pR-EEDI VT
® Copy 24 of 35 copies

D-A279 058 —
\\II\I\\\I\I\\l\\\Il\lllhlllllﬂ'\l\\l\\\ll\ | @

IDA PAPER P-2940

THE APPLICATION OF FUZZY LOGIC
TO SAFOR IN SIMNET

Irvin W. Kay
Bohdan Balko

C

LECTE
MAYQ 9.1
Februarv 1994 'h -

Approved for public releace; distribation salimited.

&
I II!I’!/HI IIIlHIIIHIIIIIIIIHMIHI 5" oazy

Uy

LTV e
* L%Cmf .
l [) 4 INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria. Virginia 22311-1772

04 5 06 O0C7 mummnum

DEFINITIONS
1DA publishes the following documents to report the results of its work.

Reports

Reperts are the most authoritative and most carefuily considered products iDA publishes.
They normally embody results of major projects which (a) have 2 direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address Issues that have
sigaificant economic implications. IDA Reports are reviswed by outside pacwis of experts
to ensure their high quality and relevance ta the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of 1DA established working groups and
panels compossd of senior individuals addressing major issuss which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and gthers as selecied by IDA to ensure their high quallly and
relevance to the problems studied, and are refeased by the Prasident of IDA.

Papers

Papers, also authoritative and carefully considered products of IDA, address studic . that
are namrower in scope than those covered in Reports. IDA Papers are reviewsd to ensure
that they mest the high standards expected of refesesd papers in professional journals or
formai Agency reports.

Documents

IDA Documents are used for the convenience of the spensors or the analysts (a) to record
substantive work done in guick reaction studies, (b) to record the proceedings of
conferences and meetings, (¢) to make available preliminary and tentative resulis of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevalusted. The review of IDA Documenis
Is suited to their content and intended use.

The work reported in this document was conducted ander IDA’s Central Ressarch Program,
its publication does not imply sndorsement by the Department of Defense or any other
Government Agency, nor should the contents be construed as refiecting the official position
of any Govemnment Agency.

REPORT DOCUMENTATION PAGE e N v 0188

mewblho ot) w© Qe 1 hour per udng the Wme tor 9 ch -nungd-umrcu gathenng and manwuning the dala nesded. and
9 and revi he coll of info Send mburdonnlm-l-ovmyohwup.dovm ! of it 90 fot 1educing Wus burden. to Washingion
i Dr for Ink Op and Reports, |2|5 Jolhuon Dave Highway. Suite 1204, Adington. VA 22202-4302, and to the O'iet of r and Budgel. "- Red Project
. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1994 Final--June 1993-December 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Application of Fuzzy Logic to SAFOR in SIMNET IDA Central Research

Project
. AUTHOR(S)
Irvin W. Kay
Bohdan Balko
. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Institute for Defense Analyses
1801 N. Beauregard St. IDA Paper P-2940
Alexandria, VA 22311-1772

[9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 180 words)

This paper describes the history of an experiment to demonstrate the potential utility of fuzzy logic applied to
SAFOR algorithms by using fuzzy logic to modify an existing vehicle collision avoidance algorithm.
Appended to the paper are instructions on how to create SAFOR exercises on a Silicon Graphics terminal in
the IDA Simulation Center network. This report also contains listings of source codes used in various
phases of the work.

14. SUBJECT TERMS 15. NUMBER OF PAGES
fuzzy logic, fuzzy set theory, SAFOR algorithms, semiautomated forces, 130
collision avoidance 16. PRICE CODE
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [0. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18
288102

IDA PAPER P-2940

THE APPLICATION OF FUZZY LOGIC
TO SAFOR IN SIMNET

Irvin W. Kay
Bohdan Balko

February 1994

Approved for public release; distribution snlimied.

)

IDA

INSTITUTE FOR DEFENSE ANALYSES
IDA Central Research Program

PREFACE

This document has been prepared under IDA's Central Research Program.

We would like to thank the following IDA people for their cooperation and help:
Bob Clover, Keith Green, Barron Gibson, Chris Turrell, and Grant Shackelford of the
Simulation Center; Peter Brooks of SFRD; Kevin Brown of STD; and Ken Ratkiewicz of

PSO.

The implementation of the algorithm in the SAFOR system could not have been
done without the cooperation of Bob Clover and Keith Green and the help of Kevin Brown
in the carly stages of the work. Keith Green taught us how to use the SAFOR system and
create exercises and Bob Clover helped us identify certain interesting features in existing
logged military exercises. For the stealth room operation during the creation of the video
we owe thanks to Barron Gibson, Chris Turrell, and Grant Shackelford.

Peter Brooks deserves our thanks for introducing us to SAFOR and providing
helpful information about its use and operation.

Ken Ratkiewicz encouraged us to make a movie of the stealth action showing the
improvements we achieved and then provided professional assistance in the creation of the
movie. For this we are very grateful.

We would also like to thank Dr. Hillman Dickinson for helpful suggestions to
improve battlefield realism.

Accession Por

| NTIS CRaxl
DYIC ThB
Unapneuaced

0
d
Jesiif lcittian_________l

By .

. Disdrivution/ .
~Availability Godes

Avell apnd/or

Dist Sgeutlal

FOREWORD

This document is essentially a notebook, recording the work done and information
acquired during a two-phase experiment to test the potential application of fuzzy logic to
the Semi-Automated Forces (SAFOR) system. SAFOR is used in Simulation Network
(SIMNET) battle exercises to reduce the number of real human participants by replacing
some of them with virtual participants generated by computer software. A major objective
of SAFOR is to replicate human behavior with enough fidelity that a human taking part in
an exercise will be unable to distinguish between simulated objects controlled by computer
and those controlled by other humans. The idea underlying the use of fuzzy logic is that
algorithms based on it are more likely to resemble the kind of rough-estimate, semi-
qualitative, mental process that humans apply to quick decision making than the
mathematically precise algorithms that are more typical of computer programs.

The question addressed in this experiment is whether fuzzy logic can be a general
tool for improving an algorithm affecting the action of one or more SAFOR entities by
making the action resemble human behavior more than it would have without the
improvement. Therefore, in the context of the experiment it is important to avoid changing
such an algorithm in any way other than by substituting fuzzy rules for precise calculations
that would normally govern a particular action. An important objective has been to
demonstrate that this can be achieved in a straightforward way by means of what is now a
standard procedure in the design of fuzzy rule-based control systems.

ABSTRACT

This paper describes the history of an experiment to demonstrate the potential utility
of fuzzy logic applied to SAFOR algorithms by using fuzzy logic to modify an existing
vehicle collision avoidance algorithm. Appended to the paper are instructions on how to
create SAFOR exercises on a Silicon Graphics terminal in the IDA Simulation Center
network. This report also contains listings of source codes used in various phases of the

work.

CONTENTS

I. INTRODUCTION.....coutuiiieeiertiuiiieenceesrtitststaressteseecsssncnsssssssnense 1
A. Background..........cooeieimiiiiiiniiiiiiiiiiiiiriir et s s ee s eaens 1
) BTN 6) N 1
2. FUZZY LOGIC ..coiiviiiniiiiiiiiiiiii it ntcic ettt e eeraeensanseanans 2
B. Project HiStOryccciiuiiniiiiiiiiiiiiiiinriictitnninieeicanesraeenannee 2
1. PEISPECHVE ..ccuivninnieninniniieiiiiinriiiieriernrertneeitieranentsereesnesnsassanas 2
2. Phase Oneccveiiiiiiiiiiiirretretitettttrattis e s e e sentarasaeas 3
3. Phase TWO..cuceuiniuieiiieiieinreraeroierscussteteeestnreretasesssasacssasasasasas 4
II. CRISPOBSTACLE AVOIDANCE......ccccotiitieiniiiniiiiiriniiiiesitiinscnacenns 7
A. Preliminary AnalysiS........cocoiuiriuiiniiniiiiairiiiniiniiiieieeiirieatetnieenan. 7
B. A Crisp Avoidance Algorithm for a Vehicle and

Obstacles on the Groundccociiiiiiiiiiiiiieniiiiiiiiiiiiiiiiieareasiaceeens 12
III. FUZZY OBSTACLE AVOIDANCE.......cccietitiiiiiiiieniiiiiriricsssicnsasacacs 13
A. Preliminary Definitions........cccvieiiiiiiiiiciniiiiiiiiiiiiiiiiieiinresneenne, 13
B. Fuzzy Obstacle Avoidance Rules.........ccccocviiiiiniiiiniiiiiiiiiiiiieinnn 19

C. A Fuzzy Obstacle Avoidance Algorithm for a Vehicle and
Obstacles on the Groundcooiieiiiiiieiiiiiiiiiinieniniiiieeenietaecneancans 20
IV. SAFOR OBSTACLE AVOIDANCE.....cccitieeiiietmininiiniieiascecncasessscnsancs 23
A. SAFOR Avoidance in General........cccccoiiiiininiiiiiiiiiiciiiiiieciinsiecenns 23
B. SAFOR Vehicle AvOIdancecococieeiieieireinieeiineiaierercarnieisnsssesnnns 23
V. SAFOR VEHICLE AVOIDANCE USING A FUZZY ALGORITHM.............. 27
A. The ConCePtceiiiiiiaiiiiiieiiineiiareereieesesastasessasessarssssssassosassssns 27
B. The Implementationcccoiiuiuiiiiiiniiiiiiiiiiiiiniiiiaiieneiiieecncnenenn 28
C. Code Changesccccvuiieiiiiiiiiriiiietrncereeseseeeasencesensascnsescancssnsens 28
VI. VIDEOACTIONciiiiiiiiiiiiiiiitienarntacntasscanstontusesassssesasorsnsasssnnses 31
RECTENCES ...vueiiieniieiiiiiiiiiiiiiiiii it crei e teeeetecetatannnssensasnssnsnsassssanes 37
Appendix A--Vehicle Path While Avoiding Obstaclesc.ccceeviiiiiiiiiieeiicinnnnnnn. A-1
Appendix B--Creating, Storing, and Replaying SAFOR Exercises on SIMNET.......... B-1
Appendix C--SAFOR Vehicle Collision Avoidance Code.........c.ccovuereriveennnenennnse. C-1
Appendix D--GW Basic Obstacle Avoidance Programscc.cceeiieininieneneennnnnn. D-1

ix

o w o» v

10(a).

10(b).
10(c).
10(d).

FIGURES
Vehicle Obstacle Collision Diagramccceeeiiiiiiiiiiiiiiniiiiiiiireceneeenenenss 7
Vehicle Going Around ObStacleccveiiiiiniiiiiiiiiiiiiiiiiiirncr e canan. 9
Fuzzy Set Membership Function--Large Distance to the Obstacle................... 14
Fuzzy Set Membership Function--Medium Distance to the Obstacle................. 14
Fuzzy Set Membership Function--Small Distance to the Obstacle................... 14
Fuzzy Set Membership Functions--Medium Distance to the Obstacle
and Large Distance tothe Obstaclecocoeiviiiiiiiiiiiiiiiiiiiiiiiiinnnan. 16
Fuzzy Set Membership Function--Intersection Between Medium
Distance and Large Distance to the Obstacle...........cccovuvviiniiniiiniiiiiininnan... 16
Fuzzy Set Membership Function--Union of Medium Distance and
Large Distance to the Obstacleccocviiiiiiiiiiiiiiiiinniiiiiiiiiiineeciececanne, 17
An Overhead of the Area of Interest With Movement of the Platoon
and APC Indicated..........cceeuimiuimiiiiiiiiiiiiiiiiiiiiiiiitiierr e enaneans 33
Overhead View of the Lead Tank Approaching the Intersection.
This scenario is the initial condition for all the runs shown here..................... 34
Collision Between Tank and APC When SAFOR Algorithm Is Used 34
Avoidance of Collision When Fuzzy Algorithm Is Usedc.cocvvvvvernennnnn.. 34
Avoidance of Collision When Fuzzy and Slowdown Algorithms Are Used 34
TABLES

Fuzzy Vehicle Velocity Avoidance Increment Dependence on

Obstacle Radius and Distance from Vehiclecccoveviiiiiiiiincinienennnenn. 19

Fuzzy Vehicle Velocity Avoidance Increment Dependence on

Passing Distance and Distance to Closest Point of Approach 27
X

I. INTRODUCTION

A. BACKGROUND

1. SAFOR

Reference 1 describes SIMNET as a joint ARPA and U.S. Army research project
with the goal of developing the technology to build an extended network of interactive
combat simulators. SAFOR is the term used for the SIMNET Semi-Automated Forces
system, the purpose of which, as stated in Ref. 1, is to allow "a few individuals to direct a
large number of ground and air vehicles that operate as a unit in the simulated world."”

Most of the individual SAFOR vehicle behavior, e.g., avoiding obstacles or
maneuvering to stay in a prescribed formation, is under the control of software algorithms
rather than humans. On the other hand, it is highly desirable that the human participants in
a simulated combat exercise not be able to distinguish between simulated vehicles
controlled by other humans and those that are computer driven.

In various recorded SIMNET exercises deviations from realistic vehicle behavior
range from the subtle, recognizable only by experienced observers, to the gross or even
bizarre. Examples of the first type are: unnecessarily leaving a road while traveling along
it, not moving realistically over certain terrain profiles, not changing speed when climbing a
hill, not slowing down when encountering another vehicle. Examples of the second are:
colliding with other vehicles, driving into a lake, going through a wall. Bizarre behavior
occurring in early exercises included several tanks coalescing to form an unrecognizable
mass and tanks milling about randomly before lining up :n a formation.! Recent examples
are two or more vehicles performing a kind of dance and single vehicles aimlessly tuming.

1 These "monster vehicles” are really not due to a SAFOR deficiency, but the results of initial attempts
to de-aggregate a platoon from BBS (an algorithmic war game that operates at the unit level—platoon
being the lowest level) into its individual component entities (4 tanks) in SIMNET. Sometimes the
de-aggregation algorithm fails to work properly.

1

2. Fuzxy Logic

In 1965 L. Zadeh, a professor of electrical engineering at the University of
California whose special interest was in the design of control systems, introduced the
concept of fuzzy sets (Ref. 2) as a generalization of classical set theory to deal with
linguistically imprecise notions in a technologically sound way. His point was that to
perform satisfactorily, control systems need not be optimal or even based on complete
knowledge of the pertinent physical laws of motion. In fact, he expected controls designed
using fuzzy sets and associated rules of fuzzy logic to mimic human behavior when applied
to ordinary human activities such as parallel parking a car.

With the advent of the microcomputer chip, industrial applications of Zadeh's
approach became feasible and, spearheaded by Japanese manufacturers, have multiplied at
an ever increasing rate over the last decade. It is now common knowledge that the fuzzy
logic methodology in conjunction with microcomputer chips has resulted in many
consumer-oriented devices that exercise human-like judgment, such as a self-focusing
camcorder that also selects the focal region of interest. Equally well known are more
claborate applications, such as a completely automated cement kiln or subway train, in
which a fuzzy controller replaces a human operator.

The success of fuzzy logic as a technique for imitating human behavior in the
design of control systems suggests that the same approach may accomplish a similar end if
applied to dynamic computer generated simulations like those created by the SAFOR
system. The objective of the work reported in this document has been to demonstrate the
potential utility of applying fuzzy logic to SAFOR to make its computer-controlled entities
behave more as if they were controlled by humans. To keep the demonstration as simple as
possible the work has concentrated on a single activity—avoiding collisions between
vehicles.

B. PROJECT HISTORY

1. Perspective

The project has had two distinct phases. The early phase concentrated on finding
the relevant SAFOR source code. Although we had no documentation describing the actual
SAFOR algorithms, and therefore no way of knowing what they were, during this period
we also considered possible collision avoidance algorithms. The later phase involved
experimenting with SAFOR by creating simple exercises in which vehicle collisions

2

W ®

_ A

occurred and then replacing the existing avoidance algorithms by fuzzy versions that
avoided collisions in identical scenarios.

2. Phase One

While still ignorant of the SAFOR collision avoidance algorithms we attempted to
develop some of our own. We started with a three-dimensional concept to leave open the
possibility of including aircraft, or at least helicopter, avoidance maneuvering. The vehicle
and all obstacles were represented by spheres.

At first we treated ground vehicles as spheres resting on the ground, which was
assumed to be a plane surface. Later we transformed the algorithms into two-dimensional
versions that use cylindrical instead of spherical entities for representing the vehicle and
obstacles.

Chapter II provides a description of the nonfuzzy (also called crisp) algorithms
along with a detailed analysis deriving the necessary supporting mathematical formulae.
Deleting the z coordinate, which represents height above the ground, accomplishes the
transformation of the formulae from the spherical to the cylindrical geometry. Chapter III
provides a brief summary of the fuzzy logic approach to algorithm design in general and its
application to obstacle avoidance by a vehicle in particular.

The approaches to collision avoidance in Chapters II and III also differ in another
respect: the crisp algorithms take into account all obstacles that the vehicle can encounter
on its way to its destination, while the fuzzy ones consider at most two neighboring
obstacles at a time. The objective in the first case was to devise a crisp algorithm to define
a path from the initial position of the vehicle to its destination such that it would not collide
with any obstucle along the way. The objective in the second case was to design a fuzzy
algorithm that would behave more naturally, avoiding obstacles as they come into view
without necessarily knowing their locations in advance. In both cases the algorithms
chosen were the simplest possible that appeared to meet the stated conditions.

Both the crisp and the fuzzy algorithms were implemented in PC GW Basic
programs that display the spherical or cylindrical vehicle avoiding similarly shaped
obstacles on its way as it moves from the left end of a PC terminal screen to the right end.
Appendix A contains figures il'ustrating the path of the vehicle as it avoids obstacles in five
different configurations, using both the crisp and fuzzy algorithms, for both the spherical
and the cylindrical geometries. Appendix D contains listings of all of the GW Basic
programs, including one called REPLOT.BAS, which replots the vehicle path as shown in

3

the figures. Also included in the appendix are files containing data that the programs can
use to reproduce the exercises associated with the figures.

3. Phase 2

The second phase began when Kevin Brown, who was working on a different
SIMNET programming problem but knew of our interest in SAFOR collision avoidance,
located a file called avoid.c containing the source code for the C language function
avoid_a_vehicle that implements avoidance of a collision between two vehicles. That file is
located in a Silicon Graphics subdirectory along with a large number of other files
containing source code and data required for SAFOR. Thus, a search of the other sub-
directory files for relevant function names found in avoid.c made it possible to uncover
enough source code to completely implement the SAFOR vehicle collision avoidance
algorithms.

Chapter IV identifies the location and discusses the nature of the source code for
avoiding vehicle collisions in general that the search uncovered. It also considers in detail
the calculations made to implement the function avoid_a_vehicle, which pertains
specifically to the avoidance of collisions between two vehicles.

At this point it was clear that our preliminary work on avoidance algorithms
described in Chapters II and III had concentrated on an essentially different problem than
the SAFOR algorithms address. We had been concerned with avoiding multiple obstacles,
whereas the comparable SAFOR algorithms could only deal with a vehicle against a single
other vehicle in the role of an obstacle. In fact, experimenting with a scenario involving
two stationary tanks near each other acting as obstacles and a third attempting to avoid
them, demonstrated that the moving tank may avoid one of the stationary ones but collide
with the other.

The calculations of Chapter IV indicate that the approach of the SAFOR function
avoid_a_vehicle is actually closer to that of our fuzzy than our crisp algorithm because it
deals with just one obstacle at a time.2 This made the insertion of a fuzzy version into
SAFOR much simpler than it might otherwise have been. Chapter V describes in detail the
new algorithm and how it fits into avoid_a_vehicle. Figures 21 and 22 in Appendix A
illustrate the difference between the paths that a cylindrical vehicle takes, controlled first by

2 In fact, it does not seem possible to use our crisp algorithm when the obstacles, themselves, are
moving vehicles.

4

the regular SAFOR algorithm and then by the fuzzy algorithm, when avoiding two
cylindrical objects.

As remarked in Chapter V, when a vehicle is turning into the path of another the
regular SAFOR algorithm can fail to prevent a collision, while the fuzzy version averts it
when applied to exactly the same scenario. Also discussed in Chapter V is a discovery
made after experimenting with various excrcises using either the crisp or the fuzzy version:
causing vehicles to slow down when starting an avoidance maneuver greatly enhances the
avoidance process.

Chapter VI describes a video tape recording of SAFOR anomalies observed in
several exercises displayed on the SIMNET Stealth screen. The tape also shows vehicle
collision scenes with the crisp SAFOR avoidance algorithm in control, followed by their
counterparts obtained by recreating the original scenes with the fuzzy algorithm in control.

To create, save, and replay SAFOR exercises it was necessary to use the SIMNET
Silicon Graphics terminals. Although user's manuals for some versions of SAFOR
(cf. Ref. 3) have been written, at the time we were unaware that any existed. Fortunately,
the SIMNET staff were very helpful, so that learning the procedures by word of mouth
was not as difficult as it might scem. Nevertheless, we hope that Appendix B, which
outlines the basic operational steps required to carry out the experiments discussed in this
report, can still have some value as a primitive guide for others who may be involved in
similar programs until a more polished and comprehensive manual becomes available.

II. CRISP OBSTACLE AVOIDANCE

A. PRELIMINARY ANALYSIS

Assume the vehicle, which is a sphere of radius Ry, is located initially at the
position ry and that its final destination is at rp. Assume that N obstacles, which are also
spheres of radius Ry, are located at the positions ry. Assume, also, that the vehicle intends
to move along the straight path connecting rv and rp. In dealing with obstacle avoidance it
is convenient to regard all vectors as relative to the destination point rp, working with
Ar =1 —rp instead of r. Figure 1 illustrates an example of the configuration with a single
obstacle and also shows the radius vector rcy to the point on the vehicle path closest to the
obstacle.

DESTNATION

OBSTACLE

Figure 1. Vehicle Obstacle Collision Diagram

Points r on the path must satisfy the equation
Ary xAr=0 . M

From (1) it follows that
Ar, x (Ar, x Ar)= (Ary - Ar)Ar, - |Ar,[Ar=0 ,

so that

(A"v'Ar)
Ar = ————<Ar, .)
jar, [

If rcy is the point on the path closest to the obstacle located at ry then rp must satisfy
Ar, -(Arg, ~Ar,)=Ar, - (1, -1,)=0 ,

so that
AI'V'AIO,=A1'V'AI'“ . (3)
But because of (2)
Arg = M@.Nv . @)
|ar,|
It then follows from (3) and (4) that
Arg, = Ar.l__Air.n. Ary .)
|Ary|
It follows from (5) that
Ar, - Ar,)
jaref =) ©)

v

The distance Dpbetween the point on the path rcy, closest to the object center ry and
the object center is given by

D% =, - 1o =|ar, - e[=|ar,f - 24r, - Arg, +|ar [

Because of (5) and (6) this becomes
2 2 2
D.’.=|Ar.|’-2(Ar=°Ar") +(Arn.Arv) =|Ar,,|’-(A'°'A’V) . -
Jar,[jar,f Jar,
The condition that the vehicle moving along the path will collide with obstacle n is
D2<(R,+R,) . ®)

The distance Dy between rcp and the position of the vehicle center ryy, on the path when
the collision occurs is given by

e e

D, =y(Ry+R,)’ -D? . ©
The collision occurs when the vehicle position on the path is given by

Arv-zArc."'Duﬁv“l ’ (10)
v

where Arcy, is given by (5) and D¢y, is given by (9).

In general a minimum approach sphere, with a radius R = Ry + Ry, is centered at
Ia. When the vehicle comes in contact with the obstacle at ry, its center lies on the minimum
approach sphere at the point ryy, obtained by adding rp to Aryy, given by (10). To avoid
being impeded by the obstacle the vehicle can move around it, in either of two directions,
until it reaches the point where it touches the cone that has its vertex at rp and is tangent to
the minimum approach sphere. The vehicle center will then lie on a conical generator
tangent to that sphere and can move along the generator toward the conical apex, which
coincides with the destination at rp. Figure 2 illustrates an example of such a
configuration, in which an obstacle directly blocks the vehicle's path to the destination.

DESTINATION

VEHICLE

OBSTACLE

Figure 2. Vehicle Going Around Obstacle

The cone is tangent to the sphere at a circle lying in a plane P that intersects the
conical axis at the point rp, given by

2
Ar, = Ar, — jar.[R a1

IArF lArl2

The equation
Ar-Arp =|anf

which, because of (11) takes the form

lasf-re)

Ar-Ar, = |Ar ' (12)
determines the plane P, whose intersection with the sphere, determined by
|ar-arf=R? (13)
determines the tangent circle. Substitution of (11) into (12) leads to
Ar,-Ar=|ar,f -R? . (14)

The combination of (13) and (14) leads to
laef =acf -R? (1s)
which points on the circle must also satisfy.
Equations (14) and (15), which together determine the circle where the cone and
sphere are tangent, are equivalent to
Ar,-Ar=1"
laf =12, (16)

where L is the distance from a point on the tangent circle to the destination at the conical
apex. For the case in which the vehicle and obstacle are both touching the plane z =0, i.e.,
are on the ground, the pair of equations (16) determine two points at the intersection of the
tangent circle with the plane z = zp = zy. This is because the position of the vehicle (or,
for that matter, of the obstacle) refers to the center of the sphere representing it. Then
Az =0.

If for the vector Arp the component Axy, = 0, the Ax and Ay components of the
solution Ar of (16) are given by

10

Ax = :I:\/L2 ~-Ay? (17a)

and if for the vector Ar,, the component Ayp = 0 the Ax and Ay components of the solution
Ar can be obtained by interchanging Ax and Ay as well as Axy and Ayp in (172). Other-
wise, those components are given by
A LAx, + Ay, L*(Ax? +Ay?)-L*
- Ax? + Ay?

Ay = =X (17b)

Since two points satisfy (16) the vehicle can choose between two possible new
paths. A simple, but not unreasonable, choice is the one requiring the vehicle to travel the
least distance to its destination, without taking into account future collisions with other
obstacles. For this purpose it is only necessary to select the point determined by the vector
Ar for which the distance §vp given by

8vp =|Ar, - Ar+|Aq (18)
has the smaller of the two possible values.

If a pair of (spherical) obstacles are too close together they can be combined into
one large sphere enclosing them both. For deciding when they are too closs, a safe (but
perhaps too stringent)? criterion would be: when the shortest distance between the two
obstacle surfaces is less than the vehicle diameter, i.c., if the condition

Il’. - l’,|< R, +R, +2R, (19)
is satisfied. If (19) is satisfied, an obstacle with the radius Ry, given by
R_ =-;-(|r,, -1, |+R,+R,) . (20a)

will take the place of the obstacles centered at ry, and r, with radii Ry and Ry The center
of the replacement will be located by the vector

3 Infact, if the vehicle and obstacles are on the ground a straightforward geometrical calculation shows
that, instead of (19), the least stringent condition is

f.~rf <(R.-R,) +4R,(JR_ +4K.)" .

11

(rﬂ - rﬂ

Fo-ral

r=r_+(R..-R.)

which is equivalent to

R-R, +|r,-1;,,[r . R,-R,_ +r, —r,,lr
- er. - rnI " er, - rnl)

B. A CRISP AVOIDANCE ALGORITHM FOR A VEHICLE AND
OBSTACLES ON THE GROUND

The basic idea of this algorithm is always to move the vehicle in a straight line from
its present position toward its final destination whenever possible. Using (8), the
algorithm determines the nearest obstacle with which the vehicle will collide if it continues
on that path. Then the next step is to find the collision point, using (10), and determine
whether the vehicle can go around the obstacle on a circular path to a position, calculated
using (17a) or (17b) along with (18), from which it can proceed in a straight line toward
the destination. This will be possible if the distance, determined from (19), between the
nearest obstacle and all others, or all others but one, is large enough; then if it is obstructed
on one side the vehicle can go around the nearest obstacle on the other side.

r (20b)

If more than one other obstacle is close enough to the nearest one to block the
vehicle, the algorithm assumes that the blockage occurs for either path around the nearest
obstacle, which it replaces, along with one of those that are too close, by a sphere whose
center is given by (20b) and whose radius is given by (20a). The sphere encloses, and is
tangent to, both obstacles being replaced.

After two obstacles have been replaced by a single sphere in this way the algorithm
starts over from the beginning with the new configuration of spheres replacing the old.
This procedure continues until it is no longer necessary to replace two spheres, regarded as
single obstacles, with one; i.e., the vehicle can avoid all spheres in the final configuration,
and therefore all of the original obstacles, without colliding with any.

12

III. FUZZY OBSTACLE AVOIDANCE

A. PRELIMINARY DEFINITIONS

In fuzzy logic terminology it is customary to refer to a set as defined in classical
logic as "crisp." Associated with any set in classical logic is its "characteristic function,”
defined over all elements in the universe of discourse (i.c., all elements that could possibly
be members of the set) as having the value 1 for every element that is a member of the set
and the value O for every one that is not. Associated with every "fuzzy" set is its
“membership function,” which for every element in the universe of discourse has a value in
the closed interval from 0 to 1. The crisp set characteristic function is obviously a special
case of the fuzzy set membership function.

Here fuzzy obstacle avoidance means using an algorithm consisting of some rules
expressed in the modens ponens form "If A then B,"” where A and B define fuzzy sets. For
example, A might be the phrase "the distance to the obstacle is large” and B the statement
"the change in the direction of the vehicle motion is small." The phrases "large distance to
the obstacle” and "small change in the direction of the vehicle motion" refer to fuzzy sets
defined by specific membership functions.

The membership function of the set "large distance to the obstacle” might be a non-
decreasing function that is 0 as the obstacle distance increases from 0 to 50 meters,
increases linearly from 0 to 1 as the obstacle distance increases from 50 to 100 meters, and
remains equal to 1 for all obstacle distances larger than 100 meters. Figure 3 illustrates a
simple piecewise linear membership function for the fuzzy set "large distance to the
obstacle.”

Membership functions for "medium distance to the obstacle” and "small distance to
the obstacle” can be defined in a similar way. Figure 4 illustrates one for "medium distance
to the obstacle," and Figure 5 illustrates one for "small distance to the obstacle".

13

Fuzzy Set Membership Function
Large Distance to the Obstacle

E ¢ ¢ £ &

Figure 3. Fuzzy Set Membership Function-—-Large Distance to the Obstacle

Fuzzy Set Membership Function

Medium Distarnce to the Obstacle

&

Figure 4. Fuzzy Set Membership Function-Medium Distance to the Obstacle

Fuzzy Set Membership Function
Small Distance o the Obstacle

8 £ 8 B ¢

() 38 r) i) r 38

[4

Figure 5. Fuzzy Set Membership Function—-Small Distance to the Obstacle

14

Three parameters Py, P2, P3 are sufficient to characterize any function of the types
illustrated in Figures 3-5. The following rules define a generic membership function

representing small, medium, or large.

If
P, <P, ,

then the fuzzy set is large and its membership function is defined by:

(P2P,, MF(P)=1;
P-P
{P,2P>P,, MF(P)= —;
P,-P,
P, 2P, MF(P)=0.

If
P,<P,<P, ,

then the fuzzy set is medium and its membership function is defined by:

P<P, MF(P) = 0;
P,<P<P, MF(P)=1 1L,
Pz'Pl
P,-P
P,<P<P, MF(P)=—2——;
Ps‘Pz
P, <P, MF(P)=0.

P,<P, ,

then the fuzzy set is small and its membership function is defined by:

(P2P,, MF(P)=1;
P,-P
{P,<P<P,, MF(P)=—2——.
P: "Pz
P, <P, MF(P)=0.

15

The membership function pAo~B(P) of the intersection of two fuzzy sets A and
B with membership functions pa(P) and ug(P) is given by the function, which for each
value of P is equal to the smaller of the two membership functions at that value, i.e.,

Mans (P) = min[pt, (Pp5(P)] 1)

For example, the intersection of "large distance to the obstacle” with "medium distance to
the obstacle,” the curves of whose membership functions appear separately in Figures 3
and 4 and together in Figure 6, has a membership function depicted by the curve in
Figure 7.

Fuzzy Set Membership Functions
Medium Distance o the Obstacie and
Large Distance 1o the Obstacle
w
10|
[
o8
[7]
as

Figure 6. Fuzzy Set Membership Functions--Medium Distance
to the Obstacie and Large Distance to the Obstacle

Fuzzy Set Membership Function
intersection Batween Medium Distance and
Large Distance to the Obstacle
o

19

[T}

(']

o4

a2

o 0N 0 ©
[4

Figure 7. Fuzzy Set Membership Function--Intersection Between
Medium Distance and Large Distance to the Obstacle

16

The membership function pa_p(P) for the union of two fuzzy sets with member-
ship functions pA(P) and up(P) is given by the function, which for each value of P is equal
to the larger of the two membership functions at that value, i.c.,

Haus(P)=max[u, (P),ug(P)] . (22)

The curve in Figure 8 depicts the membership function of the union of the two fuzzy sets
whose membership function curves appear in Figure 6.

Fuzzy Set Membership Function
Union of Medhun Distance and
Large Distance 1 the Obstacle
-
18 ———
(T}
a8
o
a2

Figure 8. Fuzzy Set Membership Function--Union of Medium
Distance and Large Distance to the Obstacle

A rule of the form "If A then B" is a fuzzy relation. The elements of the sets to
which the statements A and B refer are, in general, from different universes of discourse.
For example, suppose that A represents the phrase "the distance to the obstacle is large”
and B the phrase "add a small velocity increment." Clearly, no element in the set of "large
distances to the obstacle," to which the premise A refers, can be a candidate for inclusion in
the set of “small velocity increments,” or vice versa. However, the elements in the set of
"large distances to the obstacle” and the elements of the set of "small velocity increments,”
although from different universes of discourse, exist simultaneously in the cartesian
product of the two universes of discourse, which is a two-dimensional space, representing
a combined universe of discourse wherein the elements of the sets referenced by A and B

17

belong to mutually orthogonal cylindrical sets.4 The complex set referenced by the relation
"if A then B" is the intersection of the two cylindrical sets in the product space.

In the classical case the intersection can be characterized completely by & two-
dimensional characteristic function: defined as 1 for every pair of elements (a,b) such that
a is in the set referenced by A and b is in the set referenced by B, while for all other pairs
the characteristic function is defined as 0. In the fuzzy case, of interest here, the two-
dimensional membership function pA~B(P.Q) is defined by

Hanp (P,Q)= mln[“m (P), Up (Q)] (23)
exactly as in (21), except that the result is a function of P and Q instead of just P.

A standard fuzzy set computational procedure called composition provides a method
for implementing a rule such as "If A then B" in an algorithm. Suppose that when A is "the
distance to the obstacle is large” and B is "add a small velocity increment” an observed
value of the distance to the obstacle is better described by "the distance to the obstacle is
small." Then, given the membership function po(P) of the observed quantity, composition
determines the membership function Haction(Q) of the quantity associated with the action
implied by the rule, i.c., the increment that should be added to the velocity in place of the
small increment that the rule prescribes when the distance to the obstacle is large. The
calculation for this purpose is

M poien (Q) = max, {minf, (P), e P-Q)]} 24)

where the minimum implied by "min” is the smaller of tiie two membership functions
inside the square brackets, as in (21) and (23), but the maximum implied by "max" is the
largest value of that result for all possible values of P.

If an algorithm consists of more than one "If A then B" rule, the action fuzzy set
implied by the whole algorithm is the union of all of those defined by the separate rules.
Therefore, the membership function pa1g(P) associated with the algorithm can be calculated
for each value of P by taking the largest corresponding value of all action membership
functions associated with the separate rules and calculated using (24); i.e.,

Moy (P) = max,[p ., (P)] 25)

4 By definition, sets consisting of element pairs that include all clements from one of the original
universes of discourse are cylindrical sets.

18

where plaction i(P) is the membership function associated with the action fuzzy set defined
by rule i.

B. FUZZY OBSTACLE AVOIDANCE RULES

It is assumed here that in avoiding an obstacle a vehicle adds an increment to its
own velocity vector, which is assumed to be constant except during the avoidance
maneuver, and that the direction of the increment is orthogonal to the line of sight between
the vehicle and the obstacle.3 The magnitude of the increment is regarded as a fuzzy set
depending on two observable fuzzy sets: the distance between the vehicle and the obstacle
(measured from center to center) and the obstacle's radius.

Table 1 defines a set of nine rules for determining the velocity increment magnitude,
given the observable sets. The phrase A in the "If A then B" form of a rule in this case
refers to a complex set: the intersection of an "obstacle distance from the vehicle" with an
"obstacle radius.” Three possibilities exist for each type of set: small, medium, and large.

Table 1. Fuzzy Vehicle Velocity Avoldance Increment Dependence On
Obstacle Radius and Distance from Vehicle

Obstacle Radius

The phrase B in each rule applies to the fuzzy velocity increment size that appears at the
intersection of the row and column in the table labeled in accordance with the fuzzy sizes of
the two quantities whose intersection is specified by the phrase A in the rule. For example,
the first rule given by Table 1, at the intersection of row 1 with column 1, is: "If the
distance between the vehicle and the obstacle is small and the obstacle radius is small, then
the velocity increment should be medium."”

5 An alternative, used in the current SAFOR avoidance algorithm when the obstacle is another vehicle, is
to make the increment direction orthogonal to the vehicle's own velocity. At least for spherical
obnacle:ét&hisdoanotwakaswellaschoosingmedhuﬁon to be orthogonal (o the line of sight, as
is done

19

. -——-——

Since the actual calculations will generally be numerical, although the membership
functions are theoretically continuous functions of the independent variables, the actual
values used for both the independent and dependent variables will be limited to a discrete,
finite set. Also, in the end even a fuzzy algorithm must lead to a single number to be useful
(i.c., the algorithm's action fuzzy set must be defuzzified). The most popular method for
accomplishing this is to calculate the centroid given by

ZPau.;.(Pi)

P =-E——— 26
alg u.h(Pl) ()

where Pyjg is the value of the action quantity recommended by the algorithm, e.g., the
magnitude of an increment to be applied to a vehicle's velocity in the case of a fuzzy
obstacle avoidance algorithm.

C. A FUZZY OBSTACLE AVOIDANCE ALGORITHM FOR A VEHICLE
AND OBSTACLES ON THE GROUND

This algorithm uses Table 1 to calculate the magnitude of a vector increment added
to the vehicle path direction to avoid a collision with an obstacle. The direction of the
increment is orthogonal to the line through the centers of the vehicle and the obstacle.

The fuzzy membership functions used for this purpose are those illustrated in
Figures 3-5 and defined carlier, as well as similar membership functions for fuzzy obstacle
radius sizes. Since, as in the case of the "distance from obstacle" sizes, they are all of the
generic type, three parameters completely specify each of the "obstacle radius” size
membership functions. The parameter sets are as follows:

For "small radius" P1=35P2=5,P3=20;
For "medium radius" Pj =5, P2 =20, P3 =35;
For "large radius" P1=20,P,=35,P3=5.

As mentioned earlier, in each rule of the form "if A then B" A is the intersection of
the "distance from obstacle” and the “obstacle radius,” which, although possibly measured
in the same units, are different types of quantities. Therefore, the independent variables
must be different in their respective membership functions, from which it follows that the
membership function for A must be a function of two variables. In fact, according to (23)
in rule ij it must be given by

20

KAy (P.Q) = minfu,(P).p, Q)] . @7

where pgi(P) is the membership function for a "distance from obstacle” size i and ue(Q) is
the membership function for an "obstacle radius” size j. Similarly, (23) also determines the
membership function for the intersection of the observed "distance from obstacle" and
"obstacle radius” sizes, so that the result uo(P.Q) has the same form as that given by (27):

Ho(P,Q) = min[pq, (P),1no (Q)] (28)

where pogd(P) is the membership function for the observed “distance from obstacle” size
and por(Q) is the membership function for the observed "obstacle radius” size.

If the "vector increment” magnitude, which is B in the rule, has a membership
function inc ij(R), (23) determines the rule relation membership function p«(P,Q,R),
which is then given by

kg(P,Q.R) = min, (P,Q),. ;(R)] , (29)
where pAij(P,Q) is given by (27). Then for the "vector increment” magnitude specified by
the rule ij, (24) provides the membership function paction,ij(R), given by

Haion 5(R) = maxp o {min i1 (P Q)1 (P.Q.R)]} (30)

where the quantities on the right side of (30) are given by (28) and (29).

After calculating all of the individual rule membership functions pection ij(R) given
by (30), the next step is calculate the single velocity increment membership function
Kinc(R), which is the membership function for the union of the sets defined by all of the
rules. According to (25), it is given by

B (R) =max [t . sR)] , 31)
where Lij action(R) is given by (30).

The final calculation based on (26) uses pinc(R) to estimate the vector increment
magnitude. The result is given by

ZR.un(R.)

21

where pinc(R) is given by (31). In (32) each continuous variable, i.e., the membership
function and its argument, is replaced by a discrete set of sample values. As a practical
matter this must be done, in any case, before numerical results can be obtained.

When two or more obstacles are too close together for the vehicle to pass between
them the fuzzy algorithm does not replace them with a single sphere as the crisp algorithm
does. Instead, the fuzzy algorithm proceeds as follows.

If, when it moves in the normal direction, avoiding one obstacle, the vehicle will
collide with another, the algorithm reverses its direction for one incremental path distance
and then has it attempt to resume normal motion toward the destination. If the vehicle will
move closer to the last obstacle encountered and the distance between the last obstacle and
the nearest one ahead is too small to permit passage, the algorithm reverses the vehicle's
direction, causes it to move the minimurn incremental distance, and then continues to have
it proceed toward the destination.

22

IV. SAFOR OBSTACLE AVOIDANCE

A. SAFOR AVOIDANCE IN GENERAL

Source code in the file called driver.c governs the avoidance of obstacles by
vehicles in the SAFOR simulation. The functions used by code in driver.c for this purpose
depend on the type of obstacle to be avoided. In particular, the function for avoiding
vehicles, other than fixed wing aircraft but including dismounted infantry, is called
avoid_vehicles, and its source code can be found in avoid.c.

The SAFOR function, defined by source code in driver.c, for avoiding extended
obstacles, i.e., lakes, rivers, canopies, buildings, and tree lines, is avoid_objects. That
function treats any of those obstacles as a collection of line segments. It avoids them by
means of the repetitive use of the function called avoid_line, the source code for which is
also in driver.c.

The work described in this document considers only the SAFOR avoidance of
ground vehicles. The function that the code in driver.c uses for this purpose,
avoid_vehicles, refers to another function, constant_velocity_avoid, which in turn refers to
a third function, avoid_a_vehicle.5 The source code for each of these functions is in the
file avoid.c.”

B. SAFOR VEHICLE AVOIDANCE

The function avoid_a_¢hivie implements the basic algorithm for collision avoid—

ance. The steps involved are as tollows.

1. Calculate the 2-dimensional vector rpos representing the (instantaneous) relative
position of the avoidee vehicle relative to the avoider by subtracting the

6 The same functions also apply to the avoidance of helicopters. However, the function for avoiding fixed
wing aircraft is more elaborate and quite different. It is called fixed_wing_avoid and its source code is
in the file avoid.c.

7 The file avoid.c also contains source code for another function called avoid_an_object, which closely
resembles avoid_a_vehicle. However, a search of the appropriate SAFOR source code files (those in
Jusr/safdevel/developer/src/host) uncovered no reference to that function by any other function in the
present version (SAF 4.3.3) of SAFOR, indicating that the system no longer uses it.

23

2-dimensional position vector of the avoider from that of the avoidee and
correcting for the difference between the tick times associated with the two
vehicles.

Calculate the distance distance_at_cpa of the avoidee from the closest point
of approach (cpa) of the avoider. This is done by first calculating the
2-dimensional relative velocity vector vge), which is the difference between the
velocity vector of the avoider and that of the avoidee, and then calculating the
cross product of that relative velocity and the relative position divided by the
relative speed:
distance_at_cpa = ~S2*
Vel

Since the vectors are 2-dimensional their cross product has just one non-zero
component, which is orthogonal to the plane of vy and rpos, and can therefore
be treated as a scalar. The sign of its value distance_at_cpa depends on which
side of the avoidee the relative velocity is directed.

If the actual distance that is equal to the absolute value of distance_at_cpa is
greater than a threshold called Passing Dist, no avoidance maneuver is
required. At the beginning of avoid.c the quantity Passing Dist is defined as 5
if both vehicles are dismounted infantry, 10 if the vehicles are on the ground
and at least one of them is not dismounted infantry, and 50 if the vehicles are
helicopters.8

If avoidance is required, calculate the distance to the cpa, which is the absolute
value of the quantity given by

dist_to_cpa= Yot e
Ve
If dist_to_cpa is negative the avoider has passed the avoidee, so that avoidance
is no longer necessary. If not, then calculate the time to the cpa, which is
given by

dist_to_cpa
[Vl

If time_to_cpa exceeds a threshold called GRND_LOOK_AHEAD, which is
defined at the beginning of avoid.c as 8,9 then quit because the obstacle is too
far away to require an avoidance maneuver.

time_to_cpa—

Since the numbers refer to distances the units are presumed to be meters.

9 In this case the threshold must be in units of time, which are assumed to be seconds.

24

J.

If there is a destination point, determine whether the quantity called speed,
which is the magnitude of the avoider velocity, is less than a threshold called
SMALL, which is defined as 0.0005 at the beginning of a header file called
utilLh. If it is, then to avoid dividing by O skip the avoidance process;
otherwise, continue by calculating the vector position rpoin; of the destination
relative to the avoider by subtracting the avoider position vector from that of
the destination. Then the time to the destination point is given by

point

speed

time_to_point=

If
time_to_point < time_to_cpa ,

then the avoider will arrive at the destination before the collision, the avoidance
of which is therefore unnecessary. Otherwise, calculate a quantity called
scale_factor, given by

Passing_Dist -|dist_at_ cpal .
max(time_to_cpa, MINIMUM_ TIME)
The quantities MINIMUM_TIME, which limits the possible size of
scale_factor, and AVOID_FACTOR are both defined as 0.5 at the beginning of
avoid.c.

scale_ factor = sgn(dist_at_cpa):- AVOID_FACTOR-

Define a vector increment Av, in terms of the unit vector v, orthogonal to the
relative velocity vre of the avoider, by

Av = (scale_factor)v,

where, in terms of the components (v1,v2) of Vrel, the components (vg1,vo2) of
Vo are given by

Vi
IVl

Then change the avoider velocity by adding the increment Av to it.

vol = Fj'voz ==

25

V. SAFOR VEHICLE AVOIDANCE USING
A FUZZY ALGORITHM

A. THE CONCEPT

As observed in Section IV.B, the present, crisp, SAFOR algorithm for avoiding
ground vehicle collisions accomplishes this by adding an orthogonal vector increment to the
velocity of an avoider vehicle relative to that of the avoidee. The magnitude of the
corrective increment is a scale factor based on the time to the cpa and a fixed passing
distance (pd) threshold of 10 meters.

Experimenting with simple exercises involving two tanks or a single armored
personnel carrier and a platoon of tanks has shown that collisions can occur in certain
situations, in particular, when a vehicle is turning into the path of another vehicle. The
reason in that case is probably a consequence of the algorithm's basic assumption that all
velocities are constant. Thus, since fuzzy rules in algorithms are inherently nonlinear it is
not surprising that in exactly the same scenarios replacing the scale factor by one derived
from fuzzy rules averted the collisions.

The idea was to use rules like those defined in Table 1, with quantities PD and
DISTANCE TO CPA replacing OBSTACLE RADIUS and DISTANCE FROM VEHICLE.
After starting with some common sense guesses, to establish the rules a procedure, called
"tuning” in the fuzzy logic literature, which involves testing them in some typical examples
and making appropriate changes until they work satisfactorily, can be used. In the collision
experiment starting with rules corresponding to those identified with Table 1 and then
tuning them resulted in Table 2, which, in fact, differs only slightly from Table 1.

Table 2. Fuzzy Vehicle Velocity Avoidance Increment Dependence On
Passing Distance and Distance to Closest Point of Approach

PD

Distance

To

B. THE IMPLEMENTATION

It was also necessary to apply the tuning process to the definition of the small,
medium, and large membership functions associated with the pd, distance to cpa (dcpa) and
scale factor (sclf), each of which was assumed to be of the generic type defined in
Section II1.A and therefore specified by three parameters. Actually, it is only necessary to
assign three parameters to each of the quantity types: pd, dcpa, sclf; the order of the
parameters determines whether the modifier is small, medium, or large.

The quantity pd in the existing crisp version of the SAFOR avoidance algorithm is
assigned the possible values 5, 10, or 50, depending on whether the avoider and avoidee
vehicles are both dismounted infantry, both are on the ground, and at least one is not
dismounted infantry, or they are both helicopters. Therefore, a natural choice of
parameters PD1, PD2, PD3 associated with the fuzzy pd membership function seemed to
be: PD1 =0, PD2 = §, PD3 = 10, in the first case; PD1 = 5, PD2 = 10, PD3 = 50 in the
second case; PD1 = 10, PD2 = 50, PD3 = 100 in the third case. For the parameters
associated with the dcpa membership function, the choice for ground vehicles, which were
the only type actually considered in the experiment, was: DCPA1 = 10, DCPA2 = 50,
DCPA3 = 100. The first choice for sclf was: SCLF1 = 1, SCLF2 = 3, SCLF3 = §.
However, it was quickly observed that those values were too small, but that doubling
each of them led to good results; i.e., the final choice was: SCLF1 = 2, SCLF2 = 6,
SCLF3 = 10.

For each type of variable the associated parameter values increase in the same order
as the subscripts on the symbols representing them. Thus, by virtue of the properties of
the generic membership function determined by a set of three parameters, as defined in
Section III.A, the membership functions determined by the tripiets (PD3, PD1, PD2),
(DCPA3, DCPA1, DCPA2), (SCLF3, SCLF1, SCLF2) are all associated with the size
small. Those determined by (PD1, PD2, PD3), (DCPA1, DCPA2, DCPA3), (SCLF1,
SCLF2, SCLF3) are associated with the size medium, and those determined by (PD1,
PD3, PD2), (DCPA1, DCPA3, DCPA2), (SCLF1, SCLF3, SCLF2) with the size large.

C. CODE CHANGES

The SAFOR source code is written in the C programming language. A program
written in C consists of various functions, the source codes of which may be collected
together in arbitrarily defined groups and each group stored in a separate file. The

28

corresponding file names all have the extension c, like the files driver.c and avoid.c
mentioned in Section IV.A, 10

As observed earlier, the source code of the function avoid_a_vehicle, which is the
primary function that causes all vehicles but fixed wing aircraft to avoid each other, appears
in the file avoid.c. The source code for the version of avoid_a_vehicle currently used in
SAFOR is in Appendix C, from p. C-3 to p. C-6. The source code for the fuzzy version of
avoid_a_vehicle is in Appendix C, from p. C-10 to p. C-13.

A comparison of the two versions of avoid_a_vehicle shows that the only effective
difference between them is the way each calculates the quantity scale_facior. The fuzzy
calculation replaces the non-fuzzy calculation

"scale_factor =
SGN(dist_at_cpa) * AVOID_FACTOR * (Passing_Dist - (abs(dist_at_cpa)))
/ (MAX(time_to_cpa, MINIMUM_TIME));"
in the present SAFOR version by
“fsf = fuzzy_scale_factor(Passing_Dist, dist_to_cpa, speed);
scale_factor =
SGN(dist_at_cpa) * AVOID_FACTOR * fsf;".

The code for the function fuzzy_scale_factor that calculates the quantity fsf is in
Appendix C, from p. C-17 to p. C-24, followed by code for functions needed to support
the calculation.

After viewing a video tape showing preliminary results of the collision avoidance
experiment, Dr. Robert Roberts suggested that the vehicle behavior would be more realistic
if the vehicles slowed down before engaging in their avoidance maneuvers. Adding this
feature turned out to be quite effective, causing more realistic behavior in both the fuzzy
and non-fuzzy versions of SAFOR. In fact, when the standard crisp SAFOR algorithm
was modified to include slowing down it became impossible to make the vehicles collide at
all.

10 Another type of file, called a header, contains definitions and has the extension h. Both file types are
compiled into object files with the extension o, which are then linked to create an executable file.

29

Fortunately, incorporating this feature in either avoidance algorithm is a simple
matter. If the scale_factor is less than 1, it is assumed that the slow down is unnecessary.
Otherwise, the algorithm divides both components of the avoider’s current velocity vector
by the scale factor before adding the increment required for the avoidance maneuver. The
casiest way to see how this was done is to compare the original version of the function
avoid_a_vehicle in Appendix C, pp. C-3 to C-6, with a version in Appendix C, pp. C-6 to
C-8 that includes the slow down feature. The fuzzy version of avoid_a_vehicle in
Appendix C, p. C-10to p. C-13 can also be compared with the fuzzy version that includes
the slow down feature, and which can be found in Appendix C, p. C-13 to p. C-17.

30

VL. VIDEO ACTION

In this chapter we describe a video that shows a dramatic result obtained from
introducing a fuzzy algorithm into SAFOR. The video is divided into two parts. The first
part deals with SAFOR and fuzzy logic and illustrates some unrealistic vehicle behavior in
SAFOR exercises. The second part concentrates on vehicle collision avoidance problems.

The video starts with a scene from a Hunter-Liggett exercise with tanks moving in
formation across a flat terrain and over hills. Enemy tanks are seen moving along a road.
A battle ensues and the enemy tanks are destroyed one at a time. As they go up in flames
the last tank in the platoon goes around the burning pile and continues on the course
eventually to be destroyed also. Some of the tanks take questionable actions in the scenes
shown, but nothing unusual or obviously unrealistic happens, with the exception of a tank
running through a tree,!! until the tanks approach a hilly area where one bumps into the
one ahead of it. Soon they coalesce into a single tank. A short time later a third tank is
seen approaching the two in what appears to be a "mating dance.” The three combine into a
single "monster vehicle” with three turrets independently moving, presenting a bizarre
scene to the viewer. As explained in footnote 1 on page 1, these effects are not due to any
SAFOR deficiency.

The second and third scenarios show tanks unsuccessfully avoiding a lake and a
building. In the second scene one tank gets into the water, stops and rotates aimlessly in
place. The following tank stops a few meters from the water and also rotates in place. In
the third scene a tank is seen approaching a building, which it tries to avoid, but not, as
becomes apparent very quickly, very successfully. About 25 percent of the tank gets into
the building perhaps because the avoidance was not initiated early enough or the turn was
not sharp enough. Either action could have avoided the problem. The tank gets out of the
building and makes a reasonable attempt to get around its comner. It then travels paraliel to
the side of the building in a perfectly reasonable manner until suddenly, about half of the
way to the other corner, it turns and, for no apparent reason, moves right through the wall.

11 There is no provision made for avoiding isolated trees in SAFOR, clearly a giveaway in an exercise but
not a difficult problem to fix.

31

These three scenes were included in the video to point out some obvious SAFOR
problems not involving vehicle collision avoidance.

Next the video shows a vehicle collision course depicted in Figure 9. The arrows
indicate the direction of the vehicle's movement. A platoon of tanks goes along the road
from the top to the bottom, making two turas, first to the right and then to the left. An
Armored Personnel Carrier (APC) will enter from the left and move along a road toward
the intersection where the tanks make the left .

Although the scenario and troop movements were taken from an actual military
exercise, the timing was rearranged to test the SAFOR collision avoidance algozithm. This
was done by initializing the APC movement so that a collision would occur unless the
algorithm prevented it. When the action in the video starts, we see the platoon following
the road. Figure 10(a) shows the lead tank approaching the intersection from the right.
The APC at this time is out of the picture to the left of the intersection. The leader makes a
right tum, then a left, and then gets clobbered by the APC at the spot shown on the map in
Figure 10(a). The SAFOR algorithm did not work. Figure 10(b) shows a close up of the
collision.

The next action scene starts with the same initial conditions, but with the SAFOR
code modified by replacing the original collision algorithm with a fuzzy version. This time
the collision is avoided.

A closer analysis indicates that even though the collision was avoided, the action
did not seem realistic. For example, the tanks did not slow down during the avoidance
maneuver and the miss distance was too small. Figure 10(c) shows the APC just missing
the tank. What the picture does not reveal is that both vehicles were moving rather fast at
this time 12

We decided to supplement collision avoidance with slowdown. We inserted a
slowdown operation (dividing the vehicle velocity by the avoidance scale factor whenever it
is greater than 1) into the code and reran the action. This time the fuzzy algorithm did much
better. Both the APC and the tank slowed down perceptively and the tank, after making the

12 Some viewers commented that, realistically, the APC would stop and let the column of tanks pass.
The collision avoidance algorithm, however, does not discriminate between different types of ground
vehicles, although perhaps this could be changed.

32

A 2 a9 a

A

Po¥EdIPU| OdV

Pue UOCOBId 8} JO JUSWIAAO UM 1S8J91U| JO BAIY 84} JO PBAIAAQ UY

6 2unBi4

33

Figure 10(a). Overhead View of the Figure 10(b). Collision Between Tank
Lead Tank Approaching the Inter- and APC When SAFOR
section. This scenario is the Initial Algorithm Is Used

condition for all the runs shown here.

Figure 10(c). Avoidance of Collision Figure 10(d). Avoidance of Collision
When Fuzzy Algorithm Is Used When Fuzzy and Slowdown
Algorithms Are Used

34

left turn, actually stopped and let the APC pass.13 Figure 10(d) shows an overhead view
with the tank actually stopped and the APC avoiding it by about a tank's length.

We also tried the slowdown with the original crisp SAFOR algorithm. The
collision was avoided but again the avoidance was just barely successful and the vehicles
went past each other faster than reasonable.

13 zmawdmnkwouldacmnystoptolaanAPCpassisquesﬁomble. Further refinements may
necessary.

35

REFERENCES

A.R. Pope and R.L. Schaffer, "The SIMNET Network and Protocols,"
Rep. No. 7627, BBN Systems and Technologies, Cambridge, Mass., June 1991,

L.A. Zadeh, "Fuzzy Sets," Informat. Control, V. 8, 1965, pp. 338-353.

M.R. Saffi, "The OBG/SAF Interface, Version 4.2.0, User Guide," July 29, 1992,
©1992 BBN.

37

APPENDIX A

VEHICLE PATH WHILE AVOIDING OBSTACLES

APPENDIX A

VEHICLE PATH WHILE AVOIDING OBSTACLES

Figure 1 Crisp Algorithm Avoidance of Spherical Obstacles Set 1

Figure 2 Crisp Algorithm Avoidance of Spherical Obstacles Set 2

L0 O

Figure 3 Crisp Algorithm Avoidance of Spherical Obstacles Set 3
A-3

Figure 4 Crisp Algorithm Avoidance of Spherical Obstacles Set 4

o el]

~(7.

Figure § Crisp Algorithm Avoidance of Spherical Obstacles Set 5

Figure 6 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 1

A4

O @N
0

Figure 7 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 2

Figure 8 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 3

Q=0
,

Figure 9 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 4

A-5

Figure 10 Crisp Algorithm Avoidance of Cylindrical Obstacles Set 5

S

Figure 11 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 1

Figure 12 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 2

A-6

Figure 13 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 3

Q-0 N,
O U

Figure 14 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 4

Figure 15 Fuzzy Algorithm Avoidance of Spherical Obstacles Set 5
A7

N O

)

Figure 16 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 1

lf’igure 17 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 2

Figure 18 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 3
A-8

Figure 19 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 4

(O O,
N

Figure 20 Fuzzy Algorithm Avoidance of Cylindrical Obstacles Set 5

Figure 21 SAFOR ALGORITHM
A9

A-10

APPENDIX B

CREATING, STORING, AND REPLAYING
SAFOR EXERCISES ON SIMNET

APPENDIX B
CREATING, STORING, AND REPLAYING
SAFOR EXERCISES ON SIMNET

1. SILICON GRAPHICS WORK STATIONS

a. Introduction

«.cating a SAFOR scenario or playing back one that has been saved in a file
requires two Silicon Graphics work stations, one called the front end and the other the back
end. Logging a scenario, i.e., saving it for future playback, requires a third. However,
without interfering with any other user that it may have, the third work station can be
accessed via the network and displayed on the back end terminal.

A logged scenario saved in a file can not only be played back using two Silicon
Graphics work stations, it can also be run on the Stealth system. VCR equipment in the
Stealth room can record the scenario, or selected portions of it viewed in any of the
available Stealth modes, on videotape.

Since the Silicon Graphics operating system is Unix an elementary knowledge of
Unix is occasionally helpful in carrying out the steps, e.g., for deleting or changing the
name of a file. A paperback text on the subject is sometimes availabie in the SIMNET area.

The next two sections detail the basic steps needed to create, record, and play back
SAFOR scenarios. The steps, which are in the necessary order of their application, are
numbered for easy reference. Italicized words or phrases in the text are commands or
labels as they actually appear on a Silicon Graphics terminal screen.

b. Steps for Creating a Scenario

(1) Set up two Silicon Graphics terminals: alex and springfield, making alex the
back end and springfield the front end. Start by logging in on each terminal and then going
to the appropriate SAFOR subdirectory, which is the same for both, by entering the
command:

cd /usrisqfi4.3.3. On alex set up the back end connection with the terrain data base!
and assign an exercise number by entering the command: phantom -terrain hunter-0110 -e
18. To set up the front end on springfield use the command:

ws -terrain hunter-0110 -sim_ex 18 -po_ex 18. As indicated, the exercise is labeled
18, which is arbitrary but chosen here because it is unlikely to be the same as the number
associated with a Stealth exercise that may be going on at the same time, since the default
number is 1. After a short wait a map will appear on the springfield screen.

(2) Use the following procedure to connect the front end with the back end. At the
top of the screen click on File--then, in the menu that drops down, on Connect--then, in the
new menu appearing on the right, on alex. A message at the top of the screen will
announce the connection when it occurs, or a failure if, for some reason it does not.

(3) Select the region of interest on the map and enlarge its image on the screen. To
do this move the cursor to the center of the region and press the middle mouse button to
zoom in. By dragging the number in the panel labelled Vehicle Scale at the bottom of the
screen on the right, at any time the mouse can be used to set a scale that determines the size
of the icons representing vehicles on the map. The number increases when dragged to the
right and decreases when dragged to the left.

(4) Create an Overlay by first clicking on Overlay at the top of the screen and then
on Create in the resulting menu that drops down. A panel will appear at the bottom of the
screen requesting an Overlay name. Enter a name in the designated area; then click on OK.

(5) To add vehicles to the Overlay click on the tank shaped icon on the right side of
the screen. A menu will appear requesting the echelon level. Click on the one desired, and
drag the mouse to the left. Then a menu with a list of vehicle types will drop down. After
clicking on one of those listed, a military symbol of the choice will appear on the map. To
change the symbol to one more pictorially representative of the actual vehicle, click on the
designation Non-Military among the items listed on the bottom left of the screen. Other
items listed in the same area, such as Contour Lines, which displays constant terrain
altitude curves on the map, may also be useful.

1 All scenarios discussed in this document take place on terrain defined by data stored in the Hunter-
Liggett data base.

B4

(6) To edit or get information about an Overlay vehicle click on the icon in either
the military or nonmilitary representation. This will produce a small menu including the
option Describe, which, when selected, provides the vehicle type and 1.D. number.

Another option is Edit, which can be used to make certain changes, including the
vehicle's location. Clicking on Edir produces a panel containing options such as
Alignment, which allows the user to select a Friendly (US) or Enemy (Soviet) type of
vehicle, or Echelon, which allows the user to change to any echelon in the range from a
single vehicle to a battalion. Among the options included is one labelled Direction (mils)
with an associated number in a narrow horizontal track. Clicking on the number, which is
at the left end of the rack and is O initially, and dragging it to the right has two effects. It
causes the vehicle to turn in the clockwise direction and the number to increase. Dragging
to the left reverses both effects. Also, while in the edit mode, clicking anywhere on the
map will cause the vehicle to move to the cursor position. To leave the edit mode click on
OK.

(7) To use the overlay vehicles in an exercise it is necessary to simulate them by
clicking on Simulate in the Overlay menu. A military symbol will replace each vehicle icon
on the map. To return to the nonmilitary form click on Show As located at the top of the
screen on the left--then on Vehicle in the resulting menu that appears.

Although both are initially at the same location, the simulated vehicle has an identity
separate from the one originally created in the Overlay. Clicking on the simulated vehicle
produces a menu that includes the options: Describe, Edit, TAC/E, and Unit Tasking.

The first two items perform the same functions for the simulated vehicle as those in
the menu associated with the original Overlay vehicle. However, the changes that can be
made in the panel created by clicking on Edit are now limited to changing the orientation of
the simulated vehicle and moving it to another location.

(8) To get the vehicles moving in the exercise use either the TAC/E or the Unit
Tasking option. Clicking on TAC/E produces a menu containing several vehicle override
and command options.

Important override settings are Speed, which allows values ranging from O to 85
km/hr and Formation. Clicking on formation and then on new formation in the panel that
appears leads to a menu on the left containing from 5 to 10 options, depending on the
echelon level.

B-5

Several useful commands under TAC/E are Go To Location, Go To Location Via
Road, and Follow Route. Clicking on either Go To Location option causes the appearance
of a panel that is best ignored. Instead, just click on the desired location and on OK in the
panel; the vehicle will then move, directly in the first case and in a roundabout way in the
second, to the indicated spot. To accomplish the same end by having the vehicle follow a
prescribed route, use Unit Tasking.

(9) To create a route, which is necessary before a vehicle can follow it, click on the
route icon on the right side of the screen. Before doing so, however, it is advisable to click
on Overlay at the top of the screen and then on Show. In the resulting panel make sure
that, along with the button labeled Simulation the one labeled Overlay is depressed;
otherwise, the route path will not be visible. Then click on the starting point of the route on
the map. Click on the next route point connected by a straight line with the first. Continue
to add straight line segments to the route by clicking on the locations of their endpoints until
the route is completed. Note that in the accompanying panel a choice between solid or
dashed line segments is available. After completing the route definition click on OK in the

panel.

(10) There are two ways to command a vehicle, or a higher echelon unit of
vehicles, to follow the route. One is to use the Follow Route option under TAC/E in the
menu obtained by clicking on the vehicle or unit icon. The other is to invoke Unit Tasking
rather than TAC/E. The second method produces a panel that requires confirmation of the
Overlay name, the route name, and the CIS2, which for route following expects the
Roadmarch option. Click on each item, making sure that each corresponding name appears
under the appropriate heading in the sub-panel below. When this happens a CIS editor
panel appears. Select the vehicle speed and click on OK. The Unit Tasking panel will then
reappear. To start the vehicle on its way click on Execute at the bottom line; then click on
OK to remove the panel.

(11) To save an overlay, which is useful for modifying a scenario after running
one version without having to go through all of the preliminary steps again, just click on
Overlay and then on Save in the ensuing menu. A panel requesting a file name will appear.
Enter a file name and click on OK.

(12) To start over using the same Overlay, including vehicles and routes, click
on File, then on Delete All in the menu that drops down. After confirming the command by

2 Combat Instruction Set

clicking on OK in the ensuing panel, click on Overlay, followed by Load in the resulting
menu that appears. A menu containing the list of saved Overlay files will then appear.
Clicking on the filename of a previously saved Overlay will recreate it. N.B.: to continue
it is necessary to simulate the appropriate Overlay entities by clicking on Simulate in the
Overlay menu, as well as the correct Overlay name appearing on the right.

c¢. Some Useful Aids in Designing and Viewing a Scenario

Clicking on the middle mouse button and dragging creates a rectangular frame, the
upper left hand corner of which starts at the initial cursor position. The lower right hand
corner follows the cursor. When the mouse button is released the region inside the frame
becomes the center of the screen view, occupying a larger fraction of the screen than it did
before. The smaller the frame the more the scene within it will be magnified in this
process.

To change the time between updates of the moving vehicle positions click on
Options at the top of the screen--then click on Pvd Display Options in the menu that drops
down. A panel will appear at the bottom of the screen containing a track labeled Seconds
Between Update. The number 5 appears a short distance from the track's left end.
Clicking on the number and dragging to the left reduces it and, therefore, the time between
updates. This makes the vehicle motion less jerky. Dragging as far as possible to the left
reduces the number to @ and provides the smoothest possible motion.

Setting a marker at a point on a route can be a useful device in synchronizing the
motion of two different vehicles, e.g., delaying the start of one until the instant the other
passes the marker. One way to mark a point without interfering with the scenario is to
create another Overlay and then from among the entities available in the vehicle menu,
choose the dismounted infantry. After clicking on the corresponding icon, which should
be set to the nonmilitary version as described in Step 5, use the Edir option in the resulting
menu that appears, as described in Step 6, to move it to the point where the marker is
needed. Do not simulate the Overlay in which the dismounted infantry used for a marker
was created. To be able to repeat the initial scene, save that Overlay and the Overlay
containing the vehicles and routes in separate files.

When redoing a scenario by restoring its initial state, restore each Overlay
separately by clicking on Load in the Overlay menu and selecting its filename in the
resulting list that appears. Simulate the Overlay containing the vehicle entities and the
routes, but do not simulate the dismounted infantry Overlay.

B-7

d. Steps in Saving a Scenario

(1) The process begins on roanoke, which can access the required logging
program. It is not necessary to log in on the roanoke terminal. Instead, while logged in on
alex create a new window and enter the command telnet roanoke. At the resulting prompt
log in as usual. Then enter the command cd /usr/safi4.3.3 followed by Otblgr -display
alex:0.0, which allows the display of the logger control panel to appear on the alex terminal
screen.

(2) After the logger control panel appears type in the name of the file in which the
scenario is to be stored. The filename should include a path starting with /usr/people/
followed by a subdirectory in which the user has write privileges on roanoke. Press the
Return key; type in the exercise number, i.c., 18, in the designated place, and press the
Return key.

(3) Set up alex and springfield as in step b(1) and connect them as in step b(2), if
the setup and connection do not already exist. On alex this can be done by bringing up
another window for the purpose. Once the connection is made switch back, making the
roanoke window containing the logger control panel active.

(4) On springfield create and run the scenario to be recorded as in steps
b(3)-b(11). Click on Record at the top of the logger control panel on the alex terminal to
start the recording session. This can be done either before or after the scenario is started on
springfield. To end the recording session, click on Szop at the top of the logger control
panel on alex.

(5) To play back a recorded scenario springfield should not be connected to alex,
but the logger control panel on roanoke must be created and displayed either on roanoke or
on alex. To create and display it on alex follow the step ¢(1) procedure. Otherwise, log in
on roanoke, type the command cd /usr/safl4.3 3, press the Return key, and then type the
command Otbigr. The logger control panel will then appear on roanoke.

In either case, in the designated place enter the file name, including the correct path,
which starts out with /usr/people/. Press the Return key. The exercise number 18 used for
the recording session should appear in the place reserved for it on the panel, and a number
should appear in Time Remaining indicating the amount of time the scenario will run. The
playback can be speeded up or slowed down by clicking on the speed factor track labelled
1.0xSpeed and dragging it to the right or left. The number replacing 1.0 gets smaller while
dragging to the left and larger while dragging to the right.

B-8

To start the scenario click on Play or Loop Play at the top of the panel. To stop the
play back and begin again, click on Stop--then click on and drag the button in the Time
track as far as it will go to the left--then click on Play or Loop Play once more.

2. PLAYING BACK AN EXERCISE ON STEALTH

The first step requires that an aathorized person log in as root on the right hand
terminal. Once this is done, enter the same commands as those used on the Silicon
Graphics terminal springfield in step b(1) except that 4.3.3 must be replaced by 4.3.6 and
Jws must be used in place of ws. The same map that would appear on springfield will
appear on the right hand Stealth terminal.

Next, on the left hand terminal follow the same procedure as in d(1), first entering
telnet roanoke, then logging in (not necessarily as root) and entering cd /usr/safi4.3.3.
Then enter Otblgr -display idaobgl :0.1 &, which is similar to, but not the same as, the
command in d(1). The logger control panel will appear on the left hand terminal just as it
does on alex in the procedure of d(1).

Follow the procedure described in d(2) to play back a stored exercise, but before
playing it go to the right hand terminal. Under Options at the top of the screen click on the
last item, which has the form FC(nyn2) with numbers nj and n2 that may vary, and enter
the correct exercise number, i.e., 18, in the Flying Carpet panel that appears.

Clicking on the terminal screen causes a white arrow that locates the viewing
position on the displayed map and points in the viewing direction to jump to the cursor
position. At the same time the observer's stealth viewpoint moves to the new location
indicated by the arrow on the map.

Other options on the Flying Carpet panel are dynamic viewpoints, which include
attaching or tethering to a vehicle. To select one click on the panel and then on the desired
vehicle.

The observer’s viewpoint can also be controlled by the spaceball to the right of the
right hand terminal. The ball can change the viewpoint location in three dimensions and its
numerical altitude relative to the ground is displayed in a panel on the terminal screen. A
line of buttons numbered from 1 to 8 at the front end of the spaceball base control the
Flying Carpet view as indicated in Table B-1.

Table B-1. Spaceball Quick Raference Flying Carpet
Constant Altitude Rotation OrvOft Dominant Mode Level View
1 2 3 4
Free Fly Increase Sensitivity Decrease Sensitivity Re-Zero
5 6 7 8

B-10

APPENDIX C

SAFOR VEHICLE COLLISION AVOIDANCE CODE

APPENDIX C
SAFOR VEHICLE COLLISION AVOIDANCE CODE

1. Present Crisp Version

/**t**tt*t.t‘.tt#t*tttt*lt#‘t*tt#‘*t*tt*t**ttttttt*tttt*tttt*t#tttttttt*‘#t&“
* Modify the desired velocity of the avoiding vehicle by

* a quantity appropriate to making a greater gap between the two

* vehicles at their projected cpa (closest point of approach)

#*t.*‘*#*‘t***“**#*********#**#*#*******t************t*#***t*#**t#***t##ttt#/

void avoid_a_vehicle(avoider, avoidee, desired_vel, goal_pt)

SAF_OBJECT *avoider, *avoidee;

VECTOR desired_vel, goal_pt;

VECTOR rel_pos, rel_vel, delta_vel, delta_pos, rel_pos_of_point;

double dist_at_cpa, dist_to_cpa, time_to_cpa, rel_speed, scale_factor;

double time_to_point, dist_to_point, speed;

double time_stagger = (avoider->tickable->now - avoidee->tickable->now)
*.001;

void increment_desired_vel();

/* calculate relative position taking into consideration the difference

in tick times ¥/
VEC2_SUB(avoidee->entity->position, avoider->entity->position, rel_pos);
VEC2_MULT(time_stagger, avoidee->entity->velocity, delta_pos);

VEC2_ADIX delta_pos, rel_pos, rel_pos);

/* calculate distance at closest point of approach */
VEC2_SUB(avoider->entity->velocity, avoidee->entity->velocity, rel_vel);
rel_speed = vec2_mag(rel_vel);
if(rel_speed < SMALL)
return;

dist_at_cpa = VEC2_CROSS(rel_vel, rel_pos) / rel_speed;

/* if this distance is greater than a threshold, no need to avoid */
if(abs(dist_at_cpa) > Passing_Dist)

return;

/* calculate time to closest point of approach */
dist_to_cpa = VEC2_DOT(rel_vel, rel_pos) / rel_speed;
if(dist_to_cpa<=0)

return;
time_to_cpa = dist_to_cpa / rel_speed,;

if(time_to_cpa > GRND_LOOK_AHEAD)

C4

/* if there is a goal point, calculate time to it */
if(goal_pt != Null_Vector) {
speed = vec2_mag(avoider->entity->velocity);
if(speed < SMALL)
return;
VEC2_SUB(goal_pt, avoider->entity->position, rel_pos_of_point);
dist_to_point = vec2_mag(rel_pos_of_point),

time_to_point = dist_to_point / speed;

/* if will reach goal point, before collision, don't do avoidance */
if(ime_to_point < time_to_cpa)

return;

/* calculate magnitude in change of velocity in direction normal to
relative velocity away from collision */

scale_factor =

SGN(dist_at_cpa) * AVOID_FACTOR * (Passing_Dist - (abs(dist_at_cpa)))

/ (MAX(time_to_cpa, MINIMUM_TIME));

delta_vel{ 0] = rel_vel[1] * scale_factor/rel_speed;

delta_vel[1] = - rel_vel[0] * scale_factor/rel_speed;

VEC2_ADD(desired_vel, delta_vel, desired_vel);

)

/*tt‘**tt‘t.t*t‘***#***t##t*t*****‘ttttttt**#t***t*****t**t**tt***t##t‘tt‘tt*/

2. Crisp Version with Slow Down
/**t‘**#*t**tt#*t*ttt*#t##*#**#t**t&*****#********t**#**#*#*#t*t#**#**t*#t#t*’
* Modify the desired velocity of the avoiding vehicle by

* a quantity appropriate to making a greater gap between the two

* vehicles at their projected cpa (closest point of approach)

/**#***#**tv#*************#*tt*###*t*#***#*t*#t*************#*******###**#***/

void avoid_a_vehicle(avoider, avoidee, desired_vel, goal_pt)

SAF_OBIJECT *avoider, *avoidee;

VECTOR desired_vel, goal_pt;

VECTOR rel_pos, rel_vel, delta_vel, delta_pos, rel_pos_of_point,old_vel;
double dist_at_cpa, dist_to_cpa, time_to_cpa, rel_speed, scale_factor;
double time_to_point, dist_to_point, speed, scf;

double time_stagger = (avoider->tickable->now - avoidee->tickable->now)

C-6

* 001;

void increment_desired_vel();

VEC2_COPY (avoider->entity->velocity,old_vel);

/* calculate relative position taking into consideration the difference

in tick times */
VEC2_SUB(avoidee->entity->position, avoider->entity->position, rel_pos);
VEC2_MULT(time_stagger, avoidee->entity->velocity, delta_pos);

VEC2_ADIDX delta_pos, rel_pos, rel_pos),

/* calculate distance at closest point of approach */
VEC2_SUB(avoider->entity->velocity, avoidee->entity->velocity, rel_vel);
rel_speed = vec2_mag(rel_vel);
if(rel_speed < SMALL)
return;

dist_at_cpa = VEC2_CROSS(rel_vel, rel_pos) / rel_speed;

/* if this distance is greater than a threshold, no need to avoid */

if(abs(dist_at_cpa) > Passing_Dist)

return;

/* calculate time to closest point of approach */

dist_to_cpa = VEC2_DOT(rel_vel, rel_pos) / rel_speed;

/* if avoider is already past avoidee then return to desired velocity and
quit */
if(dist_to_cpa<=0)
{
if ({dS_AIRCRAFT(OBJ_OBJECT_TYPE(avoider))))
{
avoider->entity->velocity[0] = old_vel[0];
avoider->entity->velocity{1] = old_vel[1];
}
return,
}
time_to_cpa = dist_to_cpa / rel_speed;
if(time_to_cpa > GRND_LOOK_AHEAD)

return,

/* if there is a goal point, calculate time to it */
if(goal_pt != Null_Vector) {

speed = vec2_mag(avoider->entity->velocity);

if(speed < SMALL)

o
return;
® VEC2_SUB(goal_pt, avoider->entity->position, rel_pos_of_point);
dist_to_point = vec2_mag(rel_pos_of_point);
time_to_point = dist_to_point / speed;
e
/* if will reach goal point, before collision, don't do avoidance */
° if(time_to_point < time_to_cpa)
‘ return;
)
le
/* calculate magnitude in change of velocity in direction normal to
o relative velocity away from collision */
scf =
AVOID_FACTOR * (Passing_Dist - (abs(dist_at_cpa)))
(/ (MAX (time_to_cpa, MINIMUM_TIME));
/* if the scale factor is not too small slow down before incrementing the velocity */
ﬂ if('(IS_AIRCRAFT(OBJ_OBJECT_TYPE(avoider))))
iQ
Q {
. if(scf > 1.0)vec2_div(scf,avoider->entity->velocity, desired_vel);

scale_factor = SGN(dist_at_cpa)*scf;

delta_vel[0] = rel_vel{ 1] * scale_factor/rel_speed;

C9

delta_vel[1] = - rel_vel[0] * scale_factor/rel_speed;
VEC2_ADDX desired_vel, delta_vel, desired_vel);

}

/t**‘t*&****&*******#*t#***#*****************#t***tt#*tt*tt*t*****t******tt#*’

3. Fuzzy Version
/*t**t*tttt*t*tt*****#t*#******#*#******#**##t#*************##**#**##t****#*/
* Modify the desired velocity of the avoiding vehicle by

* aquantity appropriate to making a greater gap between the two

* wvehicles at their projected cpa (closest point of approach)

#*##t**t*t#*t********#*********#************t****************#**t*****t#***t*/

void avoid_a_vehicle(avoider, avoidee, desired_vel, goal_pt)

SAF_OBJECT *avoider, *avoidee;
VECTOR desired_vel, goal_pt;
{
float fuzzy_scale_factor();
VECTOR rel_pos, rel_vel, delta_vel, delta_pos, rel_pos_of_point;
double dist_at_cpa, dist_to_cpa, time_to_cpa, rel_speed, scale_factor;
double time_to_point, dist_to_point, speed;
double time_stagger = (avoider->tickable->now - avoidee->tickable->now)

* 001;

C-10

R —

@
float fsf;
® void increment_desired_vel();
/* calculate relative position taking into consideration the difference
. in tick times */
VEC2_SUB(avoidee->entity->position, avoider->entity->position, rel_pos);
° VEC2_MULT(time_stagger, avoidee->entity->velocity, delta_pos);
VEC2_ADD(delta_pos, rel_pos, rel_pos);
® /* calculate distance at closest point of approach */
VEC2_SUB(avoider->entity->velocity, avoidee->entity->velocity, rel_vel);
rel_speed = vec2_mag(rel_vel);
° if(rel_speed < SMALL)
return;
® dist_at_cpa = VEC2_CROSS(rel_vel, rel_pos) / rel_speed;
/* if this distance is greater than a threshold, no need to avoid */
¢ if(abs(dist_at_cpa) > Passing_Dist)
return;
o
/* calculate time to closest point of approach */
dist_to_cpa = VEC2_DOT(rel_vel, rel_pos) ~ el_speed;
@

C-11

if(dist_to_cpa<=0)
return;

time_to_cpa = dist_to_cpa / rel_speed;

/* if there is a goal point, calculate time to it */
if(goal_pt = Null_Vector) {
speed = vec2_mag(avoider->entity->velocity);
if(speed < SMALL)
return,
VEC2_SUB(goal_pt, avoider->entity->position, rel_pos_of_point);
dist_to_point = vec2_mag(rel_pos_of_point);

time_to_point = dist_to_point / speed;

/* if will reach goal point, before collision, don't do avoidance */
if(time_to_point < time_to_cpa)

return,

J* calculate magnitude in change of velocity in direction normal to
relative velocity away from collision */
fsf = fuzzy_scale_factor(Passing_Dist, dist_to_cpa, speed);

scale_factor =

C-12

SGN(dist_at_cpa) * AVOID_FACTOR * fsf;
delta_vel[0] = rel_vel[1] * scale_factor/rel_speed,;
delta_vel(1] = - rel_vel{ 0] * scale_factor/rel_speed;
VEC2_ADDX(desired_vel, delta_vel, desired_vel);

)

/***t##t“‘##‘##t*t*‘***it***0****‘t**#***t**#***tt#*t**t*#“***###t*#**####*’

4. Fuzzy Version with Slow Down
/*tt#*t##ttt**t*****t**#*##**t**tt**##t***#*t**#*#***t*******##t*ttt*t**t***’
* Modify the desired velocity of the avoiding vehicle by

* a quantity appropriate to making a greater gap between the two

* wvehicles at their projected cpa (closest point of approach)

.‘*#*t*##t‘*t**#t****t**#*#*************tt***t**‘*t*#*#*#***#*#***#**#***’

void avoid_a_vehicle(avoider, avoidee, desired_vel, goal_pt)

SAF_OBIJECT *avoider, *avoidee;

VECTOR desired_vel, goal_pt;

float fuzzy_scale_factor();
VECTOR rel_pos, rel_vel, delta_vel, delta_pos, rel_pos_of_point,old_vel;
double dist_at_cpa, dist_to_cpa, time_to_cpa, rel_speed, scale_factor;

double time_to_point, dist_to_point, speed;

C-13

double time_stagger = (avoider->tickable->now - avoidee->tickable->now)
*.001;
float fsf;

void increment_desired_vel();

VEC2_COPY (avoider->entity->velocity,old_vel);

[* calculate relative position taking into consideration the difference

in tick times */
VEC2_SUB(avoidee->entity->position, avoider->entity->position, rel_pos);
VEC2_MULT(time_stagger, avoidee->entity->velocity, delta_pos);

VEC2_ADD(delta_pos, rel_pos, rel_pos);

/* calculate distance at closest point of approach */
VEC2_SUB(avoider->entity->velocity, avoidee->entity->velocity, rel_vel);
rel_speed = vec2_mag(rel_vel);
if(rel_speed < SMALL)
return;

dist_at_cpa = VEC2_CROSS(rel_vel, rel_pos) / rel_speed;

/* if this distance is greater than a threshold, no need to avoid */

if(abs(dist_at_cpa) > Passing_Dist)

C-14

/* calculate time to closest point of approach */
dist_to_cpa = VEC2_DOT(rel_vel, rel_pos) / rel_speed;
if(dist_to_cpa <=0)
{
if ({(IS_AIRCRAFT(OBJ_OBJECT_TYPE(avoider))))
{
avoider->entity->velocity[0] = old_vel[0];
avoider->entity->velocity{1] = old_vel[1];
}
return;
}
time_to_cpa = dist_to_cpa / rel_speed;

/* if there is a goal point, calculate time to it */
if(goal_pt != Null_Vector) {
speed = vec2_mag(avoider->entity->velocity);
if(speed < SMALL)
return,

VEC2_SUB(goal_pt, avoider->entity->position, rel_pos_of_point);

C-15

dist_to_point = vec2_mag(rel_pos_of_point);

time_to_point = dist_to_point / speed;

/* if will reach goal point, before collision, don't do avoidance */
if(time_to_point < time_to_cpa)

return;

/* calculate magnitude in change of velocity in direction normal to
relative velocity away from collision */
fsf = fuzzy_scale_factor(Passing_Dist, dist_to_cpa, speed);

/* if avoider is not an aircraft and the scale factor is not too small slow

down */

if({(IS_AIRCRAFT(OBJ_OBIJECT_TYPE(avoider))))
{
if(fsf>1.0) vec2_div(fsf,avoider->entity->velocity,desired_vel);
}

scale_factor =
SGN(dist_at_cpa) * AVOID_FACTOR * fsf;
delta_vel[0] = rel_vel[1] * scale_factor/rel_speed;

delta_vel[1] =-rel_vel[0] * scale_factor/rel_speed;

C-16

VEC2_ADDX desired_vel, delta_vel, desired_vel);

}

/*ttt*t“t*t‘.“tt#‘t‘tt*t*t**tt**tttt*****t*t*#*‘*#t*t***&*t*t*t‘tt#t‘*#l*‘*[

5. Fuzzy Functions
/tttt*ittt##tt‘*t*tt*#t**ttttt#*t#*t#‘t#‘t#t*tttt*#t**“tt*t**#**#t‘*#ttt‘tttt
* This function calculates a fuzzy scale_factor replacing the one used in the

*SAFOR function avoid.c.

t###*t*#*##*****tt*t*****t*******t*******#********t*****ttttt#****t**tt/

float fuzzy_scale_factor(pd, dcpa, speed)

#idefine DCPA1 10.00
#define DCPA2 50.00
#define DCPA3 100.00
#define SCLF1 2.00
#define SCLF2 6.00
#define SCLF3 10.00
#define PDNUM 10
#define DCPANUM 10

#define SCFNUM 3

float pd, dcpa, speed;

C-17

float mf_scale_factor();
inti, j, k;
float opd[4], odcpa(4], rpd[4][4], rdcpa[4][4], rsclf[4][4](4],
scf_pt = 0, scf_inc, scf_mf, term, num_sum = 0, den_sum =0, scale_factor,

max_dcpa, max_pd, max_scf = SCLF3, PD1, PD2, PD3;

max_dcpa = 8.0*speed;

if (Passing_Dist == DI_PASSING_DIST)
{
PD1 =0,
PD2 = 5.00;
PD3 = 10.00;
)
if (Passing_Dist == GRND_PASSING_DIST)
{
PD1 = 5.00;
PD2 = 10.00;
PD3 = 50.00;
)
if (Passing_Dist == HELO_PASSING_DIST)

{

C-18

PD1 = 10.00;
PD2 = 50.00;
PD3 = 100.00;
}

max_pd = PD3;

/* Enter the array elements defining the membership functions of the fuzzy sets
in the rules that determine the scale factor. */
rpd{1){1] = PD3;

rpd{1](2] = PD1;

rpd[1][3] = PD2;

rpd(2](1) = PD1;

1pd[2][2] = PD2;

rpd[2](3] = PD3;

1pd[3](1] = PD2;

1pd[3][2] = PD3;

rpd[3](3] = PD1;

rdcpa[1](1] = DCPA3;

rdcpa[1)(2] = DCPAL;

rdcpa(1](3] = DCPA2;

rdcpa[2][1] = DCPAL;

rdcpa[2][2] = DCPA2;

C-19

rdcpa[2](3] = DCPA3;

rdcpa[3]{1] = DCPA2;

rdcpa[3][2] = DCPA3;

rdcpa[3][3) = DCPAL;

rsclff1)[1)[1] = SCLF1;
rsclff1)[1]{2] = SCLF2;
rsclf[1]{1][3] = SCLF3;
rsclff1)(2][1] = SCLF3;
rsclff 1}{2][2] = SCLF1;
rsclff1)[2][3] = SCLF2;
rsclff 1){3]{1] = SCLF3;
rscif1][3](2) = SCLF1;
rsciff1)[3][3] = SCLF2;
rsclfi2){1){1] = SCLF2;
rsclff2)({1](2) = SCLF3;
rsclff2)[1)(3] = SCLF1;
rsciff2)[2](1] = SCLF2;
rsciff2][2](2] = SCLF3;
rsclff2){2)(3] = SCLF1;
rsclff2](3](1] = SCLF1;
rsciff2](3](2] = SCLF2;
rsclff2]{3](3] = SCLF3;

C-20

rscif{3}{1]){1) = SCLF2;
rsclf{3][1](2] = SCLF3;
rsclf{3][1}(3] = SCLF1;
rsclf[3](2](1] = SCLF2;
rsclf[3](2](2] = SCLF3;
rsclf3]{2](3] = SCLF1;
rsclf[3](3](1] = SCLF1;
rsclf(3](3](2] = SCLF2;
rsclf{3](3][3] = SCLF3;

/* Get the array elements defining the membership functions of the observed
(i.e., prescribed for the object to be avoided) passing distance. */
if (pd == PD1)

{

opd[1] =PD3;

opd[2] =PDI;

opd[3] =PD2;

}
else

{

opd[1] =PD1;

opd[2] = PD2;

C-21

opd[3] = PD3;
)

/* Get the array elements defining the membership functions of the observed
distance_to_cpa. */
if (dcpa <= DCPA1)
{
odcpa[1] = DCPA3;
odcpa[2] = DCPAL;
odcpa[3] = DCPA2;
goto FINISH;
}
if (dcpa >= DCPA3)
{
odcpa[1] = DCPA2;
odcpa[2] = DCPA3;
odcpa[3] = DCPAL;
goto FINISH;
)
odcpa[1] = DCPAL;
odcpa[2] = DCPA2;
odcpa[3] = DCPAS3;

C-22

/* Then calculate the centroid of the scale_factor membership function. The
P centroid is the "best estimate” of the actual scale_factor to be used.
First get the increment scf_inc of the scale_factor membership function's
argument scf_pt. The increment will determine the points at which the
¢ membership values are to be calculated. */
FINISH: scf_inc = max_scf/SCFNUM;

while (scf_pt < max_scf)

1]
{
scf_pt += scf_inc;
e
/* Use the function scf_mf to calculate the scale_factor membership function
value at the point scf_pt. */
‘ ° scf_mf = mf_scale_factor(opd, odcpa, 1pd, rdcpa, rsclf, max_pd,
max_dcpa, scf_pt);
o
/* Use the result to calculate the centroid of the scale_factor membership
function. ¥/
. term = scf_mf*scf_pt;
num_sum += term;
| °® den_sum += scf_mf;

}
if (den_sum > 0)

return (num_sum/den_sum);

return (0);

/***t***t###tt#tt*i*t**t**t#**tt*t****************t****t*#**t##*#t##*#t******

* This function calculates the membership function for the scale_factor, given

* the membership functions of the observed passing_distance obs_pd, the observed

* distance_to_cpa obs_dcpa, and 3 modens ponens rules that prescribe the

* scale_factor for each combination of the passing_distance pd and the

* distance_to_cpa dcpa.
t#****#**#***********t****#*************************#*t***#*****t*#***#/
float mf_scale_factor(obs_pd, obs_dcpa, pd, dcpa, sclfac, max_pd, max_dcpa,

scf_pt)

float obs_pd[4], obs_dcpa[4], pd[4]{4], dcpa[4][4], sclfac{4](4][4], max_pd,
max_dcpa, scf_pt;
{
float composition();
intijk;
float opd[4], odcpa[4], rpd[4], rdcpa[4], rsclf[4], comp_val, max_val =
0,

__ A

/* Get all obs_pd and obs_dcpa array components. */
for(i=1;i<4;i++)

{

opd[i] = obs_pd][i];

odcpali] = obs_dcpali);

)

/* Get the membership function value of the scale_factor, which is the union of
the sets determined by each of the rules associated with all possible
combinations of a pd and a dcpa. Start by getting the required array
components. */
for(i=1;i<4;i++)
{
for (j = 1; j< 4;j++)
{
for (k=1; k < 4; k++)
{
rpd(k] = pd[i][k];
rdcpalk] = depalj](k];
rsclf[k] = sclfacfi](j](k];

)

C-25

/* The result of each rule is determined by the composition function. */
comp_val = composition(opd, odcpa, rpd, rdcpa, rsclf,

max_pd, max_dcpa, scf_pt);

/* Then calculate the union membership function value. */
if (comp_val > max_val)

max_val = comp_val;

}

return (max_val);

}

/t#*tt****#******###******t#*******#****tt******#******t*#*tt*#****t*****t*t**

* This function calculates the membership function of the intersection of the

* observed passing_distance obs_pd and the observed distance_to_dcpa obs_dcpa,
* both of which have generic membership functions. It does the same for the

* corresponding quantities whose intersection is the modens in a specific modens
* ponens rule: the passing_distance rule_pd and the distance_to_cpa rule_dcpa,

* both of which also have generic membership functions. It then calculates the

* relation defined by the rule and then the composition of the intersection of

* the observed quantities with the relation.

*t#t**t**t**###tt*****#********#***************t*********#**##*****#*t*&t***#/

C-26

float composition(obs_pd, obs_dcpa, rule_pd, rule_dcpa, sclfac, max_pd,
max_dcpa, scf_pt)

float obs_pd(4], obs_dcpa[4], rule_pd[4], rule_dcpa[4], scifac{4], max_pd,
max_dcpa, scf_pt;
{

float intersection(), membfunc(), fuzzy_and();

inti;

float opd[4], odcpa[4], pd_inc, dcpa_inc, pd_pt = 0, dcpa_pt =0,
rpd[4], rdcpa[4], mf_obs_dist, mf_rule_dist, mf_relation, scf[4], mf_scf,

rule_mf, max_val =0;

/* First get the increment of the 2 independent variables of the intersection
membership functions by dividing the continuous range of each, max_pd and
max_dcpa, by the number, PDNUM and DCPANUM, of discrete values to be
considered in either case. Then get the components of each of the arrays
involved. */
pd_inc = max_pd/PDNUM;
depa_inc = max_dcpa/DCPANUM;
for(i=1;i<4;i++)

{

opd(i] = obs_pd[i};

C-27

odcpali] = obs_dcpalil;
rpd(i] = rule_pd[i};
rdcpali] = rule_dcpalil;
scfli] = sclfac[i];

}

/* Get the value of the scale_factor membership function mf_scf, which is
generic. */

mf_scf = membfunc(scf[1], scfl2], scf[3], scf_pt);

/* Now do the promised composition inference calculation, which involves a
max-min product. */
while (pd_pt < max_pd)
{
pd_pt += pd_inc;
while (dcpa_pt < max_dcpa)
{

dcpa_pt += dcpa_inc;

/* Get the membership function mf_obs_dist of the intersection of obs_pd and

obs_dcpa. */
mf_obs_dist = fuzzy_and(opd, odcpa, pd_pt, dcpa_pt);

C-28

/* Get the membership function mf_rule_dist of the intersection of rule_pd and

rule_dcpa. ¥/
mf_rule_dist = fuzzy_and(rpd, rdcpa, pd_pt, dcpa_pt);

/* Get the membership function mf_relation of the rule relation, which is
defined by the intersection of mf_rule_dist and mf_scf. */

mf_relation = intersection(mf_rule_dist, mf_scf);

/* Get the membership function rule_mf of the intersection of obs_dist and

mf_relation. */

rule_mf = intersection(mf_obs_dist, mf_relation);

/* Finally, get the composition value, which is defined as the maximum value of
rule_mf for all points pd_pt and dcpa_pt. */
if (rule_mf > max_val)
max_val = rule_mf;
)
dcpa_pt =0;
}
return (max_val);

}

C-29

/**‘t‘*#***‘t*##**t*#*‘##"‘*#****#t*t#*##**t*******t****************t&t**##*t

* This function determines the value of the membership function associated
* with the intersection of two fuzzy sets having the membership function values

* membfunc] and membfunc2.

#&t*ltt*#t‘*#t*‘*t*t****t*#***#****#tt*ﬁ‘*t*****t*t*ttt*t##tttttt*#t*t**‘/

float intersection(membfuncl, membfunc2)

float membfuncl, membfunc2;

{
if (membfuncl < membfunc2)
return (membfuncl);
else
return (membfunc2);

/****#*******#**t*****#*#***

* This function determines the value at a point p of the generic membership

* function determined by the parameters pl1, p2, p3.

*#***************************************#***************************#*******]

float membfunc(pl, p2, p3, p)

float p1, p2, p3, p;

C-30

® float MF;
if (pl<p2) goto NOT_SMALL;

if (p<=p2)
¢ (
MF=1;
° goto FINISH;
}
else
e goto DOWN;

NOT_SMALL.: if (p<=p1)
{
MF=0;
goto FINISH;
)

if (p<p2)

{
MF=(p-p1)/(p2-p1);
goto FINISH;
)

DOWN: if (p<p3)
{

C-31

MF=(p3-p)/(p3-p2);
goto FINISH;
}
if (p3<p2)
(
MF=1;

,#}tt*t#*‘**t#*t*****#*#***#***t****t******#****t***#*********#‘**‘#*&****#/

* This function determines the value of the membership function of the ®

* intersection of two fuzzy sets having generic membership functions.

****#***#*#t*********#****#******#****************t*****************t**#**‘**/

float fuzzy and(membfl, membf2, ptl, pt2) ¢
float membf1[4], membf2([4], ptl, pt2;
|
{
inti;
L

C-32

float par{4], memf1, memf2, MF;

for(i=1;i1<4;i++)
{
par{i] = membf1{i];
)
memf1 = membfunc(par{1), par{2], par{3], pt1);
for i=1;i<4;i++)
{
parli] = membf2[i];
)
memf2 = membfunc(par{1}, par{2], par{3], pt2);
MF = intersection(memf1, memf2);
return (MF);
}

/**##t**#t*******#*****#*##************t****************#*#*t####****t****t*t/

C-33

APPENDIX D

GW BASIC OBSTACLE AVOIDANCE PROGRAMS

D-1

APPENDIX D
GW BASIC OBSTACLE AVOIDANCE PROGRAMS

0 PROGRAM TO AVOID SPHERICAL OBJECTS USING A CRISP ALGORITHM

10 'INTTIALIZE THE COLLISION ANALYSIS STATUS LAST. DISPLAY ONLY WHEN LAST=1.

20 LAST=0

30 INPUT "USE PARAMETERS IN FILE Y(N)";ANS$

40 IF ANSS$="Y" OR ANSS$="y" THEN OPEN "I",1,"OBSTACLE.DAT" ELSE GOTO 80

50 'YES, SO GET THE PARAMETERS FROM THE FILE CALLED 'OBSTACLE.DAT.

60 GOSUB 1000:GOTO 140

70 'NO, SO GET THE PARAMETERS DIRECTLY FROM THE KEYBOARD.

80 OPEN "0",1,"OBSTACLE.DAT"

90 'GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,Y,Z) LOCATIONS.

100 GOSUB 1500

110 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y,Z) LOCATIONS.

120 GOSUB 2000

130 'OPEN A FILE TO RECORD THE VEHICLE'S OBSTACLE AVOIDANCE PATH.

140 OPEN "0",2,"VCOORDS.DAT"

150 XV=XV0:YV=YV(0:ZV=ZV0

160 'FIND THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH FROM ITS INITIAL

170 LOCATION TO ITS DESTINATION AND DETERMINE THE EARLIEST ONE.

180 GOSUB 3500

190 'TF NO COLLISIONS OCCUR PRINT THAT MESSAGE AND QUIT.

200 IF MINI=0 THEN PRINT "NO COLLISIONS":PRINT:GOTO 690

210 TF MINI>0 A COLLISION WITH OBSTACLE NUMBER MINI WILL OCCUR.

220 'FIND THE VEHICLE POSITION AT THE COLLISION POINT. IF THE COLLISION POINT

230 IS FURTHER TO THE LEFT THAN THE INITIAL VEHICLE POSITION AN OBSTACLE IS

240 ‘'TOO CLOSE TO THE VEHICLE POSITION. ANNOUNCE THE FACT AND QUIT. OTHERWISE
250 'CONTINUE.

260 GOSUB 4000:IF XA<XV0 THEN GOTO 9040 ELSE DXA=XA-XD:DYA=YA-YD

270 TF NO MORE OBSTACLES ARE AHEAD MOVE AND DISPLAY THE VEHICLE.

280 IF LAST=1 THEN GOSUB 6500

290 'OTHERWISE EXAMINE THE OBSTACLES AHEAD. IF MORE THAN TWO OBSTACLES IN THE
300 'VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE VEHICLE TO PASS BETWEEN THEM
310 THEN THE REMAINING CONFIGURATION OF OBSTACLES IS DIFFERENT FROM THE

320 'ORIGINAL ONE, SO REINITIALIZE THE VEHICLE POSITION AND START OVER.

330 GOSUB 4500:IF NC>1 THEN GOSUB 2500:GOTO 150

340 TF NO TWO OBSTACLES IN THE VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE
350 'VEHICLE TO PASS BETWEEN THEM THEN CONTINUE WITH THE SAME OBSTACLE

360 ‘CONFIGURATION.

370 IF NC=0 THEN 460

380 'OTHERWISE CHOOSE THE BEST SIDE OF THE OBSTACLE FOR THE VEHICLE TO GO

390 'AROUND AND MOVE THE VEHICLE TO THE OBSTACLE AND AROUND IT ON THAT SIDE.

D-3

400 IF (DY(CT)>DYD1) OR (DY(CD>DYD2) THEN 430

410 IF DYD2<DYDI1 THEN XV=XD+DXD1:YV=YD+DYD1:GOTO 520

420 GOTO 500

430 IF (DY(CN)<DYDI1) OR (DY(CN)<DYD?2) THEN 460

440 IF DYD2>DYDI1 THEN XV=XD+DXD1:YV=YD+DYD1:GOTO 520

450 GOTO 500

460 R21=SQR(DXD1/2+DYDI*"21+SQR((DXA-DXD1Y2+DYA-DYD1)*2)

470 R2=SQR(DXD2A2+DYD22+SQR((DXA-DXD2)"2+DYA-DYD22)

480 'GIVEN A CHOICE, CHOOSE THE SHORTEST DISTANCE AROUND THE OBSTACLE.
490 IF R21<R22 THEN XV=XD+DXD1.YV=YD+DYD1:GOTO 520

500 XV=XD+DXD2:YV=YD+DYD2

510 'MAKE SURE THE VEHICLE LOCATION IS TO THE RIGHT OF ITS INITIAL POSITION.
520 IF XV<XV0 THEN XV=XV0:YV=YV(

530 MOVE THE VEHICLE AROUND THE OBSTACLE AND DISPLAY THE MOTION ON SCREEN.
540 GOSUB 7500

550 'TF THERE IS A COLLISION AT ALL CHECK FOR NEXT COLLISION.

560 IF MINI>0 THEN GOSUB 3500

570 'TF NO REMAINING COLLISION CAN OCCUR DISPLAY THE VEHICLE MOVE TO THE
580 'DESTINATION AND QUIT.

590 IF (LAST=1 AND MINI=0 AND XA<XD) THEN XA=XD:YA=YD:GOSUB 6500:GOTO 690
600 TF NO COLLISION IS PREDICTED THE OBSTACLE CONFIGURATION HAS BEEN
610 'MODIFIED BY BEING COMBINED INTO A SINGLE OBSTACLE, SO START OVER.
620 IF (LAST=0 AND MINI=0) THEN LAST=1:GOTO 150

630 IS THE CONDITION FOR COLLISION WITH OBSTACLE NUMBER MINI SATISFIED?
640 TF SO REPEAT THE AVOIDANCE PROCESS WITH THE PRESENT OBSTACLE

650 'CONFIGURATION.

660 IF D(MINI)<= RSUM2(MINI) THEN 260

670 TF NOT DISPLAY THE VEHICLE MOVE TO THE DESTINATION AND QUIT.

680 XA=XD:YA=YD:GOSUB 6500

690 IF INKEYS$="" THEN 690

700 SCREEN 2:SCREEN 0:CLOSE #1

710 END

720"

1000 'GET THE PARAMETERS FROM THE FILE.

1010 I=0:INPUT #1,XV0,YVO,ZVO,RV

1020 INPUT #1,XD,YD,ZD

1030 WHILE NOT(EOF(1))

1040 I=1+1

1050 INPUT #1L.X(D,YM.ZMROD:X1D=XD:Y1D=YD):Z1M=Z@):R1(D=R{)

1060 WEND

1070 '"COUNT THE NUMBER OF OBSTACLES NO.

1080 NO=I:NOB=NO:NOBO=NOB

1090 'NOTE THAT THE DATA IS INPUT FROM A FILE.

1100 FILS="T"
1110 'GET THE INITIAL DISPLAY OF THE VEHICLE AND OBSTACLES ON SCREEN.

® 1120 GOSUB 2100

1130 RETURN

1140°

1500 INPUT THE VEHICLE PARAMETERS FROM THE KEYBOARD.

1510 INPUT "VEHICLE INITIAL X,Y,Z COORDINATES":XV0,YV0,ZV0

1520 INPUT "VEHICLE RADIUS":RV

1530 INPUT "DESTINATION X,Y.Z COORDINATES";XD,YD.ZD

1540 'TF THE DATA COMES FROM A FILE THEN DON'T PRINT IT TO A FILE.

1550 IF FILS="T" THEN 1570

1560 PRINT #1,XV0,YV0,ZVORV:PRINT #1,XD,YD.ZD

1570 RETURN

1580

2000 'GET THE OBSTACLE DATA FROM THE KEYBOARD.

2010 INPUT "NUMBER OF OBSTACLES";NO:NOB=NO:NOB0=NOB

2020 WHILE 1<NO

2030 I=l+1

2040 PRINT "OBSTACLE #"1

2050 CH=0:INPUT "X,Y Z COORDINATES":X(D,Y(D.2(T)

2060 INPUT "RADIUS":R(D:IF I>1 THEN GOSUB 8500:IF CH=1 THEN 2050

2070 'SAVE THE PARAMETERS IN THE DESIGNATED FILE.

2080 PRINT #1.X(M,Y D ZORO:X1D=XD:YID=YD:ZID=ZO:RIO=R()

2090 WEND

2100 PRINT THE FIRST OBSTACLE DIAGRAM ON THE SCREEN.

2110 GOSUB 6000

2120 'ADD THE VEHICLE IN ITS INITIAL POSITION.

2130 XX=XV0:YY=YVO:RR=RV:GOSUB 7000

2140 IF INKEYS$="" THEN 2140

2150 RETURN

2160

2500 REASSIGN OBSTACLE NUMBERS AND PARAMETERS AFTER COMBINING 2 OBSTACLES.

2510 ZERO THE OBSTACLE FLAG. IF FEWER THAN 2 OBSTACLES REMAIN NO MORE

2520 'OBSTACLE COMBINING IS NEEDED.

2530 OB=0:IF NO<2 THEN 2780

2540 TF MORE THAN 1 OBSTACLE IS PRESENT CHECK IF TWO OBSTACLES ARE CLOSE

2550 ENOUGH TO BE COMBINED INTO ONE. IF SO COMBINE THEM, SET FLAGS, UPDATE

2560 "THE OBJECT COUNTERS.

2570 FOR 1=2 TO NO

2580 FOR J=1 TO I-1

2590 RHO2(N=(X@)-XNY2+Y([D)- Y)Y 2+Z([N)-Z())'2:RHO())=SQR(RHO2(1.Y)):RU=R(I+R())

2600 DRO(1J)=RHO(LJ)-(RU+2*RY)

2610 IF DRO(LJ)<0 THEN GOSUB 3000:W(D=-1:0B=1:J=:=NO+1

2620 NEXT

D-5

2630 NEXT

2640 'AFTER COMBINING TWO OBSTACLES REASIGN OBSTACLE NUMBERS, OR RETURN IF NONE
2650 'WERE COMBINED.

2660 IF OB=1 THEN J=0 ELSE GOTO 2860

2670 FOR I=1 TONO

2680 'SKIP ITS NUMBER IF AN OBSTACLE IS REMOVED BY COMBINING IT WITH ANOTHER
2690 'OBSTACLE.

2700 IF W(I)=-1 THEN NOB=NOB-1:GOTO 2720

2710 J=+ 1:X@)=XD): Y=Y T):ZM=Z):R7)=RD)

2720 NEXT

2730 TF THE PRESENT NUMBER OF RECOGNIZED OBSTACLES AGREES WITH THE NUMBER
2740 'LEFT AFTER COMBINING PAIRS AND MORE THAN 1 IS LEFT, CHECK OUT THE NEW
2750 'CONFIGURATION.

2760 IF NOB=NO THEN 2850

2770 'TF ONE OR MORE OBSTACLES WERE REMOVED RESET THE NUMBER OF OBSTACLES.
2780 NO=NOB

2790 'GET THE DIAGRAM ON THE SCREEN IF THE LAST OBSTACLE HAS BEEN ENCOUNTERED.
2800 IF LAST=1 THEN GOSUB 6000:ELSE 2830

2810 TF MORE THAN 1 OBSTACLE REMAINS OR NO MORE THAN 1 OBSTACLE EXISTED BEFORE
2820 'THE LATEST COMBINATION OF OBJECTS TOOK PLACE THEN R”TURN.

2830 IF NO>1 THEN 2860

2840 TF MORE THAN 1 OBSTACLE IS LEFT CHECK OUT THE NEW CONFIGURATION.

2850 IF NOB>1 THEN 2530

2860 RETURN

2870

3000 ‘GET THE POSITION COORDINATES AND RADIUS OF THE NEW OBSTACLE FORMED BY
3010 ‘'COMBINING 2 OLD ONES.

3020 CD=2*RHO(1J): FACI=(RHO(LJ)}+R(N-RJ))CD:FACI=RHO(IJ)}+R(@)-RM))/CD

3030 X(I)=FACI* X(I+FACI*X(J):Y()=FACI*Y(D+FACI*Y(3):Z(J)=FACI*Z(I+FACI*2(J)

3040 RO)=RHOIJHRM+RI))2

3050 RETURN

3060 '

3500 'GET THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH TO ITS DESTINATION.
3510 'CALCULATE THE COMPONENTS OF THE VECTOR FROM THE VEHICLE'S INITIAL

3520 'LOCATION TO ITS DESTINATION.

3530 DXD=XV-XD:DYD=YV-YD:DZD=ZV-ZD

3540 'CALCULATE THE DIRECT VEHICLE PATH LENGTH SQUARED.

3550 DEN=DXD*DXD+DYD*DYD+DZD*DZD

3560 MIND=DEN:MINI=0

3570 FOR I=1 TO NO

3580 'CHECK IF VEHICLE IS HEADED TOWARD THE OBSTACLE. IF NOT SKIP THE COLLISION
3590 ‘TEST.

3600 IF .01+(X(D-XV)*DXD+(Y(D)- YV)*DYD+Z(I)-ZV)*DZD>=0 THEN 3770

3610 DX(D=X()-XD:DY (=Y (D-YD:DZ(MN=Z(1)-ZD

D-6

3620 DD{)=DX(@)* DX(I+DY@)* DY I}+DZ(T)* DZ(T)
3630 NUM=DXD*DX(I}+DYD*DY(I)+DZD*DZ(I):RSUM=R V+R(I):RSUM2()=RSUM*RSUM

3640 FAC=NUM/DEN:D(T)=DD(I)}-FAC*NUM

3650 'D(T) IS THE SQUARE OF THE DISTANCE OF THE CENTER OF OBSTACLE 1 FROM

3660 "THE VEHICLE PATH.

3670 XO(D=XD+FAC* DXD: YO()=YD+FAC*DYD:ZO(I)}=ZD+FAC*DZD

3680 XO(T),YO(T),Z0(T) ARE COORDINATES OF THE POINT ON THE VEHICLE PATH

3690 ‘CLOSEST TO THE CENTER OF OBSTACLE 1.

3700 DIST(T)=(NUM-DEN)"2/DEN

3710 'DIST() IS THE SQUARED DISTANCE FROM THE INITIAL VEHICLE LOCATION

3720 "TO THE POINT (X0(),YO().ZO(T)).

3730 IF D(>=RSUM2(T) THEN 3770

3740 IF DIST(T)<MIND THEN MINI=I:MIND=DIST(})

3750 'TF MIND IS A MINIMUM THEN THE COLLISION WITH OBSTACLE NUMBER MINI IS THE
3760 'EARLIEST.

3770 NEXT

3780 'TF MIND<DEN THEN THE EARLIEST COLLISION POINT IS AT "XO(MINT), YO(MINT),

3790 ZO(MINT). GET DISTANCES BETWEEN OBJECT MINI AND ALL OTHER OBJECTS.

3800 FOR I=1 TONO

3810 IF I=MINI GOTO 3830

3820

RHO2(MINLD=(X(T)-X(MINDY2+(Y (- Y (MIND)Y*2+(Z(1)-Z(MINDY*2:RHOMINI)=SQR(RHO2(MINID))
3830 NEXT

3840 RETURN

3850

4000 ‘GET THE LAST VEHICLE POSITION BERORE WHICH COLLISION CAN BE AVOIDED.
4010 LB=RSUM2(MINT)-D(MINT)

4020 FAC2=SQR(LB/DEN)

4030 XA=XO(MINT}+FAC2*DXD:Y A=YO(MINT}+FAC2*DYD:ZA=ZO(MINT}+FAC2*DZD

4040 RETURN

4050

4500 'GET THE NEW VEHICLE POSITION AFTER GOING AROUND AN OBSTACLE TO AVOID
4510°'A COLLISION.

4520 'CHECK IF A COLLISION WILL OCCUR WHILE THE VEHICLE GOES AROUND AN

4530 'OBSTACLE. IF MORE THAN 1 SUCH COLLISION IS PREDICTED RETURN,

4540 GOSUB 5500:IF NC>1 THEN 4610

4550 'CALCULATE THE VEHICLE POSITION COORDINATE INCREMENTS IN GOING AROUND THE
4560 'OBSTACLE.

4570 L2=DD(MINI)-RSUM2(MINI)

4580 IF ABS(DX(MINT))>0 AND ABS(DY(MINT))>0 THEN GOSUB 5000:GOTO 4610

4590 IF ABS(DX(MIND))>ABS(DY(MINT)) THEN GOSUB 5300:GOTO 4610

4600 DYD1=L2/DY(MINI):DYD2=DYD1:DXD1=SGN(DXD)*SQR(L2-DYDI1*DYD1):DXD2=-DXD1
4610 RETURN

4620°

D-7

5000 DENOM=DD(MINT)-DZ(MINT)* DZ(MINT)

5010 TERM2=SGN(DXD)*DY(MIND)*SQR(L2*DENOM-L.2*L2)

5020 TERM 1=L.2*DX(MINI):DXD1=(TERM1+TERM2)/DENOM:DXD2=(TERM1-TERM2)/DENOM
5030 DYD1=(L2-DX(MINI)*DXD1)YDY(MINI):DYD2=(L.2-DX(MINI)*DXD2)/DY(MINI)

5040 RETURN

5050 °

5300 DXD1=L2/DX(MINI):DXD2=DXD1:DYD1=SGN(DYD)*SQR(L2-DXD1*DXD1):DYD2=-DYD1
5310 RETURN

5320

5500 'FIND THE OBSTACLE PAIRS IN THE VEHICLE PATH THAT ARE TOO CLOSE FOR THE
5510 'VEHICLE TO PASS BETWEEN THEM.

5520 RMV=R(MINI)}+2*RV:NC=0

5530 FOR I=1 TO NO

5540 IF I=MINI THEN 5560

5550 IF RHOMINI,D<RMV+R(I) THEN NC=NC+1:CI=1

5560 NEXT

5570 RETURN

5580

6000 'GET THE BASIC SCREEN DIAGRAM.

6010 CLS:SCREEN 1

6020 LINE(XV0,200-YV0)-(XD,200-YD):CIRCLE(XD,200-YD),RV,1

6030 FOR C=1 TO NOBO

6040 CIRCLE(X1(C),200-Y 1(C)).R1(C),...1

6050 NEXT

6060 RETURN

6070

6500 DISPLAY THE VEHICLE MOVING TO THE COLLISION POINT AT AN OBSTACLE AND
6510 RECORD THE VEHICLE PATH POSITION AND RADIUS AND OBSTACLE RADIUS IN THE
6520 OUTPUT FILE.

6530 DXV=(XA-XV)10:DYV=YA-YV)Y10

6540 FOR 1=1 TO 10

6550 XX=XV:YY=YV:RR=RV

6560 IF LAST=0 THEN 6580 ELSE GOSUB 6000:GOSUB 7000:PRINT #2 XV,YV, RV RMMINI)
6570 XV=XV+DXV.YV=YV+DYV:IF XV<XV0 THEN XV=XV0:YV=YV0

6580 ‘CHECK FOR A COLLISION

6590 GOSUB 8050

6600 GOSUB 6000:GOSUB 7000:PRINT #2,XV,YV RV, ,R(MINI)

6610 NEXT

6620 XX=XV:YY=YV:PRINT #2XV,YV RV ,R(MINI)

6630 GOSUB 6000:GOSUB 7000:PRINT #2,XV,YV RV, R(MINI)

6640 RETURN

6650 *

7000 DRAW THE VEHICLE.

7010 CIRCLE(XX,200-YY),RR,2,,,1

D-8

7020 RETURN

7030

7500 ' MOVE THE VEHICLE AROUND AN OBSTACLE.

7510 DXX=XX-X(MIND:DYY=YY-Y(MINI):DXV=XV-X(MINI):DYV=YV-Y(MINI)
7520 ROB=SQR((X(MINT)- XAy 2+(Y(MINI)}- YA)*2)

7530 ‘CALCULATE THE VEHICLES ANGULAR POSITION RELATIVE TO THE OBSTACLE.
7540 AB=DXX:ORD=DYY:GOSUB 8000:TH1=THO

7550 AB=DXV:ORD=DYV:GOSUB 8000:TH2=THO

7560 DTH=(TH2-TH1)/5:TH=TH1

7570 FOR Q=1 TO §

7580 TH=TH+DTH

7590 XX=X(MINI)+ROB*COS(TH): YY=Y(MINI+ROB*SIN(TH)

7600 'THEN REFRESH SCREEN DISPLAY.

7610 IF LAST=0 THEN 7620 ELSE GOSUB 6000:GOSUB 7000:PRINT #2,XX,YY RV ,R(MINI)
7620 NEXT

7630 IF LAST=0 THEN 7650

7640 TF INKEYS$="" THEN 7130

7650 RETURN

7660 *

8000 'CALCULATE THE ANGLE.

8010 THO=ATN(ORD/AB)

8020 IF SGN(AB)=-1 THEN THO=THO0+3.1415926#:GOTO 8040

8030 IF SGN(ORD)=-1 THEN THO=TH0+6.2831852#

8040 RETURN

8050 CHECK FOR A COLLISION WITH ANY OBSTACLE.

8060 FOR OBNUM=1 TO NO

8070 DXY=(XV-X1(OBNUM)}"2HYV-Y1{(OBNUM)2+ZV-ZI{OBNUM)"2:DRR=(R V+R1(OBNUM)*2
8080 IF .01+DXY<DRR THEN 9000

8090 NEXT

8100 RETURN

8110

8500 IF SQR((X[M-XA-1)y2+(Y (I)-Y(l-l))“2+(Z(I)-Z(I DY2)<R(M+R(I-1) THEN CH=1:PRINT "OBJECT TOO
CLOSE TO THE LAST O

8510 RETURN
8520
9000 SCREEN 2:SCREEN 0:PRINT "COLLISION!!!":PRINT
XV:YV:ZV X1(OBNUM);Y 1(OBNUM);Z1(OBNUM),DXY.DRR
9010 PRINT #2,-1,-1,DXY DRR:PRINT #2,1, X1(I),Y 1(T):PRINT #2,"COLLISION!!!"
9020 IF INKEYS$="" THEN 9020
9030 XV0=XA:YV0=YA:GOTO 9080
9040 SCREEN 2:SCREEN 0:PRINT "OBSTACLES TOO CLOSE TO VEHICLE STARTING POINT.
9050 PRINT "COLLISION OCCURS AT X ="XA;", Y =":.YA:", Z ="ZA:""
9060 IF INKEY$="" THEN 9060
9070 GOSUB 6000:GOTO 9110

D9

9080 FOR C=1 TO NOBO

9090 CIRCLE(X(C),200-Y(C)).R(C)

9100 NEXT

9110 XX=XV0:YY=YV0:RR=RV:GOSUB 7000
9120 IF INKEY$="" THEN 9120

9130 SCREEN 2:SCREEN

0 'PROGRAM TO AVOID CYLINDRICAL OBJECTS USING A CRISP ALGORITHM

10 'INITIALIZE THE COLLISION ANALYSIS STATUS LAST. DISPLAY ONLY WHEN LAST=1.

20 LAST=0

30 INPUT "USE PARAMETERS IN FILE Y(N)";ANS$

40 IF ANS$="Y" OR ANS$="y" THEN OPEN "I",1,"OBSTACLE.DAT" ELSE GOTO 80

50 'YES, SO GET THE PARAMETERS FROM THE FILE CALLED 'OBSTACLE.DAT".

60 GOSUB 1000:GOTO 140

70 'NO, SO GET THE PARAMETERS DIRECTLY FROM THE KEYBOARD.

80 OPEN "O",1,"OBSTACLE.DAT"

90 ‘GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,Y,Z) LOCATIONS.

100 GOSUB 1500

110 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y,Z) LOCATIONS.

120 GOSUB 2000

130 'OPEN A FILE TO RECORD THE VEHICLE'S OBSTACLE AVOIDANCE PATH.

140 OPEN "0",2,"VCOORDS.DAT"

150 XV=XV0:YV=YV0:ZV=ZV0

160 'FIND THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH FROM ITS INITIAL
170 LOCATION TO ITS DESTINATION AND DETERMINE THE EARLIEST ONE.

180 GOSUB 3500

190 TF NO COLLISIONS OCCUR PRINT THAT MESSAGE AND QUIT.

200 IF MINI=0 THEN PRINT "NO COLLISIONS":PRINT:GOTO 690

210 TF MINI>0 A COLLISION WITH OBSTACLE NUMBER MINI WILL OCCUR.

220 'FIND THE VEHICLE POSITION AT THE COLLISION POINT. IF THE COLLISION POINT
230°'1S FURTHER TO THE LEFT THAN THE INITIAL VEHICLE POSITION AN OBSTACLE IS

240 'TOO CLOSE TO THE VEHICLE POSITION. ANNOUNCE THE FACT AND QUIT. OTHERWISE
250 'CONTINUE.

260 GOSUB 4000:IF XA<XVO0 THEN GOTO 9040 ELSE DXA=XA-XD:DYA=YA-YD

270 'TF NO MORE OBSTACLES ARE AHEAD MOVE AND DISPLAY THE VEHICLE.

280 IF LAST=1 THEN GOSUB 6500

290 ‘'OTHERWISE EXAMINE THE OBSTACLES AHEAD. IF MORE THAN TWO OBSTACLES IN THE
300 'VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE VEHICLE TO PASS BETWEEN THEM
310 THEN THE REMAINING CONFIGURATION OF OBSTACLES IS DIFFERENT FROM THE

320 'ORIGINAL ONE, SO REINITIALIZE THE VEHICLE POSITION AND START OVER.

330 GOSUB 4500:IF NC>1 THEN GOSUB 2500:GOTO 150

340 'IF NO TWO OBSTACLES IN THE VEHICLE'S PATH ARE TOO CLOSE TOGETHER FOR THE
350 'VEHICLE TO PASS BETWEEN THEM THEN CONTINUE WITH THE SAME OBSTACLE

D-10

360 ‘CONFIGURATION.

370 IF NC=0 THEN 460

380 'OTHERWISE CHOOSE THE BEST SIDE OF THE OBSTACLE FOR THE VEHICLE TO GO
390 'AROUND AND MOVE THE VEHICLE TO THE OBSTACLE AND AROUND IT ON THAT SIDE.
400 IF (DY(CD)>DYD1) OR (DY(CD>DYD2) THEN 430

410 IF DYD2<DYD1 THEN XV=XD+DXD1:YV=YD+DYD1.GOTO 520

420 GOTO 500

430 IF (DY(CT)<DYD1) OR (DY(CDN<DYD2) THEN 460

440 IF DYD2>DYD1 THEN XV=XD+DXD1:YV=YD+DYD!1:GOTO 520

450 GOTO 500

460 R21=SQR(DXD1”2+DYD1*2+SQR((DXA-DXDIY2+(DYA-DYD1)'2)

470 R2=SQR(DXD22+DYD2*2)+ SQR((DXA-DXD2y"2+DYA-DYD2)*2)

480 'GIVEN A CHOICE, CHOOSE THE SHORTEST DISTANCE AROUND THE OBSTACLE.
490 IF R21<R22 THEN XV=XD+DXD1:YV=YD+DYD1:GOTO 520

500 XV=XD+DXD2:YV=YD+DYD2

510 'MAKE SURE THE VEHICLE LOCATION IS TO THE RIGHT OF ITS INITIAL POSITION.
520 IF XV<XV0 THEN XV=XV0:YV=YV()

530 MOVE THE VEHICLE AROUND THE OBSTACLE AND DISPLAY THE MOTION ON SCREEN.
540 GOSUB 7500

550 'IF THERE IS A COLLISION AT ALL CHECK FOR NEXT COLLISION.

560 IF MINI>0 THEN GOSUB 3500

570 TF NO REMAINING COLLISION CAN OCCUR DISPLAY THE VEHICLE MOVE TO THE
580 'DESTINATION AND QUIT.

590 IF (LAST=1 AND MINI=0 AND XA<XD) THEN XA=XD:YA=YD:GOSUB 6500:GOTO 690
600 'TF NO COLLISION IS PREDICTED THE OBSTACLE CONFIGURATION HAS BEEN

610 'MODIFIED BY BEING COMBINED INTO A SINGLE OBSTACLE, SO START OVER.

620 IF (LAST=0 AND MINI=0) THEN LAST=1:GOTO 150

630 IS THE CONDITION FOR COLLISION WITH OBSTACLE NUMBER MINI SATISFIED?
640 'TF SO REPEAT THE AVOIDANCE PROCESS WITH THE PRESENT OBSTACLE

650 ‘CONFIGURATION.

660 IF D(MINI)<= RSUM2(MINI) THEN 260

670 TF NOT DISPLAY THE VEHICLE MOVE TO THE DESTINATION AND QUIT.

680 XA=XD:YA=YD:GOSUB 6500

690 IF INKEYS$="" THEN 690

700 SCREEN 2:SCREEN 0:CLOSE #1

710 END

720°

1000 ‘GET THE PARAMETERS FROM THE FILE.

1010 I=0:INPUT #1,XV0,YVO,ZVO,RV

1020 INPUT #1,XD,YD,ZD

1030 WHILE NOT(EOF(1))

1040 I=1+1

1050 INPUT #1.X(I),Y(D.ZD RO:X1D=XD:Y1D=YD:R1M=R()

1060 WEND

D-11

1070 ‘COUNT THE NUMBER OF OBSTACLES NO.

1080 NO=I:NOB=NO:NOB0=NOB

1090 'NOTE THAT THE DATA IS INPUT FROM A FILE.

1100 FIL$="I"

1110 ‘'GET THE INITIAL DISPLAY OF THE VEHICLE AND OBSTACLES ON SCREEN.
1120 GOSUB 2100

1130 RETURN

1140’

1500 INPUT THE VEHICLE PARAMETERS FROM THE KEYBOARD.

1510 INPUT "VEHICLE INITIAL X,Y,Z COORDINATES";XV0,YV0,ZV0

1520 INPUT "VEHICLE RADIUS".RV

1530 INPUT "DESTINATION X,Y,Z COORDINATES";XD,YD.ZD

1540 'TF THE DATA COMES FROM A FILE THEN DON'T PRINT IT TO A FILE.

1550 IF FIL$="1" THEN 1570

1560 PRINT #1,XV0,YV0,ZVORV:PRINT #1,XD,YD,ZD

1570 RETURN

1580

2000 ‘GET THE OBSTACLE DATA FROM THE KEYBOARD.

2010 INPUT "NUMBER OF OBSTACLES";NO:NOB=NO:NOB0O=NOB

2020 WHILE I<NO

2030 I=I+1

2040 PRINT "OBSTACLE #";1

2050 CH=0:INPUT "X,Y,Z COORDINATES":. X(D).Y(T),Z()

2060 INPUT "RADIUS™;R():IF I>1 THEN GOSUB 8500:IF CH=1 THEN 2050

2070 'SAVE THE PARAMETERS IN THE DESIGNATED FILE.

2080 PRINT #1.X(D, YD . ZORO:X1D=XD:Y1(D=YD:ZID=ZDH:RI(D=R()

2090 WEND

2100 PRINT THE FIRST OBSTACLE DIAGRAM ON THE SCREEN.

2110 GOSUB 6000

2120 'ADD THE VEHICLE IN ITS INITIAL POSITION.

2130 XX=XV0:YY=YVQ:RR=RV:GOSUB 7000

2140 IF INKEYS="" THEN 2140

2150 RETURN

2160

2500 REASSIGN OBSTACLE NUMBERS AND PARAMETERS AFTER COMBINING 2 OBSTACLES.
2510 'ZERO THE OBSTACLE FLAG. IF FEWER THAN 2 OBSTACLES REMAIN NO MORE
2520 'OBSTACLE COMBINING IS NEEDED.

2530 OB=0:IF NO<2 THEN 2780

2540 TF MORE THAN 1 OBSTACLE IS PRESENT CHECK IF TWO OBSTACLES ARE CLOSE
2550 ENOUGH TO BE COMBINED INTO ONE. IF SO COMBINE THEM, SET FLAGS, UPDATE
2560 'THE OBJECT COUNTERS.

2570 FOR I=2 TONO

2580 FOR J=1 TO I-1

2590 RHO2(LN)=(X[M-X@Y2HYD-Y (D)) 2:RHO(IT)=SQR(RHO2())):RU=RA)+R ()

D-12

2600 DRO(1 J)=RHO(L))-(RUJ+2*RV)

2610 IF DRO(1J)<0 THEN GOSUB 3000:W(I)=-1:0B=1:J=L:I=NO+1

2620 NEXT

2630 NEXT

2640 'AFTER COMBINING TWO OBSTACLES REASIGN OBSTACLE NUMBERS, OR RETURN IF NONE
2650 'WERE COMBINED.

2660 IF OB=1 THEN J=0 ELSE GOTO 2860

2670 FOR I=1 TONO

2680 'SKIP ITS NUMBER IF AN OBSTACLE IS REMOVED BY COMBINING IT WITH ANOTHER
2690 ‘'OBSTACLE.

2700 IF W(D=-1 THEN NOB=NOB-1:GOTO 2720

210 J=}+1: X=X @): Y=Y @):RI=RT)

2720 NEXT

2730 'TF THE PRESENT NUMBER OF RECOGNIZED OBSTACLES AGREES WITH THE NUMBER
2740 'LEFT AFTER COMBINING PAIRS AND MORE THAN 1 IS LEFT, CHECK OUT THE NEW
2750 ‘CONFIGURATION.

2760 IF NOB=NO THEN 2850

2770 TF ONE OR MORE OBSTACLES WERE REMOVED RESET THE NUMBER OF OBSTACLES.
2780 NO=NOB

2790 ‘GET THE DIAGRAM ON THE SCREEN IF THE LAST OBSTACLE HAS BEEN ENCOUNTERED.
2800 IF LAST=1 THEN GOSUB 6000:ELSE 2830

2810 TF MORE THAN 1 OBSTACLE REMAINS OR NO MORE THAN 1 OBSTACLE EXISTED BEFORE
2820 ‘THE LATEST COMBINATION OF OBJECTS TOOK PLACE THEN RETURN.

2830 IF NO>1 THEN 2860

2840 TF MORE THAN 1 OBSTACLE IS LEFT CHECK OUT THE NEW CONFIGURATION.

2850 IF NOB>1 THEN 2530

2860 RETURN

2870

3000 'GET THE POSITION COORDINATES AND RADIUS OF THE NEW OBSTACLE FORMED BY
3010 'COMBINING 2 OLD ONES.

3020 CD=2*RHO(LJ):FACI=(RHO(I J}+R(I)-R(J))CD:FACI=(RHO{I J))+R())-RM)XCD

3030 X(N=FACI*X(@+FACI*X(0): Y()=FACI*Y(I)+FACJ*Y(J)

3040 RO)=(RHOAJ+RM+RMD))2

3050 RETURN

3060 '

3500 'GET THE OBSTACLE COLLISION POINTS ON THE VEHICLE PATH TO ITS DESTINATION.
3510 'CALCULATE THE COMPONENTS OF THE VECTOR FROM THE VEHICLE'S INITIAL

3520 LOCATION TO ITS DESTINATION.

3530 DXD=XV-XD:DYD=YV-YD

3540 'CALCULATE THE DIRECT VEHICLE PATH LENGTH SQUARED.

3550 DEN=DXD*DXD+DYD*DYD

3560 MIND=DEN:MINI=0

3570 FOR I=1 TONO

3580 'CHECK IF VEHICLE IS HEADED TOWARD THE OBSTACLE. IF NOT SKIP THE COLLISION

D-13

3590 ‘TEST.
3600 IF .01+(X(D)-XV)*DXD+(Y(D)-YV)* DYD>=0 THEN 3770

3610 DX(=X(@)-XD:DY[D=Y ()} YD

3620 DD(M=DXA*DXM+DYD*DY()

3630 NUM=DXD*DX(I)+DYD*DY(T):RSUM=R V+R(I:RSUM2(D=RSUM*RSUM

3640 FAC=NUM/DEN:D{D=DD(T)-FAC*NUM

3650 'D(T) IS THE SQUARE OF THE DISTANCE OF THE CENTER OF OBSTACLE | FROM
3660 'THE VEHICLE PATH.

3670 XO(T=XD+FAC* DXD:YO(T)=YD+FAC*DYD

3680 "X0(I),YO(T) ARE COORDINATES OF THE POINT ON THE VEHICLE PATH

3690 'CLOSEST TO THE CENTER OF OBSTACLE 1.

3700 DIST(=(NUM-DENY*/DEN

3710 'DIST() IS THE SQUARED DISTANCE FROM THE INITIAL VEHICLE LOCATION

3720 "TO THE POINT (X0(T),YO(T)).

3730 IF D(I)>=RSUM2(T) THEN 3770

3740 IF DIST(I)<MIND THEN MINI=I:MIND=DIST(I)

3750 TF MIND IS A MINIMUM THEN THE COLLISION WITH OBSTACLE NUMBER MINI IS THE
3760 'EARLIEST.

3770 NEXT

3780 'TF MIND<DEN THEN THE EARLIEST COLLISION POINT IS AT "XO(MINT), YO(MINT).
3790 'GET DISTANCES BETWEEN OBJECT MINI AND ALL OTHER OBJECTS.

3800 FOR I=1 TO NO

3810 IF l=MINI GOTO 3830

3820 RHO2(MINLD=(X[®)-X(MIND)*2+(Y(@)- Y (MIND)*2:RHOMINLI)=SQRRHO2(MINL,I))

3830 NEXT

3840 RETURN

3850 °

4000 'GET THE LAST VEHICLE POSITION BEFORE WHICH COLLISION CAN BE AVOIDED.
4010 LB=RSUM2(MINT)-D(MINI)

4020 FAC2=SQR(LB/DEN)

4030 XA=XO(MINT+FAC2*DXD:Y A=YO(MINI+FAC2*DYD

4040 RETURN

4050]

4500 'GET THE NEW VEHICLE POSITION AFTER GOING AROUND AN OBSTACLE TO AVOID
4510 'A COLLISION.

4520 'CHECK IF A COLLISION WILL OCCUR WHILE THE VEHICLE GOES AROUND AN
4530 'OBSTACLE. IF MORE THAN 1 SUCH COLLISION IS PREDICTED RETURN.

4540 GOSUB 5500:IF NC>1 THEN 4610

4550 ‘CALCULATE THE VEHICLE POSITION COORDINATE INCREMENTS IN GOING AROUND THE
4560 'OBSTACLE.

4570 L2=DD(MINT)}-RSUM2(MINT)

4580 IF ABS(DX(MINT))>0 AND ABS(DY(MINT))>0 THEN GOSUB 5000:GOTO 4610

4590 IF ABS(DX(MINI))>ABS(DY(MINT)) THEN GOSUB 5300:GOTO 4610

4600 DYDI1=L2/DY(MINI):DYD2=DYD1:DXD1=SGN(DXD)*SQR(L2-DYD1*DYD1):DXD2=-DXD1

D-14

4610 RETURN

4620"'

5000 DENOM=DD(MINTI)

5010 TERM2=SGN(DXD)*DY(MINT}* “QR(L2*DENOM-1.2°L2)

5020 TERM 1=L2¢*DX(MINI):DXT . s(TERM1+TERM2)/DENOM:DXD2=(TERM1-TERM2YDENOM
5030 DYD1=(L2-DX(MINT}*DXD1YDY(MINI): DYD2=(L2-DX(MIND)*DXD2)/DY(MINI)

5040 RETURN

5050 *

5300 DXDl=1 2/DX(MINI):DXD2=DXD1:DYD1=SGN(DYD)*SQR(L.2-DXDI1*DXDI1):DYD2=-DYD1
5310 RETURN

5320

5500 FIND THE OBSTACLE PAIRS IN THE VEHICLE PATH THAT ARE TOO CLOSE FOR THE
5510 'VEHICLE TO PASS BETWEEN THEM.

5520 RMV=R(MINI)+2*RV:NC=0

5530 FOR I=1 TO NO

5540 IF I=MINI THEN 5560

5550 IF RHO(MINI,)<RM V+R(T) THEN NC=NC+1:Cl=I

5560 NEXT

5570 RETURN

5580

6000 ‘GET THE BASIC SCREEN DIAGRAM.

6010 CLS:SCREEN 1

6020 LINE(XV0,200-YV0)-(XD,200-YD):CIRCLE(XD,200-YD),RV,1

6030 FOR C=1 TO NOBO

6040 CIRCLE(X1(C).200-Y 1{C)) R 1(C),...1

6050 NEXT

6060 RETURN

6070

6500 DISPLAY THE VEHICLE MOVING TO THE COLLISION POINT AT AN OBSTACLE AND
6510 RECORD THE VEHICLE PATH POSITION AND RADIUS AND OBSTACLE RADIUS IN THE
6520 'OUTPUT FILE.

6530 DXV=(XA-XV)¥10:DYV=YA-YV)10

6540 FOR I=1 TO 10

6550 XX=XV:YY=YV:RR=RV

6560 IF LAST=0 THEN 6580 ELSE GOSUB 6000:GOSUB 7000:PRINT #2,XV,YV RV R(MINI)
6570 XV=XV4+DXV:YV=YV+DYV:IF XV<XV0 THEN XV=XV0:YV=YV(0

6580 'CHECK FOR A COLLISION

6590 GOSUB 8050

6600 GOSUB 6000:GOSUB 7000:PRINT #2,XV,YV RV ,R(MINI)

6610 NEXT

6620 XX=XV:YY=YV:PRINT #2,XV,YV RV R(MINI)

6630 GOSUB 6000:GOSUB 7000:PRINT #2,XV,YV RV, ,R(MINI)

6640 RETURN

6650 '

D-15

7000 'DRAW THE VEHICLE.

7010 CIRCLE(XX,200-YY),RR,2,,,1

7020 RETURN

7030 °

7500 ' MOVE THE VEHICLE AROUND AN OBSTACLE.

7510 DXX=XX-X(MIND:DYY=YY-Y(MINI):DXV=XV-X(MINI):DYV=YV-Y(MINI)
7520 ROBaSQR((X(MIND)-XAY2+HY(MINI)-YA)'2)

7530 'CALCULATE THE VEHICLES ANGULAR POSITION RELATIVE TO THE OBSTACLE.
7540 AB=DXX:ORD=DYY:GOSUB 8000:TH1=THO

7550 AB=DXV:ORD=DYV:GOSUB 8000:TH2=THO

7560 DTH=(TH2-TH1)Y/5:TH=TH!

7570 FOR Q=1 TO §

7580 TH=TH+DTH

7590 XX=X(MIND+ROB*COS(TH): Y Y=Y(MINI)+ROB*SIN(TH)

7600 "'THEN REFRESH SCREEN DISPLAY.

7610 IF LAST=0 THEN 7620 ELSE GOSUB 6000:GOSUB 7000:PRINT #2,XX,YY , RV R(MINI)
7620 NEXT

7630 IF LAST=0 THEN 7650

7640 TF INKEYS$="" THEN 7130

7650 RETURN

7660 '

8000 'CALCULATE THE ANGLE,

8010 THO=ATN(ORD/AB)

8020 IF SGN(AB)=-1 THEN THO=THO0+3.1415926#:GOTO 8040

8030 IF SGN(ORD)=-1 THEN THO=TH(0+6.2831852#

8040 RETURN

8050 ‘CHECK FOR A COLLISION WITH ANY OBSTACLE.

8060 FOR OBNUM=1 TO NO

8070 DXY=(XV-X1(OBNUM)2+(YV-Y1(OBNUM)*2:DRR=(RV+R1(OBNUM)*2
8080 IF .01+DXY<DRR THEN 9000

8090 NEXT

8100 RETURN

8110

8500 m((oxNGE}}a- NY2+YM-YJA-1)2<R(I+R(I-1) THEN CH=1:PRINT"OBJECT TOO CLOSE TO THE

8510 RETURN

8520

9000 SCREEN 2:SCREEN O0:PRINT "COLLISION!!!":PRINT XV;YV X1(OBNUM);Y 1(OBNUM),DXY ,DRR
9010 PRINT #2,-1,-1 DXY,DRR:PRINT #2.1, X1(I),Y 1(I):PRINT #2,"COLLISION!!!"

9020 IF INKEYS$="" THEN 9020

9030 XV0=XA:YV0=YA:GOTO 9080

9040 SCREEN 2:SCREEN 0:PRINT "OBSTACLES TOO CLOSE TO VEHICLE STARTING POINT.

9050 PRINT "COLLISION OCCURS AT X ="XA;", Y =" YA;"."

9060 IF INKEY$="" THEN 9060

D-16

9070 GOSUB 6000:GOTO 9110

9080 FOR C=1 TO NOBO

9090 CIRCLE(X(C),200-Y(C)).R(C)

9100 NEXT

9110 XX=XV0:YY=YV0:RR=RV:GOSUB 7000
9120 IF INKEYS$="" THEN 9120

9130 SCREEN 2:SCREEN 0:STOP

0 PROGRAM TO AVOID SPHERICAL OBSTACLES USING A FUZZY ALGORITHM

10 INPUT "USE OBSTACLE PARAMETERS IN FILE Y(N)";ANS$

20 IF ANS$="Y" OR ANS$="y" THEN OPEN "I",1,"OBSTACLE.DAT" ELSE GOTO 60

30 'YES, SO GET PARAMETERS FROM FILE

40 GOSUB 1000:GOTO 110

50 'NO, SO GET PARAMETERS DIRECTLY FROM KEYBOARD

60 OPEN "0",1,"OBSTACLE.DAT"

70 'GET VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,Y,Z) LOCATIONS

80 GOSUB 2000

90 'GET NUMBER OF OBSTACLES, THEIR RADII, THEIR (X,Y,Z) LOCATIONS

100 GOSUB 2500

110 INPUT "USE MEMBERSHIP FUNCTION PARAMETERS IN FILE Y(N)";ANS$

120 IF ANSS$="Y" OR ANS$="y" THEN GOSUB 1500:GOTO 150

130 'NO SO ENTER PARAMETERS WITH KEYBOARD

140 OPEN "0"2,"MF.DAT":GOSUB 3000

150 FOR I=1 TONO

160 PRINT "OBSTACLE #"I;": X ="X1(0),"Y =", Y1(1),"Z =";Z1(I)

170 NEXT

180 IF INKEYS$="" THEN 180

190 'START WITH VEHICLE IN INITIAL POSITION, INITIALIZE CONFIGURATION STATE
200 'AND OPEN FILE TO RECORD VEHICLE PATH

210 XV=XV0:YV=YV0:ZV=ZVO:FIRST=1:LAST=0:OPEN "0",3,"VCOORDS.DAT"

220 CLS:INPUT "BASIC INCREMENT FOR VEHICLE MOTION ALONG PATH";DD

230 'GET NUMBER OF DISCREET MEMBERSHIP FUNCTION VALUES FOR FUZZY SET RATIO'
240 'THAT DEFINES THE DIRECTION OF THE VEHICLE MOTION AT A POINT

250 INPUT "NUMBER OF RATIO VALUES",NRAT:DRAT=RAT(1,3,2YNRAT:GOTO 420

260 ‘GET DISTANCE OF VEHICLE FROM DESTINATION

270 DXD=XD-XV:DYD=YD-YV

280 DXYD2=DXD*DXD+DYD*DYD:MIND=DXYD2:DXYD=SQR(DXYD?2)

290 TF THE VEHICLE IS CLOSER TO THE DESTINATION THAN THE LENGTH OF ITS OWN
300 RADIUS LET THE VEHICLE GO STRAIGHT TO THE DESTINATION

310 IF DXYD<RV THEN XV=XD:YV=YD:DEST$="DEST":GOTO 420

320 TF NOT THEN FIND THE NEAREST OBSTACLE, WHETHER IT IS THE LAST ONE, AND IF
330 TT IS NOT GET THE DIRECTION ORTHOGONAL TO THE VEHICLE'S LINE OF SIGHT TO
340 'THE OBSTACLE

D-17

350 GOSUB 3500:IF LAST=]1 THEN 390

360 TF THE NEAREST OBSTACLE IS NOT THE LAST GET THE INCREMENT FACTOR FOR THE
370 'VEHICLE MOTION ORTHOGONAL TO THAT DIRECTION

380 GOSUB 4000

390 CALCULATE NEW VEHICLE POSITION AND SET A FLAG INDICATING THAT IT IS NO
400 LONGER THE INITIAL POSITION

410 GOSUB 4500:IF FIRST=1 THEN FIRST=0

420 'UPDATE SCREEN AND SAVE LAST VEHICLE POSITION AND DIRECTION
430 GOSUB 9000:XX=XV:YY=YV

440 GOSUB 6000:GOSUB 6500:1L.XV=XV:.LYV=YV:LALPH=AL PHA:LBET=BETA
450 IF FIRST=0 THEN 490

460 'FREEZE THE SCREEN CONFIGURATION BEFORE THE VEHICLE STARTS TO MOVE
470 IF INKEYS$="" THEN 470

480 TF NOT AT DESTINATION GET VEHICLE POSITION UPDATE

490 IF DEST$<>"DEST" THEN 270

500 IF INKEY$="" THEN 500

510 SCREEN 2:SCREEN 0

520 END

530°

1000 'GET OBSTACLE PARAMETERS FROM FILE

1010 I=0:INPUT #1,XV0,YV0,ZVORV

1020 INPUT #1,XD,YD,ZD

1030 WHILE NOT(EOF(1))

1040 =l+1

1050 INPUT #1.X([),YD.ZO RD:X1M=XD): Y IT=YD):Z1O=ZD):R1TD=RA)

1060 WEND

1070 NO=1

1080 RETURN

1090 '

1500 'GET MEMBERSHIP FUNCTION PARAMETERS FROM FILE

1510 OPEN 'T",2,"MF.DAT"

1520 FOR I=1 TO 3

1530 FOR J=1 TO 3

1540 INPUT #2,RAD()J)

1550 NEXT

1560 NEXT

1570 FOR I=1 TO 3

1580 FOR J=1TO 3

1590 INPUT #2,DIS(L))

1600 NEXT

1610 NEXT

1620 FOR I=1 TO 3

1630 FOR J=1 TO 3

1640 FOR K=1TO 3

D-18

h

1650 INPUT #2.RAT(1) K)
1660 NEXT
° 1670 NEXT
1680 NEXT
1690 RETURN
1700
2000 'GET INTTIAL VEHICLE DATA
° 2010 INPUT "VEHICLE INITIAL X,Y,Z COORDINATES":XV0,YV0,ZV0
2020 INPUT "VEHICLE RADIUS":RV
2030 INPUT "DESTINATION X,Y.Z COORDINATES";XD,YD,ZD
2040 PRINT #1,XV0,YVO.ZVORV:PRINT #1,XD,YD,ZD
2050 RETURN
2060
2500 ‘GET INITIAL OBSTACLE DATA
2510 INPUT "NUMBER OF OBSTACLES":NO
2520 WHILE I<NO
2530 kal+1
2540 PRINT "OBSTACLE #";1
® 2550 INPUT "X.Y.Z COORDINATES":X(D),Y(D).Z(T)
2560 INPUT "RADIUS":RA):X1(D=X(D:Y 1D=Y D:ZIM=ZD:R1D=R)
2570 'IF FILE IS IN INPUT MODE DON'T WRITE IN IT
2580 TF FIL$="I" THEN 2100
2590 NEW DATA AND WRITE ONLY FILE MODE SO PRINT PARAMETERS IN FILE
L 2600 PRINT #1,X(0).Y(D.ZMNHRD
2610 WEND
2620 RETURN
2630
3000 'GET FUZZY SET PARAMETERS FOR DEFINING SMALL, MEDIUM, OR LARGE FOR THE
o 3010 RADIUS OF AN OBSTACLE AND FOR THE DISTANCE OF AN OBSTACLE FROM A VEHICLE
3020 'AND THE PARAMETERS ASSOCIATED WITH THE MEMBERSHIP FUNCTIONS OF THE MATRIX
3030 ELEMENTS IN THE MATRIX DETERMINED BY THE RULES OF THE FORM 'IF THE
3040 'OBSTACLE RADIUS IS ** AND THE OBSTACLE DISTANCE IS * THEN THE RATIOIS '
3050 PRINT "3 PARAMETERS DEFINING THE MEMBERSHIP FUNCTIONS:":PRINT
® 3060 PRINT “SMALL OBSTACLE RADIUS'~":INPUT
*SRAD1,SRAD2,SRAD3":RAD(1,1),RAD(1,2),RAD(1,3)
3070 WRITE #2,RAD(1,1),RAD(1,2),RAD(1,3)
3080 PRINT “MEDIUM OBSTACLE RADIUS'--":INPUT
"MRAD1,MRAD2, MRAD3":RAD(2,1).RAD(2,2) RAD(2.3)
3090 WRITE #2,RAD(2,1),RAD(2,2) RAD(2,3)
e 3100 PRINT "LARGE OBSTACLE. RADIUS--":INPUT
"LRADI1,LRAD2,LRAD3";RAD(3,1),RAD(3,2).RAD(3.3)
3110 WRITE #2,RAD(3,1),RAD(3.2)RAD(3.3)
3120 PRINT “SMALL OBST. DISTANCE'--":INPUT "SDIS1,SDIS2,SDIS3";DIS(1,1),DIS(1 2).DIS(1.3)
3130 WRITE #2,DIS(1,1),DIS(1,2),DIS(1,3)

D-19

3140 PRINT “MEDIUM OBST. DISTANCE'--":INPUT "MDIS1,MDIS2,MDIS3";DIS(2,1),DIS(2,2).DIS(2,3)

3150 WRITE #2,DIS(2,1).DIS(2.2),DIS(2,3)

3160 PRINT "LARGE OBST. DISTANCE--":INPUT "LDIS1,LDIS2,LDIS3";DIS(3,1).DIS(3,2),DIS(3,3)

3170 WRITE #2,DIS(3,1),DIS(3.2).DIS(3.3)

3180 PRINT "RATIO IF 'SMALL OBSTACLE DISTANCE' AND:"

3190 PRINT “SMALL OBSTACLE RADIUS'--":INPUT
*SDSR1,SDSR2,SDSR3"“;RAT(1,1,1),RAT(1,1,2),RAT(1,1,3)

3200 WRITE #2RAT(1,1,1)RAT(1,1,.2) RAT(1,1.3)

3210 PRINT "MEDIUM OBSTACLE RADIUS--":INPUT
"SDMR1,SDMR2,SDMR3";RAT(1,2,1),RAT(1,2.2),RAT(1,2,3)

3220 WRITE #2,RAT(1,2,1)RAT(1,2.2) RAT(1.2.3)

3230 PRINT "LARGE OBSTACLE RADIUS'--":INPUT
“SDLR1,SDLR2,SDLR3"RAT(1,3,1).RAT(1,3,2) RAT(1,3,.3)

3240 WRITE #2,RAT(1,3,1)RAT(1,3.2) RAT(1,3.3)

3250 PRINT "RATIO IF 'MEDIUM OBSTACLE DISTANCE' AND:"

3260 PRINT "SMALL OBSTACLE RADIUS'--":INPUT
"MDSR1,MDSR2,MDSR3%;RAT(2,1,1) RAT(2,1 2),RAT(2,1,3)

3270 WRITE #2,RAT(2,1,1)RAT(2,1,.2)RAT(2,13)

3280 PRINT "MEDIUM OBSTACLE RADIUS'--":INPUT
"MDMR1,MDMR2 MDMR3":RAT(2,2,1),RAT(2,2,2) RAT(2,2,3)

3290 WRITE #2RAT(2,2,1)RAT(2,2,2),RAT(2,2,3)

3300 PRINT "LARGE OBSTACLE RADIUS'--":INPUT
"MDLR1,MDLR2 MDLR3"RAT(2,3,1),RAT(2,3,2),RAT(2,3,3)

3310 WRITE #2,RAT(2,3,1) RAT(2,3,2),RAT(2,3,3)

3320 PRINT "RATIO IF 'LARGE OBSTACLE DISTANCE' AND:"

3330 PRINT "SMALL OBSTACLE RADIUS'--":INPUT
"LDSR1,LDSR2,LDSR3";RAT(3,1,1).RAT(3,1 2),RAT(3,1,3)

3340 WRITE #2RAT(3,1,1)RAT(3,1,2)RAT(3,1.3)

3350 PRINT "MEDIUM OBSTACLE RADIUS"--":INPUT
"LDMR1,LDMR2,LDMR3";RAT(3,2,1), RAT(3,2,2),RAT(3,2,3)

3360 WRITE #2,RAT(3,2,1),RAT(3,2,2),RAT(3,2,3)

3370 PRINT "LARGE OBSTACLE RADIUS"--":INPUT
"LDLR1,LDLR2,LDLR3"RAT(3,3,1),RAT(3,3,2),RAT(3,3,3)

3380 WRITE #2,RAT(3,3,1).RAT(3.3.2)RAT(3.3.3)

3390 RETURN

3400 °

3500 'GET DIRECTION ORTHOGONAL TO LINE OF SIGHT FROM VEHICLE TO NEAREST

3510 'OBSTACLE

3520 'FIRST GET NEAREST OBSTACLE AND OBSTACLE WITH MAXIMUM RADIUS

3530 FOR [=1 TO NO

3540 DX[M=XT)-XVDY @)=Y (D) YV:DZN=Z(1)-ZV

3550 DXY@=DX(I)*DX[@}+DY()*DY (D+DZ(Iy*DZ(T):DRRO=(RM+RV)A2

3560 IF DXY (TI)<MIND THEN MINI=I:MIND=DXY ()

3570 IF RMPR(MAXT) THEN MAXI=]

D-20

3580 IF LAST=1 THEN 3620

3590 'TF NOT ALREADY KNOWN TO BE THE LAST OBSTACLE CHECK WHETHER IT IS OR NOT
3600 ‘AND SET -1 FLAG IF IT IS NOT BY VIRTUE OF ITS DIRECTION

3610 IF DX(T)*DXD+DY(@)*DYD>0 THEN LAST=-1

3620 NEXT

3630 TF FLAG NOT SET THEN OBSTACLE MUST BE THE LAST

3640 IF LAST=-1 THEN LAST=0 ELSE LAST=]

3650 'CHECK IF THE NEAREST OBSTACLE IS LAST BECAUSE THE VERICLE IS CLOSER TO
3660 "THE DESTINATION THAN TO THE OBSTACLE AND QUIT IFIT IS

3670 IF DXY(MINI)>DXYD2 THEN LAST=1:GOTO 3770

3680 'GET UNIT VECTOR IN ORTHOGONAL DIRECTION SLANTED TOWARD DESTINATION
3690 'OR, IF ORTHOGONAL TO DESTINATION DIRECTION, AWAY FROM BIGGEST OBSTACLE
3700 IF DY(MINI)<>0 THEN 3730

3710 IF DY(MAXI)<>0 THEN ALPHA=0:BETA=-SGN(DY(MAXI)):GOTO 3770

3720 BETA=1:GOTO 3770

3730 TH=-ATN(DX(MINIYDY(MINI))

3740 ALPHA=COS(TH):BETA=SIN(TH)

3750 DOTP=ALPHA*DXD+BETA*DYD

3760 IF DOTP<0 THEN ALPHA=-ALPHA:BETA=-BETA

3770 RETURN

3780°

4000 'GET FUZZY SET RATIO' OF MAGNITUDE OF VECTOR IN (ALPHA,BETA) DIRECTION TO
4010 INCREMENT DD OF VEHICLE MOVEMENT.

4020 FIRST GET OBSTACLE DISTANCE FROM VEHICLE AND RADIUS

4030 ODIS=SQR(DXY (MINT)):ORAD=R(MINI)

4040 'THEN GET RATIO' MEMBERSHIP VALUES AND DEFUZZIFY

4050 RATI=0:NSUM=0:DSUM=0

4060 WHILE RATI<=RAT(1,3.2)

4070 GOSUB 7000

4080 NSUM=NSUM+RATI*"MAXMF:DSUM=DSUM+MAXMF

4090 RATI=RATI+DRAT

4100 WEND

4110 IF NSUM=0 THEN RATIO=0 ELSE RATIO=NSUM/DSUM

4120 RETURN

4130

4500 '‘GET NEW VEHICLE POSITION

4510 IF LAST=1 THEN 4580

4520 DD1=RATIO*DD

4530 'TF NEAREST OBSTACLE CHANGES SPECIAL HANDLING REQUIRED

4540 IF MINI<>LMINI AND FIRST=0 THEN GOSUB 5000

4550 XV=XV+DD1*ALPHA:YV=YV+DDI1*BETA

4560 IF DIRCH=1 THEN 4620

4570 'GET DIRECTION OF DESTINATION FROM VEHICLE AND INCREMENT VEHICLE POSITION

D-21

4580 DXD=XD-XV:DYD=YD-YV:DXYD=SQR(DXD*DXD+DYD*DYD):DXDO0=DXD/DXYD:DYDO=DYD/DX
YD

4590 'ALONG THAT DIRECTION

4600 XV=XV+DD*DXD0:YV=YV+DD*DYDO

4610 'GET DISTANCE OF VEHICLE IN NEW POSITION FROM NEAREST OBSTACLE

4620 DXY (MIND=(X(MIND-XV)*2+(Y (MINI)-Y VY"2+Z(MINI)-ZV)*2

4630 RECORD THIS DATA IN VEHICLE PATH FILE ALONG WITH THE SUM OF THE VEHICLE
4640 'AND OBSTACLE RADII

4650 PRINT #3 XV,YV ,DXY(MIND,DRR(MIND

4660 'IF THE DISTANCE BETWEEN THE VEHICLE AND THE NEAREST OBSTACLE IS GREATER
4670 THAN THE SUM OF THE RADII THEN THERE IS NO COLLISION

4680 IF DXY(MINI)>DRR(MINI) THEN GOTO 4720

4690 'OTHERWISE THERE IS A COLLISION THAT MUST BE AVOIDED SO REVERSE THE

4700 'DIRECTION OF THE VEHICLE MOTION AND TRY AGAIN

4710 XV=LXV:YV=LYV:ALPHA=-LALPH:BETA=-LBET:GOTO 4550

4720 RETURN

4730

5000 'TF NORMAL DIRECTION BRINGS VEHICLE CLOSER TO FORMER NEAREST OBSTACLE
5010 'CHANGE DIRECTION UNLESS LAST OBSTACLE IS NOT TOO CLOSE TO PRESENT ONE
5020 IF LMINI=0 THEN 5150

5030 SIDE1=R(LMINI)+RV:SIDE2=R(LMINI)-RV:SIDE3=R(MINI)}+RV:SIDE4=R(MINI)-RV

5040 ANG1=ATN(SIDE2/SQR(SIDE1/2-SIDE2/2)): ANG2=ATN(SIDEA/SQR(SIDE3/2-SIDE4*2))

5050 ANG=3.1415926#-(ANG1+ANG2):SIDE5=SIDE 142+SIDE32-2*SIDE1*SIDE3*COS(ANG)

5060 DMINI=(X(LMINI)-X(MIND)*2+(Y (LMINT)- Y (MIND)*2 +HZ(LMIND)-Z(MIND)}*2

5070 'IF THERE IS ROOM TO SPARE THEN CONTINUE

5080 IF SIDES5<.8*DMINI THEN 5150

5090 TF NOT THEN REVERSE DIRECTION AND TRY AGAIN

5100 TXV=XV:TYV=YV

5110 TXV=TXV+DD1*ALPHA:TYV=TYV+DDI*BETA:TDXD=XD-TXV:TDYD=YD-TYV

5120 TDXYD=SQR(TDXD*TDXD+TDYD*TDYD). TDXDO=TDXD/TDXYD:TDYDO=TDYD/TDXYD
5130 TXV=TXV+DD*TDXDO0:TYV=TYV+DD*TDYD0

5140 IF (TXV-X(LMINDY 2 HTYV-Y(LMINDY2<(XV-X(LMINDY*2+(YV-Y (LMIND)*2 THEN
ALPHA=-ALPHA:BETA=-BETA:DIRCH=1:GOTO 5160

5150 LMINI=MINI:DIRCH=0

5160 RETURN

5170

5500 ‘COLLISION OCCURRED, SO ANNOUNCE IT ON THE SCREEN AND QUIT
5510 SCREEN 2:SCREEN 0:LOCATE 12,30:PRINT "COLLISION!!!"

5520 PRINT #3,-1,-1,DXY(T),DRR(I):PRINT #3.1, X(I),Y(I):PRINT #3,"COLLISION!!!"
5530 IF INKEYS$="" THEN 5530

5540 XX=XV:YY=YV:GOSUB 6000:GOSUB 6500

5550 IF INKEY$=" THEN 5550

5560 SCREEN 2:SCREEN 0:STOP

5570

D-22

S

6000 DRAW BASIC ORIGINAL OBSTACLES, VEHICLE PATH AND DESTINATION ON SCREEN
6010 CLS:SCREEN 1
o 6020 LINE(XV0,200-YV0)-(XD,200- YD):CIRCLE(XD,200- YD),RV,1
6030 FOR C=1 TO NO
6040 CIRCLE(X(C),200-Y(C)).R(C)....1
6050 NEXT
6060 RETURN
® 6070 '
6500 DRAW VEHICLE POSITION ON SCREEN
6510 CIRCLE(XX,200-YY),RV,2,,,1
6520 RETURN
6530
7000 PERFORM COMPOSITION OF RULES FOR CALCULATING RATIO
¢ 7010 'GET MEMBERSHIP FUNCTION OF THE INTERSECTION OF 'OBSTACLE RADIUS' AND
7020 "DISTANCE FROM VEHICLE' FOR ALL COMBINATIONS OF RADIUS AND DISTANCE SIZES
7030 MAXMF=0
7040 FOR DSIZE=1TO 3
7050 'GET OBSTACLE DISTANCE FROM VEHICLE MEMBERSHIP FUNCTION VALUE MF1
® 7060 P1=DIS(DSIZE,1):P2=DIS(DSIZE 2):P3=DIS(DSIZE,3):P=ODIS:GOSUB 7500
7070 MF1=aMF
7080 'GET OBSTACLE RADIUS MEMBERSHIP FUNCTION VALUE MF2
7090 FOR RSIZE=1 TO 3
7100 P1=RAD(RSIZE,1):P2=RAD(RSIZE,2):P3=RAD(RSIZE,3):P=ORAD:GOSUB 7500
L 7110 MF2=MF
7120 ‘GET INTERSECTION MEMBERSHIP FUNCTION VALUE MFDR
7130 IF MF1<MF2 THEN MF=MF1 ELSE MF=MF2
7140 MFDR=MF
7150 'GET MEMBERSHIP FUNCTION VALUE FOR RATIO AS CARTESIAN PRODUCT OF 'OBSTACLE
o 7160 'DISTANCE' AND 'OBSTACLE RADIUS' ACCORDING TO EACH RULE AND THEN THE UNION
7170 'OF ALL RULES
7180 P1=RAT(DSIZE RSIZE,1).P2=RAT(DSIZE RSIZE 2):P3=RAT(DSIZE RSIZE 3):P=RATI
7190 GOSUB 7500
7200 IF MF<MFDR THEN MFRDR=MF ELSE MFRDR=MFDR
o 7210 IF MFRDR>MAXMF THEN MAXMF=MFRDR
7220 NEXT
7230 NEXT
7240 RETURN
7250 '
Y 7500 'GENERIC MEMBERSHIP FUNCTION MF(P1,P2,P3)
7510 IF P1<P2 THEN 7530
7520 IF P<=P2 THEN MF=1:GOTO 7580 ELSE GOTO 7550
7530 IF P<=P1 THEN MF=0:GOTQ 7580
7540 IF P<P2 THEN MF=(P-P1)/(P2-P1):GOTO 7580
® 7550 IF P<P3 THEN MF=(P3-P)/(P3-P2):GOTO 7580

D-23

»ﬁ

7560 IF P3<P2 THEN MF=1:GOTO 7580
7570 IF P>=P3 THEN MF=0

7580 RETURN

9000 FOR I=1 TONO

9010 IF DXY(T)<DRR(T) THEN 5500
9020 NEXT

9030 RETURN

0 PROGRAM TO AVOID CYLINDRICAL OBSTACLES USING A FUZZY ALGORITHM

10 INPUT "USE OBSTACLE PARAMETERS IN FILE Y(N)";ANS$

20 IF ANSS="Y" OR ANS$="y" THEN OPEN "I",1,"OBSTACLE.DAT" ELSE GOTO 60

30 'TF 'YES', GET PARAMETERS FROM THE FILE 'OBSTACLE.DAT.

40 GOSUB 1000:GOTO 110

50 'IF 'NO', GET PARAMETERS DIRECTLY FROM THE KEYBOARD AND STORE IN THE FILE:
60 OPEN "O",1,"OBSTACLE.DAT"

70 ‘GET THE VEHICLE RADIUS AND ITS INTTIAL AND DESTINATION (X,Y,Z) LOCATIONS;

80 GOSUB 2000

90 ‘GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y,Z) LOCATIONS.

100 GOSUB 2500

110 INPUT "USE MEMBERSHIP FUNCTION PARAMETERS IN FILE Y(N)";ANS$

120 'TF 'YES', GET PARAMETERS FROM THE FILE ‘MF.DAT".

130 IF ANS$="Y" OR ANS$="y" THEN GOSUB 1500:GOTO 160

140 'TF 'NO', GET PARAMETERS DIRECTLY FROM THE KEYBOARD AND STORE IN THE FILE.
150 OPEN "0",2,"MF.DAT":GOSUB 2620

160 FOR I=1 TONO

170 PRINT "OBSTACLE #"I.,": X =";X1(I),"Y =";Y1(1),"Z =";Z1(T)

180 NEXT

190 IF INKEYS$="" THEN 190

200 'START WITH THE VEHICLE IN ITS INITIAL POSITION, INITIALIZE THE

210 'CONFIGURATION STATE, AND OPEN A FILE TO RECORD THE VEHICLE PATH.

220 XV=XV0:YV=YV0:ZV=ZVO0:FIRST=1:LAST=0:OPEN "0",3,"VCOORDS.DAT"

230 CLS:INPUT "BASIC INCREMENT FOR VEHICLE MOTION ALONG PATH",.DD

240 'GET THE NUMBER OF DISCREET MEMBERSHIP FUNCTION VALUES FOR THE FUZZY SET
250 RATIO’ THAT DEFINES THE CORRECTIVE CHANGE IN THE VEHICLE MOTION DIRECTION.
260 INPUT "NUMBER OF RATIO VALUES";NRAT:DRAT=RAT(1,3,2)/NRAT:GOTO 430

270 ‘GET THE DISTANCE OF THE VEHICLE FROM THE DESTINATION.

280 DXD=XD-XV:DYD=YD-YV

290 DXYD2=DXD*DXD+DYD*DYD:MIND=DXYD2:DXYD=SQR(DXYD?2)

300 TF THE VEHICLE IS CLOSER TO THE DESTINATION THAN THE LENGTH OF ITS OWN
310 RADIUS, LET THE VEHICLE GO STRAIGHT TO THE DESTINATION.

320 IF DXYD<RV THEN XV=XD:YV=YD:DEST$="DEST":GOTO 430

330 TF NOT THEN FIND THE NEAREST OBSTACLE AND WHETHER IT IS THE LAST ONE. IF
340 'IT IS NOT GET THE DIRECTION ORTHOGONAL TO THE VEHICLE'S LINE OF SIGHT TO

D-24

350 THE OBSTACLE .

360 GOSUB 3500:1F LAST=1 THEN 400

370 'IF THE NEAREST OBSTACLE IS NOT THE LAST GET THE INCREMENT FACTOR FCR THE
380 'VEHICLE MOTION ORTHOGONAL TO THAT DIRECTION.

390 GOSUB 4000

400 ‘CALCULATE THE NEW VEHICLE POSITION AND SET A FLAG INDICATING THAT IT IS NO
410 TLONGER THE INITIAL POSITION.

420 GOSUB 4500:IF FIRST=1 THEN FIRST=(0

430 'UPDATE THE SCREEN AND SAVE THE LAST VEHICLE POSITION AND DIRECTION.
440 GOSUB 8010:XX=XV:YY=YV

450 GOSUB 6000:GOSUB 6500:LXV=XV:LYV=YV:LALPH=ALPHA:LBET=BETA

460 IF FIRST=0 THEN 500

470 'FREEZE THE SCREEN CONFIGURATION BEFORE THE VEHICLE STARTS TO MOVE.
480 IF INKEY$="" THEN 480

490 TF IT IS NOT AT THE DESTINATION GET THE VEHICLE POSITION UPDATE.

500 IF DEST$<"DEST" THEN 280

510 IF INKEYS$="" THEN 510

520 SCREEN 2:SCREEN 0

530 END

540 °

1000 'GET THE OBSTACLE PARAMETERS FROM THE FILE 'OBSTACLE.DAT.

1010 I=0;INPUT #1,XV0,YV0,ZVO,RV

1020 INPUT #1,XD,YD,ZD

1030 WHILE NOT(EOQF(1))

1040 I=1+1

1050 INPUT #1.X(D).Y(D.ZM RO:X 1M=XD:Y 1D=Y O:ZID=ZO:R1D=RA)

1060 WEND

1070 NO=I

1080 RETURN

1090 *

1500 ‘GET THE MEMBERSHIP FUNCTION PARAMETERS FROM THE FILE ‘MF.DAT".
1510 OPEN "I" 2,"MF.DAT"

1520 FOR I=1 TO 3

1530 FOR J=1TO 3

1540 INPUT #2 RAD(1.))

1550 NEXT

1560 NEXT

1570 FOR I=1 TO 3

1580 FOR J=1 TO 3

1590 INPUT #2,DIS(15)

1600 NEXT

1610 NEXT

1620 FOR I=1 TO 3

1630 FOR J=1 TO 3

D-25

1640 FOR K=1 TO 3

1650 INPUT #2 RAT(1J K)

1660 NEXT

1670 NEXT

1680 NEXT

1690 RETURN

1700

2000 ‘GET THE INITIAL VEHICLE DATA FROM THE KEYBOARD.

2010 INPUT "VEHICLE INITIAL X.,Y,Z COORDINATES";XV0,YV0,ZV0

2020 INPUT "VEHICLE RADIUS";RV

2030 INPUT "DESTINATION X,Y,Z COORDINATES";XD,YD,ZD

2040 RECORD THE DATA IN THE FILE 'OBSTACLE.DAT.

2050 PRINT #1,XV0,YVO,ZVORV:PRINT #1,XD,YD,ZD

2060 RETURN

2070

2500 ‘GET THE INITIAL OBSTACLE DATA.

2510 INPUT "NUMBER OF OBSTACLES";NO

2520 WHILE I<NO

2530 I=I+1

2540 PRINT "OBSTACLE #"1

2550 INPUT "X,Y,Z COORDINATES";X(D).Y([™).Z(I)

2560 INPUT "RADIUS":RMD:X1M=XD:Y1(D=YD:Z1M=ZM:R1{D)=RD)

2570 RECORD THE DATA IN THE FILE 'OBSTACLE.DAT.

2580 PRINT #1 . X@), YD), ZA).R(@)

2590 WEND

2600 RETURN

2610

2620 'GET FUZZY SET PARAMETERS FOR DEFINING A 'SMALL', 'MEDIUM', OR 'LARGE'

2630 RADIUS OF AN OBSTACLE AND DISTANCE OF AN OBSTACLE FROM A VEHICLE. ALSO,

2640 'GET THE PARAMETERS ASSOCIATED WITH THE MEMBERSHIP FUNCTIONS OF THE MATRIX

2650 ELEMENTS IN THE MATRIX DETERMINED BY THE RULES OF THE FORM TF THE

2660 'OBSTACLE RADIUS IS * AND THE OBSTACLE DISTANCE IS * THEN THE RATIO IS *'.

2670 PRINT "3 PARAMETERS DEFINING THE MEMBERSHIP FUNCTIONS:":PRINT

2680 PRINT "'SMALL OBSTACLE RADIUS'--“INPUT
"SRAD1,SRAD2,SRAD3";RAD(1,1),RAD(1,2), RAD(1,3)

2690 WRITE #2,RAD(1,1),RAIDX1,2),RAD(1,3)

2700 PRINT "MEDIUM OBSTACLE RADIUS--":INPUT
"MRADI,MRAD2,MRAD3";RAD(2,1),RAD(2,2),RAD(2,3)

2710 WRITE #2,RAD(2,1),RAD(2,2) RAD(2,3)

2720 PRINT "LARGE OBSTACLE. RADIUS'--":INPUT
"LRAD1 LRAD2 LRAD3";RAD(3,1),RAD(3,2),RAD(3,3)

2730 WRITE #2,RAD(3,1),RAD(3,2), RAD(3,3)

2740 PRINT "SMALL OBST. DISTANCE--":INPUT "SDI1S1,SDIS2,SDIS3";DIS(1,1),D1S(1,2),DIS(1,3)

2750 WRITE #2,D18(1,1),D1S(1,2),DIS(1,3)

D-26

2760 PRINT “'MEDIUM OBST. DISTANCE'--":INPUT "MDIS$1MDIS2 MDIS3";DIS(2,1),DIS(2,2),DIS(2,3)

2770 WRITE #2,DIS(2,1),D1S(2,2),DIS(2,3)

2780 PRINT “LARGE OBST. DISTANCE'--":INPUT "LDIS 1,L.DIS2,LDIS3";DIS(3,1),DIS(3,2),DIS(3,3)

2790 WRITE #2,DIS(3,1),DIS(3,2),DIS(3,3)

2800 PRINT "RATIO IF ‘SMALL OBSTACLE DISTANCE' AND:"

2810 PRINT "SMALL OBSTACLE RADIUS'--"INPUT
"SDSR1,SDSR2,SDSR3";RAT(1,1,1),RAT(1.1,2) RAT(1,1,3)

2820 WRITE #2RAT(1,1,1),RAT(1,1,2),RAT(1,1,3)

2830 PRINT "MEDIUM OBSTACLE RADIUS--":INPUT
"SDMR1,SDMR2,SDMR3";RAT(1,2,1) RAT(1,2,2),RAT(1,2,3)

2840 WRITE #2RAT(1,2,1),RAT(1,2,2).RAT(1,2,3)

2850 PRINT “LARGE OBSTACLE RADIUS'--":INPUT
"SDLR1,SDLR2,SDLR3";RAT(1,3,1),RAT(1,3,2),RAT(1,3,3)

2860 WRITE #2,RAT(1,3,1),RAT(1,3,2) RAT(1,3.3)

2870 PRINT "RATIO IF 'MEDIUM OBSTACLE DISTANCE' AND:"

2880 PRINT "SMALL OBSTACLE RADIUS'--":INPUT
"MDSR1,MDSR2,MDSR3"RAT(2,1,1) RAT(2,1 2),RAT(2,1,3)

2890 WRITE #2,RAT(2,1,1),RAT(2,1,2),RAT(2,1,3)

2900 PRINT "MEDIUM OBSTACLE RADIUS'--":.INPUT
"MDMR1MDMR2MDMR3"RAT(2,2,1),RAT(2,2,2).RAT(2,2 3)

2910 WRITE #2RAT(2,2,1).RAT(2,2,2),RAT(2,2,3)

2920 PRINT “"LARGE OBSTACLE RADIUS'--":INPUT
"MDLR1 ,MDLR2MDLR3"RAT(23,1),RAT(2,3,2),RAT(2,3,3)

2930 WRITE #2RAT(2.3,1),RAT(2,3.2).RAT(2.3.3)

2940 PRINT "RATIO IF 'LARGE OBSTACLE DISTANCE' AND:"

2950 PRINT "SMALL OBSTACLE RADIUS'--":INPUT
"LDSR1,LDSR2,LDSR3";RAT(3,1,1),RAT(3,1,2),RAT(3,1,3)

2960 WRITE #2,RAT(3,1,1).RAT(3,1.2),RAT(3,1,3)

2970 PRINT "MEDIUM OBSTACLE RADIUS'--":INPUT
"LDMR1,LDMR2 LDMR3";RAT(3,2,1),RAT(3,2,2),RAT(3,2,3)

2980 WRITE #2,RAT(3,2,1).RAT(3,2.2),RAT(3,2.3)

2990 PRINT "LARGE OBSTACLE RADIUS'--":INPUT
"LDLR1,LDLR2,LDLR3";RAT(3,3,1).RAT(3,3,2),RAT(3,3,3)

3000 WRITE #2,RAT(3,3,1),RAT(3.3,2)RAT(3,3,3)

3010 RETURN

3020

3500 ‘GET THE DIRECTION ORTHOGONAL TO THE LINE OF SIGHT FROM THE VEHICLE TO THE

3510 NEAREST OBSTACLE. FIRST GET THE NEAREST OBSTACLE.

3520 FOR I=1 TONO

3530 DX(M=X{)-XV:DY(D=Y(D-YV

3540 DXY(D=DX[D*DX{D+DY{*DY(I):DRR(D=(RM+RV)*2

3550 IF DXY(T)<MIND THEN MINI=I:MIND=DXY(T)

3560 TF IT IS KNOWN THAT THE LAST OBSTACLE IS AT HAND SKIP THE DIRECTION TEST.

3570 IF LAST=1 THEN 3620

D-27

3580 TF NOT ALREADY KNOWN TO BE THE LAST OBSTACLE, CHECK WHETHER THE OBSTACLE
3590 1S OR NOT THE LAST BY VIRTUE OF ITS DIRECTION AND SET THE -1 FLAG IF IT

3600 ‘1S NOT.

3610 DDOT(D= DX(I)*DXD+DY(I)*DYD:IF DDOT(I)>0 THEN LAST=-1

3620 NEXT

3630 'CALCULATE THE DISTANCE BETWEEN THE VEHICLE AND THE NEAREST OBSTACLE.
3640 ODIS=SQR(DXY(MINTI))

3650 TF THE -1 FLAG IS NOT SET THEN THE OBSTACLE MUST BE THE LAST ONE.
3660 IF LAST=-1 THEN LAST=0 ELSE LAST=1

3670 'CHECK IF THE NEAREST OBSTACLE IS THE LAST BECAUSE THE VEHICLE IS CLOSER
3680 'TO THE DESTINATION THAN TO THE OBSTACLE AND QUIT IFIT IS.

3690 IF DXY(MINI)>DXYD2 THEN LAST=1:GOTO 3780

3700 'GET THE UNIT VECTOR (ALPHA,BETA) IN THE DIRECTION ORTHOGONAL TO THE PATH
3710 FROM THE VEHICLE TO THE NEAREST OBSTACLE CENTER, SLANTED TOWARD THE
3720 'DESTINATION.

3730 ALPHA=-DY(MIND/ODIS:BETA=DX(MIND/ODIS

3740 'CHECK TO DETERMINE WHETHER THE SLANT OF THE UNIT VECTOR IS CORRECT.
3750 DOTP=ALPHA*DXD+BETA*DYD

3760 TF NOT REVERSE ITS SIGN.

3770 IF DOTP<0 THEN ALPHA=-ALPHA:BETA=-BETA

3780 RETURN

3790

4000 ‘GET THE RATIO OF THE MAGNITUDE OF THE VECTOR IN THE (ALPHA,BETA)

4010 'DIRECTION TO THE INCREMENT DD OF THE VEHICLE MOVEMENT. FIRST GET THE
4020 RADIUS ORAD OF THE NEAREST OBSTACLE.

4030 ORAD=R(MINI)

4040 'THEN GET THE FUZZY SET RATIO' MEMBERSHIP VALUES AND DEFUZZIFY THE RATIO.
4050 RATI=0:NSUM=0:DSUM=0

4060 WHILE RATI<=RAT(1,3,2)

4070 GOSUB 7000

4080 NSUM=NSUM+RATI*MAXMF:DSUM=DSUM+MAXMF

4090 RATI=RATI+DRAT

4100 WEND

4110 IF NSUM=0 THEN RATIO=0 ELSE RATIO=NSUM/DSUM

4120 RETURN

4130

4500 ‘GET THE NEW VEHICLE POSITION.

4510 IF LAST=1 THEN 4610

4520 ‘CALCULATE THE SIZE OF THE CORRECTION TO THE VEHICLE COORDINATES.

4530 DD1=RATIO*DD

4540 TF THE NEAREST OBSTACLE CHANGES, A NEW CALCULATION OF THE CORRECTIVE
4550 DIRECTION VECTOR (ALPHA,BETA) IS NEEDED.

4560 IF MINI<>LMINI AND FIRST=0 THEN GOSUB 5000

4570 INCREMENT THE VEHICLE COORDINATES BY THE RESULTING CORRECTIONS.

D-28

4580 XV=XV+DD1*ALPHA:YV=YV+DD1*BETA
4590 IF DIRCH=1 THEN 4670
4600 ‘GET THE DESTINATION DIRECTION RELATIVE TO THE VEHICLE.

4610 DXD=XD-XV:DYD=YD-YV:DXYD=SQR(DXD*DXD+DYD*DYD):DXD0=DXD/DXYD:DYDO=DYD/DX
YD

4620 INCREMENT THE VEHICLE POSITION ALONG THAT DIRECTION BY THE INITIALLY

4630 ‘'SELECTED MAGNITUDE DD.

4640 XV=XV+DD*DXD0:YV=YV+DD*DYDO0

4650 ‘GET THE DISTANCE OF THE VEHICLE IN THE NEW POSITION FROM THE NEAREST

4660 'OBSTACLE.

4670 DXY(MIND=(X(MINI)-XVY'2+(Y(MIND-YV)*2

4680 'RECORD THIS DATA IN THE VEHICLE PATH FILE ALONG WITH THE SUM OF THE

4690 'VEHICLE AND OBSTACLE RADII. IF THE DISTANCE BETWEEN THE VEHICLE AND THE

4700 'NEAREST OBSTACLE IS GREATER THAN THE SUM OF THE RADII THEN THERE IS NO

4710 ‘COLLISION.

4720 IF DXY(MIND>DRR(MINI) THEN GOTO 4760

4730 'OTHERWISE THERE IS A COLLISION THAT MUST BE AVOIDED SO REVERSE THE

4740 'DIRECTION OF THE VEHICLE MOTION AND TRY AGAIN.

4750 XVaLXV:YVaLYV:ALPHA=-LALPH:BETA=-LBET:GOTO 4580

4760 PRINT #3 XV,YV . DXY(MINI),DRR(MINT)

4770 RETURN

4780 °

5000 TF NORMAL DIRECTION BRINGS VEHICLE CLOSER TO FORMER NEAREST OBSTACLE

5010 'CHANGE DIRECTION UNLESS LAST OBSTACLE IS NOT TOO CLOSE TO PRESENT ONE

5020 IF LMINI=0 THEN 5130

5030 OBSEP=(R(LMINI+R(MINI)+2*RV*2

5040 DMINI=(X(LMIND-X(MINDY*2+(Y (LMINI)- Y (MIND)y*2

5050 'TF THERE 1S ROOM TO SPARE THEN CONTINUE

5060 IF OBSEP<DMINI THEN 5130

5070 TF NOT THEN REVERSE DIRECTION AND TRY AGAIN

5080 TXV=XV:TYV=aYV

5090 TXV=TXV+DD1*ALPHA:TYV=TYV+DDI1*BETA:. TDXD=XD-TXV:TDYD=YD-TYV

5100 TDXYD=SQR(TDXD*TDXD+TDYD*TDYD): TDXDO=TDXD/TDXYD:TDYDO=TDYD/TDXYD

5110 TXVaTXV+DD*TDXDO:TYV=TYV+DD*TDYD0

S120 IF (TXV-X(LMINDY 2+(TYV-Y(LMIND)Y2<(XV-X(LMIND*2+YV-Y(LMINI))*2 THEN
ALPHA=-ALPHA:BETA=-BETA:DIRCH=1:GOTO 5140

5130 LMINI=MINI:DIRCH=0

5140 RETURN

5150 °

5500 'A COLLISION OCCURRED, SO ANNOUNCE IT ON THE SCREEN AND QUIT.

5510 SCREEN 2:SCREEN 0:LOCATE 12,30:PRINT "COLLISION!!!"

5520 PRINT #3,-1,-1,DXY(T),DRR(T) :PRINT #3,1.X(T),Y(T):PRINT #3,"COLLISION!!!"

5530 IF INKEYS$="" THEN 5530

D-29

5540 XX=XV:YY=YV:GOSUB 6000:GOSUB 6500

5550 IF INKEYS$="" THEN 5550

5560 SCREEN 2:SCREEN 0:STOP

5570 °

6000 DRAW THE OBSTACLES, ORIGINAL VEHICLE PATH AND DESTINATION ON SCREEN.
6010 CLS:SCREEN 1

6020 LINE(XV0,200-YV0)-(XD,200-YD):CIRCLE(XD,200-YD).RV,1

6030 FOR C=1 TO NO

6040 CIRCLE(X(C),200-Y(C)),R(C)....1

6050 NEXT

6060 RETURN

6070 °

6500 DRAW THE VEHICLE POSITION ON SCREEN.

6510 CIRCLE(XX,200-YY),RV,2,,.1

6520 RETURN

6530 °

7000 PERFORM THE COMPOSITION OF RULES FOR CALCULATING THE RATIO. GET
7010 THE MEMBERSHIP FUNCTION OF THE INTERSECTION OF 'OBSTACLE RADIUS' AND
7020 "OBSTACLE DISTANCE FROM THE VEHICLE' FOR ALL COMBINATIONS OF FUZZY RADIUS
7030 'AND DISTANCE SIZES.

7040 MAXMF=0

7050 FOR DSIZE=]1 TO 3

7060 ‘GET THE 'OBSTACLE DISTANCE FROM THE VEHRICLE' MEMBERSHIP FUNCTION VALUE
7070 ‘MF1.

7080 P1=DIS(DSIZE,1):P2=DIS(DSIZE,2).P3=DIS(DSIZE,3):P=ODIS:GOSUB 7500

7090 MF1=MF

7100 'GET THE 'OBSTACLE RADIUS’ MEMBERSHIP FUNCTION VALUE MF2.

7110 FOR RSIZE=1 TO 3

7120 P1=RAD(RSIZE,1):P2=RAD(RSIZE, 2):P3=RAD(RSIZE ,3):P=ORAD:GOSUB 7500

7130 MF2=MF

7140 'GET THE INTERSECTION MEMBERSHIP FUNCTION VALUE MFDR.

7150 IF MF1<MF2 THEN MF=MF1 ELSE MF=MF2

7160 MFDR=MF

7170 'GET THE MEMBERSHIP FUNCTION VALUE FOR RATIO' AS THE CARTESIAN PRODUCT OF
7180 ‘'OBSTACLE DISTANCE FROM THE VEHICLE’' AND 'OBSTACLE RADIUS' ACCORDING TO
7190 'TEACH RULE AND THEN THE UNION OF ALL RULES.

7200 P1=RAT(DSIZE RSIZE,1):P2=RAT(DSIZE RSIZE,2):P3=RAT(DSIZE RSIZE 3):P=RATI

7210 GOSUB 7500

7220 IF MF<MFDR THEN MFRDR=MF ELSE MFRDR=MFDR

7230 IF MFRDR>MAXMF THEN MAXMF=MFRDR

7240 NEXT

7250 NEXT

7260 RETURN

7210

D-30

7500 "THE GENERIC MEMBERSHIP FUNCTION MF(P1,P2,P3).
7510 IF P1<P2 THEN 7530

7520 IF P<=P2 THEN MF=1:GOTO 7580 ELSE GOTO 7550
7530 IF P<=P1 THEN MF=0:GOTO 7580

7540 IF P<P2 THEN MF=(P-P1)/(P2-P1):GOTO 7580

7550 IF P<P3 THEN MF=(P3-P)/(P3-P2):GOTO 7580

7560 IF P3<P2 THEN MF=1:GOTO 7580

7570 IF P>=P3 THEN MF=0

7580 RETURN

7590 *

8000 'CHECK FOR A COLLISION WITH ANY OBSTACLE.
8010 FOR I=1 TO NO

8020 IF DXY(I)<DRR(T) THEN 5500

8030 NEXT

8040 RETURN

0 'PROGRAM TO AVOID CYLINDRICAL OBSTACLES USING THE SAFOR CRISP ALGORITHM
10 INPUT “USE OBSTACLE PARAMETERS IN FILE Y(N)";ANS$

20 IF ANS$="Y" OR ANS$="y" THEN OPEN "I",1,"OBSTACLE.DAT" ELSE GOTO 60

30 'YES, SO GET PARAMETERS FROM FILE.

40 GOSUB 500:GOTO 110

50 NO, SO GET PARAMETERS DIRECTLY FROM KEYBOARD.

60 OPEN "0O",1,"OBSTACLE DAT"

70 'GET THE VEHICLE RADIUS AND ITS INITIAL AND DESTINATION (X,Y) LOCATIONS.
80 GOSUB 1000

90 'GET THE NUMBER OF OBSTACLES, THEIR RADII, AND THEIR (X,Y) LOCATIONS.

100 GOSUB 1500

110 FOR 1=1 TONO

120 PRINT "OBSTACLE #"I;": X ="X1(I),"Y =" Y1(T)

130 NEXT

140 IF INKEYS="" THEN 140

150 'START WITH THE VEHICLE IN ITS INITIAL POSITION, INITIALIZE THE

160 'CONFIGURATION STATE, AND OPEN THE FILE TO RECORD THE VEHICLE PATH.
170 XV=XV0:YV=YVO:FIRST=1:LAST=0:0PEN "0",3,"VCOORDS.DAT"

180 CLS:INPUT "BASIC INCREMENT FOR VEHICLE MOTION ALONG PATH";DD

190 GOTO 360

200 'GET THE DISTANCE OF THE VEHICLE FROM THE DESTINATION.

210 DXD=XD-XV:DYD=YD-YV

220 DXYD2=DXD*DXD+DYD*DYD:MIND=DXYD2:DXYD=SQR(DXYD2)

230 'TF THE VEHICLE IS CLOSER TO THE DESTINATION THAN THE LENGTH OF ITS OWN
240 RADIUS LET THE VEHICLE GO STRAIGHT TO THE DESTINATION.

250 IF DXYD<RYV THEN XV=XD:Y V=YD:DEST$="DEST":GOTO 350

260 TF NOT THEN FIND THE NEAREST OBSTACLE, WHETHER IT IS THE LAST ONE, AND IF

D-31

270 'IT IS NOT GET THE DIRECTION ORTHOGONAL TO THE VEHICLE'S LINE OF SIGHT TO
280 'THE OBSTACLE.

290 GOSUB 2000

300 'IF THE NEAREST OBSTACLE IS NOT THE LAST GET THE INCREMENT FACTOR FOR THE
310 'VEHICLE MOTION ORTHOGONAL TO THE DIRECTION OF THE OBSTACLE FROM THE
320 'VEHICLE. CALCULATE THE NEW VEHICLE POSITION AND SET A FLAG INDICATING
330 ‘THAT IT IS NO LONGER THE INITIAL POSITION.

340 GOSUB 2500

350 'UPDATE SCREEN AND SAVE LAST VEHICLE POSITION AND DIRECTION

360 XX=XV:YY=YV

370 GOSUB 3500:GOSUB 4000

380 IF FIRST=0 THEN 420

390 'FREEZE THE SCREEN CONFIGURATION BEFORE THE VEHICLE STARTS TO MOVE
400 IF INKEY$="" THEN 400

410 IF FIRST=1 THEN FIRST=0

420 TF NOT AT DESTINATION GET VEHICLE POSITION UPDATE

430 IF DEST$S<>"DEST" THEN 210

440 IF INKEYS="" THEN 440

450 SCREEN 2:SCREEN 0

460 END

470"

500 'GET OBSTACLE PARAMETERS FROM FILE

510 I=0:INPUT #1,XV0,YV0,ZVO.RV

520 INPUT #1,XD,YD,ZD

530 WHILE NOT(EOF(1))

540 I=l+1

550 INPUT #1.X(D),Y(D.ZM RO:X1D=XD):Y1(D=YD:R1(D=R({)

560 WEND

570 NO=I

580 RETURN

590°

1000 ‘GET INITIAL VEHICLE DATA

1010 INPUT "VEHICLE INITIAL X,Y,Z COORDINATES";XV0,YV0,ZV0

1020 INPUT "VEHICLE RADIUS";RV

1030 INPUT "DESTINATION X,Y COORDINATES";XD,YD,ZD

1040 PRINT #1,XV0,YV0,ZVORV:PRINT #1 XD,YD,ZD

1050 RETURN

1060 *

1500 'GET INITIAL OBSTACLE DATA

1510 INPUT "NUMBER OF OBSTACLES";NO

1520 WHILE I<NO

1530 I=}+1

1540 PRINT "OBSTACLE #";1

1550 INPUT "X.,Y,Z COORDINATES"; X(1),Y(1).,Z()

D-32

1560 INPUT "RADIUS";R(D:X1(M=X({D): Y 1(D=Y({):R1(1)=R(1)
1570 'IF FILE IS IN INPUT MODE DON'T WRITE IN IT
Y 1580 'TF FILS="I" THEN 2100
1590 NEW DATA AND WRITE ONLY FILE MODE SO PRINT PARAMETERS IN FILE
1600 PRINT #1,X(0),Y(D.Z(DRD
1610 WEND
1620 RETURN
1630
2000 ‘GET DIRECTION ORTHOGONAL TO LINE OF SIGHT FROM VEHICLE TO NEAREST
2010 'OBSTACLE. FIRST GET THE NEAREST OBSTACLE AND CHECK IF IT IS THE LAST.
2020 FOR I=1 TONO
2030 DX(D=X{T)-XV:-DY =Y (D-YV:DRR([D=(RV+R(D))*2
2040 DXY2(M=DX@*DXM+DYI*DY(@):DXY(M=SQRMDXY2(D):DISTM=DXY()-R()
2050 IF (DIST(N)<MIND) THEN MINI=L:MIND=DIST(})
2060 DCPA(M=DX[M*DXD+DY({)*DYD
2070 IF LAST=1 THEN 2110
2080 TF NOT ALREADY KNOWN TO BE THE LAST OBSTACLE CHECK WHETHER IT IS OR NOT
2090 'AND SET -1 FLAG IF IT IS NOT BY VIRTUE OF ITS DIRECTION.
2100 IF DCPA(I)>0 THEN LAST=-1
2110 NEXT
2120 'IF THE FLAG NOT SET THEN OBSTACLE MUST BE THE LAST.
2130 IF LAST=-1 THEN LAST=0 ELSE LAST=1
2140 'CHECK IF THE NEAREST OBSTACLE IS LAST BECAUSE THE VEHICLE IS CLOSER TO
2150 'THE DESTINATION THAN TO THE OBSTACLE AND QUIT IF IT IS.
2160 IF DXY2(MIND>DXYD2 THEN LAST=1:GOTO 2270
2170 ‘GET UNIT VECTOR IN THE DIRECTION ORTHOGONAL TO THE VEHICLE PATH DIRECTION
2180 'AND POINTING AWAY FROM THE OBSTACLE CENTER. GET THE DISTANCE DACPA TO
2190 'THE OBSTACLE CENTER AT THE CLOSEST POINT OF APPROACH, THE DISTANCE DTCPA
2200 'TO THE CLOSEST POINT OF APPROACH, AND THE ALLOWED PASSING DISTANCE PD.
2210 DACPA=(DXD*DY(MIND)-DYD*DX(MIND)/DXYD
2220 DTCPA=DCPA(MIND)/DXYD:PD=SQR(2*DRR(MINI))
2230 NOW CALCULATE THE SCALE FACTOR SCF AND DETERMINE THE VEHICLE COORDINATE
2240 'INCREMENTS INCX, INCY.
2250 SCF=SGN(DACPA)*(PD-ABS(DACPA))*DD/ABS(DTCPA)
2260 INCX=DY(MIND*SCF/DXY(MINI):INCY=-DX(MINT)*SCF/DXY (MINT)
2270 RETURN
2280
2500 'GET THE NEW VEHICLE POSITION. IF THE LAST OBSTACLE IS PASSED SKIP THE
2510 FIRST INCREMENT. OTHERWISE, INCREMENT THE VEHICLE POSITION ORTHOGONAL
2520 'TO THE DIRECTION OF THE NEAREST OBSTACLE RELATIVE TO THE VEHICLE.
2530 IF LAST=1 THEN 2550
2540 IF DCPAMMINI>0 THEN XV=XV+INCX:YV=YV+INCY
2550 'GET THE DIRECTION OF THE DESTINATION FROM THE VEHICLE AND THE VEHICLE
2560 'POSITION AFTER INCREMENTING ITS COORDINATES IN THAT DIRECTION.

D-33

2570 DXD=XD-XV:DYD=YD-YV:DXYD=SQR(DXD*DXD+DYD*DYD):DXD0=DXD/DXYD:DYDO=DYD/DX
YD

2580 XV1=XV+DD*DXD0:YV1=YV+DD*DYDO
2590 ‘GET THE SQUARED DISTANCE OF THE VEHICLE IN THE NEW POSITION FROM THE
2600 'NEAREST OBSTACLE.

2610 DXY21(MIND=(X(MINT)}-XVI2+(Y(MINI}-YVI?2

2620 'TF THE DISTANCE IS LARGE ENOUGH ACCEPT THE LAST INCREMENT IN THE VEHICLE
2630 POSITION.

2640 IF DXY21(MINI)>DRR(MINT) THEN XV=XV1:YV=YV1

2650 RECORD THIS DATA IN THE VEHICLE PATH FILE ALONG WITH THE SQUARED SUM OF
2660 THE VEHICLE AND OBSTACLE RADII.

2670 PRINT #3 XV,YV.DXY2(MINT),DRR(MINT)

2680 'CHECK FOR A COLLISION.

2690 GOSUB 4500

2700 RETURN

2710°

3000 'A COLLISION OCCURRED, SO ANNOUNCE IT ON THE SCREEN AND QUIT.

3010 SCREEN 2:SCREEN 0:LOCATE 12,30:PRINT "COLLISION!!!"

3020 PRINT #3,-1,-1,-1,-1:PRINT #3,"COLLISION!!!"

3030 IF INKEY$="" THEN 3030

3040 STOP

3050 *

3500 DRAW BASIC ORIGINAL OBSTACLES, VEHICLE PATH AND DESTINATION ON SCREEN
3510 CLS:SCREEN 1

3520 LINE(XV0,200-YV0)-(XD,200-YD):CIRCLE(XD,200-YD),RV, 1

3530 FOR C=1 TO NO

3540 CIRCLE(X(C),200-Y(C)),R(C)....1

3550 NEXT

3560 RETURN

3570

4000 'DRAW VEHICLE POSITION ON SCREEN

4010 CIRCLE(XX,200-YY),RV 2,..1

4020 RETURN

4030°

4500 ‘CHECK FOR A COLLISION WITH ANY OBSTACLE.

4510 FOR I=1 TO NO

4520 IF DXY2(I)<DRR(T) THEN 3000

4530 NEXT

4540 RETURN

0 PROGRAM TO REPLOT VEHICLE PATH AROUND OBSTACLES
10 LASTX=10:LASTY=100

D-34

20 'INPUT "VEHICLE COORDINATES FILENAME"; VF$
30 INPUT "OBSTACLE DATA FILENAME";OF$

o 40 OPEN "I",1,"OBSTACLE.DAT"

50 OPEN "I".2,"VCOORDS.DAT"

60 GOSUB 1000:GOSUB 5000

70 WHILE NOT(EOF(2))

80 INPUT #2.X,Y.DUMMY,DUMMY

85 TF A COLLISION THEN ANNOUNCE IT AND QUIT

90 IF X=-1 AND Y=-1 THEN GOSUB 500:STOP

100 LINE(LASTX 200-LASTY)~(X,200-Y)

110 LASTX=X:LASTY=Y

120 WEND

130 IF INKEY$="" THEN 130

140 SCREEN 2:SCREEN 0

150 END

160 *

500 ‘COLLISION TO ANNOUNCE

S10IF INKEY$="" THEN 510

520 INPUT #2,C$

530 SCREEN 2:SCREEN 0:LOCATE 12,30:PRINT C$

540 IF INKEYS$="" THEN 540

550 RETURN

560

1000 ‘GET OBSTACLE PARAMETERS FROM FILE

1010 I=0:INPUT #1,XV0,YV0,ZVO,RV

1020 INPUT #1,XD,YD.,ZD

1030 WHILE NOT(EOF(1))

1040 I=I+1

1050 INPUT #1.X([@),YM).ZD RO:X1M=XD: Y 1M=Y(D):Z1DH=Z{D):R1(D=R{)

1060 WEND

1070 NO=I

1080 RETURN

1090

5000 DRAW BASIC ORIGINAL OBSTACLES, VEHICLE PATH AND DESTINATION ON SCREEN

5010 CLS:SCREEN 1

5020 LINE(XV0,200-YV0)-(XD,200-YD):CIRCLE(10,100),10,2:CIRCLE(310,100),10,1

5030 FOR C=] TO NO

5040 CIRCLE(X(C).200-Y(C)).R(C)....1

5050 NEXT

5060 RETURN

m]

D-35

DATA FILES FOR USE IN THE AVOIDANCE PROGRAMS (TO USE OBSTACLE DATA FOR ANY
OBSTACLE CONFIGURATION NUMBER N COPY THE FILE NAMED OBSTACLN.DAT TO
OBSTACLE.DAT. WHEN THE PROGRAM ASKS "USE PARAMETERS IN FILE 7" ANSWER "Y").

OBSTACL1.DAT

10 100 10 10
310 100 10

100 125 20 20
150 70 25 25
200 70 25 25
OBSTACL2.DAT

10 100 14 10
310 100 10

100 125 20 20
150 70 25 25
200 70 25 25
250 120 30 30
OBSTACL3.DAT

10 100 10 10
310 100 10

75 100 25 25
125 120 20 20
125 70 30 30
200 70 25 25
225 120 25 25
270 80 30 30
OBSTACILA.DAT

10 100 10 10
310 100 10

75 60 25 25
100 110 30 30
125 120 25 25
175 80 30 30
225 120 25 25
OBSTACLS.DAT

10 100 10 10
310 100 10

50 90 25 25
150 110 30 30
250 120 25 25

D-36

MF.DAT (THIS IS FUZZY MEMBERSHIP FUNCTION DATA)
35.5.20
520,35
20355
100,20,50
20,50,100
50,100,20
13,5
3,10,5
3,105
513
13,5
3,105
5,13
513
13,5

D-37

