
copy 24 ofwoss

AD-A279 058

IDA PAPER P-2940

THE APPLICATION OF FUZZY LOGIC
TO SAFOR IN SIMNET

0 Irvin W. Kay
Bohdan Balko

DTIC
ftELECTE

February 1994 M 199

WpONe Wr publi robin. ibWmahue~m

94-1384 0

INSTITUTE FOR DEFENSE ANALYSES
U ~1801 N. Beauregard Street, Alexandria, Virginia 223 11-1772

94 5 C60C

DEFINITIONS
IDA pub111116es the 101l0101n1 d0OMseel to raiep O rthesults of Is work.

Reports
Reports ar MOe mos authoritative and Moat carefully considered products IDA publishes.
They normally embody results Of ma81of Projects whicha (a) have a direct bearing en
decisions affecting major programs. (b) address Issues of significant concurn to Meu
Executive Branolh, the Congress and/or the public, or (c) address Issues that have
significant economic Implications. IDA Reports are reviewed by outside powls ot experts
to mua their high quality and relevance to the problems studied, and they are released
by Ithe President of IDA.

Group Reports
Group Reports record the findings and resuits of IDA established working groups and
panels composed of senior Indivduals addressing mjaor Issues which atheutise wouid he
the subject of an IDA Roepor. IDA Group Reports are reviewed by the senior Indivduals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by fth President of IDA.

Papers
Papers, ai=se athoritative and carefully considered products of IDA, address studir, Mea
are narrower In scope than thos covered In Reports. IDA Papers are reviwed to enure
that they meet the high standards expected of refereed papers In professional journals or
formal Agenc reports.

Documents
IDA Document are and for the convenience of the sponsors or the analysts (a) to record
substantive work dome In quick reaction studies, (b) to record the proceedings 0f
contrdencs and meetings, (c) to make available preliminary and tentative results 0f
anallyses. (d) to record data developed In the course 01 on Investigation, or (e) to forward
Information that Is essentially easlyed and unevaluated. The review 01 IDA Document
Is suited to thei content and Intended use.IThe work reported In this document was conducted under IDA's Ceniratl Research Program.
Its publication does not Imply endorsement by the Department of Dsotens or any other

Government Agency, nor should the contents be construd as reflectingf the official position

of ay Go@ met Agncy

P,*bc 6e.ent burde for two 00oh of w4off.oon to .. otemed Wo sego. I how pt sreotpons. idnci g "Wne s.e o. womoig -ltuoinc . eedn qo n dete sources. getioeog end rnetnnaoung "~ "ae neede.d end
ortweong and mveoreerg th0 ooleabon of anlonneeon Send corenenlerisgoprding fto burden eeontele or eny olh., &&ped of :, oldSoclon of modonnemon, mdudng suggmbori e to. &ctng fet burden. to Washington
Needworione Servicse. 0.redtots"e b ifronnebre, Operebon. end Ropone. 1215 Jelleroon Dave Hioway. Swt.o 1204. Adutgeor VA 22202-4U20 end to ". Maeo of Manego wt an nd budget. Pwe'wort Raduoton Prow~t

1. AGENCY USE ONLY (Leav blank) 2.REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1994 Final--June 1993-December 1993
4. TITE AND SUBTITLE 5. FUNDING NUMBERS

The Application of Fuzzy Logic to SAFOR in SIMNET IDA Central Research
Project

6. AUTHOR(S)

Irvin W. Kay
Bohdan Balko

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Institute for Defense AnalysesREOTNM R

1801 N. Beauregard St. IDA Paper P-2940
Alexandria, VA 22311-1772

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

I1I SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 180 words)

This paper describes the history of an experiment to demonstrate the potential utility of fuzzy logic applied to
SAFOR algorithms by using fuzzy logic to modify an existing vehicle collision avoidance algorithm.
Appended to the paper are instructions on how to create SAFOR exercises on a Silicon Graphics terminal in

* the IDA Simulation Center network. This report also contains listings of source codes used in various
phases of the work.

14. SUBJECT TERMS 15. NUMBER OF PAGES
fuzzy logic, fuzzy set theory, SAFOR algorithms, semiautomated forces, 130

0collision avoidance 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 754G-01-280-5500 Standard Form 298 (Rev. 2-89)

Prownbohd by ANSI Sod Z39-1lB
2MI.02

IDA PAPER P-2940

THE APPLICATION OF FUZZY LOGIC
TO SAFOR IN SIMNET

Irvin W. Kay
Bohdan Balko

February 1994

Approved for pMblic releas; il•imb uuImlIhNd.

IDA
INSTITUTE FOR DEFENSE ANALYSES

IDA Central Research Program

PREFACE

This document has been prepared under IDA's Central Research Program.

We would like to thank the following IDA people for their cooperation and help:

Bob Clover, Keith Green, Barron Gibson, Chris Turrell, and Grant Shackelford of the

Simulation Center, Peter Brooks of SFRD; Kevin Brown of STD; and Ken Ratkiewicz of

* PSO.

The implementation of the algorithm in the SAFOR system could not have been

done without the cooperation of Bob Clover and Keith Green and the help of Kevin Brown
in the early stages of the work. Keith Green taught us how to use the SAFOR system and

*• create exercises and Bob Clover helped us identify certain interesting features in existing

logged military exercises. For the stealth room operation during the creation of the video
we owe thanks to Barron Gibson, Chris Turrell, and Grant Shackelford.

Peter Brooks deserves our thanks for introducing us to SAFOR and providing

helpful information about its use and operation.

Ken Ratkiewicz encouraged us to make a movie of the stealth action showing the

improvements we achieved and then provided professional assistance in the creation of the

* movie. For this we are very grateful.

We would also like to thank Dr. Hillman Dickinson for helpful suggestions to

improve battlefield realism.

Aooession For

NTIS crFA&I

DTIC TAB 0

J•I-1tit lc!ýtion

By ...

Distributlo•jf-•
AwaIlab llty Gode8

A VOI I and/or.
SIDlst S;:, a lal

)ij it

FOREWORD

This document is essentially a notebook, recording the work done and information
acquired during a two-phase experiment to test the potential application of fuzzy logic to
the Semi-Automated Forces (SAFOR) system. SAFOR is used in Simulation Network
(SIMNET) battle exercises to reduce the number of real human participants by replacing
some of them with virtual participants generated by computer software. A major objective
of SAFOR is to replicate human behavior with enough fidelity that a human taking part in
an exercise will be unable to distinguish between simulated objects controlled by computer
and those controlled by other humans. The idea underlying the use of fuzzy logic is that
algorithms based on it are more likely to resemble the kind of rough-estimate, semi-
qualitative, mental process that humans apply to quick decision making than the
mathematically precise algorithms that are more typical of computer programs.

The question addressed in this experiment is whether fuzzy logic can be a general
* tool for improving an algorithm affecting the action of one or more SAFOR entities by

making the action resemble human behavior more than it would have without the
improvement. Therefore, in the context of the experiment it is important to avoid changing
such an algorithm in any way other than by substituting fuzzy rules for precise calculations
that would normally govern a particular action. An important objective has been to
demonstrate that this can be achieved in a straightforward way by means of what is now a
standard procedure in the design of fuzzy rule-based control systems.

v

ABSTRACT

* This paper describes the history of an experiment to demonstrate the potential utility

of fuzzy logic applied to SAFOR algorithms by using fuzzy logic to modify an existing

vehicle collision avoidance algorithm. Appended to the paper are instructions on how to

create SAFOR exercises on a Silicon Graphics terminal in the IDA Simulation Center
* network. This report also contains listings of source codes used in various phases of the

work.

0

vii

0

CONTENTS

I. INTRODUCTION ... 1

A. Background .. 1
1. SAFOR ... 1
2. Fuzzy Logic ... 2

B. Project History ... 2
1. Perspective ... 2

* 2. Phase One ... 3
3. Phase Two .. 4

II. CRISP OBSTACLE AVOIDANCE ... 7
A. Preliminary Analysis .. 7
B. A Crisp Avoidance Algorithm for a Vehicle and

Obstacles on the Ground 12

III. FUZZY OBSTACLE AVOIDANCE .. 13
A. Preliminary Definitions ... 13

0 B. Fuzzy Obstacle Avoidance Rules .. 19
C. A Fuzzy Obstacle Avoidance Algorithm for a Vehicle and

Obstacles on the Ground .. 20

IV. SAFOR OBSTACLE AVOIDANCE .. 23
A. SAFOR Avoidance in General ... 23
B. SAFOR Vehicle Avoidance ... 23

V. SAFOR VEHICLE AVOIDANCE USING A FUZZY ALGORITHM 27
A. The Concept ... 27
B. The Implementation .. 28
C. Code Changes ... 28

VI. VIDEO ACL ION ... 31

References .. 37

Appendix A-Vehicle Path While Avoiding Obstacles A-1

Appendix B-Creating, Storing, and Replaying SAFOR Exercises on SIMNET B-1

Appendix C-SAFOR Vehicle Collision Avoidance Code C-1

Appendix D-GW Basic Obstacle Avoidance Programs D-1

ix

0

iS

FIGURES

1. Vehicle Obstacle Collision Diagram ... 7

2. Vehicle Going Around Obstacle ... 9

3. Fuzzy Set Membership Function--Large Distance to the Obstacle 14

4. Fuzzy Set Membership Function-Medium Distance to the Obstacle 14

5 Fuzzy Set Membership Function--Small Distance to the Obstacle 14

6. Fuzzy Set Membership Functions--Medium Distance to the Obstacle
and Large Distance to the Obstacle ... 16

7. Fuzzy Set Membership Function--Intersection Between Medium
Distance and Large Distance to the Obstacle .. 16

8. Fuzzy Set Membership Function--Union of Medium Distance and
Large Distance to the Obstacle 17

9. An Overhead of the Area of Interest With Movement of the Platoon
and APC Indicated .. 33

10(a). Overhead View of the Lead Tank Approaching the Intersection.
This scenario is the initial condition for all the runs shown here 34

10(b). Collision Between Tank and APC When SAFOR Algorithm Is Used 34

10(c). Avoidance of Collision When Fuzzy Algorithm Is Used 34

10(d). Avoidance of Collision When Fuzzy and Slowdown Algorithms Are Used 34

TABLES

1. Fuzzy Vehicle Velocity Avoidance Increment Dependence on
Obstacle Radius and Distance from Vehicle ... 19

2. Fuzzy Vehicle Velocity Avoidance Increment Dependence on
Passing Distance and Distance to Closest Point of Approach 27

x

I. INTRODUCTION

*O A. BACKGROUND

1. SAFOR

Reference 1 describes SIMNET as a joint ARPA and U.S. Army research project
0 with the goal of developing the technology to build an extended network of interactive

combat simulators. SAFOR is the term used for the SIMNET Semi-Automated Forces

system, the purpose of which, as stated in Ref. 1, is to allow "a few individuals to direct a
large number of ground and air vehicles that operate as a unit in the simulated world."

0

Most of the individual SAFOR vehicle behavior, e.g., avoiding obstacles or
maneuvering to stay in a prescribed formation, is under the control of software algorithms

rather than humans. On the other hand, it is highly desirable that the human participants in
* a simulated combat exercise not be able to distinguish between simulated vehicles

controlled by other humans and those that are computer driven.

In various recorded SIMNET exercises deviations from realistic vehicle behavior
range from the subtle, recognizable only by experienced observers, to the gross or even

40 bizarre. Examples of the first type are: unnecessarily leaving a road while traveling al,•ng

it, not moving realistically over certain terrain profiles, not changing speed when climbing a

hill, not slowing down when encountering another vehicle. Examples of the second are:

colliding with other vehicles, driving into a lake, going through a wall. Bizarre behavior
occurring in early exercises included several tanks coalescing to form an unrecognizable

mass and tanks milling about randomly before lining up in a formation.1 Recent examples
are two or more vehicles performing a kind of dance and single vehicles aimlessly turning.

0€

1 These "monster vehicles" are really not due to a SAFOR deficiency, but the results of initial attempts
to de-aggregate a platoon from BBS (an algorithmic war game that operates at the unit level-platoon
being the lowest level) into its individual component entities (4 tanks) in SIMNET. Sometimes the
de-aggregation algorithm fails to work properly.

I

2. Fuzzy Logic

In 1965 L. Zadeh, a professor of electrical engineering at the University of
California whose special interest was in the design of control systems, introduced the
concept of fuzzy sets (Ref. 2) as a generalization of classical set theory to deal with
linguistically imprecise notions in a technologically sound way. His point was that to
perform satisfactorily, control systems need not be optimal or even based on complete
knowledge of the pertinent physical laws of motion. In fact, he expected controls designed
using fuzzy sets and associated rules of fuzzy logic to mimic human behavior when applied
to ordinary human activities such as parallel parking a car.

With the advent of the microcomputer chip, industrial applications of Zadeh's
approach became feasible and, spearheaded by Japanese manufacturers, have multiplied at
an ever increasing rate over the last decade. It is now common knowledge that the fuzzy
logic methodology in conjunction with microcomputer chips has resulted in many
consumer-oriented devices that exercise human-like judgment, such as a self-focusing
camcorder that also selects the focal region of interest. Equally well known are more
elaborate applications, such as a completely automated cement kiln or subway train, in
which a fuzzy controller replaces a human operator.

The success of fuzzy logic as a technique for imitating human behavior in the I
design of control systems suggests that the same approach may accomplish a similar end if
applied to dynamic computer generated simulations like those created by the SAFOR
system. The objective of the work reported in this document has been to demonstrate the
potential utility of applying fuzzy logic to SAFOR to make its computer-controlled entities
behave more as if they were controlled by humans. To keep the demonstration as simple as
possible the work has conc,'ntrated on a single activity-avoiding collisions between
vehicles.

B. PROJECT HISTORY

1. Perspective

The project has had two distinct phases. The early phase concentrated on finding
the relevant SAFOR source code. Although we had no documentation describing the actual
SAFOR algorithms, and therefore no way of knowing what they were, during this period
we also considered possible collision avoidance algorithms. The later phase involved
experimenting with SAFOR by creating simple exercises in which vehicle collisions

2

occurred and then replacing the existing avoidance algorithms by fuzzy versions that

avoided collisions in identical scenarios.

2. Phase One

While still ignorant of the SAFOR collision avoidance algorithms we attempted to

* develop some of our own. We started with a three-dimensional concept to leave open the

possibility of including aircraft, or at least helicopter, avoidance maneuvering. The vehicle

and all obstacles were represented by spheres.

At first we treated ground vehicles as spheres resting on the ground, which was

* assumed to be a plane surface. Later we transformed the algorithms into two-dimensional

versions that use cylindrical instead of spherical entities for representing the vehicle and

obstacles.

Chapter II provides a description of the nonfuzzy (also called crisp) algorithms

along with a detailed analysis deriving the necessary supporting mathematical formulae.

Deleting the z coordinate, which represents height above the ground, accomplishes the

transformation of the formulae from the spherical to the cylindrical geometry. Chapter HI

provides a brief summary of the fuzzy logic approach to algorithm design in general and its

application to obstacle avoidance by a vehicle in particular.

The approaches to collision avoidance in Chapters II and mI also differ in another

respect: the crisp algorithms take into account all obstacles that the vehicle can encounter

0 on its way to its destination, while the fuzzy ones consider at most two neighboring

obstacles at a time. The objective in the first case was to devise a crisp algorithm to define

a path from the initial position of the vehicle to its destination such that it would not collide

with any obstacle along the way. The objective in the second case was to design a fuzzy

* algorithm that would behave more naturally, avoiding obstacles as they come into view

without necessarily knowing their locations in advance. In both cases the algorithms

chosen were the simplest possible that appeared to meet the stated conditions.

Both the crisp and the fuzzy algorithms were implemented in PC GW Basic

* programs that display the spherical or cylindrical vehicle avoiding similarly shaped

obstacles on its way as it moves from the left end of a PC terminal screen to the right end.

Appendix A contains figures il!ustrating the path of the vehicle as it avoids obstacles in five

different configurations, using both the crisp and fuzzy algorithms, for both the spherical

0 and the cylindrical geometries. Appendix D contains listings of all of tht; GW Basic

programs, including one called REPLOT.BAS, which replots the vehicle path as shown in

3

01

the figures. Also included in the appendix are files containing data that the programs can

use to reproduce the exercises associated with the figures.

3. Phase 2

The second phase began when Kevin Brown, who was working on a different

SIMNET programming problem but knew of our interest in SAFOR collision avoidance,

located a file called avoid.c containing the source code for the C language function

avoid_a_vehicle that implements avoidance of a collision between two vehicles. That file is
located in a Silicon Graphics subdirectory along with a large number of other files

containing source code and data required for SAFOR. Thus, a search of the other sub-

directory files for relevant function names found in avoid.c made it possible to uncover

enough source code to completely implement the SAFOR vehicle collision avoidance

algorithms.

Chapter IV identifies the location and discusses the nature of the source code for
avoiding vehicle collisions in general that the search uncovered. It also considers in detail

the calculations made to implement the function avoid_a_vehicle, which pertains

specifically to the avoidance of collisions between two vehicles.

At this point it was clear that our preliminary work on avoidance algorithms

described in Chapters II and III had concentrated on an essentially different problem than

the SAFOR algorithms address. We had been concerned with avoiding multiple obstacles,

whereas the comparable SAFOR algorithms could only deal with a vehicle against a single

other vehicle in the role of an obstacle. In fact, experimenting with a scenario involving

two stationary tanks near each other acting as obstacles and a third attempting to avoid

them, demonstrated that the moving tank may avoid one of the stationary ones but collide

with the other.

The calculations of Chapter IV indicate that the approach of the SAFOR function

avoid_avehicle is actually closer to that of our fuzzy than our crisp algorithm because it

deals with just one obstacle at a time.2 This made the insertion of a fuzzy version into

SAFOR much simpler than it might otherwise have been. Chapter V describes in detail the

new algorithm and how it fits into avoid_a_vehicle. Figures 21 and 22 in Appendix A

illustrate the difference between the paths that a cylindrical vehicle takes, controlled first by

2 In fact, it does not seem possible to use our crisp algorithm when the obstacles, themselves, are

moving vehicles.

4

the regular SAFOR algorithm and then by the fuzzy algorithm, when avoiding two

cylindrical objects.

As remarked in Chapter V, when a vehicle is turning into the path of another the

regular SAFOR algorithm can fail to prevent a collision, while the fuzzy version averts it

when applied to exactly the same scenario. Also discussed in Chapter V is a discovery

• made after experimenting with various exercises using either the crisp or the fuzzy version:

causing vehicles to slow down when starting an avoidance maneuver greatly enhances the

avoidance process.

Chapter VI describes a video tape recording of SAFOR anomalies observed in

* several exercises displayed on the SIMNET Stealth screen. The tape also shows vehicle

collision scenes with the crisp SAFOR avoidance algorithm in control, followed by their

counterparts obtained by recreating the original scenes with the fuzzy algorithm in control.

To create, save, and replay SAFOR exercises it was necessary to use the SIMNET

Silicon Graphics terminals. Although user's manuals for some versions of SAFOR

(cf. Ref. 3) have been written, at the time we were unaware that any existed. Fortunately,

the SIMNET staff were very helpful, so that learning the procedures by word of mouth

was not as difficult as it might seem. Nevertheless, we hope that Appendix B, which

outlines the basic operational steps required to carry out the experiments discussed in this

report, can still have some value as a primitive guide for others who may be involved in

similar programs until a more polished and comprehensive manual becomes available.

5

II. CRISP OBSTACLE AVOIDANCE

A. PRELIMINARY ANALYSIS

Assume the vehicle, which is a sphere of radius RV, is located initially at the

position rv and that its final destination is at rD. Assume that N obstacles, which are also

spheres of radius R0 , are located at the positions rn. Assume, also, that the vehicle intends

* to move along the straight path connecting rv and rD. In dealing with obstacle avoidance it

is convenient to regard all vectors as relative to the destination point rD, working with

Ar = r - rD instead of r. Figure 1 illustrates an example of the configuration with a single
obstacle and also shows the radius vector rCn to the point on the vehicle path closest to the

* obstacle.

VEH-•LE ESTNATION

0rv rcn n

* 0

OBSTACLE

Figure 1. Vehicle Obstacle Collision Diagram

Points r on the path must satisfy the equation

ArvxAr=O (I)

7

From (1) it follows that

Arvx(ArvxAr)=(&v.Ar)&v-lArvr =O

so that

Ar =(Arv -Ar)& (2)

If rCn is the point on the path closest to the obstacle located at rn then rn must satisfy

Arv.€Arc.- Ar.) = Av. (r,_-.) = 0

so that

Arv• Arc=Arv .Ar, (3) 0

But because of (2)

A Arv• Arc

It then follows from (3) and (4) that

Ar,=Ar -ArflAr . (5)

It follows from (5) that

(ArV.Ar.) 2 (6)

The distance Dnbetween the point on the path rcn closest to the object center rn and

the object center is given by

D!. = V. - ,+ = I&. - r = *.f - 2 -Ar+. +

Because of (5) and (6) this becomes

D2. = (Ir.f - 2 (Ar" . A + r)2= l _. -)
I~vr vr W•r vr

The condition that the vehicle moving along the path will collide with obstacle n is

D.2 !<(Rv+R.Y . (8)

The distance Dc: between rcn and the position of the vehicle center rVn on the path when

the collision occurs is given by

8

Dc. = 4(Rv + R.)2-D (9)

The collision occurs when the vehicle position on the path is given by

&rv. = Arc. + Dc. Av (10)

where ArCh is given by (5) and DCn is given by (9).

In general a minimum approach sphere, with a radius R = Rv + Rn, is centered at

rn. When the vehicle comes in contact with the obstacle at rn its center lies on the minimum

approach sphere at the point rVn, obtained by adding rD to ArVn given by (10). To avoid

being impeded by the obstacle the vehicle can move around it, in either of two directions,

until it reaches the point where it touches the cone that has its vertex at rD and is tangent to

the minimum approach sphere. The vehicle center will then lie on a conical generator
tangent to that sphere and can move along the generator toward the conical apex, which

coincides with the destination at rD. Figure 2 illustrates an example of such a

configuration, in which an obstacle directly blocks the vehicle's path to the destination.

DES-1NA-rCQN

*OB STACL

Figure 2. Vehicle Going Around Obstacle

9

The cone is tangent to the sphere at a circle lying in a plane P that intersects the

conical axis at the point rp, given by

Arp = A tr - - t. =Ar.(1

The equation

Ar.Arp =I$reI

which, because of (11) takes the form

(f-R R2)2

Ar.Ar 1 = *-1 (12)

determines the plane P, whose intersection with the sphere, determined by

Ar-Ar r=R" , (13)

determines the tangent circle. Substitution of (11) into (12) leads to

Ar,. Ar=Ar.r R2 (14)

The combination of (13) and (14) leads to

-ArI2=j'rj-R2 , (15)

which points on the circle must also satisfy.

Equations (14) and (15), which together determine the circle where the cone and

sphere are tangent, are equivalent to

Ar.. Ar =

IArr=L 2 , (16)

where L is the distance from a point on the tangent circle to the destination at the conical

apex. For the case in which the vehicle and obstacle are both touching the plane z = 0, i.e.,

are on the ground, the pair of equations (16) determine two points at the intersection of the

tangent circle with the plane z = ZD = zv. This is because the position of the vehicle (or,

for that matter, of the obstacle) refers to the center of the sphere representing it. Then

Az =0.

If for the vector Arn the component Axn = 0, the Ax and Ay components of the

solution Ar of (16) are given by

10

Ay= -y,

A x=±1L C2 - (17a)

and if for the vector Arn the component Ayn = 0 the Ax and Ay components of the solution
Ar can be obtained by interchanging Ax and Ay as well as Axn and Ayn in (17a). Other-
wise, those components are given by

Ax = L2AX, ±Ay.4L2(Ax +Ay.)-L'
Ax2 + Ay2

Ay L2 - AxBAx (17b)
Ay.

Since two points satisfy (16) the vehicle can choose between two possible new
paths. A simple, but not unreasonable, choice is the one requiring the vehicle to travel the
least distance to its destination, without taking into account future collisions with other
obstacles. For this purpose it is only necessary to select the point determined by the vector
Ar for which the distance SVD given by

*,,, =r.-Aj+M (18)

has the smaller of the two possible values.

If a pair of (spherical) obstacles are too close together they can be combined into
one large sphere enclosing them both. For deciding when they are too close, a safe (but
perhaps too stringent)3 criterion would be: when the shortest distance between the two
obstacle surfaces is less than the vehicle diameter, i.e., if the condition

Ir.-r.1< R, +R,. +2R, (19)

* is satisfied. If (19) is satisfied, an obstacle with the radius R.n, given by

R.=!(Ir.-r.j+R.+R.) , (20a)

will take the place of the obstacles centered at rm and rn with radii Rm and Rn. The center
of the replacement will be located by the vector

In fact, if the vehicle and obstacles ae mon the ground a sraightforward geometrical calculation shows
that, instead of (19), the least stringent condition is

Ir.-r= r <(RM-R.) 2 + 4R,(4R--. +4R) 2

11

0I

r=r, +(R_.-R l
"fr.-r=j

which is equivalent to
R= R-R. +V-r,1 R - R, +r- jr,

2fr.-r'. r. + 2 M1r,_r- r, (20b)

B. A CRISP AVOIDANCE ALGORITHM FOR A VEHICLE AND
OBSTACLES ON THE GROUND

The basic idea of this algorithm is always to move the vehicle in a straight line from

its present position toward its final destination whenever possible. Using (8), the
algorithm determines the nearest obstacle with which the vehicle will collide if it continues

on that path. Then the next step is to find the collision point, using (10), and determine
whether the vehicle can go around the obstacle on a circular path to a position, calculated

using (17a) or (17b) along with (18), from which it can proceed in a straight line toward
the destination. This will be possible if the distance, determined from (19), between the

nearest obstacle and all others, or all others but one, is large enough; then if it is obstructed
on one side the vehicle can go around the nearest obstacle on the other side.

If more than one other obstacle is close enough to the nearest one to block the
vehicle, the algorithm assumes that the blockage occurs for either path around the nearest

obstacle, which it replaces, along with one of those that are too close, by a sphere whose
center is given by (20b) and whose radius is given by (20a). The sphere encloses, and is

tangent to, both obstacles being replaced.

After two obstacles have been replaced by a single sphere in this way the algorithm
starts over from the beginning with the new configuration of spheres replacing the old.
This procedure continues until it is no longer necessary to replace two spheres, regarded as
single obstacles, with one; i.e., the vehicle can avoid all spheres in the final configuration,

and therefore all of the original obstacles, without colliding with any.

12

0

Il1. FUZZY OBSTACLE AVOIDANCE

• A. PRELIMINARY DEFINITIONS

In fuzzy logic terminology it is customary to refer to a set as defined in classical
logic as "crisp." Associated with any set in classical logic is its "characteristic function,"

defined over all elements in the universe of discourse (i.e., all elements that could possibly
be members of the set) as having the value I for every element that is a member of the set
and the value 0 for every one that is not. Associated with every "fuzzy" set is its

"membership function," which for every element in the universe of discourse has a value in
the closed interval from 0 to 1. The crisp set characteristic function is obviously a special0
case of the fuzzy set membership function.

Here fuzzy obstacle avoidance means using an algorithm consisting of some rules
expressed in the modens ponens form "If A then B," where A and B define fuzzy sets. For

* example, A might be the phrase "the distance to the obstacle is large" and B the statement
"the change in the direction of the vehicle motion is small." The phrases "large distance to
the obstacle" and "small change in the direction of the vehicle motion" refer to fuzzy sets

defined by specific membership functions.

The membership function of the set "large distance to the obstacle" might be a non-
decreasing function that is 0 as the obstacle distance increases from 0 to 50 meters,
increases linearly from 0 to 1 as the obstacle distance increases from 50 to 100 meters, and

remains equal to 1 for all obstacle distances larger than 100 meters. Figure 3 illustrates a
simple piecewise linear membership function for the fuzzy set "large distance to the

obstacle."

Membership functions for "medium distance to the obstacle" and "small distance to
the obstacle" can be defined in a similar way. Figure 4 illustrates one for "medium distance

to the obstacle," and Figure 5 illustrates one for "small distance to the obstacle".

13

0mmlm mmm mmmlmmmmmm mmlmm m llm

Fuzzy Set Membership Finction

IU-

U

Figure 3. Fuzzy Set Membership Function-Large Distance to the Obstacle

Fuzzy Set Membersi Function
MjM= Dhft=I0 to Ob.ab

"wwW

Ii

Figure 4. Fuzzy Set Membership Function-Medium Distance to the Obstacle

Fuzzy Set Mebeshp Rmd€on

Figure S.~ ~ ~~ m Fuzzy Set Memerhi Funtin-mallo itnet teOsal

S14

U

ma

u

Na

up

Figure 4. Fuzzy Set Membership Function-Smediu Distance to the Obstacle

FU~ySe emerhp1mco

0

Three parameters PI, P2, P3 are sufficient to characterize any function of the types
illustrated in Figures 3-5. The following rules define a generic membership function
representing small, medium, or large.

If

P 3 <P 2

then the fuzzy set is large and its membership function is defined by:

P > P2, MF(P) = 1;

P2 >P>PI, MF(P)= P-P 1

P2 -P 1

P, >: P, MF(P) = O.

If

* P1 <P 2 <P 3

then the fuzzy set is medium and its membership function is defined by:

P < P19 MF(P) = 0;

P-P•
PI <P<P 2, MW(P)- P- P

P2 - P1

P25 <P < P3, NF(P) = P3-P

P3 -P 2 '
P3 < P, MF(P) = 0.

If

P2<PI 1

then the fuzzy set is small and its membership function is defined by:

Z! > P2, MF(P) = 1;

P2 < P < P3 , MF(P) = P3-P .
P3 -P 2

P3 <P, MF(P) = 0.

15

The membership function gAArB(P) of the intersection of two fuzzy sets A and
B with membership functions pA(P) and pB(P) is given by the function, which for each
value of P is equal to the smaller of the two membership functions at that value, i.e.,

gA^•, (P) -- nin[9A (P).• (P)] -(21)

For example, the intersection of "large distance to the obstacle" with "medium distance to
the obstacle," the curves of whose membership functions appear separately in Figures 3
and 4 and together in Figure 6, has a membership function depicted by the curve in
Figure 7.

Fuzzy Set Membership Functiorm
Mainm Csm IDt. ObdIa WW

lags MImom to Obsft

MF

U

Figure 6. Fuzzy Set Membership Functions-Medium Distance
to the Obstacle and Large Distance to the Obstacle

Fuzzy Set Membership Ruxction

Iil

U

"a"" .. - mI6

Figure 7. Fuzzy Set Membership Function-intersection Between
Medium Distance and Large Distance to the Obstacle

16

The membership function IlAuB(P) for the union of two fuzzy sets with member-

ship functions IA(P) and ILB(P) is given by the function, which for each value of P is equal

to the larger of the two membership functions at that value, i.e.,

J.1Av(P) = maXIA (P),L9 (P)] (22)

The curve in Figure 8 depicts the membership function of the union of the two fuzzy sets

whose membership function curves appear in Figure 6.

Fiey Set Membership FUrcton

Larg Distncet Obsmac

0testo"salvlctinrmns"ovievraHoeer IW theelmetsi te"eto

"larg ditnles thfor"fA the n obtale and t uz eainhe elements of the sets of"mleoiyiceets,

alhoughthsttmnsAadBrfra, ngnal from different universes of discourse,.xs iutnosyi h atsa

prductae of the tobstaveres of whiscourse, whc iees, an two-dimendatfrsiona saerpeening

a combined universe of discourse wherein the elements of the sets referenced by A and B

17

belong to mutually orthogonal cylindrical sets.4 The complex set referenced by the relation

"if A then B" is the intersection of the two cylindrical sets in the product space.

In the classical case the intersection can be characterized completely by a two-

dimensional characteristic function: defined as 1 for every pair of elements (a,b) such that

a is in the set referenced by A and b is in the set referenced by B, while for all other pairs

the characteristic function is defined as 0. In the fuzzy case, of interest here, the two-

dimensional membership function ItAra(P,Q) is defined by

PI^B(PQ) = ran[it (P), tB (Q)] (23)

exactly as in (21), except that the result is a function of P and Q instead of just P.

A standard fuzzy set computational procedure called composition provides a method

for implementing a rule such as "If A then B" in an algorithm. Suppose that when A is "the

distance to the obstacle is large" and B is "add a small velocity increment" an observed

value of the distance to the obstacle is better described by "the distance to the obstacle is

small." Then, given the membership function t{o(P) of the observed quantity, composition

determines the membership function Iaction(Q) of the quantity associated with the action

implied by the rule, i.e., the increment that should be added to the velocity in place of the

small increment that the rule prescribes when the distance to the obstacle is large. The
calculation for this purpose is

.,_(Q)= maxp{min[ILo(P),tLA•(P,Q)I} , (24)

where the minimum implied by "min" is the smaller of tie two membership functions

inside the square brackets, as in (21) and (23), but the maximum implied by "max" is the

largest value of that result for all possible values of P.

If an algorithm consists of more than one "If A then B" rule, the action fuzzy set

implied by the whole algorithm is the union of all of those defined by the separate rules.

Therefore, the membership function palg(P) associated with the algorithm can be calculated

for each value of P by taking the largest corresponding value of all action membership

functions associated with the separate rules and calculated using (24); i.e.,

I,(P)= max[i[t.4.,i(P)] , (25)

4 By definition, sets consisting of element pairs that include all elements from one of the original

universes of discouse awe cylindrical sets.

18

where I.etionoi(P) is the membership function associated with the action fuzzy set defined

by rule i.

B. FUZZY OBSTACLE AVOIDANCE RULES

It is assumed here that in avoiding an obstacle a vehicle adds an increment to its

own velocity vector, which is assumed to be constant except during the avoidance

maneuver, and that the direction of the increment is orthogonal to the line of sight between

the vehicle and the obstacle. 5 The magnitude of the increment is regarded as a fuzzy set

depending on two observable fuzzy sets: the distance between the vehicle and the obstacle

(measured from center to center) and the obstacle's radius.

Table 1 defines a set of nine rules for determining the velocity increment magnitude,

given the observable sets. The phrase A in the "If A then B" form of a rule in this case

refers to a complex set: the intersection of an "obstacle distance from the vehicle" with an

"obstacle radius." Three possibilities exist for each type of set: small, medium, and large.

Table 1. Fuzzy Vehicle Velocity Avoidance Increment Dependence On
Obstacle Radius and Distance from Vehicle

Obstacle Radius

Small Medium Large

Distance Smal Medium Large Large

From Medium Small Medium Large

Vehicle Large Small Smnal Medium

The phrase B in each rule applies to the fuzzy velocity increment size that appears at the

intersection of the row and column in the table labeled in accordance with the fuzzy sizes of

the two quantities whose intersection is specified by the phrase A in the rule. For example,

the first rule given by Table 1, at the intersection of row 1 with column 1, is: "If the

distance between the vehicle and the obstacle is small and the obstacle radius is small, then

the velocity increment should be medium."

5 An alternative, used in the current SAFOR avoidance algorithm when the obstacle is another vehicle, is
to make the increment direction orthogonal to the vehicle's own velocity. At least for spherical
obmacles, this does not work as well as choosing the direction to be orthogonal to the line of sight, as
is doam heme

19

Since the actual calculations will generally be numerical, although the membership

functions are theoretically continuous functions of the independent variables, the actual
values used for both the independent and dependent variables will be limited to a discrete, 0
finite set. Also, in the end even a fuzzy algorithm must lead to a single number to be useful
(i.e., the algorithm's action fuzzy set must be defuzzified). The most popular method for
accomplishing this is to calculate the centroid given by

l pig.l.l(Pi) 0

Pais = •i.•(P 1) (26)

where Pawg is the value of the action quantity recommended by the algorithm, e.g., the
magnitude of an increment to be applied to a vehicle's velocity in the case of a fuzzy

obstacle avoidance algorithm.

C. A FUZZY OBSTACLE AVOIDANCE ALGORITHM FOR A VEHICLE

AND OBSTACLES ON THE GROUND 0

This algorithm uses Table 1 to calculate the magnitude of a vector increment added
to the vehicle path direction to avoid a collision with an obstacle. The direction of the
increment is orthogonal to the line through the centers of the vehicle and the obstacle.

The fuzzy membership functions used for this purpose are those illustrated in
Figures 3-5 and defined earlier, as well as similar membership functions for fuzzy obstacle
radius sizes. Since, as in the case of the "distance from obstacle" sizes, they are all of the
generic type, three parameters completely specify each of the "obstacle radius" size •
membership functions. The parameter sets are as follows:

For "small radius" PI = 35, P2 = 5, P3 = 20;

For "medium radius" P1 = 5, P2 = 20, P3 = 35; 0

For "large radius" Pl = 20, P2 = 35, P3 = 5.

As mentioned earlier, in each rule of the form "if A then B" A is the intersection of

the "distance from obstacle" and the "obstacle radius," which, although possibly measured
in the same units, are different types of quantities. Therefore, the independent variables 0

must be different in their respective membership functions, from which it follows that the
membership function for A must be a function of two variables. In fact, according to (23)
in rule ij it must be given by

20

20

IL,(P,Q) = min[Il(P).,,j(Q)] , (27)

* where Mdi(P) is the membership function for a "distance from obstacle" size i and dj(Q) is
the membership function for an "obstacle radius" size j. Similarly, (23) also determines the
membership function for the intersection of the observed "distance from obstacle" and
"obstacle radius" sizes, so that the result gio(PQ) has the same form as that given by (27):

0 Igo(P,Q) = min[Rod(P),1o,(Q)] , (28)

where god(P) is the membership function for the observed "distance from obstacle" size
and p:4(Q) is the membership function for the observed "obstacle radius" size.

* If the "vector increment" magnitude, which is B in the rule, has a membership
function gLinc,ij(R), (23) determines the rule relation membership function iJ(P,Q,R),
which is then given by

lt,(P,Q,R) = min[&t•(P,Q),.L..(R)] , (29)

where gAij(PQ) is given by (27). Then for the "vector increment" magnitude specified by
the rule ij, (24) provides the membership function pectonij(R), given by

IL.f R= max-p~Q mm[iL0(P~Q),4Li(PQ,QR)]} , (30)

where the quantities on the right side of (30) are given by (28) and (29).

After calculating all of the individual rule membership functions pactionjj(R) given
by (30), the next step is calculate the single velocity increment membership function
trjin(R), which is the membership function for the union of the sets defined by all of the

rules. According to (25), it is given by

gt..(R)= maxq[,u,,,.j(R)] , (31)

where jijacaon(R) is given by (30).

The final calculation based on (26) uses pinc(R) to estimate the vector increment

magnitude. The result is given by

*"XRapj (R.)
Rim - R (32)

21

where pjinc(R) is given by (31). In (32) each continuous variable, i.e., the membership
function and its argument, is replaced by a discrete set of sample values. As a practical
matter this must be done, in any case, before numerical results can be obtained.

When two or more obstacles are too close together for the vehicle to pass between
them the fuzzy algorithm does not replace them with a single sphere as the crisp algorithm
does. Instead, the fuzzy algorithm proceeds as follows.

If, when it moves in the normal direction, avoiding one obstacle, the vehicle will
collide with another, the algorithm reverses its direction for one incremental path distance
and then has it attempt to resume normal motion toward the destination. If the vehicle will

move closer to the last obstacle encountered and the distance between the last obstacle and
the n•arest one ahead is too small to permit passage, the algorithm reverses the vehicle's
direction, causes it to move the minimum incremental distance, and then continues to have
it proceed toward the destination.

22

0

IV. SAFOR OBSTACLE AVOIDANCE

• A. SAFOR AVOIDANCE IN GENERAL

Source code in the file called driver.c governs the avoidance of obstacles by

vehicles in the SAFOR simulation. The functions used by code in driver.c for this purpose
depend on the type of obstacle to be avoided. In particular, the function for avoiding

0 vehicles, other than fixed wing aircraft but including dismounted infantry, is called
avoidvehicles, and its source code can be found in avoid.c.

The SAFOR function, defined by source code in driver.c, for avoiding extended
0 obstacles, i.e., lakes, rivers, canopies, buildings, and tree lines, is avoid-objects. That

function treats any of those obstacles as a collection of line segments. It avoids them by
means of the repetitive use of the function called avoid-line, the source code for which is
also in driver.c.

* The work described in this document considers only the SAFOR avoidance of
ground vehicles. The function that the code in driver.c uses for this purpose,
avoid-vehicles, refers to another function, constant.velocity.avoid, which in turn refers to
a third function, avoid_a_vehicle. 6 The source code for each of these functions is in the

0 file avoid.c.7

B. SAFOR VEHICLE AVOIDANCE

The function avoid_a_-Cehive implements the basic algorithm for collision avoid-
ance. The steps involved are as tollows.

1. Calculate the 2-dimensional vector rm representing the (instantaneous) relative
position of the avoidee vehicle relative to the avoider by subtracting the

6The mn functions also apply to the avoidance of helicopters. However, the function for avoiding fixed
wing aircraft is moem elaborate and quite different. It is called ieAd wing.avoid and its source code is
in the file avoid.c.

W The file avoKLc also contains soMuce code for another function called avoian object, which closely
resembles avoiday_vehicle. However, a search of the appropriate SAFOR source code r'les (those in
*Msr/safdevel/developer/srcAmst) uncovered no reference to that function by any other function in the
prsent version (SAF 4.3.3) of SAFOR, indicating that the system no longer uses it.

23

2-dimensional position vector of the avoider from that of the avoidee and
correcting for the difference between the tick times associated with the two
vehicles.

2. Calculate the distance distance-at-cpa of the avoidee from the closest point
of approach (cpa) of the avoider. This is done by first calculating the
2-dimensional relative velocity vector vre, which is the difference between the
velocity vector of the avoider and that of the avoidee, and then calculating the
cross product of that relative velocity and the relative position divided by the
relative speed:

distanceatcpa-- v,, x r,

Since the vectors are 2-dimensional their cross product has just one non-zero
component, which is orthogonal to the plane of vel and rpos, and can therefore
be treated as a scalar. The sign of its value distance-at-cpa depends on which
side of the avoidee the relative velocity is directed.

3. If the actual distance that is equal to the absolute value of distance-at.cpa is
greater than a threshold called Passing..Dist, no avoidance maneuver is
required. At the beginning of avoid.c the quantity Passing-Dist is defined as 5
if both vehicles are dismounted infantry, 10 if the vehicles are on the ground
and at least one of them is not dismounted infantry, and 50 if the vehicles are
helicopters.8

4. If avoidance is required, calculate the distance to the cpa, which is the absolute
value of the quantity given by

dist- to- cpa =

If distwtocpa is negative the avoider has passed the avoidee, so that avoidance
is no longer necessary. If not, then calculate the time to the cpa, which is
given by

time_ to- cpa- dist-to-cpa

If time_to.cpa exceeds a threshold called GRND_LOOKAHEAD, which is
defined at the beginning of avoid.c as 89 then quit because the obstacle is too
far away to require an avoidance maneuver.

8 Since the numbers refer to distance the units are presumed to be meters.

9 In this cawe the threshold must be in units of time, which are assumed to be seconds.

24

5. If there is a destination point, determine whether the quantity called speed,
which is the magnitude of the avoider velocity, is less than a threshold called
SMALL, which is defined as 0.0005 at the beginning of a header file called
util.h. If it is, then to avoid dividing by 0 skip the avoidance process;
otherwise, continue by calculating the vector position rpoint of the destination
relative to the avoider by subtracting the avoider position vector from that of
the destination. Then the time to the destination point is given by

LI

time_ to-point= speed

6. If

* timejto point < timejo-cpa

then the avoider will arrive at the destination before the collision, the avoidance
of which is therefore unnecessary. Otherwise, calculate a quantity called
scalefactor, given by

• scale-factor = sgn(dist-at-cpa) AVOIDFACTOR Passin g.Dist clst-at_cpl

max(time_ tocpa,MNIfAUM_ TIME)

The quantities MINIMUM-TIME, which limits the possible size of
scale_factor, and AVOIDFACTOR are both defined as 0.5 at the beginning of
avoid.c.

7. Define a vector increment Av, in terms of the unit vector vo orthogonal to the
relative velocity Vrel of the avoider, by

Av = (scale-factor)vo

• where, in terms of the components (vl,v2) of vrel, the components (vol,vo2) of

vo are given by

vol = o -_. .

IV. 2

* Then change the avoider velocity by adding the increment Av to it

25

V. SAFOR VEHICLE AVOIDANCE USING
A FUZZY ALGORITHM

A. THE CONCEPT

As observed in Section IV.B, the present, crisp, SAFOR algorithm for avoiding
ground vehicle collisions accomplishes this by adding an orthogonal vector increment to the
velocity of an avoider vehicle relative to that of the avoidee. The magnitude of the
corrective increment is a scale factor based on the time to the cpa and a fixed passing

distance (pd) threshold of 10 meters.

Experimenting with simple exercises involving two tanks or a single armored
personnel carrier and a platoon of tanks has shown that collisions can occur in certain
situations, in particular, when a vehicle is turning into the path of another vehicle. The
reason in that case is probably a consequence of the algorithm's basic assumption that all
velocities are constant. Thus, since fuzzy rules in algorithms are inherently nonlinear it is
not surprising that in exactly the same scenarios replacing the scale factor by one derived
from fuzzy rules averted the collisions.

The idea was to use rules like those defined in Table 1, with quantities PD and
DISTANCE TO CPA replacing OBSTACLE RADIUS and DISTANCE FROM VEHICLE.
After starting with some common sense guesses, to establish the rules a procedure, called
"tuning" in the fuzzy logic literature, which involves testing them in some typical examples
and making appropriate changes until they work satisfactorily, can be used. In the collision
experiment starting with rules corresponding to those identified with Table 1 and then
tuning them resulted in Table 2, which, in fact, differs only slightly from Table 1.

Table 2. Fuzzy Vehicle Velocity Avoidance Increment Dependence On
Passing Distance and Distance to Closest Point of Approach

PD

Smali Medium Large

Distance Medium Large Large

To Medium Small Large Large

Cpa Large Small Medium Medium

27

B. THE IMPLEMENTATION

It was also necessary to apply the tuning process to the definition of the small,

medium and large membership functions associated with the pd, distance to cpa (dcpa) and

scale factor (sclf), each of which was assumed to be of the generic type defined in

Section IRA and therefore specified by three parameters. Actually, it is only necessary to

assign three parameters to each of the quantity types: pd, dcpa, sclf; the order of the

parameters determines whether the modifier is small, medium, or large.

The quantity pd in the existing crisp version of the SAFOR avoidance algorithm is

assigned the possible values 5, 10, or 50, depending on whether the avoider and avoidee

vehicles are both dismounted infantry, both are on the ground, and at least one is not

dismounted infantry, or they are both helicopters. Therefore, a natural choice of

parameters PD1, PD2, PD3 associated with the fuzzy pd membership function seemed to

be: PD1 = 0, PD2 = 5, PD3 = l0, in the first case; PD1 = 5, PD2 = 10, PD3 = 50 in the

second case; PDl = 10, PD2 = 50, PD3 = 100 in the third case. For the parameters

associated with the dcpa membership function, the choice for ground vehicles, which were

the only type actually considered in the experiment, was: DCPAI = 10, DCPA2 = 50,

DCPA3 1 100. The first choice for sclf was: SCLF1 = 1, SCLF2 = 3, SCLF3 = 5.

However, it was quickly observed that those values were too small, but that doubling

each of them led to good results; i.e., the final choice was: SCLF1 = 2, SCLF2 = 6,

SCLF3 = 10.

For each type of variable the associated parameter values increase in the same order

as the subscripts on the symbols representing them. Thus, by virtue of the properties of

the generic membership function determined by a set of three parameters, as defined in

Section IIM.A, the membership functions determined by the triplets (PD3, PD1, PD2),

(DCPA3, DCPA1, DCPA2), (SCLF3, SCLF1, SCLF2) are all associated with the size

small. Those determined by (PD1, PD2, PD3), (DCPA1, DCPA2, DCPA3), (SCLF1,

SCLF2, SCLF3) are associated with the size medium, and those determined by (PD1,

PD3, PD2), (DCPA I, DCPA3, DCPA2), (SCLFI, SCLF3, SCLF2) with the size large.

C. CODE CHANGES

The SAFOR source code is written in the C programming language. A program

written in C consists of various functions, the source codes of which may be collected

together in arbitrarily defined groups and each group stored in a separate file. The

28

corresponding file names all have the extension c, like the files driver.c and avoid.c

mentioned in Section IVA. 10

0 As observed earlier, the source code of the function avoid_avehicle, which is the

primary function that causes all vehicles but fixed wing aircraft to avoid each other, appears

in the file avoidc. The source code for the version of avoid-a_vehicle currently used in

SAFOR is in Appendix C, from p. C-3 to p. C-6. The source code for the fuzzy version of

avoid-a-vehicle is in Appendix C, from p. C-10 to p. C-13.

A comparison of the two versions of avoidca_vehicle shows that the only effective

difference between them is the way each calculates the quantity scale-factor. The fuzzy

Scalculation replaces the non-fuzzy calculation

"scale-factor =

SGN(dist_at_cpa) * AVOID_FACTOR * (Passing-Dist - (abs(dist-at-cpa)))

* / (MAX(timejto.cpa, MINIMUMTIME));"

in the present SAFOR version by

"fsf = fuzzy.scale-factor(Passing.Dist, dist-toscpa, speed);

* scale-factor =

SGN(dist-at-cpa) * AVOIDFACTOR * fsf;".

The code for the function fuzzy.scalefactor that calculates the quantity fsf is in

Appendix C, from p. C-17 to p. C-24, followed by code for functions needed to support

the calculation.

After viewing a video tape showing preliminary results of the collision avoidance

experiment, Dr. Robert Roberts suggested that the vehicle behavior would be more realistic

* if the vehicles slowed down before engaging in their avoidance maneuvers. Adding this

feature turned out to be quite effective, causing more realistic behavior in both the fuzzy

and non-fuzzy versions of SAFOR. In fact, when the standard crisp SAFOR algorithm

was modified to include slowing down it became impossible to make the vehicles collide at

0 all.

10 Another type of file, called a header, contains definitions and has the extension h. Both file types are
compiled into object files with the extension o, which are then linked to create an executable file.

29

0

Fortunately, incorporating this feature in either avoidance algorithm is a simple

matter. If the scalefactor is less than 1, it is assumed that the slow down is unnecessary.

Otherwise, the algorithm divides both components of the avoider's current velocity vector

by the scale factor before adding the increment required for the avoidance maneuver. The
easiest way to see how this was done is to compare the original version of the function

avoid_a_vehicle in Appendix C, pp. C-3 to C-6, with a version in Appendix C, pp. C-6 to

C-8 that includes the slow down feature. The fuzzy version of avoid_a_vehicle in
Appendix C, p. C-10 to p. C-13 can also be compared with the fuzzy version that includes

the slow down feature, and which can be found in Appendix C, p. C-13 to p. C-17.

30

VI. VIDEO ACTION

In this chapter we describe a video that shows a dramatic result obtained from

introducing a fuzzy algorithm into SAFOR. The video is divided into two parts. The first

part deals with SAFOR and fuzzy logic and illustrates some unrealistic vehicle behavior in

SAR)R exercises. The second part concentrates on vehicle collision avoidance problems.

The video starts with a scene from a Hunter-Liggett exercise with tanks moving in

formation across a flat terrain and over hills. Enemy tanks are seen moving along a road.

A battle ensues and the enemy tanks are destroyed one at a time. As they go up in flames

the last tank in the platoon goes around the burning pile and continues on the course

eventually to be destroyed also. Some of the tanks take questionable actions in the scenes

shown, but nothing unusual or obviously unrealistic happens, with the exception of a tank

running through a tree,tI until the tanks approach a hilly area where one bumps into the

one ahead of it. Soon they coalesce into a single tank. A short time later a third tank is

seen approaching the two in what appears to be a "mating dance." The three combine into a

single "monster vehicle" with three turrets independently moving, presenting a bizarre

scene to the viewer. As explained in footnote 1 on page 1, these effects are not due to any

SAFOR deficiency.

The second and third scenarios show tanks unsuccessfully avoiding a lake and a

building. In the second scene one tank gets into the water, stops and rotates aimlessly in

place. The following tank stops a few meters from the water and also rotates in place. In

the third scene a tank is seen approaching a building, which it tries to avoid, but not, as

becomes apparent very quickly, very successfully. About 25 percent of the tank gets into

the building perhaps because the avoidance was not initiated early enough or the turn was

not sharp enough. Either action could have avoided the problem. The tank gets out of the

building and makes a reasonable attempt to get around its corner. It then travels parallel to

the side of the building in a perfectly reasonable manner until suddenly, about half of the

way to the other corner, it turns and, for no apparent reason, moves right through the wall.

11 There is no provision made for avoiding isolated trees in SAFOR, clearly a giveaway in an exercise but
not a difficult problem to fix.

31

These three scenes were included in the video to point out some obvious SAFOR

problems not involving vehicle collision avoidance.

Next the video shows a vehicle collision course depicted in Figure 9. The arrows
indicate the direction of the vehicle's movement. A platoon of tanks goes along the road
from the top to the bottom, making two turns, first to the right and then to the left. An
Armored Personnel Carrier (APC) will enter from the left and move along a road toward

the intersection where the tanks make the left turn.

Although the scenario and troop movements were taken from an actual military
exercise, the timing was rearranged to test the SAFOR collision avoidance algorithm. This
was done by initializing the APC movement so that a collision would occur unless the
algorithm prevented it. When the action in the video starts, we see the platoon following

the road. Figure 10(a) shows the lead tank approaching the intersection from the right.
The APC at this time is out of the picture to the left of the intersection. The leader makes a
right turn, then a left, and then gets clobbered by the APC at the spot shown on the map in
Figure 10(a). The SAFOR algorithm did not work. Figure 10(b) shows a close up of the
collision.

The next action scene starts with the same initial conditions, but with the SAFOR
code modified by replacing the original collision algorithm with a fuzzy version. This time

the collision is avoided.

A closer analysis indicates that even though the collision was avoided, the action
did not seem realistic. For example, the tanks did not slow down during the avoidance
maneuver and the miss distance was too small. Figure 10(c) shows the APC just missing
the tank. What the picture does not reveal is that both vehicles were moving rather fast at

this time.12

We decided to supplement collision avoidance with slowdown. We inserted a
slowdown operation (dividing the vehicle velocity by the avoidance scale factor whenever it
is greater than 1) into the code and reran the action. This time the fuzzy algorithm did much
better. Both the APC and the tank slowed down perceptively and the tank, after making the

12 Some viewers commented that, realistically, the APC would stop and let the column of tanks pass.
The collision avoidance algorithm, however, does not discriminate between different types of ground
vehicles, although perhaps this could be changed.

32

0

At

tiy

4
,~ 44

IN"

33 (

0,

Jkip

Figure 10(a). Overhead View of the Figure 10(b). Collision Between Tank
Lead Tank Approaching the Inter- and APC When SAFOR
section. This scenario Is the Initial Algorithm Is Used

condition for all the runs shown here.

Figure 10(c). Avoidance of Collision Figure 10(d). Avoidance of Collision
When Fuzzy Algorithm Is Used When Fuzzy and Slowdown

Algorithms Are Used

34

left turn, actually stopped and let the APC pass. 13 Figure 10(d) shows an overhead view

with the tank actually stopped and the APC avoiding it by about a tank's length.

We also tried the slowdown with the original crisp SAFOR algorithm. The

collision was avoided but again the avoidance was just barely successful and the vehicles

went past each other faster than reasonable.

0

13 Whedwthr a real tank woud actually stop to let an APK pass is que stionabl¢. Furt refine~merits may
be necessary.

35

REFERENCES

1. A.R. Pope and R.L. Schaffer, "The SIMNET Network and Protocols,"
• Rep. No. 7627, BBN Systems and Technologies, Cambridge, Mass., June 1991.

2. LA. Zadeh, "Fuzzy Sets," informat. Control, V. 8, 1965, pp. 338-353.

3. M.R. Saffi, "The OBO/SAF Interface, Version 4.2.0, User Guide," July 29, 1992,
01992 BBN.

37

APPENDIX A

VEHICLE PATH WHILE AVOIDING OBSTACLES

A-1

APPENDIX A

* VEHICLE PATH WHILE AVOIDING OBSTACLES

0 --- •--•

FIgure 1 Crisp Algorithm Avoidance of Spherical Obstacles Set 1

00

Frgre 2 Crisp Algorithm Avoidance of Spherical Obstacles Set 2

Figure 3 Crisp Algorithm Avoidance of Spherical Obstacles Set 3
A-3

.i

Figure 4 Crisp Algorithm Avoidance of Spherical Obstacles Set 4

Figure 5 Crisp Algorithm Avoidance of Spherical Obstacles Set 5

00

Figure 6 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 1

A-4

Figure 7 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 2

00

* 0 '--5

00

0e

Figure 9 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 4

A-5

Figure 10 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 5

Figure 11 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 1

Figure 12 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 2

A-6

Figure 13 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 3

0

Figure 14 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 4

Figure 15 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 5

A-7

Figur 16 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 1

0 1ceo

Figure 17 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 2

Figure 18 Fuzzy Algorithm Avoid, of Cylindrical Obstacles Set 3

A-8

FIgure 19 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 4

FIgure 20 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 5

FIgure 21 SAFOR ALGORITHM

A-9

FIgure 22 FUZZY ALGORrTHM

A-10

APPENDIX B

CREATING, STORING, AND REPLAYING

SAFOR EXERCISES ON SIMNET

-

B-i

APPENDIX B

CREATING, STORING, AND REPLAYING

SAFOR EXERCISES ON SIMNET

1. SILICON GRAPHICS WORK STATIONS

a. Introduction

,-eating a SAFOR scenario or playing back one that has been saved in a file

requires two Silicon Graphics work stations, one called the front end and the other the back

end. Logging a scenario, i.e., saving it for future playback, requires a third. However,

without interfering with any other user that it may have, the third work station can be

accessed via the network and displayed on the back end terminal.

A logged scenario saved in a file can not only be played back using two Silicon
Graphics work stations, it can also be run on the Stealth system. VCR equipment in the

Stealth room can record the scenario, or selected portions of it viewed in any of the

available Stealth modes, on videotape.

Since the Silicon Graphics operating system is Unix an elementary knowledge of

Unix is occasionally helpful in carrying out the steps, e.g., for deleting or changing the

name of a file. A paperback text on the subject is sometimes availabie in the SIMNET area.

The next two sections detail the basic steps needed to create, record, and play back

SAFOR scenarios. The steps, which are in the necessary order of their application, are

numbered for easy reference. Italicized words or phrases in the text are commands or

labels as they actually appear on a Silicon Graphics terminal screen.

b. Steps for Creating a Scenario

(1) Set up two Silicon Graphics terminals: alex and springfield, making alex the

back end and springfield the front end. Start by logging in on each terminal and then going

to the appropriate SAFOR subdirectory, which is the same for both, by entering the

commaind:

B-3

cd lusrlst7433. On alex set up the back end connection with the terrain data base1

and assign an exercise number by entering the command: phantom -terrain hunter-OllO -e

18. To set up the front end on springfield use the command:

ws -terrain hanter-0110 -sim-ex 18 -poex 18. As indicated, the exercise is labeled
1, which is arbitrary but chosen here because it is unlikely to be the same as the number
associated with a Stealth exercise that may be going on at the same time, since the default
number is 1. After a short wait a map will appear on the springfield screen.

(2) Use the following procedure to connect the front end with the back end. At the
top of the screen click on File-then, in the menu that drops down, on Connect--then, in the
new menu appearing on the right, on alex. A message at the top of the screen will
announce the connection when it occurs, or a failure if, for some reason it does not.

(3) Select the region of interest on the map and enlarge its image on the screen. To
do this move the cursor to the center of the region and press the middle mouse button to
zoom in. By dragging the number in the panel labelled Vehicle Scale at the bottom of the
screen on the right, at any time the mouse can be used to set a scale that determines the size
of the icons representing vehicles on the map. The number increases when dragged to the
right and decreases when dragged to the left.

(4) Create an Overlay by first clicking on Overlay at the top of the screen and then
on Create in the resulting menu that drops down. A panel will appear at the bottom of the
screen requesting an Overlay name. Enter a name in the designated area; then click on OK.

(5) To add vehicles to the Overlay click on the tank shaped icon on the right side of
the screen. A menu will appear requesting the echelon level. Click on the one desired, and
drag the mouse to the left. Then a menu with a list of vehicle types will drop down. After
clicking on one of those listed, a military symbol of the choice will appear on the map. To
change the symbol to one more pictorially representative of the actual vehicle, click on the
designation Non-Military among the items listed on the bottom left of the screen. Other
items listed in the same area, such as Contour Lines, which displays constant terrain

altitude curves on the map, may also be useful.

All scenarios discussed in this document take place on terrain defined by data stored in the Hunter-

Liggett data base.

B-4

(6) To edit or get information about an Overlay vehicle click on the icon in either

the military or nonmilitary representation. This will produce a small menu including the
41 option Describe, which, when selected, provides the vehicle type and I.D. number.

Another option is Edit, which can be used to make certain changes, including the

vehicle's location. Clicking on Edit produces a panel containing options such as

Alignment, which allows the user to select a Friendly (US) or Enemy (Soviet) type of

vehicle, or Echelon, which allows the user to change to any echelon in the range from a

single vehicle to a battalion. Among the options included is one labelled Direction (mils)

with an associated number in a narrow horizontal track. Clicking on the number, which is

at the left end of the track and is 0 initially, and dragging it to the right has two effects. It

causes the vehicle to turn in the clockwise direction and the number to increase. Dragging

to the left reverses both effects. Also, while in the edit mode, clicking anywhere on the

map will cause the vehicle to move to the cursor position. To leave the edit mode click on

OK.

(7) To use the overlay vehicles in an exercise it is necessary to simulate them by

clicking on Simulate in the Overlay menu. A military symbol will replace each vehicle icon

on the map. To return to the nonmilitary form click on Show As located at the top of the
screen on the left-then on Vehicle in the resulting menu that appears.

Although both are initially at the same location, the simulated vehicle has an identity

separate from the one originally created in the Overlay. Clicking on the simulated vehicle

produces a menu that includes the options: Describe, Edit, TACIE, and Unit Tasking.

The first two items perform the same functions for the simulated vehicle as those in

the menu associated with the original Overlay vehicle. However, the changes that can be

made in the panel created by clicking on Edit are now limited to changing the orientation of

the simulated vehicle and moving it to another location.

(8) To get the vehicles moving in the exercise use either the TACIE or the Unit

Tasking option. Clicking on TACIE produces a menu containing several vehicle override

and command options.

Important override settings are Speed, which allows values ranging from 0 to 85

km/hr and Formation. Clicking on formation and then on new formation in the panel that

appears leads to a menu on the left containing from 5 to 10 options, depending on the

echelon level

B-5

Several useful commands under TACIE ar Go To Location, Go To Location Via

Road, and Follow Route. Clicking on either Go To Location option causes the appearance

of a panel that is best ignored. Instead, just click on the desired location and on OK in the

panel; the vehicle will then move, directly in the first case and in a roundabout way in the

second, to the indicated spot. To accomplish the same end by having the vehicle follow a

prescribed route, use Unit Tasking.

(9) To create a route, which is necessary before a vehicle can follow it, click on the

route icon on the right side of the screen. Before doing so, however, it is advisable to click

on Overlay at the top of the screen and then on Show. In the resulting panel make sure

that, along with the button labeled Simulation the one labeled Overlay is depressed,

otherwise, the route path will not be visible. Then click on the starting point of the route on

the map. Click on the next route point connected by a straight line with the first. Continue

to add straight line segments to the route by clicking on the locations of their endpoints until

the route is completed. Note that in the accompanying panel a choice between solid or

dashed line segments is available. After completing the route definition click on OK in the

panel.

(10) There are two ways to command a vehicle, or a higher echelon unit of

vehicles, to follow the route. One is to use the Follow Route option under TACIE in the

menu obtained by clicking on the vehicle or unit icon. The other is to invoke Unit Tasking

rather than TACIE. The second method produces a panel that requires confirmation of the

Overlay name, the route name, and the CIS2 , which for route following expects the

Roadmarch option. Click on each item, making sure that each corresponding name appears

under the appropriate heading in the sub-panel below. When this happens a CIS editor

panel appears. Select the vehicle speed and click on OK. The Unit Tasking panel will then

reappear. To start the vehicle on its way click on Execute at the bottom line; then click on

OK to remove the panel.

(11) To save an overlay, which is useful for modifying a scenario after running

one version without having to go through all of the preliminary steps again, just click on

Overlay and then on Save in the ensuing menu. A panel requesting a file name will appear.

Enter a file name and click on OK.

(12) To start over using the same Overlay, including vehicles and routes, click

on File, then on Delete All in the menu that drops down. After confirming the command by

2 Combat InsUuction Set

B-6

clicking on OK in the ensuing panel, click on Overlay, followed by Load in the resulting

menu that appears. A menu containing the list of saved Overlay files will then appear.

Clicking on the filename of a previously saved Overlay will recreate it. N.B.: to continue

it is necessary to simulate the appropriate Overlay entities by clicking on Simulate in the

Overlay menu, as well as the correct Overlay name appearing on the right.

c. home Useful Aids in Designing and Viewing a Scenario

Clicking on the middle mouse button and dragging creates a rectangular frame, the

upper left hand comer of which starts at the initial cursor position. The lower right hand

corner follows the cursor. When the mouse button is released the region inside the frame

becomes the center of the screen view, occupying a larger fraction of the screen than it did

before. The smaller the frame the more the scene within it will be magnified in this

process.

To change the time between updates of the moving vehicle positions click on

Options at the top of the screen--then click on Pvd Display Options in the menu that drops

down. A panel will appear at the bottom of the screen containing a track labeled Seconds

Between Update. The number 5 appears a short distance from the track's left end.

Clicking on the number and dragging to the left reduces it and, therefore, the time between

updates. This makes the vehicle motion less jerky. Dragging as far as possible to the left

reduces the number to 0 and provides the smoothest possible motion.

Setting a marker at a point on a route can be a useful device in synchronizing the

motion of two different vehicles, e.g., delaying the start of one until the instant the other

passes the marker. One way to mark a point without interfering with the scenario is to

create another Overlay and then from among the entities available in the vehicle menu,

choose the dismounted infantry. After clicking on the corresponding icon, which should

* be set to the nonmilitary version as described in Step 5, use the Edit option in the resulting

menu that appears, as described in Step 6, to move it to the point where the marker is

needed. Do not simulate the Overlay in which the dismounted infantry used for a marker

was created. To be able to repeat the initial scene, save that Overlay and the Overlay

containing the vehicles and routes in separate files.

When redoing a scenario by restoring its initial state, restore each Overlay

separately by clicking on Load in the Overlay menu and selecting its filename in the

resulting list that appears. Simulate the Overlay containing the vehicle entities and the

routes, but do not simulate the dismounted infantry Overlay.

B-7

d. Steps in Saving a Scenario

(1) The process begins on roanoke, which can access the required logging
program. It is not necessary to log in on the roanoke terminal. Instead, while logged in on

alex create a new window and enter the command telnet roanoke. At the resulting prompt

log in as usual. Then enter the command cd Iusrlsaf/43.3 followed by Otblgr -display

alex.0.0, which allows the display of the logger control panel to appear on the alex terminal

screen.

(2) After the logger control panel appears type in the name of the file in which the
scenario is to be stored. The filename should include a path starting with lusripeoplel
followed by a subdirectory in which the user has write privileges on roanoke. Press the
Return key; type in the exercise number, i.e., 18, in the designated place, and press the
Return key.

(3) Set up alex and springfield as in step b(l) and connect them as in step b(2), if
the setup and connection do not already exist. On alex this can be done by bringing up
another window for the purpose. Once the connection is made switch back, making the
roanoke window containing the logger control panel active.

(4) On springfield create and run the scenario to be recorded as in steps
b(3)-b(1 1). Click on Record at the top of the logger control panel on the alex terminal to
start the recording session. This can be done either before or after the scenario is started on
springfield. To end the recording session, click on Stop at the top of the logger control
panel on alex.

(5) To play back a recorded scenario springfield should not be connected to alex,

but the logger control panel on roanoke must be created and displayed either on roanoke or
on alex. To create and display it on alex follow the step c(1) procedure. Otherwise, log in
on roanoke, type the command cd /usrlsafl4.3.3, press the Return key, and then type the
commarnd Oblgr. The logger control panel will then appear on roanoke.

In either case, in the designated place enter the file name, including the correct path,
which starts out with lusripeoplel. Press the Return key. The exercise number 18 used for
the recording session should appear in the place reserved for it on the panel, and a number
should appear in Time Remaining indicating the amount of time the scenario will run. The

playback can be speeded up or slowed down by clicking on the speed factor track labelled
1.0xSpeed and dragging it to the right or left. The number replacing 1.0 gets smaller while

dragging to the left and larger while dragging to the right.

B-8

To start the scenario click on Play or Loop Play at the top of the panel. To stop the

play back and begin again, click on Stop-then click on and drag the button in the Time

track as far as it will go to the left-then click on Play or Loop Play once more.

2. PLAYING BACK AN EXERCISE ON STEALTH

The first step requires that an authorized person log in as root on the right hand

terminal. Once this is done, enter the same commands as those used on the Silicon

Graphics terminal springfield in step b(1) except that 4.3.3 must be replaced by 4.3.6 and

./ws must be used in place of ws. The same map that would appear on springfield will
appear on the right hand Stealth terminal.

Next, on the left hand terminal follow the same procedure as in d(l), first entering
telnet roanoke, then logging in (not necessarily as root) and entering cd lusrsa.f14 3.

Then enter Otblgr -display idaobgl:0.1 &, which is similar to, but not the same as, the
command in d(l). The logger control panel will appear on the left hand terminal just as it

does on alex in the procedure of d(l).

Follow the procedure described in d(2) to play back a stored exercise, but before

playing it go to the right hand terminal. Under Options at the top of the screen click on the
last item, which has the form FC(nln2) with numbers nl and n2 that may vary, and enter

the correct exercise number, ie., 18, in the Flying Carpet panel that appears.

Clicking on the terminal screen causes a white arrow that locates the viewing

position on the displayed map and points in the viewing direction to jump to the cursor

position. At the same time the observer's stealth viewpoint moves to the new location
indicated by the arrow on the map.

Other options on the Flying Carpet panel are dynamic viewpoints, which include
attaching or tethering to a vehicle. To select one click on the panel and then on the desired
vehicle.

The observer's viewpoint can also be controlled by the spaceball to the right of the
right hand terminal. The ball can change the viewpoint location in three dimensions and its
numerical altitude relative to the ground is displayed in a panel on the terminal screen. A
line of buttons numbered from 1 to 8 at the front end of the spaceball base control the
Flying Carpet view as indicated in Table B- 1.

B-9

Table B-1. Spaeblall Quick Reference Flying Carpet

Constant Altitude Rotation On/Off Dominant Mode Level View
1 2 3 4

Free Fly Increase Sensitivity Decrease Sensitivity Re-Zero
5 6 7 8

B-10

APPENDIX C

SAFOR VEHICLE COLLISION AVOIDANCE CODE

C-1

APPENDIX C

SAFOR VEHICLE COLLISION AVOIDANCE CODE

1. Pmsent Crisp Version

"* Modify the desired velocity of the avoiding vehicle by

"* a quantity appropriate to making a greate gap between the two

"* vehicles at their projected cpa (closest point of approach)

void avoid-a.vehicle(avoider, avoidee, desired.vel, goal.pt)

SAF_OBJECT *avoider, *avoidee;

VECTOR desiredceel, goal.pt;

{

VECTOR rel-pos, rel-vel, deltayeel, delta..pos, relpos-of-point;

double dist-at-cpa, dist-oscpa, time-io.cpa, rel-speed, scale_factor;,

double time_ioWpoint, dist~jo..point, speed;

* double time_stagger = (avoider->tickable->now - avoidee->tickable->now)

* .001;

void incrementdesired-velO;

/* calculate relative position taking into consideration the difference

C-3

in tick tirms *

VEC2_SUB(avoidee->cntity->position, avoider-'cntity->position, relpoms)

VEC2JVIULT(tme_stagger, avoidee->entity->velocity, delta-pos)

VEC2.ADD(dclta-pos, relpos, reL-pos)

/* calculate distance at closest point of approach *

VEC2...SUB(avoider->entity->velocity, avoidec->entity->velocity, reLvel)

rel-speed = vec2jnag(rel-vel)

if(reL..speed < SMALL)

return;

dist.-atcpa, = VEC2_CROSS(reLvel, rel-Im.ps)Irel-speed;

/* if this distance is greater than a threshold, no need to avoid *

if(abs(dist-aLcpa.) > Passing-Dist)

return;

/* calculate timne to closest point of approach *

dist-boLspa, = VEC2_DOTr(reLvel, reLpos)/reLspeed;

if(dist-to-pa. <=-0)

return;

timejo-cpa. = dis~tjo-pa / reLspeed;

if(timnejto-pa > GRND-LOOKAHEAD)

0

C-4

/ if tat sagoa point, calcuate time to it *

W ifgoaLpt !-Null-Yector) (

speed =vec2jnag(avoider->cntity->velocity)

if(speed <SMALL)

return;

VEc2...SUB(gohl-pt, avoider->entity->position. reLpos....ofpoint)

* dist-to-.point = vec2,_mag(rel-pos..of.point)

timejo..point = dis~tDtopoint / speed;

/* if will reach goal point, before collision, don't do avoidance "

if(*im..to-.point <timejo-cpa)

/* calculate magnituide in change of velocity in direction normal to

relative velocity away from collision *

9 ~scalefacto =

SGN(dist-aLcpa)*AVOIDFACTOR * (PassingDist - (abs(dist~aLcpa))

I(MAX(timejo-pa, MINIMUM-IME))

C-5

delta...vel[0] reLvel[I1] * scalej-actor/reL-speed;

delta~yel[1]I rel...vel[0]1 * scale-factor/reL-speed;

VEC2-ADD(desired-vel, delta.-Yel. desirec-yci)

2. Crisp Version with Slow Down

"* Modify the desired velocity of the avoiding vehicle by 40

"* a quantity appropriate to making a greater gap between the two

"* vehicles at their projected cpa (closest point of approach)
16

void avoid-a-vehicle(avoider, avoidee, desired-vel, goal-pt)

SAF...OBJECT *avocider, *avoidee;

VECTOR desired-vel, goalpt;

VECTOR rel...pos, rel-vel, delta..yel, delta..pos, el-posýofpoint~old-vel;

double dist-aLcpa, dis~tosQpa, timnejospa, reLspeed, scaleý factor

double thmejto-.point, distjto..point, speed, scf;

double tirmestagger =(avoider->tickable->now - avoidee->tickable->now)

40

*.001;

* ~void incemen~dcsired..yeIO;

VEC2...COPY(avoider->entity->vclocity,oldcyvel);

/*' calculat idave position taking into consideration the diffczrnce

in tick tmes */

VEC2S$UB(avoidee-mentity->position, avoider->cntity->position, ret...pos)

VEC2..MULT(tim-stagger, avoidee->entity->velocity, delta-pos)

*VEC2-ADD(delta-pos, rel-pos, rei-pos);

P~ calculate distance at closest point of approah *

VEC23SUB(avoidcr->entity->velocity, avoidee->entity->velocity, reLvel)

reLsp~eed = vec2jnag(relvyel)

* if(rel-speed < SMALL)

return

dist-at-cpa = VEC2_CROSS(reLvel, reL-pos)IreLspeed;

/* if this distance is greater than a threshold, no need to avoid *

* if(abs(dist-aLcpa) > Passing-Dist)

retun

C-7

1* calculate time to closest point of approach */

dist-to.cpa = VEC2_DOTr(relvel, relpos)Irel-speed;

1* if avoider is already past avoidee, then return to desired velocity and

quit *I

if(dist~to..cpa <=-0)

if (!(I&-AIRCRAFT(OBLOBJECT-TYPE(avoider))))

avie(,niy>eoct[]=o~e[1

avoider->entity->velocity[l] = olc-vel[l];

return;

tiine-o-pa = dist-toscpa / rel-.speed;

if(& tmeo-cpa > GRND-L001(.AHEAD)

return

/*if there is agoal point, calculate time to it *

if(goaLpt != NuiLVector)

speed = vecZjxiag(avoider->entity->velocity)

if(speed <SMALL)

C-8

ie-turn;

* ~~VEC2-SUB(goal-pt. avoider-'entity->position. reL~pos..of..point)

dist-to..point -vec2_inag(rel-pos...of..point)

time-to-point = dist~to...point / speed;

/* if will reach goal point, before collision, don't do avoidance *

if(time-to..point < timeto cpa)

/* calculate magnitude in change of velocity in direction normal to

relative velocity away f-rom collision *

scf=

"AOID-YACrOR * Passing-.Dist - (abs(disLaLcpa))

* / (MAX(timejto-pa., MINMAUMJIME));

1* if the, scale factor is not too small slow down before incrementing the. velocity *

if(!(IS-AIRCRAFT(QBLQOBJECr-TYPE(avoider))))

if(scf > l.O)vec2 div(scf~avoider->entity->velocity, desired vel);

scale-factor = SGN(dist-atcpa)*scf;

delta,.yel[0]1 = rel~vel[I1] * scale-factor/rel-speed;

0-9

deltk-yel(I1 - el-vel[0] scale-factor/rel-speed;

VEc2-ADD(desirec-vel, delta-yel, desired-=vel);

3. Fuzzy Version

*Modify the desired velocity of the avoiding vehicle by

a aquantity appropriate to making agreater gap between the two

*vehicles at their projected cpa (closest point of approach)

void avoid-a-vehicle(avoider, avoidee, desired-yel, goat-pt)

SAFOBJECT *avoider, *avojdee;

VECTOR desired-vel, goaL-pt;

float fuzzy-scaleifactoro;

VECTOR reLpos, reLvel, deltavyel, delta...pos, rel-.pos..pf..point;

double dist-atspa, dis~tjospa, time....o..cpa, rel-speed, scale-factor,

double timne-to-point, disLto-point, speed;

double time~stagger = (avoider->zickable->now - avoidee->dckable->now)

*.001;

C-10

f loat fsf;,

* void incremen~desired~velO);

t* calculate relative position taking into consideration the difference

4b ~in tick times *I

VEC2...SUB(avoidec->entity->position, avoider->cntity->position, reL-pos)

VEC2_MULT(tine-stagger, avoidee->entity->velocity, delta...pos)

VEC2.ADD(delta-.pos, reLpos, rel-pos);

** /icalcltdistance at closestpoint of approach/

VEC2...SUB(avoider->entity->velocity, avoidee->entity->velocity, reLvel)

rel-speed = veO2..mag(reLvel)

if(reLspeed < SMALL)

return;

* dist-.at-cpa. = VEC2_CROSS(reLvel, rel...pos)Irel-speed;

/* if this distance is greater than a threshold, no need to avoid *

if(abs(dist-at-pa) > Passing-DPist)

return;

1* calculate time to closest point of approach *

dist-tospa. = VE-C2_DOT(reLvel, reLpos) rLspeed;

40

if(distjo-pa <=0)

timejto-pa. - diasto-pa. / re-lspeed;

/* if there is agoal point, calculate time to it *

if(goa.pt !=Null-Vector) (

speed = vec2, mag(avoider->entity->velocity)

if(speed < SMALL)

VEc2...SUB(goal-pt, avoider->entity->position, reLpos...of.Ipoint)

dist-o...point = vec2_-mag(reLpos-.of-point)

timejto-point = dist~to-.point / speed-,

/* if will reach goal point, before collision, don't do avoidance *

if(timejto..point < timejo cpa)

return;

P* calculate magnitude in change of velocity in direction normal to

relative velocity away fnxn collision */

fsf = fuzzy-.scalejactor(Passing-Dist, dis~to-cpa, speed);

scalejfactor=

C-12

SGN(disLaLcpa) * AVOIDFACTOR * fsf;,

*delta-vel(0]- reLvel[1] * scale-factor/re~speed;

delta-vel[I1I- - retyel[0 1 * scaleJactor/reL-speed;

VEC2-ADD(desired-vel, delta-.yel, desirtC~vel)

4. Fuzzy Version with Slow Down

* * Modify the desired velocity of the avoiding vehicle by

* a quantity appropriate to making a gater gap between the two

* vehicles at their projected cpa, (closest point of approach)
0

void avoid-a-vehicle(avoider, avoidee, desired-vel, goal-pt)

0

SAFOBJECTr *avoider, *avoidee;

VECTOR desiredvel, goal-pt;
0

float fuzzy-scale-factoro;

VECTOR relpoms, rel-vel, delta-yel, delta~pos, rel-pos...ofpoint~oldvel;

double dist-at...cpa, disuto-pa, timeo-ts-pa. rel-speed, scale~factor,

double timejo-point, dist-to-..point, speed;

C-13

double timestagger = avoider->zickable->now - avoidee->tickable->now)

float fsf;

void incremenLdesi~red,-.velO);

VEC2..COPY(avoider-mentity->velocity,oklv-el);

/* calculate relative position taking into consideration the difference

in tick timmes */

VEC2..SUB(avoidee-'cntity->position, avoider->entity->position, reL-pos)

VEc2..MULT(tirmestagger, avoidee->entity->velocity, delta...pos)

VEC2..ADD(delta..pos, rel-pos, rcU-os)

/* calculate distance at closest point of approach *

VEC2...SUB(avoider->entity->velocity, avoidee->entity->velocity, reLvel)

reL~speed = vecajnag(reLvel)

if(rel-speed < SMALL)

return;

dist-atcpa. = VEC2_CRQSS(rel..yel, rel..pos)/rel~speed;

/* if this distance is greater than a threshold, no need to avoid *

Wf abs(disLat-cpa) > Passing-.Dist)

C- 14

MU

1* calculate time to closet point of approach *

dist-to.-cpa = VEC2-DOT(reLvel, reL-pos)IreLspeed;

if(dis~to....cpa <--0)

if (!(I&-AIRcRAFr(OBL-OBJECr-JYPE(avoider))))

(vie-ett-vlciyO l-e[]

avoider->entity->velocity[0J = old-vel [0];

return

timme-to...cpa = disuospa / reLspeed;

/* if there is a goal point, calculate timme to it ~

if(goal...pt!=Null Vector)(f

speed = vec2_.mag(avoider-'entity->vclocity)

* if(speed <SMALL)

return

VEC2...SUB(goaL-pt, avoidr-'cntity->position, rel-posof..point)

C-15

dis~tojo.oint =n vec2-jnag(relpos...of...point)

timejto..point = disuto.point / speed;

1* if will reach goal point, before collision, don't do avoidance *

if(timejto..point <tfimejto.cpa)

return;

1* calculate magnitude in change of velocity in direction normal to

relative velocity away ftrom collision */ 9

fsf = fuzzY...scale factr(PassingjDist. disLtO-cpa, speed);

/* if avoider is not an aircraft and the scale factor is not too small slow

down *f

if(!QIS AIRCRAFr(OBJOBJECT-TYPE(avoider)))) 0

if(fsf>1 .0) vec2jliv(fsf~avoider->entity->velocity~desired-vel);

scale-factor=

SGN(dist-Lacpa) * AVOIDFACTrOR * fsf;

deltayvel[0]= reLvel[11j * scalejactor/reLspeed;,

delta-yel[1]= - reLvel[0]* scalejfactor/reLspeed;

C-16

VEC2_ADD(desircd_vel, delta-vel, desired vel),

*}

5. Fuzzy Functions

"This function calculates a fuzzy scalefactor replacing the one used in the

*SAFOR function avoid.c.

float fuzzy-scalejactor(pd, dcpa, speed)

#define DCPAI 10.00

#define DCPA2 50.00

#define DCPA3 100.00

#define SCLF1 2.00

#define SCLF2 6.00

#define SCLF3 10.00

#define PDNUM 10

#define DCPANUM 10

#define SCFNUM 3

float pd, dcpa, speed;

C-17

float mf~cale-factmor;

int i,j,k;

float opd[4J, odcpa[4], rpd[i4][4], rdcpa[41114], rsclf[4][4][4],

scf-pt = 0, Scf..nc, scfjnf, term, numn-sum = 0, den-sum =0, scale-factor,

maxjlcpa, max..pd, max-scf = SCLF3, PD 1, PD2, PD3;

max-dcpa = 8.0*speed;

if (Passing-Dist a--DIPASSING_DISI)

PDI =0Q,

PD2 =5.00;,

PD3 = 10.00;

if (PassingDist =- GRNDPASSINGLDIST)

PDI = 5.00;

PD2 = 10.00;

PD3 = 50.00;

if (Passing-Dist HELBOPASSING..PIST)

C-18

PDI - 10.00-,

PD2 -=50-00;

PD3 = 100.00;,

0 inax...pd = PD3;

/* Enter the armay elements definig the membership functions of the fuzzy sets

in the rules that dezcniine the scale factor. ~

rpd[1](1J = PD3;

*rpd[1][21= PD 1;

rpd[1][31 = PD2;

rpd[2[11 = PDI;

rpd[2][2J = PD2;

rpd[2J[31 = PD3;

* rpd[3J[1]= PD2;

rpd[3][2] = PD3;

rpd[3][3] = PD1;

Tdcpa[l][1] = DCPA3;

rdcpatlll2] = DCPA1;

* nlcpa[1J[3 = DCPA2;

zdcpa[2][1] = DCPA1;

rdcpa[2](2] = DCPA2;

C-19

rctcpa[2J(31 = DCPA3;

rdcpa[3]11 = DQC'A2;0

rdcpa[3][2] - DPA3;

rdcpa[3][3] = DCPAI;

rsclff 1][1][1] = SCLFI; 0

rsclf[1 1[1)[2] = SCL.F2;

rsclf[l][1J[3] = SC.F3;

rsclfll][2][1] = SQ..F3;

rsclff[1][2J[2] = SCLFI;

rsclf[lJ(2][3] = SQ..F2; 0

rsclif 11131(1] = SCLF3;

rsclf[1J(3J(2] = SCLFI;

rsclff 1][3][3] = SQ..F2;

rsclf[2][1][1] = SCLF2;

rscff(2J[1J(2] = SCLF3;

rsclf[2J[1J[31 = SCLFI;

rsclf[2][2][1] = SCL.F2;

rsclf[2][2][2] = SQ...F3;

rsclf[2][2][3] = Sa..F1;

rsclff2](3J[1J = SCL.F1;

rsc'fT2][3J[2J = SCL.F2;

rscliT2][31(3] = SCLF3;

C-20

rsclf[3J[lJ1lJ - SL2

* rsclff3JllJ[2J - SCF3;

rsclff3J[1113J - SQ..FI;

rsclfI:3J[2J(1J = SCLF2;

5 rsclff3l[2J[2]-=SCLF3;

rsclff3J[2J[3] - SLI

rsclf3f3l[3][= SCLFl;

rsclff~[3J(1(2J = SCLF2;

rsclff~[3][313 = SCLF3;

1* Get the array elements defining the membership functions of the observed

0 (i.e., prescribed for the object to be avoided) passing distance. *

if (pd PD1I)

* opd[lJ= PD3;

opd(2J =PD1I;

opd[3] = PD2;

else

opd[l] = PDl;

opd[2] = PD2;

0

C-21

opdM[31 = PD3;

/* Get the arry elements defining the maembership functions of the observed

distane...to...pa. *1

if (dcpa <-- DCPA1)

odcpa[1] = DCPA3;

odcpa[2J = DCPAI;

odcpa[3] = DCPA2;

goto FINISH;

if (dcpa >= DCPA3)

odcpa[l] = DCPA2;

odcpa[2] = DCPA3;

odcpa[3] = DXPAI;

goto FINISH;

)dp~]=DPI

odcpa[2] = DCPA2;

odcpa(3] = DCPA3;

C-22

P" Then calculate the centroid of the scale_factor membership function. The

cenvoid is the "best estimate" of the actual scale-factor to be used.

First get the increment scf_inc of the scalefactor membership function's

argument scf_pt. The increment will determine the points at which the

membership values are to be calculated. */

FINISH: scf-inc = max-scf/SCFNUM;

while (scftpt < max-scf)

I

scf.pt += scfiinc;

/* Use the function scfnmf to calculate the scalejactor membership function

value at the point scflpt. */

scf__mf = mf_scalefactor(opd, odcpa, rpd, rdcpa, rsclf, max.pd,

maxjdcpa, scf pt);

/P Use the result to calculate the centroid of the scale_factor membership

function. */

term = scf_mf*scf.pt;

num msu += term

densum --- scfjmf;

if (den-sum > 0)

C

C-23

return (num...suni/den..sum);

else

return (0);

"* This function calculates the membership function for the scale-factor, given

"* the membership functions of the observed passing~stance obs-pd, the observed

"* distance-to-cpa, obs...dcpa, and 3 modens ponens rules that prescribe the

"* scale-factor for each combination of the passing-distance pd and the

"* distace-to-cpa dcpa.

float mf-scale-factor(obs-pd, obs,-cpa, pd, dcpa, sclfac, rnax-pd, maxjlcpa,

scf-pt)

float obs...pd[4], obs...dcpa[41, pd[41[4], dcpa[4][4], sclfac[4][4][4], max...pd,

max-dcpa, scf-pt;

float compositiono;

int ijk;

float opd[4], odcpa[4], rpd[4], rdcpa[4], rsclf[4], comp...al, max-y.al

0;,

C-24

/* Get all obs.pd and obs_dcpa array components. */

for (i = 1; i < 4; i++)

(

opdl[i] = obsl.pd[i];

odcpa[i] = obs.dcpa[i];

)

/* Get the membership function value of the scalejactor, which is the union of

the sets determined by each of the rules associated with all possible

combinations of a pd and a dcpa. Start by getting the required array

components. */

for (i= 1; i < 4; i++)
0

for (j= 1; j< 4j++)

*{

for (k= 1; k < 4; k++)

(

rpd[k] = pd[i][k];

rdcpa[k] = dcpaoW[k];

rsclf[k] = sclfac[i]UJl[k];

C

C-25

/* The result of each rule is determined by the composition function. */

comp-yal = composition(opd, odcpa, rpd, rdcpa, rsclf,

max_.pd, max.dcpa, scf pt);

/* Then calculate the union membership function value. */

if (comp-yal > max_val)

max.val = comp-yal;

}

}

return (max.val);

}

"* This function calculates the membership function of the intersection of the

"* observed passing.distance obs._pd and the observed distancetojdcpa obs_dcpa,

* both of which have generic membership functions. It does the same for the

* corresponding quantities whose intersection is the modens in a specific modens

* ponens rule: the passing-distance rule.pd and the distance.to-cpa ruledcpa,

* both of which also have generic membership functions. It then calculates the

* relation defined by the rule and then the composition of the intersection of

* the observed quantities with the relation.

C-26

float composition(obs..pd, obsjlcpa, rule-.pd, rulejlcpa, scifac, max-.pd,

* max.Acpa, scf-pt)

float obs...pd[4J, obs-dcpa[4], rule...pd(41, rule....cpa[41, sclfac[41, max~pd,

max-dcpa, scf..pz,,

float intersectiono, membfunco, fuzzy...ando;

int i;

float opd[4], odcpa[4], pd-inc, dcpa..jnc, pc-pt = 0, dcpa-.pt = 0,

* ~~rpd[41, rdcpa[4J, mLobs..dst, ni-rule-dist, mf relation, scfI4l, nifscf,

rulejnf, inax-val = 0

/* First get the increment of the 2 independent variables of the intersection

memberhip functions by dividing the continuous range of each, max...pd and

* max-dcpa, by the number, PDNUM and DCPANUM, of discrete values to be

considered in either case. Then get the comnponents of each of the arrays

involved. *

pd-inc = max..pd/PDNUM;

dcpa-jnc = max-dcpa/DCPANUM;

*for (i =1;i <4; i++)

opd[i] = obs..pd[i];

C-27

odcpa[i] = obs...dcpa[i];

rpd[iJ = nile...pd[i];

rdcpa[iJ = rule...dcpa[i];

scfril = sclfac~iJ;

/* Get the value of the scalejfactor membership function mf-scf, which is

generic. *

mf-scf = membfunc(scf[1], scf[2], scfl3], scf...pt);

/* Now do the promised composition inference calculation, which involves a

max-mnm product. *

while (pcdpt < max-pd)

pd-pt += pd-inc;

while (dcpa-pt < xnax-dcpa)

dcpa-pt += dcpajinc;

/* Get the membership function mf....bsjlist of the intersection of obs pd and

obs...dcpa. */

nif-obs--dist =fuzzy...and(opd, odcpa, pd-pt. dcpa-pt);

C-28

/* Get the membership function mf rule_dist of the intersection of rule-pd and

rule..dcpa. */

mfrule-dist = fuzzy-and(rpd, rdcpa, pd-pt, dcpa-pt);

/* Get the membership function mf_relation of the rule relation, which is

defined by the intersection of mf rule-dist and mLscf. */

mfrelation = intersection(mfjrule.dist, mf-scf);

/* Get the membership function rule_mf of the intersection of obsdist and

mfrelation. */

rulemf = intersection(mifobs-dist, mf-relation);

P Finally, get the composition value, which is defined as the maximum value of

rule_mf fo all points pd-pt and dcpa.pt.*/

if (rulenmf > max_val)

max-val = rulenrnf;

0}

dcpa.pt = 0;

*}

return (max~yal);

C-29

0

"* This function determines the value of the membership function associated

"* with the intersection of two fuzzy sets having the membership function values

"* membfuncl and membfunc2.

float intersection(membfuncl, membfunc2)

float membfuncl, membfunc2;

I

if (membfunc 1 < membfunc2)

return (membfunc 1);

else

return (membfunc2);

"* This function determines the value at a point p of the generic membership

"* function determined by the parameters pI, p2, p3.

float membfunc(pl, p2, p3, p)

float pl, p2, p3, p;

C-30

if (p1 <cp2) goto NOT_-SMALL-;

if (p<-p2)

MF=1;

goto FINISH-

else

* goto DOWN;

NOT..SMALL: if (p<-l)

goto FINISH;

if (pcp2)

MF=(p-pl)/(p2-p 1);

goto FINISH;

DOWN: if (p<p3)

C-31

MF=(p3-p)/(p3-p2);

goto FINISH;

}

if (p3<p2)

MF=I;

goto FINISH;

}

if (p>fp3)

MF=O; 0

FINISH: return (MF);

I

* This function determines the value of the membership function of the

* intersection of two fuzzy sets having generic membership functions.

float fuzzy-and(membfl, membf2, ptl, pt2)

float membfl[4], membf2[4], ptl, pt2;

{0

inti;

C-32

float par[4J, meif 1, mcnif2, MF;

for (i = 1;i< 4; i++)

parfil = nicmbfl [i];

memfl ie=mebfunc~paf 1, par[21, parf 3], ptl);

for 0(= 1; i<4; i-i-i)

* ~parf il = membf2[i];

memf2 =membfunc(par[I], par[2], par(3J, pt2);

NF = intcrsetion(menifl, xmfi2);

return (MF);

C-33

APPENDIX D

GW BASIC OBSTACLE AVOIDANCE PROGRAMS

D-1

APPENDIX D

GW BASIC OBSTACLE AVOIDANCE PROGRAMS

0 `PROGRAM TO AVOID SPHERICAL OBJECTS USING A CRISP ALGORITHM
10 INITIALIZE THE COLLISION ANALYSIS STATUS LAST. DISPLAY ONLY WHEN LAST-il.

20 LAST=O

30 INPUT "USE PARAMETERS IN FILE Y(N)";ANSS
40 IF ANS$-"Y" OR ANS$="y" THEN OPEN "I",I,"OBSTACLE.DAT" ELSE GOTO 80

50 YES, SO GET THE PARAMETERS FROM THE FILE CALLED 'OBSTACLE.DAT'.

60 GOSUB 1000:GOTO 140
70 'NO, SO GET THE PARAMETERS DIRECTLY FROM THE KEYBOARD.

80 OPEN "O",I,"OBSTACLE.DAT"
90 'GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,Y,Z) LOCATIONS.

100 GOSUB 1500

110 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y,Z) LOCATIONS.

120 GOSUB 2000
130 'OPEN A FILE TO RECORD THE VEHICLE'S OBSTACLE AVOIDANCE PATH.

140 OPEN "O",2,"VCOORDS.DAT"
150 XV=XVOYV=YV0".ZVZVO

160 7IND THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH FROM ITS INITIAL
170 'LOCATION TO ITS DESTINATION AND DETERMINE THE EARLIEST ONE.

180 GOSUB 3500
190 'IF NO COLLISIONS OCCUR PRINT THAT MESSAGE AND QUIT.
200 IF MINI2=0 THEN PRINT "NO COLLISIONS":PRINT.GOTO 690
210 'IF MINI>0 A COLLISION WITH OBSTACLE NUMBER MINI WILL OCCUR.

220 'FIND THE VEHICLE POSITION AT THE COLLISION POINT. IF THE COLLISION POINT
230 1IS FURTHER TO THE LEFT THAN THE INrIIAL VEHICLE POSITION AN OBSTACLE IS
240 'TOO CLOSE TO THE VEHICLE POSITION. ANNOUNCE THE FACT AND QUIT. OTHERWISE

250 'CONTINUE.
260 GOSUB 4000-EF XA<XVO THEN GOTO 9040 ELSE DXA=XA-XD:DYA=YA-YD
270 'IF NO MORE OBSTACLES ARE AHEAD MOVE AND DISPLAY THE VEHICLE.
280 IF LASTil THEN GOSUB 6500
290 'OTHERWISE EXAMINE THE OBSTACLES AHEAD. IF MORE THAN TWO OBSTACLES IN THE
300 VEHICLES PATH ARE TOO CLOSE TOGETHER FOR THE VEHICLE TO PASS BETWEEN THEM
310 7THEN THE REMAINING CONFIGURATION OF OBSTACLES IS DIFFERENT FROM THE

320 'ORIGINAL ONE, SO REINITIALIZE THE VEHICLE POSITION AND START OVER.
330 GOSUB 4500:.IF NC>I THEN GOSUB 2500:GOTO 150
340 7F NO TWO OBSTACLES IN THE VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE
350 'VEHICLE TO PASS BETWEEN THEM THEN CONTINUE WITH THE SAME OBSTACLE

360 'CONFIGURATION.
370 IF NC=0 THEN 460

380 'OTHERWISE CHOOSE THE BEST SIDE OF THE OBSTACLE FOR THE VEHICLE TO GO

390 'AROUND AND MOVE THE VEHICLE TO THE OBSTACLE AND AROUND IT ON THAT SIDE.

D-3

400 IF (DY(CI)>DYDI) OR (DY(CI)>DYD2) THEN 430

410 IF DYD2<DYDI THEN XV=XD+DXDI:YV=YD+DYDI:GOTO 520

420 GOTO 500

430 IF (DY(CI)<DYDI) OR (DY(CI)<DYD2) THEN 460
440 IF DYD2>DYDI THEN XV-XD+DXDI:YV=YD+DYDI:GOTO 520

450 GOTO 500
4601P21=SQR(DXDIA2+DYDIA2)+SQR((DXA-DXDI)A2+(DYA-DYDI)A2)
470 Q(DXD2^2+DYI2A2)+SQR((DXA-DXD2)A2+(DYAD2)A2)
480 'GIVEN A CHOICE, CHOOSE THE SHORTEST DISTANCE AROUND THE OBSTACLE.
490 IF R21<R22 THEN XV=XD+DXDI:YV=YD+DYDI:GOTO 520

500 XV=XD+DXD2:YV=YD+DYD2
510 "MAKE SURE THE VEHICLE LOCATION IS TO THE RIGHT OF ITS INITIAL POSITION.
520 IF XV<XVO THEN XV=XVOYV=YVO

530 'MOVE THE VEHICLE AROUND THE OBSTACLE AND DISPLAY THE MOTION ON SCREEN. 0
540 GOSUB 7500
550 'IF THERE IS A COLLISION AT ALL CHECK FOR NEXT COLLISION.
560 IF MINI> THEN GOSUB 3500
570 IF NO REMAINING COLLISION CAN OCCUR DISPLAY THE VEHICLE MOVE TO THE

580 'DESTINATION AND QUIT.
590 IF (LASTil AND MINI=0 AND XA<XD) THEN XA=XD:.YAYiYD.GOSUB 6500.GOTO 690
600 'IF NO COLLISION IS PREDICTED THE OBSTACLE CONFIGURATION HAS BEEN
610 `'MODIFIED BY BEING COMBINED INTO A SINGLE OBSTACLE, SO START OVER.

620 IF (LAST=O AND MINI=0) THEN LAST=I:GOTO 150
630 'IS THE CONDITION FOR COLLISION WITH OBSTACLE NUMBER MINI SATISFIED?

640 'IF SO REPEAT THE AVOIDANCE PROCESS WITH THE PRESENT OBSTACLE
650 'CONFIGURATION.
660 IF D(MINI)<= RSUM2(MINI) THEN 260
670 'IF NOT DISPLAY THE VEHICLE MOVE TO THE DESTINATION AND QUIT.
680 XA=XD:YA=YD:GOSUB 6500
690 IF INKEY$=-" THEN 690

700 SCREEN 2:SCREEN 0:CLOSE #1
710 END
720'
1000 'GET THE PARAMETERS FROM THE FILE.
1010 I=0:INPUT #1,XVOYVOZVORV
1020 INPUT #1,XD,YDZD

1030 WHILE NOT(EOF(l))
1040 1=1+1
1050 INPUT #I,X(),Y(1),ZD),R(1):XI(1)=X(1):Yl(1)=Y(1):Z'(1)=Z():RI(1)=R(1)

1060 WEND
1070 'COUNT THE NUMBER OF OBSTACLES NO.
1080 NO=I:NOB=NO:NOB0=NOB

1090 !NOTE THAT THE DATA IS INPUT FROM A FILE.

D-4

0

1100 FILS-"I"

1110 ýGET THE INITIAL DISPLAY OF THE VEHICLE AND OBSTACLES ON SCREEN.

* 1120 GOSUB 2100
1130 RETURN

1140'
1500 'INPUT THE VEHICLE PARAMETERS FROM THE KEYBOARD.
1510 INPUT "VEHICLE INITIAL X,YZ COORDINATES";XV0,YV0,ZV0

1520 INPUT "VEHICLE RADIUS";RV
1530 INPUT "DESTINATION X,YZ COORDINATES";XD,YDZD
1540 'IF THE DATA COMES FROM A FILE THEN DONT PRINT IT TO A FILE.
1550 IF FILS=I" THEN 1570

1560 PRINT #1,XVOYVOZVORVPRINT #1,XDYDZD
1570 RETURN
S1580'
2000 'GET THE OBSTACLE DATA FROM THE KEYBOARD.
2010 INPUT "NUMBER OF OBSTACLES";NO:NOB=NO:NOBO=NOB
2020 WHILE I<NO
2030 I=I+I

* 2040 PRINT "OBSTACLE #";I
2050 CH=U.INPUT "XYZ COORDINATES";X(I),Y(I),Z(I)
2060 INPUT "RADIUS";R(1):IF 1>1 THEN GOSUB 850:IF CH=l THEN 2050
2070 'SAVE THE PARAMETERS IN THE DESIGNATED FILE.
2080 PRINT #I),YZ),1R(I):X(I)=XCI):YI(I)=Y0.0•Z(I):RI(I)=R(I)

S 2090 WEND
2100 'PRINT THE FIRST OBSTACLE DIAGRAM ON THE SCREEN.
2110 GOSUB 6000
2120 'ADD THE VEHICLE IN ITS INITIAL POSITION.
2130 XX-XV0:YY=YV0:RR=RV:GOSUB 7000

* 2140 IF INKEY$=W"THEN 2140
2150 RETURN

2160'
250'REASSIGN OBSTACLE NUMBERS AND PARAMETERS AFTER COMBINING 2 OBSTACLES.
2510 'ZERO THE OBSTACLE FLAG. IF FEWER THAN 2 OBSTACLES REMAIN NO MORE

* 2520 'OBSTACLE COMBINING IS NEEDED.

2530 OB=O.IF NO<2 THEN 2780
2540 'IF MORE THAN I OBSTACLE IS PRESENT CHECK IF TWO OBSTACLES ARE CLOSE
2550 'ENOUGH TO BE COMBINED INTO ONE. IF SO COMBINE THEM, SET FLAGS, UPDATE
2560 T'HE OBJECT COUNTERS.

0 2570 FOR 1=2 TO NO

2580 FOR J=1 TO I-I
2590 RHO2(Ij)Q)-X(J))A2+(Y(J))A2+(Z)(J))A2.RHO(IJ)=SQR(RHO2(IJ)):RlU=R(I)+R(J)
2600 DRO(IJ)-RHO(I,J)-(RIJ+2*RV)
2610 IF DRO(IJ)<0 THEN GOSUB 3000:W()=- l.OB=IJ=I:I=NO+l

2620 NEXT

D-5

0

2630 NEXT
2640 'AFTER COMBINING TWO OBSTACLES REASIGN OBSTACLE NUMBERS, OR RETURN IF NONE
2650 'WERE COMBINED.
2660 IF OB=I THEN J=0 ELSE GOTO 2860
2670 FOR I=I TO NO
2680 'SKIP ITS NUMBER IF AN OBSTACLE IS REMOVED BY COMBINING IT WITH ANOTHER
2690 'OBSTACLE.
2700 IF W(I)M-I THEN NOB=NOB-1.GOTO 2720
2710J=J+I:XQ)=X(1):Y(J)=Y(1)2Z(,Z([):R(J)=R(1)
2720 NEXT
2730 'IF THE PRESENT NUMBER OF RECOGNIZED OBSTACLES AGREES WITH THE NUMBER
2740 LEFt AFTER COMBINING PAIRS AND MORE THAN I IS LEFT, CHECK OUT THE NEW
2750 CONFIGURATION.
2760 IF NOB=NO THEN 2850
2770 'IF ONE OR MORE OBSTACLES WERE REMOVED RESET THE NUMBER OF OBSTACLES.
2780 NO-NOB
2790 'GET THE DIAGRAM ON THE SCREEN IF THE LAST OBSTACLE HAS BEEN ENCOUNTERED.
2800 IF LAST=I THEN GOSUB 6000:ELSE 2830
2810 'IF MORE THAN I OBSTACLE REMAINS OR NO MORE THAN I OBSTACLE EXISTED BEFORE
2820 'HE LATEST COMBINATION OF OBJECTS TOOK PLACE THEN R7TURN.
2830 IF NO>I THEN 2860
2840 'IF MORE THAN I OBSTACLE IS LEFT CHECK OUT THE NEW CONFIGURATION.
2850 IF NOB>I THEN 2530
2860 RETURN
2870'
3000 'GET THE POSITION COORDINATES AND RADIUS OF THE NEW OBSTACLE FORMED BY
3010 'COMBINING 2 OLD ONES.
3020 CD=2*RHO(IJ):FACI=(RHO(J)+R(I)-R(J))/CD:FACJ=(RHO(Ij,)+R(J)-R(I))/CD
3030 X(•)FACI*X(I)+FACJ*X(J'):Y(J)=FACI*Y(1)+FACJ*Y(J):Z(J)=FACI*Z(I)+FACJ*Z(J)
3040 R(J)=(RHO(Ij)+R(I)+R(J))/2
3050 RETURN3060'

3500 IGET THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH TO ITS DESTINATION.
3510 'CALCULATE THE COMPONENTS OF THE VECTOR FROM THE VEHICLE'S INITIAL
3520 I.OCATION TO ITS DESTINATION.
3530 DXD=XV-XD:DYDNfYV-YDDZD=ZV-ZD
3540 'CALCULATE TIRE DIRECT VEHICLE PATH LENGTH SQUARED.
3550 DENffDXD*DXD+DYD*DYD+DZD*DZD
3560 MIND=DEN:MINI=0
3570 FOR Ii1 TO NO
3580 'CHECK IF VEHICLE IS HEADED TOWARD THE OBSTACLE. IF NOT SKIP THE COLLISION
3590 'TEST.
3600 IF .01+(X(I)-XV)*DXD+(Y(I)-YV)*DYD+(Z(I)-ZV)*DZD>=0 THEN 3770
3610 DX(IO)X(I)-XD:DY()=Y(1)-YDD-Z()=Z(I)-ZD

D-6

3620 DD(1)mDX()*DX1)+DY(1)*DY(I)+DZ(I)*DZ(I)
3630 NUMDXD*DX(1)+DYD*DY(I)+DZD*DZ(1):RSUM=RV+R(1):RSUM2(1)=RSUM*RSUM
3640 FACmNUMlDEN:D(I-DD()-FAC*NUM
3650 'D(I) IS THE SQUARE OF THE DISTANCE OF THE CENTER OF OBSTACLE I FROM

3660 M'HE VEHICLE PATH.
3670 X0(IO-XD+FAC*DXD.Y0(I)=YD+FAC*DYD20()=ZDFAC*DZD

3680 'XO(I),YO(I),Z0(I) ARE COORDINATES OF THE POINT ON THE VEHICLE PATH
3690 1CLOSEST TO THE CENTER OF OBSTACLE I.
370DISTM rNM-2DE/)2DEN
3710 ')IST(Q) IS THE SQUARED DISTANCE FROM THE INITIAL VEHICLE LOCATION
3720 -T0 THE POINT (X0(I),Y0(I),ZO=)).
3730 F D(I)>=RSUM2(1) THEN 3770
3740 IF DIST(1)<MIND THEN MINI=I:MIND=DIST(Q)
3750 IF MIND IS A MINIMUM THEN THE COLLISION WITH OBSTACLE NUMBER MINI IS THE

3760 'EARLIEST.
3770 NEXT
3780 'IF MIND<DEN THEN THE EARLIEST COLLISION POINT IS AT 'XO(MINI),YO(MINI),
3790 70(MINI). GET DISTANCES BETWEEN OBJECT MINI AND ALL OTHER OBJECTS.
3800 FOR 1=1 TO NO
3810 IF I=MINI GOTO 3830
3820
RH-2(MNII)-(XQ)-X(MINI))A2+(Y(I)-Y(MINI))2+(Z(I)-Z(MINI))A2..RHO(MINIJ)=SQR(RH02(MAIJ))

3830 NEXT
3840 RETURN
3850'
4000 'GET THE LAST VEHICLE POSITION BEFORE WHICH COLLISION CAN BE AVOIDED.
4010 LB=RSJM2(MINI)-DAM
4020 FAC2=SQR(LB/DEN)
4030 XA=X0(MINI)+FAC2*DXD:YA=Y0(MINI)+FAC2*DYD2A=ZOMRhI)+FAC2*DZD

4040 RETURN
4050'
4500 'GET THE NEW VEHICLE POSITION AFTER GOING AROUND AN OBSTACLE TO AVOID

4510 'A COLLISION.
4520 'CHECK IF A COLLISION WILL OCCUR WHILE THE VEHICLE GOES AROUND AN
4530 OBSTACLE. IF MORE THAN 1 SUCH COLLISION IS PREDICTED RETURN.
4540 GOSUB 5500IF NC>I THEN 4610
4550 CALCULATE THE VEHICLE POSITION COORDINATE INCREMENTS IN GOING AROUND THE

4560 'OBSTACLE.
4570 L2=DD(MINI)-RSUM2(MI
4580 IF ABS(DX(MINI)>0 AND ABS(DY(MINI))>0 THEN GOSUB 5000-GOTO 4610
4590 IF ABS(DX(MINI))>ABS(DY(MINI)) THEN GOSUB 5300:GOTO 4610
4600 DYDI=L24Y(MNI):DYD2=DYD1:DXD1=SGN(DXD)*SQR(L2-DYD1*DYDI)..DXD2.DXDI1

4610 RETURN
4620'

D-7

i0

500 DENOM-DD(MINI)-DZ(MINI*DZ<MINI)
5010 TERM2=SGN(DXD)*DY(M1NlSQR(L2*DENOM-L2*L2)
5W2 TERM I-L2*DX(NMIN:DXDI-(TEMM1I+TERM2)/DENOM:DXD2=-(TERM I -TERM2)/DENOM
5030 DYD1-(kL2-DX(MNIfq)*DXDI)DY(MINI):DYD2=(L2-DX(MINDDXD2)/DY(MINI
5040 RETURN

5300 DXDImL2IDX(MINI)DXD2-iDXDI:DYD1=-SGN(DYD)*SQR(L2-DXDI*DXDI):DYD2=.-DYDI
5310 RETURN
5320'
5500 'FND THE OBSTACLE PAIRS IN THE VEHICLE PATH THAT ARE TOO CLOSE FOR THE
5510 'VEHICLE TO PASS BETWEEN THEM.
5520 RMV=ROMINI)+2*RV.NC=0
5530 FOR I-1 TO NO
5540 IF I-MINI THEN 5560
5550 IF RHO(hMINI)'cRMV+R(I) THEN NC=NC+I:CI=I
5560 NEXT
5570 RETURN
5580'
6000 'GET THE BASIC SCREEN DIAGRAM.
6010 CLS:SCREEN 1
6020 LINE(XVO.200YVO)-(XD,200-YD):CIRCLE(XD,20-YD),RV,1
6030 FOR C=l TO NOBW
6040 CIRCLE(X1(C),20-Y 1(C)),RI(C),I,
6050 NEXT
606 RETURN

6500 DISPLAY THE VEHICLE MOVING TO THE COLLISION POINT AT AN OBSTACLE AND
6510 'RECORD THE VEHICLE PATH POSITION AND RADIUS AND OBSTACLE RADIUS IN THE
6520 'OUTPUT FlILE.
6530 DXV=(XA-XVy10.DYV=(YA-YV)/10
6540 FOR 1=1 TO 10
6550 XX=XV:YY=YV:RR=RV
6560 IF LAST=0 THEN 6580 ELSE GOSUB 6000:GOSUB 7000:PRINT #2,XVYVRVR(MINI
6570 XV-XV+DXV:YV=YV+DYV:IF XV<XVO THEN XV=XVOýYVYVO
65801CHECK FOR A COLLISION
6590 GOSUB 8050
6600 GOSUB 6000:GOSUB 7000:PRINT #2,XV,YV~RVR(MINI
6610 NEXT
6620 XX=XV:YY=YVYRINT #2,XVYV.RV~R(&MI1)
6630 GOSUB 6000-.GOSUB 7000:.PRINT #2.XVYV.RVR(MINI
6640 RETURN
6650'#
7000 'DRAW THE VEHICLE.
7010 CIRCLE(XX,200YY),RR,2 ...1

D-8

7020 RETURN
7030'1
7500 *MOVE THE VEHICLE AROUND AN OBSTACLE.
7510 DXXmXX-X(MIN1):DYY-YY-Y(MINI:DXWuXV-X(MIND:DYV=YV-Y(MNI)
7520 ROB SQR((X(MINr)-XA)A12+(Y(MNI)-YA)A2)
7530'CALCULATE THE VEHICLES ANGULAR POSITION RELATIVE TO THE OBSTACLE.
7540 AB-D)LORD-DYY:GOSUB 8000.-TH1=THO
7550 AB-DXV.1)RD-DYVGOSUB 800(kTH2z=THO
7560 DTKMTH-THI)/5:TH=THl
7570 FOR Q-1 TO 5
7580 TH-TH+DTH
7590 XOXmX(MRROBH):YMDYYY(INI)+ROB*SIN(TH
7600 TrHEN REFRESH SCREEN DISPLAY.
7610 IF LAST-0 THEN 7620 ELSE GOSUB 6000.GOSUB 7000.PRINT #2,XXYY.RVRWMN)
7620 NEXT
7630 IF LASTmO THEN 7650
7640 'IF INIKEYS-" THEN 7130
7650 RETURN

* 7660'0
8000 'CALCULATE THE ANGLE.
8010 THO-ATN(ORDIAB)
8020 IF SGN(AB)--I THEN THO=THO+3.1415926#:GOTO 8040
8030 IF SGN(ORD)=--1 THEN THO=THO.6.283 1852#

* 8040 RETURN
8050 ICHECK FOR A COLLISION WITH ANY OBSTACLE.
8060 FOR OB1NUM=1 TO NO
8070 DXY=(XV-X1(OBNUMA2.I{YV-YI(OBNUM))A2.(V-Z1(OBN1))A2-DRRn<RVWR1(OBNUM))A%2

8080 IF .01+DXY<DRR THEN 9000
* 8O90NEXT

8100 RETURN
8110'
8500 IF SQR((XQr)-X(I. 1))A2. YQ)-Y(I. 1))A2.CZ(I)-Z([- 1))A%2)<Ro)+R0I-1) THEN CH=1:.PRIWF "OBJECT TOO

CLOSE TO THE LAST ONE.*
8510 RETiURN
85,20'1
9000 SCREEN 2:SCREEN 0:PRINT "COLLISION!!":PRINT

XV.YV;ZVX1(OBNUM);.Y1(OBNUM),Z1(OBNUM),PXY.DRR
9010 PRINT #2,-1,-1,DXYDRR:PRINT #231, X1Ql),Y 1(I):PRINT #2."COLLISION!!!"
9020 EF INKEY$= THEN 9020

* 9030 XV(wXA.-YV0=YA.GOTO 9080
9040 SCREEN 2:SCREEN O-PRINT "OBSTACLES TOO CLOSE TO VEHICLE STARTING POINT.
9050 PRINT *COLLISION OCCURS AT X =";XA;", Y =-";,YA;,", Z =";ZA;"."
9060 EF INKEYS-" THEN 9060
9070 GOSUB 6000.GOTO 9110

D-9

9080 FOR C=I TO NOBO
9090 CIRCLE(X(C),200-Y(C)),R(C)
910ONEXT
9110 XX-XV0:YY-YV0.RR=RV:GOSUB 7000
9120 IF INKEY$="" THEN 9120
9130 SCREEN 2:SCREEN

0 P'ROGRAM TO AVOID CYLINDRICAL OBJECTS USING A CRISP ALGORITHM
10 INITIALZE THE COLLISION ANALYSIS STATUS LAST. DISPLAY ONLY WHEN LAST=I.
20 LAST=0
30 INPUT "USE PARAMETERS IN FILE Y(N)";ANS$
40 IF ANSS="Y" OR ANS$="y" THEN OPEN "I".1,"OBSTACLE.DAT" ELSE GOTO 80
50 'YES, SO GET THE PARAMETERS FROM THE FILE CALLED 'OBSTACLE.DAT'.
60 GOSUB 1000-.GOTO 140
70 'NO, SO GET THE PARAMETERS DIRECTLY FROM THE KEYBOARD.
80 OPEN "O",I,"OBSTACLE.DAT"
90 'GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,YZ) LOCATIONS.
100 GOSUB 1500
110 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y,Z) LOCATIONS.
120 GOSUB 2000
130 'OPEN A FILE TO RECORD THE VEHICLE'S OBSTACLE AVOIDANCE PATH.
140 OPEN "O",,"VCOORDS.DAT"
150 XV=XV0:.YV=YV0ZV=ZV0
160 'FIND THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH FROM ITS INITIAL
170 •LOCATION TO ITS DESTINATION AND DETERMINE THE EARLIEST ONE.
180 GOSUB 3500
190 'IF NO COLLISIONS OCCUR PRINT THAT MESSAGE AND QUIT.
200 IF MINI=0 THEN PRINT "NO COLLJSIONS"-PRINT:GOTO 690
210 'IF MINb>0 A COLLISION WITH OBSTACLE NUMBER MINI WILL OCCUR.
220 'FIND THE VEHICLE POSITION AT THE COLLISION POINT. IF THE COLLISION POINT
230 IS FURTHER TO THE LEFT THAN THE INITIAL VEHICLE POSITION AN OBSTACLE IS
240 TOO CLOSE TO THE VEHICLE POSITION. ANNOUNCE THE FACT AND QUIT. OTHERWISE
250 'CONTINUE.
260 GOSUB 4000.IF XA<XV0 THEN GOTO 9040 ELSE DXA=XA-XD:DYA=YA-YD
270 IF NO MORE OBSTACLES ARE AHEAD MOVE AND DISPLAY THE VEHICLE.
280 IF LAST=I THEN GOSUB 6500
290 'OTHERWISE EXAMINE THE OBSTACLES AHEAD. IF MORE THAN TWO OBSTACLES IN THE
300 VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE VEHICLE TO PASS BETWEEN THEM
310 THEN THE REMAINING CONFIGURATION OF OBSTACLES IS DIFFERENT FROM THE
320 'ORIGINAL ONE, SO REINITIALIZE THE VEHICLE POSITION AND START OVER.
330 GOSUB 4500..IF NC>I THEN GOSUB 2500-GOTO 150
340 'IF NO TWO OBSTACLES IN THE VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE
350 'VEHICLE TO PASS BETWEEN THEM THEN CONTINUE WITH THE SAME OBSTACLE

D-10

360 VONFIGURATION.
370 IF NC=O THEN 460
380 'THERWISE CHOOSE THE BEST SIDE OF THE OBSTACLE FOR THE VEHICLE TO GO
390 'AROUND AND MOVE THE VEHICLE TO THE OBSTACLE AND AROUND IT ON THAT SIDE.
400 IF (DY(Cl)>DYDI) OR (DY(CD)>DYD2) THEN 430
410 IF DYD2<DYDI THEN XV=XD+DXDI:YV=YD+DYDI :GOTO 520
420 GOTO 500
430 IF (DY(CI)<DYDI) OR (DY(CI)<DYD2) THEN 460
440 IF DYD2>DYDI THEN XVa.XD+DXDI:YV=YD+DYDh:GOTO 520
450 GOTO 500
460 R21.S1•2(DXDI2+D1YDIA2)+SQR((DXA-DXDI)A2+(DYA-DYDI)A2)
470 RXD2^2+DYD2A2)+SQR((DXA-DXD2)A2+(DYA-DYD2)A2)
480 'GIVEN A CHOICE, CHOOSE THE SHORTEST DISTANCE AROUND THE OBSTACLE.
490 IF R21<R22 THEN XV=XD+DXDI:YVfYD+DYDh:GOTO 520
500 XV=XD+DXD2:YV=YD+DYD2
510 'MAKE SURE THE VEHICLE LOCATION IS TO THE RIGHT OF ITS INITIAL POSITION.
520 IF XV<XVO THEN XV=XV0.YV=YV0
530 'MOVE THE VEHICLE AROUND THE OBSTACLE AND DISPLAY THE MOTION ON SCREEN.
540 GOSUB 7500
550 IF THERE IS A COLLISION AT ALL CHECK FOR NEXT COLLISION.
560 IF MINb0 THEN GOSUB 3500
570 IF NO REMAINING COLLISION CAN OCCUR DISPLAY THE VEHICLE MOVE TO THE
580 'DESTINATION AND QUIT.
590 IF (LAST=I AND MINIm0 AND XA<XD) THEN XA=XD.YA=YD.GOSUB 6500.GOTO 690
600 IF NO COLLISION IS PREDICTED THE OBSTACLE CONFIGURATION HAS BEEN
610 'MODIFIED BY BEING COMBINED INTO A SINGLE OBSTACLE, SO START OVER.
620 IF (LAST-0 AND MINI=0) THEN LAST=ilGOTO 150
630 IS THE CONDITION FOR COLLISION WITH OBSTACLE NUMBER MINI SATISFIED?
S 640'IF SO REPEAT THE AVOIDANCE PROCESS WITH THE PRESENT OBSTACLE
650 'CONFIGURATION.
660 IF D(MINI)cw RSUM2(MINI) THEN 260
670 IF NOT DISPLAY THE VEHICLE MOVE TO THE DESTINATION AND QUIT.
680 XA=XDYA=YD:GOSUB 6500
690 IF INKEYS="" THEN 690
700 SCREEN 2:SCREEN 0:CLOSE #1
710END
720'

1000 'GET THE PARAMETERS FROM THE FILE.
1010 Ia0:.INPUT #IXVO.YVOZVORV
1020 INPUT #IXDYDZD
1030 WHILE NOT(EOF(1))
1040 I=I+I
1050 INPUT #1,X(I),Y(I)P):X 1()=X(I():Yl(I)=Y(I)'RI()=R(l)
1060WEND

D-11

, I

1070 'COUNT THE NUMBER OF OBSTACLES NO.

1080 NO=I'NOB-NO.NOBO-NOB
1090 'NOTE THAT THE DATA IS INPUT FROM A FILE.
II00 FHL-"I"
I I0 'GET THE INITIAL DISPLAY OF THE VEHICLE AND OBSTACLES ON SCREEN.
1120 GOSUB 2100
1130 RETURN
1140'
1500 'INPUT THE VEHICLE PARAMETERS FROM THE KEYBOARD.

1510 INPUT "VEHICLE INITIAL XY,Z COORDINATES";XV0,YV0ZV0
1520 INPUT "VEHICLE RADIUS";RV
1530 INPUT "DESTINATION X,YZ COORDINATES";XD,YDZD
1540 'IF THE DATA COMES FROM A FILE THEN DON'T PRINT IT TO A FILE.
1550 IF FIL$="I" THEN 1570
1560 PRINT # IXVO,YVOZVORV:PRINT #I,XD,YDZD
1570 RETURN
1580'
2000 'GET THE OBSTACLE DATA FROM THE KEYBOARD.

2010 INPUT "NUMBER OF OBSTACLES";NO:NOB=NO:NOBO=NOB
2020 WHILE I<NO
2030 I=1+1

2040 PRINT "OBSTACLE #";I
2050 CH=0.INPUT "X,Y,Z COORD[NATES";X(I),Y(I),Z(1)
2060 INPUT "RADIUS";R(I):IF 1>1 THEN GOSUB 8500:IF CH=I THEN 2050
2070 'SAVE THE PARAMETERS IN THE DESIGNATED FILE.
2060 PRINT #1,X(I),Y(I),Z(I)R(I):XI (I)=X(I):Y1(I)=Y(I)Z1(r)=Z(I):R1(1)=R(I)
2090WEND
2100 'PRINT THE FIRST OBSTACLE DIAGRAM ON THE SCREEN.
2110 GOSUB 6000 5
2120 'ADD THE VEHICLE IN ITS INITIAL POSITION.
2130 XX=XVO0YY=YVO:RR=RV:GOSUB 7000
2140 IF INKEY$="" THEN 2140
2150 RETURN
2160'
2500 'REASSIGN OBSTACLE NUMBERS AND PARAMETERS AFTER COMBINING 2 OBSTACLES.
2510 'ZERO THE OBSTACLE FLAG. IF FEWER THAN 2 OBSTACLES REMAIN NO MORE
2520 'OBSTACLE COMBINING IS NEEDED.
2530 OB=0.IF NO<2 THEN 2780
2540 'IF MORE THAN I OBSTACLE IS PRESENT CHECK IF TWO OBSTACLES ARE CLOSE
2550 'ENOUGH TO BE COMBINED INTO ONE. IF SO COMBINE THEM, SET FLAGS, UPDATE
2560 'THE OBJECT COUNTERS.
2570 FOR I=2 TO NO

2580 FOR J=1 TO I-1
2590 RHO2(j)-(X0)-XQ))A2+.Y(1)-Y(J))A2:RHO(IJ)=SQR(RH-O24,J)):RIJ=R()+R(•)

D-12

I I II I0

2600 DRO(LJ)•RHO(IJ)-(RIJ+2*RV)
2610 IF DRO(LJ)< THEN GOSUB 3000.W()=-h:OB=h:J=I:I=NO+l
2620 NEXT
2630 NEXT
2640 'AFTER COMBINING TWO OBSTACLES REASIGN OBSTACLE NUMBERS. OR RETURN IF NONE
2650 WERE COMBINED.
2660 IF OB-I THEN J-0 ELSE GOTO 2860
2670 FOR 1=1 TO NO
2680 'SKIP ITS NUMBER IF AN OBSTACLE IS REMOVED BY COMBINING IT WITH ANOTHER
2690 'OBSTACLE.
2700 IF W()-1 THEN NOB-NOB-1:GOTO 2720
2710 J=J+I:X(J)fX(1):Y(J)=Y(1)RQ).. R(1)
2720 NEXT
2730 IF THE PRESENT NUMBER OF RECOGNIZED OBSTACLES AGREES WITH THE NUMBER
2740 ILEFT AFTER COMBINING PAIRS AND MORE THAN I IS LEFT, CHECK OUT THE NEW
2750 'CONFIGURATION.
2760 IF NOB=NO THEN 2850
2770 'IF ONE OR MORE OBSTACLES WERE REMOVED RESET THE NUMBER OF OBSTACLES.
2780 NO=NOB
2790 'GET THE DIAGRAM ON THE SCREEN IF THE LAST OBSTACLE HAS BEEN ENCOUNTERED.
2800 IF LAST-I THEN GOSUB 6000.ELSE 2830
2810 'IF MORE THAN I OBSTACLE REMAINS OR NO MORE THAN 1 OBSTACLE EXISTED BEFORE
2820 THE LATEST COMBINATION OF OBJECTS TOOK PLACE THEN RETURN.
2830 IF NO>l THEN 2860
2840 'IF MORE THAN I OBSTACLE IS LEFT CHECK OUT THE NEW CONFIGURATION.
2850 IF NOB>I THEN 2530
2860 RETURN
2870'
3000 'GET THE POSITION COORDINATES AND RADIUS OF THE NEW OBSTACLE FORMED BY
3010 COMBINING 2 OLD ONES.
3020 CD-2*RHO(I,):FACI=(RHO(Ij)+R(I)-R(J))/vD:FACJ=-(RHO(J)+R(J).R(I))/CD
3030 X(J)=FACI*X(I)+FACJ*X(J):Y(J)=FACI*Y(I)+FACJ*Y(Q)
3040 R(J)-(RHOlj)+R(I}-R(J))/2

p 3050 RETURN
3060'

3500 GET THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH TO ITS DESTINATION.
3510 tALCULATE THE COMPONENTS OF THE VECTOR FROM THE VEHICLE'S INITIAL
3520 'IOCATION TO ITS DESTINATION.
3530 DXD=XV-XD.DYD=YV-YD
3540 'CALCULATE THE DIRECT VEHICLE PATH LENGTH SQUARED.
3550 DEN=DXD*DXD+DYD*DYD
3560 MINDuDEN:MIM[0
3570 FOR 1=1 TO NO
3580 'CHECK IF VEHICLE IS HEADED TOWARD THE OBSTACLE. IF NOT SKIP THE COLLISION

D-13

" p • I II I

3590 "TST.
3600 IF .01+(X(I)-XV)*DXD+(Y(1)-YV)*DYD>0 THEN 3770
3610 DX(I),X(I)-XD.DY(I)-Y(I)-YD
3620 DD(DX(I)*DX()+DY(I)'DY(1)
3630 NUM=DXD*DX(I)+DYD DY(1):RSUM=RV+R(1):RSUM2(I)=RSUM*RSUM
3640 FAC=NUMJDEN:D(r).DD(I)-FAC NUM
3650 TO IS THE SQUARE OF THE DISTANCE OF THE CENTER OF OBSTACLE I FROM
3660 T'HE VEHICLE PATH.
3670 X}(I)=XD+FAC'DXD:Y0(I)=YD+FAC DYD
3680 'XO(I),YO(I) ARE COORDINATES OF THE POINT ON THE VEHICLE PATH
3690 XLOSEST TO THE CENTER OF OBSTACLE 1.
3700 DISTO)m(NUM.DEN)A24.EN
3710 'DIST(I) IS THE SQUARED DISTANCE FROM THE INITIAL VEHICLE LOCATION
3720 TO THE POINT (XO(1),YO(l)).
3730 IF D(I)>=RSUM2(1) THEN 3770
3740 IF DIST(I)<MIND THEN MINI=I:MIND=DIST(I)
3750 'IF MIND IS A MINIMUM THEN THE COLLISION WITH OBSTACLE NUMBER MINI IS THE
3760 'EARLIEST.
3770 NEXT
3780 IF MIND<DEN THEN THE EARLIEST COLLISION POINT IS AT X0(MIND,Y0(MINI).
3790 'GET DISTANCES BETWEEN OBJECT MINI AND ALL OTHER OBJECTS.
3800 FOR 1=1 TO NO
38 10 IF I-MINI GOTO 3830
3820 RHO2(Mpj (I)-X(MINl))A2+(Y([)-Y(MINI))A2:RHO(MINI.1)=SQR(RHO2(MINIJ))
3830NEXT
3840 RETURN
3850'
4000 'GET THE LAST VEHICLE POSITION BEFORE WHICH COLLISION CAN BE AVOIDED.
4010 LB=RSUM2(MINI)-D(MINI)
4020 FAC2=SQR(LB/DEN)
4030 XA=XO(MINI)+FAC2*DXD:YA=YO(MINI)+FAC2*DYD
4040 RETURN
4050'
4500 'GET THE NEW VEHICLE POSITION AFTER GOING AROUND AN OBSTACLE TO AVOID
4510 'A COLLISION.
4520 'CHECK IF A COLLISION WILL OCCUR WHILE THE VEHICLE GOES AROUND AN
4530 'OBSTACLE. IF MORE THAN I SUCH COLLISION IS PREDICTED RETURN.
4540 GOSUB 5500:IF NC>I THEN 4610
4550 1CALCULATE THE VEHICLE POSITION COORDINATE INCREMENTS IN GOING AROUND THE
4560 'OBSTACLE.
4570 L2=DD(]NI)-RSUM2(MIN
4580 IF ABS(DX(MINI)>0 AND ABS(DY(MINI))>0 THEN GOSUB 5000-GOTO 4610
4590 IF ABS(DX(MINI))>ABS(DY(MINI)) THEN GOSUB 5300:GOTO 4610
4600 DYDI=L2IDY(MINI):DYD2=DYDh:DXDI=SGN(DXD)*SQR(L2-DYDI*DYD1):DXD2=-DXDI

D-14

4610 RETURN

5000~DENOM=DD(MINI)
5010 TERM2mSON(DD)M)DY(MlN)" QR(L2*DENOM.L2*L2)
5020ThMtMlL2*DX(MINI):DXI -RMMI+T1RM2)/DENOM:DXD2z(TEMI -TERM2)DENOM
5030 DYDIm(L2.DX(INI)*DXDI)/DYffM1N)DYD2=(L2-DXWMINDDXD2)/DY(MINI)
5040 RETURN
5050
5300 DXD=I-.JDX(MINI):DXD2mDXDI:DYDIaSGN(DYD)*SQR(L2-DXD1ODXDI):DYD2B-DYDI
5310 RETURN
5320'
5500 'FIND THE OBSTACLE PAIRS IN THE VEHICLE PATH THAT ARE TOO CLOSE FOR THE
5510 'VEHICLE TO) PASS BETWEEN THEM.
5520 RMV-RQNI.+2"RV:NC-0
5530 FOR I-1 TO NO
5540 IF I-MINI THEN 5560
5550 IF RHO(MINIIJRM+R(I) THEN NC=NC+1:CI=I
5560 NEXT
5570 RETURN
5580'
6000 'GET THE BASIC SCREEN DIAGRAM.
6010 CLS:SCREEN 1
602 UNE(XVO,200-YVO)-XD,20-YD).CIRCLE(XD200-YD).RV,I
6030 FOR C=I TO NOBW
6040 ClIRCLE(XI(C).20-Yl(C))Rtl(C)..,1
6050 NEXT
6060 RETURN
6070'
6500 'DISPLAY THE VEHICLE MOVING TO THE COLLISION POINT AT AN OBSTACLE AND
6510 'RECORD THE VEHICLE PATH POSITON AND RADIUS AND OBSTACLE RADIUS IN THE
6520 t)UTPUTFPILE.
6530 DXVm(XA-XVYIO.-DYV=(YA-YV)/10
6540 FOR 1-1 TO 10
6550 XX=XV:YY=YVR3R=RV
6560 IF LAST-O THEN 6580 ELSE GOSUB 6000005SUB 7000-PRINT #2,XVYV.RV~R(MINI
6570 XV-XV+DXV:YV=YV+DYV:IF XV'cXVO THEN XV=XVO.YV=YVO
6580 'CHECK FOR A COLLISION
6590 GOSUB 8050
6600 GOSUB 6000.GOSUB 7000:PRINT #2,XV.YVRVR(MINI
6610 NEXT
6620 XX-XV:YY-YV:PRIN #2.XVYV.RVIR(MDNI
6630 GOSUB 6000.GOSUB 7000-.PRINT #2,XV,YVRVR(MENI)
6640 RETURN
6650'

D-15

7000 'DRAW THE VEHICLE.
7010 CIRCLE(XX.200-YY),RR,2,..1
7020 RETURN
7030'
7500 'MOVE THE VEHICLE AROUND AN OBSTACLE.
7510 DXX=XX-X(MINI:DYY-YY-Y(MIND:DXV-XV-X(MINI:DYV=YV-Y(MINI
75M0ROB-SQR((X(MIN).XA)A2+(Y(MINI)-YA)A2)
7530'CALCULATE THE VEHICLE ANGULAR POSITON RELATIVE TO THE OBSTACLE.
7540 AB=DXXLORN=DYY:GOSU13 8000.TH 1-THO
7550 AB=DXV:ORD=DYV:GOSUB 800&.TH2--TH0
7560 DTHai(TH2.THI~t5:TH-TH 1
7570 FOR Q- I TO 5
7580 TH=TH+DTH
7590 XX=X(M1NI)+ROB*COS(T'H):YY=Y(MIN1)hROB*SlN(TH
7600 THIEN REFRESH SCREEN DISPLAY.
7610 IF LAST=0 THEN 7620 ELSE GOSUB 6000:GOSUB 7000:PRINT #2,XX,YYRV~R(MINI
7620 NEXT
7630 IF LAST.0 THEN 7650
7640 ~IF INKEYS-w" THEN 7130
7650 RETURN
7660'
8000 'CALCULATE THE ANGLE.
8010 THO-ATN(ORD/AB)
802 IF SGN(AB)--1 THEN THO=THO+3.1415926#:GOTO 804
8030 IF SGN(ORD)i.-I THEN THO=THG..6.2831852#
8040 RETUJRN
8050CHECK FOR A COLLISION WITH ANY OBSTACLE.
8060 FOR OBNUM=1 TO NO
807 DXYQV.-XI(OBNUM))A%2+(YV-YI(OBNUM))A2i)RR=(RV+R1(OBNUM))A2
808 IF .014DXY<DRR THEN 900
8090NEXT
8100 RETURN
8110'
850 IF SQR((X(rl-X(I- 1))A2+(Y(r)-Y(lI l)YA2<R(lh+RQ-1) THEN CH=1 :PRINT"OBJECTr TOO CLOSE TO THE

LAST ONE."
8510 RETURN
8520'
9000 SCREEN 2-SCREEN 0:PRINT "COLLISION!!!":PRINT XV;YVXI(OBNUM);YI(OBNUM),DXYDRR
9010 PRINT #2,-1,-lDXY.DRR:PRINT #231, XI(I).Yl(I):PRINT #2,"COLLISION!!!"
9020 IF INKEY$="" THEN 9020
9030 XOXA.YVO=YAGOTOM 9080
9040 SCREEN 2:SCREEN 0:PRINT "OBSTACLES TOO CLOSE TO VEHICLE STARTING POINT.
9050 PRINT "COLLISION OCCURS AT X =";XA;", Y =";YA;"."
9060 IF INKEY$="*" THEN 9060

D- 16

9070 GOSUB 6000'OTO 9110
9080 FOR CmI TO NOBW

* 9090 ClRCLX(%),200-Y(C)),R(C)
910DNEXT
9110 XX=XVO.YY=YV0tR=RV.GOSUB 7000
9120 IF INKEYS="THEN 9120
9130 SCREEN 2:SCREEN O.STOP

0 'PROGRAM TO AVOID SPHERICAL OBSTACLES USING A FUZZY ALGORITHM
10 INPUT OUSE OBSTACLE PARAMETERS IN FILE Y(N)';ANS$
20 IF ANS,"Y" OR ANS$="y" THEN OPEN "I',I,'OBSTACLE.DAT" ELSE GOTO 60
30 'YES, SO GET PARAMERS FROM FILE

S 40 GOSUB 1000.GOTO 110
50 'NO, SO GET PARAMETERS DIRECTLY FROM KEYBOARD
60 OPEN 'O',I,'OBSTACLE.DAT"
70 VET VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,YZ) LOCATIONS
80 GOSUB 2000

* 90 'GET NUMBER OF OBSTACLES, THMI RADII, THEIR (X,Y,Z) LOCATIONS
100 GOSUB 2500
110 INPUT 'USE MEMBERSHIP FUNCTION PARAMETERS IN FILE Y(N)";ANS$
120 IF ANS$='Y" OR ANSS='y" THEN GOSUB 1500-GOTO 150
130 NO SO ENTER PARAMETERS WITH KEYBOARD

* 140 OPEN "O',2,'MF.DAT":GOSUB 3000
150 FOR I1- TO NO
160 PRINT "OBSTACLE #';I;': X =';XI(I),'Y =';Y(10),'Z =';Z(1Q)
170 NEXT
180 IF INKEY$=-" THEN 10
190 'START WITH VEHICLE IN INITIAL POSITION, INITIALIZE CONFIGURATION STATE
200 'AND OPEN FILE TO RECORD VEHICLE PATH
210 XV=XV0:YV=YV0".ZV=ZV0:FIRST=1I"AST=.OPEN O",3,'VCOORDS.DAT"
220 CLS'INPUT OBASIC INCREMENT FOR VEHICLE MOTION ALONG PATH';DD
230 'GET NUMBER OF DISCREET MEMBERSHIP FUNCTION VALUES FOR FUZZY SET ¶RATIO'
240 'THAT DEFINES THE DIRECTION OF THE VEHICLE MOTION AT A POINT
250 INPUT 'NUMBER OF RATIO VALUES';NRAT:DRAT=RAT(1,3,2)/NRAT:GOTO 420
260 'GET DISTANCE OF VEHICLE FROM DESTINATION
270 DXDnXD-XV:DYD=YD-YV
280 DXYD2mXD*DXD+DYD*DYD•MIND=DXYD2DXYD=SQR(DXYD2)
290 'IF THE VEHICLE IS CLOSER TO THE DESTINATION THAN THE LENGTH OF ITS OWN
300 RADIUS LET THE VEHICLE GO STRAIGHT TO THE DESTINATION
310 IF DXYDcRV THEN XV-XD:YV-YD•.DES$='DEST':GOTO 420
320 'IF NOT THEN FIND THE NEAREST OBSTACLE, WHETHER IT IS THE LAST ONE, AND IF
330 'IT IS NOT GET THE DIRECTION ORTHOGONAL TO THE VEHICLE'S LINE OF SIGHT TO
340 MIE OBSTACLE

D-17

0e

350 GOSUB 3500:IF LASTI THEN 390
360 IF THE NEAREST OBSTACLE IS NOT THE LAST GET THE INCREMENT FACTOR FOR THE
370 'VEHICLE MOTION ORTHOGONAL TO THAT DIRECTION
380 GOSUB 4000
390 VALCULATE NEW VEHICLE POSITION AND SET A FLAG INDICATING THAT IT IS NO
400 'LONGER THE INITIAL POSITION
410 GOSUB 4500.iF FIRST=i THEN FIRST=0
420 'UPDATE SCREEN AND SAVE LAST VEHICLE POSITION AND DIRECTION
430 GOSUB 9000&XX=XV:YY=YV
440 GOSUB 6000:.GOSUB 6500:LXV=XV.LYV=YV:LALPH=ALPHA:LBET=BETA
450 IF FIRST-0 THEN 490
460 IREEZE THE SCREEN CONFIGURATION BEFORE THE VEHICLE STARTS TO MOVE
470 IF INKEYS."" THEN 470
480 'IF NOT AT DESTINATION GET VEHICLE POSITION UPDATE
490 IF DEST$<>*DEST" THEN 270
500 IF INKEY$="" THEN 500
510 SCREEN 2:SCREEN 0
520 END
530'
1000 'GET OBSTACLE PARAMETERS FROM FILE
1010 I-0:INPUT #IXVOYVOZVORV
1020 INPUT #1,XD,YDZD
1030 WHILE NOT(EOF(I))
10401=1+1
1050 INPUT #IX(1),Y(),ZR(X): (I):YI(1)=Y(1):1)=Z(I):R1Q)=R(1)
1060 WEND
1070 NO=l
1080 RETURN
1090'
1500 'ET MEMBERSHIP FUNCTION PARAMETERS FROM FILE
1510 OPEN "I-,2,"MF.DAT"
1520 FOR 1=1 TO 3
1530 FOR JffI TO 3
1540 INPUT #2,RAJ)
1550 NEXT
156ONEXT
1570 FOR 1=1 TO 3
1580 FOR J-I TO 3
1590 INPTr #2,DIS(IJ)
1600 NEXT
1610 NEXT
1620 FOR Im1 TO 3
1630 FOR Jil TO 3
1640 FOR K-I TO 3

D-18

1650 INPUT #2.RAT(IJK)
1660 NEXT

* 1670 NEXT
16W NEXT
1690 RETURN
1700'
2000 'GET INITIAL VEHICLE DATA

* 2010 INPUT "VEHICLE INITIAL XY,Z COORDINATES'XV0,YV0,ZV0
2020 INPUT *VEHICLE RADIUS';RV
2030 INPUT "DESTINATION X,Y.Z COORDINATES";XDYDZD
2040 PRINT #IXVOYVOZVORV:PRINT #1,XD,YDZD
2050 RETURN
2060'

2500 GF INITIAL OBSTACLE DATA
2510 INPUT 'NUMBER OF OBSTACLES-;NO
2520 WHILE I<NO
2530 Iml+l
2540 PRINT "OBSTACLE #';I
2550 INPUT "XY.Z COORDINATES';X(I),Y(1),Z(I)
2560 INPUT 'RADIUS'R(1):XI1)=X(I):Y1(1)=Y()'Z1(1)=Z(1:R1()=R(Q)
2570 1IF FILE IS IN INPUT MODE DON'T WRITE IN IT
25 'IF FLS-'I" THEN 2100
2590 NEW DATA AND WRITE ONLY FILE MODE SO PRINT PARAMETERS IN FLE

* 2600 PRINT # E1 (),Y()Z(I).(I)
2610VWEND
2620RETURN
2630'

3000 'GET FUZZY SET PARAMETERS FOR DEFINING SMALL, MEDIUM, OR LARGE FOR THE
* 3010 'RADIUS OF AN OBSTACLE AND FOR THE DISTANCE OF AN OBSTACLE FROM A VEHICLE

3020 'AND THE PARAMETERS ASSOCIATED WITH THE MEMBERSHIP FUNCTIONS OF THE MATRIX
3030 E.EMENTS IN THE MATRIX DETERMINED BY THE RULES OF THE FORM 'IF THE
3040 1OBSTACLE RADIUS IS '* AND THE OBSTACLE DISTANCE IS * THEN THE RATIO IS'
3050 PRINT '3 PARAMETERS DEFINING THE MEMBERSHIP FUNCTIONS:':PRINT

• 3060 PRINT `SMALL OBSTACLE RADIUS--JNPUT
"SRADO SRAD2,SRAD3"RADXIll)JLAD(1,2),RD(,3)

3070 WRITE ZRJAD(II)YRAD(I,2),RAD(1,3)
3080 PRINT "MEDIUM OBSTACLE RADIUS'--:INPUT

"MRADI.MRAD2,MRAD3";RAD(2,),RAAD(2,2),RAD(2.3)
3090 WRITE 2,RAD.,1),RAD(2,2),RAD(2,3)
3100 PRINT "LARGE OBSTACLE. RADIUS'-':INPUT

"DLRAD1JAD2,LRAD3"RAD(3,1),RAD.32)AAD(3,3)
3110 WRITE #2,RAD(3,1.)RAD(32).RAD(3,3)
3120 PRINT "SMALL OBST. DISTANCE'-":INPUT "SDISISDIS2,SDIS3";DIS(1,1),DIS(I,2),DIS(I,3)
3130 WRITE #2,DIS(l,1)MDIS(I,2),DIS(I,3)

D-19

0

3140 PRINT "'MEDIUM OBST. DISTANCE'--":INPUT "MDIS 1 MDIS2,MDIS3";DIS(2,1)D)IS(2,2),DIS(2,3)
3150 WRITE e2.DIS(2.1).DIS(2,2).DIS(2.3)
3160 PRINT "'I.ARGE OBST. DISTANCE*--":INPUT "LDIS 1.LDIS2,LDIS3";DIS(3,1),DIS(3,2),DIS(3,3)
3170 WRITE #2,DIS(3.1)DIS(3,2).DIS(3,3)
3180 PRINT "RATIO IF 'SMALL OBSTACLE DISTANCE' AND:"
3190 PRINT "'SMALL OBSTACLE RADIUS'--":INPUT

"SDSR1 ,SDSR2,SDSR3",RAT(I1 ,I),RAT(1 ,12),RAT(I ,1,3)
3200 WRITE #2,RAT(l,1,1),RAT(1,1,2),RAT(1,1.3)
3210 PRINT "'MEDIUM OBSTACLE RADIUS'--" :INP)UT

"SDMR l,SDbMR2SDbM3";RAT(I,2,I),RAT(1 ,2,2),RAT(1,2,3)
3220 WRITE #2.RAT(1,2,l),RAT(1,2,2),RAT(1,2.3)
3230 PRINT *IARGE OBSTACLE RADIUS'-" :INPUT

"SDLR1lSDLR2.SDLR3-"RAT(1,3,1),RAT(1,3,2),RAT(1 ,3,3)
3240 WRITE #2,RAT(1,3.1),RAT(1,3,2),RAT(1,3,3)
3250 PRINT "RATIO EF MEDIUM OBSTACLE DISTANCE' AND:"
3260 PRINT "WSALL OBSTACLE RADIUS'--":INPUT

"MDSRIMDSR2,MDSR3";.RAT(2.1,I),RAT(2.1 ,2),RAT(2,l .3)
3270 WRITE #2,RAT(2.1,I),RAT(2,1.2),RAT(21,l3)
3280 PRINT "'MEDIUM OBSTACLE RADIUS'-":INPUT

"*MDMRIMNDMR2,MDMR3";RAT(2,2.1).RAT(2,2,),RAT(2,23)
3290 WRITE #2ZRAT(Z2,21),RAT(2,2,2),RAT(2,2,3)
3300 PRINT "'ARGE OBSTACLE RADIUS'--" :INPU

"MDLR1.ýMDLR2,MDLR3",RAT(2,3.1),RAT(2,3,2),RAT(2,3,3)
3310 WRITE #2,RAT(2,3I1),RAT(2,3,2),RAT(2,3,3)
3320 PRINT "RATIO EF 'LARGE OBSTACLE DISTANCE' AND:"
3330 PRINT"SMALL OBSTACLE RADIUS'-":INPUT

"LDSRl,LDSR2,LDSR3";RAT(3,1,I),RAT(3,1,2),RAT(31,l 3)
3340 WRITE #2RAT(3,1,I),RAT(3,1,2),RAT(3,1,3)
3350 PRINT *MEDIUM OBSTACLE RADIUS'.-m:INPUJr

"LDMRI.LDMt2.LDMR3";RAT(3,2,1),RAT(3,2,2),RAT(3,2,3)
3360 WRITE #2,AT(3,2.1).RAT(3,2,2),RAT(32,23)
3370 PRINT "LARGE OBSTACLE RADUS'-":INPtJT

"LDLRI,.LDLRt2,LDL.R3";RAT(3,3.1),RAT(3,3,2),RAT(3.3,3)
3380 WRITE #2,RAT(3.3.1),RAT(3.3,2),RAT(33,33)
3390 RETURN
3400'
3500 'GET DIRECTION ORTHOGONAL TO LINE OF SIGHT FROM VEHICLE TO NEAREST
3510 1OBSTACLE
3520 'FIRST GET NEAREST OBSTACLE AND OBSTACLE WITH MAXIMUM RADIUS
3530 FOR 1=1 TO NO
3540 DX(I)-X(I)-XV:DYQ)=YQr)-YV.DZ(I)=Z(I)-.ZV
3550 DXY(I)-DXQIDX(I)+DYI)*DY(I+DZ(I)*DZ(1):DRR(r)=(.R(I)+RV)A12
3560 F DXY(I)cMIND THEN M[INI=I:M[IND=DXY(I)
3570 IF R(I)>R(MAXI) THEN MAXI.=I

D-20

3580 IF LAST-I THEN 3620
3590 'IF NOT ALREADY KNOWN TO BE THE LAST OBSTACLE CHECK WHETHER IT IS OR NOT

* 3600 'AND SET-I FLAG IF IT IS NOT BY VIRTUE OF ITS DIRECTION
3610 IF DX(I)DXD+DY(I)*DYD>0 THEN LAST=- 1
3620 NEXT
3630 IF FLAG NOT SET THEN OBSTACLE MUST BE THE LAST
3640 IF LAST-1 THEN LAST=0 ELSE LAST-I

* 3650 'CHECK IF THE NEAREST OBSTACLE IS LAST BECAUSE THE VEHICLE IS CLOSER TO
3660 MiE DESTINATION THAN TO THE OBSTACLE AND QUIT IF IT IS
3670 IF DXY(MINI)DXYD2 THEN LAST=h:GOTO 3770
3680 'ET UNIT VECTOR IN ORTHOGONAL DIRECTION SLANTED TOWARD DESTINATION
3690 OR, IF ORTHOGONAL TO DESTINATION DIRECTION, AWAY FROM BIGGEST OBSTACLE
3700 IF DY(MDN)o THEN 3730
3710 IF DY(MAXI)'o0 THEN ALPHAf0:BETAf-SGN(DY(MAXI)):GOTO 3770
3720 BETA=I.GOTO 3770
3730 THu-ATN(DX(MINI)DY(MINI))
3740 ALPHA=COS(TH):BETA-SIN(TH)
3750 DOTALPHA*DXD+BETA*DYD

• 3760 IF DOTP<0 THEN ALPHA=-ALPHA.BETA=-BETA
3770 RETURN
3780'
4000 'GET FUZZY SET 'RATIO' OF MAGNITUDE OF VECTOR IN (ALPHABETA) DIRECTION TO
4010 INCREMENT DD OF VEHICLE MOVEMENT.

* 4020 'FIRST GET OBSTACLE DISTANCE FROM VEHICLE AND RADIUS
40300DImS=QR(DXY(MiNI)).ORADmR(MINI)
4040 'HEN GET 'RATIO MEMBERSHIP VALUES AND DEFUZZIFY
4050 RATI=(:NSUM0-.DSUMg0
4060 WHILE RAT7<=RAT(1,3,2)

* 4070 GOSUB 7000
4060 NSUM=NSUM+RATI*MAXMF:DSUM=DSUM+MAXMF
4090 RATI-RAT+DRAT
4100WWEND
4110 IF NSUM=0 THEN RATIOm0 ELSE RATIO=NSUM/DSUM

* 4120 RETURN
4130'
4500 'GET NEW VEHICLE POSITION
4510 IF LAST-i THEN 4580
4520 DDI=RATI70DD

* 4530 'IF NEAREST OBSTACLE CHANGES SPECIAL HANDLING REQUIRED
4540 IF MINIoLMINI AND FIRST=0 THEN GOSUB 5000
4550 XV=XV+DDI*ALPHAXYV=YV+DDI*BETA
4560 IF DIRCH=I THEN 4620
4570 'GET DIRECTION OF DESTINATION FROM VEHICLE AND INCREMENT VEHICLE POSITION

D

D-21

0

4580 DXXD.))XV.DYD-YD-YV:DXYD-SQR(D)M*DXD+DYD*DYD):DXD0=DXD/DXYDDYDO=DYD/DX
YD

4590 'ALONG THAT DIRECTION
4600 XV-XV+DD*DXD&YV=YV+DD*DYDO
4610 'GET DISTANCE OF VEHICLE IN NEW POSITION FROM NEAREST OBSTACLE
4620 DXY(MI)_(X(M.C)XV)A2.Y(MINI.YV)A2+((MINI)-ZV)A12
4630 'RECORD THIS DATA IN VEHICLE PATH FILE ALONG WITH THE SUM OF THE VEHICLE
4640 'AND OBSTACLE RADII
4650 PRINT #3,XVYVDXY(MIN)DRR(MINI
46601IF THE DISTANCE BETWJEEN THE VEHICLE AND THE NEAREST OBSTACLE IS GREATER
4670 'THAN THE SUM OF THE RADII THEN THEIRE IS NO COLLISION
4680 IF DXY(hMIN)>DRR(MINI THEN GOTO 4720
4690 'OTHERWISE THERE IS A COLLISION THAT MUST BE AVOIDED SO REVERSE THE
4700 'DIRECTION OF THE VEHICLE MOTION AND TRY AGAIN
4710 XV=LXV:YV=LYV:ALPHA=-LALPH:BETA=-LBET:GOTO 4550
4720 RETURN
4730'
5000 7F NORMAL DIRECTION BRINGS VEHICLE CLOSER TO FORMER NEAREST OBSTACLE
5010 'CHANGE DIRECTION UNLESS LAST OBSTACLE IS NOT TOO CLOSE TO PRESENT ONE
5020 IF LMWN=m THEN 5150
5030 SIDEI=R(LMINI)+RV:SIDE2=-R(LMINI)-RV:SIDE3--R(MINI)+RV:SIDE4=R(vMINI-RV
5040 ANG1=ATN(SIDE2IQRt(SIDEIEA2-SIDEA2)):ANG2--ATN(SIDE4/SQR(SIDE3A2-SIDE4A2))
5050 ANG-3.14I5926#-(ANG1+ANG2):SIDE5=-SIDEIA2+SIDE3A2-2*SIDEI*SIDE3*COS(ANG)
5060 DMINI=(CX(.MIN)-M)A2+y(LMINI)-Y(MI4l))A2+(Zal4j1N)-z(NMI))A2
5070 IF THERE IS ROOM TO SPARE THEN CONTINUE
5080 IF SIDE5.80DMINI THEN 5150
509 IF NOT THEN REVERSE DIRECTION AND TRY AGAIN
5100 TXV=XV:TYV=YV
5110 TXV-TXV+DD1I ALPHA.TYV=TYV+DD1 *BErAkTDXD=XDM-TXV:-TDYD=YD-TYV
5120 TDXYD-SQRCFDXD*TDXD+TDYD*TDYD):TDXD0=~TDXD/rDXYD TDYDO.TDYDrrDXYD
5130 TXV-TXV+DD*TDXDO.TYV=TYV+DD*TDYDO
5140 F C XV.. MMA2.CI-YV..Y A2<(XV-X(LMI~))2+(YV..Y(LMIN)A2 THEN

ALPHA=-ALHA.BErA=-BETA:DIRCH=1:GOTO 5160
5150 LMINI=MINI:DIRCH=0
5160 RETURN
5170'
5500 'COLLISION OCCURRED. SO ANNOUNCE IT ON THE SCREEN AND QUIT
5510 SCREEN 2:SCREEN O-LOCATE 12,30:PRINT "COLLISION!!!"
5520 PRINT #3,-1-1,DIJXy(I),DRR(I):PRINT #3,1 X(1),Y(I):PRINT #3,"COLLISION!W'
5530 IF INK(EY$=" THEN 5530
5540 XX=XV:YY-YV:GOSUB 6000:GOSUB 6500
5550 IF INKEY$=" THEN 5550
5560 SCREEN 2.SCREEN &.STOP
5570'

D-22

6000 'DRAW BASIC ORIGINAL OBSTACLES, VEHICLE PATH AND DESTINATION ON SCREEN

6010 CLS:SCREEN 1
* 6020 LV(XV0)-YV0)-X 200-YD):CIRCLE(XD200-YD),RV,I

6030 FOR CmI TO NO
6040 CIRCLE(X(C).200-Y(C)),R(C),,,
6050 NEXT

6060 RETURN
* 6070'@

650 'DRAW VEHICLE POSITION ON SCREEN
6510 ClRCLE(XXX0-YY),RV,,,I
6520 RETURN
6530'
7000 PERFORM COMPOSITION OF RULES FOR CALCULATING RATIO
7010 'GET MEMBERSHIP FUNCTION OF THE INTERSECTION OF 'OBSTACLE RADIUS' AND
7020 "DISTANCE FROM VEHICLE' FOR ALL COMBINATIONS OF RADIUS AND DISTANCE SIZES

7030 MAXMF=-
7040 FOR DSIZE=I TO 3
7050 'GET OBSTACLE DISTANCE FROM VEHICLE MEMBERSHIP FUNCTION VALUE MF1

* 7060 PImDIS(DSIZE,I):P2=DIS(DSrZE,2):P3=DIS(DSZE,3):P=ODIS:GOSUB 7500
7070 MFI=MF
7080 'GET OBSTACLE RADIUS MEMBERSHIP FUNCTION VALUE MF2
7090 FOR RSIZE=I TO 3
7100 PI-RAD(RSIZE,I)'P2RAD(RSIZE,2):P3=RADI(RSIZE,3):PORAD:GOSUB 7500

* 7110 MF2wMF
7120 'GET INTERSECTION MEMBERSHIP FUNCTION VALUE MFDR
7130 IF MFI<MF2 THEN MF-MFI ELSE MF=MF2

7140 MFDR=MF
7150 'GET MEMBERSHIP FUNCTION VALUE FOR RATIO AS CARTESIAN PRODUCT OF 'OBSTACLE

* 7160 'DISTANCE' AND 'OBSTACLE RADIUS' ACCORDING TO EACH RULE AND THEN THE UNION
7170 'OF ALL RULES
7180 PI=RAT(DSERS'Z,I):P2uRAT(DSIZERSIZE,2).P3=RAT(DSIZE.RSIMZ3):NRATI

7190 GOSUB 7500
7200 IF MF<MFDR THEN MFRDR=MF ELSE MFRDR=MFDR

* 7210 IF MFRDR>MAXMF THEN MAXMF=MFRDR
7220 NEXT
7230 NEXT

7240 RETURN

* 7500 'GENERIC MEMBERSHIP FUNCTION MF(PP2,P3)

7510 IF PI<P2 THEN 7530
7520 IF P<cP2 THEN MF-I.GOTO 7580 ELSE GOTO 7550
7530 IF P<=PI THEN MF=:O.GOTO 7580

7540 IF P<P2 THEN MF=(P-Pl)/(P2-PI):GOTO 7580
7550 IF P<P3 THEN MF=(P3-P)/(P3-P2):GOTO 7580

D-23

0

7560 IF P3<P2 THEN MF=h:GOTO 7580

7570 IF Pý-P3 THEN MF-0

7580 RETURN

9000 FOR 1-l TO NO
9010 IF DXY(I)<DRR(I) THEN 5500

9020 NEXT
9030 RETURN

0 TROGRAM TO AVOID CYLINDRICAL OBSTACLES USING A FUZZY ALGORITHM

10 INPUT *USE OBSTACLE PARAMETERS IN FILE Y(N)";ANS$

20 IF ANS$-*Y" OR ANS$="y" THEN OPEN "I",I,"OBSTACLE.DAT" ELSE GOTO 60

30 'IF 'YES', GET PARAMETERS FROM THE FILE 'OBSTACLE.DAT.
40 GOSUB 1000:.GOTO 110
50 'IF 'NO'. GET PARAMETERS DIRECTLY FROM THE KEYBOARD AND STORE IN THE FILE:

60 OPEN "O",I,"OBSTACLE.DAT"

70 'GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,Y,Z) LOCATIONS;
80 GOSUB 2000
90 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y,Z) LOCATIONS.
100 GOSUB 2500
110 INPUT "USE MEMBERSHIP FUNCTION PARAMETERS IN FILE Y(N)";ANS$

120 'IF 'YES', GET PARAMETERS FROM THE FILE 'MF.DAT.
130 IF ANS$='Y" OR ANS$="y" THEN GOSUB 1500:GOTO 160
140 'IF ?NO', GET PARAMETERS DIRECTLY FROM THE KEYBOARD AND STORE IN THE FILE.

150 OPEN "O",2,"MF.DAT":GOSUB 2620
160 FOR I=I TO NO

170 PRINT "OBSTACLE #";I:": X =";XI(1),'Y =';YI(I),"Z =";ZI(1)
180 NEXT
190 IF INKEY$="" THEN 190
200 'START WITH THE VEHICLE IN ITS INITIAL POSITION, INITIALIZE THE

210 'CONFIGURATION STATE, AND OPEN A FILE TO RECORD THE VEHICLE PATH.
220 XV=XV0:.YV=YV0.ZV--ZV0:FIRST=I:AST=0:OPEN "O",3,"VCOORDS.DAT"
230 CLS:INPUT "BASIC INCREMENT FOR VEHICLE MOTION ALONG PATH";DD

240 'GET THE NUMBER OF DISCREET MEMBERSHIP FUNCTION VALUES FOR THE FUZZY SET
250 'RATIO' THAT DEFINES THE CORRECTIVE CHANGE IN THE VEHICLE MOTION DIRECTION.

260 INPUT "NUMBER OF RATIO VALUES";NRAT:DRAT=RAT(1,3,2)/NRAT:GOTO 430
270 'GET THE DISTANCE OF THE VEHICLE FROM THE DESTINATION.

280 DXD=XD-XV:DYD=YD-YV
290 DXYD2DDXDD+DYD*DYD:MIND=DXYD2:DXYD=SQR(DXYD2)

300 IF THE VEHICLE IS CLOSER TO THE DESTINATION THAN THE LENGTH OF ITS OWN

310 'RADIUS, LET THE VEHICLE GO STRAIGHT TO THE DESTINATION.

320 IF DXYDdRV THEN XV=XD:YV=YD:DEST$="DEST":GOTO 430

330 IF NOT THEN FIND THE NEAREST OBSTACLE AND WHETHER IT IS THE LAST ONE. IF
340 'IT IS NOT GET THE DIRECTION ORTHOGONAL TO THE VEHICLE'S LINE OF SIGHT TO

D-24

350 "rHE OBSTACLE.
360 GOSUB 3500:.IF LAST=I THEN 400

*- 370 'IF THE NEAREST OBSTACLE IS NOT THE LAST GET THE INCREMENT FACTOR FOR THE

380 'VEHICLE MOTION ORTHOGONAL TO THAT DIRECTION.

390 GOSUB 4000
400 CALCULATE THE NEW VEHICLE POSITION AND SET A FLAG INDICATING THAT IT IS NO

410 LONGER THE INITIAL POSITION.

420 GOSUB 4500 IF FIRST--I THEN FIRST.0

430 'UPDATE THE SCREEN AND SAVE THE LAST VEHICLE POSITION AND DIRECTION.

440 GOSUB 8010:XX-XV:YY-YV
450 GOSUB 60(:GOSUB 650:.LXV=XV'YV-YVIALPH=ALPHA.LBET=BETA

460 IF FIRST=0 THEN 500
470 TREEZE THE SCREEN CONFIGURATION BEFORE THE VEHICLE STARTS TO MOVE.

480 IF INKEY$nm" THEN 480
490 IF IT IS NOT AT THE DESTINATION GET THE VEHICLE POSITION UPDATE.

500 IF DEST$<>wDEST" THEN 280
510 IF INKEY$=*"THEN 510
520 SCREEN 2.SCREEN 0

* 530END
540'
1000 'GET THE OBSTACLE PARAMETERS FROM THE FILE 'OBSTACLE.DAT.
1010 I-(kINPUT #1,XVOYVOZVORV
1020 INKUT #1,XD,YDZD
1030 WHILE NOT(EOF(I))

1040 I=I+l
1050 INPUT D
1060WEND
1070 NO-1I
1080 RETURN
1090'
1500 'GET THE MEMBERSHIP FUNCTION PARAMETERS FROM THE FILE 'MF.DAT.

1510 OPEN "IU,2,nMF.DAT"
1520 FOR 1=1 TO 3
1530 FOR J=l TO 3
1540 INPUT #2,RAD(IJ)
1550 NEXT

1560 NEXT
1570 FOR 1=1 TO 3
1580 FOR Jul TO 3
1590 INPUT #2,DIS(IJ)
1600 NEXT
1610NEXT
1620 FOR 1=1 TO 3
1630 FOR J-1 TO 3

D-25

0'i I I I

1640 FOR KaI TO 3
1650 INPUT #2,RAT(IJK)
1660 NEXT
1670 NEXT
1680 NEXT
1690 RETURN
1700'
2000 'GET THE NIiTIAL VEHICLE DATA FROM THE KEYBOARD.
2010 INPUT "VEHICLE INITIAL X.YZ CO0RDINATES";XVO,YVOZVo
2020 INPUT "VEHICLE RADIUS";RV
2030 INPUT "DESTINATION XXY, COORDINATES";XD,YDZD
2040 'RECORD THE DATA IN THE FILE 'OBSTACLE.DAT'.
2050 PRINT #1,XVO,YVOZVORV:PRINT #1,XDYDZD
2060 RETURN
2070'
2500 'GET THE INITIAL OBSTACLE DATA.
2510 INPUT M"NUMBER OF OBSTACLES";NO
2520 WHILE 1440
25301I=1+1
2540 PRINT "OBSTACLE #";I
2550 INPUT "XYZ COORDINATES";X(I),Y(I),Z(I
2560 INPUT DIUS";Rl:X1Qr)=X(I):Y1(I)=YQ1)21()=ZQ:R1Q)-RUl)
2570 'RECORD THE DATA IN THE FILE 'OBSTACLE.DAT.
2580 PRINT #1,X(I),YQZ(I)7ARQ)
2590 WEND
2600 RETURN
2610'
2620 'GET FUZZY SET PARAMETERS FOR DEFINING A 'SM(ALL', 'MEDIUM'-, OR 'LARGE'
2630 7RADIUS OF AN OBSTACLE AND DISTANCE OF AN OBSTACLE FROM A VEHICLE. ALSO,
2,640 'GET THE PARAMETERS ASSOCIATED WITH THE MEMBERSHIP FUNCTIONS OF THE MATRIX
2650 'ELEMENTS IN THE MATRIX DETERMINED BY THE RULES OF THE FORM 'IF THE
26601OBSTACLE RADIUS IS *AND THE OBSTACLE DISTANCE IS * THEN THE RATIO IS '

2670 PRINT "3 PARAMETERS DEFINING THE MEMBERSHIP FUNC'FIONS:":PRINT
2680 PRINT "'SMALL OBSTACLE RADIUS'--":INPUT

"SRADI.SRAD2,SRAD3-"RAD(1,1).RAD(1,2),RAD(1.3)
2690 WRITE #2YRAD(,1),RAD(1,2),RAD(1.3)
2700 PRINT "'MDIUM OBSTACLE RADiuS'-":INPUT

"MRADlIMRAD2,MRAD3"RtAD(2,1),RAD2,2),RAD(2.3)
2710 WRITE #2,RAD(2.1).RAD(2,2)XRAD(2,3)
2720 PRINT "`LARGE OBSTACLE. RADIUS'--":INPUT

"LRAD1,LRAD2,LRAD3";RAD3.1),RAD(3,2),RAD(3,3)
2730 WRITE #2XRAD3.I),RAD(3,2),RAD(3.3)
2740 PRINT "'SMALL OBST. DISTANCE'--":INPUT "SDlSSlD152,SD153";DIS(I,1),DIS(1,2),DIS(l ,3)
2750 WRITE #2MDS(1,1),DIS(l,2),DIS(1.3)

D-26

2760 PRINT "'MEDIUM OBST. DISTANCE'--":INPUT "MDIS 1 ,MDIS2.MDIS3";DIS(2, 1),DIS(2,2).DIS(2,3)
2770 WRITE #2.DIS(2.I).DIS(2.2),DIS(2.3)

* ~2780 PRINT "'LARGE OBST. DISTANCE'--":INPUT "LDIS 1,LDIS2,LDIS3";DIS(3,1),DIS(3,2),DIS(3,3)
2790 WRITE #2,DIS(3,1),DIS(3,2),DIS(3,3)
2800 PRINT *RATIO IF SMALL OBSTACLE DISTANCE' AND:"
2810 PRINT "'SMALL OBSTACLE RADIUS*--":INPUT

"SDSR1 ,SDSR2,SDSR3";RAT(1 ,1 ,1),RAT(1 .1.2),RAT(1 ,l.3)
2820 WRITE #2ZRAT(1,1,1),RAT(1,1,2),RAT(1,I,3)
2830 PRINT "`MEDIUM OBSTACLE RADIUS'--":INPUT

"SDMR 1SDMR2,SDMR3";RAT(1 ,2,1),RAT(l ,2,2).RAT(12,23)
2840 WRITE #2,RAT(I21Z).RAT(l,2.2),RAT(1,2.3)
2850 PRINT "'LARGE OBSTACLE RADIUS'-" :INPUT

SDLRI.SDLR2,SDLR3-"RAT(1 ,3,1).RAT(1 ,3,2)XRAT(I .3,3)
* 2860 WRITE #2.RAT(1,3,I),RAT(1,3,2),RAT(1,3.3)

2870 PRINT "RATIO IF'MEDIUM OBSTACLE DISTANCE' AND:"
2880 PRINT"'SMALL OBSTACLE RADIUS'--":INPLJT

"MDSRl,,MDSR2.MDSR3";RAT(2.1 ,1).RAT(2,1 ,2).RAT(2,1 .3)
2890 WRITE #2,RAT(2,l,1),RAT(2,1,2),RAT(2,l,3)
2900 PRINT "'MEDIUM OBSTACLE RADIUS'--" INPUT

"MDMRlMDMR2,MDMR3";RAT(2,2,1),RAT(2,2,2).RAT(2,2.3)
2910 WRITE #2.RAT(2,2.I).RAT(2,2,2),RAT(2,2.3)
2920 PRINT "'LARGE OBSTACLE RADIUS'--" :INPUT

"MDL~tl.MLR2,MDLR3";RAT(2,3,1).RAT(2,3,2),RAT(2,3,3)
2930 WRITE #2,RAT(2.3.1),RAT(2,3.2),RAT(2,3,3)

* ~2940 PRINT "RATIO, IF 'LARGE OBSTACLE DISTANCE' AND:"
2950 PRINT "SMALL OBSTACLE RADIUS'-":INPUT

"LDSR1,LDSR2,LDSR3";RAT(3.1,I),RAT(3,1,2),RAT(3,1,3)
2960 WRITE #2,RAT(3,l.1),RAT(3,l,2),RAT(3.I,3)
2970 PRINT "MEDIUM OBSTACLE RADIUS'-":INPUT

"*LD'MR1,LDMR2,LDMR3";RAT(3,2.1).RAT(3,2,2),RAT(3.23)
* 2980 WRITE #2,RAT(3,2.l),RAT(3,2.2).~RAT(32,23)

2990 PRINT "LARGE OBSTACLE RADIUS'-":INPUT
"L.DLRILDLR2,LDLR3";RAT(3,3,l).RAT(3.3,2),RAT(3,3,3)

3000 WRITE #2RAT(3,3,I),RAT(3,3,2),RAT(3,3.3)
3010 RETURN

3500 'GET THE DIRECTION ORTHOGONAL TO THE LINE OF SIGHT FROM THE VEHICLE TO THE
3510 'NEAREST OBSTACLE. FIRST GET THE NEAREST OBSTACLE.
3520 FR RIm TO NO
3530 DX(I)=X(I)-XV:DY(I)mY(I)-YV

*3540 DDXY(I)MDX(I)+DY(T)DY(I):DRR(I)=(RQI)+RV)A2
3550 IF DXY(I)cIIND THEN MINI=I:lMID=DXY(l)
3560 IF IT IS KNOWN THAT THE LAST OBSTACLE IS AT HAND SKIP THE DIRECTION TEST.
3570 IF LASTmI THEN 3620

D-27

3580 'IF NOT ALREADY KNOWN TO BE THE LAST OBSTACLE, CHECK WHETHER THE OBSTACLE
3590 IS OR NOT THE LAST BY VIRTUE OF ITS DIRECTION AND SET THE -1 FLAG IF IT
3600 IS NOT.
3610 DDOT(1)- DX(I)DXD+DY(I)*DYD:IF DDOT(I>0 THEN LAST=-l
3620 NEXT
3630 'CALCULATE THE DISTANCE BETWEEN THE VEHICLE AND THE NEAREST OBSTACLE.
3640ODIS-SQR(DXY(MPN))
3650 'IF THE -I FLAG IS NOT SET THEN THE OBSTACLE MUST BE THE LAST ONE.
3660 IF LAST=-I THEN LAST=0 ELSE LAST=l
3670 'CHECK IF THE NEAREST OBSTACLE IS THE LAST BECAUSE THE VEHICLE IS CLOSER
3680 'TO THE DESTINATION THAN TO THE OBSTACLE AND QUIT IF IT IS.
3690 IF DXY(MINl)>DXYD2 THEN LAST=h:GOTO 3780
3700 'GET THE UNIT VECTOR (ALPHABETA) IN THE DIRECTION ORTHOGONAL TO THE PATH
3710 'FROM THE VEHICLE TO THE NEAREST OBSTACLE CENTER, SLANTED TOWARD THE
3720 DESTINATION.
3730 ALPHA-DY(MINI)O/DIS:BETA=DX(MINI)/ODIS
3740 'CHECK TO DETERMINE WHETHER THE SLANT OF THE UNIT VECTOR IS CORRECT.
3750 DOTP=ALPHA*DXD+BETA*DYD
3760 'IF NOT REVERSE ITS SIGN.
3770 IF DOTP<0 THEN ALPHA=-ALPHA:BETA=-BETA
3780 RETURN
3790'
4000 rGET THE RATIO OF THE MAGNITUDE OF THE VECTOR IN THE (ALPHABETA)
4010 'DIRECTION TO THE INCREMENT DD OF THE VEHICLE MOVEMENT. FIRST GET THE
4020 'RADIUS ORAD OF THE NEAREST OBSTACLE.
4030 ORADwR(MINI
4040 THEN GET THE FUZZY SET 'RATIO' MEMBERSHIP VALUES AND DEFUZZIFY THE RATIO.
4050 RATI-.NSUM=0&DSUM=0
4060 WHILE RATI<=RAT(1,32)
4070 GOSUB 7000
4080 NSUM=NSUM+RATI*MAXMF:DSUM=DSUM+MAXMF
4090 RATI=RATI+DRAT
4100 WEND
4110 IF NSUM=0 THEN RATIO=0 ELSE RATIO=NSUMIDSUM
4120 RETURN
4130'
4500 'GET THE NEW VEHICLE POSITION.
4510 IF LAST-I THEN 4610
4520 'CALCULATE THE SIZE OF THE CORRECTION TO THE VEHICLE COORDINATES.
4530 DDI=RATIO*DD
4540 IF THE NEAREST OBSTACLE CHANGES, A NEW CALCULATION OF THE CORRECTIVE
4550 'DIRECTION VECTOR (ALPHABETA) IS NEEDED.
4560 IF MINIoLMINI AND FIRST=0 THEN GOSUB 5000
4570 'INCREMENT THE VEHICLE COORDINATES BY THE RESULTING CORRECTIONS.

D-28

4580 XV=XV+DDI*ALPHA:YV=YV+DDI*BETA

4590 IF DIRCH=I THEN 4670
460 'GET THE DESTINATION DIRECTION RELATIVE TO THE VEHICLE.
4610 DXIXDXV:DY--YD-YV:DXYD:=SQR(DXD*DXD+DYD*DYD):DXDOmDXD/DXYD•DYIJwmDYD/DX

YD
4620 INCREMENT THE VEHICLE POSITION ALONG THAT DIRECTION BY THE INITIALLY
4630 'SELECTED MAGNITUDE DD.
4640 XV=XV+DD*DXD(O.YV=YV+DD*DYDO
4650 GET THE DISTANCE OF THE VEHICLE IN THE NEW POSITION FROM THE NEAREST
4660 'OBSTACLE.
4670 DXY(MIN0((MN)-XV)A2+(Y(MIrNIYV)A2
4680 'RECORD THIS DATA IN THE VEHICLE PATH FILE ALONG WITH THE SUM OF THE
4690 'VEHICLE AND OBSTACLE RADII. IF THE DISTANCE BETWEEN THE VEHICLE AND THE
4700 'NEAREST OBSTACLE IS GREATER THAN THE SUM OF THE RADII THEN THERE IS NO
4710 •COLLISION.
4720 IF DXY(MINI)>DRR(MINI) THEN GOTO 4760
4730 'OTHERWISE THERE IS A COLLISION THAT MUST BE AVOIDED SO REVERSE THE
4740 DI)RECTION OF THE VEHICLE MOTION AND TRY AGAIN.
4750 XV=LXV:YV=LYV:ALPHA=-LALPH:BETA=-LBET:GOTO 4580
4760 PRINT #3,XV,YV,DXY(MINI),DRR(MMNI)

4770 RETURN
4780'
5•00 'IF NORMAL DIRECTION BRINGS VEHICLE CLOSER TO FORMER NEAREST OBSTACLE
5010 tIHANGE DIRECTION UNLESS LAST OBSTACLE IS NOT TOO CLOSE TO PRESENT ONE
5020 IF LMINI-O THEN 5130
5030 OBSE-(R(LMMN+R(MN)+2-RV)A-2
5040 DMINI.(X(LMINI)-X(MINI))A2+(Y(LMIN)-Y(MINI))A2
5050 'IF THERE IS ROOM TO SPARE THEN CONTINUE
5060 IF OBSEP<DMINI THEN 5130
5070 IF NOT THEN REVERSE DIRECTION AND TRY AGAIN
5.?060 TXVMXV :'TYV=YV
5090 TXV=TXV+DDI*ALPHA.TYVmTYV+DDI*BETA.TDXD=XD-TXV:TDYI=YD-TYV
5100TXYDSQR(TDXD*TDXD+TDYDTDYD):TDXDoTDXD/TDXYD:TDYDOýtTDyDfDXyD

5110 TXV=TXV+DD'TDXDO:TYV=TYV+DD*TDYDO

5120 IF (TXV-X(o2+(T-YVY #o),A2<(XV.X(Lmn)A2+(YV-Y(L ,)A2 THiEN
ALPlAm-ALPHA.BETA=-BETA:DIRCHI .-GOTO 5140

5130 LMNI=MINI:DIRCH=0

5140 RETURN
5150'
5500 'A COLLISION OCCURRED, SO ANNOUNCE IT ON THE SCREEN AND QUIT.
5510 SCREEN 2:SCREEN :.LOCATE 12,30PRINT "COLLISIONM!!"
5520 PRINT #3,-I,.-,DXY(I),DRR(I) .PRINT #3,IX(I),Y(I):PRINT #3,"COLLISION!W'
5530 IF INKEY$-'"" THEN 5530

D-29

S

5540 XX=XV:YY-YV:GOSUB 6000:GOSUB 6500

5550 IF INKEY$=*" THEN 5550
5560 SCREEN 2:SCREEN 0:STOP

5570'
6000 'DRAW THE OBSTACLES, ORIGINAL VEHICLE PATH AND DESTINATION ON SCREEN.

6010 CLS:SCREEN 1
6020 LINE(XVO,200-YVO)-(XD,200-YD):CIRCLE(XD,200-YD).RV, I

6030 FOR C-I TO NO
6040 CIRCLE(X(C),200-Y(C)),R(C),. 1
6050 NEXT
6060 RETURN
6070'

6500 'DRAW THE VEHICLE POSITION ON SCREEN.

6510 CIRCLE(QX,200-YY),RV,2,,l
6520 RETURN
6530'
7000 'PERFORM THE COMPOSITION OF RULES FOR CALCULATING THE RATIO. GET
7010 'ITE MEMBERSHIP FUNCTION OF THE INTERSECTION OF 'OBSTACLE RADIUS' AND
7020 "OBSTACLE DISTANCE FROM THE VEHICLE' FOR ALL COMBINATIONS OF FUZZY RADIUS
7030 'AND DISTANCE SIZES.
7040 MAXMF=0

7050 FOR DSIZE=I TO 3
7060 'GET THE 'OBSTACLE DISTANCE FROM THE VEHICLE' MEMBERSHIP FUNCTION VALUE
7070 'MF1.
7080 PI=DIS(DSIZE,I):P2=DIS(DSIZE,2):P3=DIS(DSIZE,3):PaODIS:GOSUB 7500

7090 MFI-MF
7100 'GET THE 'OBSTACLE RADIUS' MEMBERSHIP FUNCTION VALUE MF2.

7110 FOR RSIZEMI TO 3
7120 PI-RAD(RSIZE,I)-.P2=RAD(RSIZE,2):P3=RAD(RSIZE,3):P=ORAD:GOSUB 7500

7130 MF2=MF

7140 'GET THE INTERSECTION MEMBERSHIP FUNCTION VALUE MFDR.
7150 IF MFIdF2 THEN MF=-MFI ELSE MF=MF2
7160 MFDR=MF
7170 'GET THE MEMBERSHIP FUNCTION VALUE FOR 'RATIO' AS THE CARTESIAN PRODUCT OF
7180 'OBSTACLE DISTANCE FROM THE VEHICLE' AND 'OBSTACLE RADIUS' ACCORDING TO
7190 'EACH RULE AND THEN THE UNION OF ALL RULES.

7200 PI=RAT(DSI2ERSIZE,I):P2=RAT(DSIZE,RSZE1 2):P3=RAT(DSIZERSIZE,3):P=RATI

7210 GOSUB 7500
7220 IF MF<JMFDR THEN MFRDR=MF ELSE MFRDR=MFDR
7230 IF MFRDR>MAXMF THEN MAXMF=MFRDR

7240 NEXT
7250 NEXT
7260 RETURN
7270'

D-30

"7500 THE GENERIC MEMBERSHIP FUNCTION MF(P1.P2,P3).

7510 IF PI<P2 THEN 7530

*7520 IF P<cu2 THEN MF1I. GOTO 7580 ELSE GOTO 7550

7530 IF Pc=Pl THEN MF=0.GOTO 7580

7540 IF P<P2 THEN MN(P-P1)/(P2-PI):GOTO 7580

7550 IF PkP3 THEN MN(P3-P)/(P3-P2):GOTO 7580
7560 IF P3<P2 THEN MF=I:GOTO 7580

7570 IF P•umP3 THEN MF•O

7580 RETURN

7590'
8000 'CHECK FOR A COLLISION WITH ANY OBSTACLE.

8010 FOR I=I TO NO
8020 IF DXY(I)<DRR(J) THEN 5500
8030 NEXT
8040 RETURN

0 'PROGRAM TO AVOID CYLINDRICAL OBSTACLES USING THE SAFOR CRISP ALGORITHM

* 10 INPDIOW "USE OBSTACLE PARAMETERS IN FILE Y(N)";ANS$

20 IF ANS$="Y" OR ANS$="y" THEN OPEN "I",I,"OBSTACLE.DAr ELSE GOTO 60

30 'YES, SO GET PARAMETERS FROM FILE.
40 GOSUB 500:GOTO 110

50 'NO, SO GET PARAMETERS DIRECTLY FROM KEYBOARD.

* 60 OPEN O",I,"OBSTACLE.DAT"
70 ̀ GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (XY) LOCATIONS.

80 GOSUB 1000

90 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (XY) LOCATIONS.

100 GOSUB 1500
* IIOFORI=ITONO

120 PRINT "OBSTACLE #";I;": X =";XI(I),"Y =";YI(1)
130 NEXT

140 IF INKEY$=W" THEN 140

150 'START WITH THE VEHICLE IN ITS INITIAL POSITION, INITIALIZE THE

160 VONFIGURATION STATE, AND OPEN THE FILE TO RECORD THE VEHICLE PATH.

170 XV=XVO:YV-YVO.FIRST=I:LAST=O.OPEN "O",3,"VCOORDSDAT"

180 CLS:INPtIT "BASIC INCREMENT FOR VEHICLE MOTION ALONG PATH";DD
190 GOTO 360
200 1GET THE DISTANCE OF THE VEHICLE FROM THE DESTINATION.

210 DXINXD-XV:DYD=YD-YV

220 DXYm=DXD*DXD+DYDD MIND=DXYD2:DXYD=SQR(DXYD2)

230 'IF THE VEHICLE IS CLOSER TO THE DESTINATION THAN THE LENGTH OF ITS OWN

240 'RADIUS LET THE VEHICLE GO STRAIGHT TO THE DESTINATION.

250 IF DXYD<RV THEN XV=XD:YV=YD:DEST$="DEST":GOTO 350

260 'IF NOT THEN FIND THE NEAREST OBSTACLE, WHETHER IT IS THE LAST ONE, AND IF

D-31

270 IT IS NOT GET THE DIRECTION ORTHOGONAL TO THE VEHICLE'S LINE OF SIGHT TO

280 'THE OBSTACLE.
290 GOSUB 2000
300 IF THE NEAREST OBSTACLE IS NOT THE LAST GET THE INCREMENT FACTOR FOR THE
310 'VEHICLE MOTION ORTHOGONAL TO THE DIRECTION OF THE OBSTACLE FROM THE
320 'VEHICLE. CALCULATE THE NEW VEHICLE POSITION AND SET A FLAG INDICATING

330 THAT IT IS NO LONGER THE INITIAL POSITION.

340 GOSUB 2500
350 'UPDATE SCREEN AND SAVE LAST VEHICLE POSITION AND DIRECTION

360 XX-XV:YY-YV
370 GOSUB 3500:GOSUB 4000
380 IF FIRST=0 THEN 420

390 'FREEZE THE SCREEN CONFIGURATION BEFORE THE VEHICLE STARTS TO MOVE
400 IF INKEYS" THEN 400
410 IF FIRST=I THEN FIRST-0
420 IF NOT AT DESTINATION GET VEHICLE POSITION UPDATE
430 IF DEST$<>"DESTr THEN 210

440 IF INKEY$.--" THEN 440
450 SCREEN 2:SCREEN 0
460 END
470'
500 'GET OBSTACLE PARAMETERS FROM FILE
510 Ig0.INPUT #1,XVO,YV0,ZVORV

520 INPUT #I,XD,YD.ZD
530 WHILE NOT(EOF(I))
5401=1+1
550 INPUT #1,X(),Y(I)Z,(I),:X(I):YX(I):Y1(r):Y(I).R1Q()=R(I)

560 WEND
570 NO=I
580 RETURN

590'
1000 'GET INITIAL VEHICLE DATA

1010 INPUT "VEHICLE INITIAL X,Y,Z COORDINATES';XV0,YV0,ZV0

1020 INPUT -VEHICLE RADIUS';RV
1030 INPUT -DESTINATION XY COORDINATES";XDYDZD
1040 PRINT #1,XV0,YV0,ZV0,RV:PRINT #IXD,YDZD

1050 RETURN
1060'

1500 IGET INITIAL OBSTACLE DATA
1510 INPUT "NUMBER OF OBSTACLES";NO
1520 WHILE I<N0
15301=1+1
1540 PRINT "OBSTACLE #';I

1550 INPUT -X,Y,Z COORDINATES';X(I),Y(I)Z(I)

D-32

0

1560 DN "RADIUS";R(I):XI(I)mX(I):YI()QY(1):RRI(I)=R(I)
1570 'IF FILE IS IN INPUT MODE DON'T WRITE IN IT

* 1580 IF FRI-"I" THEN 2100
1590 'NEW DATA AND WRITE ONLY FILE MODE SO PRINT PARAMETERS IN FILE

1600 PRINT #UC(I),YQ),-(D,R()
1610WEND
1620 RETURN
1630'
2000 'GET DIRECTION ORTHOGONAL TO LINE OF SIGHT FROM VEHICLE TO NEAREST

2010 IOBSTACLE. FIRST GET THE NEAREST OBSTACLE AND CHECK IF IT IS THE LAST.
2020 FOR J=u TO NO
2030 DX()m=X(I)-XV:DY(1)=YQ)-YV'DRRI)=(RV+R(1))A2
2040 DXY2(I)DX(.DX(I)+DY(1):DXY(I)=SQR(DXY2(I)):DIST(IODXY(I)-R(1)
2050 IF (DIST(1)cMIND) THEN INI=LIND=DISTQ)
2060DCPA(I)=DX(I)*DXD+DY(I)*DYD
2070 IF LAST-I THEN 2110
2080 'IF NOT ALREADY KNOWN TO BE THE LAST OBSTACLE CHECK WHETHER IT IS OR NOT
2090 'AND SET -1 FLAG IF IT IS NOT BY VIRTUE OF ITS DIRECTION.

• 2100 IF DCPA(I)>0 THEN LAST--I

2110 NEXT
2120 IF THE FLAG NOT SET THEN OBSTACLE MUST BE THE LAST.
2130 IF LAST-i THEN LAST=0 ELSE LAST=I
2140 'CHECK IF THE NEAREST OBSTACLE IS LAST BECAUSE THE VEHICLE IS CLOSER TO

* 2150 rTHE DESTINATION THAN TO THE OBSTACLE AND QUIT IF IT IS.
2160 IF DXY2(MINI)>DXYD2 THEN LAST=l.GOTO 2270
2170 IGET UNIT VECTOR IN THE DIRECTION ORTHOGONAL TO THE VEHICLE PATH DIRECTION
2180 'AND POINTING AWAY FROM THE OBSTACLE CENTER. GET THE DISTANCE DACPA TO

2190 TIE OBSTACLE CENTER AT THE CLOSEST POINT OF APPROACH, THE DISTANCE DTCPA
* 2200 'TO THE CLOSEST POINT OF APPROACH, AND THE ALLOWED PASSING DISTANCE PD.

2210 DACPA--(DXD*DY(MINI)-DYD*DX(MINI))/DXYD
2220 DTCPA=DCPA(MIN1)/DXYD:PD=SQR(2*DRR(MINI))

2230 'NOW CALCULATE THE SCALE FACTOR SCF AND DETERMINE THE VEHICLE COORDINATE
2240 'INCREMENTS INCX, INCY.

* 2250 SCF=SGN(DACPA)(PD-ABS(DACPA))*DD/ABS(DTCPA)
2260 INCX=DY(MINI)SCF/DXY(MINI):INCY=-DX(MINI)*SCF/DXY(MINI)
2270 RETURN
2280'
2500 'GET THE NEW VEHICLE POSITION. IF THE LAST OBSTACLE IS PASSED SKIP THE

* 2510 'FIRST INCREMENT. OTHERWISE, INCREMENT THE VEHICLE POSITION ORTHOGONAL

2520 TO THE DIRECTION OF THE NEAREST OBSTACLE RELATIVE TO THE VEHICLE.

2530 IF LASTwI THEN 2550
2540 IF DCPA(MINI)>0 THEN XV=XV+INCX:YV=YV+INCY
2550 1GET THE DIRECTION OF THE DESTINATION FROM THE VEHICLE AND THE VEHICLE
2560 'POSITION AFTER INCREMENTING ITS COORDINATES IN THAT DIRECTION.

D-33

257 DXD.XV:DYD=YD-YV:DXYD=SQR(DXD*DXD+DYD*DYD):DXD0=DXD/DXYIDYD0=DYD/DX
YD

250XVI=XV+DD*DXDO.YVIu.YV+DD*DYDO
2590 'GET THE SQUARED DISTANCE OF THE VEHICLE IN THE NEW POSITION FROM THE

2600 'NEAREST OBSTACLE.

2610 DXY2100(X(MIN)-XVI)A2+(Y(MNI)YVI)A2
2620 'IF THE DISTANCE IS LARGE ENOUGH ACCEPT THE LAST INCREMENT IN THE VEHICLE

2630 'PSITION.
2640 IF DXY2I(MINI)>DRR(MINI) THEN XV=XVI:YV=YV 1
2650 'RECORD THIS DATA IN THE VEHICLE PATH FILE ALONG WITH THE SQUARED SUM OF

2660 MMe VEHICLE AND OBSTACLE RADII.
2670 PRINT #3,XV.YV,DXY2(MINI),DRR(MINI)
2'080 'CHECK FOR A COLLISION.
2690 GOSUB 45OOa

2700 RETURN
2710'
3000 'A COLLISION OCCURRED, SO ANNOUNCE IT ON THE SCREEN AND QUIT.

3010 SCREEN 2:SCREEN 0:.LOCATE 12,30:PRINT "COLLISION!!!"

3020 PRINT #3,-l,-I,-,-I:PRINT #3,"COLLISION:!!"
3030 IF INKEY$ffi" THEN 3030
3040 STOP

3050'
3500 'DRAW BASIC ORIGINAL OBSTACLES, VEHICLE PATH AND DESTINATION ON SCREEN
3510 CLS:SCREEN I

3520 LNE(XVO,200-YVO)-(XD,200-YD):CIRCLE(XD,200-YD),RV,1
3530 FOR C-I TO NO

3540 CIRCLE(X(C),200-Y(C)),R(C)..I
3550 NEXT
3560 RETURN
3570'
4000 DRAW VEHICLE POSITION ON SCREEN
4010 CIRCLEQ(XXX00-YY),RV,2.,l
4020 RETURN
4030'
4500 'CHECK FOR A COLLISION WITH ANY OBSTACLE.

4510 FOR 1=1 TONO
4520 IF DXY2(I)<DRR(1) THEN 3000
4530 NEXT

4540 RET'URN

0 •ROGRAM TO REPLOT VEHICLE PATH AROUND OBSTACLES

10 LASTX-IO.LASTY-100

D-34

20 'INPUT "VEHICLE COORDINATES FILENAME"; VF$
30 INPUT "OBSTACLE DATA FELENAME";OFS

* 40 OPEN 1"rI"OBSTACLE.DAT"
50 OPEN "I*.2,mVCOORDS.DAT"
60 GOSUB 1000.GOSUB 5000
70 WHILE NOT(EOF(2))
80 INPJTr #2IIX.YDUMMYDUMMY

* 85 7IF A COLLISION THEN ANNOUNCE IT AND QUIT
90 IF X--l AND Y-1 THEN GOSUB 500-STOP
100 E(ATX20-ASTY)-(X.200Y)
110 LASTIXd-XASTY=Y
120 WEND

0 130 IF INKEY$-** THEN 130
140 SCREEN 2:SCREEN 0
150 END
160'
500 'COLLISION TO ANNOUNCE

0 510 IFDINKYS-"* THEN 510
520 INUT #2.C$
530 SCREEN 2:SCREEN 0-.LOCATE 12X3PRINT C$
540 IF INKEYS-" THEN 540
550 RETURN
5w0'

* 1000 'GET OBSTACLE PARAMIETERS FROM FILE
1010 I=&NPUT #1,XVOYVOZVORV
1020 INPUT e1,XD,YDZD
1030 WHILE NOT(EOF(1))
1040 1=1+1

* 1050 IPTlC)YQ:l)Xl:l)YIZ(rQ:l)RI
1060 WEND
1070 NOm-I
1060 RETURN
1090'

* 5000 'DRAW BASIC ORIGINAL OBSTACLES, VEHICLE PATH AND DESTINATION ON SCREEN
5010 CLS:SCREEN 1
502 LIN(V0M,200-YV0)-(XD,200YD):CIRCLE(I0,100),10,2-CIRCLE(310,100),10,1
5030OFOR Cm I TO NO
5040 CIRtCLE(X(C).200Y(C)),R(C)..l,

* 5050 NEXT
5060 RETURN

D-35

DATA FILES FOR USE IN THE AVOIDANCE PROGRAMS (TO USE OBSTACLE DATA FOR ANY
OBSTACLE CONFIGURATION NUMBER N COPY THE FILE NAMED OBSTACLN.DAT TO
OBSTACLE.DAT. WHEN THE PROGRAM ASKS "USE PARAMETERS IN FILE?" ANSWER "Y").

OBSTACLIDAT
10 100 10 10
310 100 10
100 125 20 20
150 70 25 25
200 70 25 25

OBSTACL2.DAT
10 100 1 10
310 100 10
100 125 20 20
150 70 25 25
200 70 25 25
250 120 30 30

OBSTACL3.DAT
10 100 10 10
310 100 10
75 100 25 25
125 120 20 20
125 70 30 30
200 70 25 25
225 120 25 25
270 80 30 30

OBSTACLA.DAT
10 100 10 10
310 100 10
75 60 25 25
100 110 30 30
125 120 25 25
175 80 30 30
225 120 25 25

OBSTACL5.DAT
10 100 10 10
310 100 10
50 90 25 25
150 110 30 30
250 120 25 25

D-36

MF.DAT (TIMS IS FURZY MEMBERSHIP FUNCTION DATA)

* 35,5.20
5,20,35
20.35.5
100,20.50
20,50,100

* 50,100,20
1,3,5
3,10,5
3,10,5
5,1,3

1.3,5
3,10,5
5,1.3
5,1,3
1,3.5

D-37

