-14 (from Ref. 75). At Mach numbers below 2
the shock from the inner body passes outside the cowl lip and creates
additive drag. The additive drag obtained from this figure is quanti-
tatively doubtful but sufficiently accurate to indicate the rapid rise
in drag at below-design Mach numbers.

The experimental pressure drag of several cowls having large
lip angles were obtained at Mach numbers of 1.90 to 4.90 by Samanich
(Ref. 80). The cowls are shown in Fig. 4-70, and a typical pressure
distribution is noted in Table 4-1. The wave drag of several of these
cowls is shown in Figs. 6-15 and 6-16.

The empirical chart in Fig. 6-17 may be used to estimate the
pressure-drag coefficient of cowls of approximate or actual elliptical
contour. A combination of data from Ref. 80 was utilized for this
figure. (Its use is illustrated by the arrows.) The pressure-drag
coefficient at Mach 3.4 of an elliptically contoured cowl having a pro-
jected area that is 20% of the total frontal area (Ai/S = 0.80) and an
initial angle of 34 deg is found by following the arrows. The coeffi-
cient so obtained is approximately 0.096.

6.4 Pressure Drag of Boattails

Since the flow conditions and pressures over a boattail in-
teract intimately with the base pressure and drag, it is highly advan-
tageous to combine these phenomena for treatment under one general
heading. Drag and lift characteristics of conical and ogival boattails
are therefore brought together for discussion in Subsec. 7, which is
devoted to base drag. A discussion of pressure distribution appears in
Subsec. 4.4.

6.5 Pressure Drag of Skirted Bodies

Calculations of the wave drag on a series of skirted bodies
shown in Fig. 5-20 was made by Deep and Henderson (Ref. 101). Repre-
sentative values of the drag coefficient for M = 1.8 and 2.48 are given
in Fig. 6-18 for one of the geometric families (see Subsec. 5.14).

224



Pressure Drag and Skin Friction 6.7

6.6 Cones of Elliptical and Other Cross-Sections

As indicated in Subsecs. 4.1.3 and 5.2.1, the cross-sectional
shape has only a secondary influence on the drag of slender bodies.
However, since shapes other than circular may be desired (e.g., to meet
packing requirements or system specifications), it is necessary to know
the aerodynamic characteristics of cones of elliptical cross-section.
These characteristics are treated in Refs. 15, 69, 70, and 71. The drag
coefficients shown in Figs. 6-19 to 6-21 are taken from Ref. 70. The
effect o•__variations in effective fineness ratio (defined by the param-
eter I/N'/ab) on the resulting drag coefficient of such cones is shown
in Fig. 6-19, and the reduction in drag to be accomplished as a function
of Mach number with various values of eccentricity as compared with the
drag of a corresponding circular cone (same length and cross-sectional
area) is shown in Figs. 6-20 and 6-21.

Reference 70 also treats cones whose cross section is a drop
shape and also a triangle with rounded corners. A comparison of the
drag coefficients for all the cones of different cross section is given
in Fig. 6-22 for Mach numbers of 1 to 9.

6.7 Minimization of Pressure Drag

Much effort has been directed towards the design of nose and
body shapes that have a minimum drag coefficient. In his early studies,
von Karman found that the optimum nose shape very closely resembled that
of a secant ogive having a radius of twice that of the corresponding
tangent ogive (see Subsec. 6.2) and a rounded nose with a diameter one-
tenth that of the body. By the use of an approximate equation for the
wave drag of slender bodies of revolution, Adams in Ref. 111 determined
the optimum shapes for the minimum wave drag of three specific families
of boattailed bodies. The first family consists of bodies having a
given length and base area and a body contour passing through a pre-
scribed point between the nose and base. The second has a fixed length,
base area, and maximum area. The third has a given length, volume, and
base area. The method presented is easily generalized to determine
minimum wave-drag profiles which pass through any prescribed number of
points. According to linearized theory, the optimum profiles are found
to have pointed noses, a zero slope at the body base, and no variation
of the wave-drag coefficient with Mach number. For the bodies whose
contours pass through a specified point, the maximum body diameter is
usually larger than the diameter at the specified point. The location
of a specified maximum diameter is not arbitrary but is determined from
the ratio of base diameter to maximum diameter. As long as the wetted
area of the body and the Reynolds number do not vary widely, the skin
friction will generally be independent of the over-all shape and hence
need not be considered for an optimum body design. The family of shapes
considered is given in Fig. 6-23 and the drag results obtained in
Ref. 111 are shown in Figs. 6-24 to 6-36.

Haack (Ref. 112) obtained the same minimum drag bodies as
Adams but based his work on Ward's equations (Ref. 15) instead of
von Karman's drag equations.

Harder and Renneman in Ref. 113 applied higher-order terms to
the determination of drag and optimum body shape and established shapes
which have slightly less drag than the "Haack-Adams" bodies. The drag
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results are compared in Fig. 6-25. (Since the equations from which
these curves were obtained are lengthy, the reader is directed to the
reference for further details.) The optimum body shapes obtained by
Harder and Renneman are compared with those obtained by Haack and Adams
in Fig. 6-26 for two values of the volume parameter and a fixed value
of the base area parameter. It may be seen that there is little dif-
ference between the optimum shapes derived by the different methods.
There is a small but definite effect of Mach number on the Harder-
Renneman optimum shape as is shown in Fig. 6-27.

Bromm and Goodwin (Ref. 114) conducted an experimental in-
vestigation into the effect of varying Reynolds number and Mach number
on the wave drag at zero lift for seven boattailed bodies of revolution
that were designed for minimum wave drag in accordance with the Haack-
Adams methods. Their tests covered a Reynolds number range of approxi-

mately 2 x 106 to 107 at Mach numbers of 1.62, 1.93, and 2.41. These
tests indicated that there was little variation in the pressure distri-
bution with Reynolds number in the range tested (see Figs. 4-81 to 4-83).
The experimental wave-drag coefficients obtained by integration of the
pressures and shown in Fig. 6-28 were less than the values predicted by
the Adams theory. The discrepancy increased with Mach number to a value
as great as 45c of the theoretical drag for low ratios of base area to
maximum area. This is a further contradiction of the Adams theory which
implies that the drag is independent of Mach number.

Both Lighthill's method (Ref. 11) and the method of charac-
teristics predict lower drag for some boattailed bodies than does the
method given by Haack and Adams. A comparison of the drag obtained by
the several theories is given in Fig. 6-29, but even here the Mach num-
ber effect is small compared to that shown in Fig. 6-28. It would ap-
pear that there are real flow effects on boattails that are not taken
into account by the theories.

In Ref. 115 Parker develops a technique for determining the
minimum external wave drag of ducted as well as pointed bodies of revo-
lution, without boattailing, assuming attached shock waves at the lip.
The expressions for the drag of various sections of the body are some-
what complex but have been solved for several cases.

In Ref. 42, Eggers, Resnikoff, and Dennis also determined the
approximate shapes of non-lifting, non-boattailed bodies for minimum
pressure drag in the Mach number range between 2.73 to 6.28. With the
aid of Newton's laws of resistance, the investigations were carried out
for various combinations of body length, base diameter, surface area,
and volume. In general, it was found that when the body length is fixed,
the body for least drag has a blunt nose; but when the length is not
fixed, the body has a sharp nose. The additional effect on minimum drag
shape of curvature of the flow over the surface is shown to increase the
bluntness of the shapes in the region of the nose and the curvature of
the body in the region downstream of the nose. According to calculations,
these shape modifications have only a slight tendency to reduce drag.
Several bodies of revolution of fineness ratio 3 and 5, including the
calculated shapes for minimum drag for a given length and base diameter
and for a given base diameter and surface area, were tested at Mach num-
bers of 2.73 to 6.28. The comparison of theoretical and experimental
fore-drag coefficients indicates that the calculations for minimum-drag
bodies produced reasonably good results. The body for a given length
and base diameter has as much as 20% less fore drag than a cone of the
same fineness ratio.
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Somewhat complex analytical expressions are given in param-
etric form in Ref. 42 for the minimum-drag body under the assumptions
of a given length and diameter, length and volume, length and surface
area, base diameter and volume, and base diameter and surface area.
Figure 6-30 shows the shape of several minimum-drag bodies of fineness
ratio 5 calculated from these formulae. The bluntest nose is obtained
when the drag is minimized for a given length and surface area. For a
given diameter and volume the nose is a cusp. The expression for the
minimum-drag shape for a given length and diameter may be closely ap-
proximated by

for n 1 (6-3)

where, in the usual terminology,

r = radius of any cross section

x = distance from apex

d = maximum diameter

f = total length

When n = 1, the body is a cone, i.e., the minimum-drag body for a given
base diameter and surface area. A series of bodies based on this rela-
tion with various values of n were tested throughout the Mach range of
2.73 to 6.28 and for fineness ratios of 3 and 5; the results are shown
in Fig. 6-31. It can be seen that the nose defined by the exponent
n = 3/4 provides the least drag of any of these shapes at both length-
to-diameter ratios, and this has been found to be generally true through-
out a wide range of Mach numbers and fineness ratios.

Bodies of revolution having fineness ratios of 6.04 and 12.5
were investigated by Hart and Katz for the purpose of determining how
drag is affected when the location of the maximum body diameter is
varied. Results taken from Ref. 116 (by Hart and Katz) and shown in
Fig. 6-32 indicate that the least drag will be encountered when the
point of maximum diameter is located about 60% aft of the nose. It
should be noted, however, that only relatively low Mach numbers are con-
sidered in this study and that the effect of tail fins is also included.

6.8 Pressure Drag of Blunt Bodies

Perturbation theories cannot be used for estimating the drag
of round-nosed bodies because the assumption of small perturbations on
which such theories are based is violated. It is therefore necessary
to rely on other methods.

* When the shape of the head shock is known, the drag can be ob-
tained in theory by computing the momentum loss through the shock. But
in practice, even though a photograph of the head shock is available,
the field of view is usually so limited that a considerable portion of
the associated shock loss cannot be computed. The recent work of
Whitman in Ref. 117 on the asymptotic behavior of shocks associated with
axially symmetric bodies may prove useful in extrapolating the form of

227



6.8 NAYVW`PS Report 1488 (Vol. 3, Sec. 8)

the head shock beyond the limits imposed by the photograph. The com-
putation of drag by means of losses through associated shocks must take
into account all shocks arising from the configuration. A consideration
of the bow shock alone will provide only a lower limit for the pressure
drag.

If the shape of the shock is unknown the situation is even
more discouraging. Some expressions for the general shape of the bow
shock at large distances from the body are presented in Ref. 117. In
addition, Busemann in Ref. 118 offers criteria for determining at which
points on the body shocks (either attached or detached) will occur.

Statements of such nature, however, do not provide an accur-
ate basis for developing theoretical methods for the computation of
flows with detached shocks. Semi-empirical methods have been developed,
one of the best known being that of Moeckel (Ref. 119). When applied
to the location of detached shocks, Moeckel's method yields results of
"engineering" accuracy; when used to estimate drag, however, its results
are much less certain and it should be used only as a last resort.

Sometimes a rough, though adequate, estimate of the nose drag
of round-nosed bodies can be made by superimposing the wave drags of
certain basic shapes, i.e., by combining the form drag of the hemis-
pherical nose with the pressure drag on the afterbody, assuming that
the pressure distribution on the afterbody is uninfluenced by nose
bluntness.

Actually, however, the rapidly accumulating mass of experi-
mental data on this subject is making the use of such techniques less
necessary, and such data should be utilized wherever possible. Some
of these data are presented in the following subsections.

6.8.1 Pressure Drag of Spheres

The drag of spheres, while of notable academic interest, is
also of practical interest. Spherical or near-spherical shapes are em-
ployed in certain phases of ordnance, and hemispherical noses are of
growing importance in high-speed or recovery missiles because of their
favorable heat-transfer properties. The drag coefficient of steel and
aluminum spheres at supersonic speeds has been measured by several in-
vestigators (Refs. 121 to 124) and many of the results are plotted in
Fig. 6-33. The drag contribution of the forward half of the sphere was
obtained from integration of pressures measured in wind tunnels, but
most of the other measurements were made in free-flight ranges on spheres
whose diameters ranged from 0.25 in. to 1.5 in. Skin-friction effects
which may be included in Lhe fIlight-test data are negligible in compari-
son with the pressure drag. In the studies of Ref. 121, the effects of
extreme roughness were found to produce only a slight increase (< 3%)
in drag.

It should be noted that the curves of Fig. 6-33 are applicable

for Reynolds numbers above approximately 104 based on sphere diameter.
Below this value, the drag coefficient steadily increases as the Reynolds
number is decreased. While exact information concerning the value of
drag for a wide range of Mach numbers in this Reynolds number range is
not available, some idea of the trend and values at particular conditions
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can be obtained from Figs. 6-34 and 6-36 (from Refs. 122 and 124,
respectively).

Charters and Thomas in Ref. 121 developed the following em-
pirical expressions for the shape of the mean drag coefficient curve
of Fig. 6-36 in the various speed regimes.

Subsonic (0 ! M : 0.5)
(6-4)

CD = 0.489

Transonic (0.5 • M • 1.6) (6-5)

CD = 0.807 + 0.764 (M - 1) - 0.206 (M - 1)2 - 0.918 (M - 1)3

Supersonic (1.6 5 M • 4.0)

C = 0.970 + 0.306 - • - 0.605 - y (6-6)

Hypersonic (4.0 m Pd 10)

(6-7)
CD = 0.91

6.8.2 Pressure Drag of Rotating Cubes

The drag of 1/4-in. and 3/8-in. rotating cubes was measured
by Hansche and Rinehart (Ref. 120) in the speed range between M = 0.5
to 3.5, and the results are shown in Fig. 6-35. Since the cubes were

rotating, the frontal area varied. A value of 1.5 d2 (where d is the
cube edge) was arbitrarily taken as the reference area in computing the
drag coefficient presented in Fig. 6-35.

6.8.3 Alleviating Pressure Drag of Blunt Bodies

In many applications where it is necessary to maintain low
drag, the use of blunt noses imposes an almost intolerable aerodynamic
penalty. Means have therefore been sought to alleviate the drag of
blunt bodies without impairing the functioning of the guidance system
housed in the blunt nose. One method of accomplishing this purpose is
by the use of a spike projecting ahead of the nose as illustrated in
Fig. 6-37. With no projection of the spike there is a detached bow
shock with its associated high drag. As the spike is pushed forward,
the shock pattern and pressure distribution does not change markedly
until the spike is long enough to reach the shock wave. As it is pushed
farther forward the boundary layer on the rod is unable to sustain the
pressure rise through the normal shock, and a violent instability is en-
countered. This phenomenon is described by Crawford in Ref. 132 and
Jones in Ref. 133. Additional forward movement of the rod results in
eventual transition to a stable shock configuration consisting of a
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conical shock attached to the spike and having in its wake a "dead-air"
region that is conical in form and embracing most of the blunt nose, as
shown below.

Conical 0

Separated Regio

F low 1

Shock Wave

At the junction of the dead-air region and the body nose, a
secondary shock is invariably formed. Apart from the losses associated
with this secondary shock and with those of the viscous dissipation in
the dead-air region, the drag may be regarded as that of the equivalent
cone cylinder. As the spike is projected still farther, a point will
be reached at which the boundary layer formed on the rod immediately
upstream of the separation point becomes turbulent. The boundary layer
is then capable of sustaining a much larger pressure rise, and there is
consequently a rapid movement of the separation point in a downstream
direction. Such a downstream movement of the separation point results
in an increase in the apex angle of the equivalent cone and an increase
in drag coefficient.

These changes in flow regime are reflected in Fig. 6-37 (from
Ref. 133), in which the nose drag (including skin friction) is plotted
against rod projection for two different degrees of nose bluntness.
The drag is appreciably reduced as the length of the rod increases until
an optimum rod length equal to about 3.5 or 4.0 times the nose radius
is reached, after which the drag increases again. (It should be noted
that the use of spikes results in an increase in heat transfer to the
nose of the body. It is not difficult to envisage circumstances where
the heating penalty might completely outweigh any advantages to be
gained through drag reduction.) Crawford's detailed study in Ref. 132
presents the pressure distribution and integrates it to give the drag
of a hemispherical nose with varying rod lengths and Reynolds numbers.

The effect of the spike length upon the pressure drag of the
hemisphere is shown in Fig. 6-38 (from Ref. 132). In this case the
drag coefficient was determined by graphically integrating the areas

under curves of the pressure coefficients plotted against (r/R) 2, where
r is the local radius and R is the radius of the hemisphere. It is ap-
parent that the pressure drag of the hemisphere is reduced as the spike
length is increased to 3 diameters. There is little change in the drag
coefficient as the spike length is further increased to 4 diameters ex-

cept in the case of Reynolds numbers above approximately 0.8 x 10 6  In
this case the drag coefficient is associated with the sharp increase in
the angle between the separated flow and the body, and the rapid up-
stream movement of the boundary-layer transition and consequent flow
separation.

The drag coefficients are plotted as a function of Reynolds
number in Fig. 6-39 (from Ref. 132), showing again the drag reduction
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caused by the increasing spike length and indicating the manner in
which the drag coefficient increases as the Reynolds number is increased.
This drag increase is caused by the expected increase in pressure under
the separated boundary layer in the region of transition.

6.9 Skin-Friction Drag

Inasmuch as skin-friction, heat-transfer, and other boundary-
layer phenomena are given detailed treatment in Sections 13 and 14 of
this Handbook, only sufficient information will be presented herein to
permit computation of the skin-friction drag for any given configura-
tion under a wide range of flight parameters. It should be noted also
that since the skin friction may account for as much as half of the
zero-lift drag of a body, the estimates must be as accurate as present
information will allow.

6.9.1 Laminar Skin-Friction on a Flat Plate

Although the behavior of laminar boundary layers is amenable
to theoretical treatment, the mathematical complexities of existing
theories are such that investigations have been restricted essentially
to the two-dimensional or the flat-plate case. Values of the mean
skin-friction coefficient, Cf, for a flat plate as a function of free-

stream Mach number and the Reynolds number (based on distance from the
plate leading edge and the free-stream velocity and viscosity) are pre-
sented in Fig. 6-41 (from Ref. 135). The value of the local laminar
skin-friction, cf, may be obtained from

c C (6-8)
f~ f

The flat-plate values of skin-friction coefficients may be used along
a cylindrical body without an appreciable loss of accuracy. There are,
however, three effects which may significantly alter the flow pattern
and boundary-layer structure.

1. Where the longitudinal or meridian curvature is large, cen-
trifugal forces may become significant. These forces are
negligible if both 8, the boundary-layer thickness, and

62 dK/dx, where K is the curvature of the meridian, are small.
These conditions are usually satisfied in practice except in
the immediate neighborhood of discontinuities in the slope of
body contour.

2. Skin friction is affected by the lateral curvature to a lim-
ited degree as shown in Fig. 6-40 (from Ref. 126, which treats
this effect in detail). From this figure it can be seen that
in the case of bodies of extremely high fineness ratio, when
the local body radius becomes comparable with the boundary-
layer thickness, this effect can become significant.

3. In regions of increasing diameter the boundary layer tends to
thin out. This causes an increase in the slope of the veloc-
ity profile and hence in skin friction. In regions of dimin-
ishing diameter, the reverse holds true.
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Mangler (Ref. 127) derived a transformation which, when the
local boundary-layer thickness is small compared with local section
radius, makes it possible to translate the problem of the compressible
laminar boundary-layer on an axially symmetric body into that of a two-
dimensional boundary-layer flow along a curved wall. Reference 128 S
compares the results of computations which utilized flat-plate formulae
with those of a more exact but time-consuming analysis involving this
Mangler transformation in order to determine the over-all drag of an
RM-10 body (parabolic in form and having a fineness ratio of 12.2).
The two estimates thus derived differed by only 6%. Though the errors
associated with the use of flat-plate formulae are much larger for the
case of blunt-nosed bodies, their use is justified on the grounds that
skin-friction drag makes up a small proportion of the total drag of
such a configuration so that larger errors in its estimation can there-
fore be tolerated.

6.9.1.1 Laminar Skin-Friction on Nose Sections

Three-dimensional effects on nose sections preclude the ap-
plication of the flat-plate formula. It has been shown that a good
approximation for the mean skin friction on all conical and near-conical
noses may be obtained by multiplying the flat-plate values of Fig_ 6-41
by the factor 2/,1-. The local value is found by multiplying by '/3/2
(Ref. 136).

6.9.2 Turbulent Skin-Friction on a Flat Plate

Even though considerable effort has been expended on theory
and experiment, the mechanism of turbulence is not yet well understood.
The derived relationships are consequently of a semi-empirical nature.

One of the most reliable formulae available for the estimation
of mean turbulent skin-friction on a flat plate is that of Van Driest,
given in Refs. 131 and 135. This formula was used to obtain the turbu-
lent skin-friction curves shown in Fig. 6-42.

Another formula which is rather more compact though somewhat
less accurate is recommended bv Monaghan in Ref. 174. This formula is
expressed as

2.2

Cf = 0.074 Re- 1 / 5 ( + 0.9 1--i M2) (6-9)

Axially symmetric cases which have thus far been treated in
the literature are cones by Van Dyke (Ref. 129) and axial cylinders by
Eckert (Ref. 130). When the results of Eckert's analysis of the turbu-
lent flow along an axially aligned cylinder, presented in Fig. 6-43,
are compared with the analogous results for the laminar boundary layer
already given in Fig. 6-40, the turbulent boundary layer in correspond-
ing cases is shown to be less sensitive to lateral curvature than the
laminar. Hence the application of flat-plate formulae to curved sur-
faces is even more justified in turbulent applications. For turbulent
flow the relation between local skin-friction coefficient and the mean
value is

cf Cf (6-10)
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6.9.2.1 Turbulent Skin-Friction on a Cone

The flat-plate mean turbulent skin-friction coefficient may
be multiplied by 2/1W to give the mean skin-friction value for any cone.
The local conical skin-friction coefficient is 413/5 times the mean
flat-plate value.

6.9.3 Boundary-Layer Transition

Since the mean turbulent skin-friction values for the flat

plate in the Re range of 10 5 to 107 may be two to six times as great
as those in the laminar boundary layer, the location of the transition
from laminar to turbulent boundary layer is a very important factor in
the estimation of the total skin-friction coefficient for a missile.
The accurate prediction of the point or even the region of transition
is extremely difficult since it is sensitive to many influences, among
which are stream turbulence, Mach number, nose shape, pressure gradient
along a meridian, surface temperature, and finish. Even when some of
these factors are well defined the transition region cannot be located
with certainty. A good review of these factors is given by Gazely in
Ref. 125.

6.10 Evaluation of Skin Friction in the Presence of Heat Transfer

Since heat transfer is treated fully in Section 14 of the
Handbook, this subsection will present only the equations and charts
necessary to find the surface temperature of supersonic vehicles. The
skin-friction coefficient is markedly influenced by the temperature of
the surface over which the air is flowing, and this temperature is in-
fluenced not only by the ambient temperature but by the previous flight
history of the missile.

To obtain a complete evaluation of the skin friction during
any flight, calculations must be made step by step. For each interval
the skin friction and the trajectory would be determined by iteration.
Since the wall temperature depends on the heat capacity of the skin,
any variation in skin materials or thickness must be accounted for.
Such a calculation would be long and complex. A simplified technique
for obtaining an accurate calculation of skin-friction coefficient in
supersonic flight in the presence of heat transfer has been developed
by McIntosh, Hebert, and Dershin in Ref. 175. This method employs an
estimated flight trajectory and computes the skin temperature and skin
friction step by step along it. The method is based on standard tech-
niques for calculating temperatures on a surface in a supersonic stream
and on an approximate average heat-transfer coefficient. From these
the temperature of the wall at any location at any particular time may
be calculated. The method is described fully and treated with illus-
trative examnles in Ref. 175. Only the outline is presented here.

6.10.1 Computation of a Preliminary Trajectory

An estimated trajectory is calculated by any of the usual
methods under the assumption of an insulated body surface. The skin-
friction value at each step is dependent on the Reynolds number corres-
ponding to calculated altitude, velocity, and missile length as the
characteristic dimension. For the given Re and M, Cf is found from
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the curve of Tr = T in Fig. 6-44, and Cf from the Karman-Schoenherr

curve in Fig. 6-41.

6.10.2 Computation of Temperature during Boost

The skin temperature, TW1, at the end of boost is determined
from the following equation.

ht 1

Tw Tr + (T - Tro) + hf1 e
h 1 (T ht ro (6-11)

ht1

-•1 •)-(Tl t- Tro) G 1 ----

where

T = known wall temperature
wo

Trl = recovery temperature

h = heat-transfer coefficient

k = thermal conductivity of skin material

f = thickness of skin

G = heat capacity of skin

t = time

and subscript

o refers to zero tinte

1 refers to time at the end of boost.

Two and Tro are assumed to be known. Theoretically they would be equal

and the second term of Eq. 6-11 would disappear. In practice it is
found that the missile skin before launching is hotter than the ambient
air, i.e., Two > Tro. The value of Trl can be taken from Fig. 6-45 and

from the known parameters of the estimated trajectory; hI can be taken
from Fig. 6-46 and iiom the equation

M 0.8
h1 =h° 1 (6-12)
1 o 0.2x

where

x is the distance from the vertex to the point in question

h is taken as 3/4 h 1

G, f, k are inherent in the skin specifications (as follows).
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Airframe Material Characteristics

G 2  k
Material (BTU/ft2) (BTU/ft sec*F)

Steel 5.02 (in.) 7 X 10-3

Aluminum 3.25f (in.) 2.5 X 10- 2

Magnesium 2.371 (in.) 1.2 X 10-2

6.10.3 Computation of Temperature during Cruise

For times of powered flight, i.e., front t1 to t 2 seconds, the
wall temperature at any time, t, is given by

ht ht1
Twt =(Trt - [I+ 1 T lro e (e

h (6- 13)

+( t2 r1 r )e1 - 1

To find Trt', Tr and Tr 2 are plotted as a function of time (as shown

below) and a linear variation of T is assumed between the two points.
r

T T

ra Time
to 1t t t2

Tr may then be read off for any value of t1 < t < t 2 . A similar plot
is made for h as a function of t.

6.10.4 Computation of Maximum Temperature during Cruise

The maximum temperature attained during sustained flight is
obtained from

Tr  
+ (614)

T w - k loge (T T h T)T(ht1

tl o (e -G + r2 el23
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Values of G and k are those tabulated previously for typical airframe
materials.

6.10.5 Computation of Skin Friction

Using the computed values of TW/T 1 for the required point on

the trajectory, the value of Cf/Cf may then be read from Fig. 6-44 or
computed from the equation, i

Cf/Cfi (0.5 + 0.5 Tw + 0.03916M12)-2/3 (6-15)cf/cf T 1. 1 .

The value of Cf. is given in Fig. 6-41 (Karman-Schoenherr line) or may
1

be computed directly from

0.242 = log,0 (Rex Cf) (6-16)

6.11 Influence of Surface Roughness on Transition and Skin Friction

Up to this point, attention has been directed toward the drag
of smooth surfaces. However, no surface is smooth in a strictly geomet-
rical sense. The surface of a typical missile or aircraft contains many
small protrusions such as rivet heads, lap joints, etc. Even the sur-
face itself is generally full of pits and ridges, the size and nature of
which would be dependent on the fabrication technique. These irregulari-
ties affect the drag in two ways. In the first place, they give rise to
disturbances in the laminar boundary layer which tend to promote an early
transition to turbulent flow. In the second place, each protrusion, if
it is sufficiently large, has a "form drag" of its own and thus contrib-
utes directly to the total drag. (Sometimes in order to avoid an ad-
dition to the over-all drag force, it is desirable to hold the roughness
to a level low enough to prevent individual roughness elements from
having any form drag. This imposes a more exacting finish specification
than is required to avoid a marked change in transition location.)

Schlichting in Ref. 171 presents a summary of the qualitative
and quantitative aspects of the influence of surface roughness on skin-
friction drag for the low-speed case. But comparable data which can be
applied to the supersonic case is meager. Certain available data
(Refs. 172 and 173), however, suggest that the influence of roughness
is qualitatively (and in certain respects, quantitatively) much the
same in supersonic flow as in subsonic or transonic. Czarnecki,
Robinson, and Hilton (Ref. 173) derived the skin-friction coefficient
from drag measurements made on four ogive-cylinder models having sur-
face roughnesses of 23, 85, 240, and 480 A in. rms. The effects of sur-
face roughness at the test Mach number of 1.6 were found to be similar
to those at subsonic speeds. Smoothed curves of the skin-friction co-
efficient, Cf (based on wetted area) as a function of Reynolds number

w
are shown in Fig. 6-47 together with the theoretical curves for laminar
and turbulent boundary layers. The difference between the experimental
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data and the theoretical curve in the laminar-flow region is believed
to be due to the low accuracy inherent in measuring low pressures and
small forces. The variation of W f with Reynolds number is given in

Fig. 6-48 for various values of k'/f, where k' is admissible maximum
roughness height, I is body length, and Wf = Cf rough - Cf smooth.

Figure 6-49 shows the critical roughness height, k'/f beyond which the
drag will be increased due to the roughness. The straight line repre-
sents incompressible data obtained by Nikuradse for turbulent flow over
a flat plate with varying roughness. The two largest test roughnesses
(from Ref. 173) agree well with Nikuradse's values, but the remaining
two were tested at a Reynolds number much lower than the critical one.
The admissible roughness, k', may be found from

k' (in.) = 198 (Re/ft)-0" 9  (6-17)

6.12 Influence of Large Protrusions on Skin Friction

The influence at supersonic speeds of large protuberances
such as rivet heads, lap joints, or other surface irregularities has
not been studied extensively. Hopko (Ref. 172) made some such measure-
ments by free-flight tests. The configurations he studied are shown
with the resulting drag curves in Fig. 6-50. In the latter figure the
drag has been broken down into its constituent parts in order to show
clearly the added drag due to the protrusions. It may be as large as
15% of the total drag.

In the case of larger protrusions such as antennae, housings,
booster shoes, etc., the lift and moment characteristics of the con-
figuration may also be affected. Hence, such features should be in-
cluded in the over-all experimental studies of the aerodynamic charac-
teristics of a given configuration.

6.13 Simplified Computer Methods of Determining Drag for Design
Studies

A simplified method has been established by Bowers in Ref. 198
for making and programming engineering approximations of drag coeffi-
cient curves which are used in making preliminary design studies and
calculating missile trajectories. The method consists of programming a
series of drag curves, each a function of Mach number, determining a
multiplying constant for each curve, and then summing the product of
the curves and their respective constants.

A practical set of curves comprises the following essentials.

1. Cone drag curve, fl(M), of a 15-deg half-angle cone (Fig. 6-51).
Variations of cone angle from this basic curve causes the drag
to vary approximately as the square of the sine of the angle.
Thus, C1, the first constant, is given by

= sin2 0 5  (6-18)
C1 sin2 15 S
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where

0 = cone semi-angle

Sc = frontal area of cone

S = reference area

2. Hemisphere drag curve, f 2 (M), which may be taken from

Fig. 6-33 and its associated constant,

S
C = nose (6-19)2 S

When the blunt nose may not be approximated by a hemisphere,

S
C = k nose (6-20)
2 5

where

k = ratio of Newtonian drag on the blunt nose to the Newtonian
drag of a hemisphere (i.e., 0.8 < k < 2)

3. Base drag coefficient, f 3 (M), which must be chosen according

to the type of base under consideration, with or without boat-
tailing; closed or annular, with or without an issuing jet.
Examples of such drag curves are presented in Subsec. 7. The
constant is

Sb

C = - b (6-21)

4. Skin-friction drag curve, f 4 (M), which will also be dependent

on the anticipated altitude and Reynolds number. It is usual
to assume all turbulent flow and either an average altitude
(weighted with respect to time) or the similarly derived aver-
age Reynolds number. A curve of Cf vs M may then be construc-
ted from Fig. 6-42. The constant is

C = Wetted Area (6-22)4 S

The over-all drag coefficient as a function of Mach number is
then

CD = ClfI + C2 f 2 + C3 f 3 + C4 f 4  (6-23)

The technique may be expanded as desired. It may be necessary to con-
sider a hemispherical cap followed successively by several conical seg-
ments rather than just one, or a curve may be added for an ogival boat-
tail portion.
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Pressure Drag and Skin Friction Fig. 6-7

S 5.4

A

I A00 0
f il l )o I lif l . I

I I I [A I
I [ f i l I I I T I 5.4I
: f i l l r I I

1 11 f l l 4-

: 1 it I f I f i l

fill

-LI I

A 0d 00
t* U2-

it I0 L 0 )

Ca - 243



Fig. 6-8 NAYWIPS Report 1488 (Vol. 3, Sec. 8)

0

'.4

tkok

044v

*04

CS 0

$4.4

CS

fill

Ila0

244-



Pressure Drag and Skin Friction Fig. 6-9

'4.

4z 0

$4 0

(0

o1; 8 3
V0 0

2 45



Fig.* 6-10 NAVUEP Report 1488 (Vol. 3, Sec. 8)

0b

*>
qm 4J

0

o 0

If 0 4:

4J 4

JIJI

U)0

*Cq

o v
o f I I 0 1 l

246f



Pressure Drag and Skin Friction Fig. 6-12
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Fig. 6-11. Calculated wave drag for conical cowls versus fineness
ratio; Ai/S = 0.4, 0.6, and 0.8; M = 1.5, 2.0, and 2.5.

(Source: Ref. 75)

0.05 -- /d •-.05 I-

44U Ai/S =0. 6 4•,

S4,

0.01 0. 001 74-- 10 - --

o 0. 005 70.0005 -- 10 -

U I

Ai/SAi/S = 0.8

S0.001 0. 0001
1 2 3 1 2 3 1 3

Free-Stream Mach Number, M.,

Fig. 6-12. Calculated wave drag for conical cowls versus Mach

number; Ai/S = 0.4, 0.6, and 0.8; fN/d = 4, 7, and 10.

(Source: Ref. 75)

247



Fig. 6-13 NAVWEPS Peport 1488 (Vol. 3, Sec. 8)

0.04 -0. 020 0.016
i,/ 4 7 ul=

__ _-- 1.5
U ---- 2.0

0.03 - 0.015 0.012- 2.5

Y~d 10

4 0.0100,8
eI'

440.012 0.0105004 ij __

0 1.0 00 0.5 1.0

Area Ratio, Ai/S

Fig. 6-13. Calculated wave drag for conical cowls versus area
ratio; YN/d = 4, 7, and 10; M = 1.5, 2.0, and 2.5.

(Source: Ref. 75)

p0.04C1: Ai/S = O 3

-J d = 4.0

"• 0.03i
Doubtful Accuracy

o '

b 0.02_\

\ esign

e 0.01, 1 -

1.8 2.2 2.6 3.0 3.4

Free-Stream Mach Number, MOO

Fig. 6-14. Wave drag as a function of Mach number for a
nose inlet design for M = 2. (Source: Ref. 75)

248



Pressure Drag and Skin Friction Fig. 6-15
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Pressure Drag and Skin Friction Fig. 6-17
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Pressure Drag and Skin Friction Fig. 6-20
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Pressure Drag and Skin Friction Fig. 6-24
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Pressure Drag and Skin Friction Fig. 6-27
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Pressure Drag and Skin Friction Fig. 6-30
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Pressure Drag and Skin Friction Fig. 6-33
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Pressure Drag and Skin Friction Fig. 6-36
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Pressure Drag and Skin Friction Fig. 6-38
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Pressure Drag and Skin Friction Fig. 6-41
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Pressure Drag and Skin Friction Fig. 6-43
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Pressure Drag and Skin Friction Fig. 6-45
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Fig. 6-45. Variation of recovery temperature ratio versus Mach
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(Source: Ref. 175)
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Pressure Drag and Skin Friction Fig. 6-47
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Pressure Drag and Skin Friction Fig. 6-49
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Pressure Drag and Skin Friction Fig. 6-51
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Base Drag 7.

7. Base Drag

For a body of revolution flying at supersonic speed, as much
as one-half the total drag of the full configuration, depending on the
over-all design and Mach number regime, may be attributed to the nega-
tive pressure (that which is lower than free stream) over the base.
Such a quantitative relation between base drag and foredrag is encoun-
tered primarily in the low supersonic regime, where the pressure on the
base may be reduced to as much as one-half that of the ambient air,
while the nose pressure may be kept relatively low by use of slender
nose shapes, As the Mach number is increased, however, there is a
limit to the drag which can be produced by the base since the under-
pressure cannot exceed one atmosphere, whereas the positive pressure
on the nose will continue to increase with Mach number. At usual flight
conditions, the base pressure becomes negligible at Mach numbers beyond
4 or 5.

In considering the cause of this negative base pressure, the
flow phenomenon in the region of the base may be likened to a jet pump.
The external flow tends to entrain the dead air in the region immedi-
ately aft of the base and carry it downstream. There is, however, no
supply from which more air may be obtained to replace the air that is
carried away. The pump therefore has no supply and its only effect is
to reduce the static pressure at the base.

The problem of predicting the base pressure at supersonic
speeds has received considerable attention ir recent years and is well
summarized in Ref. 140. Of the several mehi is advanced (Refs. 141 to
150) some give results that are superior to the rest. Among these is
the theory developed by Crocco and Lees (Ref. 141) which gives a satis-
factory prediction of the qualitative effect of Mach number and Reynolds
number on base pressure. Since this theory is dependent on the flow
characteristics along the body and in the wake, quantitatively accurate
calculations cannot be made because they demand a knowledge of the loca-
tion of the boundary-layer transition, which is presently indeterminate.

Chapman's semi-empirical method (Ref. 142) has proved satis-
factory for the prediction of the base pressure on boattailed bodies
and airfoils where the boundary layer is fully turbulent in the region
of the base. This method, discussed in Subsec. 7.1.1, utilizes accumu-
lated experimental data on non-boattailed bodies. Cortright and Schroeder
(Ref. 150) have proposed a method for estimating the base pressure on a
boattailed body having a turbulent boundary layer, but their method re-
quires a knowledge of the separation angle at the base as a function of
the local Mach number. These two methods offer reasonable agreement with
experimental measurements of boattail effects for both three-dimensional
and two-dimensional configurations. The method developed by Cope
(Ref. 144) does not appear to give as satisfactory a prediction as does
Chapman's method because the assumptions involved result in a first ap-
proximation only. Gabeaud (Refs. 143 and 146) compares his theory to
experimental data from bodies of revolution with fins; but since the
equation presented in Ref. 146 does not include any terms to cover fin
effects, the value of the method remains questionable. Kurzweg's method
(Ref. 145) gives the same values for both airfoils and bodies of revolu-
tion, and therefore its validity is also questionable.

References 109, 140, 148, and 151 to 164 describe some of the
many experimental measurements of base pressure in wind-tunnel and free-
flight tests. The variation of base pressure with such parameters as
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Reynolds number, Mach number, presence and location of fins, nose and
base shapes, and jet flow will be discussed in ensuing subsections.
Extensive compilations of relevant data have clarified the effects of
some of the primary variables and also have provided a basis for evalu-
ating the methods which have been advanced to predict these effects.
However, there is need for additional experimental data relating to
such variables as those associated with the presence of fins or jets.

In general, only bodies having turbulent boundary layers
ahead of their bases will be given detailed consideration in this sub-
section. However, some information will be given for the laminar case,
and where possible the two cases will be compared. For most practical
applications the likelihood of realizing laminar flow over the entire
body (of aircraft or missiles) at full-scale Reynolds numbers is remote.
Moreover, the presence of wings or stabilizing fins causes boundary-
layer transition even at low Reynolds numbers (see Ref. 15' One of
the advantages of restricting the discussion to the turbul :se is
that it allows the effects of Reynolds number to be ignore nce it
has been shown (Refs. 142, 148, and 161) that once a fully tu.,ulent
boundary layer exists ahead of the base, the variation of base pressure
with Reynolds number is small. This is not true of base pressure in
laminar flow.

7.1 Compilation of Basic Experimental Data

Since a satisfactory theory does not exist, it is necessary
to rely on experimental data for the quantitative prediction of the base
drag of bodies as a function of Mach number, Reynolds number, and body
shape. Much of this experimental data (see preceding references) has
been compiled. Figure 7-1, which was derived from several of these com-
pilations, presents curves of the base-pressure coefficient (Eq. 7-1)
as a function of Mach number for a basic body shape having the following
limiting conditions.

1. The body is one of revolution, with zero boattail angle.

2. The fineness ratio is greater than 5.

3. The Reynolds number is high enough (106 to 108) to ensure a
turbulent boundary layer over most of the body length.

4. The body has no fins.

These conditions are not as restrictive as they appear. It
has been shown that the base pressure is not dependent on the body
length when the body is long enough to allow the surface pressure to
return to ambient before it reaches the base. It has also been shown
that once the boundary layer ahead of the base has become fully turbu-
lent the base pressure is almost insensitive to Reynolds number.

The base pressure coefficient plotted in Fig. 7-1 is defined
as

2(P b - P OO) 2 2( pb - P oo) - P b - P w
Cpb P VW2 Y PW MOO 2" q0 (7-1)
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where

Pb = base pressure

and subscript • = free-stream value

Of the several curves in Fig. 7-1, those for which equations have been
derived (Ref. 204) are most recent and are based on a comprehensive
compilation of test results.

7.1.1 Chapman's Semi-Empirical Theory

One of the most useful of several theories developed to ac-
count for changes in the nature of the base pressure due to changes in
many of the relevant parameters is that of Chapman (Ref. 142). This
theory incorporates the effects of body profile and boundary-layer
characteristics.

7.1.1.1 Effect of Body Profile

This effect may be incorporated by defining the base pres-
sure coefficient as

C 2( pb -') (7-2)
b YIyp' M'

where p' and M' are the average pressure and Mach number over a hypo-
thetical extended profile as shown below.

,- --- Mach Lines

Source: Ref. 142

I,*

IM P G

M ' M,p------ ,,7

iHypothetical,
d Extended

Afterprofile,

Pb

Finite Profile Finite Profile with Extended Afterbody

For zero boattail angles the values of p' and M' are those of
the intersection G (left hand sketch). They are equivalent to p' and
M' along the surface A' H (right hand sketch).

For negative boattail angles (see sketch on next page), the
values of p' and M' are those at point G, the intersection of the re-
flected wave to C and the expansion wave from A along which the velocity
vector is parallel to the free stream.
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//

M,M',p'

...\&40_ _0

b.....
Real Flow Equivalent Flow

For positive boattail angles, p' and M' (point J) may not
easily be determined in the non-uniform flow ahead of the base, but
may be determined approximately from conditions at G' in the equiva-
lent flow (right hand sketch). M',p G'I/7

,~ M P~o , jo o
A

Real Flow Equivalent Flow

The pressure and Mach number at Point A may be found by use
of any of the methods discussed in Subsec. 2. For the case of cone-
cylinders, the local parameters can be evaluated with the use of the
tables presented in Ref. 63. The values at G must be found by the
method of characteristics.

The following tabulations indicate the values of M' and pI as
compared with p. and Mo. for two body shapes.

Cone-Cylinder Cone

MOO Mt P'/Poo MOO M' P /PW

1.5 1.51 0.98 1.5 1.58 0.88

2 2.02 0.97 2 2.09 0.87

3 3.03 0.95 3 3.13 0.82
7 7.02 0.86 7 7.16 0.76

2821 d 1d
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For moderate Mach numbers, when 1/d > 5, the error in using
the free-stream conditions instead of base conditions would not be
serious.

When C , is defined as it is in Eq. 7-2, the use of Fig. 7-1

may be extended to include all body profiles rather than the limited
basic geometries from which it was computed. Figure 7-2 (from Ref. 176)
shows the correlation of base-pressure data from bodies of varying fine-
ness ratio for a wide range of local Mach numbers and local static pres-
sures. Within the experimental accuracy, it may be seen that the effect
of body shape is adequately accounted for by use of the local pressure
and Mach number. The increase in scatter at high Mach numbers is prob-
ably due to the low absolute value of the measured pressures and the
consequently high relative experimental errors.

7.1.1.2 Effect of Boundary-Layer Characteristics

Chapman also showed that the base pressure coefficient as de-
fined by Eq. 7-2 could be expressed as a linear function of fineness
ratio and Reynolds number at each Mach number. For laminar flow ap-
proaching the base,

C = ff (M', Re-1/2) (7-3)Pb ' db'

where

db = diameter of the base

For turbulent flow approaching the base,

= f (M f Re- 1/5) (7-4)

Figures 7-3 and 7-4 (from Ref. 142) show the effect of this correlation
for laminar flow at M = 1.5 and 2.0. Figures 7-5 and 7-6 (same source)
show the correlation for turbulent flow at the same Mach numbers. As
has already been noted, the turbulent case is relatively insensitive to
Reynolds number, especially as M increases.

7.2 Variation of Base Pressure with Radial Distance

It is generally accepted that the base pressure does not vary
appreciably with radial location over the face of a flat base. Data
from both free-flight and wind-tunnel tests at 1.0 < M < 2.0 reported
iii Ref. 148 show no radial variation of the base pressure, whereas data
plotted in Fig. 7-7 (from Ref. 159) show that there is a slight tendency
for the base pressure to decrease with distance from the center of the
body. Since most base-pressure measurements are made in wind tunnels,
it is always difficult to separate real effects from interference effects,
particularly where the absolute magnitude of the pressures are small.
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7.3 Variation of Pressure in the Body Wake

The variation of pressure within the wake of a cylindrical
non-boattailed body of revolution was studied by Love, whose findings
are reported in Ref. 140. Figure 7-8, taken from this reference, pre-
sents the pressure variation as a function of distance from the base
for Mach numbers of 1.62, 1.93, and 2.41, all at zero angle of attack.
There is very little variation of pressure across any section of the
wake. The increase of pressure with distance from the base is most
marked at the lowest Mach number.

7.4 Boattails and Their Effects on Base Pressure

One method that is used to decrease the magnitude of drag
created by the large negative pressures at the base of a body of revo-
lution is that of boattailing. The aft portion of the body may be con-
toured with either conical or ogival shapes to provide a region of de-
creasing diameter just ahead of the base. In Ref. 150 Cortright and
Shroeder present a semi-empirical method, somewhat similar to Chapman's
method, by which the base-pressure coefficient for boattailed bodies
may be calculated in terms of the pressure, p', and Mach number, M',
just ahead of the base. In this method, the base-pressure coefficient
is expressed as

C _qL Pb - P' P+ - POO(75c • +b (7-5)
Pb q00 q' q00

The value of p' and M' are found by use of any of the methods given in
Subsecs. 2 and 3, and Pb is found from the Prandtl-Meyer expansion for

the total angle through which the streamline turns. Good agreement be-
tween measured Rnd predicted base pressures has been achieved by this
method. It may not be used, however, where there is flow separation
ahead of or along the boattail.

Additional experimentally determined base-pressure coeffi-
cients are shown in Fig. 7-9 (from Ref. 140). The actual reduction of
base pressure with boattail angle compares reasonably well with theo-
retical predictions that were obtained by means of the methods of
Refs. 142 and 150.

The decrease in base drag which results from boattailing, how-
ever, is opposed by an increase in drag which is created by the lowered
pressure over the converging afterbody. If there is excessive boattail-
ing the latter effect predominates, and the net drag consequently is in-
creased. This phenomenon is illustrated in Fig. 7-10 (from Ref. 176),
in which total afterbody drag is plotted against the ratio db/d for con-

stant ogival afterbody length at Mach numbers of 1.5, 3.0, and 8.0. At
Mach numbers of 1.5 and 3.0, the optimum value of db/d is equal to 0.6,

at which value the drag is reduced to about 60% of its value for the
non-boattailed case. At M = 8 there is no significant effect of after-
body shape, and little is therefore gained by boattailing. Base pres-
sure coefficients on a conical boattail are shown in Fig. 7-11 (from
Ref. 145) in terms of boattail angle. In this case the optimum boat-
tail angle is about 7 deg at M = 1.56; at M = 3.24 the drag is rela-
tively insensitive to boattail angle in the region of 4 < 0 < 15 deg.
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7.5 Effect of Fins on Base Pressure

The expansion wavelets emanating from fin surfaces change the
wake characteristics and usually increase the base drag, i.e., decrease
the base pressure. Fin effects, examined in some detail in Refs. 140
and 148, may be ascribed to fin thickness, position with reference to
the base, and number of fins employed. Figure 7-12 (from Ref. 160 by
Spahr and Dickey) shows the increment of base pressure in terms of dis-
tance between the trailing edge of the fin and the base of the body.
These effects are shown for M = 1.5 and 2.0, thickness ratios of 5-
and I0N, one plane tail panel, and cruciform tail fins.

In Fig. 7-13 (from Ref. 140) the base-pressure coefficient
derived from wind-tunnel and free-flight tests of finned missiles are
compared with the test data of bare bodies taken from Fig. 7-1. It
may be noted from both Figs. 7-12 and 7-13 that the fin effect dimin-
ishes quite rapidly with increasing Mach number. These curves assume
fully turbulent flow approaching the base.

An empirical formula derived in Ref. 204 for the additive
base drag due to the pressure of fins is given by

W t/c [0.825 0.05)- n (7-6)

Db n 2

where

t/c = thickness-to-chord ratio of fins

n = number of fins

It is assumed that the trailing edge of the fins is flush with a non-
boattailed body.

The drag increment computed from Eq. 7-6 is included with the
original test data (from Ref. 140) in Figs. 7-12 and 7-13. In Fig. 7-12
the agreement with wind-tunnel test results is good, which would be ex-
pected since the data from these tests was included with that used to
derive the empirical equation, Eq. 7-6. In Fig. 7-13 the agreement
with free-flight data is reasonably good.

7.6 Effect of Heat Transfer on Base Pressure

The effect on the base pressure of heat transfer between the
body itself and the boundary layer of the air flowing over the body is
reported by Kurzweg in Refs. 145 and 163. Some of the results of these
studies for both laminar and turbulent flow at M = 3.24 and 4.24 are
indicated in Fig. 7-14.

The values of the drag increments shown in Fig. 7-14 are de-
pendent on many test parameters and are quantitatively valid only for
one set of conditions. However, the curves show qualitatively the mag-
nitude of the changes in base pressure that may accompany the heating
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or cooling of the body skin and the consequent changes in the tempera-
ture distribution through the boundary layer. The heat-transfer ef-
fects increase with increasing Mach number.

A second effect, allied to heat-transfer effects on base pres-
sure and treated by Tetervin in Ref. 167, is the stabilization of the
laminar boundary layer when the surface is cooled. As shown in
Subsec. 7.1.1.2, base pressure is greater when laminar flow approaches
the base than when fully turbulent flow at the same Mach number ap-
proaches the base. The effect of heat transfer on the Reynolds number
of transition will be treated in Section 14 of the Handbook.

It may also be noted that skin-friction drag (see Subsec. 6)
is increased as the body surface is cooled.

7.7 Effect of Angle of Attack on Base Pressure

An increase in the angle of attack increases base drag, i.e.,
makes the base pressure more negative. Figure 7-15 presents a compila-
tion of experimental data on angle-of-attack effect.

For non-boattailed bodies without fins the base drag increases
rapidly with angle of attack, the increment diminishing as the Mach num-
ber increases. For a = 10 deg the drag increment in the range of
1.5 < M < 2 is approximately one-third of the base drag at a = 0 deg,
whereas at M = 3.12 the increment at a = 9 is about 11% of the base
drag value at a = 0 deg.

When the body has cruciform tail fins the measured increment
(shown in Fig. 7-15) at a = 6 deg is 4% of the base drag at a = 0 deg
at M = 1.73 and 6.5% at M = 2. Thus it appears that the presence of
fins inhibits flow separation and the consequent increase in drag.

For boattailed bodies the drag increment is of the same order
of magnitude as it is for the non-boattailed body. However, since the
boattail angles are nearly optimum (i.e., 5 and 7 deg) the zero angle-
of-attack base drag is much less, and the percentage increase for the
boattailed body is therefore much larger. For the data shown in
Fig. 7-15, WD b varies from 75% to 114% at a = 6 deg. These data in-

dicate that the angle-of-attack effect is more sensitive to boattail
length than to boattail angle.

7.8 Effect of B •_ee Jets on Base Drag

Due in part to the limitations of testing methods, experi-
mental data relating to the effect of Jets on the external flow in the
wake region of a body is somewhat meager. Free flight tests are usu-
ally confined to models of current prototype missiles, the test results
of which are classified and not available for use in an unclassified
handbook. In scale-model wind-tunnel tests the simultaneous simulation
of the correct jet mass-flow, jet temperature, and free-stream condi-
tions is difficult to attain. In addition wind tunnel test results are
frequently clouded by unknown interference effects (e.g., from supports
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and tunnel walls). A difficulty common to both types of tests is the
array of parameters involved and the lack of certainty in separating
the many effects.

The most significant geometric parameters for base jets are

illustrated below.

Annulus Area Base Area
(Jet On) (Jet Off)

SSa

Sa
Incomplete Boattail

~1ý

S =0a
Complete Boattail

In this case the significant flow parameters are

p. V. T.
- _a and -a

where subscript j refers to the jet conditions and subscript 0 refers
to the free-stream conditions.

7.8.1 Effect of Jet Pressure Ratio on Boattail Pressure

The experimental pressure distributions on the sides of three
completely boattailed configurations at zero angle of attack are pre-
sented in Figs. 7-16 to 7-18 (from Ref. 150) for jet pressure ratios
ranging from no-jet flow to pj/p = 15. The pressures were measured at

S= 15, 50, and 90 deg. Since the angle of attack was zero, the dif-
ference between measurements for any configuration reflects a measure
of the accuracy. Varying the boattail angle or the distance from the
base at which increased pressure is sensed due to the presence of the
jet seems to produce no significant effect on the pressures within the
accuracy of measurement. The pressure increase is clearly a function
of jet pressure.

The flow mechanism whereby the jet interference takes place
is illustrated in the following qualitative sketch taken from Ref. 150
and derived from schlieren photographs of the flow conditions in the
region of the base of a completely boattailed body (i.e., with no
annulus).
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SokWave Compression Region

Region of Separated Flow

Jet Boundary Boundary Layer
and Mixing Zone

Shock Wae --
V> _ -4 Nozzle

Expansion Waves

As the jet pressure ratio is increased, the issuing jet expands and
deflects the external flow, with a resultant shock wave and pressure
rise. This increased pressure propagates upstream through the subsonic
portion of the boundary layer on the body. An increased rate of bound-
ary-layer growth and compression toward the rear result in a region of
separated flow ahead of the base. Inasmuch as this interference effect
is largely one of shock-boundary-layer interaction, it would seem that
the results shown in Fig. 7-16 to 7-18 would be sensitive to the bound-
ary-layer thickness and profile at the base, i.e., to Reynolds number
and surface conditions of the body. Tests with artificially achieved
boundary-layer transition indicated that in some cases (flagged symbols
of Fig. 7-16 and 7-18) there actually was a pressure rise due to the
thickened boundary layer, but in no case did the pressure rise extend
upstream of the pressure orifice nearest the base.

In the case of the incompletely boattailed configurations,
the annular base served largely to prevent such interaction effects of
the jet on the sides of the boattail. The qualitative sketch below,
which is also from Ref. 150 and also based on schlieren photographs,
illustrates the absence of jet effects on the flow over the sides of
these boattails.

S~Semi-Dead Air Region

Shock Wave Weak Compression Wave

Jet Boundary Boundary Layer
and Mixing Zone

Shock W .

Expansion Waves Jet Air

No appreciable thickening of the boundary layer is discernible even at
the highest jet pressure ratio. The fact that a strong shock wave was
formed when the jet and external streams met in the vicinity of the
annular semi-dead air region at the base would indicate, however, that
the jet might strongly affect the base pressure.

7.8.2 Effect of Jet Pressure Ratio on Base Drag

The phenomenon described above is clearly demonstrated in
Fig. 7-19 (from Ref. 150), which gives the effect of jet flow on the
pressures acting on the annular base. At this Mach number (1.9) the
jet effects are very marked.
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For 0 < < 10 C increases.PTOO Pb

I For 1 <Aý < -3 or 4, C decreases.POO Pb

For f! > 3 or 4, C increases.POO Pb

The base pressure for both types of boattail has a peak value at
pj/p 1. For the cylindrical afterbody the annular base pressure in-

creases less rapidly than for the boattailed body and appears to ap-
proach a second maximum value at p./po - 16.

The effect of the jet at pressure ratios greater than unity
may be explained in at least two ways. As the jet pressure ratio in-
creases, the jet velocity increases and entrains air from the semi-dead
air annulus. This entrainment tends to lower the pressure on the an-
nular base by an amount which increases with jet pressure ratio. As
the jet pressure ratio increases, however, the jet expands. The shock
wave located at the point of interaction of the jet and the free stream
increases in intensity and causes a pressure feedback through the sub-
sonic mixing region between the two streams, with a resulting base pres-
sure increase. A second qualitative explanation is that the jet dis-
placement may act in a manner analogous to a center sting or support.
Increasing the sting diameter causes the base pressure to approach the
two-dimensional value. The increasing jet displacement with increasing
jet pressure ratio could thus qualitatively lower the base pressure,
and the strong interaction shock would again cause a reversal of trend
at the high plessure ratios.

With either of these explanations it can be seen that the ra-
tio of exit diameter to base diameter would affect the variation of base-
pressure coefficient when the jet pressure is greater than the ambient
pressure. This is noted in Fig. 7-19, wherein the experimental varia-
tion of base-pressure coefficient for the cylindrical body (dj/d = 0.5)

is much less than that for the boattailed body (db/d = 0.7). The wide

separation of the two curves indicates that either the effect of the
nozzle-to-base-diameter ratio is large or that there is some effect due
to the increase in boattail angle (see Fig. 7-20).

7.8.3 Effect of Jet on Total Afterbody Drag

The influence of a jet on base pressure and boattail side pres-
sure is described in the two preceding subsections. The combination of
these two effects will define the effect of the jet on the total after-
body drag.

Figure 7-20 (from Ref. 150) shows the contribution to total
drag of the converging portion of completely boattailed bodies having
various boattail angles for a series of jet pressure ratios. The drag
is reduced almost linearly with jet pressure ratio wittin the test range
(0 to 15). In this case di = db = 0.5d.
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Similar information is presented in Fig. 7-21 (from Ref. 150)
for incompletely boattailed bodies with varying degrees of boattailing,
but with db/d = 0.7 in all Lases. The existence of a base annulus ef-

fectively insulates side pressure from the jet, and there is therefore
no observable variation of the side-pressure drag contribution with
varying Jet pressure. The base drag component follows the general pat-
tern shown in Fig. 7-19. When the pressure ratio is between 10 and 15
the base drag becomes negative, i.e., an effective thrust arises on the
base annulus. The superposition of boattail drag and base drag is
shown in Fig. 7-21. At the highest pressure ratio the reduction in
over-all afterbody drag is of the order of 60% with a boattail angle of
6 deg and 40% with a boattail angle of 9 deg.

In Fig. 7-22 boattail pressure-drag coefficients are plotted
as functions of boattail fineness ratio for all the configurations de-
scribed in Ref. 150 at jet pressure ratios of 0, 3, and 15. For each
curve the data points at the largest fineness ratio were obtained from
the bodies boattailed to a sharp edge at the nozzle exit (dj = db = 0.5d).

The data points for zero-length boattail correspond to the cylindrical
afterbody data and the intermediate points correspond to the boattails
with annular bases. For the case of no-jet flow with a full base, the
data indicate (within the range of the tests) the desirability of in-
creasing the boattail fineness ratio. For an annular base the data in-
dicate the desirability of boattailing to a sharp edge for moderate jet
pressure ratios. For a jet pressure ratio as high as 15, an annular
base gives minimum drag. These curves may also be used to predict opti-
mum geometries for a fixed boattail fineness ratio if such a restriction
is present. In actual application, appropriate friction drag estimates
must be included.

In the lower portion of Fig. 7-22 only the pressure on the
annulus was considered as adding to the boattail drag, i.e., there was
zero drag over the jet opening, and hence the "no jet flow" curves
should actually be considered as curves of p3 = p. when comparing them

with those of the full base in the upper portion of the figure.

7.9 Effect of Spin on Base Pressure Characteristics

Spinning a body of revolz tion about its own axis at a high
rate is known to alter certain of its aerodynamic characteristics (see
Subsec. 5.4). Only a limited amount of unclassified data is available
on this subject. The studies reported by Greene in Ref. 107 and by
Schmidt and Murphy in Ref. 168 indicate that the base pressure is de-
creased (drag is increased) as the spin rate is increased. In the tests
of Ref. 168, the over-all drag coefficient was increased by 2.6% with
an increase of 0.45 in the spin rate, pd/,V, where p is the rotational
spin rate in radians per second. It is believed that most of this in-
crease was due to the decrease in base pressure.

These results merely indicate trends; the absolute magnitude
of the effect will be markedly influenced by the particular configura-
tion and the flight environment. In view of the sparsity of unclassi-
fied literature, information must be obtained from the classified lit-
erature or from tests of any given configuration to determine the
quantitative effect of spin.
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7.10 Effect of Very Low Ambient Pressure on Base Pressure

It is known that base-pressure characteristics will change
markedly in an environment of very low ambient pressure, i.e., a rare-
fied atmosphere. The limit of such low pressure is usually defined as
that wherein either slip flow or free molecular flow exist. The slip-
flow regime is defined by the following limitations.

0.01 <-- < 0.1 for Re > 1

or

0.01 <-<0.1 for Re <1
Re

Section 16 of the Handbook (Ref. 170) presents a detailed treatment of
the rarefied gas regime.

The boundaries of the continuum, slip, and molecular flow
regimes are shown in Fig. 7-23 (from Ref. 170) as functions of Mach
number and Reynolds number as well as the equivalent altitude. Since

completely laminar flow is expected to prevail when Re < 105 it is
usually necessary to consider only laminar characteristics in the slip-
flow regime.

Kavanau (Ref. 169) has measured base (and side) pressures of
models over the following combinations of very low Reynolds numbers and
nominal Mach number.

159 < Re < 800 for M 2

920 < Re < 7400 for M 4

These data extend into the slip-flow regime since the rarefaction param-
eter M/*Ve covered the range 0.05 < M/4#e < 0.15.

With increasing altitude, and hence with lower Reynolds num-
bers, the base pressure will decrease steadily in this laminar-flow
regime because the effect of the increasing mixing rate is stronger
than the influence of an increasing ratio of boundary-layer thickness
to base diameter.

The base pressure in such an environment, instead of being
radially constant, varies in a parabolic manner as indicated in
Fig. 7-25. In this figure, the local pressure has been divided by the
"area-mean-pressure" (i.e., the integrated local pressure times the
area over which it applies divided by the over-all area). The equation
for this variation and the experimental range of Mach number and Reynolds
number within which it was obtained are noted on the graph. The corre-

lation of this pressure ratio with Vie/M2 is shown in Fig. 7-24. An
extrapolation of the data for M = 2.84 ties in with Kavanau's previous
test data and also generally agrees with the prediction made by Crocco
and Lees (Ref. 141).
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Kavanau's quantitative measurements were made with models
having a surface recovery temperature given by

- T
r -- = 0.93 (7-7)

This heat-transfer condition caused a decrease of approximately 5% in
the base pressure compared to that of the insulated model. The effect
of heat transfer from the model to the stream decreases the base pres-
sure at these low Reynolds numbers, as compared to the effect of an
increase in the base pressure noted previously for higher Reynolds num-
bers. These opposing effects may be explained by an effective Reynolds
number change due to property changes in the boundary layer, together
with the trend of base pressure with Reynolds numbers of the particular
flow regime.

Kavanau also predicted the base pressure coefficient for free-
molecule flow; his results are presented in Fig. 7-26. It can be seen
that the base pressure is virtually zero for all Mach numbers greater
than 2.
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Base Drag Fig. 7-7
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Fig. 7-7. Variation of base-pressure coefficient with radial loca-
tion for laminar and turbulent boundary layers; I/d = 5.
(Source: Ref. 159)
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Fig. 7-8 NAVWEPS Report 1488 (Vol. 3, Sec. 8)
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Fig. 7-8. Pressure variation in the wake of a cylindrical body at
three Mach numbers; a = 0 deg. (Source: Ref. 140)
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Base Drag Fig. 7-9
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Fig. 7-10 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

0.20 1

Afterbody side drag is calculated
Base drag is estimated

0.18 -I II II

M= 1.5

0.16 •Experiment

o Afterbody drag

Ax Base drag

•0.14 -

Afterbody

" 0.12
0 M 3.0

0
0.10

S0.08 --
*a _Afterbody

m =8.0

0 0.06 -- -

0.04

0-- /Aft-erbod
"/--

0.02 -- - - --

0 B-ase
B_ Base Base

-0.02LI F1

0 0.4 0.8 0 0.4 0.8 0 0.4 o.8

Diameter Ratio, died

Fig. 7-10. Variation of afterbody drag with base diameter for con-
stant ogival afterbody length; M = 1.5, 3.0, and 8.0.
(Source: Ref. 176)

300



Base Drag Fig. 7-11
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Fig. 7-11. Effect of conical boattailing on base pressure;
M = 1.5 and 2.9. (Source: Ref. 145 and 176)
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Fig. 7-12. Effect of fins on base pressure for non-boattailed bodies;
M = 1.5 and 2.0. (source: Ref. 160)
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Base Drag Fig. 7-13
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Fig. 7-14 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

-0.02

C -0.04 -0

aw mm 10-cm Cylinder,Lair

-0.08 __45-cm Cylinder, TurbulentSPb _ 0.08 __--

M = 3.24
-0.10 1 - 1

-100 0 100 200 300 400

Temperature, °F

Fig. 7-14. Effect of surface temperature on base pressure;
M = 3.24 and 4.24. (Source: Refs. 145 and 163)
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Base Drag Fig. 7-15
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bodies at Mach numbers of 1.5 to 3.12.
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Fig. 7-16 NAVWEPS Report 1488 (Vol. 3, Sec. 8)

~40

.4-)

T-4 V LoUMU'

W-1 tki 0

d0.

0..

-d 0A02b
CIO a ý 16*rC 0

161 16 ~4 '-4. e0 k

o0 0 0 0- 00 0k 0 4)
A~ Q 0 )> Ia " - -- -md

;w 444TOO 4) flSSft s

306 J>ý 4J



Base Drag Fig. 7-17

0

- - - - - -- - - -- - -a00 S 04

00

0 00

OOC 4 -; - - - -4J

0~ a0 0 wCod

Id 0

0
cis z .0.

Go V --

0>

cr4 0 4I *) 0

F-44 - - 0Q)q

00.

0.

C4 -M

"$4

0~C "44 "4 0;400 "

0 l 10 0 d 0 V0 0 0
4) C0 a Aa

'4-

30



Fig. 7-18 NAYWEP Report 1488 (Vol. 3, Sec. 8)
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Base Drag Fig. 7-19
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Fig. 7-20 NAYWEPS Report 1488 (Vol. 3, Sec. 8)
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Base Drag Fig. 7-22
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Fig. 7-22. Variation of total afterbody drag with boattail fine-
ness ratio in terms of jet pressure ratio for full and
annular bases; M = 1.91. (Source: Ref. 150)
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Base Drag Fig. 7-26
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Experimental Pressure Distribution: 52, 60, 67, 80, 84, 165, 199

First and Second-Order Theories: 2, 8, 9

Flat-Faced Cylinders and Disks: 86, 87, 89, 92

Flow Tables: 22, 28, 29, 55, 63, 66

Flow Theories: 1-6, 8

General Texts: 5, 6, 50, 137, 178, 181, 182

Hypersonic Flow: 23, 24, 27, 30, 32-35, 37-40, 43, 91, 100, 170, 180,
182, 193, 197

Hypersonic Similarity Rule: 25, 30, 32-34, 43, 124

Jet Effects: 150, 177

Lift: 41, 79, 95, 103, 104

Linearized Theory: 1, 2, 7, 75

Low-Pressure Flow: 94, 141, 169, 170, 207

Magnus Moment: 106, 107, 168

Minimum Drag: 42, 81-84, 111-116
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Newtonian Impact Theory: 40-42, 100, 196

Normal Force: 47, 52, 70, 92, 95-99, 101, 102, 105

Pitching Moment: 79, 96, 99, 102, 105

Protrusions, etc.: 171-173

Shock-Expansion Method: 23-27, 38, 39, 76

Skin Friction: 8, 44, 125-127, 129-131, 134-138, 166, 167, 171-175,
187-191, 202

Skirted Bodies: 101

Slender-Body Theory: 1, 3, 4, 10-16, 117, 118

Spheres: 54, 85, 87, 88, 121-124, 184, 187, 191-194

Spiked Noses: 132, 133
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Bodies of Revolution Index

INDEX

angle-of-attack effect boattail
on base pressure, 305 base pressure effect on, 284,
on center-of-pressure location, 299, 301, 305, 309

49, 185, 186 drag, 224
on normal force, 49, 50 flaring effect, 166
on pitching moment, 50, 203 jet effects, 288, 306-311
on pressure distribution, 114, 115 minimum drag, 226
on vortex separation, 53 pressure distribution over, 64,

Allen-Perkins cross-flow method, 128-132, 224, 307
35ff, 163 body

axial force blunt-nosed, 65, 68, 160
cone, 239 drag (see drag)
elliptical cone, 208 ducted, 169, 240, 242-246, 248
definition of, 168 elliptical planform, 68, 156-159

flat bottom, 212, 213
base jet, 286 Haack-Adams, 256
base drag, 279ff Harder-Renneman, 256

angle-of-attack effect on, 286 minimum drag, 134, 255
boattail effect on, 284 of revolution, 75, 215-217, 293
experimental values for, 280 slender, definition of, 8
fin effects on, 285 spike-nosed, 299
heat-transfer effect on, 285 boundary layer
jet effects on, 286ff effect on base jet, 288
radial location effect on, 283 bridging, 57
semi-empirical theory for, 281 on flat plate, 231
wake pressure variation effect on, heat-transfer effect on, 285

284 hypersonic, 15
base pressure laminar, 267, 295

angle-of-attack effect on, 286, Prandtl approximations for, 15
305 shock interaction, 288

boattail effect on, 226, 284, 299, spiked-nose effect on, 90, 229
301, 305, 309 transition, 60, 233

on bodies of revolution, 293 tripping, 58
Chapman's semi-empirical method, turbulent, 268, 269

determination by, 279, 281 bow wave, 158
coefficient, 280, 284
on cones, 295, 296 center of pressure
experimental, 280 angle-of-attack effect on, 49,
fin effect on, 285, 302, 303, 305 185, 186
jet effect on, 286 of cones, 49
low pressure effect on, 291 cone cylinders, location of,
Mach number effect on, 279 187, 201
of ogives, 295, 296 cylinders, location of, 160, 161
profile, 281 188, 193
radial location effect on, 283 tangent-ogive, 51
spin effect on, 290 fineness ratio effect on, 187
temperature effect on, 304 hybrid theory for, 51
variation in wake, 284, 298 Reynolds number effect on, 180

Bernard-von Karman vortices, 42 of skirted bodies, 196, 197
blast-wave theory, 68, 160 of tangent-ogive cylinders, 51,
blunt-nosed body 185-187

at high Mach number, 68 characteristics method, use of
pressure distribution on, 65ff, 160 for cowls, 120, 125
pressure drag of, 227 for hypersonic flow, 15
spiked nose effect on, 229 at low angle of attack, 10
use of, 65 for ogives, 33
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for rotational flow, 15 cubes, rotating, drag of, 229, 262
for tangent-ogives, 23, 28, 34 cylinders

cones base pressure on, 280ff, 293-296,
axial force coefficient of, 239 304
base pressure on, 295, 296 center-of-pressure location of, 0
center-of-pressure of, 49 188, 193
critical angle of attack of, 54 cross-flow drag coefficient for,
double, 57, 223 46
drag coefficient of, 254 flat-faced
of drop-shape cross-section, 225 local shock-wave slope of, 144
ducted, 169 pressure distribution of, 142
of elliptical cross-section, 57, shock-wave stand-off distance

208, 225, 240, 254 of, 138
flow around, 7, 11, 12 hemispherical nosed, pressure dis-
normal-force coefficient of, 49, tribution on, 160, 161

198 hypersonic flow over, 160
slope of, 21, 180, 181 local normal-force coefficient

pitching-moment coefficient of, of, 192, 193
198 pressure distribution over, 66,

pressure coefficient of, 77, 82-84, 68, 74
223ff in wake of, 298

double, 89 skin friction on, 269
drop shaped, 88 tangent-ogive nose
elliptical, 86 center-of-pressure location of,
spherical-nosed, 154 51
triangular-shaped, 88 normal force of, 50
truncated, 148-153 pitching moment of, 50

pressure drag of, 221, 222, 225 transverse flow over, 161
shock detachmient of, 76, 181
similarity parameter range for, 31 disks, local Mach number distribu-
skin-friction drag of, tion on, 143

laminar, 232 disturbance theory, small, 47
turbulent, 233 double cones, 57, 223

truncated, 67, 148-153 drag
cone-cylinders, 56 b:.- (see also base drag), 279ff

base pressure on, 299, 301 buattail, minimum, 226
center-of-pressure location of, body

187, 201 blunt, 227ff
drag of, 212 ducted, 240, 242-246, 248
lift coefficient of, 208 simple, 169
lift-to-drag ratio, 212, 213 cene
normal force, coefficient of, 178, circular, 254

201, 202, 205 ducted, 169
slope oi, 180, 184, 200, 206, 207 elliptical, 208, 223, 240, 253,

pitching moment, slope of, 200 254
pressure distribution on, 78, 80 cone-cylinder, 212

conical flow, 7, 11, 12 of conical cowls, 247, 248
tangent-cone solutions of, 11, 19 cross-flow, 37, 40, 164
Taylor-Maccoll solutions of 11 of cubes, rotating, 262

cowls (see also ducted bodiesS of flat-faced cylinders, 66
conical, 119, 120, 224, 247, 248 of infinite cylinders, 46
geometry of, 121, 123, 126 minimum body shapes for, 134

ogival, 118 nose spike, effect on, 264, 265
pressure distributions on, 71-73, protrusions, effect on, 276

118, 120, 122, 124, 125 of secant ogives, 239
cross-flow skin-friction, 231ff

drag, 36, 45, 47, 48, 164, 222, 259 solutions by computer method, 237
Mach number effect, 36, 46 sphere, 228, 261, 263
Reynolds number effect, 36, 46 wave, 225, 226
separation, 60 zero-lift, 221
viscous, 35ff, 163
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ducted bodies, 169 hypersonic flow, 15ff
drag of, 226, 240, 242-246, 248 boundary-layer theory, 15
normal force of, 169, 209
pressure distribution of, 61, inlet (see ducted bodies)

62, 169, 223 jet effects on drag, 288, 306-311
elliptical cones, 57, 168, 208, joint effect on drag, 276

225
elliptical planform bodies, 68, Kelly's cross-flow refinements,

225, 240 39, 40
Kopal cone tables, 89

Fenter
second-order pressure distribu- laminar boundary layer, 267, 295

tions, 24-26 lift
shock-expansion method, 12 cone-cylinder, coefficient of,

fin, effect on base pressure, 285 208
302, 303, 305 elliptical cones, coefficient of,

fineness ratio effect 208
on center-of-pressure location, of simple bodies, 168

187 lift-to-drag ratio of cone-cylinders,
on normal-force slope, 182, 183 212, 213
on pressure distribution, 112, linearized theory, 6, 7, 21, 27

113 lip pressure coefficient, 120
first-order theory, 5, 21, 22, 56,

93-96, 180 Mach number effect on
flaring, boattail, 166 body center-of-pressure location,
flat-faced cylinders, 66, 142-146, 187

269 cowl lip pressure, 120
flat-plate cross flow of infinite cylinders,

heat transfer, 272 46
skin friction, 231, 267, 268 minimum drag body, 260

flow pressure distribution over bodies,
conical, 7, 11, 12 110ff
hypersonic, 12, 14ff shock detachment for cones, 76

comparison of methods for use shock stand-off distance for
in, 20 elliptical nosed bodies, 159

at low angles of attack, 3, 6ff, flat-faced cylinders, 138
10, 13ff, 56 spheres, 137

at low to high angles of attack, sphere drag, 261
35ff wave drag of ducted body, 248

Newtonian, 14 Magnus force, 171ff
regimes (continuum, slip, and center of pressure, 219, 220

molecular), 312 slope coefficient, 215-217
wake, 298 mean skin friction, 231

form drag (see pressure drag) method of characteristics (see
characteristics method)

generalized shock-expansion theory, minimum-drag bodies, 225
12 Munk's slender-body theory, 9

heat-transfer Newtonian flow theory, 14, 18, 34,
base pressure, effect on, 285 138, 161
coefficient, 272 Newtonian-Prandtl-Meyer theory, 160
skin fric t ion, effect on, 233 normal force coefficient, 163

Heaviside operator, 62 angle-of-attack effect on, 149,
hemisphere, pressure distribution 150

around, 138 of cones, 49, 198, 199
Hill's cross-flow refinements, 39 of cone-cylinders, 178, 201,
hybrid flow theory, 7ff, 56, 59, 163 205-207

for center of pressure, 51 of cylinders, 192, 193
for normal force, 21, 175-177 first-order solutions for, 21,
for pressure distribution, 81, 22, 93-96, 180

93-99
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of tangent-ogive cylinders, 50, drop-shape, 88
175,176, 179, 180 elliptical, 87, 225

non-steady derivatives, 170 spherical nosed, 67, 154
slope, 7, 164 triangular-shaped, 88

of cones, 21, 180, 181 truncated, 148-153
of cone-cylinders, 184, on cone-cylinders, 56, 78, 80, 81

200-203, 207 on cowls
of ogives, 180 conical, 71-73, 119, 120, 124,
of skirted bodies, 194 125
of tangent-ogive cylinders, non-conical, 124

180, 182, 1P3 on cylinders, 66, 68, 74, 147,
noses 161

blunt, 65ff, 68 flat-faced, 66, 142, 143
conical, 55ff, 221 tangent-ogive, 23, 24, 93-97,
ducted, 61ff, 169, 223 103-117
ogival, 58, 222 on flat-faced cylinders and disks,
spiked, 229, 264-266 66

numerical-graphical methods, 8, on hemispheres, 138
10, 16 on ogives and ogive-cylinders, 58

on spheres, 66
ogives, 58, 61ff, 222 pressure drag, 221ff

base pressure on, 296 accuracy of various methods, 27
center of pressure of, 51, 185-187 of blunt bodies, 227
drag of, 222, 239 of boattails, 224
normal-force coefficient for, 49, of cones, 221

175-177, 179, 180 drop-shape cross-section, 225
normal-force slope of, 180 ducted, 223
pitching moment, 189, 191 elliptical, 223, 225
pressure distribution on, 23-34, of cowls, conical, 224

91-117 minimization of, 225
open-nosed body (see ducted body) of ogives, 222

of skirted bodies, 224
perturbation velocity, potential, protrusions, drag effect of, 237,

3ff 276
pitching moment, 41, 165ff, 170

angle-of-attack effect on, 50, 203 radial location effect on base
cones, coefficient of, 198 pressure, 283
cone-cylinders, coefficient of, Reynolds number

199, 200, 203 center of pressure, effect on,
of ducted bodies, 169 180
Reynolds number effect on, 191 critical, 46
of tangent-ogive cylinders, 189, cross-flow, 36

190 pitching moment, effect on, 191
Prandtl-Meyer flow, 12ff pressure distribution, effect on,
pressure distribution 101

base (see base pressure) skin friction, effect on, 267,
on boattails, 64, 128-132, 224, 268

307 sphere drag, effect on, 262, 263
on bodies, 75 rotating cubes, 229

blunt, 65ff, 160 rotational flow, 15
ducted, 61, 62, 122, 169, 223 characteristics method, 8
of elliptical planforms, 68, 87, roughness effect, 236, 237, 273,

223 275
parabolic-arc, 137
skirted, 224 Schwabe's cross-flow drag on cyl-
of varying diameter, 65 inder, 39

on cones, 22, 55ff, 82-84 secant-ogives, drag of, 239
angle-of-attack effect on, 114, second-order theory, 12

115 Fenter's modification, 12
double, 89, 223 semi-empirical method for base

pressure, 281
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shock expansion method, 12, 17ff tangent-cone approximations, 11,
27, 33, 34, 62 19, 23, 27, 34

shock wave tangent-ogive, 58
angle for spheres, 140 pressure distribution on, 23, 28,
boundary-layer interaction, 288 34
curvature, 141, 145 pressure ratio of, 24-26, 91

detachment, 76, 181, 228 tangent-ogive cylinder
flat-faced cylinder, slope for, center of pressure, 51, 185, 187

144 normal force, 50, 175, 179, 182
sonic line, 141, 146 pitching moment, 50, 189, 190
stand-off distance, 138, 159 pressure distribution, 93, 97-99,
truncated cone, 148 101-117

similarity rule, hypersonic, 16, pressure ratio, 92
17 Taylor-Maccoll method, 11

modified, 32 transition, boundary-layer, 60, 233
normal-force correlation, use in, truncated cones, 67

166 Tsien's potential theory, 51
pressure ratio, effect on, 91 two-dimensional flow, 17
range of usefulness for cones, 31

skin friction, 231ff Van Dyke
cone, 233 hybrid theory, 7, 56, 59, 163
cylinder, 269 second-order pressure distribu-
flat plate, 231, 232, 267, 268 tion on cones, 62
laminar, 231 slender bodies, 8
mean, 231 virtual mass coefficient, 9, 35
ratio, compressible to incompres- viscous cross flow, 35ff, 163, 176

sible, 270 vortex street, 42
roughness effect on, 236, 237 vortices, 42, 52, 53
turbulent, 232, 233 wake flow, 298

skirted bodies, 193, 224 cone cylinder, 52
center-of-pressure location of, effect on base pressure, 284

196, 197 wall temperature, 271
normal-force slope of, 194, 195 wave drag, 226
wave drag of, 252 minimum, 225

slender-body theory, 7ff, 33, 214 zero-lift drag, 221
slip flow, 312, 313
small disturbance theory, 17, 299
sonic line

for flat-faced cylinders, 146
for spheres, 141

sphere
drag of, 228, 261, 263
local shock-wave angle for, 140
Mach number distribution over, 139
pressure distribution over, 66
shock-wave radius of curvature,
sonic line, location of, 141
velocity distribution, 142

spike
drag effect of, 264, 265
isentropic, 90
use on blunt noses, 229

spin effect on base pressure, 289
Stone-Kopal theory, 82, 181
stability derivatives, boattailed

body
non-steady, 214
steady, 214
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