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CHAPTER 1

INTRODUCTION

This document is the final report on the AFOSR supported research, "Design of

Robust Optimal Control Systems and Stability Analysis of Real Structured Uncertainties,"

(AFOSR Contract F33615-90-C-3613). The report summarizes our research progress in

the following problems: design of robust controllers via H- optimiation, investigation of

the properties of the parameter-dependent H- Riccati equation, fast computation of the
optimal H- norm, design of robust controllers via gt-Synthesis, controller reduction by

structured trunction, a parametrization approach to reduced-order H' controller design,

controller reduction via observer-based controller parametrization, and dominant modes of

mechanical systems.

H' optimization theory plays a key role in many robust control problems such as

tracking and disturbance attenuation, mixed sensitivity minimization, model matching, and

1±-synthesis (1-10]. One of the most elegant and efficient solutions to the H- optimization

problem is the state space approach proposed by Doyle, Glover, Khargonekar, and Francis

[7] and Glover and Doyle [8]. As shown in [7,8], the major computation involved in this
approach is solving two 7-dependent HI" Riccati equations. The parameter 7 serves as an

upper bound of the H" norm of the closed loop system. If, for a given y, the two Hr

Riccati equations have positive semidefinite stabilizing solutions and the spectral radius of
the product of the two solutions is less than 12, then all stabilizing controllers can be easily

constructed from the plant data and the Riccati solutions. The dimension of the resulting

controller is not higher than that of the generalized plant and the Hr norm of the closed loop

system is less than y.

In Chapter 2, we will discuss how to formulate a robust control problem as an H-

optimization problem and how to construct a state-space realization of the generalized plant.

For convenience, Glover and Doyle's suboptimal H-I controller formulas [8] will be briefly

reviewed. These suboptimal H- controller formulas can be easily transformed into a

descriptor form such that an optimal IHt controller can be constructed without numerical

difficulties if the optimal IH norm is known. The optimal Ht controllers, with very few

exceptions, have direct feed through terms and therefore infinite bandwidth. Hence, control



engineers may prefer strictly proper suboptimal H" controllers to the optimal ones.
However, knowing the optimal H" norm is important in determining which suboptimal

controller to be chosen in practical design.

Unlike the well-known LQG Riccati equations [ 11], the HE Riccati equations are
parameter dependent and may not have solutions for some values of the parameter y. The

Htm optimization design can only be achieved by iteratively searching for the optimal H7I
norm, which is the smallest y such that an If controller exists. This search is the major

computational burden in H" design, and bisection method has been widely used in the
design procedure. As it is known, the bisection method converges slowly and therefore is

inefficient. To improve the convergence rate, we need to develop a more efficient search

scheme which may require a better understanding of the EH Riccati equations.

To investigate the properties of the two H" Riccati equations, first of all in Chapter

3 we will consider a special case with which the DII matrix of the generalized plant is

assumed zero. With this assumption, the two HI Riccati equations are greatly simplified.
We will investigate the structure of the 7-domain where the H' Riccati solutions exist

and/or positive semidefinite, and reveal some useful properties of the Riccati solutions on
the 7-domain, such as continuity, monotonicity, and convexity with respect to y. By these

properties, quadratically convergent algorithms can be easily developed to compute the

optimal IHI norm of the closed-loop system.

The assumption that the DII matrix of the generalized plant is zero can hardly be

satisfied by many practical problems. In the general case with DI 1 nonzero, the H" Riccati
Hamiltonains are much more complicated functions of y than those in the special case and

hence make the investigation of the properties extremely difficult. In Chapter 4, several

decompositions and some key intermediate variables are employed to tackle the
complexities and to show that the monotonicity and convexity properties also hold for the

general case. Based on these properties, a quadratically convergent algorithm can be easily

developed to compute the optimal IHI norm. The algorithm is presented in Chapter 5.

In Chapter 6, a fighter aircraft longitudinal flight control design problem is used to
demonstrate an application of g±-synthesis technique. With the robust controller obtained,

simulations and analyses are performed on the closed loop system. For the example we
considered, the order of the g-synthesis controller can be reduced to that of the plant

without degrading the performance.
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From Chapters 7 to 9, three controller reduction approaches are presented. A

controller reduction approach based on the closed-loop controllability and observability

gramians is proposed in Chapter 7. The motivation is to retain the input/output relationship

of the closed-loop system while the order of the controller is reduced. A structured

transformation on the gramians is employed to achieve this objective.

In Chapter 8, a parametrization method is proposed for reduced-order H- controller

design. By using the state-space H- optimization approach, one can characterize the set of

all (sub)optimal controllers in terms of a parameter matrix. It is shown that there always

exists a suitable parameter matrix such that a reduced-order H- controller can be

constructed. The procedure for obtaining such a parameter matrix is also presented in this

chapter.

In Chapter 9, the reduced compensator design issue was tackled from an observer-

based compensator point of view. It develops two properties related to observer based

controller parametrization and pole placement. It shows that the poles of the closed-loop

system with the observer-based controller parametrization are the regulator poles, the

observer poles, together with the poles of the added stable parameter matrix. If the

controller is realized by a minimal realization, the closed-loop poles will include all the

poles of the added stable parameter matrix and a subset of the regulator and the observer

poles. It also points out that there exist parameter matrices which would render the

controller non-minimal, thereby yielding reduced order controllers. Such order-reducing

parameter matrices - both static and dynamic - have been characterized herein. With such a

paramctrization available, one could then choose a K(s) in order to best approximate large

order controllers, such as the H- compensators, by a lower order controller.

Incorporating such a parametrization in a design procedure requires the

identification of poles that are to be rendered uncontrollable and unobservable. Part of the

research has focused on this issue. In particular, we have developed a means of identifying

dominant modes of mechanical systems based on an L2 norm which is summarized in

Chapter 10.

Chapter I 1 is the conclusion. The work for future research will also be briefly

described in Chapter 11.
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CHAFFER 2

FORMULATION OF H1 CONTROL PROBLEMS

2.1 The H- Optimization Problem

Most control problems can be formulated as the following H- optimization
problem. A detailed procedure of the formulation will be discussed in Section 2.3. In the
H- optimization problem formulation, the system under consideration is described as
follows,

yz(s) = [G,1(s) G12(s)] [v(s)1 :V(s)
y(s) = G21 (s) G22(s) JL u(s) 0(S)Lu(s)] (2-1)

where G11(s) e R(s)plxml, G12(S) E R (s)plxm2, G21(S) e R(S)p2xml, and G22(s) e

i (sfp2x". R (s)q is the set of pxq proper rational matrices with real coefficients. In (2-
1), z, y, v, and u are the controlled output, the measured output, the exogenous input, and
the control input respectively. The controlled output vector z usually includes the error
signal and a weighted control input. The exogenous input v contains the disturbances, the
noises, and the commands. The measured output vector y consists of all the signals which
can be measured and available for feedback. Through the control input u, the behavior of
the system can be modified. The vector y will be used as the input to a controller K(s) and
the output of K(s) will be connected to the control input u. That is,

u(s) = K(s) y(s). (2-2)

The standard H" optimization problem is the problem of finding a proper controller K(s)
such that the closed-loop system is internally stable and II T'*(GK) 1 is minimized where

7 _#(GK) (s) = G, (s) + G12(s) K(s) [ I - G22(s) K(s) ] -I G21(s) (2-3)

That is, j •(GK) (s), the lower linear fractional transformation, is the transfer function of
the closed-loop system from v to z.

Let
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G(s) = C DII D12 (2-4)

C2 D21 D22J

be a realization of the generalized plant G(s) and A e R'a.

In (8], Glover and Doyle assume that the realization of the generalized plant G(s) is

given by (2-4) with the following assumptions.
(i) (A, B2) is stabilizable and (C2 , A) is detectable.

(ii) rank D 12 =m 2, rank D21 = P2.

D1 i)Vl2 DM2 1 =[o I, and D is partitioned as

[Ivlll D 11 12 ]

D 112 1  D 1 122 with D1 12e Rp2"2,

(iv) D22 = 0 (this can be removed, for details please refer to [8]).
FjWI'-A B 2

(v) rnk c, D12 n+ m2  Vrwe R.

rjwl -A B I

(v) ra C2 D21 n+P 2  V weR.

Define two Hamiltonian matrices as follows,

S A AT] l R 1 [ s . T -5a)

and

[B B A -B o 1B D. 1BT C] (2-5b)

where

D1  [DI, D1 ] D. = [D: (2-5c)

and

5
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TII01 D~jj-[ P1 oJ (2-5d)
R = DI.Dl* - I, -DD.- (5d

Then the following theorem shows an easy way to construct a suboptimal stabilizing
controller such that 1iTy j(GK)II < y where t A(GK) is the closed-loop transfer matrix

from v to z.

Theorem 2.1: [8]

There exists a stabilizing controller such that II (G,K)II, < y if and only if the

following three conditions hold.
(i >mxi[lll 11I2• (F[Vlll DT1121]) (2-6a)

(ii) H.(y) e dom(Ric) and X.(y) := Ric[H.()] > 0. (2-6b)

(iii) J..(Y) e dom( Ric ) with Y-.() = Ric[J.(y)] Ž0. (2.6c)

(iv) p[X.(Y)Y..(Y)] < 2̂ . (2-6d)

Moreover, when these conditions hold, one such controller is

[sbs Ak[ Bk 1 (2-7a)

= Ck Pk

where
TT-

Dk= -D 2D111(-?I - T 111 11 - D
"" 1121 11 1  D1111D1111)1 Dl 112 D1 122  (2-7b)

Ck= {F2- Dk(C2+F1 2))Z (2-7c)
Bk= -H2 + (B2+H 12)Dk (2-7d)

Ak= A+HC+(B 2+H12)Ck (2-7e)

Z (I -_ (2yX )-I (1-7f)

FT=[FlT FT2 F2=-(XB + CDI) R1 (2-7g)
T T _~-1

H=LH H12 H2] =-(YCT+B1 D )R (2-7h)

and F11 e R(m1-p2)xn, F12 C Rp2xn, F2 e R m2 xn Hl1 e 1 nx(pl-m 2 ), H12  R Rnxm2
H " nxp2.

H2  -R

6



In the above theorem, condition (ii) means that there exist positive semi-definite

solutions X and Y to the algebraic Riccati equations corresponding to the Hamiltonians

H..(y) and J..(y) respectively. Condition (iii) means that the spectral radius of XY is less

than -P.

The above theorem provides an easy way to construct a stabilizing suboptimal
controller such that II.t(G,K)II < y- The order of the suboptimal controller can be the

same as that of the plant G(s). The major computation involved is the solution of two H-

Riccati equations which are easy to solve if solutions exist.

Theorem 2.1 can also be used to compute the optimal H- norm and to construct an
optimal H- controller. Algorithms for computing the optimal H- norm will be discussed in

Chapter 4 and the construction of an optimal H- controller will be given in Section 2.2.

Section 2.3 will explain how to formulate a robust control problem as a standard H-

optimization problem.

2.2 Construction of Optimal H- Controllers

The optimum can occur in three cases. In case (1), the optimum occurs at the

smallest T such that the two H- Riccati equations have stabilizing solutions X and Y, i.e.,

these X and Y happen to be positive semi-definite and p(XY) < 72. Case (2) occurs when

Y=O (or X=O) for all y and the optimal H- norm is the smallest y such that X (or Y) is

positive semi-definite. The most likely one to happen most of the time is case (3) in which
the optimal I- norm is the y such that the two H- Riccati equations have positive semi-

definite stabilizing solutions X and Y and p(XY) = 72 where p(XY) is the spectral radius of

XY.

From Theorem 2.1, a suboptimal H- controller can be easily constructed.

However, as y approaches to the optimum we will encounter the inversion of a singular

matrix except case (1) which seldom occurs. To eliminate the numerical difficulty, Safonov

et. al. [12] rederived the optimal controller formulas in a descriptor form (or generalized

state-space representation).

The formulas in (2-7a) - (2-7h) can also be written in a descriptor form after slight

rearrangement. We will firstly consider case (3) which occurs much more frequently than

the other two cases. When yreaches the optimum, %, which satisfies o = p[X(o)Y(oy)],

7



the matrix Z in (2-7f) will become infinity since the matrix I--Y(^o)X(^) is singular. If we
try to apply the formulas (2-7a) - (2-7h) directly to construct an optimal H- controller, a
numerical difficulty will arise in the implementation of the Ak and Ck matrices. We will
rearrange these formulas such that an optimal H- controller can be constructed without any
numerical difficulty.

The dual system of the realization in (2-7a) can be easily rewritten in a descriptor
form. The state equation (generalized state equation) of the descriptor representation can be
split into two set of equations: one involves first derivative of some state variables and the
other is just an algebraic equation. The state variables which have no derivative in the
equations can be eliminated and then we have a lower order state space representation for
the dual system. The dual of the dual system is identical to the original and therefore we
have an optimal H- controller as follows:

Kopt(s) = c Bc (2-8)

where

A, = [VTJADUI- VTADU2 (VTADU 2)1 V•ADUl ] yj' (2-9a)

B= VB ADU2 (V2ADU2) V2BD (2-9b)

C. = I CDU 1 - CDU2 (VjADU2) V2TADU ]71 (2-9c)

Dc = Dk - CDU 2 (V2ADU2) V2BD (2-9d)
and

BD = -H2 + (B2 + H12)Dk (2-10a)

CD = F2 - Dk(C 2 +F 12) (2-10b)
AD = (B2 + H 2) CD + (A + H) ED (2-10c)

ED = I - f2 X(ydY(y)d (2-10d)

Z1, U1,U 2, V1, and V2 are obtained from the singular value decomposition of ED, i.e.,

Er)EU1 U 2]1[ 1]: (2-li)

Similar procedure can be used to construct optimal H- controllers for Case (2) and

8



the formulas in Theorem 2.1 can be used to construct optimal H- controllers for Case (1).

2.3 Formulation of H- Optimization Problems

Many control problems can be formulated as the standard H- optimization problem.

For the purpose of demonstration, two examples are given in the following. The first is a

mixed-sensitivity optimization problem; the second is a disturbance reduction problem with

measurement noise.

A. Mixed-Sensitivity Optimization Problem

Consider the following system:

y(s) = P(s)u(s) + v(s) (2-12a)

u(s) = K(s)y(s) (2-12b)

where v(s) is disturbance, y(s) is output and K(s) is controller to be designed. It is well
known that a smaller II(I-PK)'II1 means a better disturbance attenuation, whereas a smaller
IIPK(I-PK)"1 II. implies a better robust stability. Unfortunately, the H" norms of (I-PK)"1

and PK(I-PK)"1 may not be made small at the same time. If we make one of them smaller
then the other will become larger. To have a trade-off between these two quantities,
Kwakernaak [3] formulated the mixed-sensitivity problem as the problem of finding a
controller K(s) which stabilizes the closed-loop system and minimizes ItI)I. where 4) is

given by

4=E W2PK(I-PK) 1 (2-13)

W1 and W2 are weighting matrices chosen by the designer according to the concrete

situation. In other words, they depend on the characters of the disturbances and system

uncertainties. Usually, the disturbances occur most likely at low frequency, therefore
WI(s) is chosen to be a low-pass filter to emphasize the error energy at low frequency. The

plant uncertainty is also frequency-dependent; the higher the frequency is, the larger the

uncertainties become. Hence, W2(s) is usually chosen to be a improper transfer function

(but W2P(s) has to be a proper transfer function), which is analytic in closed right half

plane. In the following, we assume that W](s) is strictly proper, W2(s) is a polynomial

such that-W2P(s) remains proper and both of them are analytic in closed right half plane.

9



The problem of finding a K(s) which stabilizes the closed-loop system and
minimizes IlIii can be rearmnged into the standard H- optimization problem. Consider the

following system:
ziw, I rP (2-14a)
Z2 0 2P V~

u = K y (2-14b)

It is easy to show that the matrix 0defined by (2-13) is just the transfer function from v to
(ziT z2

T ] of the closed-loop system (2-14). Comparing (2-14a) with (2-1), we can see

that

Gil = 1]1  G12 = [W2'

12 (2-15)

G2 1 = I, G2 = P.

H P, W2P, and W1 have state-space realizations as follows

P - W2 P =-- Ap - I 1  L-i (2-16)ýp IDp ' DCw2 'W Cwl IDwll

Then the generalized plant G(s) has a state space reaization as shown in (2-4) with

A BlB2 01] B2=
A BwlCp Awl_,B, B,,, _B,,,Dp_

C-0 ' D L 0 ' Dw2=. J

C2 = [Cp 0], D2 1 = I, D22 = Dp (2-17)

Note that because W2 is a polynomial, the A-matrix of W2P is same as that of P.

B. Disturbance Reduction Problem

10



z1

Fig2.1 A disturbance attenuation problem

Consider the feedback system shown in Fig.2.1. P(s) is a given plant, Wi(s),
i=1,2,3,4 are weighting matrices, and K(s) is the controller to be designed. The
disturbance and noise are the outputs of W3 and W4 driven by d and n respectively. z, 1
the weighted error response; z2 is the weighted control input. Let zT = [ZlT ZT]T, vT = [(I

nT]T and assume that v is unknown but with its energy bounded by unity. The objective is
to find a controller K(s) which stabilizes the closed-loop system and minimizes the worst
1iz112, i.e., minimizes the H- norm of Tzv, the closed-loop transfer function from v to z. Tzv

is given by

SWIP(I-Kp)-'Iw WIPK(I-PK)-'Iw4

TZV = LW2KP(I.Kp).I1W3 W .2K(I.PK).-1W4 j (2-18)

Note that W1PK(I-PK)-IW 4 and W2KP(I-KP)-IW 3) are the output and input

complementary sensitivity functions. Their H- norms indicate the stability robustness of
the closed-loop system for the multiplicative plant uncertainty introduced at the output and
input respectively. W2K(I-PK)-1 W4 is the control complementary sensitivity function
whose H- norm indicates the stability robustness of the closed-loop system for additive
plant uncertainty. Hence, reducing IrlzvII. will also improve the robust stability of the

closed-loop system.

It is easy to verify that the generalized plant of the system can be expressed as:

0 0 W(2-19)
-y- LPW3 W4 P-U

That is,
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Gil = 0lW 0 ' G12 = [W2P
[1 3 0 01.- ] (2-20)

G21 = [PW3  W4 ], G22 = P

If P, Wi, i=1,2,3,4 have state-space realizations as follows:

L-P-Dp--A w I Dwi, i=1,2,3,4 (2-21)

Then fe generalized plant G(s) has a stat space realization as shown in (2-4) with

.4p0 0 B pCw 0- 'BpD 3  0 B
A= BwICp Awl 0 BwlDpCw3 01 BBwlDpDw3 0 B2  BBDp

0 0 A2 0 0 0 0
0 00 A A•J0 BL3  0 0
0 00 0 Avj 60 Bvj 0

[DW1,CpC 1 °OD0wDPCw 3 01 [DwlDw 3 0o =D 1 Dl
c1 0 0 Cw2  0 0J, D,= 1  0 0 .J, D12=. Dw2 3

S2-= [ 0 0 D0C0 ], D2, = [ Dj, PDw3 D -=D,. (2-22)

Above {A,B,C,D) is the state-space representation for the generalized plant G(s).
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CHAPTER 3

STRUCTURE OF THE y-DOMAIN FOR THE

DGKF H" RICCATI SOLUTIONS

3.1 Introduction

The major computational burden involved in the two y-dependent H" Riccati

equation approach is the computation of the optimal H" norm. To develop efficient
algorithm for computing the optimal IHI norm, it is necessary to investigate how the Riccati
solutions vary as a function of the paramter y.

There have been several attempts to address these issues. Pandey et al.'s hybrid
gradient-bisection method [13] and Chang et al.'s double secant and bisection method [14]
were proposed for the computation of the optimal Htm norm. In these two papers, a
conjecture was made that the spectral radius of the product of the two Riccati solutions is a
convex function of 12. Base on this conjecture, improved search schemes were developed.

However, since there was no proof for this conjecture, bisection was used in these two
algorithms as a supplement to guarantee convergence. In [15], Scherer considered the
inverse of the H" Riccati solutions, defined a new independent variable g± = -2, and
showed that these inverses are concave functions of g± in matrix sense. Based on this fact, a

Newton-like algorithm was proposed to compute the optimal IH norm when an appropriate
starting point is available. The convexity of the spectral radius of the product of the two
Riccati solutions with respect to y was first shown by Li and Chang [16]. With this

convexity property, the optimal H" norm can be easily computed by a quadratically
convergent algorithm if an appropriate starting point is available. However, it is not trivial

to obtain such a starting point that can guarantee the convergence. Furthermore, no general
and rigorous analysis is available for the 7-dependent I' t Riccati equations.

In this chapter, we investigate the structure of the 1-domain where the HEm Riccati
solutions exist and/or positive semidefinite, and reveal some useful properties of the H"
Riccati solutions on the y-domain, such as continuity, monotonicity, and convexity with
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respect to y. These results provide a better understanding of the state space approach to H"
optimization problems. Beside their theoretical value, these properties can be employed to

develop efficient algorithms for partitioning the y-domain, finding the smallest y such that

the two Riccati solutions are positive semidefinite, and computing the optimal H" norm.
The chapter is organized as follows. Section 3.2 lists the notations and reviews

preliminaries. In Section 3.3, we investigate the structure of y-domain of the H" Riccati

solutions. The continuity, monotonicity, and convexity properties of the Riccati solutions

are discussed in Section 3.4.

3.2 Notations and Preliminaries

IR The set of real numbers.

R+ IThe set of positive real numbers.

inf(S) The infimum of the set S.

sup(S) The supremum of the set S.

4:mxn The set of mxn matrices whose entries are complex numbers.

RmXn(s) The set of mxn transfer matrices.

I Identity matrix.

In n-dimensional identity matrix.

AT or A' Transpose of a matrix A.

A* Conjugate transpose of a matrix A.

G-(s) GT(-s).

AýO A is a positive semidefinite matrix.

A>O A is a positive definite matrix.

X(A) An arbitrary eigenvalue of A.

,kj(A) The ith eigenvalue of A.

Xtnax(A) The maximal eigenvalue of A.

Xmin(A) The minimal eigenvalue of A.

p(A) The spectral radius of A.
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Omx or U The maximal singular value of A.

A(y) The matrix A is considered as a function of R+.

Aly) The first derivative of A(y) with respect to y, i.e., dA(y)
dy

A(y) The second derivative of A(y) with respect to y, i.e., d2A(y)

d- 2

A b (,) The first derivative of A 1 (y), i.e., e -(A"(y)).

d 2 I
(y) The second derivative of A'7(y) with respect to y, i.e., -<.A (y)).

Throughout the chapter, the notation P(s) = c D or P(s) = (A, B, C, D} is

used to represent a state space realization of a system whose transfer function is P(s) = C(sI

- A)1'B + D. The H' norm of P(s) is defined as

11 p 1100:= sup a fPljco)]

Many control problems can be formulated as the following standard H-

optimization problem. In the standard H- optitiization problem formulation, the system

representation is rearranged as follows.E (s)1 r G,(s) 0(s<) ir 1) r w(s)l
1() GI s 12(s W( G(s) W(S1 (3-1)

y(s) G G21(s) G22(s)JL u(s) U(s) u

where z, y, w, and u are the controlled output, the measured output, the exogenous input,

and the control input respectively. The controlled output vector z usually includes the error

signal and a weighted control input. The exogenous input w contains the disturbances, the

noises, and the commands. The measured output vector y consists of all the signals which

can be measured and available for feedback. Through the control input u, the behavior of
the system can be modified. The vector y will be used as the input to a controller K(s) and
the output of K(s) will be connected to the control input u. That is,

u(s) = K(s) y(s) (3-2)

The standard I" optimization problem is the problem of finding a proper controller K(s)
such that the closed-loop system is internally stable and I1 T, II.. is minimized where
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Tzw(s) = G11(s) + 0 12(s) K(s) [I - G22(s) K(s)] - (G21(s) (3-3)

That is, Tzw(s) is the transfer function of the closed-loop system from w to z.

Let a realization of the genmized plant G(s) be

G ~(S) 0 (S) A B, B2
G(s) G D12 (3-4)

G21( 22G (s)JD 2 1

with the following assumptions:

(i) Both G12(s) and G21(s) have no trwansmission zeros on the jco axis. (3-5a)

(ii) (A, B2) is stabilizable and (C.2, A) is detectable. (3-5b)

(1ii) D'12 [C 1 D12 ] =I 0 I] (3-5c)

(IV) D lM I(3-5d)

The two Riccati equations involved in the state space approach are:

A'X. + X.A + X.. ( f2 B1 ]•- B2B2 ) X.+qC1 = 0 (3-6a)
and

AY+ Y.A'+ Y.( y2 C C1 C- CC 2 ) Y. + BIBi = 0. (3-6b)

The following theorem by Doyle et. al. characterizes all suboptimal stabilizing

controllers such that II Tzw II < y.

Theorem 3.1: [7] There exists a stabilizing controller such that Irrzwll,, < I if and only if

the following three conditions hold:

(i) There exists a positive semidefinite stabilizing solution X.(Y) to (3-6a).

(ii) There exists a positive semidefinite stabilizing solution Y..(y) to (3-6b).
(iii) p[X,(T)Y,(T] < ^P.

When these conditions hold, one such controller is

Ksu(S).= F 0

where
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Ak = A+Y 2BB 1X. + B2F + ZLC2

F =-B 2 X., L = -Y..C2 , E = (I- Y,2y.X.), Z = (I- _"2y.X..)'.

The major computational task of H- design is to solve the two Riccati equations,
eq.(3-6a&b). From [7], the stabilizing solution X. and Y. can be solved via their

corresponding Hamiltonian mantices

= A "2BIB'B 2 2j (3-7a)rA=C',C1 -A'

U.() = -BA'I " 4llC (3-7b)

Namely, if we let

T.= (3-8)

be a modal matrix for H-. corresponding to all the eigenvalues on the open left half of s-
plane, then

X- = T2 Tj1, (3-9)

is the unique stabilizing solution to eq.(3-6a) such that (72B •-- B2B2 )X.. is stable [1,7].

It is well-known [7] that the stabilizing X.. exists if and only if (1) H.. has no jo)-axis

eigenvalues, and (2) T, is invertible. These two conditions are called stability condition and
complementary condition respectively in [7]. We have the same arguments for Y., the

stabilizing solution to eq.(3-6b).

3.3 Structure of the y-Domain o0 H" Riccati Solutions

It is well-known that for the standard LQG Riccati equations [17], positive
semidefinite stabilizing solutions exist if the system is stabilizable and detectable.
Unfortunately, the H" Riccati equations are more complicated because they are parameter
dependent and their quadratic-term coefficient matrices may not be sign definite.

For a sufficient large y, a suboptimal IH controller always exists. This is due to the
fact thatas 'y--, the H" Riccati equations eq.(3-6a&b) become the standard LQG Riccati

equations (the quadratic terms become sign-definite), therefore both X.. and Y.. exist and
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are positive semidefinite. Meanwhile, since y is sufficiently large, the third condition of

Theorem 3.1 is also satisfied. However, as y decreases, the three conditions of Theorem

2.1 may not hold any more. For instance, X,. may not exist or fail to be positive

semidefinite for some small y. Thus the following problems arise:

1. How small the ycould be such that the Riccati equations have stabilizing solutions?

2. What is the structure of y-domain where the solutions exist?

3. How to compute the optimal y, which is defined as

¥opt = inf {y. all the three conditions of Theorem 3.1 hold).

We will answer these questions by starting the investigation of the structure of y-

domain for X..().

Theorem 3.2: If we define

c := inf {y: ye R+ and X.(y) exists)

N := inf {y: yE R+ and X.(y) is positive semidefinite),

then we have the following results:
a) On (ax, +oo), Xj() is well defined almost everywhere;

b) On (Px, +o), X.(y) is well defined and positive semidefinite everywhere;

C) .

Fig.3.1 gives an illustration for the theorem. One can see that the y-domain for

X.(y) consists of three parts which are bounded by a,, and P, For any y in Region c,

X,.() is positive semidefinite; whereas in region a, X.(jy) does not exist at all. In Region b,

although X.(y) is not positive semidefinite, it exists everywhere except for some possible

isolated points.

Region a Region b Region c
0

Fig. 3.1 y-domain of X,(y).

In order to simplify the proof of Theorem 3.2, we will, without loss of generality,
strengthen the assumption on (C1, A) from detectable to observable. To show that this can

be done, we assume that (C1, A) is not observable. Then one can always restrict the

problem into the observable subspace by finding an orthogonal matrix [ 18]

U=[UI U2] (3-10)
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such that

1'AU1  0 1
U'AU [UAU U'AU (3-11)

[UB 1  U'IB 21
U U;Bj UýB2' (3-12)

and

C1U- [CU 1 0] (3-13)

with (C1U1, U'AUI) observable. It is easy to verify that the solution to eq.(3-6a) can be

expressed as

X.(-f) = U 10 01U, (3-14)

where X(y) is the stabilizing solution te the eq.(3-6a) with (A, B1, B2, C1) replaced by
(U'AUI, U'BI, UIB2, ClUI). Note that, since the matrix U in eq.(3-14) is independent

of y, X.(y) exists if and only if X(y) does, and X.(y) is positive semidefinite if and only if
X(y) is. Hence, in the following, we will assume that (Cl, A) is observable and use X.(y)
and X(y) tn hangeably without loss of generality.

To prove Theorem 32, we need the following lemmas.

Lemma 3.1 [7]: The stabilizing solution to the H" Riccati equation eq.(3-6a) can be
written in terms of two LQG Riccati solutions:

X =(Y) = X 2 1 X 2 - W(Y) ]'X 2, (3-15)

where X2 is the stabilizing solution to:

A'X 2 + X2A - X2B2B2 X2 + C1C 1 = 0 (3-16)

and W(y) is the stabilizing solution to:

(A-B2 B'2X2)'W + W(A-B2B'2X2 ) + 1WX2 C CIX W + f2X2BB'IX2 0 (3-17)

whose corresponding Hamiltonian matrix is
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[ -BB' (-HX(y) := (3-18)-2X2B 1B 1X2 -(A-BBX2'J

Since X.(y) can be expressed in terms of W(y) and a constant matrix X2, the

properties of X,(y) can be derived from those of W(y). Lemma 3.2 describes the y-domain

of W(y), and Lemma 3.3 shows some useful properties of W(y).

Lemma 3.2: There exists a positive number a., such that W(y) is well defined
everywhere on (o,,, +4o), and W(y) does not exist on (0, a,,).

Proof: First of all, it is claimed that all the jo)-axis eigenvalues of Hw(y) are identical to the

jo-axis transmission zeros of the transfer function

r(s, y) := If - G-(S)Gw(S) (3-19)

where

Gw(s) = B'lX 2[ Is - (A-B2B 2X2) ]Xx21c': I [ Is- • ]-]. (3-20)

This can be shown by the following derivations:

r(s, f)= I•2- -

•,Ao o o

Furthermore,

L( 01 = .' 0 I(3-21)

2 _A

A' 0 A'O

~~~ .... A,=imimm iiil.,il II ilMmmm



By the similarity transfomiation

we have

=,1 -A' (3-22)

o

The last equation shows that { H-(y), [1CIX2 1 0]', [0 yrClX2J1], 1y2 } is a realization of

r"(s, f). Since A = (A-B2B'2X 2) is stable, by applying PBH test [19], it is clear that on the

jo-axis we have

rA AA I AA 1
A-Is BB' A-Is 0 B. =rank 2&A A=a_2 2n;
- C , -A'-Is 0.y-2, -A-ls 0

[A AAA

2 A

This implies that the above realization is both controllable and observable on the jo-axis.

That is, the realization does not have pole-zero cancellation on the jc-axis. Hence, the set

of the eigenvalues of H,(y) on the jw-axis is identical to the set of the jow-axis poles of

(s, y), which in turn is identical to the set of the jco-axis transmission zeroes of I(s, 7).

Next, we claim that if there exists a y1 such that r(s, y1 ) has transmission zeros on

the jo)-axis, then r(s, y) will have transmission zeros on the jw-axis for any le (0, y1]. To

prove this, one just needs to note that Gw(S) is a strictly proper transfer function and
therefore it goes to zero, as co -+ +00. Hence, for any 7 : yl, there always exists an co such

that r"(jo, y) is singular. For instance, in Fig.3.2, we can see that if r(s,y1) has a

transmission zero at jco1 , then for any 72 < 71, there exists an (o2 such that j(02 is a
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trasis zen ro of r(s, y).

e S

0l (

Fig. 3.2 The jo)-axis transmission zeros of r(s, y) occurs at the fr:equencies

such that Y =a(G,(jW)).

These two claims imply the fact that if there exists a y, such that Hw(j) has jwo-axis

cigenvalues, then Hw(y) has jco-axis cigenvalues for any y less than y1. Therefore, if we

define

aw = inf {T. Hw(y) has no jw-axis eigenvalues), (3-23)

then it is easy to see that Hw(y) has j-axis eigenvalues for any ye (0, aw) and has no j0-

axis eigenvalues for any ye (aw, +-0).

Finally, since A-B2B'X is stable and Hw(y) has no jw-axis eigenvalues for any

ye (av, +-,), then W(y), the stabilizing solution of Hw(y), exists for any ye (aw, +-•) [20].

Thus, we complete the proof.

From the above proof, it is easy to see that the aw defined in (3-23) can be

expressed by the HE norm of a known transfer function:

€w = 11 G(s) n1.., (3-24)

where Gw(s) is defined in (3-20).

Lemma 3.3: On (aw, +-),
a) WY := dW/dy < 0, WY := d2W/d? 0;

b) all ¢igenvalues of W(y) are analytic, nonincreasing functions of T,

c) W(Y) k 0.
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Proof: Since W(y) is an analytic function of yon (a,, +-0), it is well-known [21] that, by

appropriate ordering, the eigenvalues (k,) and eigenvectors {vi} of W(y) are analytic

functions of y on (aw, +oo) such that (Vki-W(y))vi = 0, i = 1, 2,-.., n. Rewrite Riccati

equation (3-17) as:

,V + WX, + +4tt( =0(3-25)

where •L f= y2, A-B2B'X, A = X-1C' and &= B'X 2. Differentiating the above
222 2 11

equation with respect to g, we have the following Lyapunov equation:

(X + fig'W)VW ( + + 99,W) + t 't = 0 (3-26)

where W.• SE

whr "*-'. Because X + AVW is stable, it can be inferred that W. 2 0 and W;L is

the unique solution. Continuously differentiating eq.(3 -2 6 ) with respect to g, we have

W;> 0 ,where W. = V By using the chain rule of differentiation, it yields

W., = -WIý = -y 3 W%:50 (3-27)dy
d2W -3 .W. 2 0.

and Wyy = W +04. (3-28)

Now let us consider equation

(A, - W)v = 0, (3-29)

where A is any eigenvalue of W and v a corresponding eigenvector. Differentiating eq.(3 -

29), we have

vvi) _<0, (3-30)
vv

since W, < 0. Thus we proved part b).

Part c) is a direct consequence of part b). Since

(A-B2 B'X 2 ) X.'IB

Hw(00) = BHw(-- = 0 -(A-B2B'2X2)''

the stabilizing solution W(o-) = 0. Hence, it can be concluded that W(y) >0 on (aw, +oo)
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from the fabct that all the eigevalues of W(y) are noj ceaig

In the proof of Theorem 3.1 we need to show that there exist at most n isolated

values of y such that [X2 - W(y)] is singular, let Xi(t) be the ith eigenvalue of [X 2 - W(y)], i

=1,2,...n, where n is the dimension of W(y). Then we have the following lemma.

Lemma 3.4: If there is a Tie (as, +0.) such that ki(Ti) =0, then ii(71)>0.

Proof: Define a function on (c&, +.o) as

f(Y) := x'[X2 - W(0)] x, (3-31)

where x = vi(y1) is an eigenvector corresponding to ,i(t1). By Lemma 3.3(a), it is easy to

see that f(y) is a nondecreasing and concave function of y on (a1, +4-). Furthermore, we

have f(+oo)>O, since [X2 - W(+oo)] = X 2 >0 under the assumption of (C1, A) being

observable [17]. Hence, if there is a TIE (a1 , +00) such that f(y1) = 0 then f( 1)>0. By this

property, we can see that k.i(yT)=O implies f!%>O, which in turn implies Xi(T 1)>O.

Together with the monotonicity of k-(T), it comes the conclusion that [X 2 - W(T)]

has at most n singularity points on (a,, +-).

With these lemmas, now we are ready to prove Theorem 3.2.

The Proof of Theorem 3.2:

a) Since X.(y) = X2[ X2 - W(T) ]-'X 2 (from Lemma 3.1), it is obvious that:

CCX-- aw (3-32)

where a1 was defined in Theorem 3.2 and a, was defined in Lemma 3.2. It is possible for
[X 2 - W(y)] to lose rank at some points on (a,, +4o), therefore X..(y) is not well defined at

these points. In Lemma 3.4, we show that there are at most n such isolated points where n
is the dimension of X.

b) Suppose that there exists a y1 such that X1,(y1) > 0, and hence [X 2-W(y1)] > 0.

Because all the eigenvalues of W(T) are nonincreasing (from Lemma 3.3), [ X2 - W(y) ]

will not become singular for all T k y1, which implies that X.(T) keeps positive definite for
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all ye [y1, +*,). Therefore, if we define

S= inf {y. X.(y) is positive definite), (3-33)

then the proof is completed.

The following theorem characterizes N and shows how to compute it.

Theorem 3.3: Define f(y) := )Lm[W(V)X I] on (at, +0), then

a) either f(k) = 1 or P. = ot1 ;

b) f(j) is a convex decreasing function of y,

where Xmx denotes the maximal eigenvalue.

Proof : The proof of part a) is trivial, which is simply due to the fact that (X2 - W(C)) > 0

if and only if X,.[W(V)X21] < 1. To prove part b), we consider the following equation

[LX2 - W(v)] u = 0. (3-34)

Note that X in the above equation is an eigenvalue of W(V)X2
1. Taking derivative with

respect to y on eq.(3-34), we have

(UX 2 - W? u + MX2 - W(O)O =0 (3-35)

It is easy to show that
() = u•x2 u !5 0 (3-36)

on (ax, +0), since W, < 0 from Lemma 3.3. If we replace X in eq.(3-35) by X., the

maximal eigenvalue of W(y)X21 , then we have

i '( Z 2- WY) u =- i '[1XX 2 - W(Y)] (3-37)

where u is the eigenvalue corresponding to the Xnm. Note that eq.(3-35) implies

u'( Xm.X 2 - W7 )u = 0. (3-38)

Taking derivative on eq.(3-38) yields
6( ;'( -mX2 - Wy) u + u'( imaxX,2 - Wy•)I] + u'( Xmax X2"- WW ) U = O. (3-39)

Combining eq.(3-37) and eq.(3-39), we have
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. Y =u'WVýu + 2i'[XmMX 2 - W(y)](k,•ax(y/) -- u,X2u (3-40)

Since (,.uX 2 - W(y)) k 0 and W Ž2 0 from Lemma 3.3, we have Xmax(y) Ž 0, which,

together with eq.(3-26), implies that f(y) is a convex decreasing function of Y on (C.t, +0).

Corollary 3.1: The derivative of f(y) can be computed by

d =, w'v v (3-41)

where w and v are right and left eigenvectors of W(Y)X21 corresponding to its maximal

eigenvalue respectively, and W Ycan be computed from eq.(3-26) and eq.(3-27).

Fig.3.3 illustrates two possibilities mentioned in Theorem 3.3. As shown in the

figure, 0. can be obtained either by finding the value of y such that f(y)=I or simply by

computing yx.

Fig. 3.3 Two possible locations of -

Ti Corollary suggests that one can develop an algorithm to compute I•by "making use of

thes properties.

3.4 Properties of the H" Riccati Solutions

In this section, some important proeries of X..(y) on the intal wi be

given. We are only interested in this interval, since the in problem has no solution for any

y less than • ( see Theorem 3.1 ). The properties are summarized in the following.

d2Theorem 3.4: On (px,+o), (,:•CX. ()) > 0.
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Proof: Let S(y) [X 2 - W(y)] d :=(SCy)) and j-':= AtS()IY), we have

S ---W1 , 5":- s" s--s'w••.S

From Lamma 3.1,

k-() A(X1 2 -W() 12)= X2i-I X2

= X2 S- 1W-fS X2  (3-42)

This implies that ) 0, since W, 5 0 (see eq.(3-27)). Continuously taking the

derivative on eq.(3-42), we have

0,.0, -x• S-IXw -x+~ -'w•y-'x2+x2s- wý-, x23L.(Y) =X2i ~ 1
2+X2SWSX2 XSWSX

= X2S--w -ýs-*W? X2 +X2S-'WTs-lX 2+X2S-'WyS-1w -Yl X2

= X2S' 1[2W 7S'Iw+Wi S'IX2  (3-43)

This equation, together with eq.(3-28), indicates that X,,.(I) > 0. Thus the proof is
cornpleted.

From these inequalities, we have the following properties for X.(^y).

Theorem 3.5: On (Ox, +oo),

a) all eigenvalues of X.(y) are analytic, nonincreasing functions of y;

b) the maximal eigenvalue of X.(y) is a nonincreasing, convex function of y.

Proof: a) Since X.(y) is an analytic function of y on (•, +e), it is well-known [21] that,

by appropriate ordering, the eigenvalues {(k) and eigenvectors {v1} of X.(y) are analytic

functions of y on (N, +-) such that

(), - X.(y))vi = 0 i = 1, 2,.-., n. (3-44)

To prove the monotonicity, we take derivative on eq. (3-44):

i. - ,.)v + .l- x.())v = 0, (3-45)
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which implies X.i() =•V

= i y 0, since k< 0. OThus we proved part a).
1 1

b) From eq.(3-45) with X = x, the maximal cigenvalue of X.(y), and vi =v,

the eigenvector corresponding to kmu, we have the following equation:

•.•() -v' X~v + 2;'(D,l,-X.); ,(-6
VVX.()= -9(3-46)v v

which implies % (y) Ž 0, since 2!. >0 and (lX-X.) > 0. Because " 2y) >0 and all

eigenvalues of X,(y) under appropriate ordering are analytic and nonincreasing on (fx,
+a-), it is easy to see that X..(I) is convex and nonincreasing on (P., +e), even though
X=,(x) may not be smooth at some isolated points. Fig. 3.4 gives an example showing the

possibty.

0 71

Fig. 3.4 Smoothness and convexity of the largest eigenvalue.

In the figure, both X, and X2 are smooth functions of y, but ).., is not smooth at 'y.

However, it is still a convex function.

Since Riccati equation eq.(3-6b) is dual to eq.(3-6a), we have similar results for
Y.(y), with the following corresponding notations:

ay := inf (y:ye+•R and Y.(y) exists)

fry := inf {y: ye R+ and Y.(y) is positive semidefinite},
and

(Y = V1 0 01v 8. (3-47)
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Y(Y) and V are defined in a similar way as those for X.(y) in eq.(3-14).

Recall that the condition, p[X..(y)Y,(y)] < 2̂ , is required in Theorem 3.1. To

investigate the properties of X..(y)Y,(^f), we define

cz:= max(Ua1 , 0x,)
A:= maxfP., N).

Then it is easy to infer that a) X..(y)Y..(y) exists on (cc, +co) almost everywhere; b)

X.(,)Y.(y) has no negative eigenvalues on (0, +-), since both X.(y) and Y.(y) are

positive semidefinite on (D, "o). Moreover, the eigenvalues of X..(y)Y.(y) have the

following properties.

Theorem 3.6 [16] : On (4-, +w),

a) all eigenvalues of X..Y. are analytic, nonincreasing functions of y;
b) p(y?):=p[X..(y)Y..(y)] is a nonincreasing, convex function of y.
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CHAPTER 4

MONOTONICITY AND CONVEXITY OF THE GD
PARAMETER DEPENDENT H6 RICCATI SOLUTIONS

4.1 Significance of the monotonicity and convexity properties

In this chapter, we will investigate some important properties of the H- Riccati
solutions which play a key role in the solution of the H- optimization problem. It is well
known that Doyle, Glover, Khargonekar, and Francis (abbr.: DGKF) [7] presented a
celebrated two-Riccati-equation type solution to a standard H" control problem. Through
solving two I- Riccati equations, an optimal (or suboptimal) stablizing IH controller can
be easily constructed. Unlike the constant Riccati solutions in Linear Quadratic Gaussian
(LQG) or H2 problem [17], the H' Riccati solutions are functions of a parameter y which
is an upper bound of the optimal H- norm of the closed-loop system. To construct a better
suboptimal or an optimal H" controller, it is necessary to search for the optimal II norm of
the closed-loop system, i.e., the smallest y such that the two H" Riccati solutions X.(y)
and Y.&() are positive semidefinite and p[X.(y)Y,.(¥)], the spectral radius of X.(y)Y.(^),

is less than.

Recently, efficient algorithms for computing the optirnal EI norm were proposed
by Scherer [15] and Li and Chang (22]. Scherer considered the inverse (or pseudo inverse)
of the DGKF EI Riccati solutions, X..(y) and Y.(y), defined a new independent variable 4I
= Y2, and showed that these inverses are concave functions of gx in matrix sense on their

domains of definition. Li and Chang showed that p[X..,()Y.(y)], the spectral radius of
X.(y)Y.(y), is a monotonically nonincreasing and convex function of y. Based on these
facts, quadiatically convergent Newton-like algorithms were proposed to compute the
optimal H-I norm [15,16].

Though, these monotonicity, concavity or convexity properties have only been
proved for the DGKF case in which the D11 matrix of the generalized plant is assumed
zero. This assumption can hardly be satisfied by many practical problems. In [8], Glover
and Doy!e (abbr.: GD) considered a more general case with D11 nonzero. The basic
concept is the same as DGKFs, but the H" Riccati equations involved are much more
complicated which makes the investigation of the properties of the GD IHI Riccati solutions
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extremely difficult.

For GD Ir control problem, Pandey et. al.'s hybrid gradient-bisection method [ 13]

and Chang et. al.'s double secant and bisection method [14] were proposed for the
computation of the optimal H" norm. The significance of the conjecture that
p[X..(y)Y-(7)], the spectral radius of X..(y)Y..(y), is a convex function of 7 was mentioned

in these two papers. Since there was no proof for this conjecture, bisection was used in
these two algorithms as supplement to guarantee convergence.

In this chapter, we will show that the GD H" Riccati solutions have the same
properties possessed by the DGKF H" Riccati solutions as mentioned by Li and Chang
[16]. In other words, the GD H" Riccati solutions X.(y) and Y.(y) are nonincreasing and
convex functions ofyin the domain of interest and so is the spectral radius p[X.(y)Y.(y)].

Based on these properties, a quadratically convergent algorithm is proposed to compute the

optimal I- norm for the general H- control problem considered by GD.

Section 4.2 lists the notations used in this chapter and reviews the fundamentals of

the Riccati equation. The main result of the chapter is presented in Section 4.3 which
shows the details of the proof of the monotonicity and convexity properties of X.(y) and
Y.(y) in GD case. An efficient algorithm to computing the optimal H-I norm based on

these properties will be given in Chapter 5.

4.2 Notations and Basics of the Riccati Equation

It The set of real numbers.

It+ The set of positive real numbers.

pt mxn The set of real mxn matrices.

inf(S) The infimum of the set S.

sup(S) The supremum of the set S.

Lmxn The set of nxm matrices whose entries are complex numbers.

I Identity matrix.

in n-dimensional identity matrix.
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0 Zer orzero matrix

0o n-dimensional zero marix.

AT Transpose of a matrix A.

A° Conjugate transpose of a matrix A.

A > 0 A is a positive semi-definite matrix.

A>0 A is a positive definite matrix.

)(A) An arbitrary eigenvalue of A.

ki(A) The ith largest eigenvalue of A.

Xma(A) The maximal eigenvalue of A.

"-(A) The minimal eigenvalue of A.

p(A) The spectral radius of A.

0=x(A) The maximal singular value of A.

A(y) The matrix A is a function of 1.

H.. The Hamiltonian matrix shown in (2-5a).

J.. The Hamiltonian matrix shown in (2-5b).

The stabilizing solution to the Riccati equation corresponding to H...

The stabilizing solution to the Riccati equation corresponding to J...

The inverse of y square.

where k- is the ith eigenvalue of D11T DLDff DD1.

1

Ht) Defined as H..I t-inf2.
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Jqji) Defined as J. in1-1.

X•) The a b g solution to the Rccan equation corresponding to the

following Hamiltonian matix

ax The first order partial derivative of X with respect to g,, i. e., X "

ait The second order partial derivative of X with respect to p.t and Iýj, i.e.,

Y01) The antistabilizing solution to the Riccati equation corresponding to the

following Harniltonian matrix

X('Y) Defined as X.)I,=f2.

W(y) Defined as Y(gt)I R_ 2 .

ax Inf (Y: Ye R+, y> UD.(TD11) and X.. exists}.

U•y Inf17: { 1:eE R+, y> D.LDuT) andY. exists 1.

Ox Inf {Y:YzE R+,y > ac andkC() is positive definite1.

~y Inf {Y: Ye R+, 7_> ay and "Y(y) is positive definite).

rADL 1 A state space realization of the transfer matuix D+C (sI - A) B.

a max{ax, ay).
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mnax( P1 ,P)

p defined as p[.Cy)Y..•y)] on (J, +a*).

uGs)lL The IT norm of G(s).

Dr j (G,K) The lower linear fractional transformation which stands for the closed loop

uansfer matrix from w to z as shown in the following

z w

G(s)

i ~K(s)f

Let A, Q, R be real n by n matrices with Q and R symmetric. The algebraic Riccati

equation and its corresponding Hamiltonian matrix are shown as follows:

ATX+XA+XRX-Q=O (4-1)

HAT:= (4-2)

Assume H has no eigenvalue on the imaginary axis. Then finding a basis for the invariant

subspace corresponding to the eigenvalues of H in LHP, i.e., the open left half complex

plane, and using the basis vectors to form a matrix, we obtain

X_ (H)'= Im X

where X1, X2 e ERn. F' the two subspaces

are complementary, i.e., X1 is invertible, then the stabilizing solution to the Riccati

equation is X = X2 XI"'. X is uniquely determined by H, i.e., there is an operator denoted
Ric which maps H to X. Thus, X = Ric(H) and the domain of Ric is denoted by dom(
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Ric ). Furthermore, if X exists and is nonsingular, then X2 is also invertible.

Consider the system

G(s) = CD=C(sI-A)"'B+D

with ( A, B ) stabilizable. The following two fundamental lemmas of the Riccati equation

will be employed in the proof of the main results in Section 4.3.

Lemma 4.1 Suppose H has the form

A -B B

H=[ 1 .6C T] (4-3)

7h.un .he stabilizing solution X to the corresponding Riccati equation exists and is

nonnegative hemi-Alefinite. The null space of X, i.e., ker ( X ), is a subset of the stable

unobservable subspace.

Stable unobservable subspace means the intersection of the stable invariant

subspace of A with the unobservable subspace of ( A, C). Note that a detectable ( C, -A )

implies that X is positive definite. On the other hand, if ( C, -A ) is not detectable, then A

has stable modes that are not observable from C. Assume that there is a similarity

ransfornation U such that

[cIB u All 0 BV

UA21 A22 B2

with A22 stable and (C1, -All) detectable, let X, be the stabilizing solution to the following

Riccati eqaton

T T T
All XI + XI A 11 - XI BIBI X1 + CI CI = 0,

then it can be shown that X = U [ ] UT is a stabilizing solution for the Riccati
10 0

equation corresponding to (4-3).
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Lemma 4.2 Assume the stabilizing solution X to (4-1) is positive definite and k is the

inver of X, then k is the anblizing solution to

A k+ kA T -kQk+R=0 (4-4)

"Le., the eigenvalues of A-kQ are in RHP, Le., the open right half complex plane.

Proof: The Hamiltonian matrix associated with eq. (4-4) is

A = ý -A Q.

It is easy to see that

If the stable invariant subspace of H is fn [ then that of -fisX2

and hence Im 2 is the antistable invariant subspace of fl. That is, k is the
IX11

antistabilizing solution to (4-4). Q.E.D.

4.3 Properties of the y-Dependent H- Riccati Solutions

The Riccati equations associated with the Hamiltonian matrices (2-5a) and (2-5b)

are dual to each other, so we will only concentrate on one of them, say, eq.(2-5a). To
investigate the properties of Riccati solution of eq.(2-5a), we first assume that (D±"T CI, -

A+BR" DI.T CI) is detectable. This assumption will be removed later in this section. With
the assumption it is obvious that X. = Ric(L,) is invertible.

Although our objective is to show that X. and Y. are nonincreasing convex

functions of y, we will consider their inverses first since the inverses, as shown later, are

analytic functions of y.

In eq. (2-5a), the Hamiltonian matrix H. depends on the inverse of R which is a
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function of y. The parameter y appears almost everywhere in the entries of R-1 and the

matrix HL. could be a messy function of y. To avoid this messiness, the following lemma

is employed to confine the influence of y in a aiagonal matrix.

Lemma 4.3 The matrix R in (2-5d) can be expressed as -T A(Y)-I TT, where A(M) is a

daonal matrix

Proof:

By D12T D12 = I, R can be decomposed as

[ T
DT D D DD

R 21111 MI 11 D12

T D 12 1 1 T TlF 1 1m 0[I.l DTID (I),, D.DI-D11 - I MI) 0 Ir

=T (4-5)
0 0JL . DI2D1II

DefineE= [0E 1] where El is the orthogonal matrix in the singular value decomposition

of D±T D1 , i.e., D11T D.LD±T DII = El diag{[. 1 , )2, ..., in } EIT, and let

0' DD11E

and

A(-):= diag{p -1, 92-1 ...*, 1ml -1,... -1,

where i'= i = 1, 2,..., ml,

then it is trivial to show that

R = - T A(Y)1 TT. Q.E.D.

This lemma shows that the effect of I is only on the eigenvalues of R. This fact plays

a key role in reducing the complexity of the proof that the X. is a convex function of .

In order to specify the domain of the mapping X,.(•), we define
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:= inf {Y: Ye R.+,Ty>(D±TD1) andX. exists }.

To simpfy the proof, let I y2 andd

DI:= .T D11:= (4-6)
D1211, 01

and -~2]= [-C~D~ [D~D~](4-7)T 2 ' "T,. [ D , D u ]

and

S 0ml T ±1D I ]

Then the Hamiktonian matrix H. in (2-5a) can be written as

(A+T Mf2) Tm
[..):= (6CIc+T 2m ~ (A+TIMT"Y] (4-8)

Consider the following Riccati equation

X(A+T1 M T2T)T + (A+T1M T2T)X + TIM T1T + X(C1T CI+T2M T2T)X 0 (4-9)

whose associated Hamiltonian matrix is-[0 Hio)0 ]
It is easy to see that X(;.) exists only on the interval (0, a,' 2). In the proof of the
following theorem, the vector vec X, associated with the matrix X, is defined as follows.

Definition 4.1: With each matrix X = [xij] e R nxn, we associate the vector vec XE

Run defined by

vec X = [xii, ... , Xnl, X12, ... Xn2, ... ,xln, ... , xnn]T (4-10)

Theorem 4.1: On (0, ox-2), X(I) is analytic and satisfies
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!5<0, (4-11)

Le., X4I) is an analytic nonincreasing function.

Proof:

To prove the analyticity of X, we define

F(XtL).= X(A+TIM T2T)T + (A+TlM T2T)X + T1M TIT + X(CIT CI+T2M T2T)X

where XE X

X X e R'• X is positive definite and

(A+T1M T2T)+X(C 1T CI+T2M T2T) is antistable }

From the above definition, we have

F(X4X,4) - F(Xt)

&X X [(A+TIM T2T)+X(C 1 T CI+T 2M T2T)]T

"+ [(A+TIM T2T)+X(C 1T CI+T2M T2T)] 8X

"+ X (elT CI+T 2M T2T) 3X (4-12)

where SX is a small perturbation on X Let

A:= [(A+TIM T2T)+X(CIT CI+T 2M T2T)],

then the partial Fr~chet differential [23] of F(., .) with respect to X is

aF(X,tL) = aX AT + A XX (4-13)

and it can be regarded as a linear map. The map

)X aaX AT+ Ai)X (4-14)

is nonsingular because

vec aF(X,4) = vec aX AT + vec A•aX

or equivalently,

vec aF(X,4) = [10A + A@ I] vec aX (4-15)

where S is the Kronecker product. [I* A + A* I] is nonsingular because of the

anbistbflizability of X. Consequently, aF(X,gt) and aX are uniquely detemined by each
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other.

It is clear that F(., .) is an analytic function which maps (X, p) to F(X, p) on the
domain X x L where L = (0, a,- 2). From the implicit function theorem [23] and
analyticity of F(., .), there exists a neighborhood, (u-e, g+e) with c > 0, such that the map
gt a X is analytic. Hence, X is an analytic function of g.. Next, we will show that X is a
nonincreasing function of p. Let

1M.= i = 1,2,... ,m1
:kl ax.

Differentiating eq. (4-8) with respect to Iii gives

Xt A +A • i + (XT2 + T) L (XT2 + T)T = 0 i= 1, 2,..., m (4-16)

Recalling that M = EAET, we have

E aA ET= E dig(0,.., 0, 1, o 0)..' T
- agl "'" .... i-th

which is positive semi-definite. Since X is the antistabilizing solution to (4-9) i.e., A is

antistable, eq. (4-16) implies that

.:go
P (4-17)

and therefore

dXml
_-1

TR Q.E.D.

Based on Theorem 4.1, it is known that the second order or higher order derivatives of
X(g) with respect to g. exist on (0, ax-2). To prove that X(ji) is a concave function in

Theorem 4.2, we need the following lemma.

Lemma 4.4: Let

G :-- E diag 'I11, 9-'9t2, ..., 1'mlm4, 0, ..., 01 ET (4-18)
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and

T T T 2
C D DI I+ T2 GT2 T2G

G2 [ T -I 3_ 1 2-

then on (0, oii-) the matrix W is positive semi-definite.

Proof: G can be rewritten as

G = diag(Wl( g-'Imi - DI1T D. D.±T D1 1)-1 , 0, ,0}.

Let

WI:= •'l( IW4I1 - Di1T D.LD.LT DI)-

and

Wl: g 1 39 2 MI_ JET(l-Iirt) ' (1-L2,t)3' 9" (,_l. a11)3

then we have

wA 3- (i2) = diag{WU, 0, ..., 0).

Since

T2G2 = [ClTD±D±.TDIIWI 0],

W can be written as

W:[ S 0]

where

" T T T T T
CID±D1 C1 I+ T2GT 22 CIDD.DIID

ws= W 2 T T

It is obvious that W is positive semi-definite if and only if so is Ws. in the following, we
will show that W. is positive semi-definite. W. can be decomposed as
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-I+ TE 61 D. 16'D I

The matrix Q:=1 + p.D.JTD,,WD,,TD± is positive definite since WI is. Thermiddle

matrix on the right hand side of the above equation cain be further decomposed as

IIW2Q~WD I) I ~~, 1 'I

-W,6,DD QWTD.

Now, the proof boils down to checking that WI, - WjZDUT DLQI1D.IT DIIW1
2 is positive

semi-definite. Based on the facts shown as follows,

Q1= (I + rlD.T D11W( D,,T DrDTD1 +(OW-rDTDr

=rI - rDjTDII[ DIITDirD.±TDII+ (.4L1(W1 Im - D,,TD1DTDff)l'

=1I - D-j DII[ DIITD-LD±T D11 + W'I, - D,,T DIDIT D.fLD,,T DI

=- WDITD.,,,D

and

DI IT D±Ql'D±T DI = DI IT D±(I - gWlDiT D ID1IT D-L) D±LTD1 1

= DI IT D±LD.T D, I- (D I T D±LD.T DI 1) g. (DI T D-LD±T Di 1)

= E1 diagP;LI(l-)Xg, X.20 4~29), .. ,XmI(1Xmij)}JEIT,

it is easy to show

WU- WDI IT D.IQ7DILT DI 1W?

=Eidiagl{ 1 3 2 ; I(1- 1)L IR
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M•. 1 A)32 mi(14 M1•0 2 }EI
(1-;L ) (M-I MI)2 (I-). MIA)

is a zero mnatrix and hence

T

W2T

is positive semi-definite. Consequently, W. is positive semi-definite and so is W. Q.E.D.

Based on the fact that X(ji) is an analytic nonincreasing function, as shown in Theorem
4.1, the second order derivative of X(jt) exists. Furthermore, we also found that X(g) has
the following important property.

Theorem 4.2: On (0, ccj 2), X(Q±) is a concave function, that is,
Ad2 < 0. (4-19)

Proof:

Taking partial derivative of (4-16) with respect to gj, we have

. -T X *)T + T T(T
X. .~A +AX.j .+XTT21M L(XT2+TI) XA(C, C,+T2M T2 )XILj

2T1)IjT2 X + XLj(CT CI +T 2MT T )X, p + X MJ2 MVi(XT2+T) T

"+ (XT2 +T') T X

+ (XT2 +T)MT Xj - 0

iffl, 2 ... , ml, j= 1, 2 ... ,m (4-20)

For notation simplicity, we define
*,nml ** 1

10 J1M

j1mid

X1- X 2
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From eq. (4-18), it is obvious that

GK M1. 1 (4-21)

Now, the sum

MI ml( (4-20))
i-l j-l (.,i)2 1- t)2

can be simplified as

o ...o. 2 T 2T

Define

* mi. 2'i

i-I g)

then the sum

ml 2;.
S'2(4-16)

i-i (14l.ij)2

leads to

Tn 2. in1 2( -.
X.A + AX. + (XT2+T1) (X .• 1) (XT2+T) 0o (4-23)i -I 9" (1.)Ligt)

Adding eq. (4-23) to eq. (4-22) gives

*. T * -+ * * 2 T 2 TT"
(XI+X)A + A(X1+Xr) + 2X1T2G (XT 2+ T I) + 2MXT 2+ 1I)G-T2A

T T * l* . X. T
+2XI(C1C1+ T2MT2 )X1+ 2(XT2+T1)( 7M 3 )(XT2+ TI) 0.

(4-24)
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Baned on the fact that

DI. Dj - DI I - D12 D12T DI I = D±LD±TDu I D1. DIj D12

and

M = pG + diag{O0m1, -1)

where O.in is the ml by ml zero matrx, we have

[2C1TD±LD.jlD11  CITD12]

and

CITC1 + T2 diag{ Oml, _I) T2T = C1TD.±DTCI.

Then eq. (4-24) becomes

0* -T 00 . * 2 " (T+T ý

('X1+XY-HA +A-X1-X+X11) + 2-X1T20l(- 2 T1) 2)G 2 ~~2-XI

+2X1(CDLDIC1) XI+ 2PX1IT2 G TA

ml* T
+ 2(XT2+T1)( 3 . )(XT2+ TI) = 0 (4-25)

With

ml* )I. mlG - G2)1

eq. (4-25) becomes

* 3+T 2 T)+2XT+ý T,)0 2 f X
Y AX +X~ 2XIT2G (X 1 2 G

+2X,(CID.±DICC) X,+ 29.XT 2 G TNX

+ 2(xT2 +T,)(wl'G- w'(6=2) + TpT =0

'Ibis suggests that
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TT T
(X+X)+ ;A(X1+Xn) + 2X1(C ID1L D.-C I)XI

-2(XT 2+Td)Qf'G2)QCT2+TpT

+ 2[X1IT 2+iC'(XT2+T1)G ] (JIG) [: 1 T2+g_,X'r2+T1 )G ]T =0 (4-26)

Note that

AX(6',D, DIC1 )X1 - QIT);-'ýXTT

+ 2[ X1T2+$)'(XT2+T1)G ] (JUG) [ kT 2+9W'(XT 2+T1)G ]T

= V diag DIiT D.L D±T D, 1, -gI, IiGi VT,

wher

V:=[X -1 j.XT2+ TI) X1T2+ ;ji (XT2+ T1)G]

Now,

V diag DIiT D±LD±T DI, -jtI, gG) VT

- [ C~DLDIC+ tT2G T2 T2 G2

[G 2  I:rL - G 3 -1G 2

-VWIPT

where

9:= [ki AW'(XT 2+Tp)G]

Since W is positive semi-definite from Lemma 4.4,

V diag{D11T DjL D.LT DII, -W., jiGI VT

is also positive semni-definite.

In (4-26); antistable A and positive semi-definite V diag{ DiiT DjL D±T D,1, -gI, LG} VT

imply ta
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(XI+X11)•0 (4-27)

Based on the fact:

d2X maml . I I M 2).1 0
2_ 11_ ~ 1 2 + i 2'X .3-1

dCt i-lil- 1 OA(l.xi,) (1.Aj)2 i=1l )1.iA)

and (4-27), it is clear that

d1 0. Q.E.D.

Define

then we have the following corollary which is a direct result from Theorem 4.1 and

Theorem 4.2.

Corollary 4.1: R(y) is a well-defined function on (a, +o*). Moreover, X(j) is analytic

and satisfies

S>t 0 (4-28)

and

dX 0 (4-29)

on (ax, +oo).

Proof:

Since R(y) is a compound function consisting of analytic X(g) in (4-9) and g-=- 2,

X(y) is analytic on the interval with nonzero y. With the chain rule of differentiation, we

have

dX(y) dXqt) 3~ - dX(Wi
dy d cLcy -j d

and
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d2 X(y d2X(Jt) dA 2 dX(;t) d2

,F- Wy(j + C4 '

which imply (4-28) and (4-29) respectively. Q.E.D.

Based on Corollary 4.1, we have the following theorem.

Theorem 4.3: On (azx, +oc), k(y) is invertible almost everywhere.

Proof:

Since Xk( is an analytic function, it is well-known that z eigenvalues and

eigenvectors of X(¥) are analytic functions of y. Consider

(Ix - R(¥)) v - 0

where X is an eigenvalue of Y((y) and v is a corresponding eigenvector. Then it is easy to

have

X)v+QU -X) 0 (4-30)

which implies

SXv , (4-31)

Lut kj(')be the ith eigenvalue ofX(y), i = 1, 2, ... , n, where n is the dimension of X('t.

If there is a y1 e (cx&, +cc) such that kj(y¥) - 0, then definc a new function on (al, +oo) as

following

f() := vi(y)T X(y) vi(y1) (4-32)

where vi(y1) is an eigenvector corresponding to Xi(y). It is trivial to show that f(y) is a
nondecreasing concave function on (ctx, +oo). Since f(+oo) >0 because X(+oo) > 0 under

the assumption we made at the beginning of this section, we can conclude that

¥_ df(yl)
dI > 0. (433)

Based on eq. (4-31) and eq. (4-32), eq. (4-33) implies
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.i (Y) > 0. (4-34)

By the property that i,(Y1) > 0, with y1 e (ax, +oo) satisfying Xi(yi) = 0, it comes the

conoclusion that X(y) has at most n singularity points on (oxl, +oo). In other words, X(y) is

invertible almost everywhere on (a,, +oo). Q.E.D.

In the same way, define

oE := inf {Y:Ye R+,y> U(I.LDuIT) andY. exists}

and let Y be an antistabilizing solution to the Riccati equation corresponding to the

following Hamiltonian

Then we have the following theorem.

Theorem 4.4: On (0, ay'2), Y(It) is an analytic function which satisfies

dY •0 (4-35)

and

d2Y 0 (4-36)

Define
VY() := Y(•) RY 2

then we have followii ý corollary.

Corollary 4.2: Y(y) is a well-defined function on (o,, +oo). Moreover, Y) is analytic

and satisfies

dY(y) : 0 (4-37)

and
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!5 0 (4-38)

on (ay, +oo).

Based on the above corollary, we have the following.

Theorem 4.5: On (ay, +0o), ?•A) is invertible almost everywhere.

Now, we are ready to show that X.(y) and Y..(y) are nonincreasing convex

functions in the domain of interest Without loss of generality, the assumptions that (D±TT

C1, - A+B2D1 2TC1) is detectable and (- A+BID 21TC2, B1D1) is stabizable are still used

in the following to simplify the proof.

From eq. (4-9), it is clear that if X(y) = X(p) is invertible then X.(y) = R(y)"1.

Although, Y(y) is not always invertible on (ac, +*0), from Theorem 4.3, it can only lose

rank at some specific isolated points. Since X(y) is a nondecreasing concave function as

mentioned in Corollary 4.1, there must exist p such that X(y) is positive definite when I >

Px. That is,

P,:=inf {T:7e R+,yt >oa andX (y) ispositive definite).

This means, on the interval (px, +co), •(y) is positive definite.

Theorem 4.6: On (N, +oo), X. is an analytic nonincreasing convex function of y, i.e.,

dX
X. =--0!0 (4-39)

and

d d2X.,.
X_=-20 (4-40)

dy

Proof:

Because X(y) is positive definite and X. = X(y)-1 , by the chain rule of
differentiation and Corollary 4.1, we have

-1

dX.. d (3ý,()) . yX 9 () -- 0 (4-41)
cI t d dy 0
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and

dX
d2X, d(z-;) dMQCt X-X ) 2-2 (-2-72' -Cydy f dy dý

Since X.. is positive definite and 23is negative semi-definitive, it tuns out that

09 d 2X.

f dQ.E.D.

Similarly, by defining

N := inf {Y:T E R+,yy > a and T((y) is positive defnite}

we have the following theorem for Y..

Theorem 4.7: On Oy, +co), Y.. is an analytic nonincreasing convex function of Y, i.e.,

jýý d_:gdy(4-43)

and

d. 2y.

V .0 (4-44)

At the beginning of this section, we assumed that (D±T C1 , - A+BR"1 D1 .T C1) is

detectable, or equivalently that (D±T Ci, - A+B2D1 2TC1) is detectable. This assumption

can be removed by the following arrangement If (D.j C], - is not detectable, where
A
A = A+BDi2T C1,

one can always find an orthogonal matrix U = [U, u2] such that

uTTA
TX U1 AU] 2U 0

D±T CIU = [D±_T CIU1 0],

With (D±TCiUl, - UITAUI) detectable and X.. = Ric( H.I) can be ¢xpressed as
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X. =-u[X1 0~

Note that U is not a function of y, and X1 is the Riccati solution of eq. (2-5a) with (A, B,
A A

CI) replaced by (U1TXU, UITB, CIU). Therefore, no matter whether (D.T C1 , - A) is

detectable or not, it is always true that X.(y) exists almost everywhere on (a., +oo) or X,
is nonsingular almost everywhere on (oL., +oo). Furthermore, X, is positive definite on
(N. +o0).

Define

t := max {(,Ot ay,

and
V = max {,•}

then X.. and Y. exist on (c,+oo) and are positive semi-definite (p, +oo).

The following theorem, which is one of the main results in Li and Chang [16],
showed that if X. and Y.. are nonincreasig convex functions of y, then so is p(X.Y.].

Theorem 4.8: Let 0 be the infimum of y such that both X. and Y. exist and are positive
semi-definite. On (0, +a-),
a) all eigenvalues of X.Y. are smooth, nonincreasing functions of y;
b) p(X.Y.) is a nonincreasing, convex function of y.

Proof:

a) It is quite straightforward to show that for any nontrivial eigenvalue of X.Ye., we have

)[Xe..(T)Ye..(') = xvTx(Yy )V] = =(VTU X 0 YV 0 [ 0
vT X T

- VU IX I (f)U IjV IY 1 (y) 0] Z)(

where Z(-) = zT(Y) = VIU1 X1 (C)UlV1 has following properties

(,) ýt o, (4-45a)

:5 0 o(4-45b)
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and

2(y) 2 0 (4-45c)
on (, +.o). Now consider

[IX - Z(Y)Y1 (Y)J w M 0, (4-46)

where X, is any eigenvalue of Z(y)Y(f) and w a corresponding eigenvector. Note that

this equation is equivalent to

[XYI't() - Z(Y] u = 0, (4-47a)
or

[X't(• - Z(Y)J u = 0 (4-47b)

with t(q) = Ytd(y) and u = Y1w. From (4-47), we have

(j.+;Lj-i)U+(Xt-Z)4 =0 (4.48)
and

UTd ; )u =0. (4-49)

Then it is easy to show from these two equations that

u T ?u • 0 (4-50)

on (f, +.), since j g 0, t - 0 and 0 (see (4-45b) and (4-37) in Coroary 4.2).

b) Next is the proof of the convexity of p(X.Y..). From the equations (4-48) and (4-49)
with X replaced by the maximum eigenvalue of X.Y., we come to the following two
equations:

ýT +X.J i u =Z ( -mat - ) a(4-51)

+ UT t + 2;Lmat + kmaxt- u 0-o. (4-52)

Combining the above two equations, we have

uTau • (4-53)
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Note that O. -Z)• O, -k0, j k o, ,i(y):O 0 and., o 0, wehave X"a.(y) 0 and
thmefore " [X.(y)Y.(y)] k 0 on (0, +oo). Hence we complete the proof that p(X.Y.) is a

convex function of y on (1, -. Q.E.D.

The properties of the H- Riccati solutions presented in this section will be

employed in Chapter 5 to develop efficient algorithms for computing the optimal H- norm.
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CHAPTER 5

COMPUTATION OF THE OPTIMAL H- NORM

Recently, an efficient algorithm for computing the optimal IH norm was proposed
by Scherer [15]. Scherer considered the inverse (or pseudo inverse) of the DGKF H-I
Riccati solutions, X..(y) and Y.(y), defined a new independent variable p = y-2, and

showed that these inverses are concave functions of p in the matrix sense on their domains
of definition. Based on this fact, a quadratically convergent Newton-like algorithm was
proposed to compute the optimal I- norm.

Pandey et. al.'s hybrid gradient-bisection method [13] and Chang et. al.'s double
secant and bisection method [14] were also proposed for the compuation of the optimal H"
norm. The significance of the conjecture that p(y) := p[X.(y)Y.(y)], the spectral radius of
X.(y)Y.(y), is a convex function of 72 was mentioned in these two papers. Since there
was no proof for this conjecture, bisection was used in these two algorithms as supplement
to guarantee convergence.

Based on the properties of the Riccati solutions described in the previous chapter, a
quadratically convergent algorithm can be easily developed to compute the optimal Ht "
norm. According to Theorem 2.1, we can see that finding the optimal H.. norm, denoted as
y., is equivalent to finding the infimum y such that all four conditions in (2-6) hold. From
the previous chapter, it is obvious that y.e [0, +o-). It is possible for [ to be y., especially
when 0 and at are identical, however, with very few exceptions, y..e (P, +-), which

implies that y.. is the solution to p(y) = 'j. The relations between E, P and y.. are shown in

the figure below.
Both X- and Y- exist

Both X- , 0 and X=,> 0

AD four conditions hold

0a

Fig. 5.1

5.1 Computation of Y..

Fig. 5.1 implies that the problem of finding the optimal %.. is actually that of either
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searching for the intersection point of p(y) with 92 inside (f, +oo) or computing the

boundary point P. The nonotomicity and convexity of p(y) in Theorem 4.8 suggests that if

we use a gradient method to search for y.. with a starting point y. inside the interval (•,
yj, then the convergence is guaranteed.

The derivative of p(y) at y., can be computed as follows,

vT(XY..+ X.t)w (5.1)
VTw

where v and w are left and right eigenvectors of X.Y. respectively corresponding to its

maximal eigenvalue. X. and Y. can be obtained by solving the following Lyapunov

equations:
To + T -1- -1 T T

,A;.AX+ X4.A,+ (X.B+C1 D1 ) R R R (X.B+CID1) = 0 (5.2a)

T T I -I
AyY..+ Y*..y+(CYO.+ D.B 1 ) R RR (CY.+1 DB 1)=0 (5.2b)

with

Ax= A - BR-ID1.TC1 - BRISTX..

and
T -1 -1

Ay=A-BiD.1T R C-CTp CY.

]-k2= l I] and •=[-p1 '1

Assume that we have a starting point yn in the interval (y, .. then the optimna y

can be obtained easily as follows. Refer to Fig. 5.2, draw the tangent line with slope A (y.),

which can be computed by equations (5-1), passing through the point (y0 , p(yn)). The

abscissa, fn+l, of the intersection of the tangent line and the curve y = y2, always lies

between yn and T-- The search process is repeated until the gap T. - yn+i is small enough.
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yk P 06

P(*fn)

00

Fig. 5.2

Furthermor, we will see that the convergence rate is quadratic. Define e - y., - y. and

+1= -- yn. It is straightforward to show that

Un+I 2 P p ?j') 2 (5-3)

2 ~('ym)- 2y., '-0

which implies quadratic convergence.

In the above algorithm of computing y.., we assumed that a yn inside the interval ([,

y.) is available to start with. To find a yn inside this interval, usually we arbitrarily pick up

a relatively large y1 at which the two Riccati equations (2-5a and b) have positive
semidefinite solutions X1.(T1) and Y..(&1). Refer to Fig. 5.3, draw a line passing through

the point (yr, P(y 1)) with slope 6 (71). The abscissa, y2, of the intersection of the straight

line and the curve y = ^2, is always less than y... If y2 > P, i.e., the two Riccati solutions

X,(y2) and Y..(2) exist and are positive semideinite, then we are ready to use the above

quadratically convergent algorithm to compute y.

Fig. 5.3
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Most of the time, the method described in the previous paragraph gives a In inside

the interval (ff, y..) without the computation of P. However, this method may fail. If a

starting y, gives a y2 < P, i.e., either X..(y 2) or Y..(y 2) does not exist or is not positive

semidefinite, one may suggest that a smaller y, could produce a y2 > P. For the case

described by Fig. 5.4, a smaller y, could do the job. However, for the case of Fig. 5.5, y2

is always less than a, and therefore less than 0, no matter how small yi is. Since it is

difficult to tell which case we are facing and there is no efficient guideline to reduce Ti, we

suggest to compute [ (or a and P) if one or two trials of y1 does not give a Y2 > P. If

either X.(y2) or Y.(y2) does not exist, we will compute a first, then compute 5 if
necessary. The computation of a will be given later in Section 5.3. If both X,.(y2) and
Y..(y 2) exist but are not all positive semidefinite, then y2 is inside the interval (oa, P). A

quadratically convergent algorithm for the computation of 0 is given in Section 5.2. Once 0

is obtained, then O+e can be served as the starting point y, in Fig. 5.2, where e is a very

small positive real number.

y A

Y2 T f2  a T1  T

Fig. 5.4 Fig. 5.5

5.2 Computation of [

In this section, we have the assumption of having a starting point inside the interval

(ax, P•) (resp. (ay, Py)), which implies •acx* (resp. aoty*p). We will show how to

compute a in the next section. Recall that P is equal to max{ IN, N } where N and N are

infimums of ^ such that (2-6b) and (2-6c) are true respectively. Since the computation of

Py is similar to that of P, only the algorithm for Px is given in the following.

Without loss of generality, we assume that (Dj.T C1 , - A+B2D12TC1) is detec..,uie and

X(y) :--- ) ,-2 where X(IL) is the antistabilizing solution of (4-9). Define ex(y)
de,(y)

"Xij(X) and ix:= -"- on (ax, +co), according to the proof of Theorem 4.3 in the
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previous chapter, efCy) is a nondecreasing concave function of y on (ax., +oo) and N is the

y such that e,(y) equals to zero. Then Newton's search scheme can be used to compute •.

With a starting point which is slightly greater than at, we can compute f6 by the

following iteration,

n+1 * n CO),x = ., x ̂ n

where

WT dX
wlý7 W

w w

In the above, w is an eigenvector of X corresponding to its minimal eigenvalue Xjn(X)

and d can be determined by

dk(y) dX(ji) d• ._3 dX(•I)
cty dj± dyl dj

and
dX(g) mi*

=I = . 1 o0jul • (1_44i)2

whereX . can be obtain from (4-16).

y

Fig. 5.6 Newton algorithm for searching •.

As we assumed, we have a yn inside the interval (ax, Px), i.e., X(yn) exists and

ex(In) < 0. Refer to Fig. 5.6, draw a line with slope &(yn) passing through the point (yn,

ex(yn)). This straight line will intersect the horizontal line y = 0 at y'n+ which always lies
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between y. and Px. The search process is repeated until the gap N-76+1 is small enough.

Hence, the convergence is guaranteed. Furthermore, we will see that the convergence rate
is quadratic. Define en = N -yn and e1n+1 = N- yn+l. It is straightforward to show that

enO (5-4)1 2 ex(Dx) I

which implies quadratic convergence.

In the above algorithm of computing Ox, we assumed that a y. inside the interval

(a,, 0.) is available to start with. This y. could be obtained in Section 5.1, i.e. Y2 in Fig
5.3. However, if either X.(y 2) or Y.(Y2) does not exist, i.e., if Y2 < ca, we will compute a

first.

5.3 Computation of a

Recall that ax (resp. a•) is the infimum of y such that the Hamiltonian matrix H-.CI)
in (2-5a) (resp. JI.(y) in (2-5b)) has no jwo-axis eigenvalues and a:= max: (x, ocay. As we

mentioned before, it is possible for cc to be the optimal y, i.e., all the four conditions in (2-
6) hold at this point. If this is not the case, a can be used as a starting point to search for

in Section 5.2 and ý+e in turn can serve as a starting point to search for y.. in Section 5.1,

if 0 is not the optimal y. In the following, only the computation of a1x will be discussed,

since the computation of axy is similar to that of•a.

One can easily have a bisection iterative algorithm to search for the infimum of y

such that the Hamiltonian matrix H.,(y) has no jo)-axis eigenvalues. This method is slow

and therefore not reconunended.

To have a more efficient algorithm, we need the fact that ax can be also expressed

as the supremum of a frequency function. According to [14],

2 SmPIm) *-G[ * -1 0
X= -GI - G2(G2G2) G2 ]G 1 j0);

where * is conjugate transpose and GI(s) and G2(s) are given by

G [0(s) G (s)] A I3=B

By defining
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h(CO) :X G[I - G2(G;2G 2)'G; ]G 1 Oco)

the problem of finding a. becomes that of finding the supremum of the function h(co).

There are several efficient algorithms available for searching for the supremum of
h(w) [24,25]. We can start from arbitrarily choosing a frequency, say (ol. Let y = h(co)
and then find all the positive real a's such that h(wo) = y. These wo's can be easily obtained
from computing the jo)-axis eigenvalues of the Hamiltonian matrix H..(y). Now, we have
the frequency intervals in which h(o)) > y. Evaluate h(o) for each midpoint of these
frequency intervals and update y to be the maximum of these h(co)'s. Then, find the new
frequency intervals in which h(o)) > y. According to [25], the convergence of this iterative
process is quadratic. This process can be repeated until only one frequency interval with
h(o) 2: y is left and the interval length is negligible [25]. In [24], this process is terminated
when a frequency interval in which h(co) is convex and greater than y is found. A search
method called Brent method was used to search for the supremum of h(co) in the convex

frequency interval.

5.4 An Illustrative Example

The following is a simple H- optimization problem which is used to illustrate the proposed
algorithm of computing the optimal H- norm. A realization of the generalized plant G(s) is
given by

A B 2 -101 0 10 01

G(s)= Cj DIl D 12 = 1 0 0 1
111 00 001

C2 D21 D22 1- 0 1 0

Starting from To = 100, we have p(yo) = p[X,.(yo)Y.('o)] = 2.16e01. The slope of
p(y) at this point (yo, P(To)) is ý (yo) = -3.49e-05. The tangent line at this point will
intersect with the curve y --P at y7 = 4.65. Again, evaluate p(Tl) = 2.24e01 and compute

the slope ý (y) at (T1, p(3l)). Since pCyl) > ' y is inside the interval (P,y.) and therefore

from now on the convergence is guaranteed. The process is repeated until the gap between
jp4('y and y. is small enough. The following data show that only four iterations are

needed to reach the optimum, %,p= 4.734160476390407, with accuracy better than 10-14.
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0 100 9.535e.0l -3.487e-05

1 4.647998761538930e+O0 8.403e-01 -3.81 le-01

2 4.734064423866624e+00 9.440e-04 -3.595e-01

3 4.734160476276923e+00 1.115e-09 -3.595e-01

4 4.734160476390407.e+00 7.105e-15 I

By the formulas in (2-8) and the descriptor-form technique described in Section

2.2, we are able to construct an optimal controller as follows:

•.87542 -0.139251
Kpt(S) L4.42042 -4.734161

with the H- norm of the closed-loop system equals yop. Note that the optimal controller has

a direct feedthrough term and thus has infinite bandwidth. If we choose y = 4.8 which is

about 1.4% higher than yp, we have a suboptimal controller

[-8.67072e-01 1.32928e-01 -1 .38959e-01

Ksub(S) -1.38320e+O1 -1.52323e+02 4.73733e+00
Ksu(S)- _9.30025e+00 -1.49792e-+02 0

which has a reasonable bandwidth and the closed-loop H- norm, I IrllI< 4.8 which is only

1.4% away from the optimal H- norm.
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CHAPTER 6

AN APPLICATION OF g.SYNTHESIS

TO A ROBUST FLIGHT CONTROL PROBLEM

6.1 Introduction

In general, a system with uncertainties can be divided into two parts, the nominal
plant M(s) and uncertainties A. If A is norm bounded but otherwise unconstrained, it is

called unstructured uncertainty. However, if A has a structure constraint, e.g., A is

diagonal, then it is called structured uncertainty. Obviously, the it of unstructured

uncertainties is larger than that of structured uncertainties. H- design technique [1,2,7,8]
can be used to solve robust stability problems with unstructured uncertainties, whereas u-

synthesis technique is used to handle systems with structured uncertainties. Since the
structure information of the uncertainty is used in gi-synthesis, a less conservative solution

can be obtained. Moreover, robust performance problem can also be formulated as a

structured uncertainty problem and solved by g-synthesis.

To use gi-synthesis, one needs to formulate the problem first and put it into a Linear

Fractional Transformation (LFT) [2] form, while choosing weighting matrices for certain

design specifications. With this augmented plant, D-K iteration design algorithm is
employed to solve the g-synthesis problem. The D-K iteration consists of H- optimization

step (K-step) and ig-analysis step (D-step). While each step is a convex optimization

problem [26], the overall optimization problem is not convex. Hence a local minimal point

it converges can not be guaranteed to be the global minimal point. Another comment on D-

K iteration algorithm is that to have a better accuracy, a higher order curve fitting in D-step

is required, which in turn gives a higher order controller. However, the high order

controller usually can be reduced to that of the generalized plant without degrading the

system performance.

The chapter is organized as follows. Section 6.2 gives a review of some
preliminaries. We will show the problem formulation in section 6.3. In section 6.4 the gi-

synthesis is used to design a robust controller. Simulations and analysis are also included
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in this section. Section 6.5 is a conclusion.

6.2 Preliminaries

In this section, we will give a quick review of some fundamental knowledges

including the definition of g•, robust stability, and robust performance.

Usually the mathematical representation of a system under consideration is only an

approximation to the actual system. The "actual model" M is in a neighborhood of the
nominal model M. According to [4], FA can always be separated into two parts illustrated

by the following block diagram with an M-A structure, where M is the nominal system and

A is a block diagonal uncertainty matrix.

SM(s)

Fig. 6.1 M-A structure

With this block diagram, the stability analysis essentially boils down to ensuring that I -
MA(jo) remains nonsingular at all frequencies under all A considered (small gain theorem

[1] ). This statement can be seen by considering the following fact. Assume M(s) is a stable

system. When no perturbation is introduced, i.e, A = 0, 9M = M. However, as A grows up,

in the sense of U(A) (2-norm), I - MA may not remain nonsingular, which implies the
instability of A In the following, we will introduce the definition of g, which measures

how large A can be such that 1M1 remains stable.

The structured singular value (SSV or g.) of a system M with respect to the given

structure of A is defined by

I•M= ,mn (t(&):det(I- MA)=0)j' V 0)E IR. (6-1)

whereI•+ is the set of positive real numbers. In the following are listed several remarks on

the above definition.

* Obviously, the smaller the g is, the larger uncertainties are allowed such that M
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remains stable.

0 gt depends highly on the structure of A; the more information used, the less
conservative the solution will be. If A is a full block matrix, gt(M) = 5(M). On the other
hand, if A is a diagonal matrix, then it(M) = p(M), where p denotes spectral radius [4].
Usually, A is in block diagonal form, and obviously p(M) g 1t(M) 5 d(M) in general.

0 The computation of gt is still an open problem. If A has three or less blocks, gt can

be computed by
14(M) = iWfo(DMD'-)], (6-2)

where D is a positive definite block diagonal matrix with the same structure as A. However,
for the uncertainties with more than three diagonal blocks the right hand side term of eq.(6-
2) is just an upper bound.

Robust stability and robust performance

Most control problems can be represented by the following Linear Fractional
Transformation (LFr) form:

s p

y ?
S~K(s)

Fig. 6.2

where G(s) is the generalized plant including possible weighting matrices, z is the
controlled output usually including the error signal and a weighted control input, w is the
exogenous input containing the disturbances, noises and commands, and y is the measured
output vector consisting of all the signals which can be measured and available for
feedback, A, represents plant uncertainties. The design objective is to find a controller K(s)

such that the system robust stability and robust performance can be achieved, i.e., under all
the perturbations considered, the system remains internally stable and the H7 norm of the
transfer function 'Tom w to z remains less than a prescribed value. This problem can be
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solved by pi-synthesis technique on the following block diagram,

's JI. P:GYs) w-
z C

Fig.6.3

where A = diag(A1, A2) and A2 is a full block matrix corresponding to the transfer function

of the closed loop system from w to z. If we combine G(s) and K(s) together by LFr, then
it corresponds to the M shown in Fig.6.1, i.e., M = F1(G, K).

g-synthesis and D-K iteration

The original concept of g-synthesis is to design a controller K(s) such that g of M =
FI(G, K) is minimized at all frequencies, with respect to certain A structure. According to

the main loop theorem [6], robust stability and robust performance can be achieved if the t-

synthesis is applied on A = diag{AI, A2) of the above block diagram, where A, is
uncertainty block and A2 performance block. However, due to the difficulty of computing
p. the g-synthesis is relaxeJ to the problem of minimizing its upper bound:

inf sup in I[DF
.pK n B [D (G K)Db) (6-3)K D

where D is the scaling matrix mentioned in eq.(6-2). Then, eq.(6-3) can be solved by the
so called D-K iteration algorithm, which is the only solution available to the problem up to

now. Basically, D-K iteration algorithm solves

min it D(s)F1(G(s), K(s))D'l(s) IL., (6-4)
K(s), D(s)

where both D(s) and D'1(s) are proper stable rational functions. This optimization is a

convex searching problem, if either K(s) or D(s) is fixed. Unfortunately, it is not a convex

problem over D and K.
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D-K ration algorithn

Step I: D(s) = I;

Step 2: Find a controller K(s) such that IID(s)F 1[G(s), K(s)]D'X(s)JJ. is minimized

Step 3: Find constant D's at each frequency such that U(DFI(P, K)D"1) is minimized;

Step 4: Curve finting for D(s), where D(s) is chosen such that both D(s) and D-'(s) are

proper stable rational functions;

Step 5: Go to step 2, until the local minimum is reached.

6.3 Problem Formulation

In this section, we will design a robust controller for a fighter aircraft at an altitude

of 10,000 feet and a Mach Number of 0.18. The angle of attack is approximately 70
degree, and the dynamic pressure is 33.6 lb/ft2. The system is described by the following

block diagram.

r e u v
K(s) R(s) TP(s)y

Fig.6.4

The P(s) is longitudinal model given by state space model [9]:

k2 Ma Mq X2 M(6-5a)

y= 1 (6-5b)

where x, is the angle of attack, x2 is the pitch rate and v is the pitch vectoring nozzle

deflection. It is assumed that M,, Mq and M, are subjected to 25% variations from its

nominal values. The nominzl plant is given by:

[ 0.0264 1 1 F -0.0520]
-0.8810 -0.2079 B•=-443 Cy=[1 0] Dpy0. (6-6)

The R is the model for the actuator from pilot stick to the vectoring nozzle. Its
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transfer function is given by:

400
R(s) = S2 + 24s + 400 (6-7)

From above model, one can see that the plant is stable, but has a large overshoot
and oscillations, long settling time and an insufficient stability margin, which can be

verified by the following step response plot, where the input is the unit step function acted
on pilot stick and the output is angle of attack of the aircraft.

Stap Response of the Plant

-2

-4

"100 10 20 30 40 50

ThM(SeC.)
Fig. 6.5

The design specifications for the feedback system are: (1) The system has a

satisfactory tracking ability with a damping ratio larger than 0.5, natural frequency large
than 2.0 rad/sec, small overshoots and oscillations, and small steady-state tracking error,

(2) Robustness of the system, including the stability and performance in the face of

disturbance and the plant uncertainties.

In order to design a robust controller, one needs to separate plant uncertainties A,

from the nominal plant. Consider eq.(6-5) and eq.(6-6), then it is easy to see that the plant

can be expressed by Fig.6.6,
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v• ~P(S) Y

Fig. 6.6

[ I~ BPI Bp2 11
wbere p~) C 1 D12 J Al2 (6&8)

CP2 D2  DP21•, P22 83

Here 81, 82 and 83 are perturbations t Ma, Mq and M. respectively. Ap, Bp2 = BN and
CP2 = Cy were given in eq.(6-6), and

1 0D0 Dl ' ° 1
ofP[D Lp12 0 0 0 0i

B [O , 0= 0, C• 1= 0 1o o D,- P
PI D= D2 p22 100 : 1~ (6-9)

0 [ 0 0 0~o

With plant model and design specifications available, a controller K(s) can be
designed for the following LFT block diagram, where u(s) consists of nominal plant P(s)

and actuator R(s).
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Fig.6.7

Compared with Fig.6.2, the above block diagram implies that the exogenous input
w consists of command r and noise n. The controlled output z consists of weighted
tracking error and weighted control constraint The p and " are fictitious input and output
reflecting system uncertainties. W1(s), W2(s) and W3(s) are the weighting matrices chosen
by designers such that the design specifications can be met. W1(s) is a weighting matrix for
tracking error and is chosen as a low-pass filter to emphasize the tracking accuracy at low
frequencies (small steady-state error). The weighting matrix W2(s) is designed for control
constraint In the real situation, the control input must be restricted because of the limited
control energy and actuator saturation. Usually W2(s) is chosen as a diagonal constant
matrix; the larger W2(s) is, the less the control will be used. W3(s) is used to normalize the

system uncertainties. In this particular problem, we choose

W(s) = +10WlS) +0.00r1

W2(s) = 0.5 and W3(s) = 0.25 diagj0.881, 0.2079, 4.3434).

With these weighting matrices, the p-synthesis technique can be used to design a robust

controller which maintains the quality of system performance and stability in the face of
uncertainties and sensor noise. It is easy to derive the generalized plant G(s) from Fig 6.7:
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W3TI 0 0 :W3P1
W IP 21W-I WIWP"1l21 W1 1:l 12l•

G(s) 0 (6-10)

"-p21  I -I i p22
22

Then by using the notations and formulas in [27], it is easy to see that the generalized plant

G(s) has a state space realization as follows:

1, BIC BID CRBID -B B!B D D
1 p2 Bp22 P 2 1 1 -B 1 Bp22DR

0 AP B CS B 1  0 01 B2DR

0 0 A, 0 0 0o BR

G(s)= 0 D3C I D3DlC D3D 11 0 0 1D3D12

-DI DC -DID CR D D,-DI:-DID D1Dp2  1 p2 2  1Dp2 1  1 -D 11p 2 2 DR

0 0 0 0 0 0! Do.. .. o..o. . ....
0 -C -D C --D -D 2 D

p2 p2 2 C p21 : p22

~A B i i_ x=.
where Wi(s) 1 1,2,3, are state space realizations of weighting matrices.

With the state space realization of G(s) available, we are ready to use sI-synthesis to

design a robust controller K(s).

6.4 Control Law Design

Robust controller design is performed on the system shown in Fig.6.3, with the
following uncertainty structure: A = diag{A 1 , A2 ), where A, = diag{bl, 82, 63)
corresponding to plant uncertainties and A2 is a 2x2 full matrix corresponding to the

performance. As we mentioned earlier, the performance is evaluated by H- norm of the

transfer function from the command and noise to the tracking error and control constraint.
The objective is to design a controller K(s) such that the closed loop system is internally
stable and the H" norm of Tzw remains small for all the uncertainties considered.

With the procedure illustrated in Section 6.2, we first obtained the optimal H'

controller KI(s) with the optimal Hm norm being 7.64. Since KI(s) ignores the structure
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information of A and treats A as a full matrix, it gives a conservative solution to the

problem. Fig.6.8 shows the g plot and U plot of the closed loop system. The difference of

them can be seen.

Murplot fortOw H-blrfnty Controller

H-Wnfplot

6. ..... . ... . .. .......... ~........ . .

...... ~S%................

43....... . .. . .... ....*...... .

3 -.-.. LJJJL.......A I.L....L.L.A IJ.LLa.

101 102 103 104

Fiequerncy (asds)
Fig.6.8

As we expected, gt plot is lower than U plot, or expressed alternatively Ira 5 1I/g at

each frequency. This implies that the allowable set of uncertainties considered (structured)

is larger than that of unstructured uncertainties.

Next we will continue the D-K iteration design procedure described in section 6.2.
After two iterations, the process converges to a controller KL(s) which minimizes the g± of

the closed loop system, see Fig.6.9 for reference.
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Fig.6.9

In the figure, the lower curve is the p plot and the upper one the U plot of the D-
scaled closed loop system. Compare with Fig.6.8, one can see that Kl(s) gives a smaller p

(=5.23 ) than K1 (s) did.

In the following, we will perform some analyses on the original closed loop system
shown in Fig. 6.4 with KI as the controller.

Step responses

The following are the step responses of angle of attack and the corresponding angle of

thrust vector nozzle (control input).

73



Stp Raponse vith Mu Conuolhr

1

S0.8

*0.6

jo. 4

0.2

0 2 4 6 8 10
Tme (Sec.)

Fig.6.lOa

2 S'p Response vith Mu ContloIer
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Fig.6.10b

From the design specifications, it is required that the settling time of the response

should be :5 - 4.6 second. Observing the above two plots, it can be seen that the

design specifications are satisfied.
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Perturbation Test

By adding 25% perturbations on Ma, Mq, and My, we have the following step
responses.

SUp Respionse vith Mu Con•tUlr under ft Pertubaton

1.2

X 0.8

S0.6

A 0.4

0.2

0 1
0 2 4 6 8 10

Tfte (Sec.)

Fig.6. I la

Step Response vith Mu Contoller under the Pertzrbaton2

I

z 0

0 -3

A
S 0. 1 1.5 2 2.1 3

75ie (Sec.)
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Fig.6.1 lb

As it shows, the system stability and performance are still satisfactory under the
perturbations.

Controller model reduction

High order controller is usually obtained due to the need of "curve fitting" for D(s)
in the D-K iteration design procedure. In this example, the A has four blocks consisting of
three lxI and one 2x2 block. Therefore D(s) has n - 1 = 4 - 1 = 3 elements to fit [4]. We
choose the three elements with third order, second order and third order rational, proper
stable minimal phase functions in the last iteration respectively, which yields an eighth
order D(s). With the D(s), inverse of D(s) and the original fifth order plant, the final
controller is of twenty-first order. Therefore, the controller should be reduced to a
reasonable order. To this end we look at the controllability and observability of IY,(s) to see
whether we can rec - e it to a minimal realization. By finding a balanced realization, I, can
be reduced to a fifth order controller Kr(s) according to its Hankel singular values [28]:

-1.2708e+03 -4.5851e+00 -5.7124e+01 2.1467e+02 -4.6679e-01
0 -1.8591e+01 -2.2013e+01 -2.3381e+00 -2.0500e-02

Ac 0 1.291 le+01 -3.8605e+00 2.5750e+00 -1.5782e-02
0 0 0 -9.3984e+00 3.7513e-02

0 0 0 0 -l.000le-03

9.4612e+o01
2.6817e+00

BC= 3.6647e+00
[7.4246e+00
7.7460e-01 I

C,= [ -9.4590e+01 -3.1892e+00 -2.1391e+00 8.0623e+00 -7.7481e-01];

DC = -6.6522e-03.

With the reduced order controller Kr(s), we have the following gx and U plots of the
closed loop system.
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Fig.6.12

As it shows, the reduced order controller Kr(s) maintains almost the same g± for the
closed loop system as the full order controller does. Hence robust stability and robust

perfrmace are achieved with Kr(s). It can be verified by the following step responses
with and without 25% perturbations.

1.2Slep Response vith Reduced Order Conrozo -.r
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Fig.6. 13a
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6.5 Conclusions

A fighter aircraft control design problem was considered in this chapter. The design

procedure illustrates how to apply g-synthesis to a real engineering problem. We addressed

the issues of problem formulation, D-K iteration, and controller reduction. With the

controllers obtained, simulations on system performance and stability analyses were also

performx9
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CHAPTER 7

CONTROLLER REDUCTION BY STRUCTURED TRUNCATION

Simple controllers are normally preferred over complex controllers because of the
less computational requirement and less effort in implementation. The methods for
designing low-order controllers can broadly be classified into two categories: fixed order
controller design and controller reduction.

The philosophy in fixed order controller design is to seek to minimize a
performance index subject to the constraint that the controller be of fixed degree [29,30].
For controller reduction, one can simply apply model reduction techniques to either the
plant model or the controller. There are now at least three rather popular state-space based
model reduction techniques, namely, truncation of the internally balanced realization
[31,32,33], Hankel-norm approximation [28,34], q-covariance equivalent realization (q-
COVER) [63], and coprime factorization method [35]. It is well known that the controller
approximation is better than the plant approximation [36]. However, to find a reduced-
order controller which approximates the original controllers is not our direct objective.
What we seek is to find a reduced-order controller such that the reduced closed-loop system
approximates the original closed-loop system.

Jonckheere's work [37] was based on this consideration, in which two Riccati
equations are balanced and truncation is carried out with respect to LQG characteristic

values. But the relationship between the LQG characteristic values and the closed-loop
system properties is unclear. So Jonckheere's approach usually cannot provide satisfactory
reduced-order controllers.

In this chapter, we propose a new controller reduction approach which is based on
closed-loop considerations other than controller approximations or plant model
approximations. In Section 7.1, a method of structured truncation based on the closed-loop
properties is developed, and some interesting properties of the controllability and

observability gramians of the H2 optimal closed-loop system are also presented. Some
illustrative examples are given in Section 7.2.
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7.1 Structured Truncation Approach

Given a closed-loop system, the structured truncation approach is to reduce the

order of controller by minimizing a cost function based on the closed-loop system. The cost

function will be elaborated later. Although this approach can be applied to any desired

closed-loop system, we will concentrate on the optimal H2 closed-loop system for the

simplicity of presentation.

It is well known that the input/output relationship of a system is well represented by

its controllability and observability gramians. The balanced truncation [31] is based on

these gramians. In the proposed structured truncation approach we also use them. For

convenience, some basic knowledge about controllability and observability gramians is

reviewed in the following.

Controllability and Observability Grarnians

Consider a linear time-invariant system

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

i.e., the transfer function is

G(s) Al B = D + C(sI - A)'I B

The eigenvalues of A are assumed to be strictly in the left half-plane and the controllability

gramian P and the observability gramian Q are defined as

P := Joexp(At)BB'exp(A't)dt

Q :J'oexp(A't)C'Cexp(At)dt

where A' is the transpose of A. P and Q satisfy the following Lyapunov equations

AP + PA' + BB' = 0

A'Q + QA + C'C = 0

and have the following properties.

Property 7.1
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If a0l the eigenvalues of A are stricdy in the left-half plane, then
(a) P > 0 if and only if (A, B) is completely controllable.

(b) Q > 0 if and only if (A, C) is completely observable.

If the state-space coordinates of the system are changed to z = V 1x for some non-

sgular T then

k = T'IATz + f'IB, y = Crz +Du

Furthermore, the controllability and observability gramians become T 1pT"I and T'QT

respectively, and the product PQ will be transformed to T'IPQT. Therefore the eigenvalues

of PQ are invariant under state-space transformations, and are input/output invariant. A

useful state-space realization in this respect is the balanced realization where P = Q -
diag( 1l, o2'...,a. therefore PQ =diag(2t ).

Structured Truncation

Consider the block diagram of in Fig. 7.1.

Z w

Fig. 7.1 A generalized plant G with a controler K.

G is a generalized nominal plant, w contains all external inputs, including disturbances,

sensor noises, and commands; the output z is the controlled output; y is the measured

output; and Ti is the control input. A state-space realization of the generalized plant G is

given as

A B IB___

G Is) 1 I D 11Dl2 
(7-1)

C2  D j2 D22

where A . IRn"n , BI a Rnxml, B2 e 1nxM2, CI e RPixn, and C2 a ]p.p2xn. The

controller K is assumed to be
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K(s) B (7-2)

where AceRD~cnc, BcsRDPcx2, CceRm2xnc, and DceRm2xP2. Tzw denotes the closed-

loop transfer function from w to z.

The objective is to reduce the order of the controller with which the closed-loop

system approximates the original closed-loop system. Hence we consider the controllability
and observability gramians of the closed-loop transfer function Tzw. The balancing

technique can not be applied on the gramians of the closed-loop system because the
balancing transformation takes place in the whole state space of the nominal plant and the
controller. With the states of the closed-loop system arranged as [Xp', xcT where Xp is the

set of the n states of the plant and xc is the set of the nc states from the controller, to avoid

mixing up the states from the plant and the controller, only the following structured
transformaation

T= 0 Tnc (7-3)

is allowed. Without loss of generality we use the transformation shown below'n°0
T = 0  Tnc] (7-4)

Let P and Q be the closed-loop controllability and observability gramians respectively and

define J = PQ. If the closed-loop system can be balanced, i.e. J can be diagonalized, then

the states corresponding to the small diagonal elements can be truncated from the system.

Due to the structure restriction on transformation, it is impossible to totally balance the

closed-loop system.

By applying the transformation T of (7-4) to the closed-loop system, J becomes

83



In100: o. -J[ , , oI
Jn J 0 • 

11 1 211n 
J 1[n T22 2 ]J22 22. 22T 0 T s]

JT1 1

f(Tn ) = S2 D i '2 ( 5

c sa'J21 sv'J22T1 sJ22

Let Tand To h[T, 1 ], Where Aande I Rn, so

J T 1 2 1 12TI11
11 12 Dc S 012 S'IJ T I S IJ[Tnci21 TRIJ22TDJ. - i [S21 ~J 22 T1  0212

The problem is proposed to find such that

0 D 21

• ' .ISI 'JI

221n £3J2 2 JF (7-5)[ 021 D 2TI :2
is minimized.

Here I-IF denotes the Frobenius-norm. Then we muncate the states of the controller
corresponding to the small cost defined in (7-5).

For the H2 optimizaton problem with the generalzed plant

G(s) : 0D2 D12]
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and the optimal controller

KO,(s)

where F2 := -B2'X 2 , L2 := -Y2C2' and Ac := A + F2 + L2C2 , and X2 and Y2 are the

solutions of the following two Riccati equations •

AX2 + X2A - X2B2B2X2 + C1'C1 = 0

AY2 + Y2A'- Y2C2'C2Y2 + BBI= 0.

The closed-loop system with the optimal H2 controller is of the form

B A B2F2 B 1

9(s) -L2C2  A+B2F2+ L2C2  -D+LF
itC F2D2 0

1..~ 12 0]

Let P and Q be the controllability and observability gramians of 9(s) respectively, then we

have the following proposition.

Proposition 7.1: P and Q are of form

P - [2X2 P2 Q2 + Q2

where P2 and Q2 satisfy the following two Lyapunov equations

(A + B2F2)P2 + P2(A + B2F2)' + L2L2'= 0 (7-6)

(A + L2C2)'Q2 + Q2(A + LVC2) + F: 2
T  =0 (7-7)

This result can be easily verified.

So the structures guarantee

j : '- 11- 12

The problem mentioned above turns out to find Tnc such that
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or f(T.) =f'J 2 1 "211 + 1 J 1 2' 21 is minimized.

Theorem 7.1

Then exist two vectors I and I such that J1 = 1,

f(t, I A) -" 'J212 + I 12'J121
is minimizedL

Proof: Let

fA I ) = 'J21 J21 j ++ 'J2'JI2- x 2)(&i- 1)

then set
S L= 2J= 'J2a -24 =0 (7-8)

CA 21 21£ =(-8
af)A) = 2J,2J,4- 2'J =0 (7-9)

s'L =1.

It is easy to see that is the eigenvalue of thematrix

0 J12'J12]
J21 J21 0 (7-10)

and is [ fl the eigenvector corresponding to the smallest eigenvalue of (10.10). Q.E.D.

The matrix (7-10) is a special case of Hamiltonian and has the followirg property.

Property 7.2

If both J 12 and J21 are full of rank then the eigenvalues of (7-10) are reaL

Proof:
From (7-8) and (7-9)

J21'J21A XI (7-11)
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Jl12 'Jl 1 -- . (7-12)

Multiply (7-11) by 1! and (7-12) by f', and plus them together. Here s' means the conjugate

transpose of A.

A'J2 1'J2 1 +' I'J 12 'Jl2 -X(1'x + 1') (7-13)

From (7-13) we see that Im('J 2 1'J2 1 1• 1 12'Jl 2I) -0, and Im(2'L+ I'.) = 0. So lm(X) =

0. Q.E.D.

7.2 Examples

Two examples are shown to illustrate the proposed structured truncation approach

for controller truncation.

Example 7.1:

Given a plant

"-10 10,0"

1 2~0 20 01 1
G(s): C 1  0 D12 11o0o

C2  D21  =11- O "0-1 I0

Full-order optimal H2 controller is:

Bc [ r-0.8619 0.13811 -0.1381]

.86 11.613-6.7884 4.5523
CC-0.3090 -4.2361 - -03

By the structured truncation, the controller can be reduced to the following lst-order

controller

[ =l o] J[-6.43975.4225

In Table.1, H2-norms of reduced-order closed-loop system and L.-error bound between

the closed-loop system with the full-order controller and those with reduced-order
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controlUers obtained by our new structured truncation, balanced truncation, coprime

f i n, and optimal projection are listed.

_ Tzw 122  ITw-Tad 1.

Full-Mier Optimal Controller 91.8196689 0

1st-order controllers

structured Tuncation 91.857999 0.233720
Balanced truncation 91.871408 0.392831

coprim factorization 91.870133 0.361891

Optimal Projection 91.856689 0.269276

Table 1.

Example 7.2:

Given plant

1 0 0 1 0 0 0111
0 -2 0 0 1 0 Oil

A B B2  0 0 -3 00011

- I

1 00 0 0 0 010= I

00_f0000 0' 1
1 1 1 0 0 -0 1

The full-order optimal H2 controller is:

[ -4.1899 -2.6639 -2.6667 2.59501
SAc [BcJ -2.6639 -2.1379 -0.1407 0.0689

-2.5950 -0.0689 -0.0717 0

The controller is unstable.

The reduced second and first-order controllers by the structured truncation are

[Ac BcJ '1.3875 -3.6269 0.02631
_2.7605 -5.2019 -2.5453

-Cc1 0 J -0. 6207 2.6198 0
and
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[,4Bj r"0.2507 1.64061IC<:I 0.. -.0529 0

The comparison of the proposed structured truncation with the others is shown in Table 2.

ITzwI1 2  1TfuJ-Tued I..

Full-omr Optimal Controler 22.490551 0

2nd-order controllers

Structured Truncation 22.491118 0.019268

Balanced truncation (The controller is unstable)

Coprime factorization 22.491945 0.051115

Optimal Pro;.xcrion 22.491114 0.021112

lst-order controllers

Structutrd Truncation 33.797984 4.913441

Balanced truncation (The controller is unstable)

Coprime factorization 42.666848 16.386789

Optimal Projection 30.333357 4.4430115

Table 2.

The optimal projection is the fixed-order controller design to minimize the H2-norm of the

closed-loop system. For the two examples, the H2-norm of the closed-loop system with the

reduced-order controller by the new structured truncation is vary close to the result of
optimal projection design. The structured truncation also results in small Lo-enor bounds.
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CHAPTER 8

A PARAMETRIZATION APPROACH

TO REDUCED-ORDER H" CONTROLLER DESIGN

8.1 Introduction

By the state-space approach [7] to H- optimization, an (sub)optimal controller can

be easily obtained and the order of the controller is not higher than that of the generalized

plant. However, in many engineering problems, the order of generalized plant can be very

high. This is due to the fact that the generalized plant consists of the original plant as well
as all the weighting matrices which are chosen to meet certain design specifications. Hence,

the order of the Hr controller obtained by the stanuard state-space approach is usually too

high to be implemented in practice, and therefore a systematical methodology of desgning

a reduced-order H- robust controller is desired.

This issue has attracted considerable attention in the past few years, and several

approaches have been proposed to address this problem. Bernstein et al. [30,38] proposed

a fixed order controller design method based on the optimal projection theory. It was

shown that an optimal reduced-order H2/H" controller can be obtained by solving several

coupled Riccati equations. However, the computation involved is very complicated. A

direct design method based on the well-known Bounded Real Lemma [39] was proposed
by Hsu et al. [40], where a set of sufficient conditions and design algorithms were derived

for a reduced-order H- controller design. Chang et al. [41,42] considered observer-based

controller parametrization, and pointed out that by selecting a suitable parameter matrix, one

can make the realization of the stabilizing controller non-minimal, whose order then can be

reduced. Choi et al. in (43] proposed a method of constructing such a suitable parameter

matrix in order to get a reduced-order stabilizing controller.

These results, especially the work by Choi et al. [43], motivated our work in

designing reduced-order H- controllers. In this chapter we will present a direct design
aegorithm for (n-p2)th order Hr controller, where n is the order of the generalized controller

and P2 is the number of independent measured outputs. The major idea is to select a

parameter matrix such that the realization of the controller obtained from DGKF formulas
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[7] is not minimal. By deleting the unobservable states of the controller, (n-p2)th order H-

controller can be obtained. The content of this chapter is arranged as follows. Section 8.2 is

a preliminary section which provides the standard state space approach to H- optimization
problem, including the formula of all stabilizing (sub)optimal controller. We present our
main result in section 8.3, where a set of formulas are given for constructing a reduced

order H- controller. Section 8.4 shows an illustrative example and Section 8.5 is a

conclusion.

8.2 Preliminaries

The following block diagram is the standard HI optimization configuration.

z NY
T G(s)J~

7LJ u

K(s)

Fig. 8.1 The standard block diagram for H- optimization

The G(s) is the generalized plant, including the original plant and possible weighting

matrices. The signals z, y, w, and u are the controlled output, the measured output, the
exogenous input and the control input respectively. The standard H- optimization problem

is: To design a proper controller K(s) such that the closed-loop system is internally stable
and IlTz(s)11I is minimized, where Tw(s) denotes the transfer function of the closed loop

system from w to z.

In the DGKF approach [7], the realization of the generalized plant G(s) is assumed

tobe

G s G (s) 1 A B, 2
G 1 1 (s) 12 ] C1 0 [: 12(8-1)
G 2 1 (s) 22(s) C2 D21

where G(s) is partitioned such that G1l(s) is plxml, G12(S) is pIXm 2, G21(s) is P 2 Xm1 ,

and G22(s) is P2xm 2. It is also assumed that:

(i) Both G 12(s) and G21(s) do not have any transmission zeros on the jio-axis.

(ii) (A, B2) is stabilizable and (C2, A) is detectable.
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6m) D'12 [C 1 D 12 ] =(0 I]

(iv) D2

The two Riccati equations involved are:

AX.+ X..A + X.(Y2BIB1- 1 B2 BX_ + C1 CI =0 (8-2)

and

AY.. + Y..A'+ Y.(y2Cd'C1 - C2C2)Y. + BIB1 =0. (8-3)

The following famous theorem characterizes all (sub)optimal stabilizing controllers such

that trIu < Y-

Theorem 8.1 [7]

For a given y, there exists a stabilizing controller such that IITIw..<y if and only if the

following three conditions hold:

(i) There exists a positive semidefinite stabilizing sc ition X.(T) to (8-2).

(ii) There exists a positive semidefinite stabilizing solution Y.(y) to (8-3).
(iii) p[X..(y)Y..(y)] < ' 2 , where p denotes the spectral radius of a matrix.

When these conditions hold, all stabilizing (sub)optimal controllers K(s) can be

parametrized by a stable proper parameter matrix Q(s) whose H- norm is less than y, as

shown in the following figure.

U y

~q'

Fig. 8.2 The parametrization of all stabilizing (sub)optimal controllers

Here M.(s)= F.. 0 , (8-4)
-C321 1

A 2 'X.+ 
85with A.= A+ yBBX 2F+ Z..L.C (8-5)

F.. =-B' 2X (8-6)
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L =- Y 2 (8-7)

S- •2ye..9) (8-8)

and

Qs) Aq I(8-9)

8.3 Reduced-Order H' Controller Design

In this section, we will show the existence of an (n-p2)th stabilizing H- sub-optimal

controller, where n is the order of the generalized plant and P2 is the number of independent

measured outputs. By using the DGKFs formulas in Theorem 8.1, the state-space

equations for sub-optimal controller K(s) can be expressed as

A
:k = A.x - Z.Ly + Z.B 2q (8-10)
u = Fax + q (8-11)

p = "C2x + y (8-12)

- A + BqP (8-13)

q = Cqý + DqP (8-14)

where the dimension of Aq is (n-p2 ). Simplifying the above equations, we have the

following state-space representation for the controller,

A+ -e2 BB + -2-2Dq2 q

K(s) -BqC
F. - DqC2 Cq Dq (8-15)

Note the fact that the realization of K(s) may not be minimal, which depends on the {Aq,

Bq, Cq, Dq} chosen. This suggests that if one can choose a set of {Aq, Bq, Cq, Dq) such

that the realization of K(s) in eq.(8 -15) is non minimal, then by deleting the unobservable

or/and uncontrollable states of K(s), a reduced-order controller can be obtained, and the

system performance and stability can be maintained at same time. To this end, we apply a

similarity transformation

T fi 0X (8-16)
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to K(s), where X will be determined later. With the transomation, eq.(8-15) becomes

K(s) = 
(8m-17)

where- AM= A. AM2212

with

AM,, = A + y2BIB'IX. + B2F-+ ZLC2 - Z.B 2DqC2 - Z..B2 CqX (818)

AM12 = Z.B 2Cq (8-19)

S= X (A + ,f22B IB',X . + B2F. + Z -J-.C 2  - Z B2D qC2)

- BqC2 -XZB 2CqX - AqX (8-20)

AM22 XZUB 2Cq+Aq, (8-21)

and

BM- B -][ZB2Dq"Z +,] (8-22)

CM=[CM CM2]-[F.-DqCCqX Cq] (8-23)

DM=Dq (8-24)

Note that our objective is to choose an X in the simnilarity transfomaion such that

CMI = 0 (8-25)

Ah21 = 0. (8-26)

If this is achieved, the unobservable pair (CMI, AMI) in eq.(8-17) can be deleted and the

controller in eq.(8-17) is reduced to

K(s)= m DM (8-27)

whose order is r = dim(AN) = n-P2. In fact, the equations (8-25) and (8-26) are identical to
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Cq Dq][C2 F (8-28)

XA- AqX- BqC2 = 0 (8-29)

where
I = A+ f 2BIB',X. + B2F.. +Z (8-30)1 2 .LmC2 Z.BF=8-O

The discussion of the existence of the X to equations (8-28) and (8-29) will be given in the

following, which plays a key role in our main result.

Lemma 8.1 A is a stable matrix.

Proof: Define

P y:2Z.Y..FI.. - B2F. + Z.B 2F., (8-31)

then it is easy to verify that

P = ( -f 2Z..Y.X. - I + Z..)B2F.. = [Z7.( I - T2y&.X..) - I]B 2F. i 0. (8-32)

Note eq.(8-30) can be expressed as

=ff A +I'2B IB'IX. + B 2F. + LC2-ZBFx=AY~2 iB;m+BFm Z..L.C 2-Z.B 2F..

=Atmp + 7.,Y..( -yF.- C 'C2) - P

= Amp + Z7.Y.( -2F2F.. - C2C2 ), (8-33)

where

Atmp=A+Y 2 B I B' X (8-34)

It is straightforward to show that [7]

Tj =pT = J.., (8-35)

where

J.- I'C=2 (8-36)-B IB' -A

JtMP -B B, A (8-37)
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and T I [ y2X'. (8-38)

Hence, it is easy to see that the stabilizing solution to eq.(8-37) can be expressed in terms
of Y. which is the stabilizing solution to eq.(8-36) (or eq.8-3)), i.e.,

Ye=p = ZY. (8-39)

is the stabilizing solution to Riccati equation eq.(8-37) [7]. Substituting eq.(8-39) into
eq.(8-33), we have

Amp + Ytnp( "y2Fl-- C'2C2),

which implies X is stable. Thus we proved the lemnma.

Without loss of generality, we assume that

C2 U=[ 2 0]. (8-40)

Then we partition A and X compatibly such that

A11 12] (8-41)

X=[X1 X2 ]. (8-42)

With the partition, eq.(8-29) can be expressed as

1A21 A122

or equivalently

XIAIl + X2A21 - AqX1 = Bq (8-44)

X1A12 + X2A22 - AqX2 = 0. (8-45)

Lemma 8.2 The pair ( A12, A22 ) is detectable.

Proof: Since X is stable, then for Re(s) > 0
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Is -A12  0 A12 1
is 0 Is-A] 0 Is-A 22

n = ran C rank22 rn

1 0p2

= P2 + rank[ A. 2  (8-46)

This implies tha

ran IA2 ] = n - P2  for Re(s) > 0. (8-47)

Thus the lemma is proved.

Lemma 8.3 There exists a solution X = [X 1 X2] to eq.(8-45).

Proof: Since (A12, A22) is detectable, then there exists a Y and invertible W such that

A22 + YA12 = WlAqW = A (8-48)

where A is a stable matrix whose eigenvalues consist of the unobservable stable

eigenvalues of A22 and those we are chosen arbitrarily by selecting a Y. Eq(8-48) actually

implies
WA22 + WYA12 = AqW (8-49)

i.e.,
X2 =W (8-50)
Xl = wY (8-51)

Thus the lemma is proven.

Remark 1. Note that A is not unique.

With Lemma 8.2 and 8.3, we are ready to present our main result in the following theorem.

Theorem 8.2 For a given y, define the parameter matrix

Q(s) Aq (8-52)Cq IDqj (-2

as Aq = A22 + YA 12  (8-53)

Bq=YA, 1 + A21 - AqY (8-54)
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Cq F2  (8-55)

Dq F1 - F2Y (8-56)

and F -=[F 1 F2 ], (8-57)

where All, A12, A21 and A22 are the partition of A. If one can choose a matrix Y such that

Aq is stable and IIQ(s)IL. < -,. then there exists an (n-p2)th order stabilizing controller with

the following form

[ Aq+ XZ-B2Cq BBq + (Z BL2Dq .) (8-58)
Cq Dq

where
X=[Y I]. (8-59)

Moreover, the H- norm of the closed-loop system is less than y.

Proof: Choose W = I in the previous lemma, then Aq = A22 + YA12 .Since ( A12 , A22 ) is

detectable, there always exists a Y such that A22 + YA12 is stable. Eq.(8-54) is a direct

result from eq.(8-44). From eq.(8-29), we have

I], F,~ ro0 1 =I F j-2I
[Cq Dq]fF.4 =[F1  F 2  [1I- [F 2  F1 -F2Y]"

Thus we completed the proof.

Remark 2. Obviously, such a Y is not unique and it is desirable to choose a stabilizing Y
such that IIQ(s)il.. is small. However, in case that one can not find a Y such that IIQ(s)L. <

y, a larger upper bound on the norm is required.

8.4 Illustrative Example

The generalized plant is given as

"-1 00 0 1001
020 100 1
0 0-4 10 0 2

G(s)= "1 1 1 0600 0
0(s 0 00

...... ... ..0... .
100 010.0

L0 1 0 001:0.
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By using DGKF formulas and the algorithm we developed in Chapter 5, it is easy to

compute the optimal H- norm of the close-loop system, which is 5.31524. A sub-optimal
upper bound of the system is chosen as ysub = 6. By choosing Y = [-1 -1], we have stable

(A22+YA 12) and IIQ(s)ll.= 5.54191 which is less than 7,,ub From the formulas given by

eq.(8-52) to eq.(8-58) in the previous section, a first order H- controller can be constructed

as follows.

[~)=-4 .004 1-2.999 -6.1551 (-0(s) = L0.259 0 5.535.] (8-60)

With this controller, the eigenvalues and the H- norm of the closed loop system are

-4.0, -5.691, -2.1549, -0.9704

and 5.541640 respectively.

8.5 Conclusions

In this chapter, a parametrization approach is presented for the reduced-order H'
controller design. We showed that there always exists an (n-p 2)th order stabilizing

controller for an nth order generalized plant with p2 independent measured outputs. By

using the formulas provided, a reduced order IHt controller can be easily obtained.
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CHAPTER 9

CONTROLLER REDUCTION VIA
OBSERVER-BASED CONTROLLER PARAMETRIZATION

Of recent, interest in the conception and development of sophisticated aircraft and
spacecrafts has increased. Examples of the spin-off of this interest include such mechanical
systems as hypermaneuverable aircrafts and space stations. As these systems get more
sophisticated, they become more and more complex. Consequently, conventional modeling
techniques and control design strategies become inadequate. This has, by necessity, led to
increased research activity in such areas as model reduction [28,31,44,45,46], reduced
order controller design [30,36,37,47,48,49], decentralized control [50,51,52], and
control/structure interactions [53-56].

This chapter of the report deals with reduced compensator design, which has been
tackled from an observer-based compensator point of view. Briefly, this chapter develops
two properties related to observer based controller parametrization and pole placement It
shows that the poles of the closed-loop system with the observer-based controller (Q(s))
parametrization are the regulator poles, the observer poles, together with the poles of the
added stable parameter matrix K(s). If the controller Q(s) is realized by a minimal
realization, the closed loop poles will include all the poles of the added stable parameter
matrix K(s) and a subset of the regulator and the observer poles. We parametrize all such
K(s) which render Q(s) non-minimal, thereby permitting a minimal realization of Q(s) to
serve as a reduced order controller. With such a parametrization available, one could then
choose a K(s) in order to best approximate ,arge order controllers, such as the H-
compensators, by a lower order controller.

9.1 Observer Based Compensation

One of the most fundamental requirements in control systems design is to make the
closed-loop system internally stable. In addition to closed-loop stability, usually the closed-
loop system is required to meet some other desired performance criteria. Stabilizing
controllei parametriztion is important because of the following reasons: (1) It provides the
full set of the controllers which stabilize the closed-loop system. (2) The full set of
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stabilizing controllers is characterized in terms of a stable parameter matrix and the closed-

loop system is internally stable if and only if the parameter matrix is stable. (3) The closed-

loop transfer function matrix related to the performance can be written as a simple affine
function of the parameter matrix and then the control system design problem becomes that
of finding a stable parameter matrix such that the closed-loop transfer function matrix meets

the desired performance criteria.

The first characterization of the set of all stabilizing controllers in terms of a stable

parameter matrix was introduced by Youla et. al. [57] in 1976. Youla's controller

characterization was developed based on the fractional factorizations over the ring of

polynomial matrices. The only drawback of Youla's characterization is that the stabilizing
controller may not be proper. This drawback was removed later by Desoer et. al. [58] in

1980.

Desoer et. al. (58] generalized Youla et. al.'s result based on the fractional

factorizations over a general ring. The ,rig can be chosen as the set of proper stable rational

matrices if the given plant is a linear time-invariant system which is represented by a

rational matrix. Based on the fractional factorizations over the ring of proper stable rational

matrices the set of all proper stabilizing controllers can be characterized in terms of a proper

stable parameter matrix. The closed-loop system is internally stable if and only if the

parameter matrix is proper stable and the stabilizing controllers are proper if a simple

inequality is satisfied.

To use Desoer et. al.'s version of proper stabilizing controller parametrization, it is

essential to compute the fractional factorizations over the ring of proper stable rational
matrices. Nett et. al. [5f] proposed a very convenient state-space method for this

computation in 1984. The computation method was developed based on the observer and
regulator theories.

Later in 1984, Doyle et. al. [2] showed that the proper stabilizing controller

parametrization can be realized as an observer-based controller with an added stable

parameter matrix. In 1988 and 1989, Glover and Doyle [8] and Doyle, et. al., [7] offered

the two-Riccati-equation approach to solving the standard H- optimization problem. This

approach characterizes all possible stabilizing suboptimal H- controllers whose order is not

higher than that of the generalized plant. Nonetheless, since the generalized plant model

includes the original plant and the models of appropriate weighting functions, this order of

the controller is likely to render it non-implementable. Hence, a need for a suitable
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methodology for the reduction of this controller arises.

In this chapter we deals with the controller reduction from an observfer-based
compensator point of view. In essence, the following important properties related ) the
observer-based controller parametrization and pole placement will be given: (1) The poles
of the closed-loop system with the observer-based controller parametrization are the
regulator poles, the observer poles, together with the poles of the added stable parameter
matrix. (2) If the controller is realized by a minimal realization, the closed-loop poles will

include all the poies of the added stable parameter matrix and a subset of the regulator and
the observer poles.

In the rest of this section, we will explain the notations to be used in this chapter
and briefly review the concept of the stabilizing controller parametrization. We will begin
by listing the previous results about the controller parametrizations done by Youla et. al.,
Desoer et. al., Nett et. al., and Doyle et. al., and present some important properties of the
observer-based controller parametrization.

Throughout this chapter, both of the following notations

HAB and {A,B,C,D)

are used for the same purpose to represent a state-space realization of a system whose

transfer function is C(sI-A)'B + D. The sum, A+B, of two sets A with p elements and B
with q elements is a set which consists of all elements of A and B. A+B has p+q elements.
Assume that B is a subset of A, then the difference, A-B, will consist of all the elements of

A except those in B. A-B has p-q elements.

vz v •.., ~G(s) ] -

Figure 9.1. Block diagram of a typical control problem.

The concept of stabilizing controller parametrization is briefly described as follows.

Consider the block diagram in Fig. 9.1 where v is the exogenous input vector which may
consist of the disturbances, noises, and the commands, u is the control input vector

through which the behavior of the system can be modified, z is the controlled output vector
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which is composed of all the variables to be controlled, and y is the measured output vector

which consists of all the measurable quantities available for feedbackL The plant G(s) is

given by

[Gt(s) G12(s)l A B1  B2

G(s) = -Ga(s) - 12 (9-1)

C2 D21 D22.

The objective of a typical control problem is to find a proper controller Q(s) which

stabilizes the closed-loop system and the H' (or H2) norm of the closed-loop transfer

function matrix O3(s) from v to z is minimid The first step to solve the problem is to find

the set of all proper controllers which make the closed-loop system internally stable. Then

in the set of all proper stabilizing controllers, one will be chosen such that the F' (or H2)

norm of O(s) is minimized.

The stabilizing controller parametrization we are interested in has the following two
properties: (1) All the proper stabilizing controllers can be characterized in terms of a proper
stable parameter matrix K(s) and the closed-loop system is internally stable if and only if

K(s) is stable. (2) The transfer function matrix O(s) is a simple affine function of the

parameter marix K(s).

After the stabilizing controller parametrization, the above control problem becomes
that of finding a proper stable matrix K(s) such that IMI.I (or 113112 ) is minimized. Property

(2) of the last paragraph is important since it will make the H' (or H2) optimization

problem easy to solve.

9.1.1 Pr-Aiminaries

The previous results related to the controller parametrization will be briefly

reviewed in this section. The following theorem was originally developed by Youla et. al.

[57] and later modified by Desoer et. al. [58].

Theorem 9.1: 157,581 (Youla's Controller Parametrization)

Consider the system in Fig. 9.1. Assume that the realization in (9.1) is minimal and the
subsystem G22(s) is stabilizable and detectable. Let M2(s), N2 (s), X2(s), Y2(s), M1(s),

N,(s), X,(s), and YI(s) be proper stable rational matrices such that
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[M.2(s) N 2(S) X2(S) -NI(s)1 i o1
-YI(s) X 1(s) J Y2(s) MI(s) 0 1 (9-2)

and

M 2(s)" N2(s) = G22(s) (9-3)

Then the set of all proper stabilizing controllers can be described as

{ Q(s) I Q(s) = I MI(s)K(s) + Y2(s)] (NI(s)K(s) - X2(s) j

with K(s) proper stable and I (.o)K(-,) - X2(')' *0 } (9-4)

and the closed-loop transfer function matrix 0(s) from v to z is an affine function of the

parameter matrix K(s),

Ol(s) = GI(s) - G12(S)Y2(s)M 2(s)G21(s) - G12(S)M1(s) K(s) M2(s)G 21(s) (9-5)

To use Theorem 9.1, we need to construct the proper stable rational matrices in (9-

2) and (9-3). Nett et. al. [59] proposed a convenient state-space approach for this

construction. That is, the following realizations

r A+HC2 H B2+HD22rM2(s) N2(s) 1 1=
I C2 I £)22j(-a

XY(s) XN1 (s) I I A- 2

-F 0 1

Y2(s) M-(s) -(C2+D22F) I -D22 (9-6b)

F 0 I

are proper stable and satisfy (9-2) and (9-3) where F and H can be arbitrarily chosen such
that A+B2F and A+HC2 are stable.

Doyle et. al. (2] showed that if (9-6a) and (9-6b) are used to realize the proper

stable rational matrices in (9-2) and (9-3) and let
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J1 (s j 2(s) A+B2F+HC 2+HD2 2F -H -(B 2 +HD2 2 )

I 'J(s) J=(S) I F 0 -1 (9-7)
J 21 22 -(C2+D22F) I D22

then the set of proper stabilizing controllers described in Theorem 9.1 will have a structure

as that shown in Fig. 9.2.

u • •J(s) [ Y

UU

S~K(s) u

with K(s) proper stable and I - D22K(oo) invertible.
Figure 9.2. Structure of stabilizing controller parametrization.

Replace the controller Q(s) in Fig. 9.1 by the structure of Fig. 9.2, then the closed-

loop system can be redrawn as that shown in Fig. 9.3.

U2• T(s) Ys "

Figure 9.3. The closed-loop system in terms of a parameter matrix K(s).

In Fig.9.3, the open-loop transfer function matrix from u2 to y, T22(s), is zero.

Therefore, the closed-loop transfer function matrix from v to z, i.e., O(s), is a simple

affine function of the parameter matrix K(s). That is,

O(s) = T1I(s) + T12(s) K(s) T2 1(s) (9-8)

where the realizations of T, 1(s), T12(s), T21(s) are given by

A+B2F -B2F BI

T 1(s) = 0 A+HC 2  BI+HD21  (9-9a)

CI+Dl2F -D,2F D10
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T 12 (s) A+B2F I B2 (9-90)

I CI 1F D121
T21(s) = (9-90)1 A+C2 B+D211

Doyle et. al. [2] also pointed out that the struct.re of the stabilizing controller
parametrizaion in Fig. 9.2 can be realized as an observer-based controller with an added
stable dynamics K(s). The realization is shown in Fig. 9.4.

u

Y

A 
_2

with K(s) proper stable and I - Dz2K(oo) invertible
Figure 9.4. The observer-based controller parametrization.

Note that in Fig. 9.4 the block diagram inside the dotted-line box is the well-known

full-order observer-based controller [17].

9.1.2 Main results

In Fig. 9.1, the internal stability of the closed-loop system depends only on G22(s)

and Q(s), i.e., the interconnected system shown in Fig. 9.5.
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Figure 9.5. Equivalent system to Fig. 9.2 for internal stability.

In this section, the controller Q(s) in Fig. 9.5 is replaced by the block diagram of
Fig. 9A which is the observer-based controller with an added dynamics K(s).

In the following theorem we will show that the poles of the closed-loop sy
with the observer-based controller parametrizton in Fig. 9.4 are the regulator poles (L.
eigenvalues of A+B2F), the observer poles (the eigenvalues of A+HC2), together with the

poles of the parameter matrix K(s). In the design of the observer-based controller, F and H
are chosen such that the eigenvalues of A+B2F and A+HC2 are stable. Therefore, the

closed-loop system is internally stable if and only if the parameter matrix K(s) is proper
stable. The proof is quite straightforward and is done completely in the state space without

referring to the derivations used by Youla et aL, Desoer et. al., and Doyle et. aL.

Theorem 9.2: (Observer-based Controller Parametrization)

Consider the closed-loop system in Fig. 9.5. Assume that G22(s) = (,, B2, C2, D22)

with order n is stabilizable and detectable and the controller Q(s) is replaced by the

observer-based controller with an added m-th order dynamics K(s) as shown in Fig. 9.4.
Then the set of the closed-loop poles is composed of the n eigenvalues of A +B2F, the n

eigenvalues of A+HC2, and the m poles of the added dynamics K(s). That is, the set of the

closed-loop poles is

Pcloed-loop = regwor + obsever + PK(s) (9-10a)

where
P.s ffi= { n eigenvalues of A+B 2F ) (9-10b)

Pob.,,, = { n eigenvalues of A+HC2 ) (9-10c)
and

PK(s) = { mpoles of K(s) } (9-10d)

Prof: The dynamic equations of G22(s) is given by

x-= Ax + B2 u (9-1 la)

y = C2 x + D22 u (9-11b)
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w-- ,. -I

Th dynamic equations of the observer-based controler in Fig. 9.4, Le., the block diagram

inside the dotted-line box, can be writ-en as follows,

A A [ - -(B 2+ HD 2.) [
x = (A+B 2F+HC2+HD22F) x + (9-12a)

1 = [(C2+DF j A + 1 D.21[ (9-12b)

Assume that the added dynamics K(s) is described by the following minimal

realization

k =k + B y (9-13a)

u2 = k + I)y (9-13b)

The controller Q(s) is just a combination of (9-12) and (9-13). From (9-12) and (9-13), we

have the dynamic equations of the controller Q(s) as follows,

(x I a ll 12 x1
=I + y (9-14a)

C121 az22  k 1 021j

[Al
YU = Y2 J + 8y (9-14b)

where

01 = -H- (B2+HD22) (I-)D22)DIf) (9-15a)

0 2 = B + B D.2(I-I)D22)D l 6 (9-15b)

y = F + (I-fiDD22)93 (C2 +D,2F) (9-15c)

Y2 = "(I-fD22)'1 C (9-15d)

Q -- A + HC2 + (B2+HD22) Ty1  (9-15e)

- A + B2F- PI (C2 +D22F) (9-15f)
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a 12 = (B2+HD22) Y2  (9-15g)

a2 1 = - 02 (C2+D22F) (9-15h)

a22 = A B D22 y2 (9-15i)

D = - (I-I)D22)'xI) (9 -15j)

Now, combine the dynamic equations of the controller Q(s) and the plant G22(s),

i.e., equations (9-14) and (9-11). Then the state equation of the closed-loop system can be

obtained as follows

x #11 #12 #13 x

x 1 21 #22 #23 (9-16)

41 #32 33 k

where
#11 = A+B 2 8(I-D228)'-C2  (9-17a)

#12 = B2 y 1 +B 2 8(I -D228)-D22y 1  (9-17b)

#13 = B2 ^y2 +B 2 8(I-D228) 1 D22-f2  (9-17c)

#21 = 01 (I - D228) -'C2  (9-17d)

#22 = ac, + 01 (I - D228) "1 D22y 1  (9-17e)

*23 = O12 + 01 ( 1 I- D228 ) 1 D22 y2  (9-17f)

#31 = 02(1 - D228) -'C2  (9-17g)

#32 = a21 + 02 (1 - D228 ) D22 'I (9-17h)

#33 = C i22 + 2 ( I- D228 ) 1 D22 y2  (9-17i)

Additionally, we make the following observations, which can be easily shown by

directly manipulating the equations (9-17) and (9-15).

Oftervation: #32 =- -#31 (9-18a)

Observaion2 11 #11+ #12 #21 + #22 = A+ B2F (9-18b)

Osration: #23 = #13 .(9-18c)

bervatn4: "#12 + #22 = A+HC2  (9-18d)
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C atDn5: #33 A (9-ise)

Define the observer reconstruction earr
x=x - x (9-19)

then we have

x #11 #12 412 #13 x

X = #12 12#21 '#22 "#12+ 22 13 "#23

I * #3+#32 -32 #33 k

A + B2F -#12 #13 x
_ 0 A + HC2  0 - (9-20)

x

0 -#32 A k

which is related to (9-16) by the similarity transformaon

1 -1 0 (9-21)
0 0 1I

Therefore, from the structure of the matrix in (9-20), the characteristic values of the

closed-loop system are those of A+B2F, A+HC2, and A. This completes the proof of

Theorem 9.2.

It is well known that in the observer-based controller design the closed-loop poles
are the regulator poles (the eigenvalues of A+B2F) and the observer poles (the eigenvalues

of A+HC2) (17]. In Theorem 9.2 we just showed that the above property still remains

when we add a dynamics K(s) to the observer-based controller as shown in Fig. 9.4. The
eigenvalues of A+B2F and A+HC2 are still parts of the closed-loop poles after we add K(s)

to the controller. Adding K(s) only introduces additional poles to the closed-loop system

and the added closed-loop poles are the poles of K(s). If F and H have been chosen such
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that A+B2F and A+HC2 are stable, then the closed-loop system with the observer-based

controller paraetrization will be internally stable if and only if the parameter matrix K(s) is

proper stable. From Fig. 9.4, it is easy to see that the controller Q(s) is proper if K(s) is
proper and I - D22K(-) is invertible.

With the observer-based controller parametrization, the closed-loop transfer

function matrix from v to z, i.e., O(s), is a simple affine function of the parameter matrix

K(s). That is,

4(s) = T11(s) + T12(s) K(s) T2 1(s) (9-22)

where T,,(s), T12(s), and T21(s) are given by (9-9). The added dynamics K(s) is a proper

stable rational matrix to be chosen such that I-D22K(-) is invertible and O(s) has some

desired performance. No matter which K(s) is to be selected, we always have clear idea
that the closed-loop poles will be the eigenvalues of A+B2F and A+HC 2 together with the

poles of the added dynamics K(s) if the controller is realized as that shown in Fig. 9.4.

Assume that the orders of the plant and the parameter matrix K(s) are n and m

respectively. If the controller is realized as that shown in Fig. 9.4, then the order of the
controller is n+m and the closed-loop system has 2n+m poles described by the set Pckosed-

in (9-10). The realization of the controller in Fig. 9.4 may not be minimal. Suppose it

is not and there are r poles in the controller either uncontrollable or unobservable, then the

controller can be realized by a minimal realization with order n+m-r and the number of

closed-loop poles will be reduced to 2n+m-r.

In the following theorem, we will show that the uncontrollable or unobservable
poles of the controller of Fig. 9.4 must be the eigenvalues of A+B 2F or A+HC2 and the

closed-loop poles will always include all m poles of the added stable dynamics K(s) no

matter the realization of the controller is minimal or not. If r pole-zero cancellations occur in

the controller, then the closed-loop poles will include m poles of K(s), and 2n-r
eigenvalues out of the set PrqUlAr + Pb..e which was defined in (9-10).

Theorem 9.3: Consider the closed-loop system in Fig. 9.5. Assume that G22(s) = [A,

B2, C2, D22) with order n is stabilizable and detectable and the controller Q(s) is replaced

by the observer-based controller with an added m-th order dynamics K(s) as shown in Fig.
9.4. A minimal realization of K(s) is given by (9-13). Define Prqulawr I Pobsrvfrand PK(s)

by (9-10b), (9-40c), and (9-10d) respectively and let
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Pn,= { the controller poles which are either uncontrollable or unobservable) (9-23)

Then

Pnpa + Pobv ='FP ý (9-24)

and the closed-loop system with the minimal order controller will have a set of poles

described by the following

Pclied-loop with min. contller = PK(s) + (Pýregnlao + Pobserer" P-removal (9-25)

Proof: Let NG(s)DG(s)' with deg IDG(s)I = n and DQ(S) 1'NQ(S) with deg IDQ(s)I = n+m

be a right MFD (mamix fraction description) of Ga(s) and a left MFD of Q(s) respectively

[19]. It is well known that the chacteristic polynomial of the closed-loop system is

4 ksed-woop(s) = I DQ(s)DG(s) - NQ(s)NG(s) I (9-26)

Let LQ(s) be a greatest comimn left divisor of DQ(s) and NQ(s). That is,

A A

DQ(S) = LQ(s) DQ(s) , NQ(s) = LQ(s) NQ(s) (9-27)
A A

where DQ(s) and NQ(S) are left coprime. It is easy to see that the zeros of LQ(S) are the

uncontrollable or the unobservable poles of the controller realization in Fig. 9.4. That is,

{ zeros of LQ(s)) = Pr a- (9-28)

Plug (9-27) into (9-26), we have

4Ocio ioop(S) ffi I Lu(S) 1- I DQ(S) D0(s)- NQ(s) NG(s) I (9-29)

A A

The zeros of I DQ(s) DG(s) - NQ(s) NG(s) I are the poles of the closed-loop system

with a minimal controller realization. From Theorem 9.2, (9-28) and (9-29), we can see
that

Pcosd-lop with min. controllePrnmoval = Pgua +r observer + PK(8) (9-30)

To complete the proof, we need to show that Pemoval is a subset of Pregulwr +

Pobs.rve when K(s) is minimal. First, assume that the state-space representation (9-14) of
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the controller Q(s) is unobservable. Then by PBH test [19], there exists a nonzero vector

such that

[71Y 2 1  = 0; 141=4(9-31la)

"Ial Q12 1 1 1 i
= X (9-31b)

Ia2  a 22  121 1421

for some eigenvalue X of (9-14). Note that it is the eigenvalue X that is unobservable. From

(9-31b), we get

ai4l+ *a 12t2  -- tl (9-32a)

which, by using (9-15e) and (9-15g), is rewritten as

(A+HC2 )4 1 + (B 2 +HD 22 )(Y 1• 1 +" 2 2) = X41 (9-32b)

In view of (9-31a), the above equation reduces to

( A + HC2 ) t1 = % 41 (9-32b)

which clearly establishes that the unobservable eigenvalue belongs to

Proceeding similarly, it can be shown that if (9-14) is uncontrollable then the
uncontrollable eigenvalue belongs to Pnaw"

Note in the above development that =0 contradicts the minimality assumption of

K(s). Thus,

Pobserver = Punobservable (9-33a)

Pregulator ) Puncontrollable (9-33b)

where Punobservable is the set of all the unobservable poles of the controller Q(s).

Pmumvontbk is dfined similarly. This completes the proof of Theorem 9.3.

The results of the current section can be summarized as follows. The poles of the
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closed-loop system with the observer-based controller parametrization shown in Fig. 9.4

can be classified into three groups and each group of poles can be independently

determined. These three groups of poles are the regulator poles (the eigenvalues of
A+B 2F), the observer poles (the eigenvalues of A+HC2), and the poles of the added

dynamics K(s). F, H, and K(s) are free parameters to be chosen such that the closed-loop
transfer function matrix O(s) has some optimal performance subject to the following
constraints: A+B 2F and A+HC2 are stable and K(s) is proper stable with I-D 22 K(-)

invertible.

If the realization of the controller in Fig. 9.4 is not minimal, then the uncontrollable

and/or unobservable controller poles can be removed and the order of the controller is

minimized. The set of these removable controller poles is a subset of the regulator and the

observer poles. The poles of the closed-loop system with the minimal order controller will

include all the poles of the parameter matrix K(s) and some of the regulator and the

observer poles which are not the removable controller poles.

9.2 Controller Reduction

Motivated by the results of the previous section, we pose the controller reduction

problem as follows: given the plant P(s) as

Xp=fApxp+Bpu ; xpeRnP; ueRm

zP = Cicp +Dpu ; ZpeR (9-34)

and the observer-based controller J(s) as

xj=Alpj+B ~pUB,ýzp-z) ; xjeR
zj Cpxj + Dpu (9-35)
U Uj
Uj ---- jj

obtain a reduced order controller G(s) whose order ng is required to be less than that of

J(s):

S-=AixC +Biz ; D (9-36)

Clearly, if the above realization for J(s) in non-minimal, one could obtain its

minimal realization and use that as the required compensator G(s). Several authors have
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been motivated by this approach; for example see references [32,36,371.

We take a different approach, which is motivated from the observer-based

controller parametrization of the previous section. Briefly, our approach adopts these steps:

I. Consider the control u as consisting of two components

U = Uj + Uk (9-37)

2. Let Uk be generated from an additional dynamic parameter K(s) inserted

between the measurement residual (z"-Zj) and the control Uk as given below.

Xk =AkXk+ Bk(zp-z) ; XeRn (9-38)
Uk = CkXk + Dk(zO-Z)

where the parameters (Ak, B!, Ck, Dk) are yet to be selected - see Step 4

below. Note that we are increasing the order of the overall controller by

appending the additional dynamics K(s).

3. Now, the overall controller Q(s), consisting of both the given controller J(s)

and the additional dynamics K(s), can be realized as

S= AqX q + BqZp ; Xq ER ; nq = np,+nk (9-39)
U = CqXq + DqZp

4. Choose the parameters (Ak, Bk, Ck, Dk} so that Q(s) is non-minimal. Obtain

the reduced controller G(s) as the minimal realization of Q(s).

The purpose of this study is to show that the state-space parameters (Ak, Bk, Ck,

Dk) of K(s) can be selected to render Q(s) non-minimal, and to render the minimal order of

Q(s) to be less than np.

We first rewrite a few properties of observer-based controllers from last section in

the notation of the current section.

Theorem 9.2 : The eigenvalues A• of the overall closed loop system are given by

A/ -=AVA6AkL. (9-40)

where
Ar = A(Ap+BpCj) = eigenvalues of the regulator,

Ao = A(Ap-BjCp) = eigenvalues of the observer, and
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Ak = A(A) = eigenvalues of the parameter K(s).

Notice that the addition of K(s) does not change the eigenvalues of the closed loop
system it only adds additional eigenvalues. Now, if the controller Q(s) is non-minimal then
there are some eigenvalues which are either unobservable and/or uncontrollable, and these
eigenvalues can be removed from Q(s) to obtain a smaller (minimal) order controller G(s).
When the state space realization of K(s) is assumed to be minimal, the following result
ensues.

Theorem 9.3 : Let Au and Auc be the unobservable and uncontrollable eigenvalues of

Q(s), respectively. Then
A,0cA. & AUCcAr (9-41)

Remark The (2np - nuo - nuc + nk) eigenvalues of the reduced closed loop system will be
the remaining eigenvalues of the regulator and the observer together with the eigenvalues of
K(s). Since the regulator and the observer are normally designed to be stable, ability
of the reduced closed loop system is therefore guaranteed.

Based on these theorems, we present the following main theorem, whose proof is
outlined in the Appendix.

Theorem 9.4: Let A., and Auc be some eigenvalues of Q(s) that are to be made

unobserva ? and uncontrollable, respectively. Then the parameters of K(s) to achieve this
must satisfy

Ck L " (9-42a)

[k 4bBP k Bkl [A -k .4xIJ] (9-42b)

(b lCk Dkj

for some Wk and 0k , and where To and Or satisfy

(r(Ap+BpC) = A.0r (9-43a)

(AP-BJCp)'o = ' 0 A.o (9-43b)

The order ns of the minimal realization of Q(s) is then given by
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n = np - n. - nc + N. (9-44)

It is possible to select K(s) such that n. is less than np, as shown in the example below.

In what follows we study a special case of this problem when K(s) is static (nk =
0), i.e., the constant matrix Dk is the only parameter that describes K(s). The order of the
reduced controller would then be n. = np -nuo -nx . Results presented below are easily

extended for the more general case of dynamic K(s).

Corollary 9.1: The necessary and sufficient condition for the parameter Dk (i.e. static
K(s)) to achieve this is the satisfaction of thefollowing equations:

DkCp'Po = Cite, and OrBpDA = "4rBj, (945)

subject to (9-43a) and (9-43b).

Though not necessary, 4 r and To can be seen as consisting of some left

eigenvectors of the regulator and some right eigenvectors of the observer, respectively.
Note that if either nuo or nuc is equal to zero then only one of the above equations need to

be satisfied. For instance, suppose that the given controller J(s) is not completely
observable, which may happen as in the case of LQG controllers. Then there exists a IF.
such that Cj'o = 0, and hence a Dk = 0 will remove these unobservable eigenvalues. This

result, along with those from the previous section, establishes the following:

Corollary 9.2: If a given controller J(s) is non-minimal, then the closed loop system

using a minimal realization of J(s) as its reduced controller would contain only the
observable eigenvalues of the observer and the contro.",oble eigenvalues of the regulator.

The above results are pertaining only to the stability of the closed loop system. An
equally important issue in controller reduction is the performance of the closed loop
system. This issue can be addressed, at least in a suboptimal sense, if one could determine
the eigenvalues that are least significant in the performance. The Modal Cost Analysis [60]
offers a suitable methodology for identifying such eigenvalues. However, only those
eigenvalues that allow the satisfaction of the above equations can be removed. The
following result assists in identifying such removable eigenvalues.

Theorew 9.5:

(a) When nc = 0 and n., > 0, an order-reducing Dk exists if and only if
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Kernel(Ce.pr) r Kernel(j'l.), (9-46a)

wth the general solution

D k = C;,o(CoP- + Z [ 4CPo(cPTJ I. (9-46b)

(b) When n., = 0 and n,¢> 0, an order-reducing Dk exIS if and only if

ImnageQZ.Bj) r. lIage(OrNp), (9-47a)

with the general solution

Dk =-(01Bg)-*Bj + [Z-(rv-(~B . (9-47b)

(c) Under the assumption of A. r) A= = 0, when both n. 0 > 0 and nuc > 0, a Dk
satisfying the equations of Corollary 9.1 exists # and only if

*rPo = O, (9-48a)

along with the satisfaction of (9-46a) and (9-47a), with the general solution

Dk=--B-0[ B j + Cj'Po(CPo)-- (4[)Bp pCjo(CiPo)- (9-48b)

+ [I-(IB,)(4tB)] Z I l-(CptCo)(Cp•Fp)-]

where (.)- denotes generalized inverse, and Z is arbitrary.

Under the assumption of A.o n A = Othe above theorem suggests this procedure

for determining the removable eigenvalues: Compute the complete set of the left
eigenvectors of the regulator, and the right eigenvectors of the observer; denote the first set
by 0 and the second by T; use the zero elements of the product [OW] to identify the

appropriate n,. left and n. right eigenvectors collect these left eigenvectors to form <N and

the right eigenvectors to form IFo. Then, if the conditions (9-46a) and (9-47a) are also

satisfied, the feed-through loop determined according to Part (c) of Theorem 9.5 will yield
a reduced controller of order (np-nuo-nj). The absence of any zero elements in [OT]

implies that a feed-through loop does not exist which would simuiian 1d render some

observer eigenvalues unobservable and some regulator eigenvalues uncontrollable. (A

nnwis K(s) may however be constructed as shown later in this report). It may, however,
be possible to remove some eigenvalues of only the observer or only the controller. This is

because Part (c) of the above theorem is pertaining to the simultaneous satisfaction of the

two equations of Corollary 9.1, which is not necessary when either nw or nc is equal to
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zero. In this case we have Pars (a) and (b) of the theorem.

An Example:

Let the plant parameters be

N= 1  0 ; Bp= [11 ; CP,= [1 ] ;D 0,

and let the regulator gain Cj and the observer gain Bj be

The order of the controller J(s) is 2, and the eigenvalues of the closed loop system
consisting of P(s) and J(s) are those of the regulator A, and the observer A. where, for this

example,

Ar- -1,-3 ) and Ao{ -2,-2}.

Suppose that we wish to reduce the order of the controller by removing an -2
eigenvalue of the observer and the -1 eigenvalue of the regulator. This can be achieved by

introducing K(s) whose parameters are

Ak=Ak ; Bk=Ak+ 2 ; Ck=Ak+l ; Dk=Ak+ 6 ,

for any arbitrary, but stable Ak. The corresponding realization of Q(s) has the parameters

A .2 A k-1 - JA k-10JA-- 1 0 0 Bq= 0 ;

1-A k-2 -A k-2 Ak I +21]
cq [Ak+2 Ak+3 -Ak-1]; Dq; [-Ak-6]

which has an unobservable eigenvalue of -2 and an uncontrolable ¢igenvalue of -1, as

required. The reduced order controller G(s), which is the minimal realization of Q(s), is

then given by the parameters

AI- 2 Ak+Il ; Bs =-(Ak+2 ) ; C = 2Ak+3
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DS = -(Ak46)

By Theorem 9.3 above, the eigenvalues of the closed loop system consisting of P(s) and

the reduced controller G(s) are 4 -2, -3, Ak}.

For the same example, the following table shows what can be achieved by static
K(s), that is by an appropriate choice of Dk.

pole to_1be removed Dk nU closed-loop poles

-2-5 1 1-1, -3, -2)
-1-4 0 1-2, -21-3 -4 0 1-2,-21

We now address the case when the parameter K(s), between the measurement

residual (zp-zj) and the control Uk is dynamic. Appending additional dynamics K(s) to the
original controller J(s), increases the dimension of the overall controller Q(s) to nq=np+nk,

where nq is the dimension of Q(s) and nk is that of K(s). Recalling the properties of

observer-based controllers with respect to the closed loop poles, the addition of the
parameter K(s) does not change the eigenvalues of the closed loop system but just adds to

them. This implies that the internal stability of the closed loop system depends on the
stability of K(s). Thus by choosing a proper stable K(s) one can guarantee the stability of
the closed loop system. The necessity of satisfying the orthogonality condition between the
left regulator and right observer eigenvectors corresponding to the eigenvalues to be made
uncontrollable and unobservable respectively, makes it difficult to determine a static feed

through loop that would yield a reduced order controller. However, controller reduction by
observer based controller parametrization may be achieved when the parameter matrix,
K(s), is dynamic. This section extends the results obtained for the existence of an order

reducing static feed-through loop to the dynamic case.

Theorem 9.4 states that the necessary and sufficient condition for the existence of
the parameters of K(s) to achieve non-minimality of the overall controller Q(s) is the
simultaneous satisfaction of equations (9-42a) and (9-42b). The following theorem states a
necessary and sufficient condition for the existence of the parameters of K(s) that will

simultaneously satisfy equations (9-42a) and (9-42b).

Theorem 9.6: Under the assumption that A., ( A., = 0, the parameters of K(s)

simultaneously satisfying equations (9-42a) and (9-42b) exist if and only rf

Oro "4Ok'k = 0 (9-49)
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where Ok and lk are arbitrary.

Proof: Assume Auc r) A =*. Then premultiplying Eqn.(9-42a) by [Ok ,•rBo, yields

Ok'kAIO "trBpCJ'Po = WF'• + OrBjCp'po (9-50a)

Adding and subtracting Ap, and using Eqns.(9-43a)and (9-43b) results in

Pbr'Po +00I']Aw - Auc[4•rt'o 4+O'kJ = 0 (9-50b)

The solution to equation (9-50b) under the hypothesis of the theorem yields (9-49).

Recall that the existence of an order reducing static feed-through loop is guaranteed
under the satisfaction of an orthogonality condition between the left regulator and right
observer eigenvectors associated with the removable eigenvalues. This necessary and
sufficient condition is restrictive in the sense that, rarely can one find systems which
would satisfy this orthogonality condition. However, the necessary and sufficient condition
stated according to Theorem 9.6. can almost always be satisfied indicating that one could
almost always determine a dynamic feed through loop that would yield a reduced order
controller. This is attributed to the arbitrariness of O, and I'k.

Theorem 9.6 indicates that it is possible to simultaneously render some observer
eigenvalues unobservable and some regulator eigenvalues uncontrollable. Having

established the existence of dynamic feed through loops that would yield reduced ord-r
controllers, the next logical step would be the computation of the parameter matrix K(s).

Theorem 9.7 presents a closed form solution to the equations (9-42a) and (9-42b). This
result is an extension of the case when K(s) is static, and can be proved similarly.

Theorem 9.7: The solution (AkBk,Ck,Ddto the necessary and sufficient conditions

equations is

,&k -. C-* + 1jp'j - k~pBjpQC~p' + [I - flp'p]Z[I - Cp~.p- (9-51)

where

(9-52)

wiire .) = [rik 4Dp Itj= [ A-0k -4bBj]

where .)denotes generalized inverses, and Z is arbitrary.
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The family of dynamic K(s) constructed according to Theorem 9.7, will yield a

reduced order controller of dimension
n.- up - (nh, + rim) + nk (9-53)

where nk is the order of the parameter matrix K(s).

From the properties of observer based controllers, the resulting closed loop system will

always retain the characteristic values of the parameter matrix K(s). i.e ., the resulting

closed loop system will be stable if and only if Ak is stable. To pursue this issue consider

A*= Cj p" + " ILP14 - A}.p'.pQ,,•," (9-54)
B* [I p- jo'MO] ; C* -- [I- fpp](9-55)

Then Eqn. (9-51) can be rewritten as

•kk = A* + B* Z C* (9-56)

Notice that equation (9-56) has a structure similar to that of an output feedback

problem, where Z is a free parameter to be chosen such the eigenvalues of Ak are stable.

However, since Ak is only a submatrix - namely, the (1,1) submatrix - of A*, the

corresponding submatrix in Eqn.(9-56) need be considered as an output feedback problem.

Thus a the free parameter Z which would guarantee a stable Ak will exist if and only if the

corresponding submatrix pair of (A*,B*) is stabilizable, and the corresponding submatrix

pair of (C*,A*) is detectable. More stringent conditions under which one could guarantee

the stability of K(s) are yet to be determined.

Besides stability, performance of the resulting closed loop system is an equally

important issue in controller reduction problems. Both Theorem 9.6, and 9.7 seem to

indicate that the choice of removable eigenvalues play an important role in the computation

of the parameters of K(s). One could employ one of several existing schemes, such as

balancing [31] and component cost analysis [45], to determine the "removable"

eigenvalues. Another way of approaching the optimization problem is as follows: one could

determine an optimal controller K*(s), using standard parametric optimization approach.
We could then select a K(s) which would best approximate the optimal controller by (say)

solving a suitable minimum norm problem. The arbitrariness of Z in equation (9-51) allows

us some flexibility in obtaining a stable K(s) that would result in a reduced order controller
which would best approximate the full order controller in terms of a specified performance.

9.3 Conclusions
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It has been shown that by introducing a static feed-through loop between the

measurement residual and the control signal, the order of a given observer-based controller

can be reduced while guaranteeing the stability of the closed loop system. This is achieved

by making some cigenvalues of the controller uncontrollable and/or unobservable. The

necessary and sufficient conditions for the existence of such feed-through loops have been

characterized, thereby parametrizing such loops. These results have been extended to the

case when K(s) is dynamic, however, stability of the resulting closed loop system is still

an unresolved issue. With the parametrization accomplished, problems can now be posed

to address the performance issues.
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CHAPTER 10

DOMINANT MODES OF MECHANICAL SYSTEMS

Recall from Chapter 9 that in order to incorporate the parametrization of order-
reducing K(s) in a design procedure requires the identification of poles that are to be
rendered uncontrollable and unobservable. This chapter deals with identifying modes of a
mechanical system that are dominant in an L.2 sense. Specifically, it considers obtaining a
reduced model of a stable mechanical system with proportional damping. Such systems can
be conveniently represented in modal coordinates. The popular scheme, Modal Cost
Analysis (MCA) of [61], offers a simple means of identifying dominant modes for
retention in the reduced model. In MCA, the dominance is measured via the modal costs.
Though this measure leads to simple computations, it does not exactly reflect the more
appropriate model error which is the L2 norm of the output-error between the full and the

reduced models. Normally, the model error is computed after the reduced model is
obtained, since it is believed that, in general, the model error cannot be easily computed a
priori. The main thrust of this note is to point out that the model error can also be calculated
a priori, just as easily as the modal costs. Hence the model error itself can be used to
determine the dominant modes. Moreover, the simplicity of the computations do not
presume any special properties of the system, such as small damping, orthogonal-
symmetry, etc. The development presented herein can be seen as a specialization of that in

[62], to mechanical systems.

10.1 Problem Formulation

Consider a time-invariant mechanical system, described in its physical coordinates
q, given below.

M 4(t) + D q(t) + K q(t) = B u(t) (10-1)

y(t) = Cq(t) + •Q(t)

where q e R', u e Rm, y Rk ; u is assumed to be a Gaussian white noise process with
unit intensity. Both the mass matrix M and the stiffness matrix K are assumed to be
symmetric and positive definite. The dissipation matrix D is assumed to arise from
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proportional damping (not necessarily small) such that the above system is asymptotically

stable. Under these assumptions, the model (10-1) can be equivalently expressed in its

modal coordinates as

ýi + 2rig^li + whi 9= bu ; i = 1,2,... n (10-2a)

y = i cii + c~) (10-2b)
iml

where o) and ýi are the usual iPh natural frequency and the corresponding damping ratio,

respectively.

When n is large, one is faced with the problem of model reduction to facilitate a

subsequent analysis and control design. Quite often, a reduced model of the system (10-

2a&b) is obtained by retaining some r modes of the total n modes - a process called herein

as a modal reduction. In order to produce an acceptable reduced model, the question that

needs to be answered is "which r of the n modes should be retained ?" Using the notation
N. for the integer set I 1,2,...,n), the issue in modal reduction is to identify an r-element

"reduction-set" Nzd C Nn, such that the following model

i + 2CjDj4i+ hi = bqu ; i C Nnd (10-3a)

Y, = 1: ( c'li +0i) (10-3b)

ieNn

would be an acceptable reduced model Defining the error e(t) between the full model (10-
2a&b) and the reduced model (10-3a&b) as e(t) = y(t) - Yr(t), an acceptable reduced

model would minimize the model error 8V defined below.

8V =Urn. E ii T(oY)e(o) d( 1(10-4)

10.2 Dominant Modes by Modal Cost Analysis

For an arbitrary system, not necessarily a mechanical system, the model error SV

associated with its reduced model is normally computed after the reduced model is

obtained. Consequently, obtaining an acceptable reduced model for such systems becomes

an iterative process. In order to simplify the reduction process, methods have been
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too differet critera instead of (104). One such method is the Component
Cost Analysis (CCA) of Skelton [45]. The CCA attempts to use the cost error AV defined

below, as its criterion for model reduction.

AV V- Vr, (10-Sa)

where

V = m EE1  YT()y(o) d, (10-Sb)

It

Vr =ru E (1. Jy7(a)yr() dj. (10-5c)

Now, the reduced models which are optimal in the sense of minimizing the model
error 8V, are known to satisfy the orthogonal property [46]S1 dit

(e,yr) = E({ E I eT(Y)yr(y) da) =0. (10-6)

Since the model error 8V can be expressed in terms of the cost error AV and the inner

product (e,yr) as given below

8V = AV - 2 (e,yr), (10-7)

it follows that the cost error is an appropriate criteria to use, provided the resulting reduced
model is known to be near optimal, if not optimal. Though the computation of AV is
simpler than that of 8V, it still requires the availability of the reduced model. In view of

this, the CCA employs the predicted cost error AV, defined below, for its model reduction

decisions.

AV- V-Vr, (10-8)

where Vr is a prediction of Vr . With xi defined as the (first order) state representing the ith

component, Vr is computed according to

Vr = Vi (10-9a)
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and where Vi , the Oib component cost, is defined as [45]

2 t-*- t do'XiCF
= n I a•'()YT(C 7 y)] x()(lO-9b)

Since the calculation of the component costs requires only the full model, the predicted cost

error AV can be computed before a reduced model is obtained.

The application of the CCA to models represented in modal coordinates, such as in
Eqs. (10-2a and b), is called the Modal Cost Analysis (MCA), see [61]. Therefore, modal

reduction by MCA chooses an Nred such that the predicted cost error AV is minimized.

Except under special cases, there is no guarantee that the predicted cost eor AV equals the
model error SV. It turns out that, for any choice of Nd, the corresponding 8V can be

computed just as easily as com-puting AV. Hence, one may use the more appropriate
criterion 8V for choosing Nd. These details are developed below.

10.3 Closed Form Expression for Model Error

Provided all the modes are observable and controllable, truncation of any mode

would affect the output y. To determine such affect, define

Vi = cinth+!,1li so that y = I Vi (10-10)
ieN.

and call •ir as the "ith modal-output." By defining the "truncation-set" N ff Nn - Nred,

the following expressions result:

e f I Vi (10-11a)
ie N.

8V- IX I (10-11b)

where

ij t+ E jj'(q) j(c) d;j i~j r Nn (01c

In the spirit of CCA, call TPij the cost-correlation between the modes i and j. Note that TIij
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measures the correlation between the i's and the j"h modal-outputs, and depends only on the
ilh and the jth modal data. The expression for computing IFi' for all ij e N, Iis given in

the next section. Given the modal data, these cost-correlations can be computed for all the
modes, and the model error 8V can be determined for any r-element reduction-set

Nred C Nn from the expression (10-1 ib). Notice that the model error can be computed a
priori by simple summation of appropriate I'Fiis.

Clearly, there are [n! / {r!(n-r)! 1] number of possible reduction-sets, of which one

will yield the smallest model error. To facilitate the selection of the best reduction-set,
construct an (nn) "cost-correlation-matrix" T whose (ij) element equals TWP, and define

n m

an operation TX: R(n-Im) -+ R for arbitrary n and m by .ZX(Z)= , , Z7j. Then, the
if1 j=1

cost-correlation-matrix possesses these properties for any Nd:

1) 8v = I.(ZC ) (10-12a)

2) V = I(T() (10-12b)

3) Vr = (10-12c)

4) (e,yr) = Z.(Pre,.) (10-12d)

5) Vi = T-(P) (10-12e)

where

= [r •ij; ij e Nt. ], an (n-rn-r) submatrix of TI, (10-13a)

Td= [Tij; ij e Nrd ], an (rr) submatrix of F, (10-13b)

Fretr= [ Pij; i eN , j e N]j an (r,n-r) submatrix of 'P, (10-13c)

( = [ij; j e Nn], an (1,n) matrix (i.e., ith row) for all i.(10-13d)

Notice that the fourth property of the cost-correlation-matrix allows one to determine a

subopfimality index [63] associated with the reduced model. This index can be used to

determine if the reduced model could be improved by further optimizations. It measures
how closely the orthogonality condition (10-6) is satisfied. The second and third properties
above provide means of computing the quadratic cost functions V and Vr associated with

the full and die reduced models, respectively. Moreover, the three errors, namely, the
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model error 8'V, the cost error AV, and the predicted cost error AV, are related through the

property (10-12d) as follows

AV 8 8V + 2ZZ('MP), (10-14a)

AV = 8V + Z.(%Im'r). (l0-14b)

Hence, unless IEZ(CP) - 0, modes determined as dominant based upon either the cost

error or the predicted cost error may not yield the smallest model error. Since the
expression (10-1 lb) is available for the computation of the model error for any choice of
Nrd dominance of modes can be established based on 8V itself. The disadvantage,

however, is in having to compute [(n-r)2-1] additions [n! / Ir!(n-r)! )] times.

Theorem 10.1: The expression for computing Wyfor all ij 6 Nn, is given below.

2  bT.T
= ~ ~ ~ ~ b X.1cc 'if.-c ~--J~~ (-15a)

tX/ij----CT X-[t~ -f.'c..3 ' %T' - + N]j]1

8ijij s

where

4 = (bibj) BiJ (10-15b)

Aij + wSij - 2ý•oisijAij

Aij = o2i- wj, and 8,j = 2ioi + 2ýjpj • (10-15c)

Proof: Defining the ilh modal states as xi = [ 1i 1 ], it follows from the definition of the
cost-correlation TP,. and the modal-outputs V. that

ij= Jm E x(o)CCjx~q j(d =l ratre{CjX 1ji, (10-16a)

where

ij •im E xi(o)xT(c) dal, (10-16b)
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C1 = [c1 i]. (10-16c)

The steady state correlation matrix between the ith and the jth modal states is given by

X!.l X;j2

Xj = 1  (10-17a)

where

Iij 
(10-17b)

Bii 8ij j

with X1 1 as defined above in Eqn.(10-15b). Substitution of the Eqs. (10-17a) and (10-

17b) into Eqn.(10-16a) completes the proof.

Expressions similar to (10- 17a &b) can be found in several references, see [64] for
example. The expression (10-15a) is valid for all i and j, regardless of whether the
frequencies are repeated or whether the damping is small. Of course, the expression
simplifies under special cases, as shown below.

a) If coi=.,, then 'Ij = 20b1+(bj) i+ .i

b) If mi o j, and both Ci, Cj -+ 0, then TIij A-- ({Tjcj-cT~j (10-18b)Aij

c) If Coi co- , and both Ci. -+ 0, thev *'j - b LcTcj+ 4Taj} (10-18c)

Note by the special case (b) above that for a lightly damped system (such as a flexible
space structure) with distinct frequencies and with either (i) biTbj = 0 for all i and j, or (ii)
gcj = 0 for all i and j, one obtains Pij -+ 0 for all j * i, and for all i. It therefore

follows from Eqns.(10-8,10-9a,10-1 lb,10-12b,10-12e) that Vi = !' fi, 8V = 'ii,

and 8V = AV. Hence, for systems satisfying these assumptions, reduced models
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obtained by MCA, which are guaranteed to minimize the predicted cost error AV, also
.minmz the model error 8V.

10.4 Examples

Two examples are provided now to show that reduced models generated as

suggested in this note will be at least as good as, if not better than, those produced by

Modal Cost Analysis. In both the examples, we begin with five modes and produce

reduced models of different orders. The reduced models are evaluated in terms of their

model errors, and the results are tabulated below. The two examples differ only in the

frequency of the second mode, and in the damping ratios (the damping ratios are assumed

to be equal for all the modes): in Example 1, co2 = 2, and C = 0.075; in Example 2,

0)2 • 1, and • = 0.005. The parameters common to both the examples are: co, = 1,

W3 = 9, (04= 16, 0o5 = 25, b1 = 0.9877, b2 = -0.309, b3 = -0.891, b4 = 0.5878,

b-z = 0.707, c1 = 0.9877, c2 = 0.309, c3 = -0.891, c4 = -0.5878, c5 = 0.707, and

=0 for aUl i.

Table 10.1 Model error comparison for Example 1 (o02 = 2, • = 0.075)

based on modal costs based on model error

r retained modes model error retained modes model error

1 (1) 6.727 le-03 (1) 6.727le-03

2 (1,3) 3.9368e-03 {1,2) 2.9686e-03

3 11,3,5) 3.8985e-03 11,2,3) 1.3641e-04

4 f 1,3,4,5) 3.7986e-03 (1,2,3,41 5.3301e-05

Table 10.2 Model error comparison for Example 2 (0o2 = 1, • - 0.005)

based on modal costs based on model error

r retained modes model error retained modes model error

1 (1) 5.013le-01 (1) 5.0131e-01

2 (1,3) 4.5809e-01 11,2) 4.5479e-02

3 (1,3,41 4.5663e-01 (1,2,3) 2.2557e-03

4 (1,3,4,5- 4.5583e-01 - 1,2,3,4) 7.9952e-04
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10.5 Conclusions

The quality of a reduced model is often computed through the model error. In
general this model error can be computed only after the reduced model is obtained. This
chapter points out that for mechanical systems represented in modal coordinates, the model
error can be computed a priori for any choice of retained modes. In fact, the computations

involved are just as simple as those needed for the general Modal Cost Analysis. When the
system is known to satisfy certain assumptions, it is shown that the reduced models
produced by Modal Cost Analysis, which minimize the predicted cost error, actually
minimize the model error. However, such is not the case in general. In order to facilitate the
selection of the set of retained modes that would actually minimize the model error, a cost-
correlation-matrix has been presented. The model error is computed by simple summation
of the appropriate elements of this matrix. Though the cost-correlation-matrix is constructed
from the given modal data only once, the computational effort may still become formidable
depending upon the number of the original modes and the number of the retained modes.
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11. CONCLUSIONS AND WORK FOR FUTURE RESEARCH

11.1 Conclusions

We revealed several important eigen properties of the stabilizing solutions for both
DGKF and GD paremeter dependent H-I Riccati equations. Among them, the most
prominent ones are: (1) p[X..()Y.(y)] is a nonincreasing, convex function of y on (A,+-).
(2) La[X(y)] is a nondecreasing, concave function of y on (x,+.). (3) R(y) is invertible
almost everywhere on (ax, +.). Based on these properties, quadratically convergent
algorithms were developed to compute the y.., the optimal H' norm, such that

p[X...(¥.)Y..(¥)] = Y2 and to compute 0, the infimum of y such that the two HI Riccati

equations have positive semidefinite stabilizing solutions. These algorithms are much faster
than the other existing search schemes.

In the proof of the convexity and monotonicity properties, especially for the general
case with D11 nonzero (i.e., the GD case), the H' Riccati Hamiltonains are very
complicated functions of y and hence make the investigation of the properties extremely
difficult In this report, several new decomposition techniques and some key intermediate
variables are employed to tackle the complexities.

The formulation of the standard H- optimization problem, an easy way of
constructing a state-space realization of the generalized plant, and a modified version of
Glover and Doyle formulas for constructing an optimal controller were addressed in the
report. No numerical difficulty will arise in constructing an H- optimal controller if we are
allowed a proper controller. In most applications, we may like to have a strictly proper
controller with limited bandwidth. In this case, a trade-off between the H- performance and
the bandwidth should be made by degrading the HI- norm from its optimum in order to
reduce the controller bandwidth.

Using higher order D(s) for curve fitting in the D-step of D-K iteration will give
better robust performance but higher order controller. In the fighter aircraft longitudinal
flight control pt-synthesis design example, we found that the higher order controller can be
easily reduced to the order of the plant by well known model reduction techniques like
balanced realization truncation or Hankel approximation without degrading much of the
closed-loop robust performance.

Controller reduction is important especially when a gain scheduling is required in

133



the implementation of controllers. In this report, we reduced the order of the controller with

maintaining the closed-loop input-output relationship in mind. Three approaches are

proposed to achieve this objective. The first is a structured truncation method in which a

structured transformation on the closed-loop system was used to minimize a cost function,

which is defined in terms of the controllability and observability gramians of the closed-

loop system. The examples showed that the structured truncation based on the closed-loop

controllability and observability gramians is quite appealing. For the general controller
other than the H2 optimal controller, this concept still works although the computation is

more complicated.

The second controller reduction approach proposed is developed based on the

observer-based controller parametrization. We showed that the poles of the closed-loop

system with the observer-based controller parametrization are the regulator poles, the

observer poles, together with the poles of the added stable parameter matrix. If the
controller is realized by a minimal realization, the closed loop poles will include all the

poles of the added stable parameter matrix and a subset of the regulator and the observer

poles. The parameter matrix is chosen such that the controller realization is non-minimal,

thereby permitting a minimal realization of the controller to serve as a reduced order

controller.

The basic concept of the third controller reduction approach is similar to the second

one. The difference is that the third approach employs the H- controller parametrization and

attempts to keep the H- norm of the reduced closed-loop system below a prescribed value

in addition to retaining the closed-loop stability. In this report we presented a direct design
algorithm for (n-p2)th order H- controller, where n is the order of the generalized controller

and P2 is the number of independent measured outputs. A set of equations were derived by

which a parameter matrix can be constructed such that the realization of the controller

obtained from DGKF formulas (7] is not minimal and the H- norm of the closed-loop

system is less than a prescribed value. By deleting the unobservable and/or uncontrollable
states of the controller, (n-p2)th order H- controller can be obtained.

11.2 Work for Further Research

Most of the plant uncertainties are structured. The uncertain system can be

reconfigurated as an M-A structure in which the uncertainties A has a block diagonal

structure and is separated from the rest of the system. A robust control problem can be

formulated as a minimization problem called pi synthesis problem (or structured singular

134



value design problem) based on the M-A structure. Although the p synthesis problem is a

practical formulation, the problem is very difficult to solve. The minimization problem is

not a convex problem and therefore no algorithm is available for searching for the global

minimum. Yet, an algorithm called D-K iteration has been employed in g-synthesis to find

a local minimum. In the future research, we will investigate the formulation of the g-

synthesis problem and the computational issues arising in solving the problem.

The order of the controller designed via lt-synthesis can be arbitrarily high. Based

on our preliminary observation, we found that the controller's order can be greatly reduced

to that of the generalized plant almost without deteriorating the closed-loop performance.

The theory behind this fact can be interesting. Controller reduction problem for gt-synthesis

controller is an important research problem.

The structured truncation method and H- controller parametrization are two

potential controller reduction tools for g-synthesis controllers. The structured truncation

method has been showed very effective in reducing the order of H2 controllers. It can be

also applied to H- and Jt-synthesis controllers, although the computations involved are

much more complicated. Some computational issues arising in this controller reduction

approach still remain unsolved.

In this research period, we have successfully found an easy way to construct a set

of an (n-p2)th order stabilizing controllers by H- controller parametrization. We also

established a group of equations by which an (n-p2)th order H- stabilizing controller can

be obtained. However, this group of equations in general are difficult to solve. More effort
is required in the line of this research.

Aircraft flight dynamics is nonlinear and flight-condition dependent. Our previous

research assumed that a local linearized model for each selected point inside the flight

envelope is available, and concentrated on designing a local linear controller for each
linearized model. In the future research, we will consider the full envelope design and
investigate the controller gain scheduling, i.e., the parametrization of these controllers in

terms of flight conditions.
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APPENDIX

oof fTearem 9.4: Write the state space pamneters of Q(s) as

A1 11  A ,12  B --
Aq = Aq~ AqJ ,B4  [B 12 ] (A-1)

where

Bq - Bj + (Bp-BjDp) (I+DkDp)"1Dk (A-2)

Bq2 = Bk [ I - Dp(I+DkDp)-'Dk ] (A-3)

Cql Cj - (I+DkDp)-IDk(Cp+DpCj) (A-4)

Cq2  = (I+IDp)-ICk (A-5)

Aqj = (AV-Bj¢C) + (Bp-BjDp)Cql (A-6)

Aql2 (Bp-BjDp)Cq2 (A-7)

Aq2 = - B4q2(Cp+DpCj) (A-8)

Aq22 - Ak - BkDpCq2. (A-9)

Let this realization be unobservable, and let Pq be the collection of eigenvectors

corresponding to the unobservable eigenvalues A,.. Then partitioning 'q as shown below,

the following equation must be satisfied-

Aq = q{Tj = TqA & Cq4 q = o. (A-10)

Substituting Eqn.(A-1) in (A-10) yields

AqllTIio + Aql2'Pk = TPoAuo (A-I1)
Aq2l'o + Aq22?Pk = 'kAu (A-12)

Cql'Po + Cq2?k = 0 (A-13)

After some algebraic manipulation, Eqn.(A-11) results in (9.43b), whereas, Eqns.(A-12)

and (A-13) respectively yield
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Ak'Yk - BkCp'Po = T~kAuo (A- 14)

Ck'Fk - DkCp'Po =- Cj'Po (-

These equations ame written conmpaty in Eqn.(9-42a).
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