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The development of neural networks has pursued a myriad of different courses
reflecting the interests of a large number of researchers from highly varied

backgrounds. This paper would like to focus on one point of this 'many faceted
gem,' as Stephen Grossberg (1] described the field. The point of focus will be to
address some of the practical results of applying a backpropagation trained net to
raw electroencephalogram (EEG) data. Much important work on more efficient
training rules has been done; however, equally critical is consideration of the
information content of the data, the net size, number of hidden nodes and order of
training data. This paper explores some of the training issues raised by applying
backpropagation to this very complex data.
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Backpropagation and EEG data

P. Morton G. Wilson

October 25, 1988

1 Introduction tunately, due to the difficulty of process-
ing physiologic data and extracting sub-

The development of neural networks has tie patterns from the noise, an objective
pursued a myriad of different courses re- workload metric is still not a reality. Neu-
fiecting the interests of a large number ral nets may provide a way to process the
of researchers from highly varied back- noisy and complex physiologic data to gen-
grounds. This paper would like to focus erate a useful metric. As a first step this
on one point of this 'many faceted gem', as paper describes some of the problems ap-
Stephen Grossberg [1] described the field, plying a neural net to EEG data generated
The point of focus will be to address some by the so called Audio Oddball Paradigm
of the practical results of applying a back- [5]. The net used was varied greatly in
propagation trained net to raw electroen- size and in specifics of training. Future
cephalogram (EEG) data. Much impor- work will use these nets to evaluate the
tant work on more efficient training rules potential utility of the data contained in
has been done; however, equally critical is the EEG as processed by the net in mov-
consideration of the information content ing toward a useful workload metric.
of the data, the net size, number of hid-
den nodes and order of training data [4].
This paper explores some of the training 3 Methods
issues raised by applying backpropagation
to this very complex data. The data were collected from three dif-

ferent leads placed on a subjects head all
in the midline spaced front to back with

2 Purpose a common ground. The data were low
pass filtered at 30 Hz and digitally sam-

For a long time much work has been done pled at 200 Hz. Epochs of 1 second in
to develop objective methods of measur- length were synchronized with the audio
ing mental workload. The value of this tone stimuli. Two audio tones of 1000 Hz
would be immense especially in the design and 1050 Hz were presented to the sub-
and evaluation of new technology. Unfor- ject with the higher tone presented rarely
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(aboutl0-30% of the time). The tone du- of the test set. Based on this result the
ration was 0.5 seconds and several sec- next step was to collect a larger training
onds between tones given. The occur- set and expand to three channels of inputs.
rence of the rare (higher) tone was ran-
domnized except that no two rare were 3.2 Large 3 layer nets
allowed to come back to back. The re-
sultant EEG evoked responses were digi- In order to generate a larger data base the

tized and over several sessions large data percent of rares in the Audio-Oddball test

sets of single trial evoked response EEG was increased to 30% and three channels

signals were collected. These data were were collected. A training set of 269 vec-

then processed into training and test sets tors and a test set of 67 were randomly

by discarding randomly many of the fre- generated each with 3 channels. The ratio

quent responses so that the ratio of fre- of the rares to frequents was about 40% by

quent to rare responses would be between discarding some of the frequent events ran-

1:1 and 3:1. Standard backpropagation (3] domly. As shown in table I several sizes of

trained perceptrons were implemented us- large nets were tried. The 600x200x200x2

ing these data. A sigmoid transfer func- net after more than a week of computer

tion was used and the learning rate was time showed no trend toward convergence

kept constant throughout. at all. Interestingly, if the net is first
trained with the two average vectors for
rare and frequent responses and then with

3.1 Initial efforts the individual vectors of the test set it
does converge as reflected in Table 2 be-

Initially a subject was given the Audio- low. Also reducing the number of hidden
Oddball test where the rare tone occurred nodes by 50 caused convergence regardless
only 10% of the time. This gives a slightly of whether the first hidden layer or the
higher quality evoked response but re- second was reduced. Surprisingly, with
quires more time to collect a large num- further reduction in total hidden nodes
ber of rare responses. A set of 83 training the net showed improved performance un-
vectors and 33 test vectors with about a til very small layers were used, then the
3:1 ratio of frequent to rare responses was performance degraded and finally the net
assembled. A three layer net having 400 would not converge. One limitation to this
inputs, 60 nodes in the first hidden layer, approach is long training times for these
40 nodes in the second hidden layer and 2 large nets.
output nodes (written 400x60x40x2 ) was
constructed. The 400 inputs represent two 3.3 Training with Average vec-
channels of EEG data where each channel tors
represents 200 points to cover the one sec-
ond epoch. This was trained on the train- To improve generalization and shorten
ing set and got 79% correct classification training times the entire training set was



Nei Size Classificatson Rate after...
average vectors 5% training set j 100/% training set

600x200x200x2 55.2% 74.6%
600xl50x100x2 67.2% 73.1% 62.7%
600x100x150x2 68.7% 65.7%
600x80x50x2 68.7%
600x70x20x2 70.2% 82.1% 79.1%
600x60x30x2 76.1% 76.1% 71.6%
600x6Ox20x2 73.1% 79.1% 68.7%
600x50x20x2 67.2% 79.1%
600x40x20x2 67.2%
600x30x60x2 72.6% 74.6%
600x20x70x2 62.7%
600x10x10x2 67.2%

Table 2: Nets trained on average data.

Net Size Classification Rate few of the training vectors and then the en-

600x200x200x2 does not converge tire training set was used to train the net

600x150x200x2 58.2% even further. Next its performance was

600x200x150x2 59.7% measured by the test set. Table 2 shows

600x45x45x2 73.1% these results. In some cases the second

600xl0xl0x2 70.2% step of training with the partial training

600xSxlx2 68.2% set was omitted. Not all net sizes were

600xlxlx2 does not converge investigated past training with the aver-
age vectors. The second approach was to

Table 1: Results With 3 Layer Nets divide the net into two parts, one having
only one hidden layer and the other hav-
ang only an output node. The first net was

used to compute two average vectors. One 600x50x600 and was trained on the entire
represented the average of all the rare re- training set to produce either the average
sponses and the other frequent responses. rare or average frequent vector as its out-
Next two very different approaches were put. The second one layer net was trained
followed to make use of the average vec- with the two average vectors only to gener-
tors: The first approach was to use the ate the correct output (i.e. 0 for frequent
same large 3 layered net and first train and I for rare). The two nets were then
with the average data to a modest aver- concatenated to form a 600x50x600x1 net.
age error (.01-.05). Then this partially The test set was then used as input to this
trained net was trained further with just a
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combined net and its correct classification Net Size Classfication Rate
rate was 69%. 600x10x4 58.2%

600x20x4 59.7%
3.4 Two layer nets 600x30x4 52.0%

Next the effect of using an even smaller 600x40x4 56.7%

net with only two layers was explored. A 600x50x4 56.7%

net of size 600x5x2 was trained on the av- 600x00x4 55.2%

erage vectors and then applied to the test 600xT0x4 59.7%

set with a 69% correct classification rate. 600x80x4 65.0%
This was astounding in light of the huge 600x100x4 53.7%
difference in the size of the nets. This per- Table 3: 2 Layers / 4 Classes
formance was comparable to the best re-
suits obtained with much larger nets and
much more training. rare. In an attempt to address this con-

fusion the training set and test set were
3.5 Review of the data graded into 4 classes: True and false for

both rare and frequent responses. Next a
After the above work the accuracy of the bt aeadfeun epne.Nx
classificate n te a e w sthet wac turcy oathe series of 2 layer nets with 4 outputs were
classification of the test set was stuck at trained and tested. Table 3 shows these
about the 70-80% mark. This produced a results. The best accuracy of 65% is with

desire to find new directions for improve- 80 hidden nodes. This result suggests that

ment. In looking at the results of the net ther i omeThin rn th at
on te tainng et her vey hgh or-there is something in the raw EEG data

on the training set where very high cor- that divides it in 4 or more classes. We
rect classification rates were expected, it are now in the process of using a Koho-
was noted that some of the training vec- nen self organizing net to sort the train-
tors were consistently misclassified. To ing set into several classes and attempt-
explore this observation, the entire train- ing to refine the quality of the training
ing set was graphed and reviewed. It was data. This will no doubt improve the per-
noted that quite a few of the individual formance and increase our understanding
training vectors did not look as expected of the original signals.
but rather in some cases had the oppo-
site appearance, that is some rares looked
like frequent responses and some of the 4 Conclusions
frequents looked like rare responses. This
may in fact be due to an inappropriate re- Neural networks can be trained to differen-
sponse by the subject. The subject may tiate between one of two single trial evoked
at first actually think a rare tone is a fre- response EEGs at better than 82%. This
quent and then after the evoked response is remarkable in light of the noise and
has been recorded decide it is actually a confusion involved in real EEG data. A



great deal more effort will be required to over 350 hidden nodes as evidenced by
achieve a useful mental workload metric; the non-convergence of the 600x200x200x2
however, this effort establishes the useful- net unless first trained with the two av-
ness of neural nets for this type of data. erage vectors. Lippmann [4] noted sim-
The following areas yielded the following ilar results on speech data with similar
conclusions based on the above data: nets. He pointed out that using about

twice the number of nodes as required by

4.1 Size of the data set the number of classification regions would
give good performance. This raises the

More training data are not necessarily bet- question: Is the number of nodes required
ter! When the size of the training file was for empiric optimum performance a rough
expanded from 87 to 216 the performance estimation of the relative number of classi-
of the nets decreased. The best results fication regions inherent in the data? For
were obtained by using only the first 10 of some problems this would be a useful re-
the vectors in the training set. For most suit and it deserves further exploration.
cases the performance decreased with the
entire training set as seen in table 2.

4.3 Using average data

4.2 Size of the net All you need is a few good averages! The

One size fits al! nets! The several ranges use of average data was often better than

of nets explored all showed the same size the entire training set and requires a frac-

of hidden layer where performance was op- tion of the number of training steps and

timum. Outside this point the nets perfor- time. A selected set of the training vec-
mance varied within a small range until it tors does improve the results but these are

fell off steeply at the extremes of size. This not as easy to define as an average. Sev-
suggests that trying nets over a wide range eral authors [1, 41 have described enhanced
of sizes may be necessary if optimum per- training by using the vectors that lie on

formance is required. If only modest per- the boundaries between classification re-

formance is needed this may be achieved gions. This likely explains why training
with much less experimentation. The op- with a few of the training vectors after the
timized size for all the nets was about 90 average ones increases performance in al-
total hidden nodes. For 2 hidden layers most all cases.

these 90 nodes worked best when divided
70:20 (3.5:1) between first and second hid- 4.4 Concatenated nets
den layers. The large nets train in fewer
steps but require much more time per step Concatenated nets work! Novel train-
when implemented on a standard com- ing approaches worked equally well here.

puter. There was a tendency for the order In some problems concatenated nets may
of training data to be critical on nets with provide the only way to a solution. This



may also allow the training of specific lay- Boston.
ers for specific functions as demonstrated
by the 600x50x600xl concatenated net de- [2] S. Alhnad and G. Tesauro. A Study
scribed above. For complicated problems of Scaling and Genera1ization an Neo -
this may provide useful output from the nal NetworNS 1988, Abstracts of First
middle of the net as well as from the out- Annual INNS Meeting, Boston Vol.

put layer. It could also give some insight Supp. 1, Pergamon Press.

into the meaning of hidden layer weights. [3] R. Lippmann, An Introduction to

Computing with Neural Nets, IEEE
4.5 The data ASSP Magazine, Apr 1987, pg 4-22.

Fuzzy data was a bear! There is no 'gold [4) W. Huang and R. Lippmann, Corn-
standard' for EEG data to use as a bench- parisons Between Neural Net and
mark. The failure of the nets to do better Conventional Classifiers, ICNN, San
is in part related to a lack of precise knowl- Diego, Jun 1987.
edge of the data. For the 4 class prob-
lem some improvement is made by looking [5] W. Hitter et. al. Manipulation of ERP

closely at the vectors in the training set Manifestations of Informational Pro-

which failed to train. Some of these vec- ceasing Stages, Science Vol 218 pg

tors may be reclassified on review and may 909-911, 1982.

improve the classification rate of the test
set after training. It may be that trans-
forming the evoked responses to the fre-

quency domain may improve classification.
The data is now being explored with self
organizing Kohonen nets and it appears
there are several clusters of responses in
even this simple problem. Clearly, to ex-

pect to able to handle complex real world
dat.% we must build on this start and bring
to bear the power of neural networks to
gain insights into the data to be classi-
fied. The early results noted above provide
some flicker of promise to do this.
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