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CHAPTER 1

INTRODUCTION

This document is the final report on the AFOSR supported research, "Design of
Robust Optimal Control Systems and Stability Analysis of Real Structured Uncertainties,"
(AFOSR Contract F33615-90-C-3613). The report summarizes our research progress in
the following problems: design of robust controllers via H= optimization, investigation of
the properties of the parameter-dependent H Riccati equation, fast computation of the
optimal H= norm, design of robust controllers via u-Synthesis, controller reduction by
structured trunction, a parametrization approach to reduced-order H™ controller design,
controller reduction via observer-based controller parametrization, and dominant modes of
mechanical systems.

H™ optimization theory plays a key role in many robust control problems such as
tracking and disturbance attenuation, mixed sensitivity minimization, model matching, and
p-synthesis [1-10]. One of the most elegant and efficient solutions to the H™ optimization
problem is the state space approach proposed by Doyle, Glover, Khargonekar, and Francis
{7] and Glover and Doyle [8]. As shown in [7,8], the major computation involved in this
approach is solving two y-dependent H™ Riccati equations. The parameter ¥ serves as an
upper bound of the H™ norm of the closed loop system. If, for a given v, the two H™
‘Riccati equations have positive semidefinite stabilizing solutions and the spectral radius of
the product of the two solutions is less than 42, then all stabilizing controllers can be easily
constructed from the plant data and the Riccati solutions. The dimension of the resulting
controller is not higher than that of the generalized plant and the H™ norm of the closed loop
system is less than .

In Chapter 2, we will discuss how to formulate a robust control problem as an H*
optimization problem and how to construct a state-space realization of the generalized plant.
For convenience, Glover and Doyle's suboptimal H™ controller formulas [8] will be briefly
reviewed. These suboptimal H™ controller formulas can be easily transformed into a
descriptor form such that an optimal H™ controller can be constructed without numerical
difficulties if the optimal H™ norm is known. The optimal H™ controllers, with very few
exceptions, have direct feed through terms and therefore infinite bandwidth. Hence, control




engineers may prefer strictly proper suboptimal H™ controllers to the optimal ones.
However, knowing the optimal H™ norm is important in determining which suboptimal
controller to be chosen in practical design.

Unlike the well-known LQG Riccati equations [11], the H™ Riccati equations are
parameter dependent and may not have solutions for some values of the parameter y. The
H™ optimization design can only be achieved by iteratively searching for the optimal H™
norm, which is the smallest ¥ such that an H™ controller exists. This search is the major
computational burden in H™ design, and bisection method has been widely used in the
design procedure. As it is known, the bisection method converges slowly and therefore is
inefficient. To improve the convergence rate, we need to develop a more efficient search
scheme which may require a better understanding of the H™ Riccati equations.

To investigate the properties of the two H™ Riccati equations, first of all in Chapter
3 we will consider a special case with which the D) matrix of the generalized plant is
assumed zero. With this assumption, the two H™ Riccati equations are greatly simplified.
We will investigate the structure of the y-domain where the H™ Riccati solutions exist
and/or positive semidefinite, and reveal some useful properties of the Riccati solutions on
the Y-domain, such as continuity, monotonicity, and convexity with respect to y. By these
properties, quadratically convergent algorithms can be easily developed to compute the
optimal H™ norm of the closed-loop system.

The assumption that the D;; matrix of the generalized plant is zero can hardly be
satisfied by many practical problems. In the general case with D;; nonzero, the H™ Riccati
Hamiltonains are much more complicated functions of y than those in the special case and
hence make the investigation of the properties extremely difficult. In Chapter 4, several
decompositions and some key intermediate variables are employed to tackle the
complexities and to show that the monotonicity and convexity properties also hold for the
general case. Based on these properties, a quadratically convergent algorithm can be easily
developed to compute the optimal H” norm. The algorithm is presented in Chapter 5.

In Chapter 6, a fighter aircraft longitudinal flight control design problem is used to
demonstrate an application of p-synthesis technique. With the robust controller obtained,
simulations and analyses are performed on the closed loop system. For the example we
considered, the order of the p-synthesis controller can be reduced to that of the plant
without degrading the performance.




From Chapters 7 to 9, three controller reduction approaches are presented. A
controller reduction approach based on the closed-loop controllability and observability
gramians is proposed in Chapter 7. The motivation is to retain the input/output relationship
of the closed-loop system while the order of the controller is reduced. A structured
transformation on the gramians is employed to achieve this objective.

In Chapter 8, a parametrization method is proposed for reduced-order H= controller
design. By using the state-space H™ optimization approach, one can characterize the set of
all (sub)optimal controllers in terms of a parameter matrix. It is shown that there always
exists a suitable parameter matrix such that a reduced-order H* controller can be
constructed. The procedure for obtaining such a parameter matrix is also presented in this

chapter.

In Chapter 9, the reduced compensator design issue was tackled from an observer-
based compensator point of view. It develops two properties related to observer based
controller parametrization and pole placement. It shows that the poles of the closed-loop
system with the observer-based controller parametrization are the regulator poles, the
observer poles, together with the poles of the added stable parameter matrix. If the
controller is realized by a minimal realization, the closed-loop poles will include all the
poles of the added stable parameter matrix and a subset of the regulator and the observer
poles. It also points out that there exist parameter matrices which would render the
controller non-minimal, thereby yielding reduced order controllers. Such order-reducing
parameter matrices - both static and dynamic - have been characterized herein. With such a
paramctrization available, one could then choose a K(s) in order to best approximate large
order controllers, such as the H* compensators, by a lower order controller.

Incorporating such a parametrization in a design procedure requires the
identification of poles that are to be rendered uncontrollable and unobservable. Part of the
research has focused on this issue. In particular, we have developed a means of identifying
dominant modes of mechanical systems based on an L, norm which is summarized in
Chapter 10.

Chapter 11 is the conclusion. The work for future research will also be briefly
described in Chapter 11.




CHAPTER 2

FORMULATION OF H” CONTROL PROBLEMS

2.1 The H* Optimization Problem

Most control problems can be formulated as the following H= optimization
problem. A detailed procedure of the formulation will be discussed in Section 2.3. In the
H> optimization problem formulation, the system under consideration is described as

follows,

[Z(S)] G,® G, [V(S)] 6® [V(S)} 1)

= = S -
y(s) G, (8 G ()] Lu®s) u(s)

where Gy (s) € R(5)P™™, Gp(s) € R(5P™™2, Gyy(s) € R(5)P™™, and Gpy(s) €
R (s)"2 ", R(s)"is the set of pxq proper rational matrices with real coefficients. In (2-
1), z, y, v, and u are the controlled output, the measured output, the exogenous input, and
the control input respectively. The controlled output vector z usually includes the error
signal and a weighted control input. The exogenous input v contains the disturbances, the
noises, and the commands. The measured output vector y consists of all the signals which
can be measured and available for feedback. Through the control input u, the behavior of

the system can be modified. The vector y will be used as the input to a controller K(s) and
the output of K(s) will be connected to the control input u. That is,

u(s) = K(s) y(s) . (2-2)
The standard H™ optimization problem is the problem of finding a proper controller K(s)
such that the closed-loop system is internally stable and | F ,(G.K) 1I_ is minimized where
F 4(G.K) (s) = Gy1(s) + Gyo(s) K() [ 1 - Gpo(s) K(s) 1 ¥ Gy (5) - (2-3)
That is, F 4(G,K) (s), the lower linear fractional transformation, is the transfer function of
the closed-loop system from v to z.
Let




G@s) =|C 2-4)

12

L -
be a realization of the generalized plant G(s) and A € R™".

In [8), Glover and Doyle assume that the realization of the generalized plant G(s) is
given by (2-4) with the following assumptions.
() (A, By is stabilizable and (C,, A) is detectable.
(@) rank D, = my, rank Dy, = p,.

0
(‘1ii)D12=[I], D,, = [0 I], and Dy, is partitioned as

[ Dllll Dlll2

1121 1122

(iv) Dy, =0 (this can be removed, for details please refer to [8) ).

jol-A B, ]
rank =n+ vV oeR.
A IR Y
[ jol-A B, |
(vi) rank =n+p, v ocR.
L C2 D21_

Define two Hamiltonian matrices as follows,

A 0 B o T
= - R [D C, B 2-
H.(%) -C‘:'Cl . AT _C':'Dl. lo—1 ] (2-5a)
and
AT 0 c 1,
I == I r [R [D.IBT C] (2-5b)
BB, -A| | -BD,
where
D =[D, D D, = Pu (2-50)
1-"[ 11 12]’ o D21 ’ ‘
and




1. 0 _ 1. 0
R = D}'ODIO -[ Yz = ] » R = DolD-fl -[ 72 ol ] . (2‘5d)

0 o0 0 0

Then the following theorem shows an easy way to construct a suboptimal stabilizing
controller such that IIF (G, K)Il | <y where F 4(GX) is the closed-loop transfer matrix

fromvto z.

Theorem 2.1: [8]
There exists a stabilizing controller such that IF »(G,K)li_ < if and only if the
following three conditions hold.

) 7>m"‘(8[D1111 D1112]~ G[D'll.lll DTuzx]) (2-6a)
(i) H.(y) € dom(Ric) and X..(y) := Ric[H.(Y)] 20. (2-6b)
(iii) J.(y) € dom( Ric ) with Y.(7) = Ric[J(1)] 2 0. (2.6¢)
(iv) pIXMNY(M] <2 (2-6d)
Moreover, when these conditions hold, one such controller is
Ay | By R
K, () = [ | ] (2-72)
[ | o]
where )
T T -1
D, = 'Duleuu(?2I “Dy11iPiny) Pz ~DPa (2-7v)
Cy = {F,-Dy(C,+F, ))}Z 2-7c)
B,=-H, + (B,+H,,)D, 2-76)
A= A+I-IC+(B2+P112)Ck 2-7¢)
Z = (1-72yx)* (2-7)
F=[F], F}, Fj|=-&B+CD,)R" @7g)
T T ~1
H=[H, H, H,] =-(YC+B,D )R @-7h)

and Fll € R(ml.pz)xn, F12 € szxn, F2 € Rmzxn, Hll € RnX(Pl-mz), le € Rnxmz,
Hz € -Rnxpz.




In the above theorem, condition (ii) means that there exist positive semi-definite
solutions X and Y to the algebraic Riccati equations corresponding to the Hamiltonians
H,.(y) and J_(y) respectively. Condition (iii) means that the spectral radius of XY is less
than 2.

The above theorem provides an easy way to construct a stabilizing suboptimal
controller such that lIF ,(G,K)ll_ <. The order of the suboptimal controller can be the
same as that of the plant G(s). The major computation involved is the solution of two H*
Riccati equations which are easy to solve if solutions exist.

Theorem 2.1 can also be used to compute the optimal H* norm and to construct an
optimal H* controller. Algorithms for computing the optimal H* norm will be discussed in
Chapter 4 and the construction of an optimal H* controller will be given in Section 2.2.
Section 2.3 will explain how to formulate a robust control problem as a standard H™
optimization problem.

2.2 Construction of Optimal H~ Controllers

The optimum can occur in three cases. In case (1), the optimum occurs at the
smallest y such that the two H> Riccati equations have stabilizing solutions X and Y, i.e.,
these X and Y happen to be positive semi-definite and p(XY) < 2. Case (2) occurs when
Y=0 (or X=0) for all y and the optimal H™ norm is the smallest ¥ such that X (or Y) is
positive semi-definite. The most likely one to happen most of the time is case (3) in which
the optimal H™ norm is the 7y such that the two H* Riccati equations have positive semi-
definite stabilizing solutions X and Y and p(XY) = ¥2 where p(XY) is the spectral radius of
XY.

From Theorem 2.1, a suboptimal H* controller can be easily constructed.
However, as Yy approaches to the optimum we will encounter the inversion of a singular
matrix except case (1) which seldom occurs. To eliminate the numerical difficulty, Safonov
et. al. [12] rederived the optimal controller formulas in a descriptor form (or generalized
state-space representation).

The formulas in (2-7a) - (2-7h) can also be written in a descriptor form after slight
rearrangement. We will firstly consider case (3) which occurs much more frequently than
the other two cases. When 7y reaches the optimum, ?,, which satisfies %= PIX(Y,) Y(Y)1,




the matrix Z in (2-7f) will become infinity since the matrix I Y (y,)X(¥,) is singular. If we
try to apply the formulas (2-7a) - (2-7h) directly to construct an optimal H* controller, a
numerical difficulty will arise in the implementation of the A, and C, matrices. We will
rearrange these formulas such that an optimal H* controller can be constructed without any
numerical difficulty.

The dual system of the realization in (2-7a) can be easily rewritten in a descriptor
form. The state equation (generalized state equation) of the descriptor representation can be
split into two set of equations: one involves first derivative of some state variables and the
other is just an algebraic equation. The state variables which have no derivative in the
equations can be eliminated and then we have a lower order state space representation for
the dual system. The dual of the dual system is identical to the original and therefore we
have an optimal H* controller as follows:

K,_,(5) A | B | 2-8)
s) = -
A [ | D, |
where
A, = [ VIApU, - VIAQU, (VIApUp' VIAQU, | 2 (2-92)
B, = VIBp- VIApU, (ViApUy) VIBp (2-9b)
C. = [ CpU; - CpU, (V3ApUy) VAR, 15 (2-9)
D, = D, - CpU, (V1ApU,)' ViBy 99
and .
BD = -Hz + (Bz + HIZ)Dk (2-108)
Cp = Fp- D(C, +Fpp) (2-10b)
AD = (B2 + le) CD + (A +HC) ED (2-10c)
Ep = I- 15 X()Y(r) (2-10d)

2, U}, Uy, V4, and V, are obtained from the singular value decomposition of Ep, i.e.,

- =)

(2-11)

-3

SO N

(8

Similar procedure can be used to construct optimal H* controllers for Case (2) and




the formulas in Theorem 2.1 can be used to construct optimal H* controllers for Case (1).

2.3 Formulation of H~ Optimization Problems

Many control problems can be formulated as the standard H* optimization problem.
For the purpose of demonstration, two examples are given in the following. The first is a
mixed-sensitivity optimization problem; the second is a disturbance reduction problem with
measurement noise.

A. Mixed-Sensitivity Optimization Problem

Consider the following system:
y(s) = P(s)u(s) + v(s) (2-12a)
u(s) = K(s)y(s) (2-12b)

where v(s) is disturbance, y(s) is output and K(s) is controller to be designed. It is well
known that a smaller II(I-PK)'IH“ means a better disturbance attenuation, whereas a smaller
WPK(-PK)! Il _ implies a better robust stability. Unfortunately, the H™ norms of (I-PK)’!

and PK(I-PK)! may not be made small at the same time. If we make one of them smaller
then the other will become larger. To have a trade-off between these two quantities,
Kwakernaak [3] formulated the mixed-sensitivity problem as the problem of finding a
controller K(s) which stabilizes the closed-loop system and minimizes IiDll,_, where ® is
given by
W,(-PK)"
oD =

W_PK(-PK)" @13

W, and W, are weighting matrices chosen by the designer according to the concrete

situation. In other words, they depend on the characters of the disturbances and system
uncertainties. Usually, the disturbances occur most likely at low frequency, therefore
Wi(s) is chosen to be a low-pass filter to emphasize the error energy at low frequency. The
plant uncertainty is also frequency-dependent; the higher the frequency is, the larger the
uncertainties become. Hence, W,(s) is usually chosen to be a improper transfer function
(but W,P(s) has to be a proper transfer function), which is analytic in closed right half
plane. In the following, we assume that W (s) is strictly proper, W(s) is a polynomial
such that W,P(s) remains proper and both of them are analytic in closed right half plane.




The problem of finding a K(s) which stabilizes the closed-loop system and
minimizes lidil_ can be rearranged into the standard H* optimization problem. Consider the

following system:

2, W, | W,P
=10 {wpP|[]|" (2-140)
4L 2 "
y I P
u=Ky (2-14b)

It is easy to show that the matrix @ defined by (2-13) is just the transfer function from v to
[le zz'r ]'r of the closed-loop system (2-14). Comparing (2-14a) with (2-1), we can see

that
WP
lwel’
(2-15)

G, =1, G,, = P.

Q
\
—
k-
—
2
[
|

If P, W,P, and W, have state-space realizations as follows

Ap | By Ap | Bp As1 | Bwy
P - WP - W, - @2-16)
G D G| Dwz ]|’ Co1 | Dw1

Then the generalized plant G(s) has a state space realization as shown in (2-4) with

|: Ap 0 ] [ 0 ] [ BP ]
’ 1 ’ 2
BwlCP Awl B"l BwlDli'

DwICP cwl : le leDP
C= c o |’ D,= v Dpp= D
w2 0 w2

C,=[G 0], D, =1, Dy = D, @2-17)

Note that because W, is a polynomial, the A-matrix of W,P is same as that of P.

B. Disturbance Reduction Problem

10




g L0 L) T‘@‘?
1

W,y(s) K(s) [¢—O e~ W,(s)|e— n
Z, u y

Fig.2.1 A disturbance attenuation problem

Consider the feedback system shown in Fig.2.1. P(s) is a given plant, W;(s),
i=1,2,3,4 are weighting matrices, and K(s) is the controller to be designed. The
disturbance and noise are the outputs of W3 and W, driven by d and n respectively. z; -
the weighted error response; z, is the weighted control input. Let 2l = [le zzT]T, vi=[a
n]” and assume that v is unknown but with its energy bounded by unity. The objective is
to find a controller K(s) which stabilizes the closed-loop system and minimizes the worst
lizll,, i.e., minimizes the H* norm of T,,, the closed-loop transfer function from v to z. T,

is given by
W,P(-KP)'W, W PKI-PK)'W,
T, =

: : 2-18
W,KP(-KP)'W, W,K(-PK)'W, @19

Note that W;PK(I-PK)-1W, and W,KP(I-KP)-1W,) are the output and input
complementary sensitivity functions. Their H* norms indicate the stability robustness of
the closed-loop system for the multiplicative plant uncertainty introduced at the output and
input respectively. W,K(I-PK)-1W, is the control complementary sensitivity function
whose H* norm indicates the stability robustness of the closed-loop system for additive
plant uncertainty. Hence, reducing lIT,, I, will also improve the robust stability of the
closed-loop system.

It is easy to verify that the generalized plant of the system can be expressed as:

z, WPW, o |WP][4a
21| 0 01w iIn 2-19)
y pWw, w, | p J|lu

That is,
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WPW, 0 WP
G, = ’ G,, =
0 0 W,
= P.

(2-20)
G, = [Pw3 w4], . G,,
If P, W;, i=1,2,3,4 have state-space realizations as follows:
A, | B [Awi |Bys |
P= ,,'|, W = — i=1234 @-21)
L G DPJ LC"i D"i.

Then the generalized plant G(s) has a state space realization as shown in (2-4) with

A 0 0 BC, 07 [ByD,; 0] R
A=IB,G A, 0 B,D,C,; 0] B=|B DD, 0| B=|B,D,
0 0 A, O 0 0 0 B,
0 00 A, 0 B, O 0
L 0 0 0 0 Ay, . 0 Bul, L 0
-
C » DG Cui 0 D,DC,3 0 D. - D,DD.; O D = DD,
10 o0 ¢c, o 0] “u” B

0 0

C2=[CP 0 0 DC, Cw4]’ Dy =[Dpr3 Dw4], D,,=D,. (2-22)

Above {A,B,C,D} is the state-space representation for the generalized plant G(s).

D,,

12




CHAPTER 3

STRUCTURE OF THE y-DOMAIN FOR THE
DGKF H™ RICCATI SOLUTIONS

3.1 Imtroduction

The major computational burden involved in the two y-dependent H™ Riccat
equation approach is the computation of the optimal H™ norm. To develop efficient
algorithm for computing the optimal H™ norm, it is necessary to investigate how the Riccati
solutions vary as a function of the paramter ¥.

There have been several attempts to address these issues. Pandey et al.'s hybrid
gradient-bisection method [13] and Chang ez al.'s double secant and bisection method [14]
were proposed for the computation of the optimal H™ norm. In these two papers, a
conjecture was made that the spectral radius of the product of the two Riccati solutions is a
convex function of 2. Base on this conjecture, improved search schemes were developed.
However, since there was no proof for this conjecture, bisection was used in these two

algorithms as a supplement to guarantee convergence. In [15], Scherer considered the
inverse of the H™ Riccati solutions, defined a new independent variable p = 2, and

showed that these inverses are concave functions of | in matrix sense. Based on this fact, a
Newton-like algorithm was proposed to compute the optimal H™ norm when an appropriate
starting point is available. The convexity of the spectral radius of the product of the two
Riccati solutions with respect to y was first shown by Li and Chang [16]. With this
convexity property, the optimal H™ norm can be easily computed by a quadratically
convergent algorithm if an appropriate starting point is available. However, it is not trivial
to obtain such a starting point that can guarantee the convergence. Furthermore, no general
and rigorous analysis is available for the y-dependent H™ Riccati equations.

In this chapter, we investigate the structure of the y-domain where the H™ Riccati

solutions exist and/or positive semidefinite, and reveal some useful properties of the H™
Riccati solutions on the y-domain, such as continuity, monotonicity, and convexity with
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respect to Y. These results provide a better understanding of the state space approach to H™
optimization problems. Beside their theoretical value, these properties can be employed to
develop efficient algorithms for partitioning the y-domain, finding the smallest ¥ such that
the two Riccati solutions are positive semidefinite, and computing the optimal H” norm.
The chapter is organized as follows. Section 3.2 lists the notations and reviews
preliminaries. In Section 3.3, we investigate the structure of y-domain of the H™ Riccati

solutions. The continuity, monotonicity, and convexity properties of the Riccati solutions
are discussed in Section 3.4.

3.2 Notations and Preliminaries

R The set of real numbers.

R, The set of positive real numbers.
inf(S ) The infimum of the set S.

sup(S) The supremum of the set S.

¢ The set of mxn matrices whose entries are complex numbers.
R™%s) The set of mxn transfer matrices.

1 Identity matrix.

I, n-dimensional identity matrix.
ATorA' Transpose of a matrix A.

A* Conjugate transpose of a matrix A.
G (s) GT(-s).

A0 A is a positive semidefinite matrix.
A>0 A is a positive definite matrix.
AMA) An arbitrary eigenvalue of A.
A(A) The ith eigenvalue of A.

Amax(A) The maximal eigenvalue of A.
Amin(A) The minimal eigenvalue of A.
p(A) " The spectral radius of A.

14




Omax O G The maximal singular value of A.

A® The matrix A is considered as a function of e R ..

AW The first derivative of A(y) with respect to v, i.c., %-7(-7—)

- o . . d?A(Y)
A®) The second derivative of A(y) with respectto v, i.e., —Ci’—Yz— .
A The first derivative of A"y, i.c., %(A'I('Y)).

o0 2 -
A1(3) The second derivative of A’l(y) with respect t0 ¥, i.c., Ed?(A ‘o).

A B
Throughout the chapter, the notation P(s) = HT] or P(s) = {A,B,C,D}is

used to represent a state space realization of a system whose transfer function is P(s) = C(sI
- A)'!B + D. The H™ norm of P(s) is defined as

Pl = sup G [P(jw)]

Many control problems can be formulated as the following standard H=
optimization problem. In the standard H* optirnization problem formulation, the system
representation is rearranged as follows.

G .(s) G_(s)
[z(s)] _[ u® G [w(s)] _ G(s)[w(s)] o

)]~ (G, ® G,® | [ue u(s)

where z,y, w, and u are the controlled output, the measured output, the exogenous input,
and the control input respectively. The controlled output vector z usually includes the error
signal and a weighted control input. The exogenous input w contains the disturbances, the
noises, and the commands. The measured output vector y consists of all the signals which
can be measured and available for feedback. Through the control input u, the behavior of
the system can be modified. The vector y will be used as the input to a controller K(s) and
the output of K(s) will be connected to the control input u. That is,

u(s) = K(s) y(s) (3-2)

The standard H™ optimization problem is the problem of finding a proper controller K(s)
such that the closed-loop system is internally stable and Il T,, Il is minimized where
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Tow(s) = Gy1(5) + Gy2(5) K(s) [ 1 - Gpo(s) K(s) ] ! Gy (s) (3-3)

That is, T, (s) is the transfer function of the closed-loop system from w to z.
Let a realization of the generalized plant G(s) be

A B
G, G, _ L2 ]
G(s) = 1 0 D, 34
Gn(s) Gzz(s) D,, 0
with the following assumptions:
(1) Both G,,(s) and G,;(s) have no transmission zeros on the jw axis. (3-5a)
(ii) (A, B,) is stabilizable and (C,, A) is detectable. (3-5b)
@) D,,[C; D] =10 1] (3-5¢)
B
1 ' 0
o[, el
21
The two Riccati equations involved in the state space approach are:
A'X.+X.A+X.(Y’B;B -B;B,)X.+CC1= 0 (3-62)
and
AYo+ Y. A'+ Y. (Y2CC1- CC2) Yo+ ByB, = 0. (3-6b)

The following theorem by Doyle et. al. characterizes all suboptimal stabilizing
controllers such that | T, Il_ <.

Theorem 3.1: [7] There exists a stabilizing controller such that IIT,,ll,, < vif and only if
the following three conditions hold:

(i) There exists a positive semidefinite stabilizing solution X_(¥) to (3-6a).

(i) There exists a positive semidefinite stabilizing solution Y,(y) to (3-6b).

(i) PIX.DY.) <P

When these conditions hold, one such controller is

A | -ZL
I_(ut(s) =

where
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Ak = A+ ‘Y-zBlB;x__ + BzF + ZLC2
F=-BX., L=-Y.C, E=(1-y2Y.X.), Z=(I-y2Y.X.)"

The major computational task of H™ design is to solve the two Riccati equations,
€q.(3-6a&b). From [7], the stabilizing solution X_ and Y. can be solved via their
corresponding Hamiltonian matrices

A ¥’BB-BB,

H.(= (3-7a)

-C,C, -A’
A y‘zc'lcl- C,C,
IO = , . (3-7b)

-B lB1 -A

T
1
T.= l:TJ (3-8)

be a modal matrix for H_, corresponding to all the eigenvalues on the open left half of s-
plane, then

Namely, if we let

X.=T,T}, (3-9)
is the unique stabilizing solution o eq.(3-6a) such that (¥°B,B, - B,B, )X.. is stable [1,7].
It is well-known [7] that the stabilizing X, exists if and only if (1) H,, has no jw-axis
cigenvalues, and (2) T, is invertible. These two conditions are called stability condition and
complementary condition respectively in [7]. We have the same arguments for Y.., the
stabilizing solution to eq.(3-6b).

3.3 Structure of the y-Domain o H™ Riccati Solutions

It is well-known that for the standard LQG Riccati equations [17], positive
semidefinite stabilizing solutions exist if the system is stabilizable and detectable.
Unfortunately, the H™ Riccati equations are more complicated because they are parameter
dependent and their quadratic-term coefficient matrices may not be sign definite.

For a sufficient large v, a suboptimal H™ controller always exists. This is due to the
fact that as y—ee, the H™ Riccati equations eq.(3-6a&b) become the standard LQG Riccati
equations (the quadratic terms become sign-definite), therefore both X_, and Y., exist and
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are positive semidefinite. Meanwhile, since 7 is sufficiently large, the third condition of
Theorem 3.1 is also satisfied. However, as Y decreases, the three conditions of Theorem
2.1 may not hold any more. For instance, X, may not exist or fail to be positive
semidefinite for some small . Thus the following problems arise:

1. How small the Y could be such that the Riccati equations have stabilizing solutions?
2. What is the structure of y-domain where the solutions exist?
3. How to compute the optimal ¥, which is defined as

Yop = inf {7: all the three conditions of Theorem 3.1 hold}.

We will answer these questions by starting the investigation of the structure of y-
domain for X_(Y).

Theorem 3.2: If we define
o, :=inf {Y:ye R, and X_(y) exists}
B, :=inf {y: ve R, and X_() is positive semidefinite},
then we have the following results:
a) On (a,, +), X_(Y) is well defined almost everywhere;
b) On (B,, +0), X_(¥) is well defined and positive semidefinite everywhere;
¢) a,< B,

Fig.3.1 gives an illustration for the theorem. One can see that the y-domain for
X..(Y) consists of three parts which are bounded by o, and B,. For any y in Region c,
X_.(Y) is positive semidefinite; whereas in region a, X_(Y) does not exist at all. In Region b,
although X_(7) is not positive semidefinite, it exists everywhere except for some possible

isolated points.

Region a Region b Region ¢
0 il |
0y Bx

Fig. 3.1 y-domain of X_(¥).

In order to simplify the proof of Theorem 3.2, we will, without loss of generality,
strengthen the assumption on (C,, A) from detectable to observable. To show that this can

be done, we assume that (C,, A) is not observable. Then one can always restrict the
problem inito the observable subspace by finding an orthogonal matrix [18)

U=[U; U;] (3-10)
18
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such that

U,AU, 0
UAU=| |, , . (3-11)
U,AU, ULAU,
UB, UB,
UB=|_, N 3-12)
UZBI U2B2
and
ClU = [ClUl 0] (3'13)

with (C;U), U,AU;) observable. It is easy to verify that the solution to eq.(3-6a) can be

expressed as
Xy O
x..('Y) =U 0 0 U', (3'14)

where X(Y) is the stabilizing solution tc the eq.(3-6a) with (A, By, By, C,) replaced by
(U'IAUl, U'lBl, U'le, C1U)). Note that, since the matrix U in eq.(3-14) is independent
of v, X..(Y) exists if and only if X(y) does, and X..(y) is positive semidefinite if and only if
X(y) is. Hence, in the following, we will assume that (C,, A) is observable and use Xu.(y)
and X(7) interchangeably without loss of generality.

To prove Theorem 3.2, we need the following lemmas.

Lemma 3.1 [7]): The stabilizing solution to the H™ Riccati equation eq.(3-6a) can be
written in terms of two LQG Riccati solutions:

X WM =X[X,- W) I'X,, (3-15)
where X5, is the stabilizing solution to:
A'X; + X5A - )(2132B'2 X, + C'1C1 =0 (3-16)
and W() is the stabilizing solution to:
‘ ' S PRI | . '
(A-Bszxz)'W + W(A'Bszxz) + WX, ClClX2 W +y 2X2B1131X2= 3-17)

whose corresponding Hamiltonian matrix is
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1 -1 -1
o= (A-BzBZXZ) X2 ClC lX2
: .1f2)(

2Blle2 '(A'Bszxz) '

(3-18)

Since X_(y) can be expressed in terms of W(Y) and a constant matrix X,, the
properties of X_(y) can be derived from those of W(y). Lemma 3.2 describes the y-domain
of W(Y), and Lemma 3.3 shows some useful properties of W(Y).

Lemma 3.2: There exists a positive number a,, such that W(y) is well defined
everywhere on (@, +o), and W(y) does not exist on (0, o).

Proof: First of all, it is claimed that all the jo-axis eigenvalues of H_ () are identical to the
jw-axis transmission zeros of the transfer function

LG, 1) =¥ - GL(5)G, (5) (3-19)
where
G,(5) =B Xsl Is- (A-BB,X)1'X,C:=Cl1s-AT'B. (3-20)

This can be shown by the following derivations:

A ) - A B
Is=1y-
gl o & ]lo
_ b LN -r—L- - _
A 8 A B il s
=I¥- &0 -A =[&¢ -A| 0 |=
~ - ¢ | b
o B o 0 B n?_ | ]
Furthermore,
i-soc|.est| | A YBE| 1B
rey=— —=l-¢t Ao @3-21)
bec | D -
— =~ Lo 8| K
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By the similarity transformation

[IYI ]
T= ,
Iy

we have
r' =]
A Bf] v8
Fep= TS A 0 (3-22)
o T8 hr:

The last equation shows that { H_(7), [YICIX'zl 01, [0 Y‘CIX';], Fy? } is a realization of
l'"l(s, 7). Since ﬁ = (A-B_B X ) is stable, by applying PBH test [19), it is clear that on the

222
jo-axis we have
[ A AN 14 A 14
ik A-Is BB ¢B A-Is 0 ¥B
= rank = 2n;
| y20C A o0 4%CC AL 0
-
A BB [ Als 0
i [ 7RE Arts | oy | 4EE As |
0 'lﬁ' 0 ’lﬁl
| Y Y

This implies that the above realization is both controllable and observable on the jw-axis.
That is, the realization does not have pole-zero cancellation on the jw-axis. Hence, the set
of the eigenvalues of H,(y) on the jw-axis is identical to the set of the jw-axis poles of

l"l(s, 7), which in turn is identical to the set of the jo-axis transmission zeroes of I'(s, ¥).

Next, we claim that if there exists a 7y, such that I'(s, ;) has transmission zeros on
the jw-axis, then I'(s, 7) will have transmission zeros on the jw-axis for any e (0, v,]. To
prove this, one just needs to note that G_(s) is a strictly proper transfer function and
therefore it goes to zero, as  — +o0. Hence, for any ¥ <7,, there always exists an o such
that I'(jo, v) is singular. For instance, in Fig.3.2, we can see that if I'(s,y;) has a
transmission zero at jo,, then for any Y, <Y,, there exists an ®, such that jo, is a
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transmission zero of I'(s, ¥).

6(G, (o)~

0 o o @
Fig. 3.2 The jw-axis transmission zeros of I'(s, ) occurs at the frequencies
such that Y= 6(G,(®)).

These two claims imply the fact that if there exists a Y, such that H_(y) has jo-axis
cigenvalues, then H_(y) has jo-axis cigenvalues for any ¥ less than ¥y,. Therefore, if we
define

o, = inf {y: H, () has no joo-axis eigenvalues}, (3-23)

then it is easy to see that H () has jw-axis eigenvalues for any ye (0, o) and has no jo-
axis eigenvalues for any ye (@, +0). '

Finally, since A-BZB'2X2 is stable and H_,(Y) has no jo-axis eigenvalues for any
Ye (o, +20), then W(y), the stabilizing solution of H_ (), exists for any ye (a.,,, +2°) [20].

T_hus, we complete the proof.

From the above proof, it is easy to see that the a, defined in (3-23) can be
expressed by the H™ norm of a known transfer function:

oy, =1 G (s) I, (3-24)
where G_(s) is defined in (3-20).

Lemma 3.3: On (a,, +°),
a) W, := dW/dy <0, W, = @*Wiy 20;
b) all cigenvalues of W(y) are analytic, nonincreasing functions of ¥,
c) W(¥)20.




Proof: Since W(Y) is an analytic function of Yy on (a,,, +0), it is well-known [21] that, by
appropriate ordering, the eigenvalues {A;} and eigenvectors {v;} of W(y) are analytic
functions of y on (a,, +°) such that MA;-W(Y))v; =0, i =1, 2,--, n. Rewrite Riccati
equation (3-17) as:

Aw+wWA+WBBW+plt=0 (3-25)
where p =72, A=ABBX , 8 = x'z’c'1 and &= B'X,. Differentiating the above

equation with respect to 4, we have the following Lyapunov equation:
A+BBwWyw, + W,A+B88w) + C€=0 (3-26)
dw A . . . .
where W, ="5,,". Because A + BB'W is stable, it can be inferred that W, 20 and W, is

the unique solution. Continuously differentiating eq.(3-26) with respect to u, we have

W2 0, where W= Qz%" By using the chain rule of differentiation, it yields
dy

AW 3
W, = &y - w, = 2Yy"W, <0 (3-27)
d2W 3 .
and W”f:_dyz = 6Y W, +4y°W,, 20. (3-28)
Now let us consider equation
@ - Wyv =0, (3-29)
where A is any eigenvalue of W and v a corresponding eigenvector. Differentiating eq.(3-
29), we have -
. v v
A =—7F<0, (3-30)

since W.{ <0. Thus we proved part b).

Part c) is a direct consequence of part b). Since
ABBX) X'ccx!
(A- 2277 Mt

0 -(A-BzBZX 2)

H w(oo) =
the stabilizing solution W(es) = 0. Hence, it can be concluded that W(y) 2 0 on (0, +)
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from the fact that all the eigenvalues of W(y) are nonincreasing.

In the proof of Theorem 3.1 we need to show that there exist at most n isolated
values of y such that [X, - W(Y)] is singular, let A;(Y) be the ith eigenvalue of [X; - W(Y)], i
=1,2,...n, where n is the dimension of W(y). Then we have the following lemma.
Lemma 3.4: If there is a Y, (0, +9) such that A(y;) =0, then A.(;)>0.

Proof: Define a function on (0, +<) as

f(y) = x[X; - W)l x, (3-31)

where x = v(y;) is an eigenvector corresponding to A;(y;). By Lemma 3.3(a), it is easy to
see that f(y) is a nondecreasing and concave function of y on (@, +°). Furthermore, we
have f(+o0)>0, since [X, - W(+e°)] = X, >0 under the assumption of (C;, A) being
observable [17]). Hence, if there is a ¥;& (0, +°°) such that f(y,) = 0 then f('yl)>0. By this

property, we can see that A;(y,)=0 implies f(y,}>0, which in turn implies A.(y,)>0.

Together with the monotonicity of A;(y), it comes the conclusion that [X, - W(Y)]
has at most n singularity points on (0., +e°).

With these lemmas, now we are ready to prove Theorem 3.2.

The Proof of Theorem 3.2:
a) Since X (M =X,[ X,-W() ]"X2 (from Lemma 3.1), it is obvious that:
0y =y (3-32)

where o, was defined in Theorem 3.2 and o.,, was defined in Lemma 3.2. It is possible for
[X, - W(¥)] to lose rank at some points on (0, +<), therefore X_(y) is not well defined at

these points. In Lemma 3.4, we show that there are at most n such isolated points where n
is the dimension of X_.

b) Suppose that there exists a y, such that X_(¥,) > 0, and hence [X,-W(¥,)] > 0.

Because all the eigenvalues of W(y) are nonincreasing (from Lemma 3.3), [ X, - W(Y) ]
will not become singular for all y2 ;, which implies that X_(Y) keeps positive definite for
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all Y e [Y,, +o°). Therefore, if we define
B = inf {y: X_(¥) is positive definite}, (3-33)
then the proof is completed.

The following theorem characterizes f, and shows how to compute it.

Theorem 3.3: Define () := Ay [WX} ] 0n (0, +o0), then
a) ecither f(B,) =1or B, =;
b) f(y) is a convex decreasing function of ;
where A, denotes the maximal eigenvalue.
Proof : The proof of part a) is trivial, which is simply due to the fact that (X, - W(Y)) >0
if and only if lmu[W('y)X'zl] < 1. To prove part b), we consider the following equation
AX, -W®)]u=0. (3-34)

Note that A in the above equation is an eigenvalue of W('y)X'zl. Taking derivative with
respect to Y on eq.(3-34), we have

(AX;- W) u+[AX,- W) ] i =0 (3-35)
It is easy to show that

. u'Wou

A= u'qu <0 (3-36)

on (@, +°), since WYS 0 from Lemma 3.3. If we replace A in eq.(3-35) by Ap,,, the
maximal eigenvalue of W(‘y)X'zl, then we have

i (Aar Xy - Wy) 0=~ i TheaaeX,, - W 18 (3-37)
where u is the eigenvalue corresponding to the Ayax. Note that eq.(3-35) implies
U( ApaxX, - Wy Ju = 0. (3-38)

Taking derivative on eq.(3-38) yields ,
8'(ApaaXy - Wy) 0+ 0'( Ay Xy - W i+ 0'(Apag Xp - Wiy ) u=0. (3-39)
Combining eq.(3-37) and eq.(3-39), we have
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o uWou+ 2|'1'[)~m,‘)(2 - W
Amax(¥) = X a : (3-40)
2

Since (hmasX, - W(P) 2 0 and W, 2 0 from Lemma 3.3, we have Ape(1) 2 0, which,
together with eq.(3-26), implies that f(y) is a convex decreasing function of Y on (Q,, +o).

Corollary 3.1: The derivative of f(y) can be computed by
-1
df) YW,V
dy w'v
where w and v are right and left eigenvectors of W(‘y)X'z1 corresponding to its maximal
eigenvalue respectively, and W.,can be computed from eq.(3-26) and eq.(3-27).

(341)

Fig.3.3 illustrates two possibilitics mentioned in Theorem 3.3. As shown in the
figure, f3, can be obtained either by finding the value of y such that f(y)=1 or simply by

computing o.,.

£fO

£
"

[

*Y

0 o B 0 =B,
Fig. 3.3 Two possible locations of B,.

This Corollary suggests that one can develop an algorithm to compute f, by making use of
these properties.

3.4 Properties of the H” Riccati Solutions

In this section, some important properties of X_(y) on the interval (B,, +o) will be

given. We are only interested in this interval, since the H™ problem has no solution for any
v less than B, ( see Theorem 3.1 ). The properties are summarized in the following.

2
Theorem 3.4: On (B,, +e), X.(1) := -%(X..(‘Y)) <0, X_@) = :%;(X..(Y))z 0.
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Proof: Let SQ) := [ X,- Wep 1, §:= $(S() and §7:= £S5}, we bave
§ =W, §h=-si§st=slwst,

From Lemma 3.1,
X = & (0 X, W T'Xy) =X, 87 X,
= X2 S-lw .{S-l x2 (3-42)

This implies that ).(..('y) <0, since W7 < 0 (see eq.(3-27)). Continuously taking the
derivative on eq.(3-42), we have
X = X,5 W, STX X, 8 IW, S X, 4,5 W, X,

= X8 WS W S TX,4+X 8 W, S X+ X,8 W S TW, 81X,

= X,82W, ST W AW IS X, (3-43)
This equation, together with eq.(3-28), indicates that 35_(7) 2 0. Thus the proof is
completed.

From these inequalities, we have the following properties for X_(Y).

Theorem 3.5: On (B,, +<°),

a) all eigenvalues of X_(y) are analytic, nonincreasing functions of ¥ ;
b) the maximal eigenvalue of X_(Y) is a nonincreasing, convex function of .

Proof: a) Since X_(7) is an analytic function of y on (B,, +e), it is well-known [21] that,
by appropriate ordering, the eigenvalues {A;} and eigenvectors {v;} of X_(7) are analytic
functions of y on (B, +o°) such that

Dy- X (D)vi=0 i=1,2,n (3-44)

To prove the monotonicity, we take derivative on eq.(3-44):

@, - Xvi + @D - XN, = 0, (345
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i XY

v

which implies ii(‘Y) = <0, since ).(.. £ 0. Thus we proved part a).
ivi

b) From eq.(3-45) with A; = Amax, the maximal eigenvalue of X_(Y), and v;=v,
the eigenvector corresponding to Amax, We have the following equation:

o v ;(..v + 2\.1' X IV
R = Do XV (3-46)
vy
which implies \p,,() 2 0, since X_ 20 and (\pax-X_) 2 0. Because A,,,(7) 2 0 and all
eigenvalues of X_(y) under appropriate ordering are analytic and nonincreasing on (B,,

+00), it is easy to see that Anax(y) is convex and nonincreasing on (f,, +<c), even though
Amax(Y) may not be smooth at some isolated points. Fig. 3.4 gives an example showing the

possibility.
A
b
M : A
! ﬁ_._»
0 % Y

Fig. 3.4 Smoothness and convexity of the largest eigenvalue.

In the figure, both A; and A; are smooth functions of 7y, but Ap,x is not smooth at 7y;.
However, it is still a convex function.

Since Riccati equation eq.(3-6b) is dual to eq.(3-6a), we have similar results for
Y..(y), with the following comresponding notations:

oy :=inf {y:Ye R, and Y_(y) exists}
By :=inf {y:ve R+ and Y_(y) is positive semidefinite},

Y®) 0]
V. (3-47)

Y..(Y)=V[ 0 0
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Y(Y) and V are defined in a similar way as those for X_(y) in eq.(3-14).
Recall that the condition, p[X..(Y)Y.(1)] < 72, is required in Theorem 3.1. To
investigate the properties of X,.(Y)Y..(Y), we define
a := max{a,, o}
B = M{Bx- By}

Then it is easy to infer that a) X_(y)Y..(Y) exists on (o, +o2) almost everywhere; b)
X.(Y)Y..(7) has no negative eigenvalues on (B, +o°), since both X, (y) and Y_(y) are
positive semidefinite on (B, +e). Moreover, the eigenvalues of X_(Y)Y..(Y) have the

following properties.
Theorem 3.6 [16] : On (B, +<o),

a) all eigenvalues of X..Y.. are analytic, nonincreasing functions of y;
b) p(Y:=p[X..(¥)Y..(¥)] is a nonincreasing, convex function of 7.
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CHAPTER 4

MONOTONICITY AND CONVEXITY OF THE GD
PARAMETER DEPENDENT H™ RICCATI SOLUTIONS

4.1 Significance of the monotonicity and convexity properties

In this chapter, we will investigate some important properties of the H™ Riccati
solutions which play a key role in the solution of the H* optimization problem. It is well
known that Doyle, Glover, Khargonekar, and Francis (abbr.:. DGKF) [7] presented a
celebrated two-Riccati-equation type solution to a standard H™ control problem. Through
solving two H™ Riccati equations, an optimal (or suboptimal) stabilizing H™ controller can
be easily constructed. Unlike the constant Riccati solutions in Linear Quadratic Gaussian
LQG) or B2 problem [17], the H™ Riccati solutions are functions of a parameter y which
is an upper bound of the optimal H™ norm of the closed-loop system. To construct a better
suboptimal or an optimal H™ controller, it is necessary to search for the optimal H™ norm of
the closed-loop system, i.c., the smallest y such that the two H™ Riccati solutions X..(Y)
and Y..(y) are positive semidefinite and p[X..(Y) Y.(Y)], the spectral radius of X..()Y..(Y),
is less than .

Recently, efficient algorithms for computing the optimal H™ norm were proposed
by Scherer {15] and Li and Chang [22]. Scherer considered the inverse (or pseudo inverse)
of the DGKF H™ Riccati solutions, X..(Y) and Y..(}), defined a new independent variable
= 2, and showed that these inverses are concave functions of M in matrix sense on their
domains of definition. Li and Chang showed that p[X.(Y)Y..(})], the spectral radius of
X(DY.(Y), is a monotonically nonincreasing and convex function of y. Based on these
facts, quadiatically convergent Newton-like algorithms were proposed to compute the
optimal H™ norm [15,16).

Though, these monotonicity, concavity or convexity properties have only been
proved for the DGKF case in which the D;; matrix of the generalized plant is assumed

zero. This assumption can hardly be satisfied by many practical problems. In [8]}, Glover
and Doyle (abbr.: GD) considered a more general case with D;; nonzero. The basic

concept is the same as DGKF's, but the H* Riccati equations involved are much more
complicated which makes the investigation of the properties of the GD H™ Riccati solutions
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extremely difficult.

For GD H™ control problem, Pandey et. al.'s hybrid gradient-bisection method [13]
and Chang et. al.'s double secant and bisection method [14] were proposed for the
computation of the optimal H™ norm. The significance of the conjecture that
PIXe(NY..(Y)], the spectral radius of X..(¥)Y..(Y), is a convex function of y was mentioned
in these two papers. Since there was no proof for this conjecture, bisection was used in
these two algorithms as supplement to guarantee convergence.

In this chapter, we will show that the GD H™ Riccati solutions have the same
properties possessed by the DGKF H™ Riccati solutions as mentioned by Li and Chang
[16). In other words, the GD H™ Riccati solutions X..(y) and Y.(Y) are nonincreasing and
convex functions of y in the domain of interest and so is the spectral radius p[Xu.(Y) Y.(¥)].
Based on these properties, a quadratically convergent algorithm is proposed to compute the
optimal H™ norm for the general H™ control problem considered by GD.

Section 4.2 lists the notations used in this chapter and reviews the fundamentals of
the Riccati equation. The main result of the chapter is presented in Section 4.3 which
shows the details of the proof of the monotonicity and convexity properties of X..(y) and
Y..(y) in GD case. An efficient algorithm to computing the optimal H™ norm based on
these properties will be given in Chapter §.

4.2 Notations and Basics of the Riccati Equation

R The set of real numbers.

R, The set of positive real numbers.

R™ The set of real mxn matrices.

inf(S) The infimum of the set S.

sup(S) The supremum of the set S.

cm* The set of nxm matrices whose entries are complex numbers.
I Identity matrix.

| | n-dimensional identity matrix.
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A20
A>0
MA)
Ai(A)
Amax(A)
Amin(A)
P(A)
Omax(A)
A(Y)

X0
Y.

Wi

Hp)

Zero or zero matrix.
n-dimensional zero matrix.
Transpose of a matrix A.
Conjugate transpose of a matrix A.
A is a positive semi-definite matrix.
A is a positive definite matrix.

An arbitrary eigenvalue of A.

The ith largest eigenvalue of A.
The maximal eigenvalue of A.

The minimal eigenvalue of A.

The spectral radius of A.

The maximal singular value of A.

The matrix A is a function of .

The Hamiltonian matrix shown in (2-5a).
The Hamiltonian matrix shown in (2-5b).
The stabilizing solution to the Riccati equation corresponding to H...

The stabiliziné solution to the Riccati equation corresponding to J...

The inverse of ¥ square.

W= ;2_1_{ where A, is the ith eigenvalue of D;;* D,D, " Dy;.

Defined as H.l.,,u.m.
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X(w

Y@

X
Y

Ox

Defined as J..ly___u-lrz.

The antistabilizing solution to the Riccati equation corresponding to the
following Hamiltonian matrix

0 1 01
’[1 o]H"‘)[l o].
The first order partial derivative of X with respect to ,, i. €., )'(ui .

The second order partial derivative of X with respect to y4; and p;, i.e.,

Hipj

The antistabilizing solution to the Riccati equation corresponding to the
following Hamiltonian matrix

0 1], 01

11 o' ®{1 o
DeﬁnedasX(p)lu 2
DeﬁnedasY(u)quY-z.

Inf {Y:Ye R,,y>0(D,TDy)) and X, exists }.
Inf {Y:Ye R,,y>0MD.D1;7) and Y., exists }.
Inf {Y:Ye R, Y2 0x and X(y) is positive definite }.

Inf {Y:Ye R, Y20y and Y(y) is positive definite }.

A state space realization of the transfer matrix D+C (sI - A) B.
max {0, Oy}.
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B max{Bsx, By}.
P Is defined as p[X_.(")Y..(¥)] on (B, +c0).
IG(s)il The H™ norm of G(s).

¥ 2(G,K)  The lower linear fractional ransformation which stands for the closed loop
transfer matrix from w to z as shown in the following

- -«
G(s)
y ‘ u

K(s)

Let A, Q, R be real n by n matrices with Q and R symmetric. The algebraic Riccat
equation and its corresponding Hamiltonian matrix are shown as follows:

ATX+XA+XRX-Q=0 41

A R
H=lo a7 “2)

Assume H has no eigenvalue on the imaginary axis. Then finding a basis for the invariant
subspace corresponding to the eigenvalues of H in LHP, i.c., the open left half complex
plane, and using the basis vectors to form a matrix, we obtain

X
X__(H)==Im[ ‘]

X,

where X, X; € R™". I¥ the two subspaces

X__(H),Im[(l)]

are complementary, i.c., X; is invertible, then the stabilizing solution to the Riccati

equation is X = X, X;"!. X is uniquely determined by H, i.e., there is an operator denoted
Ric which maps H to X. Thus, X = Ric(H) and the domain of Ric is denoted by dom(
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Ric). Furthermore, if X exists and is nonsingular, then X3 is also invertible.

Consider the system

O L 1
(s)= D =C(sI-A)'B+D

with ( A, B) stabilizable. The following two fundamental lemmas of the Riccati equation
will be employed in the proof of the main resuits in Section 4.3.

Lemma 4.1 Suppose H has the form
L] A B B s
cc A

Tacn the siabilizing solution X to the corresponding Riccati equation exists and is
nonnegative semi-definite. The null space of X, i.e., ker ( X ), is a subset of the stable
unobservable subspace.

Stable unobservable subspace means the intersection of the stable invariant
subspace of A with the unobservable subspace of ( A, C). Note that a detectable (C, -A)
implies that X is positive definite. On the other hand, if ( C, -A ) is not detectable, then A
has stable modes that are not observable from C. Assume that there is a similarity
transformation U such that

'All 0 BIT
TIA|B
UH_}CDU=A21 Ayl B,

LC1 0 D

with Aj; stable and (C;, -Aj)) detectable, let X; be the stabilizing solution to the following
Riccati equation

T T T
A, X +X All -X B B, X, +C, C1=0’
Xl 0 T . 5 .
then it can be shown that X =U 0o o U’ is a stabilizing solution for the Riccati
equation corresponding to (4-3).
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Lemma 4.2 Assume the stabilizing solution X to (4-1) is positive definite and K is the
inverse of X, then X is the antistabilizing solution to

AR+XAT-8Q&X+R=0 (4-4)
..e., the eigenvalues of A-ﬁQ are in RHP, i.e., the open right half complex plane.
Proof: The Hamiltonian matrix associated with eq. (4-4) is

i
-R -Al

It is easy to see that

aefo a2 2

If the stable invariant subspace of H is Im
Im 01 Xl =Im Xz
10f|X,| " |X

X
and hence Im [X2 ] is the antistable invariant subspace of fI. That is, Xis the
1

X
l],thenthatof -fiis
x2

antistabilizing solution to (4-4). Q.E.D.

4.3 Properties of the y-Dependent H= Riccati Solutions

The Riccati equations associated with the Hamiltonian matrices (2-5a) and (2-5b)
are dual to each other, so we will only concentrate on one of them, say, eq.(2-5a). To
investigate the properties of Riccati solution of eq.(2-5a), we first assume that (D,T C, , -
A+BR1D..TCy) is detectable. This assumption will be removed later in this section. With
the assumption it is obvious that X.. = Ric(H..) is invertible.

Although our objective is to show that X.. and Y., are nonincreasing convex
functions of vy, we will consider their inverses first since the inverses, as shown later, are
analytic functions of 7.

In eq. (2-5a), the Hamiltonian matrix H.. depends on the inverse of R which is a
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function of ¥. The parameter y appears almost everywhere in the entries of R*! and the
matrix H,, could be a messy function of v. To avoid this messiness, the following lemma
is employed to confine the influence of yin a diagonal matrix.

Lemma 4.3 The matrix R in (2-5d) can be expressed as -T A TT, where A(Y) is a
diagonal matrix.
Proof:

By Dy2! Dj3 =1, R can be decomposed as

FL
R= ll 11 ll 12
DIZDH I
'r 1 0
= Iml 11 12 (DllD.L 111 ‘YZI ) 0 ml (4.5)
0 I/{o I DuDu I

0
Definc E = [? I] where E is the orthogonal matrix in the singular value decomposition

of D;TDyy, ie., D;1T DD, T Dy = Ey diag{Ay, A2, .., Am1 } EpT, and let

T:= I:Iml D11D12} E,

0 I
and
A(Y) := diag{p1], po L. , Bt -1, -1},
where ;= —1— i=1,2,..,m,
Y-A
1
then it is trivial to show that
R=-TAW!TT, Q.ED.

This lemma shows that the effect of yis only on the eigenvalues of R. This fact plays
a key role in reducing the complexity of the proof that the X.. is a convex function of .
In order to specify the domnain of the mapping X_.(v), we define
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0 :=inf {Y: e R,,7>3O."Dyy) and X, exists }.
To simplify the proof, let ==y and define

I
ml 0
pi=| ] ‘Dng[l] 6

12711

T, B
-T,|7|-cp, [P: Dy] @D

]

T T -1
M = [ (“'Iml B DllD.L DJ.Dll) 0]
0 -1

Then the Hamiltonian matrix H.. in (2-5a) can be written as
(A+T1M'1:; ) TIMT'f
H = 4-3
W= e tMT) @AMy | “9
Consider the following Riccati equation
XA+TIM T2DT + (A+TIM ToDX + TIM T T + X(C; T C+ToM ToDX =0 49
whose associated Hamiltonian matrix is
01 01

) [1 o] HQ) [1 o],

It is easy to see that X(i) exists only on the interval (0, atx2). In the proof of the

following theorem, the vector vec X, associated with the matrix X, is defined as follows.

Definition 4.1: With each matrix X = [x;] € R™", we associate the vector vec Xe
R™ defined by

vec X = [X11, .., Xnls X12, -+ X2, «esXlIny +oe» Xan]T (410

Theorem 4.1: On (0, &,2), X() is analytic and satisfies
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aX
du S0 411)

i.e., X() is an analytic nonincreasing function.
Proof:

To prove the analyticity of X, we define
FX 1) = X(A+TiM ToDT + (A+TiM ToDX + TIM Ty T + X(C;T C1+ToM T2DX
where Xe X
X = {X e R™ | X is positive definite and
(A+TiM T1)+X(C,T C;+T,M T,Y) is antistable }
From the above definition, we have
FX+3X,u) - FCX,0)
=8X [(A+T;M TaDH+X(C; T C+ToM T D)T
+ [(A+TiM T,D4+X(Ci T C+ToM To1)] 8X
+8X (C,T C+ToM T,T) 6X 4-12)
where 8X is a small perturbation on X. Let
A = [(A+TM T2D+X(C, T C+T,M TyD)],
then the partial Frechet differential (23] of F(., .) with respect to X is

oF(X,u) =0X AT+ A9X 4-13)
and it can be regarded as a linear map. The map

09X adX AT+ A3X (4-14)
is nonsingular because

vec IF(X,) = vec 9X AT + vec A 9X

or equivalently,

vec F(X, ) = [I®A + A® I] vec 3X (@15)

where @ is the Kronecker product. [I® A + A®I] is nonsingular because of the
antistabilizability of X. Consequently, dF(X,) and dX are uniquely determined by each
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other.

It is clear that F(, .) is an analytic function which maps (X, ) to F(X, ) on the
domain X xL where L = (0, ax2). From the implicit function theorem [23] and
analyticity of F(., .), there exists a neighborhood, (u-€, p+€) with € > 0, such that the map
H a X is analytic. Hence, X is an analytic function of . Next, we will show that X is a
nonincreasing function of j. Let

¥ =9X

xui - op.

v dM

M“i=-ari i=12.. ,m

Differentiating eq. (4-8) with respect to j; gives

* ~T - ® . T .
XuiA +AXui+(XT2+Tl)Mui(XT2+Tl) =0 i=12,..,m (4-16)

Recalling that M = EAET, we have

M .=E—§f7 E'= E diag(0, ..., 0, 1,0, 0)E"
i

W i-th

which is positive semi-definite. Since X is the antistabilizing solution to (4-9) i.c., A is

antistable, eq. (4-16) implies that

X .<0
i 4-17)
and therefore
dx ml . 1
= S0
=t 7 (1-AW) Q.E.D.

Based on Theorem 4.1, it is known that the second order or higher order derivatives of
X(u) with respect to pt exist on (0, ax2). To prove that X(u) is a concave function in
Theorem 4.2, we need the following lemma.

Lemma 4.4: Let
G := E diag{ 11, p 12, v 01, O, ..., 0} ET (4-18)
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and
T T T 2
| ceperuToT, T,G

G'T, WG|

then on (0, 0x2) the matrix W is positive semi-definite.
Proof: G can be rewritten as
G = diag{p!(pm - D;,TD,D, T D)L, 0, ... ,0}.

Let

W= W l(plly, - D' DD, TDyy)
and

A A A
Wn=Ediag{ 1 3 2 3 -"9——“L3.}ET
(1AW d-Au) 1AW

then we have

pl( G3- G2) = diag{ Wy, 0, ..., 0}.
Since

T,G?=[C,"D,D,TD;;W¢ 0],
W can be written as

wolWe ©

“lo ol .
where
T T T T .T
C,D,D,C+UT,GT, CDDD W
W= W' b O
1P,,P,P,C, Wi

It is obvious that W is positive semi-definite if and only if so is W;. In the following, we
will show that W is positive semi-definite. W can be decomposed as :
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' T T T
W = [CTD | 0] I+uD D,W,D, D, lellwf [D‘TLCl 0]
= T
o 1j{wbp, W, o 1
The matrix Q := I + uD,TD;;W; D;;TD, is positive definite since Wy is. The middle
matrix on the right hand side of the above equation can be further decomposed as

T .
Q. DpW [;2 oo
T “|wpD pQ I
WD D W, PP 1)

T

Qo I 0
0 W_-WD DQ'DD W waDT pDQ' 1

114 111 11 L

Now, the proof boils down to checking that Wy - WDy T D, Q'D, T D;; Wy is positive
semi-definite. Based on the facts shown as follows,
Q!=(@+pD,"DyW1 DuTDY!
=I"-I'D,T Dyy[ Dy™D.I'D, T Dyy+ W] "Dy DL
=1-D,T Dyl Dyy™D1D; T Dyy+ (s - Dy T DD, T Dy 1
‘DD
=1-D,T D[ Dy ™D.D,TDyy+ il - DT DD, T Dyy] "Dy Dy
=I-u!D,TDy DDy

D;;,’D,Q*D,TDyy =Dy DA - w!D, T DYDY TDY DD
=Dy" DyD,TDyy- ©nT DyD, D) u On" DD D)
= By diag{ A (1-Mm), A2(1-A2k), .o Am1 (1-Amibt) }ELT,
it is easy to show
Wi - WDy T D, QD T Dy Wi
A 1

. 1
=E; diag{ —— - A (1A W) ) e
aaw’ aaw’ T aa’
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A

ml 1 1
- A (A w——]}E
3 2 "mi ml 2
AL (AW Ay,
is a zero matrix and hence
T
Q D.LDllw:
T
W:DuD.L wn

is positive semi-definite. Consequently, W; is positive semi-definite and so is W. Q.E.D.

Based on the fact that X(i) is an analytic nonincreasing function, as shown in Theorem
4.1, the second order derivative of X(}1) exists. Furthermore, we also found that X(j1) has
the following important property.
Theorem 4.2: On (0, 0, %), X(u) is a concave function, that is,
2
d—’zc- <0. (4-19)
du

Proof:
Taking partial derivative of (4-16) with respect to j;, we have
0 T

-~ -~ 00 [ * T ® T T.3
XA +AX +X TM XTAT) +X (C CHTMT,X

. T o T T . . * . T
+ XT 2+T1)MujT2 X".i + Xuj(Cl C1 + T2M T2 )Xp.i + Xusz Mll-i(XT 2+Tl)

L] T *
+ (XT ) +T1)MuiT2 X!“j =0

i=1, 2, ..., m, =12,.,m (4-20)
For notation simplicity, we define
ml ml
oo oo 1 1
=3 > (X .
i=1 j=1 Hap) (l_xiu)z (l_lju)z
and
[ 2. .nzlx 1
x‘ i=1 pi (l-xip')z
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From eq. (4-18), it is obvious that

ml ,
=M —1

=1 P-i(l_)‘ip)x ]

4-21)

Now, the sum

ml ml 1
==l (1-Ag) (1A )

can be simplified as

v T e :
XA +AX + 2x;r2c32(xr2+'rl)’ + 2XT TG T, X,

+2X(C] C+T M T, )X =0 (4-22)

XA +A% T)EM 2 T)Y =0 423
XA +AXy+ (KT HT) (2 'ﬁ(l'liuf) XTpHT) = )

Adding eq. (4-23) to eq. (4-22) gives
o e T e i X
XK + AG K ) + 2X T G'(XT,+ T)) + 20XT,+ Tl)G’sz[

o T T .2 ml, A T
+2x1(C1Cl+ T2MT A )xx+ 2(XT 2+T1)( EIMWW XT 7t TI) =0.

(4-24)




Based on the fact that
Dy. Dy =Dy; - D12 D12" Dy = D,D, ™Dy, Dy. Dn=Dpz
and
M = G + diag{Omi, -1}
where Op,; is the m; by m; zero matrix, we have
T2=[C"™D,D,™D;;  Ci™Dyo]
and
C,7C; + T, diag{Om), -1} T,T =C,™D,D,TC;.

Then eq. (4-24) becomes

v oo T e ) )
K XA +AE X ) + 2XT,G°(XT,+ T)) + 2XT,+ T)GT,X,

ko ey ke w0
ml , Xi T
+ 2KT+T X '_zl L,ima.kiu)3 YXT+T) =0 (4-25)
With
ml , Xi ml , 1 1 1
IM —— =IM( W =plG- 6,

R g’ g’
eg. (4-25) becomes
wo o T _ e . 2 zTT.
(XI+XH)A + A(xl+xn) + ZXITzG (XT2+ Tl) + 2(XT2+ TI)G 2XI
ok clo,pley i akr 0 T,

1.3 . T
+2XT ST )W'G -t IGHXT,+T) =0

This suggests that
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KKK + AR X ) + 2X(C;D, D\C )X,

- 2XTAT )W GIKT AT
[ LJ l T
+ 2[ XI‘I‘2+|.L'1(XI‘2+TI)G] ®G) [x,'rzm' (xrzn‘l)c] =0 (4-26)
Note that
2X(CD, DCX, - 2KT AT )@ ' GIKT AT )"
T

+ 2[ 5(1T2+u'1(X'I‘2+Tl)G] ®G) [)'clT2+p"(x12+Tl)G]
=V diag{D;;T D, D,TDy;, -uI, uG} V7,
where
Vi= [xl WIKTHT) KT+ X+ TI)G]

Now,

V diag{Dy;T D, D,T Dy, -uI, pG} VT

T T T 2
v ClD _LD _LC1+ uTzG 'I‘2 TZG '\"T
- A1
G'T, w'G 6
=VwVT

where
V:=[)'cl WIET+ 'rl)G] |

Since W is positive semi-definite from Lemma 4.4,
V diag{D1;T DL D1 T Dy, -uI, uG} VT
is also positive semi-definite.
In (4-26); antistable A and positive semi-definite V diag{D;;T D, D,T Dy, -ul, uG} VT
imply that




(3&1+5<n) <0 (4-27)

Based on the fact:
d& mlml . 1 1 ml . 21, .0 .
L2335 X . )+ X . =X +
ap? ==t l““’(l-liu)z (l-).ju)2 i=1 '"(l-liu)a R
and (4-27), it is clear that
ax
-‘-1-“—2— <0. Q.E.D.
Define

Xep =X, 2

then we have the following corollary which is a direct result from Theorem 4.1 and
Theorem 4.2.

Corollary 4.1: X(y) is a well-defined function on (0, +0). Moreover, X(y) is analytic
and satisfies

dX()
&y 20 (4-28)
and
X @)
2 <0 (4-29)
dy
on (Qix, +00)
Proof:

Since X(y) is a compound function consisting of analytic X(t) in (4-9) and u='y‘2,
X(y) is analytic on the interval with nonzero y. With the chain rule of differentiation, we
have

dXQ) _dX@) du _ 3 dX@)
& ap a7 Taw
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XKW _dXw 2, X6 &
o P “an dyz

which imply (4-28) and (4-29) respectively. Q.E.D.
Based on Corollary 4.1, we have the following theorem.

Theorem 4.3: On (0, +0), X(y) is invertible almost everywhere.
Proof:
Since 5((7) is an analytic function, it is well-known that . : eigenvalues and
eigenvectors of X(7) are analytic functions of y. Consider
@ -X@)v=0

where A is an eigenvalue of X(y) and v is a corresponding eigenvector. Then it is easy to
have

D-X)v+@D-K)v=0 (4-30)
which implies
Ap=22 Xv.o @-31)
VV

Let A;(Y) be the ith eigenvalue of X(¥), i = 1, 2, ..., n, where n is the dimension of X(7).
If there is a y; € (0, +00) such that A;(Y;) = 0, then define a new function on (0, +oo) as
following

() = vi(y)T X@) vity) 4-32)

where v;(y;) is an eigenvector corresponding to A;(Y;). It is trivial to show that f(y) is a
nondecreasing concave function on (0, +00). Since f(+c0) > 0 because X(+00) > 0 under
the assumption we made at the beginning of this section, we can conclude that

. )
) =—g~>0. (4-33)

Based on eq. (4-31) and eq. (4-32), eq. (4-33) implies




ii(yl) >0. (4-34)

By the property that A.(y,) > 0, with y; € (aiy, +o0) satisfying Ai(yy) = 0, it comes the

conclusion that X(¥) has at most n singularity points on (0ix, +00). In other words, X(y) is
invertible almost everywhere on (Cty, +o0). Q.E.D.

In the same way, define
ay:=inf {Y:Ye R,,y>6D,Dy;T) and Y., exists }

and let Y be an antistabilizing solution to the Riccati equation corresponding to the
following Hamiltonian

7 ofwft o]

Then we have the following theorem.

Theorem 4.4: On (0, ay2), Y() is an analytic function which satisfies

% <0 (4-35)
and
&Y
—2<0 (4-36)
du
Define

Y0 = Y@l 2
then we have followi: . corollary.

Corollary 4.2: Y(y) is a well-defined function on (@, +00). Moreover, Y() is analytic
and satisfies
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a*¥(

dyz") <0 4-38)

on (Oy, +o0).
Based on the above corollary, we have the following.

Theorem 4.5: On (ay, +o0), ¥(y) is invertible almost everywhere.

Now, we are ready to show that X..(y) and Y.(Y) are nonincreasing convex
functions in the domain of interest. Without loss of generality, the assumptions that (DT

_T

Ci1, - A+B3D157Cy) is detectable and (- A+B;D;;7C,, B;D ) is stabilizable are still used
in the following to simplify the proof.

From eq. (4-9), it is clear that if X(y) = X() is invertible then X.(y) = X(y)L.
Although, X(y) is not always invertible on (o, +0o), from Theorem 4.3, it can only lose
rank at some specific isolated points. Since X(y) is a nondecreasing concave function as

mentioned in Corollary 4.1, there must exist B, such that X(y) is positive definite when y>
Bx. That is,

Bx:=inf {Y:Ye R, Y2 a, and X(y) is positive definite }.
This means, on the interval (B,, +o0), X(Y) is positive definite.

Theorem 4.6: On (B;, +0), X.. is an analytic nonincreasing convex function of v, i.e.,

% =Z=go 4-39
and
. dX
X = —2" 20 (4-40)
dy
Proof:

Because X(y) is positive definite and X. = X()}, by the chain rule of
differentiation and Corollary 4.1, we have

1
dX, dX @) _, dX
= 0 x Sy <o @-41)




d(—'—) d(X ..) T
aX. . xSy X OX

d.f d‘{ d‘{ “TdyTmdy (4-42)
X
Since X.. is positive definite and -d_'y-{ is negative semi-definitive, it turns out that
o d
=20
dy . Q.E.D.

Similarly, by defining
By :=inf {Y: Ye R,, Y2 ay and ¥(y) is positive definite }

we have the following theorem for Y...

Theorem 4.7: On (By, +c0), Y.. is an analytic nonincreasing convex function of v, i.c.,

(4-43)

20 (4-44)

At the beginning of this section, we assumed that D, C;, - A+BR!D,.TC)) is
detectable, or equivalently that (D, C; , - A+B,D;2TC)) is detectable. This assumption

can be removed by the following arrangement. If (D, C, , - A) is not detectable, where
K = A+BD,! Cy,
one can always find an orthogonal matrix U = [U; Us] such that

U, AU 0

A

UTAU =
U, AU U, AU

D,TCU=[D,TC,U; 0],

with (D,TC,Uy, - U;TAU)) detectable and X.. = Ric( E.. ) can be expressed as
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X 0
x.=ul"1 " |u".
0 0

Note that U is not a function of v, and X is the Riccati solution of eq. (2-5a) with (A, B,

Cy) replaced by (U;TAU;, U;TB, C,U;). Therefore, no matter whether (D,T C , - A) is
detectable or not, it is always true that X..(Y) exists almost everywhere on (@, +00) or X
is nonsingular almost everywhere on (o, +o0). Furthermore, X; is positive definite on
(Bx, +00).

Define
Q = max {ax, ay}’

s ‘= max {ﬂx» By} ’
then X.. and Y.. exist on (¢, +o0) and are positive semi-definite (B, +co).

The following theorem, which is one of the main results in Li and Chang [16),
showed that if X.. and Y.. are nonincreasing convex functions of 7, then so is p[X_.Y..].

Theorem 4.8: Let B be the infimum of -y such that both X.. and Y.. exist and are positive
semi-definite. On (B, +<),

a) all eigenvalues of X..Y.. are smooth, nonincreasing functions of 7y ;

b) p(X..Y..) is a nonincreasing, convex function of .

Proof:

a) It is quite straightforward to show that for any nontrivial eigenvalue of X..Y.., we have

X, 0 Y, 0
AR)Yu()] = VXYV =AMVTU| o o [UTV] o o))

T T
VU X 0U VYo

0
=( 0]) “MZWY, W),

T T
where Z(y) = ZT(y) = V,U X, (WU, V, has following properties

Zy) 20, (4-45a)
2 <0 (4-45b)

52




and

2420 (4-45¢)
on (B, +ec). Now consider
(A - ZNY,(MIw =0, (4-46)

where A is any eigenvalue of Z(Y)Y,(Y) and w a corresponding cigenvector. Note that
this equation is equivalent to

Y, ') - Zlu =0, (4-472)
or
@) - ZMIu=0 (4-47b)
with ¥(y) = Y, (4) and u = Y, w. From (4-47), we have
(i?+x§-2)u+(m-2)ﬁ=o (4-48)
and
(AT +AY-Z)u=0. (4-49)
Then it is easy to show from these two equations that
Toy a4k
A= E—(%Tﬁ-)! <0 (4-50)
u xu

on (B, +==), since Z <0, &2 0 and & > 0 (see (445b) and (4-37) in Corollary 4.2).

b) Next is the proof of the convexity of p(X..Y.). From the equations (4-48) and (4-49)
with A replaced by the maximum eigenvalue of X..Y.., we come to the following two

equations:

&T(im.x?+?~m§-i)u=-ﬁT(7»m.x?-Z)ﬁ (4-51)
3T Qs + Amaa® - Z) 0+ 0T e + Aas® - 2) 8
+uT(°im?+2im,,?+Am.,§ -Z)u=0. 4-52)

Combining the above two equations, we have

- 2..1. “?- . T“ 20 §- “oo
() = o Z)MZT(;; fmol e D 4-53)
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Note that (Amax¥-Z) 20, 220, ¢ 2 0, A, (1)< 0 and ¥ < 0, we have A, (¥) 2 0 and
therefore p' [Xwu(Y)Yo()] 2 0 on (B, +o<). Hence we complete the proof that p(X..Y..) is a
convex function of y on (B, +vo). Q.E.D.

The properties of the H* Riccati solutions presented in this section will be
employed in Chapter S to develop efficient algorithms for computing the optimal H* norm.




CHAPTER 3§
COMPUTATION OF THE OPTIMAL H~ NORM

Recently, an efficient algorithm for computing the optimal H™ norm was proposed
by Scherer [15). Scherer considered the inverse (or pseudo inverse) of the DGKF H™
Riccati solutions, X..(Y) and Y..(Y), defined a new independent variable p = 7'2, and
showed that these inverses are concave functions of jt in the matrix sense on their domains
of definition. Based on this fact, a quadratically convergent Newton-like algorithm was
proposed to compute the optimal H™ norm.

Pandey et. al.'s hybrid gradient-bisection method [13] and Chang et. al.'s double
secant and bisection method [14] were also proposed for the computation of the optimal H™
norm. The significance of the conjecture that p(Y) := p[X..(¥) Y..(¥)], the spectral radius of
Xe.(YY.(y), is a convex function of y2 was mentioned in these two papers. Since there
was no proof for this conjecture, bisection was used in these two algorithms as supplement
t0 guarantee convergence.

Based on the properties of the Riccati solutions described in the previous chapter, a
quadratically convergent algorithm can be easily developed to compute the optimal H™
norm. According to Theorem 2.1, we can see that finding the optimal H_, norm, denoted as
Y... is equivalent to finding the infimum 7 such that all four conditions in (2-6) hold. From
the previous chapter, it is obvious that y_.e [B, +e°). It is possible for B to be Y,,, especially
when B and o are identical, however, with very few exceptions, Y. (B, +s), which
implies that Y, is the solution to p(Y) = 72 The relations between o, B and 7y, are shown in
the figure below.

—Both X- and Y exist
—BothXe202nd Y20

All four conditions hold

Y
0 a A >
Fig. 5.1

5.1 Computation of 7y,

Fig. 5.1 implies that the problem of finding the optimal ¥, is actually that of either
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searching for the intersection point of p(y) with ¥ inside (B, +o) or computing the
boundary point f. The monotonicity and convexity of p(Y) in Theorem 4.8 suggests that if
we use a gradient method to search for ¥, with a starting point y, inside the interval (B,
Y..), then the convergence is guaranteed.

The derivative of p(Y) at y, can be computed as follows,

L VXY XY
- P o

vVw

where v and w are left and right eigenvectors of X_Y_ respectively corresponding to its
maximal eigenvalue. 5(_ and ?_ can be obtained by solving the following Lyapunov

equations:
AX_+X A+ X_B+CID )R'RR'X_B+CD ) =0 (5.22)
AV +Y A+ (CY.+ D_IBT)Tﬁ-ll:l R (CY_+D, B)=0 (5.2b)
with
Ax=A - BR'D..TC; - BRIBTX.,
and

-1 -1
Ay=A-BD,TR C-CR CY.

- . -2 0
1'2=[2YI"“ 0] and l'?.-—.[ Vo ]
0 0 0 0];

Assume that we have a starting point ¥y, in the interval (B, v..), then the optima’ y
can be obtained easily as follows. Refer to Fig. 5.2, draw the tangent line with slope p (Y,),

which can be computed by equations (5-1), passing through the point (Y,, P(Y,))- The
abscissa, ¥,,;, of the intersection of the tangent line and the curve y = v, always lies
between 7, and ... The search process is repeated until the gap .. - ¥, is small enough.
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y A 14) P
p(Y,)

Y/
Y

b- ﬁ Yn ‘Yn+l

= Y

Fig. 5.2

Furthermore, we will see that the convergence rate is quadratic. Define €, =y, - ¥, and
€p41 = Yoo~ Vo1 It is straightforward to show that

€. = PO )
NIRRT
which implies quadratic convergence.

(5-3)

In the above algorithm of computing 7,., we assumed that a 7y, inside the interval (B,
¥Y..) is available to start with. To find a , inside this interval, usually we arbitrarily pick up
a relatively large v, at which the two Riccati equations (2-5a and b) have positive
semidefinite solutions X_(7y;) and Y_(Y,). Refer to Fig. 5.3, draw a line passing through
the point (¥, p(Y;)) with slope 5(71). The abscissa, ¥,, of the intersection of the straight
line and the curve y = 12, is always less than v,.. If y, > B, i.c., the two Riccati solutions
X..(Y,) and Y_(Y,) exist and are positive semidefinite, then we are ready to use the above
quadratically convergent algorithm to compute ...

yf R(v) 2

pCY,)

Fig. 5.3

=d|
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Most of the time, the method described in the previous paragraph gives a ¥, inside
the interval (B, v..) without the computation of p. However, this method may fail. If a
starting v, gives a v, < B, i.e., either X_(Y,) or Y_(¥,) does not exist or is not positive
semidefinite, one may suggest that a smaller 7; could produce a vy, > p. For the case
described by Fig. 5.4, a smaller y; could do the job. However, for the case of Fig. 5.5, v,
is always less than a, and therefore less than §, no matter how small v, is. Since it is
difficult to tell which case we are facing and there is no efficient guideline to reduce v,, we
suggest to compute B (or o and B) if one or two trials of y, does not give a ¥, > B. If
either X_ (Y,) or Y. (Y,) does not exist, we will compute « first, then compute B if
necessary. The computation of o will be given later in Section 5.3. If both X_(Y,) and
Y..(7,) exist but are not all positive semidefinite, then ¥y, is inside the interval (a, B). A
quadratically convergent algorithm for the computation of B is given in Section 5.2. Once B
is obtained, then B+€ can be served as the starting point ¥, in Fig. 5.2, where € is a very
small positive real number.

Ay 2

4

Y, B ¥
Fig. 54

5.2 Computation of B

In this section, we have the assumption of having a starting point inside the interval
(ay, By) (resp. (ay, By)), which implies a,#B; (resp. aty=P,). We will show how to
compute 0. in the next section. Recall that B is equal to max{Bx, By} where B and By are
infimums of y such that (2-6b) and (2-6¢) are true respectively. Since the computation of
By is similar to that of By, only the algorithm for By is given in the following.

Without loss of generality, we assume that (D 1T Cy, - A+B3D127Cy) is detec. zine and
() = X(u)lu _2 Where X(u) s the antistabilizing solution of (4-9). Define ex(y) =

S . de ) . .
Amin(X) and ¢_:= ay on (0ty, +00), according to the proof of Theorem 4.3 in the
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previous chapter, ¢x(7) is a nondecreasing concave function of y on (0, +o0) and B, is the
v such that e;(Y) equals to zero. Then Newton's search scheme can be used to compute ;.

0
With a starting point §_ which is slightly greater than cx, we can compute Bx by the
following iteration,

o+l _n cx(‘yn)

Bx =Bx-é(

X .Yn)
where
D
e =—7F—
W W

In the above, w is an eigenvector of X corresponding to its minimal eigenvalue Amin(X)
and %’;—- can be determined by

dX@y) _dX(w) du _ 2" dX(u)
dy du dy du

and

dX@) =i, 1
— =3X ——— <0
du i=1 M (l_xiuf

where )'cm. can be obtain from (4-16).

Ay
&)

Y
'Y,H,/ - 7

Fig. 5.6 Newton algorithm for searching B,.

As we assumed, we have a y, inside the interval (a,, B,), i.c., X(¥,) exists and
&, (Yo) < 0. Refer to Fig. 5.6, draw a line with slope ¢,(y,) passing through the point (y,,
¢,(Y,)). This straight line will intersect the horizontal line y = 0 at ¥,,; which always lies
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between 7, and B,. The search process is repeated until the gap B,-Y,,; is small enough.
Hence, the convergence is guaranteed. Furthermore, we will see that the convergence rate
is quadratic. Define e, =B, - v, and €, = B, - Y, It is straightforward to show that

1 Bl
3 ————L—-—
Gl = 55 & (Bx)! 5-4)

which implies quadratic convergence.

In the above algorithm of computing f,, we assumed that a vy, inside the interval
(o, By) is available to start with. This ¥, could be obtained in Section 5.1, i.e. 7, in Fig
5.3. However, if either X_(¥,) or Y_(Y,) does not exist, i.c., if ¥, < a, we will compute a
first.

§.3 Computation of o

Recall that a,, (resp. ay) is the infimum of Y such that the Hamiltonian matrix H_(y)
in (2-5a) (resp. J..(¥) in (2-5b)) has no jw-axis eigenvalues and a:= max{a,, o.y}. As we
mentioned before, it is possible for o to be the optimal ¥, i.e., all the four conditions in (2-
6) hold at this point. If this is not the case, & can be used as a starting point to search for f§
in Section 5.2 and B+€ in turn can serve as a starting point to search for ¥y, in Section 5.1,
if B is not the optimal . In the following, only the computation of o will be discussed,
since the computation of o, is similar to that of a,.

One can easily have a bisection iterative algorithm to search for the infimum of ¥
such that the Hamiltonian matrix H_(y) has no jo-axis eigenvalues. This method is slow
and therefore not recormmended.

To have a more efficient algorithm, we need the fact that a, can be also expressed
as the supremum of a frequency function. According to [14],

oZ= sup{2,,,,G}[1- G,(G,G,)"G; IG, () }

where * is conjugate transpose and G;(s) and Ga(s) are given by

[A] B B]
G|

[Gl(s) Gz(s)] =

By defining




h(®) =2, (1 - 6,(G,G,)"'G, IG, ()

max - |

the problem of finding o, becomes that of finding the supremum of the function h(w).

There are several efficient algorithms available for searching for the supremum of
h(w) [24,25]. We can start from arbitrarily choosing a frequency, say ®,. Let y = h(®;)
and then find all the positive real @'s such that h(w) = y. These @'s can be easily obtained
from computing the jo-axis eigenvalues of the Hamiltonian matrix H,,(Y). Now, we have
the frequency intervals in which h(®) 2 ¥. Evaluate h(w) for each midpoint of these
frequency intervals and update 7y to be the maximum of these h(w)'s. Then, find the new
frequency intervals in which h(®) 2 . According to [25], the convergence of this iterative
process is quadratic. This process can be repeated until only one frequency interval with
h(w) 2 v is left and the interval length is negligible [25). In [24), this process is terminated
when a frequency interval in which h(®) is convex and greater than vy is found. A search
method called Brent method was used to search for the supremum of h(w) in the convex
frequency interval.

5.4 An Illustrative Example

The following is a simple H*™ optimization problem which is used to illustrate the proposed
algorithm of computing the optimal H* norm. A realization of the generalized plant G(s) is
given by

- ™

B. B.] -1 0|1 0f0
A 1 2 0 2/0 0ij1
Gs)=|C, |D, D,|=]11]00(0
Cl Du D12 0o0olo ol

[ 2 21 22 (1 1]0 1 oJ-

Starting from vy, = 100, we have p(Yp) = p[Xu(Y) Y {Yp)] = 2.16e01. The slope of
p(Y) at this point (Y5, p(Yo)) is P (Yo) = -3.49¢-05. The tangent line at this point will
intersect with the curve y =y2 at y; = 4.65. Again, evaluate p(y;) = 2.24¢01 and compute
the slope p (7) at (v, P(11))- Since p(Y;) > ‘f , 1, is inside the interval (B,y..) and therefore

from now on the convergence is guaranteed. The process is repeated until the gap between
JP(Y,,) and v, is small enough. The following data show that only four iterations are
needed to reach the optimum, Y= 4.734160476390407, with accuracy better than 10-14.
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lter | P - R
0 100 9.535¢+01 -3.487e-05
1 4.647998761538930e+00 8.403e-01 -3.811e-01
2 4.734064423866624¢+00 9.440e-04 -3.595¢-01
3 4.734160476276923e+00 1.115e-09 -3.595¢-01
4 4.734160476390407¢+00 7.105¢-15

By the formulas in (2-8) and the descriptor-form technique described in Section
2.2, we are ahle to construct an optimal controller as follows:

|—-.87542 I -0.13925]

K, .(s) =
opi(®) L4.42042| -4.73416J

with the H* norm of the closed-loop system equals ¥,,,. Note that the optimal controller has
a direct feedthrough term and thus has infinite bandwidth. If we choose y = 4.8 which is
about 1.4% higher than 1,,,, we have a suboptimal controller

-8.67072¢-01  1.32928¢-01 | -1.38959-01

-1.38320e+01 -1.52323e+02 | 4.73733e+00
Kaub(®) =

| -9.30025¢+00 -1.49792¢+02 | o |

which has a reasonable bandwidth and the closed-loop H* norm, IIT,,ll_< 4.8 which is only
1.4% away from the optimal H* norm.
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CHAPTER 6

AN APPLICATION OF p-SYNTHESIS
TO A ROBUST FLIGHT CONTROL PROBLEM

6.1 Introduction

In general, a system with uncertainties can be divided into two parts, the nominal
plant M(s) and uncertainties A. If A is norm bounded but otherwise unconstrained, it is
called unstructured uncertainty. However, if A has a structure constraint, e.g., A is
diagonal, then it is called structured uncertainty. Obviously, the s:t of unstructured
uncertainties is larger than that of structured uncertainties. H* design technique [1,2,7,8]
can be used to solve robust stability problems with unstructured uncertainties, whereas \-
synthesis technique is used to handle systems with structured uncertainties. Since the
structure information of the uncertainty is used in j-synthesis, a less conservative solution

can be obtained. Moreover, robust performance problem can also be formulated as a
structured uncertainty problem and solved by p-synthesis.

To use p-synthesis, one needs to formulate the problem first and put it into a Linear
Fractional Transformation (LFT) [2] form, while choosing weighting matrices for certain
design specifications. With this augmented plant, D-K iteration design algorithm is
employed to solve the p-synthesis problem. The D-K iteration corsists of H optimization
step (K-step) and p-analysis step (D-step). While each step is a convex optimization
problem [26], the overall optimization problem is not convex. Hence a local minimal point
it converges can not be guaranteed to be the global minimal point. Another comment on D-
K iteration algorithm is that to have a better accuracy, a higher order curve fitting in D-step
is required, which in turn gives a higher order controller. However, the high order
controller usually can be reduced to that of the generalized plant without degrading the
system performance.

The chapter is organized as follows. Section 6.2 gives a review of some
preliminaries. We will show the problem formulation in section 6.3. In section 6.4 the p-

synthesis is used to design a robust controller. Simulations and analysis are also included
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in this section. Section 6.5 is a conclusion.
6.2 Preliminaries

In this section, we will give a quick review of some fundamental knowledges
including the definition of Y, robust stability, and robust performance.

Usually the mathematical representation of a system under consideration is only an
approximation to the actual system. The "actual model" M is in a neighborhood of the
nominal model M. According to [4], M can always be separated into two parts illustrated
by the following block diagram with an M-A structure, where M is the nominal system and
A is a block diagonal uncertainty matrix.

— A

M) [(—

Fig. 6.1 M-A structure

With this block diagram, the stability analysis essentially boils down to ensuring that / -
MA(jo) remains nonsingular at all frequencies under all A considered (small gain theorem
[1] ). This statement can be seen by considering the following fact. Assume M(s) is a stable
'system. When po perturbation is introduced, i.e, A =0, M = M. However, as A grows up,
in the sense of G6(A) (2-norm), / - MA may not remain nonsingular, which implies the
instability of M. In the following, we will introduce the definition of p, which measures
how large A can be such that M remains stable.

The structured singular value (SSV or i) of a system M with respect to the given
structure of A is defined by

HM) = {ngn ('G(A):det(l ; MA)=0)}J Veoe R, (6-1)

where R _ is the set of positive real numbers. In the following are listed several remarks on
the above definition.

® Obviously, the smaller the p is, the larger uncertainties are allowed such that M
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remains stable.

® 1 depends highly on the structure of A; the more information used, the less
conservative the solution will be. If A is a full block matrix, L(M) = G(M). On the other
hand, if A is a diagonal matrix, then u(M) = p(M), where p denotes spectral radius [4].
Usually, A is in block diagonal form, and obviously p(M) < p(M) < G(M) in general.

® The computation of W is still an open problem. If A has three or less blocks, p can
be computed by
hM) = iBfIG(DMD’I)]. (6-2)

where D is a positive definite block diagonal matrix with the same structure as A. However,
for the uncertainties with more than three diagonal blocks the right hand side term of eq.(6-
2) is just an upper bound.

Robust stability and robust performance

Most control problems can be represented by the following Linear Fractional
Transformation (LFT) form:

—] A 1
s p
-+ G(5) E—_—
z S w
y u
K(s)
Fig. 6.2

where G(s) is the generalized plant including possible weighting matrices, z is the
controlled output usually including the error signal and a weighted control input, w is the
exogenous input containing the disturbances, noises and commands, and y is the measured
output vector consisting of all the signals which can be measured and available for
feedback, A, represents plant uncertainties. The design objective is to find a controller K(s)
such that the system robust stability and robust performance can be achieved, i.e., under all
the perturbations considered, the system remains internally stable and the H™ norm of the
transfer function “om w to z remains less than a prescribed value. This problem can be
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solved by pi-synthesis technique on the following block diagram,

A
re "L" """"""""" ol indiad |
S ‘
HER G(s) (&—w ;|
Loy L
§ — K(5) E\\M

where A = diag{A;, A,} and A, is a full block matrix corresponding to the transfer function

of the closed loop system from w to z. If we combine G(s) and K(s) together by LFT, then
it corresponds to the M shown in Fig.6.1, i.e., M = F,(G, K).

p-synthesis and D-K iteration

The original concept of p-synthesis is to design a controller K(s) such that p of M =
F,(G, K) is minimized at all frequencies, with respect to certain A structure. According to
the main loop theorem [6], robust stability and robust performance can be achieved if the p-
synthesis is applied on A = diag{A,;, A,} of the above block diagram, where A, is
uncertainty block and A, performance block. However, due to the difficulty of computing
W, the y-synthesis is relaxe.i to the problem of minimizing its upper bound:

inf sup inf{ S{DF(G, KD 1} 6-3)

where D is the scaling matrix mentioned in eq.(6-2). Then, eq.(6-3) can be solved by the
so called D-K iteration algorithm, which is the only solution available to the problem up to
now. Basically, D-K iteration algorithm solves

g8 | I DEF(G(E). KEHDE) ., (6-4)
where both D(s) and D-1(s) are proper stable rational functions. This optimization is a
convex seérching problem, if either K(s) or D(s) is fixed. Unfortunately, it is not a convex
problem over D and K.
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DK iseration algorithm

Stepl: D(s)=1;

Step2:  Find a controller K(s) such that llD(s)Fl[G(s), K(s))D"Y(s)}\,. is minimized;
Step3:  Find constant D's at each frequency such that G(DF,(P, K)D" ) is minimized;

Step4:  Curve fitting for D(s), where D(s) is chosen such that both D(s) and D-1(s) are
proper stable rational functions;
Step5:  Go to step 2, until the local minimum is reached.

6.3 Problem Formulation

In this section, we will design a robust controller for a fighter aircraft at an altitude
of 10,000 feet and a Mach Number of 0.18. The angle of attack is approximately 70
degree, and the dynamic pressure is 33.6 Ib/ft2. The system is described by the following
block diagram.

r c u v -
K@) —» R(s) b= P(s) —-Y/

Fig.6.4
The P(s) is longitudinal model given by state space model [9]:

AR

y=x (6-5b)

1

where x; is the angle of attack, x, is the pitch rate and v is the pitch vectoring nozzle
deflection. It is assumed that M,, M, and M, are subjected to 25% variations from its
nominal values. The nominal plant is given by:

_| 00264 1 _[-0.0520
A=| 08810 02079] Br|.43434] Cpy=[10] Dp,=0.  (66)

The R is the model for the actuator from pilot stick to the vectoring nozzle. Its

67




transfer function is given by:

400

R =73 2as + 400 &N

From above model, one can see that the plant is stable, but has a large overshoot

and oscillations, long settling time and an insufficient stability margin, which can be

verified by the following step response plot, where the input is the unit step function acted
on pilot stick and the output is angle of attack of the aircraft.

Sep Response of the Plant

Angle of Atack(Deg.)

- 0 a - a A
! 0 10 20 30 40 S0
Time(Sec.)
Fig. 6.5

The design specifications for the feedback system are: (1) The system has a
satisfactory tracking ability with a damping ratio larger than 0.5, natural frequency large
than 2.0 rad/sec, small overshoots and oscillations, and small steady-state tracking error;
(2) Robustness of the system, including the stability and performance in the face of
disturbance and the plant uncertainties.

In order to design a robust controller, one needs to separate plant uncertainties A,
from the nominal plant. Consider eq.(6-5) and €q.(6-6), then it is easy to see that the plant
can be expressed by Fig.6.6,
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S
P Al o —
—
v P(s) y
Fig. 6.6
[ API Bpl Bp2 ] 81
where Pe) =| Co1|Pots Pprzfy A = 5 | (6-8)
Cp2 Dp21 Dp22 83

Here 8,, 5, and & are perturbations to M,, M, and M, respectively. Ap, Bp, = Bp, and
Cp2 = C, were given in eq.(6-6), and

000:0
B [0 0 0] ; (1) D= Dpll Dpl2 _ 000 : 0 ©69)
P {111 Pl 00 ’ | Dp21 Dy 0001

With plant model and design specifications available, a controller K(s) can be
designed for the following LFT block diagram, where P(s) consists of nominal plant P(s)
and actuator R(s).

69




P '
i
I .
] ]
: — W, — g
] ]
: ¢ LY > S ! v
r ‘ -— -
Y- —o] Fe =GO
: u y :
n [}
} 1
1 1
[} t
] + ¢
u 3 |
|

K(s) =

Fig.6.7

Compared with Fig.6.2, the above block diagram implies that the exogenous input
w consists of command r and noise n. The controlled output z consists of weighted
tracking error and weighted control constraint. The p and § are fictitious input and output
reflecting system uncertainties. W,(s), W(s) and W;(s) are the weighting matrices chosen
by designers such that the design specifications can be met. W, (s) is a weighting matrix for
tracking error and is chosen as a low-pass filter to emphasize the tracking accuracy at low
frequencies (small steady-state error). The weighting matrix W,(s) is designed for control
constraint. In the real situation, the control input must be restricted because of the limited
control energy and actuator saturation. Usually W,(s) is chosen as a diagonal constant
matrix; the larger W,(s) is, the less the control will be used. Ws(s) is used to normalize the
system uncertainties. In this particular problem, we choose

s+10
s+0.001°

Wy(s) = 0.5 and W5(s) = 0.25 diag{0.881, 0.2079, 4.3434}.

Wi(s) =

With these weighting matrices, the pu-synthesis technique can be used to design a robust
controller which maintains the quality of system performance and stability in the face of
uncertainties and sensor noise. It is easy to derive the generalized plant G(s) from Fig 6.7:
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wsfu 0 o tW3P),
WPy W W, ?WIPHJ
Gs) = o oiw} (6-10)
heccosrecsescscnncnnns .:...-.2...
| Py T -1 B,

Then by using the notations and formulas in [27], it is easy to see that the generalized plant
G(s) has a state space realization as follows:

A B,C» BD,»,Cy[BDyy, B, BLB D 22DR
0 A B,& |B, 0 o0 i BpaPr
o 0 A, [0 o of B
G®=| 0 DC, DD C DD 0 o} D,D_,Dy
G D&, DleZZCR DD, D, D -D,D,,0x
0 _ 0 0 0 : D,
I 0 'sz pz;ck 'Dpzx I 'IE 'DpzzDR ]

A |B.
where W) = Cl D‘ ,1=1.2,3, are state space realizations of weighting matrices.

i 1

With the state space realization of G(s) available, we are ready to use p-synthesis to
design a robust conu'ollg:r K(s).

6.4 Control Law Design

Robust controller design is performed on the system shown in Fig.6.3, with the
following uncertainty structure: A = diag{A,;, A,}, where A; = diag{3,, 3,, 83}
corresponding to plant uncertainties and A, is a 2x2 full matrix corresponding to the
performance. As we mentioned earlier, the performance is evaluated by H™ norm of the
transfer function from the command and noise to the tracking error and control constraint.
The objective is to design a controller K(s) such that the closed loop system is internally
stable and the H™ norm of T,,, remains small for all the uncertainties considered.

With the procedure illustrated in Section 6.2, we first obtained the optimal H™
controller K,(s) with the optimal H* norm being 7.64. Since K, (s) ignores the structure
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information of A and treats A as a full matrix, it gives a conservative solution to the
problem. Fig.6.8 shows the y plot and G plot of the closed loop system. The difference of
them can be seen.

Ty —T T
+ s e s saee . . e »

Mu-plot for the H-infinity Controller

Megnitude

+ & s teae
AN EERY]

102

Frequency (rad/s)
Fig.6.8

As we expected, | plot is lower than G plot, or expressed alternatively 1/6 < 1/u at
each frequency. This implies that the allowable set of uncertainties considered (structured)
is larger than that of unstructured uncertainties.

Next we will continue the D-K iteration design procedure described in section 6.2.
After two iterations, the process converges to a controller K;,(s) which minimizes the p of

the closed loop system, see Fig.6.9 for reference.
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Mu-plot for the Mu Controller
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Fig.6.9

In the figure, the lower curve is the i plot and the upper one the G plot of the D-
scaled closed loop system. Compare with Fig.6.8, one can see that K, (s) gives a smaller u

(=35.23) than K(s) did.

In the following, we will perform some analyses on the original closed loop system

shown in Fig. 6.4 with K,, as the controller.

Step responses

The following are the step responses of angle of attack and the corresponding angle of

thrust vector nozzle (control input).
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Swep Response with Mu Controller

1.2

Angle of Atwck (Deg.)

Py

Angle of Thrust Vecoring No2zle (Deg.)
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Fig.6.10a
Step Response with Mu Controller
.
1.5 2 25 3
Time (Sec.)
Fig.6.10b

From the design specifications, it is required that the settling time of the response

shouid be <

4.6 _ 4.6 second. Observing the above two plots, it can be seen that the
mn

design specifications are satisfied.
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Perturbation Test

By adding 25% perturbations on M,. M, and M,, we have the following step
responses.

Swp Response with Mu Controller under the Perturbation

1.2
g -
3
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S
g .

0 2 2 n P

0 2 4 6 8 10
Time (Sec.)
Fig.6.11a

2 Step Response with Mu Controller under the Perturbation
3
8 ! ]
1
Z o.{ .
.g A |
S i
o
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v 3L R
¥

“o 0.5 1 1S 2 25 3

Time (Sec.)
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Fig.6.11b

As it shows, the system stability and performance are still satisfactory under the
perturbations.

Controller model reduction

High order controller is usually obtained due to the need of "curve fitting" for D(s)
in the D-K iteration design procedure. In this example, the A has four blocks consisting of
three 1x1 and one 2x2 block. Therefore D(s) hasn - 1 =4 - 1 = 3 elements to fit [4]). We
choose the three elements with third order, second order and third order rational, proper
stable minimal phase functions in the last iteration respectively, which yields an eighth
order D(s). With the D(s), inverse of D(s) and the original fifth order plant, the final

controller is of twenty-first order. Therefore, the controller should be reduced to a
reasonable order. To this end we look at the controllability and observability of K, (s) to see

whether we can rec e it to a minimal realization. By finding a balanced realization, K, can
be reduced to a fifth order controller K (s) according to its Hankel singular values [28):

-1.2708¢+03 -4.5851e+00 -5.7124e+01 2.1467e+02 -4.6679e-01_1

0 -1.8591e+01 -2.2013e+01 -2.3381e+00 -2.0500e-02

A = 0 1.2911e+01 -3.8605¢+00 2.5750e+00 -1.5782¢-02

0 0 0 -9.3984¢+00 3.7513e-02

L 0 0 0 0 -l.OOOlc-OZT,_
9.4612¢401 ]
2.6817e+00
B.=13.6647e+00}
-7.4246¢+00
| 7.7460e-01

C,= [ -9.4590¢+01 -3.1892¢+00 -2.1391¢+00 8.0623¢+00 -7.7481¢-01 );
D, = -6.6522¢-03.

With the reduced order controller K (s), we have the following it and & plots of the
closed loop system.
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Singular valve & Mu Plots for Reduced Order Controller
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Fig.6.12

As it shows, the reduced order controller K (s) maintains almost the same y for the
closed loop system as the full order controller does. Hence robust stability and robust
performance are achieved with K(s). It can be verified by the following step responses

with and without 25% perturbations.
Swp Response with Reduced Order Contro’ :r

1.2

-
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°
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4 6 B 10
Time (Sec.)
Fig.6.13a
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2 Sep Response with Reduced Order Controller
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Stp Response wvith Reduced Order Contoller under the Perturbation
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Fig.6.14b

6.5 Conclusions

A fighter aircraft control design problem was considered in this chapter. The design
procedure illustrates how to apply p-synthesis to a real engineering problem. We addressed
the issues of problem formulation, D-K iteration, and controller reduction. With the
controllers obtained, simulations on system performance and stability analyses were also
performed.
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CHAPTER 7

CONTROLLER REDUCTION BY STRUCTURED TRUNCATION

Simple controllers are normally preferred over complex controllers because of the
less computational requirement and less effort in implementation. The methods for
designing low-order controllers can broadly be classified into two categories: fixed order
controller design and controller reduction.

The philosophy in fixed order controller design is to seek to minimize a
performance index subject to the constraint that the controller be of fixed degree [29,30]).
For controller reduction, one can simply apply model reduction techniques to either the
plant model or the controlier. There are now at least three rather popular state-space based
model reduction techniques, namely, truncation of the internally balanced realization
[31,32,33], Hankel-norm approximation {28,34], g-covariance equivalent realization (g-
COVER) [63], and coprime factorization method [35]. It is well known that the controller
approximation is better than the plant approximation [36). However, to find a reduced-
order controller which approximates the original controllers is not our direct objective.
What we seek is to find a reduced-order controller such that the reduced closed-loop system
approximates the original closed-loop system.

Jonckheere's work [37] was based on this consideration, in which two Riccat
equations are balanced and truncation is carried out with respect to LQG characteristic
values. But the relationship between the LQG characteristic values and the closed-loop
system properties is unclear. So Jonckheere's approach usually cannot provide satisfactory
reduced-order controllers.

In this chapter, we propose a new controller reduction approach which is based on
closed-loop considerations other than controller approximations or plant model
approximations. In Section 7.1, a method of structured truncation based on the closed-loop
properties is developed, and some interesting properties of the controllability and
observability gramians of the H, optimal closed-loop system are also presented. Some
illustrative examples are given in Section 7.2.
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7.1 Structured Truncation Approach

Given a closed-loop system, the structured truncation approach is to reduce the
order of controller by minimizing a cost function based on the closed-loop system. The cost
function will be elaborated later. Although this approach can be applied to any desired
closed-loop system, we will concentrate on the optimal H; closed-loop system for the
simplicity of presentation.

It is well known that the input/output relationship of a system is well represented by
its controllability and observability gramians. The balanced truncation [31] is based on
these gramians. In the proposed structured truncation approach we also use them. For
convenience, some basic knowledge about controllability and observability gramians is
reviewed in the following.

Controllability and Observability Gramians

Consider a linear time-invariant system
x(t) = Ax(t) + Bu(t)
y(® =Cx(1) + Du(®

i.e., the transfer function is

Al B -1
G(s) = C D—D+C(sI-A) B

The eigenvalues of A are assumed to be strictly in the left half-plane and the controllability
gramian P and the observability gramian Q are defined as

P := | exp(ADBB'exp(A')dt

Q:= j:cxp(A't)C'Cexp(At)dt

where A' is the transpose of A. P and Q satisfy the following Lyapunov equations
AP+PA'+BB'=0
AQ+QA+CC=0

and have the following properties.

Property 7.1
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If all the eigenvalues of A are strictly in the left-half plane, then
(a) P> 0if and only if (A, B) is completely controllable.
(b) Q > 0 if and only if (A, C) is completely observable.

If the state-space coordinates of the system are changed to z = T 'x for some non-
singular T then
2=T ATz+T'B, y=CTz+Du
Furthermore, the controllability and observability gramians become T!PT! and TQT
respectively, and the product PQ will be transformed to T 'PQT. Therefore the eigenvalues
of PQ are invariant under state-space transformations, and are input/output invariant. A

useful state-space realization in this respect is the balanced realization where P = Q =
diag(cl, Ops oo cn), therefore PQ = diag(olz,..., cnz).

Structured Truncation

Consider the block diagram of in Fig. 7.1.

z<—ﬂG‘——w

y u

K p—

Fig. 7.1 A generalized plant G with a controller K.

G is a generalized nominal plant, w contains all external inputs, including disturbances,
sensor noises, and commands; the output z is the controlled output; y is the measured
output; and n is the control input. A state-space realization of the generalized plant G is
given as

(A5 3]
Gs) :=l ¢ | Py Du} (7-1)
c, | Py D,

where A @ R0*0 | Bl e Rnxmj B2 e Rn*m2 Cl e RPiI*n and C2 € RBP2*n The
controller K is assumed to be
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BC

KO =re15
C

(7-2)

where A aRic*ic, B e Ric*P2, C.« RM2*Ic, and D .« RM2*P2, T, denotes the closed-
loop transfer function from w to z.

The objective is to reduce the order of the controller with which the closed-loop
system approximates the original closed-loop system. Hence we consider the controllability
and observability gramians of the closed-loop transfer function T,. The balancing
technique can not be applied on the gramians of the closed-loop system because the
balancing transformation takes place in the whole state space of the nominal plant and the
controller. With the states of the closed-loop system arranged as [xp', X1 where xp, is the
set of the n states of the plant and x; is the set of the n, states from the controller, to avoid
mixing up the states from the plant and the controller, only the following structured

transformation
T, ©
T=lo T, (7-3)
c
is allowed. Without loss of generality we use the transformation shown below
I 0
T=lo T (7-4)
[+

Let P and Q be the closed-loop controllability and observability gramians respectively and
define J = PQ. If the closed-loop system can be balanced, i.e. J can be diagonalized, then
the states corresponding to the small diagonal elements can be truncated from the system.
Due to the structure restriction on transformation, it is impossible to totally balance the
closed-loop system.

By applying the transformation T of (7-4) to the closed-loop system, J becomes
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a [|S/
Let T, =[ 1] and T, =[TII], where sand t €R ", 50
C A

i C
J J Tn [ Jll J12Tl lei
ll 12 c S oJ s IJ T S OJ I
1 1 ="' %17 N 1
T.J T.J T 2 2
R ORERL s w,T

'l'hc:pvrobk:misptoposednoﬁndT.,c such that

(T, ) = » (7-5)

is minimized
Here 1.1 denotes the Frobenius-norm. Then we truncate the states of the controller
corresponding to the small cost defined in (7-5).
For the H, optimization problem with the generalized plant
A | Bl B )

G(s) = CI] 0 D,
C2 D21 0
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and the optimal controller

e A | L,
o= F 10

2

where Fy := -By'X5, L, :=-Y79Cy'and A¢c := A + 7 F + 1,Cy, and X, and Y, are the
solutions of the following two Riccati equations -

A'X2 + X2A - X232B2X2 + Cl'Cl =0

AY2 +Y,A" - Y2C2'C2Y2 +BB/'= 0.

The closed-loop system with the optimal Hj controller is of the form

A B.F B

a1®B 22 1
96s) ;{?H -| 1,c, A+BF#LC| DL
[ C, ED, I 0 J

Let P and Q be the controllability and observability gramians of 9(s) respectively, then we
have the following proposition.

Proposition 7.1: P and Q are of form
.. P2+X2 P2 _ Q2+Y2 -Q2
| P P Q= Q, Q

2 2
‘where P, and Q, satisfy the following two Lyapunov equations

A+ szz)Pz + P2(A + B2F2) + L2L2' =0 (7-6)

A+ L2C2)'Q2 + Q2(A + L2C2) + F2'F2 =0 a-7n
This result can be easily verified.

So the structures guarantee

The problem mentioned above turns out to find Tnc such that
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0 112;
["le 0 }

or f(Tn ) =57,,7,,8 +17,,7,,t is minimized.

Theorem 7.1
There exist two vectors § and t such that §t =1,
f6. 1) =575 +173573t

iS minirnized
Proof: Let
f61) =87y, T,,8 +17,,7 58 - 2(s1 - 1)
then set
af%;) =2,,7,8- 2 =0 (7-8)
i‘g-;imuwng- 2hs =0 79
£t =1

It is easy to see that A is the eigenvalue of the matrix
0 Il
1,9,, © (7-10)

and is [ f] the eigenvector corresponding to the smallest eigenvalue of (10.10).  Q.E.D.

The matrix (7-10) is a special case of Hamiltonian and has the followi:g property.

Property 7.2
If both J; and J; are full of rank then the eigenvalues of (7-10) are real.
Proof:
From (7-8) and (7-9)
1y 08 = At (7-11)
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12 121 =2As (7-12)

Multiply (7-11) by §' and (7-12) by {', and plus them together. Here §' means the conjugate
transpose of §.

"‘21']213 +1 'J12 = =AGET +1') (7-13)
From (7-13) we see that Im(:;'J21 215'*1'112 121) =0, and Im(s't+ t's) = 0. So Im(A) =
0. Q.E.D.

7.2 Examples

Two examples are shown to illustrate the proposed structured truncation approach
for controller truncation.

Example 7.1:

Given a plant:
[ -1 0} 1 0107
[A |Bl Bz] 0 2|0 0: 1
G(s):=lcl 0 DlzJ =l 1 1]o0 oi 0
c,|p, o] R0.0logt
21 [ 1 110 1! o]
Full-order optimal H; controller is:

-4.8613 -6.7884 | 4.5523

A.| B, -0.8619 0.1381| -0.1381
¢ -0.3090 -4.2361| 0

By the structured truncation, the controller can be reduced to the following 1st-order
controller

A Be| [ -64397 |-3.4225]
Cl O] L ssa7 1 0 |

In Table.1, Hz-norms of reduced-order closed-loop system and L..-error bound between
the closed-loop system with the full-order controller and those with reduced-order
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controllers obtained by our new structured truncation, balanced truncation, coprime
factorization, and optimal projection are listed.

2
Full-order Optimal Controller | 91.8196689 0
1st-order controllers
_Eucnn'edTmncation 91.857999 0.233720
Balanced truncation 91.871408 | 0.392831
coprime factorization 91.870133 | 0.361891
Optimal Projection 91.856689 | 0.269276
Table 1.
Example 7.2:
Given plant
| (1.0 0[10 0 0!1]
0-20[{0100!1
[A]B, B [00-3]0o01 01
G(s):=C10 l____100 0000:0
c o 0 1000000
2] a1 001/000 00
| 000]100001
1711000 1f

The full-order optimal H, controller is:

Ac[Be| | -2.6639 -2.1379 -0.1407 | 0.0689
C.| 0| | -2.6667 -0.1407 -3.1435 | 0.0717
| -2.5950 -0.0689 0.0717| 0 |

3 3 -4.1899 -2.6639 -2.6667 |f.5950

The controller is unstable.

The reduced second and first-order controllers by the structured truncation are

A IB -1.3875 -3.6269 | 0.0263
FH =] -2.7605 -5.2019|-2.5453
C.|0

| 0.6207 2.6198] 0 |
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Ac|Bc| [0.2507 |1.6406
C.J0] [-20529] 0

The comparison of the proposed structured truncation with the others is shown in Table 2.

1Tzwi,? [N T - Trea 1

Full-order Optimal Controller | 22.490551 0
2nd-order controllers
Structured Truncation 22491118 | 0.019268
Balanced truncation (The controller is unstable)
Coprime factorization 22.491945 | 0.051115
Optimal Pro;>ction 22.491114 | 0.021112
1st-order controllers
Structured Truncation 33.797984 | 4.913441
Balanced truncation (The controller is unstable)
Coprime factorization 42.666848 | 16.386789
Optimal Projection 30.333357 | 4.4430115

Table 2.

The optimal projection is the fixed-order controller design to minimize the Hy-norm of the
closed-loop system. For the two examples, the Hy-norm of the closed-loop system with the

reduced-order controller by the new structured truncation is vary close to the result of
optimal projection design. The structured truncation also results in small L .-enror bounds.
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CHAPTER 8

A PARAMETRIZATION APPROACH
TO REDUCED-ORDER H™ CONTROLLER DESIGN

8.1 Introduction

By the state-space approach [7] to H* optimization, an (sub)optimal controller can
be easily obtained and the order of the controller is not higher than that of the generalized
plant. However, in many enginecring problems, the order of generalized plant can be very
high. This is due to the fact that the generalized plant consists of the original plant as well
as all the weighting matrices which are chosen to meet certain design specifications. Hence,
the order of the H* controller obtained by the stanuard state-space approach is usually too
high to be implemented in practice, and therefore a systematical methodology of designing
a reduced-order H* robust controller is desired.

This issue has attracted considerable attention in the past few years, and several
approaches have been proposed to address this problem. Bernstein et al. [30,38) proposed
a fixed order controller design method based on the optimal projection theory. It was
shown that an optimal reduced-order H2/H* controller can be obtained by solving several
coupled Riccati equations. However, the computation involved is very complicated. A
direct design method based on the well-known Bounded Real Lemma [39] was proposed
by Hsu et al. [40], where a set of sufficient conditions and design algorithms were derived
for a reduced-order H™ controller design. Chang et al. [41,42] considered observer-based
controller parametrization, and pointed out that by selecting a suitable parameter matrix, one
can make the realization of the stabilizing controller non-minimal, whose order then can be
reduced. Choi et al. in {43] proposed a method of constructing such a suitable parameter
matrix in order to get a reduced-order stabilizing controller.

These results, especially the work by Choi er al. [43], motivated our work in
designing reduced-order H™ controllers. In this chapter we will present a direct design
z'gorithm for (n-p,)th order H™ coatroller, where n is the order of the generalized controller
and p, is the number of independent measured outputs. The major idea is to select a
parameter matrix such that the realization of the controlier obtained from DGKEF formulas
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[7] is not minimal. By dcléting the unobservable states of the controller, (n-p,)th order H*
controller can be obtained. The content of this chapter is arranged as follows. Section 8.2 is
a preliminary section which provides the standard state space approach to H* optimization
problem, including the formula of all stabilizing (sub)optimal controller. We present our
main result in section 8.3, where a set of formulas are given for constructing a reduced
order H™ controller. Section 8.4 shows an illustrative example and Section 8.5 is a
conclusion.

8.2 Preliminaries

The following block diagram is the standard H™ optimization configuration.

z w

' G(s) »

=]
K(s)

Fig. 8.1 The standard block diagram for H* optimization

The G(s) is the generalized plant, including the original plant and possible weighting
matrices. The signals z, y, w, and u are the controlled output, the measured output, the
exogenous input and the control input respectively. The standard H* optimization problem

is: To design a proper controller K(s) such that the closed-loop system is internally stable
and T, (s)ll_ is minimized, where T, (s) denotes the transfer function of the closed loop

system from w to z.

In the DGKEF approach [7], the realization of the generalized plant G(s) is assumed
to be

6.0 6.6 LALE Bl
1 128 _ <o D, -1)
G,,(5) G, c, 0

D
where G(s) is partitioned such that Gy;(s) is pyxm;, Gy5(s) is pyxmy, Gy;{s) is poxmy,

G(s) = l:
21
and Gy, (s) is ppxm,. It is also assumed that:

(i) Both Glz(s) and G, (s) do not have any transmission zeros on the jw-axis.
(i) (A, B,) is stabilizable and (C,, A) is detectable.
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@) D, [C, D] =[0 1]

B
(iV) 1 Dv =[0]
B

The two Riccati equations involved are:

AX_+X_A+X_(*BB-BB)X_ +CC =0 8-2)
and

AY +Y A'+Y (CC -CC)Y_ +BB =0, 8-3)

The following famous theorem characterizes all (sub)optimal stabilizing controllers such
that T, ll.. <7.

Theorem 8.1 [7)]
For a given v, there exists a stabilizing controller such that IIT,,ll_.<y if and only if the
following three conditions hold:

(i) There exists a positive semidefinite stabilizing sc' ition X..(Y) to (8-2).
(ii) There exists a positive semidefinite stabilizing solution Y () to (8-3).
(iii) PIX.(VY..(¥)] <y2, where p denotes the spectral radius of a matrix.

When these conditions hold, all stabilizing (sub)optimal controllers K(s) can be
parametrized by a stable proper parameter matrix Q(s) whose H™ norm is less than v, as
shown in the following figure.

u y

M (s)[ @

PE QQs) q

Fig. 8.2 The parametrization of all stabilizing (sub)optimal controllers

[ Afat. 28]
Here M_(s) = [ F.] O I J , (8-4)
-C2 I 0 .
with A =A+yBBX +BF_+Z1.C, , (8-5)
F.=-BX,_ (8-6)
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L_=- Y_,c'2 3-7)
Z.=(1-y2¥.X)" | (8-8)

‘ Aqqu‘ '
Q) = . 8-9
A (8-9)

8.3 Reduced-Order H™ Controller Design

In this section, we will show the existence of an (n-p,)th stabilizing H* sub-optimal
controller, where n is the order of the generalized plant and p, is the number of independent
measured outputs. By using the DGKF's formulas in Theorem 8.1, the state-space
equations for sub-optimal controller K(s) can be expressed as

Xx= A_,x -ZLy+ Z_B2q

(8-10)
u=F x+q (8-11)
p=-Cx+y (8-12)
X=Agx+Bp (8-13)
q=Cgx+Dgp (8-14)

where the dimension of A, is (n-p,). Simplifying the above equations, we have the
following state-space representation for the controller,

A+ y‘znln'lx,,+ BF.+ZLC,-ZBDC, 2BC| zBD,-ZL.
K(s)= -BG A, By
l F.-DG, | o | (8-15)

Note the fact that the realization of K(s) may not be minimal, which depends on the {A_,
Bq, Cq, Dq} chosen. This suggests that if one can choose a set of {A, B, Cq, Dq} such
that the realization of K(s) in eq.(8-15) is non minimal, then by deleting the unobservable
or/and uncontrollable states of K(s), a reduced-order controller can be obtained, and the
system performance and stability can be maintained at same time. To this end, we apply a
similarity transformation ‘

I10
T= [.x 1 ] (8-16)
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to K(s), where X will be determined later. With the transformation, eq.(8-15) becomes

I A ' Bul
K(s) = , (8-17)
CM DM

where A= [Auu Amz}
A Ay
with
Avy= A+Y’BBX_+BF_+ZLC,-ZBDC: - ZB,CX (8-18)
Avpp=ZB,C, (8-19)

Arg; =X(A +¥°B B X, +BFu + Z.L.C; - Z.B;,D,Cy)

- ByC2 -XZ.B)CoX - AX (8-20)
Avzn = XZ_B.C +A,, (8-21)
and
By, - [zm] } [X(ZZ'??; Zz“-l]‘:’ )R | - (8-22)
M2 =279
Cm=[Cwm Cw]=[E.-DC,-Cx C.] (8-23)
Dy =D, (8-24)
Note that our objective is to choose an X in the similarity transformation such that
Cp1 =0 (8-25)
App; =0. (8-26)

If this is achieved, the unobservable pair (Cyg;, Aypp) in €q.(8-17) can be deleted and the
controller in eq.(8-17) is reduced to

B
M2
K@) = C D (8-27)
M2 M

whose orderisr = dim(Aq) = n-p,. In fact, the equations (8-25) and (8-26) are identical to




X
[ De]{ cz] -F, (8-28)

XA -AX-B.C,=0 (8-29)
where
A= A+y°ZBlB'lx,+BZF,+ Z1.C,-ZBE, (8-30)

The discussion of the existence of the X to equations (8-28) and (8-29) will be given in the
following, which plays a key role in our main result.

Lemma 8.1 Ais a stable matrix.
Proof: Define
P:=y2Z.Y.F.F., - B,F.. + Z_BF.., (8-31)
then it is easy to verify that
P=(-Y2Z.Y. X - 1+ Z.)BoF. = [Zo(1- Y2Y.X..) - I]B;F.. = 0. (8-32)
Note eq.(8-30) can be expressed as
A=A+yBBX_ +BF_+ Z1.C,-ZBE,

171 7=
= Aup + ZoYu( <Y F.Fu- C,C) - P

= Amp + ZYo(-YF Fu - C,Cy), (8-33)
where
Amp=A+YBBX,. (8-34)
It is straightforward to show that [7]
T VmpT =, (8-35)
where
A' ycc.-Ccc
L= TR (8-36)
BB, A
J A, YEF.-CC, e
tmp = ' ’ "
T®T|-BB, Ay
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I -{zx,_]
(8-38)

and T‘[o I

Hence, it is easy to see that the stabilizing solution to eq.(8-37) can be expressed in terms
of Y.. which is the stabilizing solution to eq.(8-36) (or eq.8-3)), i.e.,

Yorp = Z..Y.. (8-39)

is the stabilizing solution to Riccati equation eq.(8-37) [7]. Substituting eq.(8-39) into
¢q.(8-33), we have

A= Amp + Yump( -Y?FFo - C,C)),
which implies A is stable. Thus we proved the lemma.

Without loss of generality, we assume that

C,=[L, 0} (8-40)
Then we partition A and X compatibly such that
1:[ Ay Ay (8-41)
Ay Ay
X= [Xl X2 ]. (8-42)
With the partition, eq.(8-29) can be expressed as
TR
X X - - =
[X, 2][ A, A, [Aqx1 Aqxz] [Bq o] 0. (8-43)
or equivalently
X Ap+ XAy - AKX, =B, (8-44)
XAp+XA,-AX,=0 (8-45)

Lemma 82 The pair ( A,,, A,, ) is detectable.

Proof: Since A is stable, then for Re(s) >0




Is A 0 Is-A
I 0
p2
Is A22
=p2+rank A, (8-46)
Is - A22
=n-p; for Re(s) > 0. (8-47)
AIZ
Thus the lemma is proved.

Lemma 8.3 There exists a solution X = [X; Xj] to eq.(8-45).
Proof: Since (A}, A,) is detectable, then there exists a Y and invertible W such that
Ap+YAp= W'lAqW =A (8-48)

where A is a stable matrix whose eigenvalues consist of the unobservable stable
cigenvalues of A, and those we are chosen arbitrarily by selecting a Y. Eq(8-48) actually

implies

WAz + WYA;, = AW (8-49)
ie.,
X, =W (8-50)
X, = WY (8-51)
Thus the lemma is proven.

Remark 1. Note that A is not unique.

With Lemma 8.2 and 8.3, we are ready to present our main result in the following theorem.

Theorem 8.2 For a given ¥, define the parameter matrix

Al Bq
Q@) =Hﬁj . (8-52)

as - A=A +YA (8-53)
B =YA, +A) -AY (8-54)




C,=F, (8-55)
D ,=F -FY (8-56)
and F.=[F, F] (8-57)

where A}, A3, Aj; and Ay, are the partition of A. If one can choose a matrix Y such that
Aq is stable and lIQ(s)ll.. <Y, then there exists an (n-p,)th order stabilizing controller with
the following form

|' A +XZB,C, | B,+X(ZB,D, - z,,L,_)]

K(s) = , (8-58)
l. Cq I Dq J

where

X=[Y I]. (8-59)
Moreover, the H* norm of the closed-loop system is less than ¥.
Proof: Choose W =1 in the previous lemma, then A = A, + YA . Since (A;y, Ay ) is
detectable, there always exists a Y such that A,, + YA,, is stable. Eq.(8-54) is a direct
result from eq.(8-44). From eq.(8-29), we have

-1
Y I 01
[C, D1=E, I 0 =[F, F] I.y =[F, F,-F,Y].
Thus we completed the proof.

Remark 2, Obviously, such a Y is not unique and it is desirable to choose a stabilizing Y
such that lIQ(s)!l, is small. However, in case that one can not find a Y such that HIQ(s)ll., <

Y, a larger upper bound on the norm is required.

8.4 Illustrative Example

The generalized plant is given as
.100]100:i1]
020[100i1
004]100:i2

_[TT1[000}0
C®=lo00lo00i1]
10071010750

1 010(001:0]
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By using DGKF formulas and the algorithm we developed in Chapter §, it is easy to
compute the optimal H* norm of the close-loop system, which is 5.31524. A sub-optimal
upper bound of the system is chosen as ¥, , = 6. By choosing Y =[-1 -1], we have stable
(Ayp+YA,,) and HQ(s)ll,= 5.54191 which is less than Y, ;. From the formulas given by
¢q.(8-52) to eq.(8-58) in the previous section, a first order H* controller can be constructed
as follows.

[4.004 |-2.999 -6.155]
K) = 0259 [0277 .53 (8-60)

With this controller, the eigenvalues and the H* norm of the closed loop system are
-4.0, -5.691, -2.1549, -0.9704

and 5.541640 respectively.

8.5 Conclusions

In this chapter, a parametrization approach is presented for the reduced-order H™
controller design. We showed that there always exists an (n-p;)th order stabilizing
controller for an nth order generalized plant with p, independent measured outputs. By
using the formulas provided, a reduced order H™ controller can be easily obtained.




CHAPTER 9

CONTROLLER REDUCTION VIA
OBSERVER-BASED CONTROLLER PARAMETRIZATION

Of recent, interest in the conception and development of sophisticated aircraft and
spacecrafts has increased. Examples of the spin-off of this interest include such mechanical
systems as hypermaneuverable aircrafts and space stations. As these systems get more
sophisticated, they become more and more complex. Consequently, conventional modeling
techniques and control design strategies become inadequate. This has, by necessity, led to
increased research activity in such areas as model reduction [28,31,44,45,46], reduced
order controller design [30,36,37,47,48,49], decentralized control [50,51,52), and
control/structure interactions [53-56).

This chapter of the report deals with reduced compensator design, which has been
tackled from an observer-based compensator point of view. Briefly, this chapter develops
two properties related to observer based controlier parametrization and pole placement. It
shows that the poles of the closed-loop system with the observer-based controller (Q(s))
parametrization are the regulator poles, the observer poles, together with the poles of the
added stable parameter matrix K(s). If the controller Q(s) is realized by a minimal
realization, the closed loop poles will include all the poles of the added stzble parameter
matrix K(s) and a subset of the regulator and the observer poles. We parametrize all such
K(s) which render Q(s) non-minimal, thereby permitting a minimal realization of Q(s) to
serve as a reduced order controller. With such a parametrization available, one could then
choose a K(s) in order to best approximate .arge order controllers, such as the H*
compensators, by a lower order controller.

9.1 Observer Based Compensation

One of the most fundamental requirements in control systems design is to make the
closed-loop system internally stable. In addition to closed-loop stability, usually the closed-
loop system is required to meet some other desired performance criteria. Stabilizing
controller parametrization is important because of the following reasons: (1) It provides the
full set of the controllers which stabilize the closed-loop system. (2) The full set of
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stabilizing controllers is characterized in terms of a stable parameter matrix and the closed-
loop system is internally stable if and only if the parameter matrix is stable. (3) The closed-
loop transfer function matrix related to the performance can be written as a simple affine
function of the parameter matrix and then the control system design problem becomes that
of finding a stable parameter matrix such that the closed-loop transfer function matrix meets
the desired performance criteria.

The first characterization of the set of all stabilizing controllers in terms of a stable
parameter matrix was introduced by Youla et. al. [57] in 1976. Youla's controller
characterization was developed based on the fractional factorizations over the ring of
polynomial matrices. The only drawback of Youla's characterization is that the stabilizing
controller may not be proper. This drawback was removed later by Desoer et. al. [58] in
1980.

Desoer et. al. [58] generalized Youla et. al.'s result based on the fractional
factorizations over a general ring. The *ing can be chosen as the set of proper stable rational
matrices if the given plant is a linear time-invariant system which is represented by a
rational matrix. Based on the fractional factorizations over the ring of proper stable rational
matrices the set of all proper stabilizing controllers can be characterized in terms of a proper
stable parameter matrix. The closed-loop system is internally stable if and only if the
parameter matrix is proper stable and the stabilizing controllers are proper if a simple
inequality is satisfied.

To use Desoer et. al.'s version of proper stabilizing controller parametrization, it is
essential to compute the fractional factorizations over the ring of proper stable rational
matrices. Nett et. al. [S9] proposed a very convenient state-space method for this
computation in 1984. The computation method was developed based on the observer and
regulator theories.

Later in 1984, Doyle et. al. [2] showed that the proper stabilizing controller
parametrization can be realized as an observer-based controller with an added stable
parameter matrix. In 1988 and 1989, Glover and Doyle [8] and Doyle, et. al., [7] offered
the two-Riccati-equation approach to solving the standard H* optimization problem. This
approach characterizes all possible stabilizing suboptimal H* controllers whose order is not
higher than that of the generalized plant. Nonetheless, since the generalized plant model
includes the original plant and the models of appropriate weighting functions, this order of
the controller is likely to render it non-implementable. Hence, a need for a suitable
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methodology for the reduction of this controller arises.

In this chapter we deals with the controller reduction from an observer-based
compensator point of view. In essence, the following important properties related in the
observer-based controller parametrization and pole placement will be given: (1) The poles
of the closed-loop system with the observer-based controller parametrization are the
regulator poles, the observer poles, together with the poles of the added stable parameter
matrix. (2) If the controller is realized by a minimal realization, the closed-loop poles will
include all the poies of the added stable parameter matrix and a subset of the regulator and
the observer poles.

In the rest of this section, we will explain the notations to be used in this chapter
and briefly review the concept of the stabilizing controller parametrization. We will begin
by listing the previous results about the controller parametrizations done by Youla et. al.,
Desoer et. al., Nett et. al., and Doyle et. al., and present some important properties of the
observer-based controller parametrization.

Throughout this chapter, both of the following notations

AlB
and { A,B,C,D}
C|D

are used for the same purpose to represent a state-space realization of a system whose
transfer function is C(sI-A)'B + D. The sum, A+B, of two sets A with p elements and B
with q elements is a set which consists of all elements of A and B. A+B has p+q elements.
Assume that B is a subset of A, then the difference, A-B, will consist of all the elements of
A except those in B. A-B has p-q elements.

v G(s) | >z

Qs)
Figure 9.1. Block diagram of a typical control problem.

The concept of stabilizing controller parametrization is briefly described as follows.
Consider the block diagram in Fig. 9.1 where v is the exogenous input vector which may
consist of the disturbances, noises, and the commands, u is the control input vector
through which the behavior of the system can be modified, z is the controlled output vector
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which is composed of all the variables to be controlled, and y is the measured output vector
which consists of all the measurable quantities available for feedback. The plant G(s) is

given by

A|B, B,]
G,  Gp,6)
G(s) = =1¢,|D,, D, (9-1)
G, (5)  Gyy(s)
ch Dy Dy

The objective of a typical control problem is to find a proper controller Q(s) which
stabilizes the closed-loop system and the H* (or H) norm of the closed-loop transfer
function matrix &(s) from v to z is minimized. The first step to solve the problem is to find
the set of all proper controllers which make the closed-loop system internally stable. Then
in the set of all proper stabilizing controllers, one will be chosen such that the H™ (or H?)
norm of &(s) is minimized.

The stabilizing controller parametrization we are interested in has the following two
properties: (1) All the proper stabilizing controllers can be characterized in terms of a proper
stable parameter matrix K(s) and the closed-loop system is internally stable if and only if
K(s) is stable. (2) The transfer function matrix ®(s) is a simple affine function of the

parameter matrix K(s).

After the stabilizing controller parametrization, the above control problem becomes
that of finding a proper stable matrix K(s) such that Idll_ (or Il<1>|l2 ) is minimized. Property
(2) of the last paragraph is important since it will make the H™ (or Hz) optimization
problem easy to solve.

9.1.1 Pr:liminaries

The previous results related to the controller parametrization will be briefly
reviewed in this section. The following theorem was originally developed by Youla et. al.
{57] and later modified by Desoer et. al. [58].

Theorem 9.1: [57,58] (Youla's Controller Parametrization)

Consider the system in Fig. 9.1. Assume that the realization in (9.1) is minimal and the
subsystem G,,(s) is stabilizable and detectable. Let M,(s), N,(s), X, (s), Y,(s), M (s),

N (s), X (), andY 1(5) be proper stable rational matrices such that
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M)s) N@J X6 N I 0
= (9°2)
-Yl(s) Xl(s) Yz(s) Ml(s) 0 I
and
M,(s) ' N,(s) = G,,(s) 9-3)

Then the set of all proper stabilizing controllers can be described as

{ 0@ | Q@ =1M 6K + ¥,6 1 [N GKS) - X1
with K(s) proper stable and [N, (=)K(ss) - X,(=)| #0 } ©-4)
and the closed-loop transfer function matrix ®(s) from v to z is an affine function of the
parameter matrix K{(s),

¢(s) = Gu(s) = GIZ(S)Y2(S)M2(S)GZI(S) - Glz(s)Ml(s) K(S) MZ(S)GZI(S) (9"5)
To use Theorem 9.1, we need to construct the proper stable rational matrices in (9-

2) and (9-3). Nett et. al. [59] proposed a convenient state-space approach for this
construction. That is, the following realizations

[ A+HC H B,+HD
M,(s) N, (s) 2 2 22]
=] € D 9.6a
Y, X(9) 2 22 (9-6a)
| F 0 I
and
A\BF |H B
X6 N el : |
Y, (s) M, (s) =1 -GDpH | I Dy (9-6b)
2 1
L F 0 I

are proper stable and satisfy (9-2) and (9-3) where F and H can be arbitrarily chosen such
that A+B,F and A+HC, are stable.

Doyle et. al. [2] showed that if (9-6a) and (9-6b) are used to realize the proper
stable rational matrices in (9-2) and (9-3) and let
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A+B,F+HC,+HD,,F | -H -(B,+HD,,)

UTTORER IO,
I(s) = = F 0 -1 ©-7

1, 1,0
amon «(C,+Dy,F) 1 D

then the set of proper stabilizing controllers described in Theorem 9.1 will have a structure
as that shown in Fig. 9.2.

v —— ] -—
Xs) y

y u,
—1 K(5)

with K(s) proper stable and I - D22K(°o) invertible.
Figure 9.2. Structure of stabilizing controller parametrization.

Replace the controller Q(s) in Fig. 9.1 by the structure of Fig. 9.2, then the closed-
loop system can be redrawn as that shown in Fig. 9.3.

Ve— >
| T(s) z

Lp) y
K(s) |4—

Figure 9.3. The closed-loop system in terms of a parameter matrix K(s).

In Fig.9.3, the open-loop transfer function matrix from u, to 37, T,,(s), is zero.
Therefore, the closed-loop transfer function matrix from v to z, i.e., ®(s), is a simple
affine function of the parameter matrix K(s). That is,

B(s) = T,y() + Tp,8) K) T,y (6) 9-8)

where the realizations of Tu(s), le(s), sz(s) are given by
[ A+BF -BF B,

T, ) = 0 A+HC, | B,+HD,, (9-9)

C*DF D F | Dy

!
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T, = [ a+BF | B,] .
|c#DF | D,,)
A+HC, | B,+HD

Ty® = { 3 l 'Dn ”} 9-%¢)

Doyle et. al. [2] also pointed out that the structure of the stabilizing controller
parametrization in Fig. 9.2 can be realized as an observer-based controller with an added
stable dynamics K(s). The realization is shown in Fig. 9.4.

u
- —
y
- =
I.
|y
o~ oy
-y ?‘ -4
F

| K(s)

with- K(s) proper stable and I -D,,K(eo) invertible
Figure 9.4. The observer-based controller parametrization.

Note that in Fig. 9.4 the block diagram inside the dotted-line box is the well-known
full-order observer-based controller [17].

9.1.2 Main results

In Fig. 9.1, the internal stability of the closed-loop system depends only on G,,(s)
and Q(s), i.e., the interconnected system shown in Fig. 9.5. :
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—] G,

Q@) —

Figure 9.5. Equivalent system to Fig. 9.2 for internal stability.

In this section, the controller Q(s) in Fig. 9.5 is replaced by the block diagram of
Fig. 9.4 which is the observer-based controller with an added dynamics K(s).

In the following theorem we will show that the poles of the closed-loop sy

with the observer-based controller parametrization in Fig. 9.4 are the regulator poles (u..
cigenvalues of A+B,F), the observer poles (the eigenvalues of A+HC,), together with the

poles of the parameter matrix K(s). In the design of the observer-based controller, F and H
are chosen such that the eigenvalues of A+B,F and A+HC, are stable. Therefore, the

closed-loop system is internally stable if and only if the parameter matrix K(s) is proper
stable. The proof is quite straightforward and is done completely in the state space without
referring to the derivations used by Youla et. al., Desoer et. al., and Doyle et. al..

Theorem 9.2: (Observer-based Controller Parametrization)

Consider the closed-loop system in Fig. 9.5. Assume that G,,(s) = {A, B,, C,, D,,}

with order n is stabilizable and detectable and the controller Q(s) is replaced by the

observer-based controller with an added m-th order dynamics K(s) as shown in Fig. 94.
Then the set of the closed-loop poles is composed of the n eigenvalues of A+B,F, the n

eigenvalues of A+HC2, and the m poles of the added dynamics K(s). That is, the set of the
closed-loop poles is

Pcloud-loop = Preguluor + Pogerver t PK(s) (9-10a)
where

Pmm = { n cigenvalues of A+B,F } (9-10b)

P pserver = { D cigenvalues of A+HC, } (9-10¢c)
and

PK(s) = { mpoles of K(s) } (9-10d)

Proof: The dynamic equations of G,,(s) is given by

x-= AX + B,u (9-11a)
y=GCx+Dyu (9-11b)
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The dynamic equations of the observer-based controller in Fig. 9.4, i.c., the block diagram
inside the dotted-line box, can be written as follows,

A A y
X = (A+B,F+HC,+HD,F) x + [H '(Bz"'m)zz)][uz] (9-12a)

u F 0 Iy
= X+ (9-12b)
[J [“VDJJ [‘ %JLJ

Assume that the added dynamics K(s) is described by the following minimal
realization

k=Ak+By ©-130)

u, = Ck + Dy (9-13b)

The controller Q(s) is just a combination of (9-12) and (9-13). From (9-12) and (9-13), we
have the dynamic equations of the controller Q(s) as follows,

A 11~

X % G ix B,

1= + y (9-14a)
113 %1 %n ]k B,

x
u = [71 ‘72] +dy (9-14b)

ki

where
B, = - H- (B,+HD,)) #DD,,)"'D (9-158)
B, = B + B D, DD,y D (9-15b)
Y, = F+(-DD,,)" D (C;+D,,F) (9-15¢)
Y, = -a-DD,,)"'C | (9-15d)
a,; = A+HC,+ (B,+HD,, ¥, (9-15¢)
= A+B,F-B, (C,+D,,P) (9-156)
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(9-15g)
(9-15h)

(9-15i)

©-15))

Now, combine the dynamic equations of the controller Q(s) and the plant G,,(s),
i.e., equations (9-14) and (9-11). Then the state equation of the closed-loop system can be

obtained as follows
X [ #

#21

o>

I #31

ILE

where

.

*
-t
~

*
[
w

E*

u% B%

e
—

ok
N

*
o

12 13

A

#22 #23 X
#32 #33

= A+B,8(1-D,8)°!C,

= B,y,+B,8(1-D,,8)'D,,7,
= B,Y,+B,5(1-D,,8) D, 7,
= B,(I-D,8)'C,

= o, +B,(I-D,,8) "D,y

= a,,+B,(I-D,,8) "D, v,

= B,(I-D,5)!C,

= 0, +B,(1-Dy8) Dy,

= &, +B,(1-D,,8) D, ¥,

(9-16)

(9-17a)
(9-17b)
9-17¢)
(9-17d)
(9-17¢)
9-179)
(9-17g)
(9-17h)
(9-17i)

Additionally, we make the following observations, which can be easily shown by
directly manipulating the equations (9-17) and (9-15).

QObservation 1:
QObservation 2:
Observation 3:
Qbservation 4:

#, = -#y
# +#, = #+#, = A+BF
#; = #,

-#12+ #22 = A+HC2
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(9-18b)

. (9-18¢c)

(9-18d)




Obscrvation 5:  #,; = A (9-18¢)

Define the observer reconstruction error

A

X=x-x (%-19)
then we have
1 I S # v, 1|
nt ¥ 12 13
x| = [ttt ¥y  Hptéy, #3-%51 Ix
i L 3t ¥, *3 3 ] |k
[ A+B,F #, #.1 [«]
= 0 A+HC, 0 : (9-20)
L 0 ‘#32 A | Ik
which is related to (9-16) by the similarity transformation
1 0 O
I 1.0 (9-21)
0 O I

Therefore, from the structure of the matrix in (9-20), the characteristic values of the

closed-loop system are those of A+B,F, A+HC,, and A. This completes the proof of
Theorem 9.2.

It is well known that in the observer-based controller design the closed-loop poles
are the regulator poles (the cigenvalues of A+B,F) and the observer poles (the eigenvalues

of A+HC,) (17]. In Theorem 9.2 we just showed that the above property still remains

when we add a dynamics K(s) to the observer-based controller as shown in Fig. 9.4. The
cigenvalues of A+B,F and A+HC, are still parts of the closed-loop poles after we add K(s)

to the controller. Adding K(s) only introduces additional poles to the closed-loop system
and the added closed-loop poles are the poles of K(s). If F and H bave been chosen such
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that A+B,F and A+HC, are stable, then the closed-loop system with the observer-based
controller parametrization will be internally stable if and only if the parameter matrix K(s) is

proper stable. From Fig. 9.4, it is easy to see that the controller Q(s) is proper if K(s) is
properand I - D22K(oo) is invertible.

With the observer-based controller parametrization, the closed-loop transfer
function matrix from v to z, i.e., ®(s), is a simple affine function of the parameter matrix
K(s). That is,

®(s) = T, (5) + T),(s) K() T, (5) 9-22)

where Tu(s), le(s), and sz(s) are given by (9-9). The added dynamics K(s) is a proper
stable rational matrix to be chosen such that I—Dzzl((eo) is invertible and ®(s) has some

desired performance. No matter which K(s) is to be selected, we always have clear idea
that the closed-loop poles will be the eigenvalues of A+B,F and A+HC, together with the

poles of the added dynamics K(s) if the controller is realized as that shown in Fig. 9.4.

Assume that the orders of the plant and the parameter matrix K(s) are n and m

respectively. If the controller is realized as that shown in Fig. 9.4, then the order of the
controller is n+m and the closed-loop system has 2n+m poles described by the set P, _ .

loop in (9-10). The realization of the controller in Fig. 9.4 may not be minimal. Suppose it
is not and there are r poles in the controller either uncontrollable or unobservable, then the

controller can be realized by a minimal realization with order n+m-r and the number of
closed-loop poles will be reduced to 2n+m-r.

In the followihg theorem, we will show that the uncontrollable or unobservable
poles of the controller of Fig. 9.4 must be the eigenvalues of A+B,F or A+HC, and the
closed-loop poles will always include all m poles of the added stable dynamics K(s) no
matter the realization of the controller is minimal or not. If r pole-zero cancellations occur in
the controller, then the closed-loop poles will include m poles of K(s), and 2n-r

eigenvalues out of the set P regulator P, which was defined in (9-10).

Theorem 9.3: Consider the closed-loop system in Fig. 9.5. Assume that G,,(s) = {A,
Bz' Cz’ Dzz} with order n is stabilizable and detectable and the controller Q(s) is replaced

by the observer-based controller with an added m-th order dynamics K(s) as shown in Fig.
9.4. A minimal realization of K(s) is given by (9-13). Define P P and P

regulator’ © observer K(s)
by (9-10b), (9-10c), and (9-10d) respectively and let
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P ooova = { the controller poles which are either uncontrollable or unobservable} (9-23)

Then

P +P

regulator obsuquP

removal

(9-24)

and the closed-loop system with the minimal order controller will have a set of poles
described by the following

PM‘“"PMM- controller — PK(S) + (Pugu.hm *+ Pouerver = Premoval ) (9-25)

Proof: Let Ny(s)Dg(s)" with deg ID(s)l = n and D(s) "N (s) with deg IDy(s)! = n+m
be a right MFD (matrix fraction description) of Gzz(s) and a left MFD of Q(s) respectively
[19]. It is well known that the characteristic polynomial of the closed-loop system is

¢mm(s) = IDQ(s)DG(s) - NQ(s)NG(s) I (9-26)
Let LQ(s) be a greatest common left divisor of DQ(s) and NQ(s). That is,

Dg® = Ly® D) .+ No®) = Lo(® Ne®) ©-27)

where 6Q(s) and IQIQ(S) are left coprime. It is easy to see that the zeros of LQ(s) are the
uncontrollable or the unobservable poles of the controller realization in Fig. 9.4. That is,

{ zeros of LQ(s) } = Pm al (9-28)
Plug (9-27) into (9-26), we have

Octonadioop® = 11 11 Dy6) De(s) - Nys) Ny(s) | (9-29)

The 2eros of | IA)Q(s) DG(s) - IQIQ(s) NG(s) | are the poles of the closed-loop system

with a minimal controller realization. From Theorem 9.2, (9-28) and (9-29), we can see
that

P

P P P +P Kes)

closed-loop with min. controller * Premoval = regulator bserver T .(9'30)

To -complete the proof, we need to show that P = . is a subsetof P, gulator

P i server When K(s) is minimal. First, assume that the state-space representation (9-14) of

+
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the controller Q(s) is unobservable. Then by PBH test [19], there exists a nonzero vector £
such that

[71 1r2][gl =0; [gl =& (9-31a)

6, 3
@y Oy .51 &

= A (9-31b)
OTRPY ) 1 )

for some eigenvalue A of (9-14). Note that it is the eigenvalue A that is unobservable. From
(9-31b), we get

@8 + el = Ag (0-322)
which, by using (9-15¢) and (9-15g), is rewritten as
(A+HC)E + (B,+HD,,) (1§, +18,) = A§, (9-32b)
In view of (9-31a), the above equation reduces to

(A+HC)E =Ag (9-32b)
which clearly establishes that the unobservable eigenvalue belongsto P, .

Proceeding similarly, it can be shown that if (9-14) is uncontrollable then the

uncontrollable eigenvalue belongs o P .

Note in the above development that &, = 0 contradicts the minimality assumption of
K(s). Thus,

Pobsmer > Pnnobcervable (9-33a)

Preguhlor = Puneontrollable (9‘33b)
where P unobservable is the set of all the unobservable poles of the controller Q(s).
P oowaistie iS defined similarly. This completes the proof of Theorem 9.3.

The results of the current section can be summarized as follows. The poles of the
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closed-loop system with the observer-based controller parametrization shown in Fig. 9.4
can be classified into three groups and each group of poles can be independently
determined. These three groups of poles are the regulator poles (the eigenvalues of
A+B,F), the observer poles (the eigenvalues of A+HC,), and the poles of the added

dynamics K(s). F, H, and K(s) are free parameters to be chosen such that the closed-loop
transfer function matrix ®(s) has sonie optimal performance subject to the following
constraints: A+B2F and A+HC2are stable and K(s) is proper stable with I-D22K(oo)

invertible.

If the realization of the controller in Fig. 9.4 is not minimal, then the uncontrollable
and/or unobservable controller poles can be removed and the order of the controller is
minimized. The set of these removable controller poles is a subset of the regulator and the
observer poles. The poles of the closed-loop system with the minimal order controller will
include all the poles of the parameter matrix K(s) and some of the regulator and the
observer poles which are not the removable controller poles.

9.2 Controller Reduction

Motivated by the results of the previous section, we pose the controller reduction
problem as follows: given the plant P(s) as

Xp=Ax,+Bp ; xpeRn"; uerR”
z,=Cpx,+Dgu ;zl,eRl (9-34)
and the observer-based controller J(s) as |

)ij= Apxj+ Bpu+ Bj(zp—zj) ; xjeR T

zj= Cpxj+ D (9-35)
u=uy;

j

uj=Cx;
obtain a reduced order controller G(s) whose order ng is required to be less than that of
I(s):

)'(3=Agxg+Bgzp : xgeR"‘

u= ng8 + Dgzp (9-36)

Clearly, if the above realization for J(s) in non-minimal, one could obtain its
minimal realization and use that as the required compensator G(s). Several authors have
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been motivated by this approach; for example see references [32,36,37].

We take a different approach, which is motivated from the observer-based
controller parametrization of the previous section. Briefly, our approach adopts these steps:

1. Consider the control u as consisting of two components

u=u+ Uy (9-37)

2. Let ux be generated from an additional dynamic parameter K(s) inserted
between the measurement residual (z,-2z;) and the control ui as given below.

Xp= AgXy + By(z;z) ; xceR e
up = Cpxy + Dk(zp—z}-)
where the parameters {Ay, By, Ci, Dy} are yet to be selected - see Step 4
below. Note that we are increasing the order of the overall controller by
appending the additional dynamics K(s).

(9-38)

3. Now, the overall controller Q(s), consisting of both the given controller J(s)
and the additional dynamics K(s), can be realized as

%q=Agxq+Bqzp ; Xq€R™ ; ng=nying -39

u=Caxq +Dezp

4. Choose the parameters { Ay, By, Cy, Dy} so that Q(s) is non-minimal. Obtain
the reduced controller G(s) as the minimal realization of Q(s).

The purpose of this study is to show that the state-space parameters { Ay, By, G,
Dy} of K(s) can be selected to render Q(s) non-minimal, and to render the minimal order of
Q(s) to be less than np,.

We first rewrite a few properties of observer-based controllers from last section in
the notation of the current section.

Theorem 9.2 : The eigenvalues Ay of the overall closed loop system are given by

A=A OUA UA, - (9-40)
where

A, A(Ap+BC) = cigenvalues of the regulator,

Ao = A(A,-B;G) = eigenvalues of the observer, and
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Ay, = AAY

eigenvalues of the parameter K(s).

Notice that the addition of K(s) does not change the eigenvalues of the closed loop
system; it only adds additional eigenvalues. Now, if the controller Q(s) is non-minimal then
there are some cigenvalues which are either unobservable and/or uncontrollable, and these
eigenvalues can be removed from Q(s) to obtain a smaller (minimal) order controller G(s).
When the state space realization of K(s) is assumed to be minimal, the following result
ensues.

Theorem 9.3 : Let Ay and A be the unobservable and uncontrollable eigenvalues of
Q(s), respectively. Then
ALCA, & A CA 941)

Remark: The (2np - nyo - nyc + ny) eigenvalues of the reduced closed loop system will be
the remaining eigenvalues of the regulator and the observer together with the eigenvalues of

Based on these theorems, we present the following main theorem, whose proof is
outlined in the Appendix.

Theorem 9.4: Let Ay, and A, be some eigenvalues of Q(s) that are to be made
unobserva 2 and uncontrollable, respectively. Then the parameters of K(s) to achieve this

must satisfy
Ay Bk] Fo || Vihw (9-422)
| G Dl ¥, | [-C¥,
(o, o8 || 25| (Ao -0 (9-42b)
Rat \BP C, D, = w k rBj
for some ¥, and @y , and where ¥, and D, satisfy
@ (AFB,C) = A9, (9-43a)
(ABCY¥, = ¥ A, (9-43b)

The order n, of the minimal realization of Q(s) is then given by
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D, = Do-n, -0 +D,. (9-44)

It is possible to select K(s) such that ng is less than np, as shown in the example below.

In what follows we study a special case of this problem when K(s) is static (ny =
0), i.e., the constant matrix Dy is the only parameter that describes K(s). The order of the
reduced controller would then be ng = np, -ny, -nyc . Results presented below are easily
extended for the more general case of dynamic K(s).

Corollary 9.1: The necessary and sufficient condition for the parameter Dy (i.e. static
K(s)) to achieve this is the satisfaction of the following equations:

Dka‘Fo = Cj 0 and ¢erDk = —¢1-Bj, (9'45)
subject to (9-43a) and (943b).

Though not necessary, ®; and ¥, can be seen as consisting of some left
eigenvectors of the regulator and some right eigenvectors of the observer, respectively.
Note that if either nyo or nyc is equal to zero then only one of the above equations need to
be satisfied. For instance, suppose that the given controller J(s) is not completely
observable, which may happen as in the case of LQG controllers. Then there exists a ¥,
such that C;¥, =0, and hence a Dy = 0 will remove these unobservable eigenvalues. This
result, along with those from the previous section, establishes the following:

Corollary 9.2: If a given controller J(s) is non-minimal, then the closed loop system
using a minimal realization of J(s) as its reduced controller would contain only the
observable eigenvalues of the observer and the contro:iable eigenvalues of the regulator.

The above results are pertaining only to the stability of the closed loop system. An
equally important issue in controller reduction is the performance of the closed loop
system. This issue can be addressed, at least in a suboptimal sense, if one could determine
the eigenvalues that are least significant in the performance. The Modal Cost Analysis [60]
offers a suitable methodology for identifying such eigenvalues. However, only those
eigenvalues that allow the satisfaction of the above equations can be removed. The
following result assists in identifying such removable eigenvalues.

Theorem 9.5:
(a) When n,. = 0 and n,, > 0, an order-reducing Dy exists if and only if
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Kemel(C,¥,) < Kernel(G¥o), (9-46a)
with the general solution
D = Cj‘l’o(C,,‘Po)‘ +Z[HGYI(GYY™) (9-46b)

(b) When n,, = 0 and n, > 0, an order-reducing D, exists if and only if

Image(®,B;) < Image(®;By), (9-47a)
with the general solution
D =- (¢l>x.13,,)‘¢l>,Bj +[IH®B)@B)]Z. (9-47b)

(c) Under the assumption of Ay, N Ay =D, when both n,, > 0 and n,. >0, a D;
satisfying the equations of Corollary 9.1 exists if and only if

o,¥Y, =0, (9-48a)
along with the satisfaction of (9-46a) and (9-47a), with the general solution
D, =«®B) 0B, + C¥(C¥ ) - @B OB,CH¥(CFY
+ (@B @B 1 Z [ G )]

(9-48b)

where (*)~ denotes generalized inverse, and Z is arbitrary.

Under the assumption of Ay, N A, = &,the above theorem suggests this procedure
for determining the removable ecigenvalues: Compute the complete set of the left
eigenvectors of the regulator, and the right eigenvectors of the observer; denote the first set
by ® and the second by ¥; use the zero elements of the product [®'¥] to identify the
appropriate n,c left and n, right eigenvectors; collect these left eigenvectors to form ®; and
the right eigenvectors to form ¥,. Then, if the conditions (9-46a) and (9-47a) are also
satisfied, the feed-through loop determined according to Part (c) of Theorem 9.5 will yield
a reduced controller of order (np—nyo—nuc). The absence of any zero elements in (']
implies that a feed-through loop does not exist which would simultaneously render some
observer eigenvalues unobservable and some regulator eigenvalues uncontrollable. (A
dynamic K(s) may however be constructed as shown later in this report). It may, however,
be possible to remove some eigenvalues of only the observer or only the controller. This is
because Part (c) of the above theorem is pertaining to the simultaneous satisfaction of the
two equations of Corollary 9.1, which is not necessary when either ny, or ny is equal to
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zero. In this case we have Parts (a) and (b) of the theorem.
An Example:

Let the plant parameters be

L f] e

and let the regulator gain C; and the observer gain B; be

=[+ 3] ; B, = [:],

The order of the controller J(s) is 2, and the eigenvalues of the closed loop system
consisting of P(s) and J(s) are those of the regulator A, and the observer A, where, for this

example,
Ar={-1,-3} and Ao={-2,-2}.

Suppose that we wish to reduce the order of the controller by removing an -2
cigenvalue of the observer and the -1 eigenvalue of the regulator. This can be achieved by
introducing K(s) whose parameters are

Ak=Ak : Bk=Ak+2; Ck=Ak+1; Dk=Ak+6,
for any arbitrary, but stable Ay. The corresponding realization of Q(s) has the parameters
A2 Al AL -A 2
q q
A2 -A2 A A+2
Cq - [Ak+2 Ak+3 —'Ak"].] ; Dq = [—Ak—6]
which has an unobservable eigenvalue of -2 and an uncontrolable eigenvalue of -1, as

required. The reduced order controller G(s), which is the minimal realization of Q(s), is
then given by the parameters

A =241 ; B, =-(A+2) ; C, =2A43
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Dg= —(A,+6)
By Theorem 9.3 above, the eigenvalues of the closed loop system consisting of P(s) and
the reduced controller G(s) are { -2, -3, Ay}.

For the same example, the following table shows what can be achieved by static
K(s), that is by an appropriate choice of Dy.

poictoberemoved Dk np _ closed-loop poles
— — Fla ﬂr
-1 <4 0 (=2, -
i; -4 0 “dey =

We now address the case when the parameter K(s), between the measurement
residual (z,-z;) and the control uy is dynamic. Appending additional dynamics K(s) to the
original controller J(s), increases the dimension of the overall controller Q(s) to ng=n,+ny,
where ng is the dimension of Q(s) and ny is that of K(s). Recalling the properties of
observer-based controllers with respect to the closed loop poles, the addition of the
parameter K(s) does not change the eigenvalues of the closed loop system but just adds to
them. This implies that the internal stability of the closed loop system depends on the
stability of K(s). Thus by choosing a proper stable K(s) one can guarantee the stability of
the closed loop system. The necessity of satisfying the orthogonality condition between the
left regulator and right observer eigenvectors corresponding to the eigenvalues to be made
uncontrollable and unobservable respectively, makes it difficult to determine a static feed
through loop that would yield a reduced order controller. However, controller reduction by
observer based controller parametrization may be achieved when the parameter matrix,
K(s), is dynamic. This section extends the results obtained for the existence of an order
reducing static feed-through loop to the dynamic case.

Theorem 9.4 states that the necessary and sufficient condition for the existence of
the parameters of K(s) to achieve non-minimality of the overall controller Q(s) is the
simultaneous satisfaction of equations (9-42a) and (9-42b). The following theorem states a
necessary and sufficient condition for the existence of the parameters of K(s) that will
simultaneously satisfy equations (9-42a) and (9-42b).

Theorem 9.6: Under the assumption that Auc () Ay, = @, the parameters of K(s)
simultaneously satisfying equations (9-42a) and (9-42b) exist if and only if
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where &y and ¥, are arbitrary.

Proof : Assume A, N Ayo = ¢. Then premultiplying Eqn.(9-42a) by [®y @,B,], yields

O Ay, -0B,C¥, = B A, + OBCY, (9-50a)
Adding and subtracting A, and using Eqns.(9-43a)and (9-43b) results in
[@Fo +DpFidAys - Ayc[ DY +O Y] =0 (9-50b)

The solution to equation (9-50b) under the hypothesis of the theorem yields (9-49).

Recall, that the existence of an order reducing static feed-through loop is guaranteed
under the satisfaction of an orthogonality condition between the left regulator and right
observer cigenvectors associated with the removable eigenvalues. This necessary and
sufficient condition is restrictive in the sense that, rarely can one find systems which
would satisfy this orthogonality condition. However, the necessary and sufficient condition
stated according to Theorem 9.6. can almost always be satisfied indicating that one could
almost always determine a dynamic feed through loop that would yield a reduced order
controller. This is attributed to the arbitrariness of @y and ¥y.

Theorem 9.6 indicates that it is possible to simultaneously render some observer
cigenvalues unobservable and some regulator eigenvalues uncontrollable. Having
established the existence of dynamic feed through loops that would yield reduced order
controllers, the next logical step would be the computation of the parameter matrix K(s).
Theorem 9.7 presents a closed form solution to the equations (9-42a) and (9-42b). This
result is an extension of the case when K(s) is static, and can be proved similarly. '

Theorem 9.7: The solution {A;,B;,C;,D}to the necessary and sufficient conditions
equations is

Ax = { Cp + Bp'Bj - Bp'BpCjCp™ + (1 - Bp'BplZII - CpCp]  (9-51)

A B, ¥ihwo ¥,
al [Cx DJ o ox, C"z['cp"’o]
Bp=[0, @8] Bj= (A0, <25

where (-) denotes generalized inverses, and Z is arbitrary.

where

- (9-52)
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The family of dynamic K(s) constructed according to Theorem 9.7, will yield a
reduced order controller of dimension
Ng = By - (Dyo + Nyc) + Dy (9-53)
where ng is the order of the parameter matrix K(s).
From the properties of observer based controllers, the resulting closed loop system will
always retain the characteristic values of the parameter matrix K(s). i.e ., the resulting
closed loop system will be stable if and only if Ay is stable. To pursue this issue consider

A*=CjCp +Bp” Bj-BpBpCiCp (9-54)
B*=[1-BpBp] ; C*=[-CpCp’l (9-55)

Then Eqn. (9-51) can be rewritten as

Ak =A*+B*Z C* (9-56)

Notice that equation (9-56) has a structure similar to that of an output feedback
problem, where Z is a free parameter to be chosen such the eigenvalues of Ay are stable.
However, since Ay is only a submatrix - namely, the (1,1) submatrix - of A*, the
corresponding submatrix in Eqn.(9-56) need be considered as an output feedback problem.
Thus a the free parameter Z which would guarantee a stable Ay will exist if and only if the
corresponding submatrix pair of (A*,B*) is stabilizable, and the corresponding submatrix
pair of (C*,A®) is detectable. More stringent conditions under which one could guarantee
the stability of K(s) are yet to be determined.

Besides stability, performance of the resulting closed loop system is an equally
important issue in controller reduction problems. Both Theorem 9.6, and 9.7 seem to
indicate that the choice of removable eigenvalues play an important role in the computation
of the parameters of K(s). One could employ one of several existing schemes, such as
balancing [31] and component cost analysis [45], to determine the "removable”
cigenvalues. Another way of approaching the optimization problem is as follows: one could
determine an optimal controller K*(s), using standard parametric optimization approach.
We could then select a K(s) which would best approximate the optimal controller by (say )
solving a suitable minimum norm problem. The arbitrariness of Z in equation (9-51) allows
us some flexibility in obtaining a stable K(s) that would result in a reduced order controller
which would best approximate the full order controller in terms of a specified performance.

9.3 Conclusions
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It has been shown that by introducing a static feed-through loop between the
measurement residual and the control signal, the order of a given observer-based controller
can be reduced while guaranteeing the stability of the closed loop system. This is achieved
by making some eigenvalues of the controller uncontrollable and/or unobservable. The
necessary and sufficient conditions for the existence of such feed-through loops have been
characterized, thereby parametrizing such loops. These results have been extended to the
case when K(s) is dynamic, however, stability of the resulting closed loop system is still
an unresolved issue. With the parametrization accomplished, problems can now be posed
to address the performance issues.
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CHAPTER 10

DOMINANT MODES OF MECHANICAL SYSTEMS

Recall from Chapter 9 that in order to incorporate the parametrization of order-
reducing K(s) in a design procedure requires the identification of poles that are to be
rendered uncontrollable and unobservable. This chapter deals with identifying modes of a
mechanical system that are dominant in an L, sense. Specifically, it considers obtaining a
reduced model of a stable mechanical system with proportional damping. Such systems can
be conveniently represented in modal coordinates. The popular scheme, Modal Cost
Analysis (MCA) of [61), offers a simple means of identifying dominant modes for
retention in the reduced model. In MCA, the dominance is measured via the modal costs.
Though this measure leads to simple computations, it does not exactly reflect the more
appropriate model error which is the L, norm of the output-error between the full and the
reduced models. Normally, the model error is computed after the reduced model is
obtained, since it is believed that, in general, the model error cannot be easily computed a
priori. The main thrust of this note is to point out that the model error can also be calculated
a priori, just as casily as the modal costs. Hence the model error itself can be used to
determine the dominant modes. Moreover, the simplicity of the computations do not
presume any special properties of the system, such as small damping, orthogonal-
symmetry, etc. The development presented herein can be seen as a specialization of that in
[62], to mechanical systems.

10.1 Problem Formulation

Consider a time-invariant mechanical system, described in its physical coordinates
q, given below.

M4q©®+D 40 +K q®=Bu®

(10-1)
y® = Cq@® +Cq()

where g € R®, ue R™, y e R¥; u is assumed to be a Gaussian white noise process with
unit intensity. Both the mass matrix M and the stiffness matrix K are assumed to be
symmetric and positive definite. The dissipation matrix D is assumed to arise from
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proportional damping (not necessarily small) such that the above system is asymptotically
stable. Under these assumptions, the model (10-1) can be equivalently expressed in its
modal coordinates as

i+ 2Gom; + o =blu ; i=12,...,n (10-2a)

y= 2, (cmi+emi) (10-2b)
i=1

where @, and {; are the usual i natural frequency and the corresponding damping ratio,
respectively.

When n is large, one is faced with the problem of model reduction to facilitate a
subsequent analysis and control design. Quite often, a reduced model of the system (10-
2a&b) is obtained by retaining some r modes of the total n modes — a process called herein
as a modal reduction. In order to produce an acceptable reduced model, the question that
needs to be answered is "which r of the n modes should be retained ?" Using the notation
N, for the integer set {1,2,...,n}, the issue in modal reduction is to identify an r-clement

“reduction-set” N, 4 © N, such that the following model

i + 2GioM; + @i = blu ; i€ Npeg (10-3a)
y, = 2, (cmi+gh) (10-3b)
iGNM

would be an acceptable reduced model. Defining the error e(t) between the full model (10-
2a&b) and the reduced model (10-3a&b) as e(t) = y(t) - y,(t), an acceptable reduced

model would minimize the model error 3V defined below.

SV = t‘f’n. E {% Io eT(6)e(0) dc} (10-4)

10.2 Dominant Modes by Modal Cost Analysis

For an arbitrary system, not necessarily a mechanical system, the model error 8V
associated with its reduced model is normally computed after the reduced model is
obtained. Consequently, obtaining an acceptable reduced model for such systems becomes
an iterative process. In order to simplify the reduction process, methods have been
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proposed to employ different criteria instead of (10-4). One such method is the Component
Cost Analysis (CCA) of Skelton [45). The CCA attempts to use the cost error AV defined
below, as its criterion for model reduction.

AV = V-V, (10-5a)
where

V= lmE {]{ I y1(0)y(o) do}, (10-5b)

V; = bm E{*} f y#(0)y«(0) d } (10-5¢)

Now, the reduced models which are optimal in the sense of minimizing the model
error 3V, are known to satisfy the orthogonal property [46)

€.y = lim E {% I eT(0)y(c) do} =0. (10-6)

Since the model error 8V can be expressed in terms of the cost error AV and the inner
product {¢,yr) as given below

SV = AV -2(.y), (10-7)

it follows that the cost error is an appropriate criteria to use, provided the resulting reduced
model is known to be near optimal, if not optimal. Though the computation of AV is
simpler than that of 8V, it still requires the availability of the reduced model. In view of

this, the CCA employs the predicted cost error AV, defined below, for its model reduction
decisions.

where V, is a prediction of V, . With x; defined as the (first order) state representing the i
component, V; is computed according to

)

V= 2V (10-9)
i€ Nped
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and where V; , the i component cost, is defined as [45]

S _1 im el [ @y
V; =1 lm g {% [, e xi(0) do (10-9b)

Since ’tlle calculation of the component costs requires only the full model, the predicted cost
emror AV can be computed before a reduced model is obtained.

The application of the CCA to models represented in modal coordinates, such as in
Eqgs. (10-2a and b), is called the Modal Cost Analysis (MCA), see [61]. lhmfore, modal
reduction by MCA chooses an N, such that the predicted cost error AV is minimized.

Except under special cases, there is no guarantee that the predicted cost error AV equals the
model error 8V. It turns out that, for any choice of N, the corresponding 3V can be

computed just as easily as computing AV. Hence, one may use the more appropriate
criterion 8V for choosing N, ;. These details are developed below.

10.3 Closed Form Expression for Model Error

Provided all the modes are observable and controllable, truncation of any mode
would affect the output y. To determine such affect, define

Vi = cNi+gM; sothat y = Y (10-10)

ieN,

and call y, as the "i"" modal-output.”" By defining the "truncation-set” N, =N, —N_,
the following expressions result:

e= X W (10-11a)
i€Nmn
V=2 LZ ‘l’ij] (10-11b)
i€Ney | €N
where
¥; = m E{% f vi(O)v;(0) dc}; ije N, (10-11¢)

In the spirit of CCA, call ‘I’ij the cost—correlation between the modes i and j. Note that ¥
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measures the correlation between the i and the i modal-outputs, and depends only on the
i and the j® modal data. The expression for computing \I‘ij forallij € N, is given in
the next section. Given the modal data, these cost-correlations can be computed for all the
modes, and the model error 3V can be determined for any r-element reduction-set
N,eqa © N, from the expression (10-11b). Notice that the model error can be computed a
priori by simple summation of appropriate ‘Pijs.

Clearly, there are [n! / {r!(n—1)! }] number of possible reduction-sets, of which one
will yield the smallest model error. To facilitate the selection of the best reduction-set,
construct an (n,n) "cost-correlation-matrix" ¥ whose (i,j) clement equals ‘Pij, and define

n m
an operation XY : R®™ - R for arbitrary n and m by ZX(Z) = Z 2 Z;; . Then, the
i=1 j=1
cost-correlation-matrix possesses these properties for any N__;:

1) v = IX(Y,) (10-12a)
2) \' = IX(¥P) (10-12b)
3) vV, = XY,y (10-12¢)
4 eyd =  IX(¥,,) (10-12d)
5) \7i = ZX(P) (10-12¢)
where |
¥ou = [ ‘Pij; i,j € Ny, 1, an (n-r,n-r) submatrix of ¥, (10-13a)
Yea = [¥j5ije Nl an (@r) submatrix of ¥, (10-13b)
Yo = [¥;;i€ N, je Ny an (r,n-1) submatrix of ¥, (10-13c)
¥, = [¥ je Ny an(l,n) marix (ic., i‘h. row) for all i.(10-13d)

Notice that the fourth property of the cost-correlation-matrix allows one to determine a
suboptimality index [63] associated with the reduced model. This index can be used to
determine if the reduced model could be improved by further optimizations. It measures
how closely the orthogonality condition (10-6) is satisfied. The second and third properties
above provide means of computing the quadratic cost functions V and V_ associated with
the full and the reduced models, respectively. Moreover, the three errors, namely, the
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model error 8V, the cost error AV, and the predicted cost error AV , are related through the
property (10-12d) as follows

AV = &V + 2IX(Y,,.) . (10-149)

AV = 8V + IX(F,). (10-14b)

Hence, unless ZX(¥ ) =~ 0, modes determined as dominant based upon either the cost

error or the predicted cost error may not yield the smallest model error. Since the

expression (10-11b) is available for the computation of the model error for any choice of
N, 4> dominance of modes can be established based on dV itself. The disadvantage,

however, is in having to compute [(n-r)2-1] additions [n! / {r!(n-r)!}] times.

Theorem 10.1: The expression for computing ‘I’,-j forallije N, , is given below.

.. 2 Th.
¥, = XU ol - SicTeicle) - ST 1+ AhicT; (10-158)
8ij 83 5ij
where
W= (bib) 3 (10-15b)

1} = »
A%+ @8] - 2508,

Proof: Defining the i modal states as x = [ 7, 1, ], it follows from the definition of the
cost-correlation '¥';; and the modal-outputs , that

W= lim E{l{ I xI(6)CICix;(0) do}=m{c'{cjxji }s (10-16a)
where
Xy= Hm {l f xi(0)x](0) dc}, (10-16b)
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The steady state correlation matrix between the i® and the j™ modal states is given by

x})l x}',z
X;; = (10-17a)
X Xy
where
X2 = X2 24y L
di;

) (10-17b)

X2 = P_IPJ___A_‘J. 12
1
j 5 8 j

with X%} as defined above in Eqn.(10-15b). Substitution of the Eqs. (10-17a) and (10-
17b) into Eqn.(10-16a) completes the proof.

Expressions similar to (10-17a &b) can be found in several references, see [64] for
example. The expression (10-15a) is valid for all i and j, regardless of whether the
frequencies are repeated or whether the damping is small. Of course, the expression
simplifies under special cases, as shown below.

bib.
) o=, ¥= ———(cfo+oilg) (10-18a)

Yo 203G+

bb:
b) If ©; # ©;, and both {;, {; — 0, then ¥; - —A’B"- {cfej—clg } (10-18b)
ij

blb:
©)  Ho;=0,andboth {,{ -0, ther ¥; > ;t;l—mi’L (cfej+aicl ) (10-18¢)

i

Note by the special case (b) above that for a lightly damped system (such as a flexible
space structure) with distinct frequencies and with either (i) b’irbj =0 for all i and j, or (ii)
cfcj=0 for all i and j, one obtains ¥;; — O for all j#i, and for all i. It therefore
follows from Eqns.(10-8,10-9a,10-11b,10-12b,10-12¢) that V; = ¥ ., 8V = 2 ¥

T ie Nn

and 38V = AV. Hence, for systems satisfying these assumptions, reduced models
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obtained by MCA, which are guaranteed to minimize the predicted cost error AV, also

10.4 Examples

Two examples are provided now to show that reduced models generated as
suggested in this note will be at least as good as, if not better than, those produced by
Modal Cost Analysis. In both the examples, we begin with five modes and produce
reduced models of different orders. The reduced models are evaluated in terms of their
model errors, and the results are tabulated below. The two examples differ only in the
frequency of the second mode, and in the damping ratios (the damping ratios are assumed
to be equal for all the modes): in Example 1, ®, =2, and { =0.075; in Example 2,
@, =1, and { =0.005. The parameters common to both the examples are: @, = 1,
®,=9, 0, =16, o5=25, b, =0.9877, b, = -0.309, b; =-0.891, b, = 0.5878,
b, =0.707, c, =0.9877, ¢, =0.309, ¢; = —0.891, ¢, =-0.5878, ¢;=0.707, and
¢, =0 for all i.

Table 10.1 Model error comparison for Example 1 (mz =2, { =0.075)

based on modal costs based on model error
r retained modes model error retained modes model error
1 {1} 6.7271¢-03 {1} 6.7271e-03
2 {1,3} 3.9368¢-03 {1,2} 2.9686e-03
3 {1,3,5} 3.8985¢-03 {1,2,3} 1.3641e-04
4 {1,345} 3.7986e-03 { 1,2,3.4} 5.3301e-05
Table 10.2 Model error comparison for Example 2 (coz =1, { = 0.005)
based on modal costs based on model error
I retained modes model error retained modes model error
1 {1} 5.0131e-01 {1} 5.0131e-01
2 {1,3} 4.5809¢-01 {1,2} 4.5479¢-02
3 {1,3,+} 4.5663¢-01 {1,2,3} 2.2557e-03

H

! 1,3,4,5 I 4.5583¢-01 ! 1,2,3,4} 7.9952¢-04
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10.5 Conclusions

The quality of a reduced model is often computed through the model error. In
general this model error can be computed only after the reduced model is obtained. This
chapter points out that for mechanical systems represented in modal coordinates, the model
error can be computed a priori for any choice of retained modes. In fact, the computations
involved are just as simple as those needed for the general Modal Cost Analysis. When the
system is known to satisfy certain assumptions, it is shown that the reduced models
produced by Modal Cost Analysis, which minimize the predicted cost error, actually
minimize the model error. However, such is not the case in general. In order to facilitate the
selection of the set of retained modes that would actually minimize the model error, a cost-
correlation-matrix has been presented. The model error is computed by simple summation
of the appropriate elements of this matrix. Though the cost-correlation-matrix is constructed
from the given modal data only once, the computational effort may still become formidable
depending upon the number of the originai modes and the number of the retained modes.
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11. CONCLUSIONS AND WORK FOR FUTURE RESEARCH
11.1 Conclusions

We revealed several important eigen properties of the stabilizing solutions for both
DGKF and GD paremeter dependent H™ Riccati equations. Among them, the most
prominent ones are: (1) p[X_ (Y)Y ..(y)] is 2 nonincreasing, convex function of 'y on (B,+c).
(2) Amin[X(®)] is a nondecreasing, concave function of ¥ on (0, +0o). (3) X(y) is invertible
almost everywhere on (a,,+e<). Based on these properties, quadratically convergent
algorithms were developed to compute the 7,,, the optimal H* norm, such that
PIX (1) Y~(¥.)] =72 and to compute B, the infimum of ¥ such that the two H™ Riccati
equations have positive semidefinite stabilizing solutions. These algorithms are much faster
than the other existing search schemes.

In the proof of the convexity and monotonicity properties, especially for the general
case with Dy; nonzero (i.c., the GD case), the H™ Riccati Hamiltonains are very
complicated functions of yy and hence make the investigation of the properties extremely
difficuit. In this report, several new decomposition techniques and some key intermediate
variables are employed to tackle the complexities.

The formulation of the standard H*= optimization problem, an easy way of
constructing a state-space realization of the generalized plant, and a modified version of
Glover and Doyle formulas for constructing an optimal controller were addressed in the
report. No numerical difficulty will arise in constructing an H* optimal controller if we are
allowed a proper controller. In most applications, we may like to have a strictly proper
controller with limited bandwidth. In this case, a trade-off between the H* performance and
the bandwidth should be made by degrading the H* norm from its optimum in order to
reduce the controller bandwidth.

Using higher order D(s) for curve fitting in the D-step of D-K iteration will give
better robust performance but higher order controller. In the fighter aircraft longitudinal
flight control p-synthesis design example, we found that the higher order controller can be
easily reduced to the order of the plant by well known model reduction techniques like
balanced realization truncation or Hankel approximation without degrading much of the
closed-loop robust performance.

Controller reduction is important especially when a gain scheduling is required in
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the implementation of controllers. In this report, we reduced the order of the controller with
maintaining the closed-loop input-output relationship in mind. Three approaches are
proposed to achieve this objective. The first is a structured truncation method in which a
structured transformation on the closed-loop system was used to minimize a cost function,
which is defined in terms of the controllability and observability gramians of the closed-
loop system. The examples showed that the structured truncation based on the closed-loop
controllability and observability gramians is quite appealing. For the general controller
other than the H, optimal controller, this concept still works although the computation is
more complicated.

The second controller reduction approach proposed is developed based on the
observer-based controller parametrization. We showed that the poles of the closed-loop
system with the observer-based controller parametrization are the regulator poles, the
observer poles, together with the poles of the added stable parameter matrix. If the
controller is realized by a minimal realization, the closed loop poles will include all the
poles of the added stable parameter matrix and a subset of the regulator and the observer
poles. The parameter matrix is chosen such that the controller realization is non-minimal,
thereby permitting a minimal realization of the controller to serve as a reduced order
controller.

The basic concept of the third controller reduction approach is similar to the second
one. The difference is that the third approach employs the H* controller parametrization and
attempts to keep the H™ norm of the reduced closed-loop system below a prescribed value
in addition to retaining the closed-loop stability. In this report we presented a direct design
algorithm for (n-p,)th order H* controller, where n is the order of the generalized controller
and p, is the number of independent measured outputs. A set of equations were derived by
which a parameter matrix can be constructed such that the realization of the controller
obtained from DGKF formulas {7] is not minimal and the H* norm of the closed-loop
system is less than a prescribed value. By deleting the unobservable and/or uncontroliable
states of the controller, (n-p,)th order H= controller can be obtained.

11.2 Work for Further Research

Most of the plant uncertainties are structured. The uncertain system can be
reconfigurated as an M-A structure in which the uncertainties A has a block diagonal

structure and is separated from the rest of the system. A robust control problem can be
formulated as a minimization problem called p synthesis problem (or structured singular
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value design problem) based on the M-A structure. Although the p synthesis problem is a
practical formulation, the problem is very difficult to solve. The minimization problem is
not a convex problem and therefore no algorithm is available for searching for the global
minimum. Yet, an algorithm called D-K iteration has been employed in p-synthesis to find
a local minimum. In the future research, we will investigate the formulation of the p-
synthesis problem and the computational issues arising in solving the problem.

The order of the controller designed via ji-synthesis can be arbitrarily high. Based
on our preliminary observation, we found that the controller's order can be greatly reduced
to that of the generalized plant almost without deteriorating the closed-loop performance.
The theory behind this fact can be interesting. Controller reduction problem for p-synthesis
controller is an important research problem.

The structured truncation method and H* controller parametrization are two
potential controller reduction tools for p-synthesis controllers. The structured truncation
method has been showed very effective in reducing the order of H2 controllers. It can be
also applied to H= and p-synthesis controllers, although the computations involved are
much more complicated. Some computational issues arising in this controller reduction
approach still remain unsolved.

In this research period, we have successfully found an easy way to construct a set
of an (n-p2)th order stabilizing controllers by H* controller parametrization. We also
established a group of equations by which an (n-p2)th order H= stabilizing controlier can
be obtained. However, this group of equations in general are difficult to solve. More effort
is required in the line of this research.

Aircraft flight dynamics is nonlinear and flight-condition dependent. Our previous
research assumed that a local linearized model for each selected point inside the flight
envelope is available, and concentrated on designing a local linear controller for each
linearized model. In the future research, we will consider the full envelope design and
investigate the controller gain scheduling, i.e., the parametrization of these controllers in
terms of flight conditions.
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APPENDIX

Proof of Theorem 9.4: Wrrite the state space parameters of (X(s as

.|

Aqll Aql2 Bql
13 Bq =
Ag1 A By,

Cq = [qu Cq2]

where
By = B; + (Bp—B;Dp) (I+DxDp)1Dy
By = By [ I - Dp(I+DyDp)1Dx ]
Cq = C;j — @+DyDp)-1Dy(Cp+DpC)
Ca = (I+DyDp)1Cx
Aqi =  (ApBiCp + By-BDpCq
Ag2 = (Bp-B;Dp)Cq2
Apg = - Bqa(Cp+DpC))
Ap = Ay - ByDCo2.

(A-1)

(A-2)
(A-3)
(A-4)
(A-3)
(A-6)
(A-T)
(A-8)
(A-9)

Let this realization be unobservable, and let ¥4 be the collection of eigenvectors
corresponding to the unobservable eigenvalues Ayo. Then partitioning ¥y as shown below,
the following equation must be satisfied:

¥,
AY, = A{\P.] = YA, &CY¥, =0

Substituting Eqn.(A-1) in (A-10) yields

Aq1¥o + Aq2¥k = Yoluw
A ¥ + Agn¥y = Wi
qu‘Po + qu‘l‘k =0

After some algebraic manipulation, Eqn.(A-11) results in (9.43b), whereas, Eqné.(A-lZ)
and (A-13) respectively yield
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(A-10)

(A-11)
(A-12)
(A-13)




Ag\Pk - Bka\Po = WYiAuwo (A-14)
C'¥x - chp\l‘o = "Cj‘Po (A-15)

These equations are written compactly in Eqn.(9-42a).
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