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EXECUTIVE SUMMARY

STRESS WAVE PROPAGATION IN UNSATURATED SAND: FIELD EXPLOSIVE TESTS

Explosive field tests were conducted in unsaturated Poudre Valley sand
for the determination of peak ground shock parameters, propagation
velocity and attenuation trends as a function of compactive saturation.
The sand was compacted moist to a dry density of 1635 kg/m’ (relative
density of 44 %) at compactive saturation ievels ranging from O to 70
percent. 1hree explosive masses of 6.22 kg, 7.0 kg and 0.227 kg TNT
equivalency were used at a depth of burial of 1.4 meters to provide scaled
range (R/W'?) values ranging from 0.32 m/kg'® to 3.8 m/kg'?’. Scaled peak
particle acceleration, peak particle velocity, peak stress and propagation
velocities are presented as a function of scaled range. Magnitudes and
attenuation trends of peak ground shock parameters and propagation
velocities in Poudre Valley sand are analyzed and compared with results
obtained by previous researchers. Constants (Y-intercept at R/W'? =)
m/kg'?) taken from the developed empirical predictive equations for peak
ground shock parameters of Poudre Valley sand are generally lower than
those of Tyndall Beach and Ottawa 20-30 sands obtained from centrifuge
tests conducted by Walsh (1993). Slope (-n or -n-1) values taken from the
same predictive equatione compare closely in magnitude with those obtained
by Walsh. Attenuation trends of slope values show an increase in
magnitude from O to 20 percent compactive saturations, constancy or
decline from 20 to 40 percent and a drop from 40 to 60 percent. These

trends are similar to thoee observed by previous researchers.
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PREFACE

This report was prepared by the Department of Civil
Engineering, Colorado State University, Fort Collins,
Colorado, 80523 under contract Number F08635-90-C-0306 for
the Air Force Civil Engineering Support Agency, Air Base
Survivability Branch (AFCESA/RACS) 139 Barnes Drive,
Tyndall AFB, FL, 32403-5319. The work was initiated in
November 1989 and was completed in October 1992.

This report is published in two volumes. Volume 1
is written by Mr. Andy J. Walsh and Dr. Wayne A. Charlie
and covers centrifuge explosives tests conducted at
AFCESA/RACS during the summers of 1990 and 19%91. Volume 2
is written by Mr. Edward J. Villano and covers field
explosives tests conducted at Colorado State University
during the fall of 1991 and spring of 1992. Mr. Andy J.

' Walsh and Mr. Edward J. Villano worked under the direction
of Professor Wayne A, Charlie.

' This report has been reviewed by the Public Affairs
Office (PA) and is releasable to the National Technical
Information Service (NTIS). At NTIS, it is available to
the general public, including foreign nationals.

This technical report has been reviewed and is
approved for publication.
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Paul E. Sheppard, GS-13 W.S. Strickland, GM-14
Project Officer Chief, Air Base Survivability
Section
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Chief, Air Base Systems Branch
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I. INTRODUCTION

a. OBJECTIVE

The general objective of this research is to determine the influence

that the degree of eaturation during compaction of sand has on blast-

induced ground shock and stress wave propagation. Four specific

1.

objectives arise out of this general objective.

Develop empirical equations from field test results which predict
scaled peak particle acceleration, peak particle velocity and

peak strese ae a function of saturation during compaction.

Determine if explosive field testing produces the same trends for
stress transmission and propagation velocity versus compactive
saturation obtained from Split-Hopkineon Pressure Bar (SHPB)
tests conducted by Pierce (1989), Ross (1989), Charlie et al.

(1990a) and Veyera and Fitzpatrick (1990).

Determine if explosive field testing produces the same magnitudes
and trends for peak stress, peak particle velocity, scaled peak
particle acceleration and propagation velocity obtained from
centrifuge explosive teating of sand compacted moist conducted

by Walsh (1993).

Conipare the developed empirical equations to those given by Drake
and Little (1983).




B. BACKGROUND

Since the 1950‘s, much research has been conducted on stress wave
propagation through different scil types of varying saturation. However,
until the late 1980‘'s, very little attention has been focused on the
behavior of stress wave propagation through partially saturated sands.
Recent studies on compacted sands conducted by Pierce (1989), Ross (1989)
and Walesh (1993) have shown there to be a direct relationship between
stress wave attenuation and saturation at compaction.

Stress wave propagation in partially saturated sands has been of
specia) interest to the United States Air Force since its strategic
underground structures are often buried in partially saturated sand. 1If
a penetrating bomb detonated near such an underground strategic structure,
considerable damage could be caused by the explosive stress wave
travelling through the soil to the structure. To estimate soil-structure
response and structural damage from such an event, blast-induced ground
motion parameters for a given field condition are required. Among these
ground motion parameters are peak particle acceleration and velocity, peak
stress, and stress wave attenuation coefficients.

Since it would be impractical to attempt determining these parameters
by full-scale explosive testing for each and every proposed strategic
site, other means of determination needed to be considered. Centrifuge
modeling of full-scale explosions in sand began at Tyndall Air Force Base
in the late 1980's. The current research is designed in part to evaluate
the accuracy of centrifuge modeling of full-scale explosive evente in
ungsaturated sand. The accuracy of centrifuge modeling will be assessed by
analysis and comparison of test results at three evaluated centrifuge g
levels (19, 26 and 67 g's) and at 1 g (1 g= 9.81 m/e?). This report covers
the results of the 1 g exploaive tests in unsaturated sand. The
centrifuge explosive tests conducted at 19, 26 and 67 g's are reported by
Brownell (19922), Dowden (1993) and Walsh (1993). Additionally, the

results are compared with the well established trends reported by Drake
and Little (1983).




C. SCOPE

Explosive field tests were conducted in Poudre Valley sand compacted
at a constant dry density of 1635 kg/m’ at saturations of O (dry), 13
{natural), 20, 40, 60, and 70 percent. Three explosive sizes of 6.22 kg,
7.0 kg and 0.227 kg (TNT equivalent) buried at a depth of 1.4 m were used
to achieve a wide range of stress wave magnitudes at constant distances
from the center of explosion (COE). Accelerometers and soil stress gages
were utilized to measure particle acceleration and soil stress at
established distances from the COE. This instrumentation furnished all
the necessary raw data for the determination of peak particle acceleration
and velocity, peak soll stress, attenuation coefficients, and propagation
velocities.

The data acquisition system consisted of accelerometer signal
conditioners, transient data recorders, and computer software designed to
handle high frequency traneient data. Cube root scaling laws were used in
the analysis of the data to simplify comparison of data with test results
reported by previous researchers, which were aleo based on cube root
analysis.

The data plots which best represent the influence that the degree cof
saturation during compaction of sand has on blast-induced ground shock and
stress wave propagation, and upon which the bulk of the conclusions will
be drawn are: 1) peak particle acceleration, peak particle velocity, peak
stress and propagati o5, «. versus scaled range and; 2! constants (Y-
intercepts) and slopes (-.~. and -n, where n {is the attenuation
coefficient) versus saturation, The constants and slopes will be used to

develop predictive equations in the form given by Drake and Little (1983).
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I1. LITERATURE REVIEW

A review of the most pertinent research relating to explosive stress

wave propagation in soils is provided in this chapter.

A. GROUND SHOCK FROM PENETRATING CONVENTIONAL WEAPONS

Drake & Little (1983) collected explosive ground shock data from over
a 35 year period, and from this data developed empirical equations to
predict the magnitudes and attenuation behavior of ground motion
parameters for varying soil types and conditions. Drake and Little’s

egquations rewritten in S8I units are:

-n-1
cWwi/3 = £ . -n-1 |_R .
a, W3 = f 126 - ¢+ (2.52)"? (wm) (2.1)

R -n

V°=f'48.8'(2.52)'"(—“—,m) (2.2)

1 R )"
- . . . -n 2-3
P, = £+ (pc) TS (2.52) (——wl/-‘*) ( )

where a, is the peak particle acceleration (g’s), V, is the peak particle
velocity (m/e8) , P, is the peak scil stress (kPa), W is the explosive
charge mass (kg), f is the coupling factor for near-surface detonations
(see Figure 2.1), R is the range or distance to the explosion (m), c ie
the seismic velocity of the soil (m/s), p is the soil’'s density (kg/m’),
pc is the acoustic impedance (kg/m*~-s), and n is the attenuation

coefficient. The explosive charge mass, W, is proportional to the energy

released during detonation. W in Bqguations (2.1) to (2.3) is the

eguivalent C4 exploeive mass.
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Other useful relationshipe presented in Drake and Little's paper are:

P, = pcV, (2.4)

t,«0.1¢, (2.5)

Cc = H (2‘6)
P

where t, is the rise time of the stress or particle velocity pulse, t, is
the time of arrival for the stress wave to reach a given instrument, and
M is the modulue of the soil.

Equation (2.4) states that peak etrees is directly proportional to the

peak particle velocity of the solil. Equation (2.5) was derived from the

pulse to reach its peak is approximately one tenth the time for the
explosive stress wave to reach the location in question. Equation (2.6)
states that the propagation velocity for a given soil is a function of ita
modulus (M) and its mass density (p).

Equations (2.1) to (2.3) incorporate the cube root scaling term
(R/W'?), which is convenient for comparing explosive data from different
tests, where both R and W vary. Amraseys and Hendron (1968), Dowding
(1985) and others have validated that there is a consistent relationship
between peak particle velocity and scaled range (R/W'”’) for a wide range
of explosive measuremente. Scaled peak particle acceleration (a,cW'”) and
peak stress (P,) also display a consistent relationship with scaled range.

Cube root scaling is derived from the Buckingham Pi theory of
dimensionless analysis (Buckingham, 1915), where the terme V,/c and
(Weg)/pc’R’® are among the derived dimensionless parameters, and the
explosive is congidered a point or a sphere. The pi theorem statas that
any of the parameters may be considered to be a function of another, and
that the parameters may be raised to any power. Since p and ¢ remain
relatively constant when compared with the possible variation in R and

(Weg) , they are sometimes dropped from the foregoing dimensionlees terms.
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Although the new terms V, and (Weg)/R’ are no longer dimensionless, they
stil]l may be used as if they were dimensionless. Since the parameters may
also be raised to any power, V can now be plotted againat (Weg)!*/R or
R/(Weg)'?, parameters which were found to produce conaistent relationshipe
by Ambraseye and Hendron (1968), Dowding (1985) and others. For spherical
charges, the term W'? is proportional to the charge radiuas, r. Hence, R/W'”
ies essentially proportional to R/r, which is dimensionless.

Figures 2.2 to 2.4 show the relationships between scaled peak particle
acceleration, peak particle velocity and peak strese versus scaled range
for a variety of soil types and saturations for fully coupled (f=1)
detonations (Drake and Little, 1983). Attenuation is greatest for dry
loose sand and least for saturated clay/sandy shale. The attenuation
curves for dense sands at varying saturation levels would be expected to
range between the two aforementioned curves.

Values for the ground shock coupling factor in Equations (2.1) to
(2.3) can be determined from Fjigure 2.1. Typical values for seismic
velocity (c), acoustic impedance (pc), and attenuation coefficient (n)
extrapolated from the explcsive test data reviewed by Drake and Little are
provided in Table 2.1.

The attenuation coefficient (n), is a measure of the soil’s ability
to diminish explosive energy over distance, and is dependent upon the 8oil
type, density and saturation level of the soil. Since seismic velocity is
alsc directly dependent upcon these factors, the attenuation coefficient

can also be estimated from the seismic velocity of the uncemented soil as

given in Table 2.2.
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B. SPLIT-HOPKINSON PRESSURE BAR TESTING OF UNSATURATED SAND

The Split-Hopkinson Pressure Bar (SHPB) has traditionally been used
in determination of stress transmission through solid media. Felice
(1986) first used the SHPB apparatus to test dynamic properties of soil.
Pierce (1989), Roes (1989) and Charlie et al. (1990a) have recently
utilized the SHPB to evaluate the influence of compactive saturation on
propagation velocity, stress transmiesion, and attenuation for compacted
sand specimens. A detailed deecription of the SHPB and its operation is
provided by Ross (1989).

Ross (1989) compacted specimens of S0/80 silica sand to a constant dry
density of 1600 kg/m' at saturatione ranging from O (dry) to 95 percent,
and subsequently subjected them to a compressive stress pulse from the
SHPB apparatus. Strain gages attached to the two steel bars on either
side of the sand specimen measured the arrival time and magnitude of the
compressive atress pulse, o, before and after travel through the specimen,
from which propagation velocity and transmiseion ratio
(°tranum1tted/°incident) could be determined. Test results are reported
by Charlie et al. (1990a).

Variation in propagation wvelocity and transmission ratio with
compactive saturation levels is shown in Figure 2.5. Based on their
observation of the trends, Charlie et al. (1990a) reports:

. « . Stress wave velocity and transmitted strese increase

as the saturation increases 0 to 320 to 40 percent for constant

input strese and constant dry density. At saturation levels

between 40 to 95 percent, both the wave and the transmitted

stress decredse with increasing saturation . . ., these trends
may be explained by capillary pressure (Charlie et al., 1990a).

Attenuation of stress versus percent saturation is plotted in Figure
2.6. The highest degree of stress attenuation occurs at O and 86 percent
saturations, and the lowest at 22 percent saturation. It can be sesn that

lower attenuation coefficlents coincide with higher degrees of streess

transmigseion.
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According to Charlie et al., attenuation trends may be explained by
the capillarity in the scil at the time of compaction. Capillarity,
surface tension hetween sand particles due to the presence of void space
water, creates an attraction between particles. Sande with higher
capillarity also tend to have higher stiffness. S8ince propagation
velocity, stress transmission and attenuation are functions of a ecil’s
stiffnesc, a higher capillarity should bas evidenced by greater magnitudes
of propagation and stress ¢transmission, and by lower attenuation
coefficients.

Pierce (1989) compacted samples of dry 20-30 Ottawa and Eglin sande
to a conetant density, saturating them to prescribed saturation levels
subsequent to compaction. The samples were then desaturated and tested on
the SHPB apparatus. Test results show that stress transmission and
propagation velocity values vary only slightly for the range of
saturations tested (Figure 2.7). 1If capillarity in and of itself affected
stress transmission and propagation velocity, significant dif{ferences for
these values would be seen over the range of saturatione tested. Plerce
demonstrated that capillarity (~7 kPa) had only a minimal effect in
creating soil stiffness when compared with the stress levels associated
with SHPB or testing (the lowest psak stress encountered in Pierce’s SHPB
testing was 1170 kPa).

The degree of saturation during compaction seems to greatly affect a
scil’s ability 2o transmit stress. This was particularly demonstrated in
Ross’'e (1989) research, where he first saturated a sand sample to a given
saturation, then compacted, then tested it on the SHPB apparatus. Trende
cbtajined from test results (Figure 2.5) differ gresatly from Pierce's
trands (FPigure 2.7). Thus, capillarity, in and of iteelf, does not
significantly increase the stiffress and stross wave energy transmission
capabilities of a soil. But, the pressence of capillarity at the time of
compaction may affect particie arrangement or the magnitude of horizontal

stress, which does have an affect on energy transmission. Pierce states:

« . . compacting samples at different molsture contents may
influence the fabric and grain orientation of the sand or change
the stress state in the sand (Pierce, 1989, pg. 119).




fas

015
o EGUN SAND
= € WPa CONRINING STRESS
&
z0.10
o
[72]
v
-
("2}
Z0.05
3
® ®
’%% & ° (oY)
0.0o|Iol-1lTTr[llllfilul]lllcllllllonlllr707|-ll111517_|
0 20 40 €0 gd 100
SATURATION, s
(3)
0.18
o OTTAWA SAND
= 0 &Py CONRINING STPETS
L8
&
20.10
@]
]
2
= 4] 0
o ° 8 ® °
(]
0.00 | LA A 2 BN JRUN e A B S T B SN S MY B B RACER R B S SN B e e |
20 40 60 BD 100
SATURATION,

(b)

Figure 2.7 Transmission Ratio versus Saturation for Eglin and Ottawa 20-
30 Sands Under Z2sro Confining Stress. (a) IXglin Sand (b)
Ottawa 20-30 Sand (Pierce, 1989;.
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C. STRESS TRANSMISSION AND MICROSTRUCTURE IN COMPACTED MOIST SAND

Veyera and Fitzpatrick (1990) extanded the work of Pierce (1989), Ross
(1989) and Charlie et al. (1990a) by evaluating the influence soil
microstructure has on stress transmission behavior of unsaturated soils.
They affirm the hypothesis that capillary pressures do not directly affect
a granular soli‘s ability to transmit stress, but they do affect particle
packing and orientation during compaction. They state:

Capillary pressures may atrongly influence the soil

microstructure during compaction ... which could significantly

affect both static and dynamic behavior of soil (Veyera and

Fitzpatrick, 1990, pg. 7).

Veyera and Fitzpatrick’s work consisted of an attempt to determine the
relationship between soil structure at the microscopic level to the
dynamic soil properties at the macroscopic level. To isoclate the effects
that microstructure has on atress transmission and propagation velocities,
a series of sand specimens were compacted moist for a range of saturations
and tested dry. Removing moisture from the specimen after compaction and
prior to testing negated any influence that pore water could have on
stress transmission through the compacted microstructure of the sand.

Figures 2.8 and 2.9 compare the trends obtained from samples
compacted moist and tested dry with trends obtained from samplee compacted
moist and tested moist. The trende are essentially the same, and are
similar to the results of Rose’s (1989) tests. Test resulis suggest:

« + « 80il microstructure characteristics developed during
compaction which influence transmission ratio and wave speed,
remain intact even after the moisture in the pores has been

removed (Veyera and Fitzpatrick, 1990, pg. 51).

Thus, the degree of saturation during compaction, not after, affects
soil microstructure characteristics, which in turn affect sgtress
transmission and propagation velocity. Figure 2.10 shows that compactive

saturation levels also influence the compactive effort required to reach

a constant density.
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Figurs 2.8 Normalized Average Wave Speed as a Function of Saturation for
Oottawa 20~30 Sand (Veyera and Fitzpatrick, 1990).
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Figure 2.9 Normalized Average Transmission Ratio as a PFunction of
Saturation for Ottawa 20-30 Sand (Veyera and Fitzpatrick,
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Figure 2.10 Normalized Average Total Compactive Energy for Ottawa 20-230
sand Compacted to & Dry Density of 1718 kg/m’ (Veyeara and
Fitzpatrick, 1990).
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D. CENTRIFUGE MODELING OF EXPLOSIVE-INDUCED STRESS WAVE PROPAGATION IN

UNSATURATED SAND

Walsh (1993) conducted centrifuge modeling of explosive detonations
in unsaturated sands. The tests were conducted at Tyndall Air Force Base
using Ottawa 20-30 and Tyndall Beach sands compacted to a dry density of
1612 kg/m’ (DR= 35%) and 1521 kg/m’ (DR= 42%), respectively. The purpose
of the tests was to assaess if centrifuge modeling could accurately predict
stress transmission behavior for full-scale explosive events in
unsaturated sands. Scaling relations used to relate centrifuge test
parameters to prototype test parameters are given in Table 2.3. Details
on the operation of the centrifuge, scaling relatione and other related
information are provided by Walsh (1993).

In order to simulate a wide range of full-scale test conditions,
centrifuge tests by Waleh (1993) were conducted at three different g
levels (19, 26, and 67), using two exploesive charge weighta (350 and 1031
mgs of PBX 9407) over saturatiorn levels ranging from O percent to 70
percent., Specimens were compacted moist and tested moist. The 19~g and
26-g tests conducted in Tyndall Beach sand madeled 7.8 kg and 7.3 kg TNT
equivalent detonations in the field, and the §7- test conducted in Ottawa
20-30 sand modeled a 118 kg TNT equivalent detonation in the field.

Centrifuge test results showing peak ground motion parameters and
attenuation trends are presented in Pigures 2.11 and 2.12. In Figure
2.11, intercept values are plotted versus saturation for peak stress,
scaled peak particle acceleration, and peak particle velocity. Intercept
values were taken from peak parameter (ttrees, scaled acceleration,
velocity) versus scaled range (R/W'’) plots, at a scaled range of one (R/W'”
= m/kg'® = 1). In all three plots for Tyndall Beach sand, energy
tranemission is lowest at O percent and 50 to 70 percent, and ie highest
at 20 to 40 percent saturation. The trends shown in these figures are
very similar to those of Charlie et al. (1990a) (Figure 2.5), Plerce
(1989) (Pigure 2.7) and Veyera and Fitzpatrick (1990) (Figures 2.8 and
2.9).
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TABLE 2.3. STANDARD SCALING RELATIONS (FROM BRADLEY ET Al ., 1984).

acceleration of model
acceleration of prototype

Parameter Prototype Model
Linear Dimensjion 1 1/N
Gravity (g) 1 N
Area 1 1/N?
Volume 1 1/N°
Dynamic time 1 1/N
Velocity (Distance/Time) 1 1
Acceleration (Distance/Time?) 1 N
Density (Mass/Volume) 1 1
l_Unit Weight (Force/Unit Volume) 1 N
Force 1 1/N?
Stress (Force/Area) 1 1
Mass 1 1/
“Energy 1 1/N°
Strain (Displacement/Unit Length) 1 1
ll Hydrodynamic Time 1 1/N?
| Impulse 1 1/N?
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In Figure 2.10a (Tyndall Beach sand), attenuation of the stress wave
over distance is greatest at 20 to 50 percent saturation and leaet at O
and 70 percent saturation. In Figure 2.10b (Ottawa 20-30 sand),
attenuation rises steadily from O to 60 percent saturation. It ie
uncertain why the attenuation is qreatolé at 60 percent saturation for
Ottawa 20-30 sand. This behavior has not been observed in any of the other
tests.

Figure 2.13 shows measured propagation velocity versus saturation from
centrifuge test data. Seismic velocities suggested by Drake and Little
for dense and loose sande are included for comparison. An envelope
encloses the range of suggested seismic velocity values for dense and
loose sande. Attenuation trends in Figure 2.13a for Tyndall Beach sand

are similar to those observed in Figures 2.5, 2.7, 2.8, 2.11 and 2.12.

E. SOIL MECHANICS PRINCIPLES THAT EMBRACE UNSATURATED SOILS

Fredlund (1985) synthesized the equations surrounding the behavior of
saturated and dry soils, and developed equatione for the behavior of
unsaturated soils. Plerce (1989) reported:

The theory presented by Fredlund accurately predicted that the

capillary pressures developed in the sands which were compacted

dry, then saturated, then desaturated would have little

influence on the stiffness (Pierce, 1989, pg. 121).

Walsh (1993) determined that Fredlund‘s theory was not particularly
useful in predicting blast-induced soil parameters in sands compacted

moist.
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F. SUMMARY OF PREVIOUS RESEARCH

Drake and Little (1983) developed empirical equations to predict
blast-induced peak ground motion parameters for a wide range of soil typns
and conditions. Cube root scaling laws were used in the analysis.

Plerce (1989), Ross (1989) and Charlie et al. (1990a) conducted SHPB
tests on unsaturated sand specimens, and determined that the saturation
level at compaction influences stress transmission and attenuation
behavior. Stress transmission was greatest at 20 to 60 percent saturation
and least at less than 20 and greater than 60 percent saturations. They
hypothesized that capillarity, in and of 4itself, does not directly
influence the stiffness of sands compacted moist.

Veyera and Fitzpatrick (1990), while attempting to determine the
relationship between socil microstructure and dynamic soil parameters on
the SHPB apparatus, validated the trends of Ross (1989) and Charlie et al.
(1990s) . The degree of saturation at the time of ccmpaction largely
determines particle orientation and packing and possibly horizontal
stress, which directly influences stress transmigssion. Samples compacted
moist and tested dry showed essentianlly the same trends as samples
compacted moist and tested moist, which affirms that the presence of
capillarity after compaction does not alter the stress transmission
characteristic of solls.

Walsh’'s (1993) centrifuge tes: results showed the same trends for
stress transmission, propagation velocity, and attenuation (except for
Ottawa 20-30 sand) as the trends reported by Pierce (1989), Ross (1989)
Charlie et al. (1990), and Veyera and Pitgpatrick (1990).

The physical properties of 50/80 silica sand tested by Pilerce (1989),
Ross (1989) and Charlie et al. (1990a); for Ottawa 20-30 sand tested by
Veyera and Pitzpatrick (1990) and Walsh (1993); for Eglin sand tested by
Pierce (1989) and for Tyndall Beach sand tested by Walsh (1993) are given

in Table 2.3.
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I1I. EXPERIMENTAL PKOCHOIURL.

A. LOCATION AND DESCRIPTION OF TEST SITE

The test site is located in a valley snuth of the Colorado State
University Engineering Research Center in ¥orz Col.imi, Coviorado. The
gite was originally designed and connttuctéd in isvs for explosive
ligquefaction studies funded by the Air Force Office of scientific Research
(Bratz, 1989; Schure, 1990; Hassan, 1993). A schematic plan view of the
test site is displayed in Figure 3.1.

Explosive tests on unsaturated sand were conducted in an existing,
buried, open-~ended steel tank, labeled as item 13 in Figure 3.1. The top
of the tank is open to the atmosphere and coincident with ground level.
At the bottom of the tank are successive layers of gravel and bentonite
clay, which allow drainage within the tank and prevent significant upward
seepage of groundwater. Tank dimensions are 4.27 m (diameter) by 2.74 m
(depth). Photographs of the test site and partially filled tank are
displayed in Pigures 3.2 and 3.3, respectively.

Other items utilized on the test pite were the instrument relay shack
(Figure 3.1, item 10 and Figure 3.4), the command center (Figure 3.1, item
1l and Pigure 3.5), and the 20,000 liter water tank (Figure 3.1, item 11).
The instrumsntation shack housed the power supplies and signal
conditioners for the instruments. Data acquisition equipment and

computers were located in the command center, which served as the center

for system control.
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Figure 3,2 Test Site.

Figure 3.3 Partially Filled Test Tank.
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Instrument Relay Shack.

Figure 3.4

Figure 3.5 Garage and Command Center (Bretz 19589).
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B. EQUIPMENT AND APPARATUS

1. Field Bquipment

Table 3.1 lists the field egquipment used in the process of sand

placement, saturation, mixing, compaction, density/moisture control and
removal.
TABLE 3.1. EQUIPMENT USED IN PIBLD PROCEDURE.
Placement/
Removal: John D ere JD 300 backhoe

compactions:

Density/
Moisture

contxol:

Outdoor/indoor portable aggregate conveyor belt

Shovels and rakes.

Teel eelf-priming centrifugal pump; model 3P601A, 6 kw (8
HP), 7.62 em (3 4inch) inlet/outlet diameter, -76,000
liter/hour (20,000 GPH)

Teel convertible jet pump; model 9K630, 746 watts

Teel submersible sump pump; modei 3P635, 250 watte

20,00C liter (5000 gallon) water stcrage tank

Three 208 liter (55 gallon) barrels

7.62 cm hose, garden hose, various spray nozzles.
Sears~Crafteman tiller; model 917.298350, 3.7 kw (S5HP), 61
cm (24 inch) tine width, 28 cm (11 inch) tine depth
Shovels and rakes.

Wacker vibratory soil compactor; model VPG 1550A, 2.6 kw
(3.5 HP), 85 Hz exciter frequency, 88 kg.

CPN-1DR-122 Nuclear Density/Moisture gauge; radiocactive
sources- Cesium 137 and Americium 241/Beryllium, multi-depth
probe 30 cm max.
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2. Instrumentation

Blast-induced particle acceleration was measured with Endevco Model
7270A 20,000-g and 6,000-g piezoresistive accelerometers (Figure 3.6).
pDetailed specifications and calibration data are provided in Appendix A.
These accelerometers were ideal for the tests hecause of their small size
(1.4 x .7 x .95 cm), low maes, high resonant frequency and 2erc damping,
features which give reliable response to the fast rise times and short
pulse duration associated with transient shock waves,

Input excitation voltage and output signal amplification for the
accelerometers were provided by an Endevco Universal Signal conditioning
system, Series 4470 (Figure 3.7). Individual eignal conditioners were
mounted in Endevco’s Model 4942 Rack adapter. Mode cards were inserted
into each signal conditioner and calibrated for the specific sensitivity
and range of each accelerometer. Detailed spacifications for the signal
conditioners are given in Appendix B.

Peak soil stress was measured with Kulite LQ-080U soil strees gages
(Figure 3.6) developed especially for accurate measurements of blast-
induced soil reactions. Detailed specifications are provided in Appendix
B. A 12 volt 4.5 AH battery provided the input excitatior voltage for
each gage. No amplification of the soil stress gages output signal was
provided.

Input and output signals were transmitted from the instrumentation
relay shack to the instruments in the sand and back through approximately
40 meters of shielded 2 Pair, 22 gage cable. Output signals from the
instrument shack were then tranamitted through approximately 100 meters of
RG 58, S0 Ohm coaxial cable to the transient data recorders in the command

center. Both sets of cables were laid on the ground surface.
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Figure 3.6 Endevco 20,000 g Accelerometer (left) and Kulite LQ 080U Soil
Stress Gage (right).

Figure 3.7 Endevco Signal Conditioners.
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3, Data Acquisition/Storage/Analysis

a. Transient Data Recorders

Pacific Instruments Model 9820 transient data recorders (TDR’‘s) were
used to record the dynamic test data from the accelerometers and soil
stress gages. Two racks with 10 modules sach were located in the command
center. A total of twenty data channels were available for use. The TDRe
were triggered and began recording data the instant that voltage from the
detonation circuitry was eensed. Incoming analog signals were firat
digitized at a programmable rate of up to 500,000 samples per second, then
stored in the data recorder’'s memory. Dsta were then manually transferred
to permanent storage on the Compagq 386 hard drive and high-capacity
Bernoulli disks. The TDRs are displayed in Figure 3.8. Detailed

information on the TDRe is provided by Charlie, et al. (1987).

b. Computer Hardware and Software

Computer hardware consisted of the following devices:
¢ Compaq Deskpro 386/20e personal computer; 25 MHz, 4
megabytes of RAM, 110 megabyte hard drive, math
coprocessor, expanded memory (Figure 3.9)
e Compaq 286 portable field computer (Figure 3.9)
e IBM compatible 386 pergonal computer

e Bernoulli portable 44 megabyte hard drive (Figure 3.9)

e Hewlett Packard Laserjet IIl printer.




Figure 3.8 Transient Data Recorders.

Figure 3.9 Compaqg 286 and 386 Computers, Eernoulli Disk Drive.
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Both Compaq computers, along with the data acquisition software, were
used prior to testing for system control-- channel configuration,
calibration of signal voltages, channel monitoring, and initiation of the
firing sequence. Subsequent to firing, data from the TDRs was stored on
the computer hard drives and the Bernoulli disk drive. The Compaq 386,
along with another 386 personal computer, were used for data analysis and
preparation of thise manual,

Pacific Data Acquisition software provided system control during
testing. Other software packages used subsegquent to testing for data
analysis and manual preparation were Asyst Scientific software 3.1,

Quattro Pro 3.0, and Word Perfect 5.1.

4. Miscellaneous Equipment

Fennel Kassel level, tripod, philadelphia rod

Fluke 806A multimeter

Nimbus Instruments Model HVB-1 High Voltage Detonator
Wiring equipment- Ungar 1095 heat gun, Ungar UTC-300
soldering station

C. FIELD PROCEDURE

1. Sand Placemant, Saturation, Mixing and Compaction

a. General Overview of Procedure

Initially, 90,000 kg (100 tons) of Poudre Valley sand was ordered from
Mobile Western company of Fort Collins and stockpiled next to the tank for
the Fall 1991 tests. The first test was conducted on sand compacted at a
saturation of 13 percent (at the natural water content, w, of the sand of
3.1 percent). Sukseguent tests were conducted at saturations of 20, 40,

60 and 70 percent. A dry density of approximately 1635 kg/m’ (102 pcf) wase

achieved for all tests.




A sacond batch of sand (65,000 kg or 7C tons), originating from the
same source, was ordered for the Spring of 1992 tests. Prior to delivery,
the sand was dried to a water content of zero in a dryer drum belonging to
a local asphalt coumpany. The firet Spring test was conducted dry, and
subsequent tests were conducted at the same saturations and dry densities
as the PFall tests.

The sand remaining in the tank after detonation was re-used for each
test according to the following sequence: (1) removal of sand with backhoe
subseguent to testing; (2) replacement of loose sand into the tank for the
next test; (2) saturation of sand to the desired percent saturation; (4)

compaction of sand in .305 m (1 foot) lifte; 5) explosive testing of sand.

b. Sand Placenent

S8and was placed manually into the tank with shovels (Figure 3.10)
in .305 m lifte, often with the aid of a mobile conveyor belt. Lines were
Painted on the inside of the tank in .305 m increments to aid in
determining when enough sand had heen pluced. Approximately 56,000 kg (62
tons) of sand were roquired to fill the tank to ground surface levcl. The
1lift <thickness was chosen according to the 2:1 ratio of stress
distribution for rectangular esuzface loads. It was assumed that
vibrations from the soil compactor (.75 m x .45 m) would be distributed
over depth according to the same ratio. At a depth of .305 meters then,
the intensity of the vibrations are decreased by one-half. Any greater
degree of vibration sttenuation could have 1lead to excessive

undercompaction of the lower portion of the 1lift.
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c. Sand Saturation and Mixing

Water was added to each lift to reach the target saturation and then
mixed in place by means of manual spraying and roto-tilling. Before
addition of water, an average in-eitu water content for each lift was
measured using the Nuclear Density/ Moisture gage (NDMG). An HP-41
program calculated the amount of water needed to obtain the desired
saturation, given the in-situ and target water contents and densities.

Water was transferred from the 20,000-~liter storage tank into 208-
liter barrels so that a known volume of water could be obtained from the
barrels. The desired volume of water was then pumped from the barrels and
distributed evenly onto the surface of the lift using a garden hose and
spray nozzle (Figure 3.11),

Lifts were mixed with a tiller immediately after saturation (Figure
3.12) to prevent excessive drainage and drying. Several passes were made
with the tiller to ensure sven distribution of moisture throughout the
l1ift thickness.

Excessive drainage into lower layers was encountered during saturation
for tests conducted at 60 and 70 percent saturation. Drainage was
minimized in this case by using the Teel high-capacity centrifugal pump
(1200 liters/minute) to saturate the lift in a matter of minutes (Figure
3.13).

d. Sand Compaction

Zach layer was compacted to a target dry density of 1635 kg/m’ using
the Wacker wvibratory compactor (Figure 3.14), The compactive effort
{number of passes) required to reach the target density was determined by
trial and error. Compaction control was accomplished by measuring the dry
density and moisture content of the 1ift with the Nuclear Moisturae/Density
Gauge (NDMG) shown in Figure 3.15, and making additional passes or
loosening the sand and re-compacting as necessary. Perindically, moisture

contents given by the NDMG were verified by performing the Standard Test
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for Moisture Content Determination (ASTM D2216) on a sand sample (a
microwave oven was used in place of the standard drying oven). When the
target saturation and density for a layer had been reached, the same

procedure was followed for the next layer.

.. Moisture and Density Quality Control

Density and moisture measurements using the nuclear density/moisture
gauge were taken at four to five locations over the area of each lift at
depths of 10 cm and 20 cm. A backscatter reading was also taken at each
location. Average values of dry density and saturation were calculated
and compared with the target dry density and saturation. The sand’s

density and saturation were modified as needed to match target values.

f. Removal of Sand

Upon completion of a teast (Figure 3.16), crater dimension measurements
were taken, and all layers were removed with a backhoe and stockpiled next

to the tank for the next test (Figure 3.17). Following the dry test,

crushed sand located near the CEO was removed and not reused.




Figure 3.10 Placement of Lifts into the Tank.

Figure 3.11 Addition of Water to Lifts to Reach Target Saturation.
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Figure 3.13 Addition of Water to Lifts for Tests Conducted at 60 and 70
Percent Compactive Saturations.




Figure 3.14 Vibratory Compaction of Lifts

Figure 3.15 Density Measurement with Nuclear Density Gauge.
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Figure 3.16 Typical 7.0 kg Blast.

Figure 3.17 Removal of Sand with Backhoe.
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2. Instrumentation Preparation and Placement

a. Instrument Preparation

All instruments were factory calibrated and sealed against moisture
by the manufacturer. Instrument preparation for field tests consisted of
wire splicing, waterproofing, testing continuity for proper connections,
and testing wheatstone bridge circuitry.

Wire leads from the accelerometers and soil stress gages were soldered
to shielded 2-pair 22-gage cable, which transmitted input and output
voltages from the instrument relay shack and back. A multimeter was used
to check for continuity across the wires and for balance in the wheatstone
bridge circuitry of the instrument. All junctions where wires had been
spliced were sealed against moisture by sheathing the wires with multiple
layers of dielectric grease and electric shrink wrap.

Five-pin connectors were attached at the end of the accelerometer
cables and plugged into the signal conditioner. The input leads of the
soll stress gace cables were attached to the positive and negative posts
of 12 volt batteries, and the output leads were connected directly to RG

S8 coaxial cable. A common system ground was provided by the TDRs.

b. Instrument Placement

The instrument layer was located on the surface of the third layer
from the bottom of the tank (see Figure 3.18). After all layers had been
Placed, a surcharge of 1.4 meters of compacted sand covered the instrument
layer, which courresponds to a scaled depth of burst of 1.88 m/kg'® and
coupling factor of 1 (Figure 1.1). The center of explosion, which
coincided with the instrument layer, was covered with enough surcharge
such that it received the full energy from the burst.

The center of the tank (also the CEO) was established by finding the
intersection of two perpendicular chords (ropes stretched across the rim

of the tank). Markings were then painted at appropriate locations on the
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rim and inside tank wall so that the center of tank could easily be re-
established.

Instruments were placed along radial lines originating from the center
of the tank at distances of .91, 1.07, 1.37 and 1.98 meters (3, 3.5, 4.5,
6.5 feet) for Fall 1991 tests (Figure 3.19i. Additional instruments were
placed at 1.69 m and 1.83 m (5.5 ft and 6.0 ft) for Spring 1992 teste
conducted at O, 13, and 20 percent saturations (Figure 3.20). Spring
taests conducted at 40 and 60 percent saturations employed an instrument
placement acheme which allowed for greater scaled ranges (Figure 3.21).
Instruments placed closer than approximately .91 meters from the COE were
destroyed by the blast. Instrument locations were chosen such that the
distance interval between each successive instrument from the COE doubled,
a feature which facilitates data spread on a log-log plots.

Soil stress gages were placed along & radial line excending from the
COE to the edge of the tank and slightly offset in order to minimize
disruption of the stress field. Offsetting wae not necessary for the
accelerometers, since their size and mass were virtually identical to
larger grain sizes.

Each instrument was placed with its face perpendicular to the COE for
tests conducted in the Fall of 1991 (Figure 3.19). However, a different
instrument orientation and placement scheme was necessary for teste
conducted during the Spring of 1992. Por Spring tests conducted at 0, 13
and 20 percent saturations, charge masses were placed .61 meters apart and
fired separately (see Sec. V for discussion). Instrument faces were
accordingly aligned perpendicular to the bisector of the two charges to
minimize the effects of a-perpendicularity on stress measurement (Figure
3.20). When an instrument had been placed and oriented, presaturated sand
was carefully placed over the instrument and hand tamped until firm.
After all instruments had been placed and covered, pre-gaturated sand was
backfilled so as not to disturb the zones where the instruments had been
placed. The layer was then compacted with the vibratory compactor as with

the other layers.
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3. Explosive Procedure

Seven kg charges (TNT equivalent) were used for Fall 1991 testes.
Seven kg charges and .227 kg charqes were used for Spring 1992 tests
conducted at 13 and 20 percent saturations. The dry test (saturation of
zero percent) conducted in Spring 1992 utilized €6.22 and 0.227 kg charges.
Charges of 0.227 kg were used for Spring tests conducted at 40 and 60
percent saturations. The buried charge masses were cylindrical in shape,
with the explosive center of mass located on the same plane as the
inetrument level (see Figure 3.18). The smaller .227 kg charge was offset
.61 meters from the 7 kg charge (see Figure 3.20).

When the top sand layer had been compacted, a 10 cm auger was used to
bore a hole deep enough such that: the center of mass of the placed
explosive corresponded with the instrument layer (Figure 3.22). Holes
could not be bored for teste conducted in dry sand, so the explosives were
lowered into a 10 cm 1.D PCV pipe (wall thickness of 5 mm) positioned in
the tank before sand placement. The explosives were then packed inside
the hole to eliminate air gap voids between the explosive and soil or PCV

pipe. Sand was then placed over the explosive and recompacted.
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Figure 3.18 Cross Section of Tank Showing Instrumant Layer and Explosive
Placement.
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Al,T1 0.91 3.0
A2,T2 1.07 3.5 ’
A3, T3 1.37 4.5
A4,T4 1.98 6.5

Figure 3.19 Plan View of Instrument Layer Showing Instrument and
Explosive Locationa for Fall 1991 Tests.
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Figure 3.20 Plan View of Inetrument Layer Showing Instrument and Explosive
Locations for Spring 1992 Tests Conducted at 0, 13 and 20
Percent Saturations.

53




TS5 -~ —AS

-T7 T4 — - A4

A8 — T3 -~ - A3
A7 - - T8 T2 ~ - A2 .
AB — TY — - A1 .

0 227 kg CHARGE 0.227 kg| CHARGE

650% 40%
SATURAT ION SATURAT ION

Distance from center

Instrument of 0.227 kg charge
location: Meters [Feet
Al,T1,A6 1.09 3.58
A2,T2,A7,T6 1.44 4.71
A3,T3,A8 1.74 5.70
A4,T4,T7 2.02 6.63
AS,TS 2.31 7.58

Figure 3.21 Plan View of Instrument Layer Showing Instrument and Explosive

Locations for Spring 1992 Tests Conducted at 40 and 60 Percent
Saturations.
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Three types of explosives ware used in the field testsa: instantaneoun
blasting caps, Primacord®, and Powermite® high explosive gel sticks.
Explosive properties are given in Section 1IV. All three were used
simultaneously to create the burst for the 7 kg and 0.227 kg TNT
equivalent detonations. HNine .94 kg sticks of Powermite" were placed into
the hole in bundles of three. 1.75 meters of 4.68 mm Primacord® was
interlaced between the mass of Powermite" sticks and strung to the surface,
where it was connected to a Dupont CWAS blasting cap. The blast was
initiated by electrically detonating the blasting cap, which detonated the
detonation cord, which in turn detconated the buried explosive mass.
Pigure 3.23 show the three explosive types used.

Safety precautions were taken for the explosive procedure according
to the Explosives Procedure Manual of Colorado State University (Charlie
et al., 1990b).

4. Data Acquisition and Computer Procedure

All data acquisition equipment was turned zn at 1eayt one half hour
before the blast to allow instruments and equijment tc worwm up and reach
a state of system squilibrium. Individual accelsromeater sensitivities
were ontered into the eignal conditioner c¢hannel, and channels were
balanced and "zeroed".

Data channels were also configured for both instrument types using
Pacific Monitor software. Channel configuration included setting the
number of pre and post trigger time segments, duration of data recording
and trigger voltages. Whaen the system had been configured, calibrated,
and balanced, several mock firings were conducted to verify that the

system was operational. Data were then downloaded from the TDRe after a

succaessful test.




Figure 3.22 Boring the Explosive Hole with & 10 cm Auger.

Figure 3.23 Powermite! Explosive Gel Sticks.
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IV. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter presents the results from sand property tests, compaction

procedures, explosive property investigation, and explosive test results.

B. POUDRE VALLEY SAND

The sand utilized in the test program was Poudre Valley sand, a
crushed grave. obtained from the Poudre River Valley. The supplier was
Western Moblle Northern of Fort Collins, Colorado. Poudre Valley sand is
classified aa a poorly graded sand (SP) under the Unified S5oil
Classification System as set forth in ASTM D2487 (ASTM, 1987). Its
particles are angular to subangular in shape, being composed mainly of
foldspar and quartz. Important phyeical properties of the sand are given
in Table 4.1.

Physical property tests were conducted in accordance with ASTM D854
(8pecific Gravity), ASTM D422 (Particle 8ize Analysis), ASTM D558
(Mcisture-Density Relationship), ASTM D4253 & D4254 (Maximum and Minimum
Index Density) and ASTM D2325 (Capillary-Moisture Relationshipe). The
minimum and maximum dry density tests were performed by the Bureau of
Reclamation Soil Mechanicse Laboratory in Denver, Colorado. The target dry
density of 1635 kg/m’ represents a relative density of 44 percent.

Figures 4.1 to 4.6 display the results of physical property tests
conducted on Poudre Valley sand. The grain size distribution for Poudre
Vallsy sand is given 4in Pigure 4.1. Comparison with grain size
distribution curves in Figure 2.14 for 50/80 silica, Ottawa 20-30, Eglin,
and Tyndall Beach sands reveals that Poudre Valley sand has the widest
grain size distribution (C= 4.05) and the second to largest mean grain
size (Dy= 0.65 mm). Grain sizes as large as 4.75 mm are seen in Figure

4.1 for Poudre Valley sand. The grain size distribution for Poudre Valley
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sand is replotted in Figure D.2 for comparison with grain size
distribution curves for 50/80 silica, Ottawa 20-30, Eglin and Tyndall
Beach sands. Figure 4.2 shows dry density plotted as a function of water
content and saturation. The lowest dry density occurs at a water content
of approximately 7.5 percent (or S = 35 percent). This correlatee to a
large compactive effort necessary to reach a constant dry density between
35 and 45 percent saturations in Figure 4.3. Veyera and Fitzpatrick
(1990) observed that the largest compactive effort required to reach a
constant dry density of 1715 kg/m’ in Ottawa 20-30 sand occurred at 40
percent saturation (Pigure 2.10). Conversely, the largest dry density in
Poudre Valley sand occurs at 0 percent water content and saturation, which
corresponds to the lowest compactive effort to reach a constant dry
density in Figure 4.3. Figure 4.4 shows the water retention curve for
Poudre Valley sand. The residual saturation occurs at approximately 3
percent. Figure 4.5 shows stress-strain relationships for dry Poudre
Valley sand at 100 percent and 63 percent relative densities, obtained
from atatic one-dimensional, confined compression taests conducted by Bretz

(1989). In Figure 4.6, relative density and void ratio are plotted

against corresponding values of dry density.




TABLE 4.1. POUDRE VALLEY SAND PROPERTIES.

sand Property cr Categorization

Poudre Valley Sand

Specific Gravity, G, 2.65
Maximum Dry Density, fo.. kg /m’ 1860
Minioum Dry Density, fes. kg/m’ 1490

| C.740

R —— 0.424

Test Dry Density, pgggyg/m’ 1635
Test Relative Density, DR, & 44

Dy, mm 0.65

Percent Passing # 200 seive 0.75%

C. 4.08

c. 0.99
Clagsification (ASTM D2487) SP

Grain Shape angular to subangular

L Residual Saturation, § 3

PENCENT FINEN
)
<

20~

20

10
0 Popor iy ~._,l<’.§
0.001 0.0 0.1

CG~AIN DIAMETES, mm

Figure 4.1 Grain Size Distribution for Poudre Valley Sand.
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C. EXPLOSIVE PROPERTIES

Physical properties for the three explosive types used in the field
tests are provided in this subsaction. The instantaneocus CWAS electric
blasting caps, manufactured by Dupont, are Number 8 strength cylindrical
sluminum shells encasing Pentaerythritol Tetranitrate (PETN) explosive
powder. Two 3-meter long plastic insulated copper wires are joined inside
the cap by a high-resistant bridge wire embedded in the cap ignition
mixture. When high voltage is supplied across the two leads, the ignition
mixture detonates and triggers the exploeive powder.

Primacord®, a detonating cord manufactured by the Ensign-Bickford
Company, is rated at 10.66 grams of PETN per meter. The explosive is
encased by polypropylene yarn, plastic tape, and textile yarn counterings.
Primacord® is relatively insensitive to premature or accidental ignition
due to heat, impact, friction, static stray current and lightning (Ensign-
Bickford Co., 1984), which makes it ideal for use in the field.

Powermite®, a high explosive water gel, is manufactured by IRECO
Company of Salt Lake City, Utah. The explosive gel is packaged in
cylindrical sticks 40 cm long and 5 cm in diameter enclosed by a thin
plastic £ilm which can easily be cut for obtaining smaller charge weights.
Powermite® yields approximately 80 percent of the energy released by TNT.
It is also relatively insensitive to premature or accidental ignition due
to the factors mentioned above.

Specific properties for each of the explosives described above and of

TNT and C4 for comparison are provided in Table 4.2.
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D. FIELD TEST RESULTS

This section presents the results from field data reduction, and
describes how these results were obtained. OQutput voltages from
accelerometers and soil stress gages wera sampled at a rate of 500,000
samples per second and stored in TDR data arrays. These voltage-time
history arrays were then converted to particle acceleration and stress
time histories using a conversion formula which takes into account
individual instrument sensitivities, voltage amplification and desired
units. Particle acceleretion-time histories were integrated to obtain
particle velocity-time nistories. Figures 4.7 to 4.9 show representative
particle acceleration, particle velocity and stress time histories.
Figure 4.10 shows a typical streses time history from the Fall of 1991
tests, where cross talk was experienced due to stress gages being hooked
to a common power source. This plot shows the signal from one stress gage
super imposed over the signal from another gage.

Useful information extracted from the time histories were peak values,
pulse arrival time and rise time. 1Interval propagation velocities were
calculated by dividing the interval distance between two consecutive
instruments by the travel time between them. Average propagation
velocities were calculated by dividing the distance between the center of
explosive and instrument by the time of travel to the instrument. Scaled
range and scaled acceleration were obtained by dividing the distance and
multiplying the acceleration by a factor of W'?, respectively.

Tabulations of test resulte for compactive saturations of 0 to 70

percent are given in Tables B.1 to B.6 in Appendix B. Table 4.3 provides

a listing of parameters for tests conducted in Fall of 1991 and Spring of
1992.
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Scaled peak particle acceleration, peak particl. veloc.ty and peak
soil stress versus scaled range curves for each satuva.iun are plotted in
Figures 4.11, 4.12 and 4.13 respectively. 1In these figures, two clusters
of data can be seen. They represent data from the large (6.22 kg and 7.0
kg) tests and small (0.227 kg) tests. A regression analysie was run on
the data, and a best-fit line was constructed through the poiuts on a log-
log scale. The slope of thies best~fit line is displaved on the graph.
Plots of average and interval propagation velocity versue scaled range
with best-fit lines are displayed in Figures 4.14 and 4.15. Plots of peak
stress versus peak particle velocity with eslopes indicating acoustic
impedance values are shown in Figure 4.16. A summary of regression data
is provided in the next section.

Other supplemental plote of test data are provided in Appendix C.
These plots are listed in Table 4.4.

TABLE 4.4. SUPPLEMENTAL PLOTS Or TEST DAT, .N APPENDIX C.

Iﬁtéggﬁl propugatl;;—;olocify versus
kg shots.

Interval propagation velocity versus distance, 0.227 kg shot.

C.2
Interval propagation velocity versus peak particle velocity, c.3
6.22 and 7.0 kg shots.

Interval propagation velocity versus peak particle velocity, c.4
0.227 kg shot.

Interval propagation velocity versus peak strees, 6.22 and 7.0 c.sl

kg shots.
Pulse time of arrival versus distance, 6.22 and 7.0 kg shots.

(o]
Pulese time of arrival versus distance, 0.227 kg shot. C
Pulise rise time versus time of arrival, 6.22 and 7.0 kg shots. C.8
==
(o]

Pulse rise time versus time of arrival, 0.227 kg shot.

Scaled peak particle acceleration ve. scaled range; comparison
of Poudre Valley, Tyndall, Ottawa anc sande of varying density.

Peak particle volocit{ versus scaled range; comparison of c.11
Poudre valley, Tyndall, Ottawa and sands of varying density.
Peak stress vorsus scaled range; comparison of Poudre Valley, c.12

Tyndall, Ottawa and sands of varying density.
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V. ANALYSIS OF REBSULTS

A. INTRODUCTION

Analyseis and discussion of test :;oultl is provided in this section.
Peak ground moticn parameter prediction equations are developed from the
results of a regression analysis run on soil response data, plotted in
Figures 4.11 to 4.13. The constants and slopes c“ these equations are
analyzed and compared with those of Drake and Little (1983) and Walsh
(1993). Propagation velocity, attenuation and stress transmission trends
over a range of compactive saturations are also analyzed and compared with
those of Drake and Little (1983), Charlie et al. (1990a) and Ralsh (1993).
Acoustic impedance values obtained from testing are analyzed and compared
with those reported by Walsh (1993). Lastly, effective stress increases

are analyzed as a function of saturation and capillarity.

B. PREDICTION EQUATIONS FOR PEAK PARTICLE ACCELERATION, PEAK PARTICLE
VELOCITY AND PEAK SOIL STRESS

Empirical equations developed by Drake and Little (1983) for the
prediction of blast-induced scaled peak particle acceleration, peak
particle velocity, and peak stress in soil were presented in Section 2
(Equations (2.1) to (2.3)). Table 2.1 lists suggested design coefficients
for use in these eguations depending on tha soil type, density and seismic
velocity. These coefficients were derived from the peak parameter (a,Ww'”,

V, and P,} versus scaled range plote shown in Figures 2.2 to 2.4.
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Similarly, predictive equations for Poudre Valley sand are developed
from the peak parameter versus scaled range plots shown in Figures 4.11 to
4.13. The general form of these equations is,

R )'"'" (5.1)

wl/!

Y= Cbnstant(

where the constant is the Y-intercept taken at a scaled range of 1 m/kg'
(R/W'”=1), and the slope is taken from the best-fit regression line through
the data points. Tables 5.1 to 5.3 present these equations along with the
regression data from which they were derived. Also included for
compariscn are ranges of aslopes and constante from prediction equations
developed by Waleh (1993) and suggested by Drake & Little (1983).
Empirical constant and slope values as well as constant and slope

attenuation trends will be compared.
1. Predictive Equations for Scaled Peak Particle Acceleration

Equations are presented in Table S.1 for each test saturation, 0O to
60 percent, &long with corresponding regression values. The coefficients
of determination, R’, are all 0.95 or greater for scaled peak particle
acceleration.

The range of constants and slopes for Poudre Valley sand compare
closely with those given by Equation (2.1) and Tubles 2.1 and 2.2 (Drake
and Little, 1983) for dense moist sands with the exception of the results
of the 0 percent test. Tha constant from Equation (2.1) was determined by
Plugging a range of attenuation coefficlents (n= 2.5 and 2.75) and seismic

velocities (c= 396 m/s and 274 m/s) suggested for dense moist sands inta

the term £+126-c+(2.52)™'.




There are saeveral poseibilities why the constant term in Table 5.1 of
3040 g-kg'® for the test conducted dry is high. The most 1likely
explanation is related to the confinemant of the explosive in PVC pipe
rated at 1100 kPa. The stress wave associated with a confined explosion
typically causes shorter duration pulses with smaller rise times and
higher peak magnitudes. Acceleration-Time histories for the O percent
test displayed these features, which suggests that confinement had some
effect on wave propagation.

Another poseible explanation for the high constant value may be
related to over-deansification of the sand during placement. Repeated
loads of sand were dropped from a height of up to two meters onto layers
of uncompacted dry sand. The sand’s dry density may have reached levels
greater than the target density of 1635 kg/m’ since there was no repulsive
capillary forces to keep sand particles from becoming more compact under
repeated loading. A higher density would cause higher propagation
velocities and higher particle accelerations.

Other variables unique to the dry test were a smaller charge weight
(6.22 kg), a more cylindrically elongated charge shape, and a high degree
of grain crushing close to the explosive.

Comparison of the Poudre Valley sand regression data with the results
obtained from centrifuge testing of Tyndall Beach and Ottawa 20-30 sands
reveals that the Poudre Valley sand constant values are the lowest of the
three sande. Poudre Valley sand slopes are similar to Tyndall Beach sand
glopes and lower than Ottawa 20-30 sand slopes. Thus, scaled peak
particle acceleration magnitudes are lower for Poudre Valley sand than for
Tyndall Beach and Ottawa 20~30 sands, but attenuation rates are similar or

lower (Figure C.10).




2. Prediction Equatione for Peak Particle Velocity

In Table 5.2, R’ values for regression data are all 0.95 or greater,
placing a high degree of confidence in the prediction equatione for peak
particle velocity in Poudre Valley sand. Psak particle velocity has
historically been the most reliable of the ground motion parameters in
ground shock testing and is used most often for prediction and design
purposes. Therefore, it is likely that peak particle velocity data is
also the most indicative of the true dynamic behavior of the sands under
comparison. The bulk of the conclusions then, will be drawn from
comparison of the magnitudes and trends of peak particle velocity.

Constants for Poudre Valley sand range from 2.0 m/8 to 2.6 m/s,
significantly lower than the ranges for Tyndall Beach and Ottawa 20-30
sands reported by Walsh (1993) and for medium~dense moist sand reported by
Drake and Little (1983). Slope values compare closely with Tyndall Beach
sand slopes and are slightly lower than the ranges of slopes for Ottawa
20-30 sand and medium-dense moist sand.

The constant and slope values at the lower end of the ranges for
Ottawa 20-30 sand are highly questicnable since they are far lower than
the average values for that sand, and have been omitted by Walsh in his
analyeis. Similar to the case for peak particle acceleration, magnitudes
of peak particle velocity are lower for Poudre Valley sand, and
attenuation rates are very close to those of Tyndall Beach and Dense Moist
sand. If the guestionable data pointe for Ottawa 20-30 sand are omitted,
then both peak particle velocity magnitude and attenuation rates for

Poudre Valley sand are lower than those for Ottawa 20-30 sand.
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3. Predictive Equations for Peak Stresas

In Table 5.3, R’ values 2re acceptable for tests at 13 and 60 percent
saturation, marginal for the dry test, and poor for the 20 percent test.
Equations for prediction of peak stress in Poudre Valley sand at
compactive sesaturations of 0, 13 and 60 percent have a medium to high
degree of confidence associated with them. The validity of the prediction
equation for 20 percent compactive saturation is questionable.

Peak stress data is widely used for prediction and design purposes.
It’s use in the present research is limited. The peak stiress data
obtained in this research is incomplete due to data acquisition errors,
deficiency in data at large scaled ranges, and cross talk in the lines.

Croes talk occurred in tents conducted in the Fall of 1991 due to the
uge of a common power source for all gages. However, some stress data was
salvaged by applying correcticn factors to superimposed signals caused by
croes talk. Static calibracion of gagee with induced cross talk was
performed to detecmine by wkat percentage the magnitudes of the
superimposed signals should be increased or decreased.

Regression curves for peak stresses were constructed only from data
from the large (6.22 and 7.0 kqg) shots, since signals from the small
(0.227 kg) shots were harely discernable from magnitudes of the TDR’'s
digitizer output signale. With this deficiency in strese data at greater
scaled ranges, regression analysis results were subject a greater degree
of inaccuracy. A second series of small (0.227 kg) shots was implemented
in the Spring of 1992 for the very purpose of establishing legitimate
regraeesion trends based on a wider data spread. Additionally, data
acquisition problems led to the lose of stress data for the 40 percent
test. In spite of the incompleteness of stress data, a limited amount of
lagitimate stress data is still avajilable for comparison. Comparison of
constants and slopes in Table 5.3 reveals that constants for Poudre Valley

sand are lower than those for Tyndall Beach sand and mediun-dense moist
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sand, and comparable to those for Ottawa 20~30 sand. Values of slope
compare closely to the values for Tyndall Beach sand and medium-dense
muist sand, and are lower than slope values for Ottawa 20-30 sand,
Similar to the previous cases, peak stress magnitudes are generally
lower for Poudre Valley sand while attenuation rates are comparable to or
slightly lower than those of Tyndall Beach, Ottawa 20-30 and medium-dense

moist sands.

4. Summary

Comparison of regression data from Poudre Valley, Tyndall Beach,
Ottawa 20-30 and medium-dense moist sands reveals the following: 1) scaled
peak particle acceleration, peak particle velocity and peak stress
magnitudes for Poudre Valley sand are generally lower than those for
Tyndall Beach, Ottawa 20-30 and medium-dense moist sands; 2) attenuation
rates for Poudre Valley sands are generally comparable or lesser than
those of Tyndall Beach, Ottawa 20-30 and medium-dense moist sands.

Differences and similarities between the constants and slopes of the
sands under comparison can be seen more clearly by comparing average
values of the constante and slopes associated with each compactive
saturation level, listed in Table 5.4. Predictive equationa developed
from average constanté and ulopes were used to plot peak parameter versus
scaled range plots in Figures C.10 toc C.12 for Poudre Valley, Tyndall

Beach, Ottawa 20-30, dense, medium-dense and loose sands.
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TABLE 5.4. AVERAGE VALUES OF CONSTANTS AND SLOPES OF POUDRE VALLEY,
TYNDALL BEACH AND OTTAWA 20-30 SANDS.

Ottawa 20-

Valley sand| Beach sand 30 sand

Scaled peak | Constant (g’s-kg'?)

particle
acceleration Slope (-n-1)
Peak Constant (m/s)
particle
velocity Slope (-n)

Constant (kPa)

Peak stress Slope (-n)
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c. ANALYS1S OF REGRESSION DATA TRENDS

In this sectinn the constants and slopes of the prediction equations
and propagation velocity trends will be analyzed for trends over the range
of saturations tested and compared with the trends for Tyndall Beach and
Oottawa 20-30 sands reported by Walsh (1993). Stress transmission and
propagation velocity trends will also be compared with trends reported by
Ross (1989), Pierce (1989), Charlié' et al. (1990a) and Veyera and
Pitzpatrick (1990).

1. Analysis and Comparison of Trends of Constante
a. Analysis of Poudre Valley Sand Trends

Figure 5.1 shows constant values plotted over a range of compactive
saturations, In Figure 5.1a the scaled peak particle acceleration
constant for Poudre Valley sand decreases from O to 13 percent saturation,
increases from 13 to 20 percent saturation, and then decreases from 20 to
60 percent saturation. 1In Figure 5.1b, peak particle velocity constants
are even from O to 13 percent saturation, rise from 13 to 40 percent
saturation, and level off from 40 to 60 percent saturations. 1In Figure
5.1c, peak otress constants decline slightly from O to 20 percent
saturation, and rise from 20 to 60 percent saturation.

Higher constant values for a given saturation correspond with greater
energy transmission through the sand. The highest tranemission in Figures
S.la and S5.1b occurs between 20 and 60 percent gaturation, and also at 0
percent in Figure 5.la. The highest stress transmission in Figure S5.lc
occurs at 60 percent saturaticn. However, due to the deficiency in stress
data at 20 and 40 percent saturations, it remains indeterminate at what
range of compactive saturations stress transmission is greatest for Poudre

Valley sand.
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b. Comparison of Trends

In Figure S.1b, the trends for Poudre Valley sand and Tyndall Beach
sand are strikingly similar, although the magnitudes of the particle
velocity constants for the two sands are offeet from each other. The
trend for Poudre Valley sand in Figure S5.la displays some resemblance to
the trends in Figure 5.1b except for the high-scaled peak particle
acceleration consetant value at 0 percent saturation, which was discusesed
earlier. Stress transmission comparison between peak strees constant
trende for Poudre Valley sand, Tyndall Beach and Ottawa 20-30 sands in
Figure $.1c reveals similarities between 0 to 20 percent saturation but no
similarities above 40 percent. Comparison with transmission ratio trends
in Figure 2.5 (Charlie, et al., 1990a) and normalized transmission ratio
trends in Figure 2.9 (Veyera and Fitzpatrick, 1990) also show no
eimilarities above 40 percent saturation. It appears that 1little
comparison can be made due to deficiency in stress data.

However, peak particle velocity trends can be compared with peak
stress trends since peak particle velocity and peak stress differ by a
factor of pc according to Equation (2.4). Peak particle velocity trends
in Figure 5.1b show the same general shape as the stress transmission
trends in Figures 2.5 and 2.9 except for the even trend from 40 to €0

percent saturations.

2. Analyeis and Comparison of Trends of Slopes

a. Analysis of Poudre Valley Sand Trends

Figure 5.2 shows slope values plotted over a range of compactive
saturations. Slope values for peak particle velocity and peak gtrees are
equivalent to the negative attenuation coefficient (-n) in Equations (2.2)
and (2.3). Slope values for scaled peak particle acceleration are

equivalent to the negative attenuation coefficient minus 1 (-n-1) in

Equation (2.1).
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. ANALYSIS OF ACOUSTIC IMPEDANCE AND PEAK STRESS VERSUS PEAK PARTICLE
VELOCITY
Acoustic impedance, pc, is a measure of a soil’s ability to transmit
stress waves, The acoustic impedance for Poudre Valley sand can be
determined four ways. The firet is by back calculating pc using Equation
(2.3),

20.5°P,

pc = o 5.1
£(2.52)" («L) (s-4)

wi/3

The second is by using Equation (2.4) to calculate pc as,

p°. (5.2)

pc = ja

The third is by using the experimentally deteimined seismic velocity and
measured total density. The fourth is by determining the slope from peak
stress versus peak particle velocity in Figure 4.16.

Table §.5 dieplays pc values for Poudre Valley sand calculated from
Equations (5.1) and (5.2), from multiplication of experimentally
determined p and ¢ values and slopes taken from Figure 4.16. Acoustic
impedance values for Tyndall Beach sand, Ottawa 20-30 sand (Walsh 1993)
and Dense Dry and Wet sands (Drake & Little, 1983) are included for
comparison.

Peak strees P, and peak particle velocity Vv, values in Equations (5.1)
and (5.2) are calculated at a scaled range of 2.9 m/kg'"® using the
empirical equations developed in Tables 5.2 and $.3. A scaled range of
2.9 m/kg'” is also used in Equation (5.1). Acoustic impedance values from
Figure 4.16 correspond with scaled range values up to 1 m/kg'? (R/W'’= 1)

since strees data were obtainec only for the 6.22 kg and 7.0 kg shots.
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Acoustic impedance values for Poudre Valley sand calculated using
Equation (5.2) are significantly larger than pc values for all other sands
in Table 5.5. Thae large magnitudes of pc values may be explained by the
presence of large attenuation coefficients for the peak stress equations.
According to Drake and Little (1983), attenuation coefficients for peak
etress and peak particle velocity should be equal. Comparison of slope
values in Tables 5.2 and 5.3 show attenuation coefficients for Poudre
Valley sand are not equal.

Thie may be due to the lack of large acaled ranges in the peak stress
regression data, which had the effect of decreasing slope values for peak
particle acceleration and peak particle velocity regression curves.
Stress data for the 0.227 kg shot was not discernable from the noise,
precluding larger scaled ranges from Ltaing included in the regression
Aanalysis. Using attenuation coefficients from peak particle velocity
equations in peak stress equations yields lower P, values, resulting in
lower pc values ranging from 600,000 to 700,000 kg/m-s.

An average acoustic impedance value for Poudre Valley sand was
determined by taking the average of acoustic impedance values obtained
from the four different methoda of determination. The average pc value
for Poudre Valley sand is roughly equal to or slightly greater than pc
values calculated for Tyndall Beach and Ottawa 20-30 sands (Walsh, 1993)
and ie comparable to pc values for dense poorly gracded sand (Drake and
Little, 1983).

Peak stress is plotted as a function of peak particle velocity in
Figure 5.5. Data from tests conducted at all compactive saturations ave
combined in the same plot for Tyndall Beach sand (Figure 5.5a) and for
Poudre Valley sand (Figure 5.5bj. The overall acoustic impedance value
for Poudre Valley sand is 667,300 kg/m’-s, which is higher than the pc
value reported by Walsh (1993) of 532,660 kg/m’~s for Tyndall E ach sand.
Table 5.6 shows the ranges of neasured poak stress and peak particle
velocity with corrsaponding scaled range values for both Poudre Valley and
Tyndall Beach sand.

Figure 5.6 shows acoustic impedance plotted as a function of

compactive saturation for Tyndall Beach sand (Figure 5.6a), Ottawa 20-30
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sand (Figure 5.6b) and Poudre Valley sand (Figure 5.6c). Equations (5.1)
and (5.2) are used to obtain the curves in Pigures S.6a and 5.6b for
Tyndall Beach and Ottawa 20-30 sands (Walsh, 1993). All four methods of
determining acougtic impedance for Poudre Valley sand listed in Table 5.5
are used to obtain the curves in Figure 5.6c. Attenuation trends of
acoustic impedance values versus compactive saturation for Poudre Valley
sand determined from the measured total dry density and seismi- velocities
compare with trends seaen in Figures 5.6a and 5.6b for Tyndall and Ottawa
20-30 sands. Attenuation trends of pc values for Poudre Valley sand
determined from the other three methods show little similarity with
Tyndall Beach and Ottawa 20-30 acoustic impedance versus compactive

saturation trends reported by Walsh (1993).
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Peak Stress versus Peak Particle Velocity for All Compactive
Saturations Combined. (a) Tyndall Beach Sand (Replotted from

Walsh, 1993).

(b) Poudre Valley Sand.
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Pigure 5.6 Acoustic Impsdance (pc) versus Percent Saturation Computed
from Equations 5.1 and 5.2. and Taken from Drake and Little

(1983). (a) Tyndall Beach Sand (b) Ottawa 20-30 Sand
(Walsh, 1993).
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KEY:
—N— Computed from Equation 5.1
----- 8- computed from Equation 5.2

---k-- Calculated using measured density and wave speed values from
field tests

--8-- Taken from slops of P, versus V, plots in Figure 4.16

—p-— Average pc from above four methods

(c)

Figure 5.6 (Continued) Acoustic Impadance (pc) versus Percent Saturation
(¢) Poudre Valley Sand.




F. ANALYSIS OF EFFECTIVE STRESS INCREASES DUE TO CAPILLARITY

Bishop and Blight (1963) observed that an increase in a soil’'s
capillarity is assoclated with a corresponding increase in effective
strees. They developed an empirical equation to predict the increase in
effective stress as the product of the soil factor, X, and matric suction
(4, = u,). Utilizing the water retention curve shown in Figure 4.4, the
variation in increase of effective stress in Poudre Valley sand is plotted
as a function of saturation in Figure 5.7, assuming that x is equal to the
s80il‘s saturation, S. The greatest effective stress increase occurs at
approximately 50 percent saturation. The effect of capillarity on
effective stress diminishes for saturations larger and smaller than SO
percent. At 0 and 100 percent saturations, the increase in effective
strese due to capillarity ie zero. Comparison with Figure 4.3 reveals
that the greatest increase in effective stress and the greatest compactive
effort required to reach a constant dry density both occur between 40 and

S0 percent saturations,

1.2

kPa
(=]
o™

Q
[+

S * (ua - uw),

Poudre Volley Sond

0 ——— r T T —

0 10 20 30 40 50 60 70 80 90 100
PERCENT SATURATION

Figure 5.7 1Increase in Effective Stress in Poudre Valley Sand due to
Capillarity.
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VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

Proper design of buried structures against blast loading is dependent
upon an accurate knowledge of the dynamic response to ground shock in the
surrounding backfill material. The presence of moisture in sands during
compaction has recently been found to influence blast-induced ground
motion parameters and attenuation behavior, which form the basis for
determination of soil-structure reeponse to blast loading.

The objective of this research is to determine the influence that the
degree of saturation during compaction of sand has on blast-induced scaled
peak particle acceleration, peak particle velocity, peak strese and
propagation velocity. This report presents the results of a series of
explosive field tests in Poudre Valley sand at compactive saturations
ranging from O to 70 percent at a constant dry density of 1635 kg/m’ (DR=
44 percent). Charge masses of 6.22 kg, 7.0 kg and 0.227 kg TNT
egquivalency were used, providing scaled range values ranging from 0.32 to
3.8 m/kg'® for analysis.

Field procedure prior to exploasive testing involved the placement,
addition of water to, mixing and compaction of seand, instrumentation
placement, .. ' -rr, "ration of the data acquieition system. sand was
compacted in ..-n0*t- .i.fte uesing a vibratory compactor. Compaction and
moisture control procedures utilized nuclear density/moisture gage
measurements. Instrumentation used to measure particle acceleration and
soil stress were accelerometers and soil etress gages, which were placed
at distances from the center of explosion ranging from .61 to 2.25-metersa.
The instruments and center of explosive were located 1.4 meters below

ground surface.
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Cube root scaling lawe were used to construct peak ground motion
parameter versus scaled range plots for each test saturation, from which
attenuation trends over a range of compactive saturations could be
determined. Predictive empirical equations were constructed from the
regression data from these plots. The magnitudes and attenuation trends
of ground motion parameters are analyzed and compared with those of Drake
and Little (1983), Piercn (1989), Ross (1989), Charlie et al. (1990a),

Veyera &nd Fitzpatrick (1v¥$0), and wWalsh (1993).

B. CONCLUSIONS

Based on the results of this investigation and comparison of results
with the aforementioned researchers, the following conclusions are drawn

relative to the four major objectives stated in the Introduction.

1. Predictive Empirical Equations for Ground Motion and Stress

Predictive Equations for scaled peak particle acceleration, peak
particle velocity and peak stress are given in Tables 5.1, 5.2 and 5.3,
respectively. These equations are applicable for ground motion and stress
Prediction in sande with similar properties as Poudre Valley sand (refer
to Section IV.B) under similar testing conditions (refer to Table 4.3).
Confidence levels are high for scaled peak particle accaieration and peak
particle velocity equations, and medium for peak stress equations. The
developed predictive peax stress equations underpredict attenuation rates,
evidenced by the low attenuation coefficients (n) in Figure S5.2c and the
relatively flat attenuation curve in Figure C.12. The trends for peak
ground motion and peak strees versus saturation follow the same trends for

compactive effort versus saturation (Figure 4.3) and for increase in

effective stress due to caplillarity versus saturation (Figure 5.7).




2. Comparison with Split-Hopkinson Pressure Bar Results (Pierce,
1989; Ross, 1989; Charlie et al., 1990a; Veyera and Fitgpatrick,

1990)
Constant (Y-intercept at R/W'” = 1 m/kg'’) attenuation trends between
13 and 40 percent compactive saturations for Poudre Valley sand in Figures
$.la and 5.1b are coumparable with SHPB Transmission Ratio attenuation
trende in Figures 2.5a, 2.6 and 2.9 for 50/80 silica and Ottawa 20-30
sands. Slope attenuation trends versus compactive saturation in Figure
$.2 (a,b,c) bear close resemblance to SHPB trends in Figures 2.5a, 2.6 and
2.9 for 50/80 silica and Ottawa 20-30 sands. Propagation velocity
attenuation trends versus compactive saturation in Pigures 5.3 and 5.4 for
Poudre Valley sand are similar to S4dPB trends for 50/80 silica and Ottawa

sands in Figures 2.5b and 2.8.
3. Comparison with Centrifuge Modeling Results (Walsh, 1993)

Ground motion and satress constants for Poudre Valley sand are
generally lower than those for Tyndall Beach and Ottawa 20-30 sands (see
Tables 5.1 to 5.3 and Figure 5.1 for comparison). Peak particle velocity
constant attenusat.on trends versus compactive saturation for Poudre Valley
and Tyndall Beach sands are virtually identical, with the exception of the
region from 40 to 60 percent. Scaled peak particle acceleration and peak
stress constant attenuation trends are marginally similar.

Slope magnitudes compare closely with Tyndall Beach and Ottawa 20-30
sand (Tables 5.1 to 5.3 and Pigure 5.2). Peak stress slope attenuation
trends in Figure 5.2c are similar to that of Tyndall Beach sand and
diesimilar to that for Ottawa sand. The trend for attenuation of peak

particle velocity slopes for Poudre Valley sand is identical to the peak

stress slope attenuation trend for Tyndall Beach sand,




The eimilarities and differences in stress wave propagation
characteristics among Poudre Valley, Tyndall Beach and Ottawa 20-30 sands
are clearly seen in Figures C.10 to C.12. In these Figures, peak
parameter versus scaled range curves for all three sand types are within
or very close to the envelope suggested by Drake and Little (1983) for
dense, medium-dense and loose sands. Ottawa 20-30 sand has sharp
attenuation rates {n all three PFigures, very similar to that of loose
sand. This may be related to the fact that a 118 kg TNT equivalent
explosion at a scaled depth of burial of 3.63 m was modeled in Ottawa 20-
30 sand, whereas only 7.3 and 7.8 kg TNT equivalent explosions were
modeled in Tyndall Beach sand, roughly equivalent to the 7.0 kg charge
mass at a depth of 1.4 m used in field explosive tests in Poudre Valley
sand.

Comparison of seismic velocity magnitudes and trends versus compactive
saturation in Figure 5.3 reveals that seismic velocity values for Poudre
valley sand are lower than those for Tyndall Beach and Ottawa 20-30 sands,
and that attenuation trends versus compactive saturation are similar for
all three sands, with the exception of a deviation from 40 to 70 percent
saturation for Tyndall Beach sand.

Based upon the foregoing comparison and discussion, centrifuge
modeling is judged to be an accurate, viable method of predicting stress

wave propagation characteristics in sand.

4. Comparison with Empirical Eguations (Drake and Little, 1983)

Constants for moiet Poudre Valley sand are lower than the range

guggested by Drake and Little (1983) for medium-dense mcist sands for

peak particle velocity and peak stress, and are similar for peak particle

acceleration (Tables 5.1 to 5.3).




Slope values for scaled peak particle acceleration (-n-l), peak
particle velocity (-n) and peak stress (~n) for Poudre Valley sand compare
equally to slightly lower than those for medium-dense moist sands given by
Drake and Little (Tables 5.1 to 5.3).

The overall wave propagation behavior of Poudre Valley sand shown in
the peak parameter versus scaled range plots in Pigures C.10 to C.12 is
comparable to the envelope suggested by Drake and Little (1983) for denae,

medium-dense and loose sands.
C. RECOMMENDATIONS ANALYSIS AND DESIGN

The following factors are possible influences of stress wave
propagation behavior and may enter into the analysis and design process

for backfill material surrounding buried structures:

1. Sand compactive saturation level
2. Type of modeling: full scale, centrifuge
3. Physical properties of the sand
s« grain shape
grain size
grain size distribution
physical composition
e capillarity
4. Sand placement density
¢ dry density
e relative densmity
S. Explogiven
e gnergy yield
s confinement or non-confinement
s depth of burial
s shape

Several design recommendations can be made basged upon analysia and
comparison of wave propagation behavior among the sand types and test

conditione discussed in the present investigation.

l. The grcatest stress wave tranamiesion occurred between 20 and 60
percent compactive saturations for the sands analyzed and
compared in this research. Depending upon the compactive
saturation, magnitudes of peak parameter constants and slopes and

propagation velocities in the preesent research varied by an
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average factor of 1.4 and sometimes varied by as much as a factor
of 2. 1If possible and feasible, the contractor should compact
sands at saturation levels outside of the range of greatest
straess transmission. If this can not be accomplished, the
compactive saturation associated with the lowest strese
transmission characteristics should be determined and used which
is within the range feasible compactive saturations for the

contractor.

The empirical predictive equations and suggested deeign
coefficients developed by Drake and Little (1983) for scaled peak
particle acceleration, peak particle velocity and peak stress
(Equations (2.1) to (2.35)) should be used for soil conditions
where the effect of the degree of saturation at the time of
compaction is unknown or indeterminate as a general estimate of
wave propagation behavior. Predictive equations developed in the
present research, given in Tables 5.1 to 5.3, should be used when
the degree of saturitio:n at the time of compaction is known, to
predict peak ground motion parameters in compacted sand backfille

similar to those analyzed in this report.

Centrifuge testing should be used to determine stress wave
transmission and attenuation characteristics of backfill
materjials for proposed underground structures. Care must be
taken to best simulate the actual loading conditione in the

field.

A greater depth of burial of explosive is associated with higher
confinement pressures and hence greater magnitudes of peak
particle strese and propagation velocities. The depth of the

buried structure should be no greater than that absolutely

necessary for strategic purposes.




Sande with angular grain shapes appear to have the greatest
attenuation characteristics. Sandes with rounded grain shapes
appear to have the lowest attenuation characteristice. Wherever
possible, avoid using sands with rounder grain shapes as backfill

material.

D. RECOMMENDATIONS FOR FUTURE RESEARCH

Perform fully-instrumented full-scale weapon teste (100 to 200
kg explosive mass) in sand compacted at a representative
saturation level to verify ground motion and setress wave
propagation results obtained from the 0.227 kg to 7.0 kg

explosive tests reported in this papsr.

Evaluate past ground sihock data and conduct additional centrifuge
and field testing to quantitatively determine the effects of
explosive confinement on peak ground motion parameter and peak

strees magnitudes at varying compactive saturations.

Conduct a series of explosive tests at fixed compactive
saturations, varying the &eand’s relative density to
quantitatively asaess ite affects on peak ground motion and peak

stress magnitudes.

Continue research at the microscopic level to determine the
mechanism(s) by which capillary forces influence particle
arrangement and orientation during compaction. Eventually
develop analytical tools to predict particle arrangement and

orientation and their effects upon stress transmission.

Conduct explosive testing on sands with diverse grain sizes,

shapes and mineral composition to guantitatively determine the




probable ranges of peak ground motion and peak straes magnitudes

for each sand type.

6. Develop a compreshensive, definitive data base of suggested deaign
coefficiente for varying sand types, compactive saturations, dry

deneities and explosive types.
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TABLE A.1l. ENDEVCO MODEL 7270A ACCELEROMETER CALIBRATION DATA.

—

]

sensitiviey, uvjg |

6,000 29.134
I‘ EN23F 6,000 30.269 I

EN2SF 6,000 30.260
iy EN27F 20,000 8.470 I
EN3SP 6,000 28.554 _]

- EN37F 6,000 30.447
EN3SF 20,000 7.871 l
EN43F 20,000 9.242 ____l

EN44Fr 20,000 9.218

EN47F 20,000 11.087

ENS2F 20,000 10.010

EM60P 6,000 30.094

EN6LF 6,000 32.068

o EN65SF - 6,000 31.591

Calibration data supplied by Endevco Co,
Calibrations are traceable to N.B.S.
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TABLZ A.2. ENCZVCO UNIVIRSAL SIGNAL CONDITIONING SZSTEM SEZRITS 4470 WITH

4575.1A MODE CARD (REPRINTED FROM BRETZ, 1989).

Specifications

- - osgel{galna

Transducars 2 or 4 ar= tasiscive elemencs

Input Impedance 1 pegaochn maxizum

Sourcs Resistancs 2000 chms maxizum

Ovazload Recovery Tlze 30 miczosecands

Common Moda Rejecsion 80 dB minizum at 60 Hz
70 d8 minimu= at 1000 H:=

Common Mede Voltage S V pesk, maximunm

-y ot egwigel
Qutpuc Volitage
Full Scale
Ovezsolzage
Linear OQuetpue Curcent
Qucput Ilmpedance s than 20 chas
Noise and Ripple 2 oV rms, maxizuam
Capacizive Llecad Effece scable to 10 microfazads
Zazo Stabllicy and
Tempezacure Coaflicient 0.2% of F3 for 24 hours plus
0.02% pez degzee F

+ 2.5V peax

+ 7.5 V peak maxinum
4+ 10 nA peak maxizun
les

- + alw *+
Ouctput Volzage Adjusczable 9.3 to 10.5 VOC
Quetput Curzenc 0 to SO =A OC

Line and Load Regulacisn Less than 0.2% change for line

voltage change 95 to 135 VAC and load
changs 2000 to 300 ohnms

Temperazuze Stabilicy Lass than 0.00S% per degzee C over
campezature tange (-12° C ts + 65° Q)
Tixae Stabilizy Lass chan 0.03v fer 43 hours
»am Cowm har sgwl gml,

Cain Ranges Full Scale Quepus (F33) for 20, 4O,

60, 80, or 100y of full range

sczaleration
Accurazy + 1.5¢ of full scale
Frequency Resgonses + 3% DC eo0 20,000 hz
Caln Scablillisy less than £ 0.1% for 24 hours plus 2
0.009% pez degres C
DC Lineazity less than + 2.5 sV

—Balance Liricing 40 2 kiloonm zesissor
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KULITE
LQ-080V

. SOIL STRESS GAGE

Oesigned snd deveiaped In cooperstion with the .
U.8. Army Corp ol Engineer Walerwmays Experiment
Station, Vieksdurg. Missiasippi.
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Figure A.4 Kulite LQ-080U Scil Stress Gage Specificatiocns.
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TABLE A.3. SOIL STRESS GAGE CALIBRATION DATA.

| Instrument # sgqgit{yfgzimgg§[yf
SN 8426885 3600
I’ SN 5418885 YES 3000 3600 “
SN 7422185 YES 3000 3600 n )
SN 8426085 YES 3000 3600 ]
SN 115550187 YES 3000 3600 E
SN 095513191 NO 6000 12,358 I
SN 095513291 NO 6000 12,204 _;]
SN 095513391 NO 6000 11,893
H}SN 095513491 NO 6000 11,936
I SN 095513591 NO 6000 11,862
I SN 095512791 NO 6000 13,387
H SN 095613891 NO 6000 12,337

Input voltage= 12 V

Note: Static laboratory calibration at Colorado State University
established that soil stress gagee without a mounting ring yielded output
stresses an average of 2.4 times greater than soil stress gages with a
mounting ring. Gages without mounting ringe ylelded output stressee very
close to the manufacturer’s fluid calibration data.
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APPENDIX B

PIELD TEST -RESULTS
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The following tablee present raw field data for explosive teste
conducted in Poudre Valley sand at 0, 13, 20, 40, 60 and 70 percent
compactive saturatione utilizing 6.22, 7.0 kg and 0.227 kg charge masses.

Accelerometers are abbreviated with an "A" and soil stress gages are
abbreviated with a "T". Instrument numbers are succeeded by either an "S-
or an "“F", denoting that the test was conducted either in the Spring of
1992 or the Fall of 1991. Duplicate distances arise from more than one
instrument being placed at the same distance.

Data cells with no numerical entry indicate that data was not provided
by particular instrument or that data was not available due to noise
interference or some other factor. For example, stress data for the 0.227

kg shot was not discernible from the magnitude of the noise originating

from the TDR’es digitizer.
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APPENDIX C

SUPPLEMENTAL PLOTS OF RESULTS




Pigures C.1 and C.2 show intervil preopagetion selesity variation with
distance for the 6.22 kg, 7.0 kg an?® 0.227 kg shotw.: , In both figures,
interval propagation velocity begins o level of? vith'i@:roaaing distance
from the center of explosion. The plotrs for 0 and 6V percent saturation
show a moderately sharper rate of docxy;sa {3 3 ropagation velocity over
distance than the plots for 13, 20 {nd 40 ;érnent saturations. This
correlatee with the attenuation trends for propagation velocity in Figures
$.3 and 5.4.

Figures C.3 and C.4 show the interrelationship between interval
propagation velocity and peak particle velocity for the 6.22 kg, 7.0 kg
and 0.227 kg shot. One interesting feature that stands out in Fligure C.3
(7.0 kg shot) is that the lowest propagation velocitiee associated with a
given peak particle velocity occur in the 13 percent test. The opposite
i@ true in Figure C.4 (0.227 kg shot)-- the highest propagation velocities
associated with a given peak particle velocity occur in the 13 percent
test. Although propagation velocities are lower at smaller scaled ranges
for the 13 percent test, low attenuation rates result in higher
propagation velocities at greater scaled ranges,

These characteristics match trends seen in Figures 5.1 and 5.2. The
lowest values for peak particle acceleration, peak particle velocity and
peak particle stress in Figure S.1 and some of the highest slocpe values in
Figure 5.2 occur at 13 percent saturation. Similar trends are noticed in
Figures 2.5a and 2.6.

In Figure C.5, propagation velocity attenuation characteristice
similar to those in Pigure C.3 and C.4 are noticed in the 13 percent and
20 percent test.

Figures C.8 and C.9 show plots of pulse rise time versus arrival time.
Drake and Little (1983) approximate that rise time should be one~tenth the
arrival time according to Equation (2.5). Values of t,/t, for the 6.22 kg,

7.0 kg and 0.227 kg shots compare fairly closely to .10.




FPigures C.10, C.1ll1l and C.12 show scaled peak particle acceleration,
peak particle velocity and peak stress plotted ae a function of scaled

range for Poudre Valley (present investigation), Tyndall, Ottawa (Walsh,

1993) and sands of varying density

(Drake and Little, 1983) for
comparison.
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Figure C.10

Scaled Peak Particle Acceleration versus Scaled Range from
Ixplosive Field Testing in Poudre Valley Sand, Ixplosive
Centrifuge Testing in Tyndall Beach and Ottawa 20-30 Sands
(Walsh 1993}, and Explosive Data for Varying Sand Densities
Replotted from Figure 2.2 (Drake and Little 1983).
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Figure C.12

Peak Stress versus Scaled Range from Explosive Field Testing
in Poudre Valley Sand, Ixplosive Centrifuge Testing in Tyndall
Beach and Ottawa 20-30 Sands (Walsh 1993), and Explosive Data

for Varying Sand Densities Replotted from Figure 2.2 (Drake
and Licsle 1981,
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APPENDIX D

GRADATION REPORTS OF POUDRE VALLEBY SAND PROM WESTERN MOBILE INC.
AND

GRAIN SI2E DISTRIBUTION CURVES POR 50/80 SILICA, OTTAWA 20-30, EGLIN, 1
TYNDALL BEACH AND POUDRE VALLEY SANDS. 3
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Figure D.1 Gradation Reports on Poudre Valley Sand from Western Mobile

Inc.

(a) Fall 1991 Batch. (b) Spring 1992 Batch.
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APPENDIX E

FIELD NUCLEAR DENSITY/MOISTURE GAUGE RESULTS
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TABLE E.l. FIELD NUCLEAR DENSITY/MOISTURE GAUGE RESULTS

Layer Depth
)

Test 1 - 13% Compactive Saturation (Fall 1991)

Dry Density

ke/m)

(pcf)
101.7

Saturation (S)

(%)

Water Content (W),
(%)

1.83-2.13

102.0

1.52-1.83

100.7

| 1.22-1.52 4-5 1619 101.1 15.2 3.64
F).91-1.22 3-4 1605 100.2 13.4
0.61-0.91 2-3 1583 98.8 13.6
Losooer| 12 | 1510 | 1005 14.1
lion.so 0-1 1624 101.4 15.4
Mean 1615 100.8 14.3

Saturation (8S)

Water Content (w),

1.832.13| 67 | 1608 | 100.4 26.1 6.37 |
152183 | s-6 | 1608 | 100.4 25.5 6.22 |
122152 45 | 1616 | 100.9 18.8 4.53 {
091-122 | 34 | 1629 | 1017 19.1 4.50
061091 ] 23 | 1610 | 100.5 17.9 4.35 ‘
030061 | 12 | 1626 | 1015 24.3 5.78
003 | o1 | 1600 | 999 16.7 4.12
Mean | 1615 | 100.8 21.2 5.12 |

148




Test 3 - 40% Compactive Saturation (Fall 1991)

Saturation (S) Water Content (w)

| 1.83-2.13 67 1603 100.1 33 8.12

§ 1.52-1.83 5-6 1627 101.6 42.6 10.09
1.22-1.52 4-5 1616 100.9 477 11.51
0.91-1.22 34 1639 102.3 38.7 9.00
0.61-0.91 2-3 1639 102.3 41.0 9.54
0.30-0.61 1-2 missing in field notes

I 0-0.30 0-1 missing in field notes

[ Mean 1624 101.4 40.6 9.65

Layer Depth

Dry Density

Test 4 - 60% Compactive Saturation (Fall 1991)

Saturation (S)

Water Content (w),

(f) | (kg/m) (pc) (%)

| 183213 67 1677 | 1047 59.4 12.99 l
152183 | 56 162 | 101.9 52.9 12.44
| 122-1.52 | 45 1623 101.3 54.8 13.08
{001-1.22 | 34 1631 101.8 60.3 14.21
| 0.61-0.91 2-3 1600 9.9 44.9 11.1
} 030061 | 12 1611 100.6 55.7 13.53
| 0-0.30 0-1 1656 103.4 44.9 10.16*

| Mean 1632 101.9 53.3 12.50
*Note: Less water (lower w) added because of excessive drainage into lower layers.
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Test S - 70% Compactive Saturation (Fall 1991)

Dry Density Saturation (S) Water Content (w), |
(kg/m’)
183213 | 67 | 1666 | 1040 74.0 1655 |
152-1.83 | 56 | 1658 | 103.5 81.0 18.32 1
122-152| 45 | 1663 | 103.8 78.0 17.46
091-122 | 34 | 1122 | 1075 63.8 14.76
losioo1| 23 | 1655 | 1033 64.8 14.68 ‘
loscosi | 12 | 1639 | 1023 44.4 10.32%
| 003 | o1 [ 1647 | 1028 49.4 11.35% '
I Mean | 1653 | 103.2 65.1 14.78
L L i

*Note:  Top two layers compacted dryer due to excessive drainage into lower layers.

Test 6 - 0% Compactive Saturation (Spring 1992)

Saturation (S)

2.13-2.44 | 78 1632
1.832.13 | 67 1671 | 1043 4.3 0.96
1.52-1.83 | 56 1661 | 103.7 3.6 0.80
1.22-152 |  4-5 1618 | 101.0 3.8 0.92
091-1.22 | 34 1643 | 102.6 5.8 1.35
0.61091 | 2-3 1671 | 104.3 3.8 0.83
0-0.30 1-2+ 1664 | 103.9 3.1 0.70 )
] Mean | 1651 | 103.1 4.6 104

Notes:
*Last two layers placed all at once.

**Sand particles were completely dry on the surface. The nuclear density/moisture
gauge was probably measuring hydration water within the particle structure.
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Test 7 - 13% Compactive Saturation (Spring 12)

Saturation (S) Water Content (w),
L (%)
2.132.44
183213 s6 | 1620 | 1017 11.3 26 |
1.521.83 | 45 | 1643 | 1026 9.5 220 |
122152 34 | 1605 | 1012 8.7 2.07
Lostiz| 23 | 1634 | 1020 9.4 2.20
losroo1| 12 | 1615 | 1008 125 3.03
030061 | 01 | 1643 | 1026 10.9 2.51
| 0030 | Mean | 1632 | 1019 10.8 2.53
ompactive Saturation (Spring 1992)

(m)

Test 8 - 20% C
| Layer Depth

-

(ft)

Dry Density

(m/kg’)

(pcf)

Saturation (S)
(%

Water Content (w),

(%)

| 2.132.44 23.1 5.37
13213 s 1623 | 101.3 18.1 4.31
| 152183 45 | 1648 | 1029 19.6 4.49
{1205 34 [ 1602 | 1005 23.6 5.45
loorizz] 23 | 1624 | 1014 20.8 4.95
losr001| 12 | 1639 | 1023 8.8 4.38

0.30-0.61 | 01 &7 | 1003 16.4 4.01




Test 9 - 40% Compactive Saturation (Spring 1992)

Dry Density Saturation (S) Water Content (w),
1659

1.83-2.13 | 56 1603 100.1 41.9 10.30

1.52-1.83 | 4-5 1666 104.0 42.9 9.55

1.22-1.52 | 34 1656 103.4 41.0 9.27

091-1.22 | 23 1647 102.8 44.6 10.25
lostooi| 12 | 1506 | 096 46.0 11.44 '
1030061 | o1 1645 | 102.7 39.2 9.02
| Mean | 1639 | 1023 Q.7 9.93 '

Test 10 - 60% Compactive Saturation (Spring 1992)
¢ - . .

' Dry Density Saturation (S)

‘ (kg/m’) (peh)

| 2.13-2.44

| 1.832.13 | 5.6 1709 106.7 56.5 11.72
1.52-1.83 | 45 1644 102.6 46.0 10.61 __i
1.22-1.52 | 34 1719 107.3 68.3 13.94
091-1.22 | 23 1611 100.6 41.2 10.00
0.61-0.91 | 1-2 1590 9.3 42.8 10.74

0.3G-0.61 0-1 1645 102.7 39.2 9.02 .




Notes:

1. Readings were taken at 3 to S locations for each lift at depths of 4", 8" and
backscatter (surface). The numbers listed are averages of those values.

2. Density and moisture content were very difficult to control at 40 and 60 percent
compactive saturations due to the following reasons:

e  Compactor "sinks" into sand (liquefaction effect);
e  Compactor "bogs™ down in areas, overcompacting the sand; or

‘ e  Excessive drainage into lower lifts.

3. Test 9 and 10 were conducted simultaneously, Test 9 (40% c.s.) in the east half,
and Test 10 (60% c.s.) in the west half of the tank. The top layer was compacted
at the same water content for both the east half and west half of the tank. The
water content was decreased for this lift due to excessive drainage into lower
layers.
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