
Computer Science

AD-A278 937

Refinement Types for ML

"Tim Freeman
A ,March 16, 1994

S:.CMU-CS-94- 1O0

DT1C
MAY 0 61994

wool.•'i,
ff."pe

elof

' , ..t negie. 9

94"- 13692 9

\\1\\W1\1~l'\ ~)94 5 05 105

gq ýfl

Refinement Types for ML

Tim Freeman
March 16, 1994
CMU-CS-94-110

Accesion For
NTIS CRA&I
DTIC TAB

Unannounced 0
Justification

School of C om puter Science s

Carnegie Mellon University By
Pittsburgh, PA 15213 Disti ibution I

Availability Codes

Avail and/or
Submitted in partialfulfillment of the requirements Dist Special

for the degree of Doctor of Philosophy.

Thesis Committee:

Frank Pfenning, Chair L F.UT,
Robert Harper MhY • 0 94

Peter Lee I

David MacQueen, AT&T Bell Laboratories G
@ 1994 Tim Freeman

This research was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the
title 'The Fox Project: Advanced Development of Systems Software", ARPA Order No. 8313, issued by
ESD/AVS under Contract No. F19628-91-C-0168.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of DARPA or the U.S. government.

sdiI-IIiw

Keywords: programming languages, functional programming, type inference, implicit
typing, intersection types, subtyping, polymorphism

egie School of Computer Science
on

DOCTORAL THESIS
in the field of

Computer Science

REFINEMENT TYPES

TIMOTHY FREEMAN

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

________________IA" /4~r 17,_1994i~is COMMrrTEE CHAIR DATE

DEPARTMENT HEAD DATE

APPROVED:

DEAN DATE

Abstract

Programming computers is a notoriously error-prone process. It is the job of the program-
ming language designer to make this process more reliable. One approach to this is to
impose some sort of typing discipline on the programs. In doing this, the programming
language designer is immediately faced with a tradeoff: if the type system is too simple, it
cannot accurately express important properties of the program; if it is too expressive, then
mechanically checking or inferring the types becomes impractical. This thesis describes
a type system called refinement types, which is an example of a new way to make this
tradeoff, as well as a potentially useful system in itself.

Refinement type inference requires programs to have types in two type systems: an
expressive type inference system (intersection types with subtyping) and a relatively simple
type system (basic polymorphic type inference). Refinement type inference inherits some
properties from each of these: as in intersection types with subtyping, we can use the type
system to do abstract interpretation; as in basic polymorphic type inference, refinement type
inference is decidable (preliminary experiments suggest refinement type inference may be-
practical as well).

We have implemented refinement type inference for a subset of Standard ML to test these
ideas. We have added new syntax, called rectype declarations, to allow the programmer
to specify relevant domains for the abstract interpretation. A prototype implementation of
refinement type inference can do some interesting case analysis for Standard ML programs;
for example, if the programmer uses a rectype declaration to declare interest in whether
a boolean expression is in conjunctive normal form (CNF), refinement type inference
can efficiently prove that a function for converting boolean expressions to CNF does
indeed always return a boolean expression in CNF. Rectype declarations and refinement
type inference seem flexible and efficient enough to practically enforce many other useful
program properties as well.

11

iv

Contents

1 Introduction 1

1.1 Introductory Examples of Refinement Types 1

1.2 Practical Examples of Refinement Types 6

1.3 Related Work 10

1.4 Claims of the Thesis 12

1.5 Outline of the Work 13

2 Refinement Type Inference 15

2.1 Introduction 15

2.2 The Formal Language 18'

2.3 The Concise Language 20

2.4 Semantics 22

2.5 ML Typing ... 25

2.6 Monomorphic Refinement Types 29

2.7 Compatibility With ML 68

2.8 Simple Soundness Proof 80

2.9 Finite Refinements, Principality 105

2.10 Decidability 116

3 Declaring Refinements of Recursive Data Types 165

3.1 Introduction 165

3.2 Abstract Declarations 170

3.3 Empty Types 183

V

3.4 Subtyping 193

3.5 Splitting 206

3.6 Recursive Types provide Refinement Type Constructors 210

4 Refinement Type Variables 223

4.1 Adding Type Variables 223

4.2 Formally Incorporating Type Variables 228

5 Polymorphic Refinement Type Constructors 240

5.1 ML typing 243

5.2 Subtyping 243

5.3 Finiteness of Refinements 246

5.4 Splitting .. 253

5.5 Refinement Type Inference 254

5.6 Soundness 260

5.7 Decidability 263

5.8 Declaring Polymorphic Type Constructors 269

6 Declaring Refinement Types for Expressions 273

7 Implementation 275

7.1 Representations 276

7.2 Refinement Type Inference 281

7.3 Instantiating Refinement Types 288

7.4 Analyzing Rectype Declarations 297

7.5 Differences Between Implementation and Theory 298

8 Conclusion, Critical Evaluation, and Future Work 300

8.1 Tradeoffs Made for Tractable Type Inference 300

8.2 Experience Yet to Be Gained 302

8.3 Future Work in Language Design 303

vi

8.4 Future Theoretical Work 304

8.5 Future Implementations 305

vii

viii

List of Figures

2.1 Monomorphic Semantics Rules 24

2.2 Monomorphic ML Typing Rules 27

2.3 Monomorphic Refinement Rules 31

2.4 Monomorphic Subtyping Rules 35

2.5 Definition of Splitting 48

2.6 Monomorphic Refinement Typing Rules 60

2.7 Decision Procedure for Refinement Types Part 1 142

2.8 Decision Procedure for Refinement Types Part 2 143

3.1 Monomorphic Recursive Type Refinement Rules 177.

3.2 Whether a Value is in a Recursive Type; Greatest Fixed Point 180

3.3 When a Refinement Type is Empty 184

3.4 Declarative Emptyness for Recursive Types (Greatest Fixed Point) 186

3.5 Algorithmic Emptyness for Recursive Types 186

3.6 Declarative Rules for Recursive Subtyping (Greatest Fixed Point)194

3.7 Algorithmic Rules for Recursive Subtyping 195

3.8 Splitting for Recursive Types (Greatest Fixed Point) 207

4.1 Sample Expression Using Polymorphism. 229

5.1 Polymorphic Refinement Rules 244

5.2 Polymorphic Subtyping Rules 245

7.1 Instantiation algorithm 296

ix

t

x

Acknowledgements

Thanks especially to Frank Pfenning for his patience, ability .to clarify half-baked ideas,
careful reading of the entire thesis, and good advice in general. He also suggested rectype
statements and lead me to believe that the problem solved by refinement types is interesting.

The remainder of my thesis committee, Peter Lee, Bob Harper, and Dave MacQueen,
all provided useful advice about various aspects of the thesis. Bob Harper is especially
good at rejecting nonsense; the simplicity of Chapter 6 arose when he rejected a different
solution that was unnecessarily complex.

Thanks to Nevin Heintze and Benjamin Pierce for interesting and useful technical
discussions. Nevin introduced me to regular tree sets, and Benjamin was an excellent
example of a victorious trajectory through graduate school.

Thanks to my wife Ailing and my parents for providing some of the financial support
needed to make this happen, and for being patient.

Pittsburgh, PA

January 30, 1994

xi

xii

Chapter 1

Introduction

In this chapter we use examples to illustrate what refinement type inference can and cannot
do. We also describe the context in which this thesis exists, and give an overview of the
rest of the thesis.

1.1 Introductory Examples of Refinement Types

The examples in this chapter are in Standard ML. The first example defines a Standard ML
function that returns the last cons cell in a list:

datatyp. a list = nil I cons of a* a list
fun lastcons (last as cons (hd, nil)) = last

I lastcons (cons (hd, tl)) = lastcons tl

Readers unfamiliar with Standard ML will benefit from some explanation of this: The first
line is a datatype declaration that defines the ML type constructor list to mean LISP-like
lists where all elements have the same type. The type of the elements is the argument to the
type constructor; for example, since int is the type of integers, int list is the type of lists
of integers. (The type is not written list int; unlike function application, type application
is written in postfix.) This declaration also states that the constructors cons and nil can be
used to construct lists.

The second and third lines are the definition of the function lastcons. A function
definition in Standard ML consists of the keyword fun followed by one or more cases
consisting of a function name, a pattern, an "=", and an expression. Each time the function
is called, the first pattern that matches the actual argument is selected and used to bind
variables, the corresponding expression is evaluated, and the resulting value is returned.
The first pattern (last as cons (hd, nil)) binds the variable last to the argument
and also matches the pattern cons (hd, nil) against the argument; this checks that the
outermost constructor is cons and the second argument to cons is nil. If this is so, then

I

2 CHAPTER 1. INTRODUCTION

we bind hd to the first element of the list cons and return last. The second pattern
(cons (hd, ti)) matches any nonempty list. Since the first pattern matched lists of length
one, the expression corresponding to this pattern will only be evaluated when the list has
two or more elements.

The empty list nil is not matched by any pattern. This causes SML compilers to
generate a warning during type inference that not all cases are accounted for, and an error at
run time if the value nil is passed to lastcons. With refinement types, we can do better by
making a declaration that distinguishes empty lists from nonempty lists. Then refinement
type inference will always generate a warning when lastcons is used and the missing
case is reachable, and it will often remain silent when the missing case of lastcons is
unreachable. Assuming we eliminate the warning generated by SML type inference for the
missing case, the net result is fewer and more specific warnings.

Standard ML also allows matching against patterns without making a function call. For
example, the expression

case lastcons y of
cons (x, nil) => print x

prints the unique element of the list returned by last cons. This expression gets a compiler
warning for the same reason as the definition of last cons: the compiler sees that not all
cases are dealt with. Once again, we can use refinement types to do better. If we make
a declaration distinguishing singleton lists from other lists, refinement type inference will
infer that lastcons always returns a singleton list and that the missing branches of this
case statement are unreachable.

Attempting to take such refined type information into account at compile time can very
quickly lead to undecidable problems. The key idea which makes our type system decidable
is that subtype distinctions (such as singleton lists as a subtype of arbitrary lists) must be
made explicitly by the programmer in the form of recursive type declarations. Since the
programmer makes a finite number of recursive type declarations, we have a finite number
of distinctions to search over during type inference.

In the example above, we can declare the refinement type of singleton lists as

datatype a list = nil I cons of a* a list
rectype a empty = nil

and a singleton = cons (a, nil)
and a long = cons (a, cons (a. a T,,))
and a Lti,.f = bottom (list)

This rectype declaration instructs type inference to distinguish lists of length 0, 1, and 2 or
more from each other. If we think of refinement types as sets, then I corresponds to set union.
In this context, the value constructors cons and nil operate on sets; the type expression nil
stands for the set {nil} and cons(X, Y) stands for {cons(z, y) I z E X and y E Y}. The

1.1. INTRODUCTORY EXAMPLES OF REFINEMENT TYPES 3

expression bottom (list) corresponds to the empty set of lists, and 1u., a refinement type
identifierdefined by this declaration to stand for an empty set of lists. (In the implementation,
all identifiers are ASCII, so we cannot use the name 1u., as an identifier directly; instead
we use bot-list. In the text of this thesis we are not limited to ASCII, so we use the name
Iti. for this identifier.) As a convenience, the system also provides a catch-all refinement
type Tjj,, that includes all lists. This means that rectype declaration above is treated as
though the clause

... and a Tti, = nil I cons (a* Tuit)

were added. (The implementation uses top-list instead of T111j.)

One way to think of the refinement type inference algorithm is that it performs abstract
interpretation over programmer-specified finite sets of refinement types (plural here, since
each ML type has its own set of refinement types). Finiteness is important, since it is
necessary for the decidability of refinement type inference. With the above declaration,
abstract interpretation works over this set of refinements of a list:

oa Tli t

a empty a singleton a long

The system ensures that the intersection of any two refinement type constructors is also a
refinement type constructor, so if we omitted the declaration of 1•,t the lattice would look
the same, except the position of .Liiat would be occupied by an automatically generated
name instead.

To perform the abstract interpretation, the type system needs to know the behaviors of
cons and nil on this abstract domain. This can be expressed through refinement types
given to the constructor. For example, cons applied to anything of type a and nil will
return a singleton list:

cons : (a * a empty) -+ a singleton

The constructor cons also has other types, such as:

cons: (a * a singleton) - a long
cons :(a * a long) a long

In the refinement type system, we express the principal type for cons by using the intersec-
tion operator "A" to combine all these types, resulting in:

4 CHAPTER 1. INTRODUCTION

cons: (a * a empty) -* a singleton A
(a * a singleton) -- a long A
(a * a long) -a long

This type for cons is generated automatically from the rectype declaration above.

We can also use refinement types to analyze polymorphic functions. For example, we
can define the usual function for applying a function to each element of a list and making a
list of the results as follows:

fun map f nil = nil
I map f (cons (a, b)) = cons (f a, map f b)

This function has the polymorphic ML type V(a, 0).(a --+ 3) -+ a list -+ # list. With the
refinement type declarations listed above in effect, it has the refinement type

V(a, 0).(a -- 9)--- (a empty --+)3 empty A
a singleton -- +3 singleton A
a long -- 3 long).

In Chapter 4, we give examples where polymorphism interferes with refinement type
inference. This is not one of them; expressions using polymorphic map always get
as precise a refinement type as similar expressions using a monomorphic version of
map. For example, the best refinement type for cons (nil, nil) is a empty singleton,
and the best refinement type for map (fn x => cons (x, nil)) (cons (nil, nil)) is
a empty singleton singleton. Since the value of this expression is

cons (cons (nil, nil), nil),

this is the best type we could hope for.

We can also use refinement types to prove that certain parts of a program do not use some
datatype constructors. Consider a compiler for a toy language with only if statements,
case statements, and variables, where if statements are syntactic sugar for case statements
that operate on the booleans. It is possible to separate a compiler for this language into
three sections: a parser, a desugarer that rewrites the if statements to case statements, and
the rest of the compiler. Since the rest of the compiler is only given desugared code, it does
not need to be prepared for if statements.

To formalize this, we first define the abstract syntax for this toy language:

datatype pat = TRUE I FALSE
datatype syn =

VAR of string
I IF of syn*syn*syn
I CASE of syn * (pat * syn) list

1.1. INTRODUCTORY EXAMPLES OF REFINEMENT TYPES 5

We can use a rectype declaration to distinguish desugared abstract syntax:

rectype desugared
VAR (T.a, 1 •)

I CASE (desugared • (T-,, * desugared) Tj,,)

We omit the code for the parser. The code for the desugarer is straightforward:

fun desugar (IF (st, 92, 93))
CASE (desugar s1, Q(TRUE, desugar s2), (FALSE, desugar s3)])

I desugar (VAR s) = VAR s
I desugar (CASE (s, 1)) =

CASE (desugar s, map (fn (pat, s') => (pat, desugar sl)) 1)

This gives desugar the refinement type T8 .. --+ desugared. For the purposes of this
example, our only concern about the rest of the compiler is to show that refinement type
inference can verify that it does not need to deal with the IF constructor if it is only passed
desugared code for input. It is possible to write and typecheck a caricature of the rest of the
compiler by first defining a stub datatype for the output of the compiler:

datatype code = CODE.

Then we define the rest of the compiler to covert all syntax it expects to encounter into a
CODE:

fun rest (VAR s) = CODE
I rest (CASE (s, 1)) =

(rest s;
map (fn (pat, s)) => rest s') 1;
CODE)

In this case refinement types can verify that the missing IF case of rest is never reached
if its argument has the type desugared.

If we do not use refinement types, a dilemma arises as we write this code. Either we can
have separate datatypes for the input and output of functions like desugar, or we can have
one datatype and add unreachable cases to rest to keep the ML compiler from complaining.
The first option is awkward because the datatypes defined tend to be redundant, and functions
for printing out these datatypes (among others) must have redundant implementations. The
second option is unattractive as well because the compiler does not check that the added
cases are unreachable, and because we have forced the programmer to write unnecessary
code.

6 CHAPTER 1. INTRODUCTIoN

1.2 Practical Examples of Refinement Types

Refinement type inference is practical only if, in a reasonable amount of time, it can infer
useful information that is not immediately obvious to a human programmer. The examples
in this section are practical in that sense; the prototype implementation needs 22 seconds
elapsed time to verify them on a SPARCstation iPX and the examples are complex enough
that refinement type inference found an error. This implementation is not particularly
efficient; an improvement in speed by a factor of 10 would not be surprising.

We illustrate the practicality of refinement types with some code for manipulating
boolean expressions. We will present this code as Standard ML syntax; it is a simple matter
to translate this into the restricted language described in the theory or the language of the
prototype. The assertions below about the behavior of refinement type inference are based
on the behavior of the implementation; to the best of my knowledge, they are also consistent
with the theory in the following chapters.

First, we can define boolean expressions with the declaration

datatype boolezp = And of boolezp * boolezp
I Or of boolezp * boolexp
I Not of boolezp
I True
I False
1 Var of sting

For example, the expression (z A y) V -'(z A y) is represented as the value

Or (And (Var "x", Var "y"), Not (And (Var "x", Var "y")))

One simple operation we can do with a boolean expression is evaluate it, if it is ground
(that is, it has no variables). It is easy to write a function to do this:

fun eval (And (bi, b2)) = eval bi andalso eval b2
I eval (Or (bl, b2)) = eval bl orelse eval b2
[eval (Not bl) = not (eval bl)
I eval True = true
I eval False = false

Unfortunately, presenting this definition to a Standard ML system yields a warning that the
function is missing a case for the Var constructor. This is reasonable, since we did not tell
the compiler that we only intend to evaluate ground boolean expressions. With refinement
types, we can tell the compiler this, and it can check that eval is missing no cases required
to evaluate ground boolean expressions. Refinement types can also ensure at compile time
that all expressions passed to eval are ground.

To make this happen, we define ground boolean expressions with a rectype declaration:

1.2. PRACIHCAL EXAMPLES OF REFINEMENT TYPES 7

rectype ground = True I False I Not (ground) I
And (ground * ground) I Or (ground * ground)

This declaration defines a refinement type ground. Every refinement type is entirely
contained within some ML type; we say the refinement type refines the ML type. In this
case, ground refines boolexp. The rectype statement can be read as a description of all
the ways of constructing a value with refinement type ground; for instance, because the
rectype statement includes the clause And (ground * ground), it is possible to construct
a value with refinement type ground by applying the constructor And to a value with
refinement type ground * ground; this is equivalent to saying the argument to And must be
a pair of values, each with refinement type ground.

A refinement type called Tb**,., containing all values of ML type boolezp is implicitly
declared. Without this there would be no refinement type for non-ground boolean expres-
sions, which would essentially mean that the Var constructor would cause a refinement
type error whenever it is used.

With the declaration of ground, refinement type inference will infer that eval has the
refinement type ground -- Tb., 1, where T-.-uis the refinement of bool that includes both
true and f alse. As long as refinement type inference can infer that the argument passed
to eval each time it is called has refinement type ground, there will be no warning and no
need for a warning because the missing case in eval will not be reached.

Refinement types can also be used to infer useful things about the result of substituting
values for variables in boolean expressions. This requires manipulating substitutions; we
will represent a substitution as a value with the type (string * boolezp) list,where the first.
element of each pair in the list is the name of the variable and the second is the corresponding
value. An elementary operation on substitutions is looking up a value in a substitution,
which can be implemented with the code:

fun lookup (cons ((sti, v), tl)) st2 =

if stl = st2 then v else lookup tl st2
I lookup [- = error ()

If we assume error has the ML type a -+ /3, then lookup gets the ML type (q_*
/3) list -+ -+ fl, where we underline type variables for which polymorphic equality must
be defined. The refinement type inferred for it is similar: (a * /3) Tti a_ -+ /3.

When we instantiate the ML type variables a and /3, the corresponding refinement
type variables can be instantiated to any refinement of the ML type substituted for the
corresponding ML type variable. For example, consider the instantiation mapping q to
string and /3 to boolexp. Instantiating the ML type (a * /3) list --+ a_-- /3 yields the ML
type (string * boolezp) list --+ string --+ boolezp. We will suppose that Tsj.ig refines string;
since Tbt.p.L refines boolezp, instantiating the refinement type (q*/3) T1 g -v "-* a_ yields

((7.jig * T&,,,ep) list +aTtring -+ ToIo e.

8 CHAPTER 1. INTRODUCTION

Since ground also refines bolezp, instantiating it also yields

(T.t.,g * ground) list --* Tag.,•I - ground.

We can combine multinle refinement types of an expression with A, so lookup also has the
refinement type

(Tjg * ground) list -- T ,&i, -- ground A (Tst,, 3 * T.,.p) list --. Ta,ti., -+ T hooku .

Now we can use lookup to implement a function for applying a substitution:

fun apsubst (And (bi, b2)) s =
And (apsubst bI s, apsubst b2 s)

I apsubst (Or (bl, b2)) s =
Or (apsubst bi s, apsubst b2 a)

I apsubst (Not bl) s = Not (apsubst bi s)
I apsubst (Var st) s = lookup s st
Iapsubst x - = x

and with refinement types we can infer that this function has the type

Tbolezp --+(Tst,.ig * ground) TVi.t ---+ ground,

which means that applying a ground substitution to any boolean expression yields a ground
boolean expression (or raises an exception).

We can also use refinement types to reason about boolean expressions in conjunctive
normal form (CNF). We can distinguish these with the following rectype declaration:

rectype cnf = And (cnf* cnf) I disj I True
and disj = Or (disj disj) I literal I False
and literal = Not (atom) I atom
and atom = Var (TL.,)

As an example of the use of this rectype statement, we can write a function to convert
boolean expressions into CNF, and use refinement types to verify that it always returns an
expression in CNF. We define the function in two steps; the first step is to transform the
disjunction of two expressions in CNF into an expression in CNF:

fun disjCnfs (And (bl, b2)) c = And (disjCnfs bi c, disjCnfs b2 c)
I disjCnls True c = True
I disjCnfs b (And (cl, c2)) =

And (disjCnfs b cl, disjCnfs b c2)
I disjCuns b True = True
I disjftfs b c Or (b, c)

1.2. PRACTICAL EXAMPLES OF REFINEMENT TYPES 9

Type inference infers that disjcnfs has the refinement type cnf -+ cnf - cnf, among
others.

An earlier version of this had an error that was found when the earlier definition did not
have the correct refinement type. The version with the error was

fun disjCnfs (And (bl, b2)) c = And (disjCnfs bi c, disjCnfs b2 c)
I disjCnfs True c = True
I disjCn'•s (b as Or -) (And (c1, c2)) =

And (disjCnfs b ci, disjCnfs b c2)
I disjCnfs (b as Or -) True = True
I disjCnfs b c = Or (b, c)

An example of the error is disjCnfs False (And (False, False)); this evaluates to

Or (False, And (False, False)),

which is not in CNF, even though both of the arguments to disjCnfs are in CNE The
prototype implementation detected the error when it was told to check the assertion that
disjCnf s has the type cnf -- cnf -- cuf; the command to do this is written as

val - = disjCnfs <1 cnf -* cnf-* cnf

(Actually, the prototype implementation only takes ASCII characters for input, so it is really
written

val _ = disjCnfs <: cnf -> cnf -> cna

However, since the implementation is a research prototype rather than a practical tool at this
point, readability is more important than gritty realism, so we will typeset all discussion of
the implementation.)

After we can convert the disjunction of two CNF boolean expressions to CNF, it is easy
to convert arbitrary boolean expressions to CNF:

fun toCnE (And (bl, b2)) = And (toCn:f bl, toCnf b2)
toCnf (Or (bl, b2)) disjCnfs (toCnf bl) (toCnf b2)
toCnf (Not (And (bl, b2))) = toCnf (Or (Not bl, Not b2))
toCnf (Not (Or (bl, b2))) = toCnf (And (Not bl, Not b2))
toCnf (Not True) = False
toCnf (Not False) = True
toCn:f (Not (Var s)) = Not (Var s)
toCnf z = z

The prototype implementation can infer that toCnf has the refinement type Tb,,,i,, - cnf.

10 CHAPTER 1. INTRODUCTION

1.3 Related Work

The main features of refinement type inference - basic polymorphic type inference, sub-
typing, intersection types, and rectype declarations - are all derived from features of
languages that have appeared in the literature.

1.3.1 Basic Polymorphic Type Inference

A dynamically typed language like LISP can have one function that can append any kinds of
lists, whether those lists contain integers, booleans, or other lists. Parametric polymorphism
provides some of this flexibility to statically typed languages. In this example, we start
by assuming all elements of the lists have the same type; we will name this type with
a parameter, say a. Then, for all a, the function that appends lists (call it append) can
have the type a liast - a list -- a list. We can see that this function can append lists
of booleans by first instantiating a to bool, to conclude that append also has the type
boot list --* b1o list --+ bol list.

Standard ML is a language with parametric polymorphism that has been developed for
at least 15 years [Mil78, MTH90, MT91b, Har86, HMM+88, Tof87, Tof88, DM82, Mac88];
practical implementations are freely available. Standard ML has the added advantage that
the polymorphism is implicit, which means that no types need be mentioned in the definition
of functions such as append; instead, they can all be inferred.

Refinement type inference simply uses polymorphic type inference with minimal
changes. Ultimately, we hope to have a dialect of Standard ML that will accept all existing
SML programs, as well as SML programs with rectype declarations added. Since a large
body of SML code already exists, this may lead to widespread use of refinement types fairly
soon after good implementations of refinement types are available.

1.3.2 Subtyping

Roughly speaking, one type is a subtype of another if all values with the first type also
have the second type. For example, in mathematics, all integers are real numbers, so
programming languages often have the type of integers (which we shall call int) as a
subtype of the type of real numbers (which we shall call rea4). Since integers are often
implemented differently from real numbers, the simple notion of subtyping as containment
is not necessarily true at the implementation level; instead, we may have to use some
non-trivial function to coerce elements of the subtype into elements of the supertype. In
this example, the coercion function maps the machine representations of integers into the
machine representations of reals.

Subtyping at a base type leads naturally to subtyping at higher types; for example, if int
is a subtype of real, then we would expect (int * int) to be a subtype of (real * real). We

1.3. RELATED WORK 11

also have the slightly counter-intuitive assertion that real -- bool is a subtype of int -, bool;
this is the case because any element of the former can be converted to an element of the
latter by first coercing the argument of the function from int to real.

Subtyping also has a natural interpretation when used with records. Any record with,
say, both age and name fields has an age field; if we rephrase this in terms of subtyping
and standard notation for record types, and assuming that the age field is an int and the
name field is a string, we say that {age : int,name : string} is a subtype of {age : int}.
Several approaches to clean interaction between this kind of subtyping and polymorphism
are [JM88, Jat89, R89, LW91, HP91, HL941. These are all type inference systems that
in some sense extend the type inference of Standard ML; making a version of refinement
types that is based on one of these instead of Standard ML is potential future work.

Two papers by Fuh and Mishra [FM89, FM901 describe an interesting system that deals
simultaneously with polymorphism and subtyping. Like refinement types, their system
permits a user-defined subtyping relation, but unlike refinement types their system has no
intersection operator. In their system the result of type inference is a pair, consisting of
a type and a set of constraints that may stipulate that some free type variables appearing
in the type must be subtypes of one another. It is not clear how to extend this system to
include intersections.

Subtyping in refinement types is simpler than subtyping in general because with refine-
ment types, the coercion function is always the identity function.

1.3.3 Intersection Types

Intersection types record multiple pieces of information about an expression. For example,
consider a unary negation operator that applies to both integers and reals. It will therefore
have both of the types int - int and real -- real. Therefore, if we have intersection types
in our language, we can say it has the type (int - int) A (real -- real). When the type
system uses the type of unary negation, it will have to select an appropriate type from the
ones intersected.

These types can quickly become too expressive; type inference becomes undecidable
[CDCV80I. There are restrictions that yield a decidable system [CG921, but it is not clear
what subtyping means in this system.

Another variant of this is Forsythe [Rey88]. This language has intersection types and
subtyping, but no polymorphism. This language has a different approach to records from
the polymorphic one mentioned above: the intersection of the two record types {age : int}
and {name : string} is {age: int, name: string}.

Yet another option is FA [Pie9lb]. This language has intersection types, subtyping,
and polymorphism, and its type system can encode any of the abstract interpretations that
refinement type inference can. However, it has explicit types, and type checking in this
system is undecidable.

12 CHAPTER 1. INTRODUCTION

1.3.4 Rectype Declarations

Rectype declarations essentially define finite automata that recognize when a value is in a
refinement type. In fact, as long as there are no function types, a rectype declaration has
exactly the same descriptive power as a regular tree automaton [GS84]. Similar automata
have been used to define types for logic programs; most of the papers in [Pfe921 deal with
some aspect of this. For example, [YFS92, page 681 uses the example

Evenihst(j,r)2::= [];[T I Oddisit(i-i,i-2)].
Oddlist(r , r2) :=[-r2I EvenlisS (r1t, r2) .

which is remarkably similar to (and probably derived independently from) the example we
will use in the next chapter:

datatype blist = nil I cons of bool * blist
rectype bev = cons (Ti.., * bod) I nil (runit)

and bod = cons (Tb.., * bey)

The operations needed to determine the meaning of a rectype declaration can be
computed exactly for regular tree automata [GS841. The algorithms given for regular tree
automata in [DZ92] seem practical, and assuming they are sound, they are more accurate
than the type system given in Chapter 3. An example where the current specification is
weak is on page 193. Finding a practical algorithm that works well in the general case and
is exact in the case when there are no function objects is future work.

1.4 Claims of the Thesis

The central claim of this thesis is:

Refinement types provide a sound, practical, declarative, and unobtrusive way
to express and effectively verify some reasoning by cases about Standard ML
programs and potentially programs in other functional programming languages.

This has several parts:

* Refinement types can express reasoning by cases about Standard ML programs. This
requires subtyping (because some cases include others) and intersection types (to
describe the behavior of functions on multiple possible inputs).

* Refinement types can be effectively verified. This means that type inference is
decidable; we ensure this by only distinguishing cases in which the programmer has
declared interest and by requiring expressions with a refinement type to always have
an ML type.

1.5. OUTLINE OF THE WORK 13

"* Refinement type inference is practical. This thesis demonstrates this by describing a
prototype implementation of it that has tolerable performance.

"* Refinement type inference is sound. We exhibit a soundness proof.

"* Refinement type inference is declarative. Refinement type inference can be described
with a declarative type inference system. See Figure 2.6 on page 60.

"* Refinement type inference is unobtrusive. If rectype declarations and "<-" are not
used in a program, then that program has a refinement type if and only if it has an ML
type. Refinement types are also unobtrusive in the sense that they do not necessarily
have any effect on execution. Given a program that checks refinement types, it is
easy to construct a compiler for a variant of Standard ML that has refinement types:
the compiler could simply check refinement types, remove all rectype declarations
and uses of ".1" from the given source code, and then pass the resulting source code
to a Standard ML compiler.

1.5 Outline of the Work

This thesis starts with a careful formal description of monomorphic refinement type infer-
ence. Chapter 2 centers around the inference rules in Figure 2.6 that describe refinement
type inference for expressions in terms of explicit assumptions about properties of the in-
formation from rectype statements. The rest of that chapter consists of proofs that this
type inference system is sound, has principal types, and is decidable.

Chapter 3 deals with rectype statements. The central inference systems are Figure 3.6,
which describes how to infer a subtyping relation from a rectype declaration, and Fig-
ure 3.8, which describes how to infer the splitting relation. The rest of the chapter consists
of proofs that the assumptions made in Chapter 2 are satisfied, and a proof that refinement
type inference for values is consistent with a semantics we give for rectype statements.

Chapters 4 and 5 describe how to add polymorphism to this. Chapter 4 simply adds
type variables such as ct, and is fairly simple. Chapter 5 add type constructors that take
type arguments, such as a list. This is more complex because we have to decid" whether,
for example, (bev A bod) singleton < bev singleton. There are four possible ways a
refinement type constructor can change when we replace its argument by a larger argument:
either it gets larger, gets smaller, stays the same. or the new type is incomparable with the
old. We call these type arguments positive, negative, ignored, and mixed, respectively.
It is possible to create examples of all of these behaviors, and the theory has to deal with
them. Chapter 5 describes the changes necessary to the reasoning in Chapters 2 and 3 to
accommodate this.

Chapter 6 describes how to add the coercion operator <I to the language. This is very
straightforward, provided one erases all coercion operators from terms before evaluating
them.

14 CHAPTER 1. INTRODUCTION

Chapter 7 describes the prototype implementation. The fundamental decision made
in the implementation was to implicitly represent refinements of functional ML types as
functions. Memoization is used extensively. We find fixed points by using pending analysis
[Jag89, Dix88], and we instantiate polymorphic refinement types using a novel unproven
strategy that appears to yield correct answers in practice.

Chapter 2

Refinement Type Inference

2.1 Introduction

This chapter gives a formal description of a simple, monomorphic form of refinement types
that includes only primitives for functional programming and assumes that the programmer
has already declared which distinctions he is interested in. In Chapter 3, we describe
rectype statements, which allow the programmerto declare interest in specific distinctions.
The soundness results of this chapter depend on several assertions that are proved in
Chapter 3. These assertions are labeled as "Assumptions"; for example, the first one
below is Assumption 2.2 (Constructors have Unique ML Types) on page 26. Chapter 4
expands the type inference in this chapter to include type variables, and then Chapter 5 adds
polymorphic constructors.

Perhaps the simplest example of refinement types is being able to reason about the
booleans. If the programmer has declared interest in the distinction between true and
false, refinement type inference can determine that the function

fu x => or (x, not x)

always returns true regardless of its input. To express this formally, we say

I- fn x => or (x, not x) :Tb..,1 --+ it.

Here T ,,I, it, and T ,1 --+ tt are all refinement types. Informally we can think of refinement
types as standing for sets of values. The refinement type Tb**1 is the set of all boolean
values, or {true, false}; it is the set {true}; and Tb. 1 -- it is the set of all functions
with ML type boo --+ bool that map all values in Tb,1 to values in it.

If we think of refinement types as sets of values, each value in the set must have the
same ML type; we say that the refinement type refines the ML type. For example, Tb.. 1
refines bool and T1.., --+ it refines bool -* bool. For the purposes of the examples in this

15

16 CHAPTER 2. REFINEWNT TYPE INFERENCE

chapter, the refinements of boot are

Tba,, corresponding to the set {true, false}
it, corresponding to the set {true}
i , corresponding to the set {fals }

J-&-,,i, corresponding to the set {}
where the symbol -L&1, is a typeset version of the name bot-bool. The symbols "I" and
"T" by themselves have no meaning in this thesis.

This example has some special features that will not hold in general. Although there is
always a least refinement of every ML type, in general there may be values of that refinement
type, unlike this example where there are no values of type .l., 1 . The simplest instance
of this arises when the programmer has not asked for any refinement type distinctions;
when this happens, there is exactly one refinement of each ML type, and there are always
values with that refinement type. Since we want the programmer to have the option of
ignoring refinement types, and having multiple refinements of an ML type slows down type
inference, we should only have multiple refinements of an ML type when the programmer
asks fOT it.

In this example, there is a maximal refinement T1 ,1i. In Chapter 5 we will mention
examples involving polymorphism where there is no maximal refinement type.

In Forsythe [Rey88], there is a maximal type called "ns". Every Forsythe expression
has this type, possibly among others; when the type system detects that an expression is
ill-behaved, it has only the type ns. We do not take this approach. Instead, the refinement
type system takes the more conventional approach of ensuring that ill-behaved expressions
have no type. This begins to be inconvenient in Section 2.9, where to simplify the statement
of some theorems we introduce the notion of "generalized refinement types", each of which
is either a refinement type or ns. Even then, ns is not the refinement type of any expression.

The meaning of ns is entirely different from the meaning of Tb4 1 . There are perfectly
well-behaved expressions with the refinement type Tb10 i; however, ns is not a refinement
type, and it is not used to describe the behavior of well-behaved expressions.

According to the above list of the refinements of bool, the intersection of two refinements
of bool is a refinement of bool. This is a desirable property, but we need to add an operator to
make it continue to hold for refinements of other ML types; for example, with the notation
introduced so far, we cannot write a refinement type that is the intersection of it -- ff and
ff -- it. We will call this operator "A". For example, here are some of the refinements of
bool -+ bool and some of the elements of the set corresponding to each one:

Tjooj it contains the elements fn x => true
andf n x =" or (x, not x)

it -- if A if it contains the elements not
andfn x => or (not x, not x)

Tb.i --+ Tb, contains all values with ML type bool --+ boot
it -ý Ti.. A T b, -i it is equivalent to T1., --* it

2.1. INTRODUCTION 17

Two refinement types are equivalent if they correspond to sets with the same elements,
otherwise they are distinct. For instance, the refinement type tt A ff A tt is equivalent
to _LI..,. A largest set of distinct refinements of bool is {IT-b..i, tt,if, Lb..,}, so bool has
only finitely many distinct refinements. It turns out that all ML types only have finitely
many distinct refinements; this is true for datatypes because the programmer only has time
to specify a finite number of distinctions, and it is true for other ML types because the
operators "--*" and "*" we use to construct ML types from other ML types do not introduce
infinite numbers of distinct refinements where there were none before. This is the crucial
property that makes refinement type inference decidable; we prove it in Section 2.9.

Refinement types become more interesting and useful when we use them with recursive
datatypes. A simple example of this is representing nonnegative integers as strings of bits:

datatype bitstr = Zero of bitstr I One of bitstr I Empty

Suppose the least significant bits are outermost, so that Zero (One Empty) represents
the integer 2. Every nonnegative integer has multiple representations in this system;
for example, another representation of 2 is Zero (One (Zero Empty)). Every positive
integer, however, does have exactly one representation that does not have Zero as the most
significant bit; call this "normal form". We can define a refinement type nf containing just
the positive integers in normal form, and we can prove that straightforward functions for
doing arithmetic such as

fun add (One bi) (One b2) = Zero (add (add (One Empty) bl) b2)

add (One bl) (Zero b2) = One (add b. b2)
add (Zero bl) (One b2) = One (add bl b2)

add (Zero bl) (Zero b2) = Zero (add bl b2)
add Empty b = b
add b Empty = b;

return values of type nf when passed values of type nf.

Refinement type inference determines the type of an expression by first finding types
for the subexpressions. Thus, we can only discover that One Empty has the type nf if we
first have a type for Empty. We will call that type em. We shall assume that bitstr has the
following refinements-

-Lbit ,. corresponds to the empty set
em corresponds to {Empty}
nf corresponds to positive integers that are in normal form

T&tatH corresponds to the set of all bitstrings

In this case the set of values of type nf is clearly infinite. This makes it clear that any
implementation must use some representation of refinement types other than sets of values.
In both the implementation and the formal description of refinement types, we assign

18 CHAPhR 2 REFINEMENT TYPE INERENCE

refinement types to constructors instead of representing refinement types as sets of values.
Since, in this formalism, values are expressions, we can use refinement type inference to
determine which values are in which refinement types; for example, the assertion

Zero (One Empty) E nf

becomes
I- Zero (One Empty) : nf.

In this chapter, we start by formally defining our object language in Section 2.2. We
also describe an alternative, more concise syntax in Section 2.3. A formal semantics is
in Section 2.4. To provide background for the description of refinement types, we define
a restricted version of the usual ML type system in Section 2.5. A simple version of
refinement types is defined in Section 2.6. We prove that it is compatible with ML type
inference in Section 2.7, and sound in Section 2.8. We show that each ML type has finitely
many refinement types in Section 2.9, and use this fact to give a decision procedure for
refinement types in Section 2. 10.

2.2 The Formal Language

Each language we define W this thesis will have two kinds of types. The more familiar kind
resembles the one commonly used for SML; we shall call these ML types. In later sections
of this chapter we will be defining more informative types with an intersection operator
"A"; we shall call these refinement types.

We shall use the metavariables t and u to stand for ML types throughout this thesis.
The metavariable tc stands for an ML type constructor, so we can define the language of
ML types with the grammar

t ::= tc I t,...t I tunit I t-t.

In SML the type of a zero-way tuple is called unit. Here we call it tunit instead to
distinguish the ML type for empty tuples from the refinement type for empty tuples that we
will introduce later.

We could slightly simplify the presentation in this chapter by replacing the arbitrary-
length tuple types here with binary and nullary tuples. However, when we introduce
polymorphic constructors in Chapter 5, tuples will become a polymorphic data type very
similar to other polymorphic data types, and at that point arbitrary length tuples will add
little to the complexity of the theory. Thus we will use arbitrary length tuples here to
simptify the analogy between the system described in this chapter and the system described
in Chapter 5.

We use z, y, and f as metavariables to stand for object language variables, c to stand
for constructors, and e to stand for expressions. The metavariables z, y, and f that appear

2.2. THE FORMAL LANGUAGE 19

often in the mathematics should not be confused with the object language variables x, y,
and f that appear often in the examples. Expressions have the following grammar:

e::=x Ifn z:t -> e e e c eI
case e of c > e I ... I c -> e end:tI
(e, ..., e)) I I lt-m _, e I
fix f:t -> fn x:t => e

Notice that this grammer uses the "I" operator as meta-syntax to describe a language
containing the character I in the syntax of case statements. This language is roughly a
monomorphic version of Mini-ML [CDDK86I.

As the grammar says, all constructors take exactly one argument, which may be a tuple.
We use () to mean a tuple of zero elements. Common constructors include true and false;
thus true is not a syntactically valid expression in itself, but true () is.

There are explicit types appearing at several places in the grammar. The ML types after
each variable binding in abstractions and fixed points ensure that each expression has at
most one ML type derivation; the need for this is discussed in the next section. The ML
type at the close of each case statement prevents obscure pathological behavior that would
prevent Theorem 2.54 (Inferred Types Refine) on page 68 from being true; see page 68 for
a discussion.

As in Standard ML [MTH90, MT91b], the fixed point operator can only apply to
functions. This outlaws oddities such as fix f => not f. It is possible that the theory
below could be adjusted to permit recursive values, but they seem troublesome and not
particularly useful, so we shall avoid them.

2.2.1 Explicit or Implicit ML Types

One of the major features of SML is that it is implicitly typed. This frees the programmer
from most of the burden of type declarations. Since our goal is to analyze Standard ML,
the language our implementation starts with must also be implicitly typed. However, since
ML type inference is well understood, we have the option of assuming that the expressions
analyzed by the refinement type system described here have already had explicit types
inserted by ML type inference. The purpose of this section is to explain why we take this
option.

The problem with implicit ML types is that there are sometimes multiple derivations of
an ML type for an expression. For example, consider the SML declaration

val foo = (fn y => (fI n => z)) (fn x => x)

and suppose too has the ML type bool -- bool. Even though we know the type of foo, there
are still many different ways to derive this type because we can give the subexpression

20 CHAPTER 2. REFINEMENT TYPE INFERENCE

fn x -> x the ML type bool -- bool or (bool *bool) --,(boo * bool) or, in general, t --+ t for
any ML type t. Once we add polymorphic type variables to the system in Chapter 4, we will
be able to give examples where different ML type derivations lead to different refinement
types for the expression.

However, it seems that without polymorphism, the refinement type assigned to an
expression depends only on the ML type assigned to the expression, not on how that type
is derived. For instance, f:oo has the ML type t --+ t for any t. If we choose an ML type for
foo by choosing t to be bool, then the expression has a principal refinement type

it -+ t A ff -- ff A TI,-- T b.,A J-, -* I

that does not depend on which ML type we assign to the fn x => x subexpression. It
seems that the ML type of an expression uniquely determines its principal refinement type in
general, since if the fn x => x subexpression were used, its ML type would be constrained.

Since this property will not continue to hold when we add polymorphism, it seems better
to add explicit types to the terms now to ensure a unique ML type derivation than to prove
that knowing the ML type is sufficient in the special case of monomorphic expressions. To
ensure a unique ML type derivation, we write the ML type for each bound variable. For
example, the two derivations mentioned above of an ML type for foo correspond to these
translations of the definition of foo into monomorphic expressions:

(fin y: boot --+ boot => (fn z-:bool > z))
(fn x:bool => x)

and

(fn y:(bool* bool)--+(bool* bool) => (fn z:bool => z))
(:fn x: bool * bool => x).

2.3 The Concise Language

For brevity, we will want to have implicit types in our examples. Thus we shall also have
an informal, concise syntax where we omit the types with the understanding that the real
expression has some consistent ML types inserted. This notation is only unambiguous
when the concise expression has a unique type derivation. Roughly speaking, our concise
language is the subset of SML that can be easily translated to fit the grammar for expressions
on page 19. We will have the following differences between the concise language and the
formal language:

e The concise language has constant value constructors, but in the formal language
all constructors take one argument. Eliminating constant value constructors from
the formal language decreases the number of cases that have to be considered in the

2.3. THE CONCISE LANGUAGE 21

proofs. Since we can always encode a constant value constructor as a function one
that takes an argument of ML type tunit, this does not decrease the expressiveness
of the language.

e The concise language uses destructuring in fn expressions to extract an element from
a tuple, but the formal language uses the .lt.rman primitive to extract the mth
element from a tuple of n elements. Eliminating destructuring from fn expressions
simplifies the proofs. Encoding the length of the tuple in the operator for extracting
elements eliminates some ambiguity; for example, in SML the expression #1 by itself
is not valid because it is not clear whether to give it the type a * 3 -- a or the type
a * 1P3* - --+ a or one of the infinitely many other possibilities. In the formal language,
this sort of ambiguity does not arise.

e The concise language has case statements that bind variables, but the formal language
does not; in the formal language, the only constructs that bind a value to a variable
are abstractions and fixed points. For instance, if we assume that lists of booleans
have been defined with the datatype

datatype blist = nil I cons of bool * blist

the concise expression

case cons (true, nil) of
cons (x, y) => y

I nil => nil

corresponds to the formal expression

case cons (true (), nil ()) of
cons => fn p:bool* blist => elt_2_2 p

I nil => fn ignored:tunit => nil 0
end: blist

* The concise language has only enough type declarations to uniquely determine the
type derivation, whereas the formal language has type declarations throughout the
code.

e The concise language has let statements, but the formal language does not. Since
the formal language does not have polymorphism, each statement of the form

let z = el in e2 end

can be interpreted as the expression

(fn = :t => e2) el

22 CHAPTER 2. REFINEMENT TYPE INEEC

in the formal language, for some appropriate t.

o The concise language freely uses many of SML's convenient syntactic features that
are omitted from the formal language, such as let statements and abstraction operators
that take cases, destructure tuples, and define curried functions.

For example, the concise language expression

let fun double f x = f (f x)
fun not true = false

I not false = true
in

double not true
end

corresponds to exactly one formal expression:

(fn double:(bol -bool) --+ bool -- bool =>
((fn not: bool bool =>

double not (true 0))
(fn b: bool =>

case b of
true => fn ignored: tunit => false ()

I false => fn ignored:tunit => true 0
end: bool))

(fn f::bool--+ bool => fn x:bool => f (f x)))

2.4 Semantics

This section describes how to evaluate closed expressions. We will call the result of
evaluation a value; every value is a closed expression of the form

,v::-c v (v, ... , v) I () I fn z:t => e.

Since our values are expressions, we can apply the same type systems to both. This makes
a simple notion of soundness possible: a type system is sound if, whenever an expression
evaluates to a value, the value always has all of the types that the expression has.

There are reasonable notions of soundness that are stronger than this. We could follow
[Mil781 and require that evaluation of a well-typed expression never "goes wrong", in the
sense that semantic errors do not happen during evaluation. This would make the already
tiresome proofs of soundness in this thesis even longer, so we shall instead stay with the
weaker notion of soundness.

2.4. SEMANTICS 23

Evaluation will require substituting closed expressions for variables in expressions, so
we need to define substitution before we define evaluation. Since we only allow substitution
of a closed expression for a variable, we do not need to be concerned about variable capture.

Definition 2.1 Substitution of an expression e for an object language variable z in an
expression e' (written as [elzle') is the expression consistent with the following rules:

[e/z1: = e
te/:]! = y if y $z
[e/z]fn z: t => e' = fn z:t => e'
(e/l=f n y:t => e' = fn, y:t => (e/:le'if y :x
[e/xJfix z:t => fn y:u => e' =

fix z:t => fn y:u => e'

[e/l:Jix f:t => fn, x:u => e'=
fix f:t => fn z:u => e'

[e/lf ix f:t => fn y: u => e' =
fix f:t => fn y:u => [elzle'if y 7 •xand f#

[e/:]el e2 = [e/:]el [e/:1e2
[el(el, .,) = e ([e/zlel, ... , [el/]e.)
[e/I]() =)
[e/x]elt-m_, e' = elt-mn [e/z]e'
[e/l]c e' =' [e/ c '
[e/micase e0 of cl => el I ... I c => en end:t=

case [e/a]eo of c1 -> [e/l:el I ... I cn => [e/lz]en end:t

For example, evaluating the expression

(fn double: bool - bool =>
(double (f n x:boot => x) (true))))

(fn f:bool --+ boot => fn x:bool => f (f x))

would require computing the substitution

[fn f : bool --+ bool => fn x: bool => f (f x)/double]
(double (fni x:boot => x) (true ()))

which yields

(fn, f: boot--+ boot => fn x: boot => f (f x))
(fn x:boo => x)
(true 0).

We will define evaluation only for closed expressions. This is convenient because it
eliminates the need for an environment mapping variables to values.

24 CHAPER 2 REFINEMENT TYPE INFERENCE

ABS-SEM: fu z:t > e*-n z:t > e

el =4 fn z:t => e3

APPL-SEM: e2 => V2

[vj/z]e 3 => v3

eI e 2 :> V3

e v1
CONSTR-SEM: c e=4 c v

for some i we have eo =4 c4 vi
CASE-SEM: ei vi := v

case eo of cl -> el I ... I c, => e, end:t=>v

for i E I... n we have ei vi
PLE-SEM: - (e,, ... , en) (I,, ... , ,)

ELT-SEM:e >(V .. PVn
elt-m-n e =ý vm

FIX-SEM: fix f:t => fn z:u => e4
[fix f:t => in z:u => e/fjfn z:u => e

Figure 2.1: Monomorphic Semantics Rules

Our evaluation relation is written

e ::: v

which means that the closed expression e evaluates to the value v. The definition of the
relation is in Figure 2.1. In some of the inference rules, we use the notation n... m to mean
the set of integers between n and m.

For example, if we use T to abbreviate the derivation

S4 [TUPLE.-SEvI]

true 0) true ([CONSTR-SEMI

then the following is a valid evaluation, except to make the derivation fit on the page we
omit the types after each variable binding and the -SEM suffix on the name of each semantics

2.5. ML TYPING 25

rule:

(fn X => X)) : (fn X -) T T [APPLI > T T CONSt R

(fn x => x) (true 0) => (true 0)) ,.,Inil ()=, nil ()[CUP.RE)
((fn x => x) (true n), nil ()) (true (), nil ()) [CONsUR]

cons ((fn x => x) (true n)), nil 0) cons (true (), nil0 ())

The CASE-SEM rule differs slightly from the closest analogy available in our syntax to
true SML. In SML, case statements always evaluate the first case that applies. In this
language, the order of the cases makes no difference; if multiple cases apply, then this
semantics says the choice is made nondeterministically. For example, the expression

case true () of
true => fn = > true ()

I true => fn = > false 0
end: bool

evaluates to both true ()and false (). This oddity could be avoided by requiring all of
the constructors appearing in a case statement to be distinct, but we will have no need to
require this.

This semantics does not formalize everything one might want to say about evaluation. A
more stringent notion of soundness would allow evaluation of well typed expressions to fail
to terminate, but it would not permit evaluation to get an error. Unfortunately expressions'
that do not terminate and expressions that get an error are not distinguished from each other
by our semantics. Both kinds of expression have no value.

This could be repaired by adding a new value "wrong" along with rules that ensure that
code with a type error evaluates to "wrong". As mentioned earlier, we will not take this
route because of the added tedium.

2.5 ML Typing

The system described in this section checks that the ML types embedded in an expression
are consistent with each other, and it determines an ML type for the expression as a whole.
The ML type of an expression depends on the assumptions we make about the ML types of
constructors used in the expression, so we shall discuss that first.

If c is a value constructor, we say that c maps values of type t to elements of the datatype
tc by writing

def
c :: t --+ tc.

For example, the effect of the SML datatype declaration

26 CHAPTER 2. REFINEMENT TYPE INFERENCE

datatyp* blist - nil of tunit I cons of bool* blist

on the SML environment would be analogous to adding these assumptions to the environ-
ment:

nil tunit -+ blist

cons "" bool * blist -+ blist

The examples in this chapter will also make these assumptions:
deftrue :: tunit -,boot

false .. tunit '-- booi

In general, for a type system that uses assumptions about value constructors to make
sense, we need the assumptions to be consistent in certain ways. For the type system
described in this section, all we need to know is that we have exactly one assumption about
each constructor:

Assumption 2.2 (Constructors have Unique ML Types) For each c, there are unique t
and tc such that

c :: t -- tc

The ML type of an expression depends on the ML types we assign to the free variables
appearing in the expression, so our typing relation will describe the type of an expression
given a partial function VMVM from variables to ML types.

The name VM is an example of a naming convention that will be used for all of the
partial functions used as environments in this thesis. Each name has two letters. The first
letter stands for the domain (V stands for "variable") and the second letter stands for the
codomain (M stands for "ML type"). In later chapters, M will sometimes stand for "ML
type scheme", but since the formal language is monomorphic, it just stands for "ML type"
here.

We use the notation VM[x := t] to mean the partial map identical to VM everywhere
except at z, which it maps to t. The notation - means the partial map that is undefined
everywhere.

The ML typing relation is written as

VM - e:: t

which means that assuming that all free variables x in e have the type VM(z), then e has
the ML type t. The definition of this relation is in Figure 2.2. These rules are similar to
the rules in Mini-ML [CDDK86], except we have no polymorphism and we separate the
operator for destructuring tuples from the operator for forming abstractions.

If this type system is sound, then we would expect that a closed expression has a type
and it evaluates to a value then the value has the same type. We can formally state this as
follows:

2.5. ML TYPING 27

VM(:) = t
VAR-VALID:

VM = t

VM t] I- e :: t2

ABS-VALID: VM t 1 F- e:: t2VMý- (fn : tj => e)"::ti ---t2

VM F- el :: t 2 -- ti VM -- e 2 :: t 2
APPL-VALID: VM F- el e 2 :: tl

def

CONSTR-VALID: C :: t C-. tc VM I- e:: t

VM F-c e tc

VM F eo " tc
def

for all i we have VM ei :: ti --+ u
VM F-(case eo of ct => el I ... I c., => en end.:u)"'u

for all i we have VM F- ei :: tI
VM - (el, ... , em) .. t1 * ... * tm

ELT- VALID: VMFe::t 1*.*t,
VM F- eltr.mjn e" t

FIX-VALID: VM[f := t -- t2] F- (fI X:tl => e) "" tl -- t2

VM F (fix f:tl--+t2 => fn x: i => e) :: t> -" t2

Figure 2.2: Monomorphic ML Typing Rules

Fact 2.3 (ML Type Soundness) If. F- e :: t and e =ý- v then. H- v ".

We will not prove this. A partially mechanically verified proof of this theorem for a
similar language is in [MP91].

We intend our ML type system to be an unambiguous framework that supports the
refinement type system. The following theorem states that it is unambiguous. Theorem
2.54 (Inferred Types Refine) on page 68 states in what sense the refinement type system is
supported by the ML type system.

Lemnm 2.4 (Unique Inferred ML Types) If VM I- e :: t and VM I e :: t' then t = t'.

Proof: By straightforward induction on e.

MAY 20 '94 10:36 CS MAIN OFFICE 412 681-5739 P.3

28 C/AFMTR 2. R "EAE'f ITPE LNER NCE

I Caw a Then the last inference in both of our hypotheses is VAR-VALID, with the

premises VM(z) = t and VM(z) = t'. Thus t = t'.

ICase: e = fn a:ti => el Then the last inference in both of our hypotheses is ABS-VAHD.

Since the ML type t1 is explicit in the syntax, we must have t = tj --* t2 and e' = t, -+e.
The premises of the two uses of ABS-VALID must be

VM[z := ti] - e' ::t2

and
VM[z := tj] F' e' :.

The induction hypothesis gives t2 = t2, so we must have t = t'.

[Icaw: •j e Then the last inference in our hypotheses must be APPL-VALJD with the
premises

VM F- el ::t2 -- t

and
VM I-e ::e t t',

among others. The induction hypothesis applied to these gives t2 -- t = 4 -- 5', which
implies t = t'.

[Case: • = e I Then the last inference in our hypotheses must be CONSTR-VAID with the
premises

dd
C :: U "- to

and

among others, where t = tc and t' = te'. Assumption 2.2 (Constructors have Unique ML
Types) on page 26 gives te = Wc. which implies t = t'.

ICase: e = case eo of cl 1 > el I ... I c. => e, .nd: u

The last inference of both of our hypotheses must be CASE-VALID, which immediately gives
t = uand t' = u, sot = e'.

Case: e= (e ... , e,) Then the last inference in the derivationofeachofourhy-

potheses must be TUPLE-VALID with the premises

for all i we have VM i- ei ::ti

and
for all i we have VM I- ei ::t

MAY 20 '94 10:36 CS MAIN OFFICE 412 681-5739 P.4

2.6. MONOMORPHIC REFINEMENT TYPE 29

where t = t *...*t and t' = .. . Our induction hypothesis gives 4-= t for al
i, sot = to.

Case: e = elt -.m- e Then the last inference in the derivation of each of our conclu-

sions must be ELT-VALID with the premises

VM }-e :tl .. ,

and
VM • e, :: ej ,.. L,

where t = t. and' = t,. Our induction hypothesis gives t *...*t = e ... •tso

we must have t = to.

Case: e=fix f:t1-+t2 => iX zt => e' IThen helastinferenceinthederivatio

of each of our conclusions must be FIX-VAM. This immediately gives t = t-j- t2 and
to = tt -+ t2, which implies t = t'. 0

If an expression has an ML type, then all of its free variables must be bound to an
ML type in the environment. This will be important later on when we are proving things
about the refinement type system because the refinement type rule for case statements has
a premise requiring the case statement to have an ML type. To put it formally,

Fact 2.5 (ML Free Variables Bound) If VM i- e :: t and z is free in e, then VM(z) is
defined.

Proof of this would be by induction on the derivation of VM I-F :: t.

One step along the path to proving Fact 2.3 (ML Type Soundness) on page 27 is
showing that there is a natural kind of substitution on ML type derivations that preserves
soundness. We will use this once in Lemma 2.70 (Value Substitution) on page 93, which is
the refinement type analogue of this fact. The use is in the CASE-TYPE case of that lemma.

Fact 2.6 (ML Value Substitution) If VM F el :: t1 and VM[z := tj] I- e2 :: t2 then
VM I- [e1/2]ez : ha.

Proof of this would be a straightforward induction on the derivation of VM[z := tj] I- e2 ::
t2-

2.6 Monomorphic Refinement Types

Now that we have given our version of the ML type system, we can give an analogous
description of refinement types for the same expressions. We shall use r, k, and p as
metavariables standing for refinement types.

30 CHAPTER 2. REFINEMENT TYPE INFERENCE

Syntactically, refinement types have an intersection operator "A". This is the only
difference in structure between the syntax for refinement types and the syntax for ML types,
so we can define the syntax for refinement types with the grammar

r ::=r A r Ir-+rIrcIr * rrunit.

Once again we have a special name for the empty tuple type; this time it is runit. Because
we give different names to tunit and runit, inspecting a type tells us immediately whether
it is an ML type or a refinement type.

In our concrete syntax we shall adopt the convention that --+ binds tighter than A. This
makes it easy to write types consisting of an intersection of many arrow types. Since
the principal type of each function has this form, being able to write these concisely is
convenient. For instance, the type of boolean negation is (it ---if) A (ff -it), which we
can write as t --- ff A ff -- + it.

The set of refinement types an expression may have depends on its ML type. For
instance, an expression with ML type bool --+ boot may have refinement type t it t or
Tbt --- if, but not it. We write this as

it -+ it C boot --+ boot
Tbo,- ff E boo! --+ boo!

but not
SC- boo --+ boo!.

The assertion r E t can be read aloud as "r refines t"; hence the name "refinement types".
We will call a refinement type that refines no ML type "malformed".

Before we can formally define the E relation between refinement types and ML types,
we have to make some assumptions about which refinement type constructors refine which
ML type constructors. We shall write the assumption that a refinement type constructor rc
refines an ML type constructor tc as

def
rc C tc.

For example, after we formally define E, our derivation of T1 ,1 bo if c boot -- boo! will
use the assumptions

def
T bC, E boot

and
def

iffC boo!.
The examples below will also use these assumptions:

Itt- boo!
defi-t EC boot

def

For our soundness proof to go through, we will need the E relation to be well-behaved
in the following sense:

2.6. MONOMORPHIC REFINEMENT TYPES 31

AND-REF: rC r2 Ct

r, A r 2 C t

ARROW-REF: ." C t1 r2 C t2

rT --*r2 C tl --*t 2

def

RCON-REF: rc C ic
rc C tc

for i in 1... n we have ri C tiTUPLE-REF: ,
r, *... *rn C- ti *... *tn

Figure 2.3: Monomorphic Refinement Rules

Assumption 2.7 (Unique Predefined Refinements) For all rc there is a unique tc such
def

that rc C" tc.

Also, for there to be any hope of manipulating refinement types with an algorithm, the
set of refinements of any ML type constructor must be finite:

def
Assumption 2.8 (Finite Predefined Refinements) For all tc, the set {rc rc C tc} is
finite.

We formally define the C relation in Figure 2.3.

TUPLE-REF implies runit C tunit because we can choose n = 0, and runit and tunit
are our names for the empty tuples of refinement types and ML types, respectively.

Refinement types that refine some ML type are generally easier to reason about than
refinement types that do not:

Definition 2.9 (Well-formed Refinement Type) We say that a refinement type r is w" ,i-
formed if there is an ML type t such that r C t. Otherwise we say it is ill-formed.

From the rule defining C, it follows that each refinement type refines at most one ML
type. Stating this formally,

Lemma 2.10 (Unique ML types) If r C t and r C- u then t = u.

The proof of this is straightforward.

Proof: By induction on r.

32 CHAP1ER 2. REFINEMENT TYPE INFERENCE

[Case: r Ap The only way to derive r C t is to use AND-REF where one of the

premises is k- C t. Similarly, the only way to derive r E- u is to use AND-REF where one
of the premises is k C- u. Applying the induction hypothesis to these two premises gives
t = u, which is our conclusion.

SCase: r = re Assumption 2.7 (Unique Predefined Refinements) on page 31 gives our

conclusion directly.

Case: r = *... r, We can only derive r F- t by using TUPLE-REF. Thus t must have

the form t1 * ... * t,,, and from the premises of TUPLE-REF we know

for i between 1 and n we have ri E ti.

Similarly, r E" u tells us that u has the from u1 *... * u,, and

for i between I and n we have ri C- ui.

Using the induction hypothesis gives

for i between I and n we have ti = ui.

Thus t = U.

ICase: r = runit I Then the only way to derive our hypotheses is by using UNIT-REF, and

t = u = tunit.

lCase: = + I Then the last premise of the derivation of r C t must be ARROW-REF,

so t must have the form tl ---+ t2 and the premises of ARROW-REF must be ri F- t1 and
r2 C t 2 . Similarly, r Ci u tells us that u has the form U1 --4 U2 and r1 E-- u and tr2 C U2.

The induction hypothesis tells us that t1 = ul and t2 = U2, so t = u. 0

Since each refinement type refines at most one ML type, we can define a partial function
that maps each refinement type to the corresponding ML type, if there is one.

Definition 2.11 If r C" t then we say t = rtom(r). If there is no t such that r C t, then
rtom(r) is undefined.

The name rtom stands for "Refinement to MU'. We extend this in the natural way to
work on environments: rtom(VM)(z) = rtom(VM(z)).

As one would expect, if we know which ML type is refined by a refinement type, that
heavily constrains the form of the refinement type. For example, we have

Fact 2.12 (Tuple Refines) If r CZ tj *... * th then r has the form

?l"1 *...* hl A ... A *... *rhn

2.6. MONOMORPHIC REFINEMENT TYPES 33

Proof of this would be a trivial induction on the derivation of r C tj *... * ti. We will use
this in Lemma 2.26 (Tuple Subtyping) on page 42.

2.6.1 Subtyping

If two refinement types refine the same ML type, then it makes sense to compare them. Our
comparison operator is written <. For instance, in the presence of reasonable assumptions
about our refinement type constructors, the following assertions are true:

it < T b,,,

it A ff ttLf
I-j-1:5ot• A ff

(U * if) A (ff * it) <- (b * -Lb..,)
t-- ff A ff -- + it < tt--+ T

and these assertions are false: ff < tt
it -- ff <5 ff ---+ tt.

The rules defining < must take into account some assumptions about how the refinement
type constructors behave. We need to know that some refinement type constructors are
subtypes of others, which we shall write as

def
rC1 <- rC 2 .

We also need to be able to compute intersections of refinement type constructors, if they
def

both refine the same ML type constructor. We write this as a partial binary operation A on
refinement type constructors. For example, the definition of < we will give below allows
us to derive

it -+ it A T 6b -i ff _-6oab..1 - 6001,

and the derivation uses these assumptions:

def
10<.1• it

def
16b.01• Tb0.1
def def

it A if •16 L .,01

def def
For our definition of subtyping to make sense, we need < and A to be consistent in

def
certain ways. First we need transitivity and reflexivity of <:

def def
Assumption 2.13 (reflex-•<) For all rc we have rc <_ rc.

34 CHAPTER 2. REFINEMENT TYPE INFERENCE

def df def dc
Assumption 2.14 (trans-<) If Mr :5 X2 and M2 ! rM3 then rcM !5 M3.

If two refinement type constructors are comparable, they must refine the same ML type
constructor:

def def def def
Assumption 2.15 (Refines _5) If rc < kc then rc C rc if and only if kc E- tc.

def
We need to know A is defined for refinements of the same ML type constructor, and it

is a greatest lower bound in the set of those refinements:

def def def def
Assumption 2.16 (A -defined) if re C tc and kc C tc then rc A kc is defined.

dot def def def def
Assumption 2.17 (Adef Elim) If rc A kc is defined, then rc A kc <_ rc and rc A kc <_ kc.

def def def def def
,,,umption 2.18 (and-intro-<) If rc <_ kc and rc 5 pc then rc <_ (kc A pc).

Our subtyping operator < is defined by the rules in Figure 2.4. Several of these rules
need to be explained:

Since runii is our name for the empty tuple, we interpret the rule for dealing with tuples
so they apply to runit also.

Some of the rules resemble each other. The rules ARROW-SUB, TUPLE-SUB, and RCON-

SUB are similar, as are ARROW-AND-ELIM-SUB, TUPLE-AND-ELIM-SUB, and RCON-AND-ELIM-
SUB. In Chapter 5 we will change the syntax for refinement types so that arrows, tuples, and
monomorphic refinement type constructors are all a special case of polymorphic refinement
type constructors. After we do that, each triplet of similar rules will collapse to one rule.

The rule ARROW-SUB is conventional for systems with subtypes, although it is often
surprising to the uninitiated. As the type on the right side of the arrow gets larger, the
entire type gets larger. However, as the type on the left side gets larger, the entire type
gets smaller. Another way to say this is that arrow is contravariant in its first argument and
covariant in its second argument.

To understand this it helps to think of refinement types as sets and to read "_<" as subset.
An arrow type ri -- r2 means the set of all functions that map all elements of the set ri to
elements of r2. If int is the set of all integers and ev is the set of all even integers, then the
following subtype relations are true in our model:

ev < int

et - < et,< ev -- it

int ev < ev - ev

2.6. MONOMORPHIC REFINEMENT TYPES 35

SELF-SUB: rK

r Ct krc:t
AND-ELVM-R-SUB: rkr

AND-ELIM1-L-SUB: A k < : t

AND-IN4TRO-SUB: r < •k_ r<k

TRANS-SUB: r < p Ic

ARROW-SUB: kc1 :5 r r2 : • I 2

ARROW-AND-ELIM-SUB: r, --+(r2 A r3) Ct
ri r2 A r, --+ 3 < r, -- ý(r A r 3)

def

RCON-SUB: rc<Ikc
rc < kc

def

RCON-AND-ELIM-SUB: rc I A rC2 E: t
def

7'c A rC2 :5 7-c1 A ?'C2

TUPLE-SUB:for all i we have ri -.! k,

TU TUPN-LEM-SUB: I nr<c*k

TULEr,-LM-U (rn A (r') *n -.5 (ri A rj) (r Atn'

Figure 2.4 Monomorphic Subtyping Rules

36 CHAPTER 2. REFINEMENT TYPE INFERENCE

Thus the intuitive model is consistent with the inference rule.

Following [Pie9 I b], we use subtyping inference rules to express the fact that intersection
is a greatest lower bound. The rules AND-ELIM-L-SUB and AND-ELIM-R-SUB ensure that
intersection is a lower bound and AND-INTRO-SUB guarantees that it is a greatest lower
bound. Since intersection is a greatest lower bound, it is commutative, associative, and
monotone in both arguments. The usual proofs that any greatest lower bound has these
properties translate directly into uses of the inference rules. For example, here is a proof
that intersection is monotone in its first argument:

Lemma 2.19 If r, !_ r2 and r, A r2 A r3 E- t, then r, A r 3 < r2 A r3.

Proof: The only way to derive r, A r2 A r3 E" t is by repeatedly using AND-REF, so we must
have r, C- t and r2 C- t and r 3 C t. The rule AND-ELIM-R-SUB gives r, A r3 !_ rl. Applying
TRANS-SUB to this and our hypothesis gives rl A r3 <_ r2. The rule AND-ELIM-L-SUB gives
r, A r3 _< r3. The previous two assertions and AND-INTRO-SUB give r, A r3 • r2 A r3, which
is what we wanted to show. 0

Once we have a subtying relation, we can define a natural notion of equivalence:

Definition 2.20 We say that ri is equivalent to r2 , or in symbols r, = r 2 , if r, < r2 and
r2 < ri.

This relation is an equivalence relation on the refinements of any ML type, but it is only a
partial equivalence relation on refinement types as a whole because some refinement types
refine no ML type. For example, the refinement type tt A tt -+ tt is not equivalent to itself
according to this definition.

The subtyping rules in Figure 2.4 ensure that the types involved are well behaved in the
following sense:

Theorem 2.21 (Subtypes Refine) If r < k, then there is a unique ML type t such that
r- E t and k E t.

Proof: By Lemma 2.10 (Unique ML Types) on page 31, there is at most one t such that
r E- t and k C- t, so all we need to show here is that there is at least one such t. We do this
by induction on the derivation of r < k.

Case: s UB Then r = k and the premise of SELF-SUB gives a t such that r C- t.

Case: AND-ELIM-R-SUB Then r has the form k A p and the premises of AND-ELIM-R-SUB

must be
kct (2.1)

2.6. MONOMORPHIC REFINEMENT TYPES 37

and
p-t. (2.2)

Applying AND-REF tO these gives
k A p E- t. (2.3)

Our conclusions are (2.1) and (2.3).

[Case: AND-EL[M-L-SUB Similar to AND-ELIM-R-SUB.

Case: AND-INTRO-SU7B] Then k has the form k, A k and the premises of AND-INTRO-SUB

must be
r < k, (2.4)

and
* < k,2 (2.5)

Using the induction hypothesis on (2.4) gives a t such that

rE t (2.6)

and
k, - t. (2.7)

Using the induction hypothesis on (2.5) gives a u such that

r u (2.8).

and
k 2 -u (2.9)

Lemma 2.10 (Unique ML Types) on page 31 applied to (2.6) and (2.8) gives t = u, so we
can use AND-REF to combine (2.7) and (2.9) to get

k A •2 t.

This and (2.6) are our conclusions.

ICase: TRANS-SUB I Then the premises of TRANS-SUB are r < p and p < k. Applying the

induction hypothesis to both of these gives t and u such that all of the following hold:

pr-t
pr-u
pcu.

Unique ML Types applied to the middle two gives us t = it, so the first and the last are
our conclusions.

38 CHAFTER 2. REFINEMENT TYPE INFERENCE

del
Case: RCON-SUBj Then r = re and k = ke and the premise of RCON-SUB is re < kc.

def
Assumption 2.7 (Unique Predefined Refinements) on page 31 gives a tc such that re C- tc.

def def def
By Assumption 2.15 (Refines <) on page 34 and rc < kc we have kc C- tc. RCON-REF
gives rc C- tc and kc C- tc, which are our conclusions.

def
Case: RCON-AND-ELIM-SUB Then r = rcI A rM2 and k = rc, A rM2. The premise of

RCON-AND-ELIM-SUB is
defvc A rC2 C t. (2.10)

def dlef
By Assumption 2.17 (A Elim) on page 34 and Assumption 2.15 (Refines -<) on page 34,

def def ,ef
rc1 C t and re2 C t. Because EC" only relates refinement type constructors to ML

type constructors, t must have the form tc. By Assumption 2.17 (A Elim) on page 34,
def def def

we know rc1 A re2 < re1. By Assumption 2.15 (Refines <) on page 34, it follows that
def def

rcl A rC2 C tc. By RCON-SUB,
def

rc A rC2 C tc.

This and (2.10) are our conclusi' ns.

ICase: ARRW Then r = ri -- r2 and k = ki -- /c2 and the premises of ARROW-SUB
are

k, < r

and
r 2 < k2.

Applying the induction hypothesis to both of these gives t1 and t2 such that:

kh C- ti
ri E t1
r2 C- t 2

k2 t2-.

Applying ARROW-REF to these gives

r -+r2 C- t -t2

and

14 -'- k2 C t I t 2 ,

which are our conclusions.

Case: ARROW-AND-ELIM-SUB I Then r = rT -+(r2 A r3) and k = r- r2 A r, -* 3. The

premise of ARROW-AND-ELIM-SUB is

r, --+(r2 A r 3) C" t. (2.11)

2.6. MONOMORPHIC REFINEMENT TYPES 39

The last inferences of the derivation of this must be ARROW-REF and AND-REF, so we must
have

t = •ti-+t2

ri C- ti

r2 1t2

r3 L- t2

Applying ARROW-REF and AND-REF to these in a different order gives

r, --* r2 Ar, --+r3 E ti -+ t2

This and (2.11) are our conclusions.

Case: TLE-SUB Thenr = r •* . *r andk = k k,, andthe premiseof TUPLE-SUB

is ri <_ k, for all i between I and n. Applying the induction hypothesis to this gives, for
each i between 1 and n, a ti such that ri F" t1 and i: " ti. TUPLE-REF gives

rl .. *rn C- ti .. *tn

and

which are our conclusions. If we take n = 0, this conclusion tells us runit E tunit, which
is true and unremarkable.

Case: TUPLE-AND-ELIM-SUB Then r = (r, ,... * rn) A (r' *... * r') and k = (r, A r') *

. (r,, A r'). The premise of TUPLE-AND-ELIM-SUB is

(r, A r,) *... * (r A r') r-t. (2.12)

The only way to derive this is with TUPLE-REF, so we must have t =t * ... • t, and

(r, A r'D C t,

for i between I and n. Each of these assumptions must follow from AND-REF, so for all i
we must have

ri C t1

and
ri " ti.

Applying TUPLE-REF to these gives

r *...*rn C t

and

40 CHAPTER 2. REFINEMENT TYPE INFERENCE

Applying AND-REF to these gives

(r, *... * r) A (r•, . ••) E t.

This and (2.12) are our conclusions. If we take n = 0, our conclusions are runit A runit C t

and runit C t, both of which are true and uninteresting. 0J

Some uses of A are inessential. We do not need to be able to take intersections of tuples
or of refinement type constructors; every intersection of tuples can be simplified to a tuple
of intersections, and every intersection of refinement type constructors can be simplified to
a refinement type constructor. These simplifications are necessary in many places in the
proofs appearing later in this chapter, so we will prove that they are valid now.

For example,
(it * T b..) A (ff * if) *ff

and
ti A T it.

We will prove that simplifications like this are possible in the general case.

Lemma 2.22 (Tuple Intersection) If r, * ... * r,, E t and k1 * ... * kE, t then

(r,-, * ,r,,) A (k, *... * k,) =- (r, A kj) ,..•(.,A k,,).

Proof of (r *...*.r)A(k, . k) • (r, Akj) .*(r, A/k,): Immediate from
TUPLE-AND-ELIM-SUB.

Proof of (rI Ak)*... * (r A kn) _ (r, *... *v)A (k, *... *k,,): Use AND-ELIM-L-SUB

and AND-ELIM-R-SUB to get

for h in I ... n we have rh A kh rh

and
for h in I ... n we have rh A kh kh.

Then TUPLE-SUB gives

(r, A k) *...*(r, A k) r* ... *rn

and (r,' A k,) ,..•(,', A kn) _k, kn..• .

Finally AND-INTRO-SUB gives

(rw A kh) *c(rs A kn) i (r, rn) A (k, kn),

which is our conclusion. 0]

2.6. MONOMORPHIC REFINEMENT TYPES 41

In a moment, we will preseni a simple algorithm that simplifies tuple refinement types.
Since this is the first algorithm we present at the meta-level (that is, it manipulates refinement
types as objects), we need to describe the notation we will use for these algorithms first.

The notation is basically Standard ML, except we allow free use of set notation and
ellipses ".. .", provided the meaning is unambiguous. Since sets in mathematics and records
in SML are both written with braces, we must give up one or the other to avoid ambiguity;
we give up records. Our meta-level algorithms will also occasionally lapse into English or
mathematics. As an example, we can give the simple algorithm for simplifying tuples:

fun tuplesimp (r11 *-... *rhi A ... A ri*...* rh,) =

(r1 1 A ... A r^,) * ... * (rhiA ... A rh,)

This algorithm uses SML's ,!estructuring convention with ellipses to simultaneously bind h
and n to nonnegative integers and the variables rij to refinement types for i between I and
h and j between 1 and n. Then it uses ellipses again to construct a refinement type that is a
rearranged form of the given refinement type.

This notation has advantages and disadvantages. Since it is based on a real program-
ming language, it tends to remain comprehensible as the algorithms we describe get more
complex. Since it is based on Standard ML, it is likely to be understandable to people
reading this thesis. However, basing the metalanguage on SML also invites confusion
between the metalanguage and the object language, and this form of metalanguage is not
necessary for simple algorithms like tuplesimp that will appear early in this chapter. On
the whole, the advantages seem more important, and we will use this notation throughout.

By repeatedly using Lemma 2.2.2 (Tuple Intersection) on page 40, it is easy to show
that tuplesimp is soupd:

Fact 2.23 (Tuplesimp Sound) If r C tl* ... * th then tuplesimp r terminates and has
the form r, * ... * rh, and r =_ tuplesimp r.

We can show similar properties for refinements of any ML type constructor, and a
similar simplification procedure emerges.

Lemma 2.24 (Refinement Constructor Intersection) If rc, A ... A rc, C t then

def def
rc1 A ... Arc =_ rc, A ... Arcn.

Proof: By repeated use of RCON-AND-ELM-SUB,

def def
re, A ... Avrc, <_ rcl A ... A ren.

def def def
To show re1 A ... A rcn < rc A ... A rCn, repeatedly use Assumption 2.17 (A Elim) on
page 34 to get

def def dcf
for all h in I ... n we have re1 A ... Arcn < rCh.

42 CHAPTER 2. REFINEMENT TYPE INFERENCE

Then RCON-SUB gives

def def
for all h in I ... n we have rCe A ... A rCe < rCh

and repeated use of AND-INTRO-SUB gives

def def
rc, A ... A rce _< rce A... A rc,.

The first and last displayed formulae imply our conclusions. 0

Just as we did with tuplesimp, we can define a function that simplifies refinement
types that is justified by Lemma 2.24 (Refinement Constructor Intersection) on page 41.

fun rconsimp (rc1 A... A rc,) =
def def

rc, A...A rc,

Soundness of this follows from one use of Lemma 2.24 (Refinement Constructor Intersec-
tion) on page 41:

Fact 2.25 (Rconsimp Sound) If r E tc then rcons imp r terminates and has the form rc,

and rconsimp r =- r.

TUPLE-SUB tells us that one product refinement type is a subtype another if corresponding
components are subtypes. It turns out that the converse is also true, although to prove it we
must first strengthen the induction hypothesis as shown in the following theorem.

After we introduce polymorphic refinement type constructors, this will be a trivial
consequence of properties of the i operator that we use to prove that each refinement type
has finitely many distinct refinements; until then, we need a direct proof.

Lemma 2.26 (Tuple Subtyping) If

ril *-...**hi A A.n* ... *?hn kjI..*khl A...Aklm*...* khm

then for all j between I and h we have

i A ... A rjn:!< kil A ... A kjm.

Proof: By induction on the derivation of our hypothesis.

[Case: SELF-SUB Then n = m and

for i in 1... n and j in 1... h we have rii = khi.

2.6. MONOMORPHIC REFINEMENT TYPES 43

and there is a t such that

rli *....*rhI .. A rl*... *rh,, t. (2.13)

The only way to derive (2.13) is by using AND-REF with the premises

for i in 1... n we have rij *... * rhi E- t.

and this can only be derived by using TUPLE-REF when t has the form tj *... * t,, and the

premises of TUPLE-REF are

for i in I... n and j in I ... h we have r3 i E tj.

Then AND-REF gives

for j in 1... h we have ri A ... A r,, C t,

and then SELF-SUB gives

for j in 1... h we have ril A ... A ri, :_ ril A ... A ri,

which is our conclusion.

Case: AND-ELIM-R-SUB Then n > m and

rl *...*rh, A ... A rim *...*r,, k *...* kh A ... A km *...*khm.

Thus
for j in 1... h and i in 1... rm we have rji= kii.

ThuS AND-ELIM-L-SUB and AND-ELIM-R-SUB give

for j in 1... h we have ri A ... A rp, < k1 A^... A kim,

which is our conclusion.

Case: AND-ELIM-L-SUB I Similar.

Case: AND-INTRO-SUB Then there is an i in 1 ... m - I such that the premises of AND-

INTRO-SUB are

""Ia . hi Ad...aAndln*. rhn !- kll *. hl A ... A ki* khi

and

rl11 * ... *r"hi A ... A tin *..* rPhn <ý]€1(i+1) *--*kh(i+l) A ... A kit .. khm.

44 CHAPTER 2. REFINEMENT TYPE INFERENCE

Two uses of the induction hypothesis give

forj in l...h we have rj, A... Arj,,_ k, A... A kji.

and
forj in l...h we have rjA ... A A ... A k,,.

Combining these with AND-INTRO-SUB gives

for j in I... h we have rl A^... A r, kil A... A ki,,

which is our conclusion.

I TCase: SUB For the duration of this case, we will give rA1 * . * A.. Arln*. .

the name r. There is a p such that the premises of TRANS-SUB are

and
P <__ k il . . * k h t A . . . A k l, * . . k h m,,

By Theorem 2.21 (Subtypes Refine) on page 36, there is a t such that both r and p refine t.
By the form of r we know that t has the form t1 *... * th, so by Fact 2.12 (Tuple Refines)
on page 32 we know that p has the form p1 1 *... *Ph, A ... A Pq *...*Phq.

Two uses of the induction hypothesis give

for j in 1... h we have ril A ... A r,• <pl A ... A Pjq

and
for j in 1... h we have pi A... A Pjq< kil A... A ki,,.

Then we can use TRANS-SUB to get

for j in I1... h we have rjl A^... A rin <_kil A ... A kir,

which is our conclusion.

Case: ARROW-SUB I

Case: ARROW-AND-ELIM-SUB

Case: RCON-SUB I

Case: RCON-AND-ELIM-SUB

None of these cases can arise because they are not consistent with the form of our hypothesis.

Case: TUPLE-SUB I Then n = l and m = l and the premises of TUPLE-SUB are our

conclusion.

2.6. MONOMORPHIC REFINEMENT TYPES 45

Case: TUPLE-AND-ELIM-SUB Then n = 2 and m = 1 and our hypothesis has the form

(PI *..*Ph) A (p', *..*ph,) -< (p, A p') *..*(Ph A p',).

SELF-SUB gives
for j in 1... h we have pi A pj _ pi A pj,

which is our conclusion. 0

From this it trivially follows that if a valid subtyping inference looks like it could have
been inferred by using TUPLE-SUB, then it can be inferred by using TUPLE-SUB:

Corollary 2.27 (TUPLE-SUB Inversion) if

r,*...*rh k *...*kh

then
for i in I ... h we have ri • ki.

Proof: Use Lemma 2.26 (Tuple Subtyping) on page 42 with n = m = 1. 0

The only use we ever make of Lemma 2.26 (Tuple Subtyping) on page 42 is in the
proof of Corollary 2.27 (TUPLE-SUB Inversion) on page 45. It is tempting to conjecture that
we could eliminate Tuple Subtyping by using tuplesimp to prove TUPLE-SUB Inversion
directly. Unfortunately, this does not work. The attempted proof of TUPLE-SUB Inversion
has the same shape as the proof of Tuple Subtyping, except many cases vanish because-
the hypothesis has such a special form. The TRANS-SUB case remains, though, and that is
where the proof goes wrong. To get the weaker induction hypothesis to apply, we must
first use tuplesimp on the premises of TRANS-SUB. But then we have no guarantee that the
induction makes progress, since using tuplesimp makes the type derivation larger.

Similar reasoning to Lemma 2.26 (Tuple Subtyping) on page 42 gives analogous facts
about refinement type constructors:

Fact 2.28 (Refinement Constructor Subtyping) If

rci A ... Arc, < kci A ... A kc,,

then
def def def def def

rc, A ... A rc, < kc, A ... A kc,.

Fact 2.29 (RCON-SUB Inversion) If
rc < kc

then
def

rc < kc.

46 CHAPTER 2. REFINEMENT TYPE INFERENCE "

After we introduce polymorphic refinement type constructors, both monomorphic re-
finement type constructors and tuples will be sp-cial cases of polymorphic refinement type
constructors. Then we will introduce Corollary 1.13 (Arbitrary Constructor Subtyping) on
page 250, which generalizes both Fact 2.29 (RCON-SUB Inversion) on page 45 and Corollary
2.27 (TUPLE-SUB Inversion) on page 45.

2.6.2 Splitting

Under appropriate assumptions about the refinement types of or and not, we should expect
the expression

fn x:bool => or (x, not x)

to have the refinement type Tb,,1 -- U The reasoning that leads to the conclusion that
the above function always returns a value of type it relies upon the assumption that all
boolean values have one of the types it or ff. This section formalizes this assertion as
T• .- {It,if}; this assertion is used in type inference in the SPLIT-TYPE rule in Figure 2.6
on page 2.6.

To see why we need to use the fact that T..i x {tt,ff}, suppose we made the
assumption false by adding a new constructor maybe with refinement type runit --+ Tbeo.
What is the best type we could expect from not if it is passed an argument with type Tb..?

At the type level, the behavior of not must be monotone. Since it < TI.., and not has
the type tt -+ if, the type we get from not must be at least ff. A similar argument leads to
the conclusion that it must be at least ft, so the type must be T 1 o°.

We can repeat this argument for or instead of not and conclude that if we pass something
of type (Tb*., * Ti..,) to or, then all we can know about the result is that it has the type
T.i. Thus the expression or (maybe (), not (maybe 0))) has the best type Tboo, so as
long as we have the maybe constructor, we cannot give the expression

fn x:bool => or (x, not x)

the type T1 1,- ft.

2.6.2.1 Definition of Splitting

Therefore our type system has to reason about when a refinement type can be split into a
union of other refinement types. We write the assertion that all values of type r have one
of the types in the set a as

r .

2.6. MONOMORPHIC REFINEMENT TYPES 47

For example, we have
Ti. -_{ttlif}

and
T &*D, * Tbo -_. fi{ t * it, It * if, ff * tt,ff *f If.

We say the elements of a are fragments of r and that r splits up into a.

The definition of the splitting relation x for expressions in general relies upon assump-
tions about how the refinement type constructors behave. We will need to assume that
certain refinement type constructors have splits to show that some refinement types have
splits. We write the assumption that rc splits up into constructors in the set sc as

def
rc -- 8C.

For instance, starting with the assumption

Tb, •def {tt,ff}

about the refinement type constructors Tb**l, it, and if, we can reach the insipid conclusion

Too -_ {tt,ff}

about the refinement types Tb*,*, tt, ff. We can also reach more interesting conclusions,
such as

Tbo, * Tb~o/ x {Tb., * tt, Tb•, *fif}.

An important property of × is that if a value has a refinement type r and r > a then the
value has some element of s as its type. We will have to postpone proof of this until after
we define refinement type inference.

We define the - relation in Figure 2.5.

The RCON-SPL1T rule is self-explanatory; it simply allows us to make use of our assump-
tions.

TUPLE-SPLIT allows us to split up a tuple if we can split any of its components. SML
represents functions that take multiple arguments either as curried functions or as functions
that take one argument, which is a tuple. Without this rule, type inference for the curried
functions would be much stronger than type inference for the functions that take a tuple as
an argument.

The TRANS-SPLIT rule lets us use the other rules multiple times to split up a refinement
type. Without this, there would be no clear "best" split of some refinement types; for
example, TUPLE-TYPE gives Tb.., * Tb.., × {Tb,., * it, Tb**0 * If} and Ti.., * T•°., ×
{tt * T•°t,ff * Tbool}, and neither of these splits is clearly better than the other. With
TRANS-SPLIT, we can use TUPLE-TYPE to split the fragments of either of these splits to get

T bo, * T ot x {tt * it, it * if,ff * tt,ff * if},

48 CHAPTER 2. REFINEMENT TYPE INFERENCE

def

RCON-SPLIT:
X"

rc X, 8c

xi a
TUPLE-SPLIT: ki *...k1 *k * ki+* ... * km,

{k ... * k,_1 * pu k.+, *.. * k,2 PE

TRANS-SPLIT: r >: a, U 10 I X
r -- i3 U 32

r-k kX3
"EQUIV-SPLT-L:

EQUIV-SPLIT-R: P=k rx sU{k}
T" × 8 u {p}

ELIM-SPLIT: {,p} k<p
r" X s U {p}

SELF-SPLIT: . • {r}

Figure 2.5: Definition of Splitting

which is in some sense a better split than either of the two splits given earlier. See
Subsubsection 2.6.2.2 for a discussion of principal splits.

EQUIv-sPLIT-L and EQUIV-SPLIT-R ensure that the splitting relation is invariant under
equivalence. For example, Lemma 2.43 (Split Intersection) on page 54 allows us to start
with the premise

T6 °°1 b {tt,if}

and use that to conclude
Tb.., Aif ý {tt Aff,if A f}.

Without EQUIV-SPLIT-L, the best we would be able to conclude is that for some type r
equivalent to T&boo A ff we have

If we had EQUIV-SPLIT-L but not EQUIV-SPLIT-R, the best we could conclude is that for some
r• equivalent to it A ff and some r2 eq. /alent to ff A if,

Tbo ff X {rj,r2 }.

2.6. MONOMORPHIC REFINEMENT TYPES 49

ELIM-SPLrr allows us to eliminate unimportant elements from splits. For example, given
Tbj. ;× {tt,ff,Wi.,i}, we can use ELIM-SPLIT and _L..<L it to infer Tb..,I {Itt,if}. If
we read the assertion Tboa, x {tt,ff, -L o.1} as "All values with type T .ot have one of the
types it, if, or J-L,,," it becomes intuitively clear that Lb°I& can be eliminated from the
split without losing any information.

If we did not have ELIM-SPLIT, then principal splits would not be unique because the
unimportant elements could differ. We could still generate a unique minimal set that
contained all the information from all of the splits, but without ELIM-SPLIT, that set would
not be a split. Since this set would be usable as a split, the distinction between it and the true
splits would be formal but not practical. It seems better to erase the unimportant distinction
by keeping the ELIM-SPLIT rule.

SELF-SPLIT ensures that each refinement type has at least one split. This simplifies some
of the reasoning to come; in particular, Assumption 2.50 (Split Constructor Consistent) on
page 66 is flexible enough only because we have SELF-SPLIT.

Now we can prove several lemmas about how - interacts with < and E. First we will
assume that the fragments of a refinement type constructor are smaller than the refinement
type constructor itself:

def def

Assumption 2.30 (Split Subtype Consistent) If rc × s and kc E s then kc < rc.

A straightforward induction lets us lift Split Subtype Consistent from a statement about
def, def
".-. and"<" to a statement about "x" and "<":

Theorem 2.31 (Splits Are Subtypes I) If r x s U {k} and r E: t then k < r.

Proof: By induction on the derivation of r - . U {k}.

Case: RCON-SPLIT I Then r has the form rc and k has the form kc and the premise of

RCON-SPLIT is def

rc x sc U {kc}.
def

By Assumption 2.30 (Split Subtype Consistent) on page 49, this implies that kc < rc.
Using RCON-SUB on this gives kc < re, which is our conclusion.

ICase: TUP- Then r has the from k, *... * k,_1 * ki * ki+ k... and k has the

form k, * ... * k- * p * ki+l *... * k,/, and the premise of TUPLE-SPLIT is

k, x' U {p}.

The only way we could have inferred r F- t is by using TUPLE-REF where t has the form
t* ... * tn and one of the premises of TUPLE-REF is

forj in 1... rm we have kI F- ti.

50 CHAPTER 2. REFINEMENT TYPE INFERENCE

This is true forj = i as well, so we can use the induction hypothesis to give

By SELF-SUB,

for j in I... m we have ki !5 ki,

and TUPLE-SUB gives

ki*...*k-t *p*ki+ *...* :5 kk*...*k -1 *k*k+i*...*k ,

which is our conclusion.

Case: TRANS Then a U {k} = 31 U s2 where the premises of TRANS-SPLIT are

r --t u {p}

and
P X 82.

If k E aI, then our induction hypothesis gives k < r, and we are done.

If k E s2, then we reach our conclusion less directly. Our induction hypothesis gives
p < r, and Theorem 2.21 (Subtypes Refine) on page 36 gives a t such that p E t. Then
we can use our induction hypothesis again to get k < p, and then TRANS-SUB gives k < r,

which is our conclusion.

Case: EQUIV-SPLIT-L IThen the premises of EQUIV-SPLIT-L are r p and p 9 s. Theorem

2.21 (Subtypes Refine) on page 36 gives p E t, and our induction hypothesis gives k < p.

TRANS-SUB then gives k < r, which is our conclusion.

ICase: EQUIV-SPT-R I Then we must have s U {Il} = s' U {p} where the premises of

EQUIV-SPLIT-R are p =_ p' and r x s' U {p'}.

If k E s', then k E s' U {p'}, so we can use our induction hypothesis immediately to get
k_<r.

If k = p, then our induction hypothesis only gives p' < r. Since p =_ p', TRANS-SUB

gives p < r, which is our conclusion.

ICase: ELM r Then s U {k} = s' U {p} and the premises of ELIM-SPLIT are r ×

a' U {p', p} and p' < p. Since k must be in s' U {p', p}, our induction hypothesis gives
k<r.

Case: SELF-SPLIT I Then k = r, and SELF-SUB gives our conclusion. 0

It is a trivial consequence of this show that x and C interact reasonably:

2.6. MONOMORPHIC REFINEMENT TYPES 51

Corollary 2.32 (Split Types Refine 1) If r × s and k E a and r C t then k C t.

Proof: Let k in a be given. By Theorem 2.31 (Splits Are Subtypes I) on page 49, k < r.
By Theorem 2.21 (Subtypes Refine) on page 36, k EC t. 0

The following fact similar to Theorem 2.31 (Splits Are Subtypes I) on page 49 is
provable, but the proof is too similar to the proof of Theorem 2.31 (Splits Are Subtypes I)
on page 49 for it to be worthwhile to include it here.

Fact 2.33 (Splits Are Subtypes 11) If r × a U {k} and k F- t then k < r.

We have an immediate corollary to Fact 2.33 (Splits Are Subtypes 11) on page 51 that is
completely analogous to Corollary 2.32 (Split Types Refine I) on page 51:

Fact 2.34 (Split Types Refine U) If r - s and k E a and k C t then r Ct.

Refinements of an ML type of the form t1 -- t2 all have a simple form. If r C t -- ti2,
we can use SELF-SPLIT to infer r × {r}, and we can use EQUIV-SPLIT-R to replace the
element of that split by arbitrarily many equivalent elements. A simple induction on the
derivation of r < s for any s tells us nothing more interesting than this can happen. This is
important in the SPLIT-TYPE case of Lemma 2.70 (Value Substitution) on page 93.

Fact 2.35 (Splits of Arrows are Simple) If r C tl --+ t2 and r a a and k E s then r =- k.

It is possible to imagine a refinement type having an empty split. This would be
consistent with the intuitive meaning of splitting if there were no way to construct a value
having that type; for instance, we might expect -L-..* to split into the empty set. However,
allowing empty splits causes type inference to behave strangely; see the discussion of the
SPLIT-TYPE rule on page 62. We will outlaw refinement types with empty splits. thus
possible splits of -Lb.0, are {-l-bs.} and trivial variants of this such as {-Lbo,1 A -Lboi }. First
we outlaw empty splits for refinement type constructors:

Assumption 2.36 (Refinement Constructor Splits are Nonempty) If rc × sc then sc is
nonempty.

From this it is easy to show that no refinement type can have an empty split:

Fact 2.37 (Splits are Nonempty) If r x s then a is nonempty.

This could be proved by induction on the derivation of r × s.

52 CHAPTER 2. REFINEMENT TYPE INFERENCE

2.6.2.2 Principal Splits

The definition of the < relation gives infinitely many splits of each refinement type. For
example, ti has the splits {it}, {tt A it},I {it, it A it}, and infinitely many others. A
practical type inference algorithm will only have time to consider a finite number of these.
In this Subsubsection we will add an assumption that makes it possible for type inference
to consider only one split. This split will be a principal split in the sense we will define
below. If we identify two splits when there is a one-to-one correspondence between them
where equivalent elements correspond, then any well-formed refinement type has exactly
one principal split.

First, we shall make a distinction between splits with fragments that could be eliminated
by using ELIM-SPLIT and splits without such fragments. The unnecessary fragments add
complexity.

Definition 2.38 (Irredundant Splits) We say a split a is redundant if any two elements of
s are comparable. Otherwise we say it is irredundant.

A given refinement type will have many splits, and some of them are more informative
than others. A split is informative because it introduces smaller refinement types into the
environment. Thus one irredundant split is more informative than another if the former has
types smaller than the types in the latter; to put it formally,

Definition 2.39 (Informative Splits) Given two splits .i and 52 of r, we say that s, is more
informative than S2 if each element of sI is less than some element of s2 .

Our goal is to have unique most informative irredundant splits:

Definition 2.40 (Principal Splits) We say that s is a principal split oft if s is an irredundant
split oft that is more informative than any other irredundant split of r.

Once we have one principal split, we need not worry about looking for another because
there are no other principal splits that are different in any interesting way.

Theorem 2.41 (Unique Principal Splits) Given any two principal splits of a well-formed
refinement type, there is a one-to-one correspondence between them in which the corre-
sponding refinement types are equivalent.

Proof: Suppose s and s' are principal splits of r, and p is in a. By symmetry, it is sufficient
to find a p' in s' such that pp'.

Since a is more informative than s', there is a p' in s' such that p < p'. Since s' is more
informative than s, there is a p" in s such that p' <_ p". By TRANS-SUB, these imply p <_ p".

2.6. MONOMORPHIC REFINEMENT TYPES 53

Since a is irredundant, we must have p = p". Using this to rewrite p' < P" gives p' < p.
This and p < p' imply p - p', which implies our conclusion. 0

Generally speaking, refinement types that are not well-formed may not have principal
splits. For example, suppose

Tb,* -_ {it,ff}

and

In this case the malformed type (it A runit) * T4 ,,, would have the splits

{(tt A runit) * it, (it A runit) •ff}

and
{(it A runit) * tt, (it A runit) •ff , (it A runit).* _•..},

among others. These splits are both irredundant because ill-formed refinement types are
incomparable, and for the same reason neither split is more informative than the other.
By similar reasoning, no splits of (it A runit) * T b.1 will be redundant or more or less
informative than any other splits. Thus we only will be interested in principal types for
well-formed refinement types.

If we want to have unique most informative splits, we need to have a split more
informative than any two given splits. Thus, if we have splits s, and s2 of a well-formed
refinement type r then we need to be able to find an s3 such that

' X 83

and
for all k3 E 33 there is a kh E s, such that k3 < k1

and
for all k3 E s3 there is a k2 E s2 such that k3 _ k2.

This will be true if splitting interacts in a natural way with intersection: whenever p X S
and p and p' refine the same ML type, we need to ensure that p A p' x {p" A p' I p" E s}.
This is intuitively plausible because if a value is in p A p' is in both p and p'. Since it is in p
it must be in some p" E a, and since it is in both p" and p' it must be in p" A p'.

This property allows us to construct an S3 more informative than both s and s2. Let

83 = {kj A k2 I ki E si and / 2 E S2}.

The property me, 1tioned in the previous paragraph guarantees that

for all k, in sa we have k, x {k, A k2 I Ak2 E S2}.

and then we can repeatedly use TRANS-SPLIT to get

r x {kt A k2 I k, e a, and k2 E s2},

54 CHAPTER 2. REFINEMENT TYPE INFERENCE

which means that i3 has the properties we want.

What is the best way to ensure that splitting and intersection interact this way? It is
sufficient to assume that predefined splitting and predefined intersection interact this way
for refinement type constructors:

f def def
Assumption 2.42 (Predelined Split Intersection) Ef rc E tc and kc E tc and

def
rc x Sc

then
det def def

rc A kc • {rc A kc I rc' E sc}.

Now we are in a position to prove that the analogous property holds for refinement types
in general:

Lemma 2.43 (Split Intersection) If r C- t and k C- t and

r s

then
rAk {r'A jr' E s}.

Proof: By induction on the derivation of r x a.

I Case: RCONSPL] Then r has the form rc and t has the form tc and s has the form sc

and the premise of RCON-SPLIT is
def

rc ý< 5c.
def def

Since k C- tc, we know that k has the form kc1 A ... A kc,•. Let kc = kcc A ... A kc,. By
Lemma 2.24 (Refinement Constructor Intersection) on page 41,

def
rc A k_ rc A kc.

By Assumption 2.42 (Predefined Split Intersection) on page 54,

def def dc
rc A kcc {re A kA I rc' E sc}.

RCON-SPL1T and EQUIV-SPLIT-L give

,defrc A kc ý- {rc' A icc I rc' E sc}.

By Lemma 2.24 (Refinement Constructor Intersection) on page 41 we know that for rc' E sc
def

we have rc' A k = rc' A kc. Thus repeated use of EQUIV-SPLIT-R gives

rc A k x {rc' A k I re' E sc}

2.6. MONOMORPHIC REFINEMENT TYPES 55

which is our conclusion.

I Case: TUPLE L Then r has the form r,.. r, and there is an i such that the premise

of TUPLE-SPLIT is ri, s' where

= {r, * ... * ri- * r" rj*... * I r" E s'}.

Since r C t, we know that t has the form t1 * ... * t,1 . Since k E t, we know that k has a
form that allows us to repeatedly use Lemma 2.22 (Tuple Intersection) on page 40 to find
k, through k, such that

k -k, .. k,.

By induction hypothesis,
r i A ki {r" A ki I r" E s'}

and TUPLE-SPL1T gives

(r, A kj) * ... * (r-, A k,)
{Crl A kl) * ... * (r"i-' A ki-l) * (r." A ki) * (ri+l A ki+,) *..*(r, A k,ý) I r" E ST}

All that remains to do is to simplify this until it looks like our conclusion. Lemma 2.22
(Tuple Intersection) on page 40 gives

(r, *,... * ,.,,) A (k, *,.. * k,,) A 1, q k) ,.. k ,,,^)

and trivial reasoning about A then gives

r A k -= (r, A k,) ,..(r,, A k,,).

EQUIV-SPLIT-L gives

r. A k x {(rl A kj),*...,* (,i-I_ A ki_),* (r." A k,),* (.+j A ki+,),.• (r',, A k,,) I ,." E s'}.

Lemma 2.22 (Tuple Intersection) on page 40 gives for r" in s' we have

(r * ... * '-I* r" • r.+1 * ... * r,,) A (k1 * ... * k•) -
(rl A kl) * . . (ri-1 A k,-,)* (r" A ki) *(ri+l A ki+l) *. . (r,,A k,)

Trivial reasoning about A gives

(r, * . .. * ri1* '" * r"+1 ... * rn) A k

so for r" in a' we have

(rI *... * ri- r * ri+l .. rn) A kA=
(r i A k j) , . .* (,'i _I A ki _) * (r" A + (rj+ j A k,++) • . . •(r , A k ,,).

56 CHAPTER 2. REFINEMENT TYPE INFERENCE

Repeated use of EQUIV-SPLrr-R gives

r A k {(rl ... r. * r" •+*... * ,,) A k I r" E 8}

and by simple manipulation and the definition of a this implies

r A k - {r'A k I r'E 4},
which is our conclusion.

Case: TRANS-SPLIT I Then a has the form s, U 32 where the premises of TRANS-SPLIT are

7r x .S u {p}

and

p_ a2.

By induction hypothesis,

r A k {r-' rA k I r' E 8, U {p}}

and by set theory this is equivalent to

r A k x {r'Ak r' E all}U{pAk}.

By Corollary 2.32 (Split Types Refine 1) on page 51, p E t. By induction hypothesis,

p A k x {r'A k I r'E S2}.

Then TRANS-SPLIT gives

r A k x {r'VA k Ir' E U 82},

which is our conclusion.

Case: EQU Then the premises of EQUIV-SPLIT-L are

r--p

and
p7 8.

By Theorem 2.21 (Subtypes Refine) on page 36, p C t, so we can use the induction
hypothesis to get

pAk x {r'A k I r' E s}.

Trivial reasoning about A gives r A k = p A k, so we can use EQUIV-SPLIT-L to get

r Ak X {r'Ak Ir' E s},

2.6. MONOMORPHIC REFINEMENT TYPES 57

which is our conclusion.

Case: EQUIV-SPLI-R R Then s has the form a' U p where the premises of EQUIV-SPLIT-R are

and
r X a U p'.

By induction hypothesis,

r A k -- {r' A k I r' E '} U {p' A k}.

Trivial reasoning about A gives p' A k - p A k, so we can use EQUIV-SPLIT-R to get

r A k {,-' A k I r' E s'} U {p A k},

which is our conclusion.

Case: ELIM-SPLIT I Then a has the form s' U {p} where the premises of ELIM-SPLIT are

r × s'u {p',p}

and
p' Kp.

By induction hypothesis,

r A k {Ir' A k I r' E s'} U {p A k,p'A ̂k}.

Trivial reasoning about A gives p' A k < p A k, so ELM-sPL1T gives

r A k ý {r'Ak I r' E E '} U {p A k},

which is our conclusion.

ICasSEL-SPLF Then s = {r}, so our conclusion is r A k ; {r A k}, which follows

from SELF-SPLIT. 0

Just as some splits are more informative than others, some splits have no information
at all. For example, the split tt - {tt, 1b.o.11 is useless because the meaning of it is a
truism: all values of type tt have one of the types ti or -Lb°°v In general, if a fragment in a
split is equivalent to the type we started with, that split is useless. Formally, we have this
definition:

Definition 2.44 If r × s and there is a k E s such that r = k, then we say that s is a useless
split of r. Otherwise we say it is useful.

58 CHAPTER 2. REFINEMENT TYPE INFERENCE

A simple argument tells us that elements of a principal split cannot themselves have
useful splits.

Lemma 2.45 (Principal Split Implies Useless Splitting Fragments)
Fragments of a principal split only have useless splits.

Proof: Suppose that an irredundant split of a well-formed refinement type r is . U {k},
where k has a useful split .'. Then by TRANS-SPLIT, r x a U a'. By definitions of
"informative" and "useful", a U a.' is more informative than s U {k}. By Theorem 2.31
(Splits Are Subtypes I) on page 49, a U a' is irredundant. Thus s U {k} is not a principal
split of r. 0

We also have the converse:

Lemma 2.46 (Fragments of Principal Split have Useless Splits) An irredundant split of
a well-formed refinement type is principal if all of its fragments only have useless splits.

Proof: Suppose a is an irredundant split of a well-formed refinement type r, and r × a'
and p is in .. We need to show that there is a p' in a' such that p < p'.

By assumption, there is a t such that r C t. By Theorem 2.31 (Splits Are Subtypes I) on
page 49, this implies p < r, which means that p = r A p. Lemma 2.43 (Split Intersection)
on page 54 gives

rAp × {r'Ap I r' E S'},

and then EQUIV-SPLIT-L gives

p - {r' A p I r' E S'}.

By assumption, this split of p is useless. Thus there is a p' in s' such that p = p' A p, which
implies p < p', which is our conclusion. 0

We will use these two lemmas to build an algorithm for finding principal splits in
Subsection 2.10.2.

2.6.3 Refinement Type Inference

Given the subtype relation described above, we can define refinement type inference. The
notation is entirely analogous to the ML case. We write

VR I- e r

to mean that if we assume each free variable z in e has the refinement type VR(z), then e
has the refinement type r.

2.6. MONOMORPHIC REFINEMENT TYPES 59

If an expression has a refinement type, then it has an ML type, and the refinement type
refines the ML type; this is an informal statement of Theorem 2.54 (Inferred Types Refine)
on page 68. Since each expression with an ML type has only one ML type, all refinement
types for an expression refine the same ML type. If this is not true in general, then not all
terms would have principal refinement types. For example, if e has the refinement types it
and runit, then e has no principal type because it, runit, and the malformed type it A runit
are all incomparable.

Inferring refinement types for expressions requires making assumptions about the re-
finement types of constructors. We write the assumption that the constructor c maps values
of refinement type r to values of refinement type rc as

def
c : r -4 rc.

def
For example, true : ,unit --+ tt. We will describe in detail the properties we assume for

def
the : relation in Subsection 2.6.4 on page 64.

The rules for refinement type inference are in Figure 2.6. They are similar to the rules
for ML; we have made only the following changes:

We added the AND-INTRO-TYPE rule for introducing intersections. This allows us to
infer one type for a function that describes its behavior for several different inputs. For
example, since •I- fn x: bool => x• tt:- tt and. F- fn x: bool => x : ff - if, we have
• F- fn x: bool => x : tt --- tit A ff --+ ff. We do not need a corresponding AND-ELIM-TYPE

rule because we can use WEAKEN-TYPE and either AND-ELIM-L-SUB or AND-ELIM-R-SUB to
eliminate components from an intersection type.

The AND-INTRO-TYPE rule does not need to assume that r and k refine the same ML
type because Theorem 2.54 (Inferred Types Refine) on page 68 guarantees this.

We have added the WEAKEN-TYPE rule. This rule ensures that if an expression has a
type, then it also has any larger type. For example, since • F- fn x: bool => x : it -- tt,
and tt --+ tt < tt - Tboo., we can infer - F- fn x: bool => x • tt --+*Tb.j.

One would hope that if the environment VR has appropriate types for not and or. we
would be able to infer

VR F- fn x:bool => or (not x, x) Tboot-- it,

since this function looks simple and it does indeed return true () for any input. The
SPLIT-TYPE rule allows this. We can derive

VRta := ttl F- or (not x, x) : it

and
VR[z:=ff] F- or (not x, x): it

and then combine these with SPLIT-TYPE and Tbo, × {tt,ff} to get

VR[z := Tj,°] H- or (not x, x)": t

60 CHAPTER 2. REFINEMENT TYPE INFERENCE

VR - e: r
AND-INTRO-TYPE: VR I- e: k

VR F- e r A k

VR - e:r <k
WEAKEN-TYPE: VR }- e: k

Ic~a

SPLIT-TYPE: for all p in a we have VR[z := p] e r
VR[z:= k] I- e: r

VAR-TYPE: VR(x) = r r C- t
VR - z'r

AB-YP:VR[z := r] }- e: k r C- t
ABS-TYPE: (~

VR}- fn z:t => e:r---+k

VR F- el : k-r VR }- e2 : k
APPL-TYPE: VR H- el e2 : r

def

CONSTR-TYPE: c : r --+ rc VR e:r

VR-c e:rc

VR eo : rc

def

CASE-TYPE: for all i in I... n and all k, if ci : k rc then VR - e: k r
rtom(VR) H- (case eo of c => el I ... I c, => e,, end:u)' u

VR H" (case eo of c, => el I ... I c => en end:u):r

for i in 1... n we have VR F- ei : ri
VR I-(e,, ... , en) :'r *... *rn

VR-e:'r,*... *rn
ELT-TYPE: VR H- elt -m _n e : r,,

r C- tt --+ t 2

FIX-TYPE: VR[f := r] H" (fn x:t1 => e) : r
VRH- (fix f:tl-+t2 => fn z:t1 => e) : r

Figure 2.6: Monomorphic Refinement Typing Rules

2.6. MONOMORPHIC REFINEMENT TYPES 61

and then use ABS-TYPE tO get

VR fn x:bool -> or (not z, x)'Tb..t

which is what we want.

We could get the same result by deleting the SPLIT-TYPE rule and adding the rule

SPLT-S B:r >, {rjj,...,Irn} r --• k E t
SPLIT-SUB" k A -k~-~

r, --4 k A ... A rn ---+ k <_ r ---+ k

to the subtyping relation. In this case, we would again start by deriving

VR[x.= ti] or (not x, x): it

and
VR[x :=f] or (not x, x) tt.

Then we would apply ABS-TYPE to each of these to get

VR -fn x: bool => or (not x, x)• tt -tt

and
VR fn x:bool => or (not x, x):• ff-t.

Combining these with AND-INTRO-TYPE gives

VR - n x:bool => or (not x, x)'ff-4ttAtt--+tt,

and then WEAKEN-TYPE and ff -* tt A tt -+ it < T-b.. 1 -* it (from SPLIT-SUB) give

VR I- En x: bool => or (not x, x) T60 1 b. it,

which is our conclusion.

If have SPLIT-TYPE but not SPLIT-SL the types ff -i t A it -- tt and T it are
not equivalent, even though all values watii one type also have the other type. If instead we
have SPLIT-SUB but not SPLIT-TYPE, this anomaly does not happen. In this sense, SPLIT-SUB

is cleaner than SPLIT-TYPE. It is an open question whether adding SPLIT-SUB would cause
inequivalent types to always have different inhabitants.

However, after we add let statements in Chapter 4, SPLIT-TYPE becomes stronger than
SPLIT-SUB. For example, if we assume the best type for the expression y mod 3 = 0 is
Tb4,,, we would still like the statement

let x = (y mod 3 = 0)
in

or (not x, x)
end

62 CHAPTER 2. REFINEMENT TYPE INFERENCE

to have the refinement type it. SPLIT-TYPE can do this, but SPLIT-SUB cannot because there
is no subexpression of the let statement with an appropriate arrow type.

We could still have a strong system with SPLIT-SUB if we defined let statements as
macros; for example, the above let statement would be an abbreviation for

(fn x: bool =>
or (not x, x))

(y mod 3 = 0).

Taking this approach when the let statement introduces polymorphism requires first-class
polymorphism, which is beyond the scope of this thesis.

At this point we need to combine all the above considerations into a decision. We will
keep SPLIT-TYPE because we want the proofs in this chapter to be a special case of the
proofs in Chapter 4. We will omit SPLIT-SUB for brevity, since there is no harm in having
inequivalent types with identical inhabitants.

TheSPL1T-TYPE rule leads to at least two problems if we allow empty splits. The first
problem is that empty splits can be used to infer a malformed refinement type for an
expression. For example, if we suppose that _t,,o >× {}, then we can use SPLIT-TYPE to infer

[X :=-1-6..,] F- () : tt A (tt - tt).

This problem can be fixed by adding a premise r C t to the SPLIT-TYPE rule. The revised
rule would read k~s

for all p in s we have VR(,:= p] H- e: r
r~t

rtom(VR) I- e:: t

VR[z := k] I" e r.

By explicitly requiring the resulting refinement type to refine the ML type for the expression,
we outlaw malformed types.

Another problem with empty splits is more difficult to solve. Empty splits cause
variables in the environment that appear nowhere in an expression to affect the type of the
expression. For example, still assuming that 1 1--*_ {}, we can use SPLIT-TYPE to prove

[z :=L6..,] true 0 f.

This conclusion is reasonable in an eager language because there are no values of type
-Lb.I-. However, it is strange because if we changed the environment to [z := ff], we would
no longer be able to prove true () : ff. Since we assume in many places that changing
types in the environment for unused variables does not affect the refinement type of an
expression, this would invalidate many of the proofs below. To make it clear where we
assume this, we will state it as a fact now, and make explicit reference to this fact when we
assume it is true.

2.6. MONOMORPHIC REFINEMENT TYPES 63

Fact 2.47 (Non-free Variables are Ignored) If z is not free in e, then VR[z: r] - e : k
if and only if VR I- e : k.

Proof of this is by two trivial inductions, one on the derivation of VR[z := r] l- e : k and
one on the derivation of VR F- e : k. In both cases, we have to use Fact 2.37 (Splits are
Nonempty) on page 51 in the case where the root inference is SPLIT-TYPE and the type of
z is being split. In logic, the "only if" case of this theorem is called "weakening" and the
"if" case is called "strengthening".

VAR-TYPE is analogous to VAR-VALID rule except we add the premise r C t. This
ensures that all types we use from the environment are well formed. We state this formally
and sketch the proof in Fact 2.48 (Free Variables Refine) on page 64. If this were not true,
for many of the theorems below we would have to add an assumption that all variables in
the environment are well formed.

The differences between CASE-TYPE and CASE-VALID have two causes. First, there isdef

always exactly one t and tc such that c .. t - tc, but in general there may be many r's
def

and rc's such that c : r - rc. This causes the added quantification on k in the CASE-TYPE

rule.

Second, we do not want to require unreachable cases to have a refinement type. If a case
is never reachable, we do not require it to have a refinement type, so it would not necessarily
have an ML type unless we explicitly required it to. The last premise of CASE-TYPE requires
the case statement as a whole to have an ML type, and by CASE-VALID, this requires the
unreachable cases to have ML types.

There is a natural analogy between instantiating a polymorphic ML type and weakening
a refinement type, since both operations replace the type by a less informative type. The
analogy is not perfect; in particular, although there are infinite sequences of increasingly
instantiated polymorphic types, such as

a, 0 -+ -, (6 *• -•7 . .

straightforward reasoning tells us there are no infinite sequences of increasingly weak
refinement types: because the refinement types are increasingly weak, they must be com-
parable, so Theorem 2.21 (Subtypes Refine) on page 36 tells us they all refine the same
ML type; by Theorem 2.90 (Finite Refinements) on page 115, there are only finitely many
distinct refinements of any ML type, so the chain must be finite.

Unfortunately, standard notation obscures this analogy. If the refinement type r2 is
weaker than the refinement type ri, we write r, -5 r2. But in [DM821, among other places,
if the type scheme o,2 is an instance of the type scheme o',, we write a, > a 2. We make no
use of the instantiation ordering in this thesis, so we are not faced with a choice between
internal inconsistency and external inconsistency.

The original Damas-Milner type inference system [DM821 disallows instantiating the
type of the recursion variable in a fixed point immediately before using it, and that system

64 CHAPTER 2. REFINEMENT TYPE INFERENCE

is decidable. The Milner-Mycroft type inference system [Myc84] is a variant that permits
instantiating the type of the recursion variables in fixed points, and that change is sufficient
to make the type system undecidable [KTU89]. None of these questions arise for the ML
type inference we use in this chapter, because there is no polymorphism. But the following
question does arise: which of these systems is refinement types analogous to, and how does
that affect decidability?

Both the Damas-Milner and the Milner-Mycroft type systems distinguish type schemes
(which can be instantiated) from types (which cannot). In the refinement type system,
WEAKEN-TYPE can be applied anywhere, so all refinement types are analogous to the type
schemes in polymorphic type inference. In particular, the refinement type of the recursion
variable in a fixed point can be weakened before it is used. In this sense, refinement type
inference is analogous to the Milner-Mycroft system. However, refinement type inference
is decidable because there the ML type of the recursion variable is uniquely determined,
and this tightly constrains the search.

If an expression has a refinement type, then the variables it uses have well-formed types
in the variable environment. This is the refinement type analogue of Fact 2.5 (ML Free
Variables Bound) on page 29. To state it formally,

Fact 2.48 (Free Variables Refine) If VR I- e : r and x is free in e, then there is a t such
that VR(z) [- t.

Proof of this is by induction on the derivation of VR I- e : r.

2.6.4 Properties of Constructors

This subsection describes the properties of value constructor that are directly used by
refinement type inference. As we mentioned earlier, we say that a constructor maps values
of type r to values of type rc by writing

def
c : r .•- rc.

For example, this assumption about true fits its ordinary meaning:

def
true : runit -* tt

as does this assumption about false:

def
false : runit •-ff.

If a constructor has a refinement type, it also has larger refinement types, so these assump-
tions are also reasonable:

deftrue : runit cT&- 1
def

f al se :runit -+T~

1TYPES 65

def
- rc's such that c : r -+ rc. This contrasts with

x>s for the bitstring constructor Zero:

def
. Zero " empty -4 Tbitir

j Zero :f nf• ,nf
defZero : nf c-*Tbit

Zero def

ire used by refinement type inference. We

"on "E",the splitting relation ,,", and the

def
• to be consistent withn:.

inwes If"

.ach constructor c there are t and tc

,)istructor Type Refines) on page 65

•.es it useful is Theorem 2.69 (Splitting
.1as a type that splits, then the value has

7he form c v and it has the type rc that
:iVcs a type to c v will first infer a type for

, r --+ rc. We need some way to conclude

* .", for some i. This requirement is too strong
"1,,111pie. if we distinguish even length and odd

I cons of bool * blist
- , * bod I nil (runit)

-.s (b * bev)

OOPTDO AMMNJT T MUW POLLY lWama 1113ODUQZP~

66 CHATER 2. REFINEMENT TYPE INFERENCE

we have
def

cons : T. 1j * T 1ij -- Tci-

and
T {bet,,bod}

but neither def

cons : Tb. 4 * Tbliat' be- '

nor
def

cons : T1 ., * Tbli.t c- bod.

Instead, we require for each split of r, there is a split of rc such that c maps each fragment
of r to some fragment of rc. This seems to work well for many ordinary examples. In the
above example, r is Tb.., * Tbti, and we have the following:

Tb., * Tblist x {T6., * beil, T• 1 * bod}
def

cons : T. 1 * bev - bodlef

cons : T*..1 * bod c-* bev

This approach only makes sense if a refinement type splits whenever it refines some
ML type. For instance, consider the ML datatype

datatype pred = A of boolt-+ bool
I B of bool--* booL

and the refinement type declaration

rectype a = A (booL-* bool)
and b = B (boot- boot)

The types for the value constructors arising from this are

def
A : (Tb.- T to) a

and
defB d:c (T&.1 T5..,) b.

At this point it seems reasonable to have T,,d × {a, b}. This would fail our criterion if
SELF-SPLIT did not ensure that Tbooi --* T,, splits.

Putting this formally,

Assumption 2.50 (Split Constructor Consistent) If

defc : r -- rc

2.6. MONOMORPHIC REFINEMENT TYPES 67

and
def

rcx {rcI,... rc}

then there is some provable assertion of the form
r ×:,{ l, . .

such that for all j between 1 and m there is an i between 1 and n such that
def

c " ri L--+ rc1.

Constructors and Intersection We will need

def defAssumption 2.51 (Constructor And Introduction) If c r - rc and c : r- kc then
def fde

c " r -* (rc A kc).

def

Any use of CONSTR-TYPE that uses a : property that only exists because of Assumption 2.51
(Constructor And Introduction) on page 67 could be replaced by two uses of CONSTR-TYPE

def
followed by an AND-INTRO-TYPE and then a WEAKEN-TYPE tO convert re A kc to rc A kc.
We use Assumption 2.51 (Constructor And Introduction) on page 67 when we do not want
the derivation to have WEAKEN-TYPE at the root; this is in the RCON-AND-ELIM-SUB case of
Lemma 2.67 (Piecewise Intersection) on page 84.

Constructors and Subtyping We need the assumed types for constructors to be con-
sistent with the subtyping relation on the left and the assumed subtyping relation on the-
right.

def
Assumption 2.52 (Constructor Argument Strengthen) If c : r •-. rc and k < r then

def
c •k--rc.

def def dcf
Assumption 2.53 (Constructor Result Weaken) If c : r - rc and rc < kc, then c
r -+ kc.

Neither of these rules change the set of types that can be inferred using CONSTR-TYPE.
def

Any use of CONSTR-TYPE that uses a : property that exists only because Assumption 2.52
(Constructor Argument Strengthen) on page 67 requires it could be replaced by a use of
WEAKEN-TYPE followed by a use of CONSTR-TYPE. Similarly, any use of CONSTR-TYPE that

def
uses a : property that exists only because Assumption 2.53 (Constructor Result Weaken) on
page 67 requires it could be replaced by a use of CONSTR-TYPE followed by WEAKEN-TYPE.

However, without these assumptions, the CASE-TYPE rule would have to use ":" where
,df,,

it presently uses' . This would make several of the proofs below much more complex,
since the behavior of the constructors in CASE-TYPE would depend on the results of type
inference rather than depending simply upon our assumptions.

68 CA JAPTER 2. REFINEMENT TYPE INFERENCE

2.7 Compatibility With ML

In this section describe in what sense refinement type inference is compatible with ML
type inference. Under very general conditions, all terms with a refinement type have an
ML type. Also, under special conditions corresponding to complete absence of rectype
statements, all terms with an ML type have a refinement type.

The first property ensures that simple modifications to existing ML compilers will
allow them to compile programs that have been checked with refinement types. The second
property ensures that substituting a compiler that checks refinement types for one that
checks ML types will not disorient naive users or break existing code.

2.7.1 Inferring an ML type Given a Refinement Type

The statement of the theorem we intend to prove here is very straightforward. It uses the
rtom function defined on page 32:

Theorem 2.54 (Inferred Types Refine) If

VR - e: r

then there is a t such that
rE-t

and
rtom(VR) I- e :: t.

The proof of this is an entirely straightforward induction on the refinement type deriva-
tion. Explicit provision had to be made in the CASE-TYPE rule to make the proof succeed.
The problem is that ML typc inference for case statements requires all subterms of the
case statement to have an ML type, but refinement type inference for case statements does
not require subterms that are obviously unreachable to have a refinement type.

This arrangement is necessary if we want refinement type inference to formalize simple
case-based reasoning humans routinely do when they think about a program. For instance,
if we assume that the function f is well-behaved when passed true () as an argument but
not false (), then we would expect the expression

case x of
true => fn ignored: bool => f x

[false => fn ignored: bool => true ()
end: boot

2.7. COMPATIBILITY WITH ML 69

to be well-behaved whether x is true () or false (). We can formalize this reasoning in
refinement types by giving f a type which specifies no behavior when passed an argument
of type if; one such type for f would be it -ff. Then our assertion is that the case
statement above should have a refinement type even if we give x the type ff. Under these
assumptions, the expression f x has no refinement type, so the rule for case statements
must not require unreachable cases to have a refinement type.

If refinement type inference completely ignored the unreachable cases in case state-
ments, then we could make terms that have a refinement type but no ML type. For example,
if we assume that x has the refinement type if, then the statement

case x of
true => fn ignored:bool => () ()

I false => fn ignored:bool => true ()
end: bool

would have a refinement type but no ML type. To solve this problem, the CASE-TYPE

explicitly requires the case statement to have an ML type.

There is at least one other way to solve the problem. We could allow some expressions
to have a refinement type but no ML type. In that case the best we could do here would be
to prove that if an expression has both a refinement type and an ML type, the refinement
type refines the ML type. Many of the theorems we prove below would need to have a
hypothesis added to ensure that some expression has an ML type. The extra hypotheses
would add bulk but no insight, so we shall use the CASE-TYPE rule as it stands.

If we eliminated the ML type after the end keyword that determines an ML type for-
the case statement some case statements would have malformed refinement types. For
example, the refinement type assigned to a case statement where none of the cases were
reachable, such as

case (fix f:bool -4 bool => fn x:bool => f x) () of
true => fn ():tunit => true ()

I false => fn ():tunit => false ()
end

could be a malformed refinement type such as tit A (U -- tt). If we took out the premise
r E- u from the CASE-TYPE rule, we could infer this type directly; if we left that premise in.
but omitted u from the syntax, then we would still be able to use AND-INTRO-TYPE to infer
this malformed refinement type for the case statement.

Without further ado, we will prove Theorem 2.54 (Inferred Types Refine) on page 68.

Proof: By induction on the derivation of VR H- e : r.

Case: AND-INTRO-TYPE I Then r has the form r, A r2 and the premises of AND-INTRO-TYPE

are
VR I- e : r,

70 CHAPTER 2. REFINEMENT TYPE INFERENCE

and
VR ý- e: r2.

Applying our induction hypothesis to each of these gives tj and t2 such the following hold:

ri C t1
rtom(VR) H- e:: t1

r2 1- t2

rtom(VR) I- e :: t2.

Lemma 2.4 (Unique Inferred ML Types) on page 27 gives t1 = t2, so AND-REF gives

ri A r2 C ti.

This and rtom(VR) F- e :: t1 are our conclusions.

SCase: WEAKEN-TYPE I The premises of WEAKEN-TYPE must be

VR-e' k

and
k<r.

By induction hypothesis, there is a t such that k E t and

rtom(VR) F- e :: t.

By Theorem 2.21 (Subtypes Refine) on page 36,

rCt.

The last two are our conclusion

ICase: SPLYP Then VR must have the form VR'[x := kJ where the premises of

SPLIT-TYPE are
k>~s

and
for all p in s we have VR'[x := p] F- e " r.

By Fact 2.37 (Splits are Nonempty) on page 51, s is nonempty; let p be any element of s.
By induction hypothesis,

rFt

and
rtom(VR'[z := I]) I- e :: t.

If rtom(k) is defined, then Corollary 2.32 (Split Types Refine I) on page 51 gives
rtom(k) = rtom(p) so we have

rtom(VR'[z := k]) I- e:: t.

2.7. COMPATIBILITY WITH ML 71

This and r C- t are our conclusions.

If rtom(k) is undefined, then by a contrapositive of Fact 2.34 (Split Types Refine 11) on
page 51, rtom(p) must be undefined also. By definition of rtom applied to functions, this
implies rtom(VR'[z := kj) = rtom(VR'[x := p]). Thus rtom(VR'[x := k]) - e :: t; this
and r C t are our conclusions.

[Case: VAR-TYPE Then e has the form z. The premises of VAR-TYPE are r VR(x) and

r C t. By definition of rtom for functions, rtom(VR)(x) = t, so VAR-VALID immediately
gives rtom(VR) I- x :: t, which is our conclusion.

Case: lTYPE Then e has the form fn x:t, => e' and r has the form r, r2 and the

premises of ABS-TYPE are
r, E- t1

and
VR[x :=- ri] F- e': r 2.

Our induction hypothesis gives a t2 such that

-2 EC t2

and
rtom(VR[z := rl]) F- e':: t2.

Since r, E tj, we have

rtom(VR[x := rj]) = rtom(VR)[x ti]

so ABS-VALID gives
rtom(VR) F- fn x:t1 => e':: t -+ t2.

From ri E tj and r2 C t2 we can use ARROW-SUB tO get

rI -- + V2 - tl "- t 2 .

The last two displayed formulae are our conclusions.

Case: APPL-TYPE I Then e has the form el e2 and the premises of APPL-TYPE are

VR F- el : k-r

and
VR F- e2 : k.

Applying induction hypothesis to each of these gives -he following:

k--r E--u
rtom(VR) F- el :: u

k c

rtom(VR) F- e2 ":

72 CHAPTER 2. REFINEMENT TYPE INFERENCE

The only way to infer k -+ r C- u is by using ARROW-REF where ut =t -- t and the premises
of ARROW-REF are k E' t, and r C- t.

By Lemma 2.10 (Unique ML Types) on page 31, from k C t, and k E- t' we can infer
t, = t'. Thus we can use APPL-VALID to get

rtom(VR) t- el e2 t.

This and r E- t are our conclusions.

Case: CONSTR-TYPE Then e has the form c e' and r has the form rc where the premises

of CONSTR-TYPE are
def

c : k •- rc

and
VR I- e' : k.

By Assumption 2.2 (Constructors have Unique ML Types) on page 26, there are unique u
and tc such that

def
c •u -4 tc.

def
By Assumption 2.49 (Constructor Type Refines) on page 65, k E u and rc C- tc.

Our induction hypothesis gives a u' such that k C u' and

rtom(VR) f- e' :: u'.

Since k F- u and k C: u', Lemma 2.10 (Unique ML Types) on page 31 tells us that u = u'.
Thus we can use CONSTR-VALID to get

rtom(VR) F- c e' :: tc.

def
Choose t = tc. Since re C tc, we can use RCON-REF to get

re C tc.

The last two displayed equations are our conclusions.

[Case: CASE-TYPEI

Then e has the form case eo of c, => el I... => e, end:t. Two of the
premises of CASE-TYPE are

r C't

and
rtom(VR) F- e :: t,

which are our conclusions.

2.7. COMPATIBILITY WITH ML 73

1 Case: TUPLETE Then r has the form rl .. *r,, and e has the form (el, .. ,

and the premises of TUPLE-TYPE are

for i in 1... n we have VR [- ei : ri.

Applying the induction hypothesis to each of these gives ML types t1 through t,, such that

for i in 1... n we have ri F- ti

and
for i in 1 ... n we have rtom(VR) I- e" ti.

By TUPLE-REF,
r, *... *rn C" ti* ... *t

and by TUPLE-VAuD,

rtom(VR) I- (el * ... * t t,

If we choose t = t ... * t,, this is our conclusion.

Case: ELT-TYPE] Then e has the form elt-m-n e' and the premise of ELT-TYPE is

VR - e': r, *... * r,

where r = r.. By induction hypothesis, there is a u such that

and
rtom(VR) I- e':: u.

We can only infer r * ... *r, C u by using TUPLE-REF where u has the form u1 •... I u,,
and

for i in I ... n we have ri E ui.

Since u has this form, we can use ELT-VALID to get

rtom(VR) F- elt -m-n e' :: tn.

If we choose t = t, the last two displayed formulae are our conclusions.

hYPE ITen e has the formfix f:ti -+t 2 => in z:t => e'andfthepremises

of FIX-TYPE are

r C ti --+t 2

and
VR[f: r] - fn z:t => e': r.

74 CHAPTER 2. REFINEMENT TYPE INFERENCE

By induction hypothesis, there is a t such that

rEt

and
rtom(VR[f := rj) H fn z: t => e':: t. (2.14)

Sincer C- tandr C- tj --* t2, Lemma2.10 (Unique ML Types) on page 31 givest = tL --*t 2.
Since r C- ti --- t2, the definition of rtom gives rtom(VR[f := r]) = rtom(VR)[f
t1 -- t 2]. Thus we can use FIX-VALID on (2.14) to get

rtom(VR) H fix f:tL --+ t2 => fIn z:t => e' :: ti --+Lt2

This and r C ti ---+ t2 are our conclusions. 0

Because of this, if a value has a refinement type, the form of the refinement type gives
us information about the form of the value. We will use this in Lemma 2.67 (Piecewise
Intersection) on page 84. For example,

Lemma 2.55 (Value Arrow Type) If VR F- v : r, -* r2 then v has theform fn z: t => e.

Proof: By Theorem 2.54 (InferredTypes Refine) on page 68, there is a t such that r, - rE2 C t

and rtom(VR) H- v :: t. Since rI --* r2 C t, we know t has the form t1 --+ t,_. From the ML
type inference rules and the possible forms of v, the last inference of rtom(VR) 1- v :: t
must be ABS-VALID and v must have the form fn z : t => e. I]

Similar reasoning gives results for value constructors and tuples:

Fact 2.56 (Value Constructor Type) If VR ý v : rc then v has the form c v'.

Fact 2.57 (Value Tuple Type) If VR ý- v :r *... * r,) then v has the form (vi ,. v).

2.7.2 Inferring a Refinement Type Given an ML Type

Some pieces of ML code fail to have a refinement type in the presence of remarkably few
rectype statements. For example, consider this program in the formal language:

datatype d = C of bool -- bool
case C (fn x:bool => x) of

C => fn y:boo!-+ boo! => (y (true 0))
end: boot

The case statement has the ML type bool. In the absence of any rectype statements, the
ML type bool has only one refinement, which we can call T&.,i. The type of the case
statement is Tb. i.

However, if we insert this rectype statement before the datatype declaration:

2.7. COMPATIBILITY WITH ML 75

rectype it = true (runit)
and ff = false (runit)

the following argument tells us the case statement no longer has a refinement type.

Informally, the problem is that the constructor C loses all information about its argument.
Thus type inference has to make the assumption that y can have any refinement type
whatsoever. The worst case is a function that cannot be called legitimately with any value.
Since we call y with a value, we fail.

The reader may object at this point that we cannot construct any function that cannot
be called with any value. This is true, but in Chapter 6 when we introduce the explicit
refinement type declaration operator <1, we will be able to write such expressions. One of
them is:

fn x:bool => (x -L-t,).

We can also give a formal argument that the case statement has no type. Let us suppose
that the case statement had the refinement type r, and try to construct the type derivation.
The conclusion would clearly be

[case ... end:r.

Since r is arbitrary, we might as well assume the last inference in the derivation is CASE-

TYPE rather than AND-INTRO-TYPE or WEAKEN-TYPE. If we use Ti as the name for the
unique refinement of d, the first premise of CASE-TYPE must have the form

H- C (fn x:bool => x) : Td.

The second premise is
Td c: d,

which is trivial. The third premise says that whenever C : k -* Td, we must have

Hfn y:bool-*bool => (y (true ())):k-r.

Choose k = -t .-- to,. By Lemma 2.68 (Subtype Irrelevancy) on page 88, if we can
derive this we can do it with ABS-TYPE as the root inference. The premise of ABS-TYPE

must be
y:-I-oo -- T ool[_y (true ()) :r

and this requires using APPL-TYPE with the premise

y : _L-boo, - Ttboo, - true) :boo

which is not derivable.

We can get the case statement to typecheck by adding a rectype statement so C does
not lose all information about its argument. One possible addition would be

76 CHAPTER 2. REFINEMENT TYPE INFERENCE

rectype total = C (T6.. 1--+ T..a).

With this addition, there are now two refinements of the ML type d, namely Td and
total. A principal type of C (fn x: bool => x) is total. (It also has the principal type
total A total, among infinitely many others; we will eventually show that all principal types
are equivalent.) The case statement gets the type T1 1 .

Generalizing from this example, if we allow the programmer to specify any refinement
type distinctions, there may be expressions with an ML type but no refinement type. Thus
we shall assume for the duration of this subsection that the programmer has made no
refinement type distinctions, and we shall prove that any expression with an ML type also
has a refinement type. More formally, our temporary assumption is that each ML type

dcf
constructor tc has exactly one refinement, and we will call that refinement mtor(tc).

d(f def f def
Assumption 2.58 (mtor Refines) For all tc we have rotor(tc) E tc.

def
Assumption 2.59 (Only mtor Refines) (assumed for this subsection only) For all te and

def defl
all rc, if rc E tc then rc = mtor(tc).

We then lift this construction in the natural way to refinements of general ML types:

Definition 2.60 We define mtor as the function mapping ML types to refinement types that
is consistent with the following equations.

def
mtor(tc) = mtor(tc)

mtor(t 1 t2) = mtor(t') - mtor(t2)
mtor(ti *... * t,,) = mtor(ti) * ... * mtor(t•,).

We extend mtor pointwise to operate on environments such as VM.

Trivial inductions on t give:

Fact 2.61 (mtor Refines) For all t we have mtor(t) E- t.

Fact 2.62 (Unique Refinement) If r E t then r =- mtor(t).

Now we have enough notation to state that the value constructors behave properly:

Assumption 2.63 (Constructor mtor Consistent) If
def'

c "" t -- tc

then
def def

c : mtor(t) - mtor(:c).

2.7. COMPATIBILITY WITH ML 77

In the absence of any of the type declarations introduced in the next chapter, these con-
ditions are satisfied trivially because each ML type constructor has exactly one refinement.
Each value constructor maps the unique refinement of its domain to the unique refinement
of its range.

Under these assumptions, we can show that each program with an ML type t has the
refinement type mtor(t):

Theorem 2.64 (ML Compatibility) If

VM - e :: u

then
mtor(VM) I- e: mtor(u).

Proof: Straightforward, by induction on the derivation of the hypothesis.

Case: VAR-ID] Then e = x and u = VM(x). Using VAR-TYPE gives mtor(VM) F- x"

mtor(u), which is our conclusion.

Case: ABS-VAL Then e = fn x :t, => e' and u = tj --+ t2. The premise of ABS-VALID

must be
VM[x :=- ti] F- e':: t2 .

Fact 2.61 (mtor Refines) on page 76 gives

mtor(ti) C tL.

Our induction hypothesis gives

mtor(VM[x := ti']) H- e' : mtor(t 2).

Since mtor(VM[x := t1]) = mtor(VM)[x := mtor(ti)], we can use ABS-TYPE to get

mtor(VM) F- fn x::t1 => e' : mtor(t) --+mtor(t 2).

Since mtor(ti) -+ mtor(t 2) = mtor(t, --* t2), this is our conclusion.

Case: APPL-VALID IThen e = el e2 and the premises of APPL-VALID are

VM F el :: t u

and
VM H- e2 t.

78 CHAPTER 2. REFINEMENT TYPE INFERENCE

Applying the induction hypothesis to each of these gives

mtor(VM) F- el : mtor(t -# u)

and
mtor(VM) F- e2 ": mtor(t).

Since mtor(u --- t) = mtor(t) -- mtor(u), we can use APPL-TYPE to get

mtor(VM) F- el e2 : mtor(u),

which is our conclusion.

Case: CONSTR-VALID I Then e = c e' and u tc and the premises of CONSTR-VALID are

c • t-tc

and
VM F- e' :: t.

Assumption 2.63 (Constructor mtor Consistent) on page 76 gives

def defc :: rotor(t) ¢--., mtor(tc)

and our induction hypothesis gives

mtor(VM) F- e' mtor(t).

Using CONSTR-TYPE gives

def
mtor(VM) F- c e' mtor(tc).

def
Since mtor(tc) = mtor(tc), this is our conclusion.

[Case: CASE-VALD Thene = case e0 of cl => el ... I c,, => e,, end:u and the

premises of CASE-VALID are
VM F- e0 :: tc,

def

for all i we have ci "" ti ic,

and
for all i we have VM F- e t, --+ u.

The induction hypothesis gives the first premise of CASE-TYPE:

mtor(VM) F- e0 " mtor(tc)

2.7. COMPATIBILITY WITH ML 79

Fact 2.61 (mtor Refines) on page 76 gives the second premise of CASE-TYPE:

rntor(u) E- u

def def
Suppose i and k are given, and that ci • k : -* mtor(tc). Then Assumption 2.49 (Constructor
Type Refines) on page 65, k E ti, and Fact 2.62 (Unique Refinement) on page 76 give
k = mtor(ti). Our induction hypothesis gives

mtor(VM) H- ei : mtor(ti -+ u).

By the definition of mtor, we have

mtor(VM) - e" : mtor(ti) - mtor(u).

By ARROW-SUB and k = mtor(ti) we have k -• mtor(u) = mtor(t1) - mtor(u). Thus
WEAKEN-TYPE gives

mtor(VM) I- el: k --+ mtor(u).

Since this argument works for any i and k, the third premise of CASE-TYPE holds, so we
have our conclusion:

mtor(VM) - (case e0 of c, => el I ... I c, => e, end:u): mtor(u)

Case: TUP Then e has the form (el, ... , e,,)and u has the formt* t.

The premise of TUPLE-VALID must be

for all i we have VM -e 1 :" ti.

Our induction hypothesis gives

for all i we have mtor(VM) I- ei" mtor(ti).

TUPLE-TYPE then gives

mtor(VM) [- (el, ... , e,) : mtor(ti) ,... • mtor(t,,)

which is our conclusion since mtor(t1) *... * mtor(t,) = mtor(ti *... * t,,).

ICase: ELT-L Then e has the form elt-m-n e' and u = tin, where the premise of

ELT-VALID is
VM ý- e':"" tj . tn.

Our induction hypothesis gives

mtor(VM) F- e': mtor(t, ,... • t,).

80 CHAFMER 2. REFINEMENT TYPE INFERENCE

Since mtor(t, * ... * t,.) = mtor(ti) * mtor(t,), we can use this as the premise to
ELT-TYPE to get

mtor(VM) I- elt-m-n e': mtor(tn),

which is our conclusion.

ICase: FIX-VALID I Then e has the form fix f :t, --+ t 2 => fn z::t => e' and u has the

form t, --+ t2. The premise of FIX-VALID is

VM[f := tL --+ t2] H- (fn z: ti => e') ti - t2.

Fact 2.61 (mtor Refines) on page 76 gives

mntor*t -- t2) C tl --+ t2.

Our induction hypothesis gives

mtor(VM[f := tl --+ t2]) I- (fn z:tt => e') mtor(t, --+ t2).

Since mtor(VM[f :=t --- t2]) = mtor(VM)[f := mtor(ti -- t2)], we can use FIX-TYPE to
get

mtor(VM) H- fix f :tl --+ t2 => fn z:t, => e' "mtor(VM)

which is our conclusion.

2.8 Simple Soundness Proof

Now we are almost in a position to prove that this type system is sound in an appropriate
sense. But first we must prepare the way with some lemmas.

First we will show that as the assumptions in the environment get stronger, the set of
types we can infer gets no smaller. At first glance this seems fairly straightforward: Pick
a type derivation that we can infer in the weaker environment; to rewrite it to work in the
stronger environment, just replace all uses of VAR-TYPE by a use of VAR-TYPE followed
by WEAKEN-TYPE, and leave the rest of the derivation the same. Unfortunately, this proof
sketch does not handle uses of the SPLIT-TYPE rule in the original derivation. Dealing with
SPLIT-TYPE is possible though; see that case of the following proof.

The refinement type inference rules AND-INTRO-TYPE, WEAKEN-TYPE, and SPLIT-TYPE
have the same expression in their premise that they have in their conclusion. All of the
other refinement type inference rules have smaller expressions in the premises than they
have in their conc:' ision. We say that the latter rules make "syntactic progress". It is often
useful to know that the root inference of a derivation of a refinement type for an expression
makes syntactic progress because then the form of the expression uniquely determines
which refinement type inference rule was used. Therefore we define this special notation
to say that the root inference of a type derivation makes syntactic progress:

2.8. SIMPLE SOUNDNESS PROOF 81

Definition 2.65 If VR H- e : r and there is a derivation of this that has a rule other than
AND-INTRO-TYPE, WEAKEN-TYPE, or SPLIT-TYPE at the root, then we say VR H- e : r.

We can think of Lemma 2.66 (Environment Modification) on page 81 as an algorithm
that maps a type derivation in the weaker environment to a type derivation in the stronger
environment. This algorithm is more useful if the output is a type derivation that makes
syntactic progress at the root whenever possible. This is when the original type derivation
makes syntactic progress and the expression is not a variable. This optimization is reflected
in the theorem by the additional hypotheses and conclusion after the phrase "Also, if in
addition".

Lemma 2.66 (Environment Modification) If

VR I- e:r

and
VR' has the same domain as VR

and
for x free in e we have VR'(z) <_ VR(x)

then
VR' I- e r.

Also, if in addition
VR H- e r

and
e is not a variable

then
VR'H- e : r.

Proof: By induction on the derivation of VR I- e r. Some cases apply omy if VR - e: r;
other cases apply if either VR -- e : r or VR H- e r. We will put the cases that apply only
if VR I- e : r first.

Case: SPLIT-TYPE Then there is a y such that VR = VRt y k] and the premises of

SPLIT-TYPE are
k~s

and
for p in s we have VRI [y := p] F- e : r.

We take cases on whether y is free in e.

82 CHA• •ER 2. REFINEMENT TYPE INFERENCE

SubCase: y not free in e Thus VR'= VR•[y := W1 where

for all z free in e we have VR'(z) < VRI(z).

Therefore, trivially,

for all z free in e we have VR, [y := k](z) < VRI[y := k](x).

Our induction hypothesis gives

R' := F- e: r.

Fact 2.47 (Non-free Variables are Ignored) on page 63 gives

VRn F- e r,

and then Fact 2.47 (Non-free Variables are Ignored) on page 63 again gives

VR' [y := k'] F- e:

which is our conclusion.

SubCase: y free in e Thus VR' = VR, [y W=] where

k' < kc

and
for x other than y free in e we have VR',(z) < VRi(x).

By Lemma 2.43 (Split Intersection) on page 54,

k A k' ×{p'A k' I p' E s}.

Since k' < k, we know that k A k' = k'. Thus EQUIV-SPLIT-L gives

k'× {p' A k' I p' E s}.

Since p' A k' is alwayq a subtype of p' when p' is in j, it follows that, for all p' in . and all
x free in e,

VR [y := p' A k'](:) < VR1 [y := p'](x).

Thus we can use our induction hypothesis to conclude

for all p' in s we have VR [:= y Ak'] F- e• r

Then we can use SPLIT-TYPE to get

VR'[y:= k'] F- e r,

2.8. SIMPLE SOUNDNESS PROOF 83

which is our conclusion.

IECase: VAR- 1Then e has the form x, and VR(x) = r. Since z is free in e, we must

have VR'(z) • r. VAR-TYPE gives

VR' - z: VR'(x)

and then WEAKEN-TYPE gives
VR' x: r,

which is our conclusion.

Case: AND-INTRO-TYPE

[Case: WEAKEN-TYPE]

Since neither of these rules use or modify the variable environment, these cases are trivial.

Now we will give the cases that apply when e is not a variable and VR H- e: r.

Case: ABS-P] Then e has the form fn z:tj => e' and r has the form rt r*r2. The

premises of ABS-TYPE must be
r, E tj

and
VR[z := rl] I- e': r2.

SELF-SUB gives r, :_ rt, so we can use our induction hypothesis to get

VR'[x := ri] ý- e' r2.

Then ABS-TYPE gives
VR' H- fn x : t: fi=> e' •r, --, r2,

which is our conclusion.

ICase: Fix-E Then ehas the form fix f: t1 -- t2 => fn y: t1 => e'and the premises

of FIX-TYPE are
r C'-ti--+t2

and
VR[f := r] F- n y:tj => e' : r.

SELF-SUB gives r < r, so we can use the induction hypothesis to get

VR'[f := r] H- fn y:t1 => e': r

and then FIX-TYPE gives

VR' F fix f:tl ---.t2 => fn Y:ti => e' : r,

84 CHAPTER 2. REFINEMENT TYPE INFERENCE

which is our conclusion.

ICase: any other inference rule The remaining inference rules do not reference or modify

the variable environment, so all remaining cases are trivial. 0

We already explicitly take the subtype relation into account in the WEAKEN-TYPE rule.
Our next lemma tells us that the subtype relation also describes the behavior of derivations
that do not end with WEAKEN-TYPE. This will allow us to eliminate uses of WEAKEN-
TYPE from the root of type derivations for values in Lemma 2.68 (Subtype Irrelevancy) on
page 88.

Lemma 2.67 (Piecewise Intersection) Iffor all i in 1 ... n we have

.-H-v : k

and
k, A... A k:!_<rA... Ar,.

and none of the ri's or ki's are themselves intersections of other types, then for all j in
I ... m we have

• H-v : rj.

Proof: By induction on the derivation of k, A ... A k,, <r1 A ... A r,.

Case: SELF-S Then our hypothesis is our conclusion.

Case: AND-ELIM-R-SUB Then n > m and for i in I ... m we must have ri = ki, 'o our

hypothesis immediately implies our conclusion.

Case: AND-ELIM-L-SUB I Then n > m and for i in I ... m we have ri = kn_,,,+i, so once

again our hypothesis immediately implies our conclusion.

Case: AND-INTRO-SUB Then there is an h such that the premises of AND-INTRO-SUB are

kl A ... A kn 5< rl A... A rh

and
k, A... A k, < rh+l A... A r,.

Using the induction hypothesis on each of these gives

for j in 1... hwe have. H-v: ri

and
forj in (h + 1)... mwe have. H-v: ri.

2.8. SIMPLE SOUNDNESS PROOF 85

Together these are our conclusion.

Case: TRANS-SUB I Then the premises of TRANS-SUB have the form

k, A ... A k,< p, A ... A pq

and

p, A ... Apq rT A ... A Tm.

Using our induction hypothesis on the first of these gives

for h in 1... qwe have •H-v: ph

and then using it on the second gives

for j in 1... m we have. *- v: rh

which is what we wanted to show.

Case: ARROWSUB Then n = m = I and k, has the form k- k' and r, has the form

r -+ r'. By Lemma 2.55 (Value Arrow Type) on page 74, v has the form fn x: t => e.
Thus the last inference of . H- v : k -+ k' is ABS-TYPE, where the premises of ABS-TYPE are

[x := k] - e : k'

and
k/ t.

Lemma 2.66 (Environment Modification) on page 81 and r < k gives

[a := r] F- e : k'

and WEAKEN-TYPE gives

[I := r] H- e: I'.

Then we can use ABS-TYPE to get

•f-n x:t => e:--r4r,

which is our conclusion.

[Case: ARROW-AND-ELIM-SUB Then n = 2 and m = 1. The form of ARROW-AND-ELIM-

SUB tell us k, A k2 has the form Pt --* P2 Ap, --' p3 and 1 has the form p, ---(p2 A p 3). Our
hypothesis tells us

H-v: Pt --* P2 (2.15)

and
• v Pt -- P3- (2.16)

86 CHAPTER 2. REFINEMENT TYPE INFERENCE

By Lemma 2.55 (Value Arrow Type) on page 74, v has the form fn z: t => e, so the last
inference of both (2.15) and (2.16) must be ABS-TYPE with the following premises:

[x= :p~l e p'2
[x:= p]- e p3

Using AND-INTRO-TYPE on the last two of these gives

f := P11 ý- e : P2 A p3,

and then ABS-TYPE gives

*Hfn z:t => e" P, --+(p2 A p3),

which is our conclusion.

Case: RCON-SUBI Then n = m = I and r, has the form rc and k, has the form kc. The

def
premise of RCON-SUB must be kc < re. By Fact 2.56 (Value Constructor Type) on page 74,
v has the form c V', so the last inference in our hypothesis must be CONSTR-TYPE. The
premises of CONSTR-TYPE must be

def ,

c : r kc

and

H :r .v'

Assumption 2.53 (Constructor Result Weaken) on page 67 gives

def ,

and then CONSTR-TYPE gives

• H- c v? rc

which is our conclusion.

Case: RCON-AND-ELIM-SUB IThen n = 2 and m = 1. The shape of RCON-AND-EL[M-

def
SUB tells us that k, A k2 has the form kc, A kc2, and rT is kc, A kc2. By Fact 2.56
(Value Constructor Type) on page 74, v has the form c v', so the last inference of the
type derivations in our hypothesis must be CONSTR-TYPE. The premises of the uses of
CONSTR-TYPE must be

def I

de r, -- kc2
• - V:" r'.

Vc : r2 '- c

2.8. SIMPLE SOUNDNESS PROOF 87

AND-INTRO-TYPE gives

1- •V rI A r2.

Two uses of Assumption 2.52 (Constructor Argument Strengthen) on page 67 give
def (r'A ^)

and
def

c :(r, A r2) kc2,

and then using Assumption 2.51 (Constructor And Introduction) on page 67 on these gives

def k def
c (r1'A r2)c.*cA kC2).-

Then CONSTR-TYPE gives
I def

- H- c vi : kc I A kc2 ,

which is our conclusion.

I ThCenm- = n= 1 and k, has the form k,, .. k and r has the form

.. r.' The premises of TUPLE-SUB are

for h in 1... q we have k' < r'.

By Fact 2.57 (Value Tuple Type) on page 74, v has the form (v ,...,vq). Thus the last
inference of. H- v k, must be TUPLE-TYPE and the premises of TUPLE-TYPE are

for h in 1... q we have • F- vh: k,.

Then WEAKEN-TYPE gives

for h in 1... q we have. t- vFh •r.

and TUPLE-TYPE gives
-H- (v i, .. , "q) ": r'1 * ' '- ,

which is our conclusion.

Case: TUPLE-AND-ELIM-SUB Then n =2 and m = By the shape of TUPLE-AND-ELIM-

SUB, k, A k2 must have the form

(k', • kI) A (k,' * ... • kq')

and r, is

By Fact 2.57 (Value Tuple Type) on page 74, v must have the form (vi, ... , Vq) and the
last inference of the type derivations in our hypothesis must be TUPLE-TYPE. The premises
of the uses of TUPLE-TYPE must be

for L in 1... q we have i-- Vh" :W

88 CHAPTER 2. REFINEMENT TYPE INFERENCE

and
for h in 1... q we have • F- vh: kh'.

Using AND-INTRO-TYPE on these gives

for h in 1... q we have - Vh • kh A k•,

and then TUPLE-TYPE gives

• H ÷(,,, ..., v.) : (kl' A /'').. ,(k,, A^ ,,'),

which is our conclusion. 0

The previous lemma told us that we can eliminate WEAKEN-TYPE from the root of
derivations of a type for a value in an empty environment. The next lemma makes the
simple observation that we can eliminate AND-INTRO-TYPE also, if the type is not an
intersection. SPLIT-TYPE cannot arise because the environment is empty, so we can always
make syntactic progress at the root of a derivation of a non-intersection type for a value.

Lemma 2.68 (Subtype Irrelevancy) If

S-v:r A... Ar,,

where none of the ri's are intersections then for all i in 1 ... n we have

-H-v : ri.

Proof: By induction on the derivation of our hypothesis.

Case: AND-INTRO-TYPE I Then there must be an h such that the premises of AND-INTRO-

TYPE are
"F-v:r, A...Arh

and
v v:rh+l A...Ar .

Applying the induction hypothesis to the first of these gives, for j in 1 ... h,

.÷-v : ri.

The induction hypothesis applied to the second of these gives the same for j in (h + 1) ... n,
so the two of these are our conclusion.

Case: WAK-TYPE For some r', the premises of WEAKEN-TYPE must be

. -v: r

2.8. SIMPLE SOUNDNESS PROOF 89

and
r' <_ ri A ... At,,.

Any r' must have the form r' A ... A r', where none of the r3 are intersections. By our
induction hypothesis, for j a I ... m we have

• H-v : rj~

Then Lemma 2.67 (Piecewise Intersection) on page 84 gives, for j in 1 ... n,

•H- v : ri,

which is our conclusion.

Case: SPL-TYP This inference rule requires a nonempty variable environment, which

we do not have. Thus this case cannot happen.

Case: VAR-TYPE

SCase: APPL-TYPE!

as:CE-TYPE

Case: ElT-TYPEj

Case: Fix-TYPE]

All of these rules only apply to non-values, and v is a value. Thus these cases cannot'
happen.

Case: ABS-TYPE

ease: CONSTR-TYPE

Case: TUPLE-TYPE

In these cases, n = I and the last inference of our hypothesis is neither AND-INTRO-TYPE
nor WEAKEN-TYPE. Thus our hypothesis is

SH-v : rl,

which is our conclusion. 0

Now we will show that the - relation behaves as one would intuitively expect: If a
value has a type that splits, then it has one of the fragments as a type. Formally, we have
the following theorem:

Theorem 2.69 (Splitting Value Types) If k × s and. F- v : k, then there is an r in s such
that. F- : r.

90 CHAPTER 2. REFINEMENT TYPE INFERENCE

Proof: By induction on the derivation of k - a.

I Case: RCON-SPLTI Then k has the form kc and all elements of s are refinement type

constructors. The only possible form for v is c v'. By Lemma 2.68 (Subtype Irrelevancy)
on page 88,

•H- c v': kc.

The last inference of this must be CONSTR-TYPE with the premises

cdf p -+,kc

and
. I-v p.

By Assumption 2.50 (Split Constructor Consistent) on page 66, there is an s' such that.,'threisac'e suh ha cdef p

s', and for all p' E p' there is a kc' E a such that c I kc'. Since p x s', our
induction hypothesis gives a p' E a' such that

- I- v' " p'.
def

Let kp' be an element of s such that c • c-- kc'. Then CONSTR-TYPE gives

I- c v1 : kc',

which is our conclusion.

Case:] Then there mustbean h and aqsuch that k has the form k .

kh-I * kh * kh+ *...*kq and kh X S' and

={kI *... * kh-i * p* kh+1*... *kq P E s'}.

By Lemma 2.68 (Subtype Irrelevancy) on page 88,

•H-v : kI * ... * kh-i * kh * kh+I*... *kq. (2.17)

By Fact 2.57 (Value Tuple Type) on page 74, v has the form
(VIP ... v V1h- 1 Vh, Vh+I, ... , Vq)

and the last inference of (2.17) must be TUPLE-TYPE. The premises of TUPLE-TYPE must be

for j in 1... q we have - F- vj : ki.

By induction hypothesis, there is a p is a' such that

.ý- Vh' p.

2.8. SIMPLE SOUNDNESS PROOF 91

Then TUPLE-TYPE gives

.ý- v : :k, . kh-1 p* kh+l *..*kq,

which is our conclusion.

I Case: TRT S-ISPLIT Then our hypothesis is k S1 U S2 where the premises of TRANS-

SPLIT are k x si U {p} and p - S2. By our induction hypothesis, there is a k' in as U {p}
such that

. -v V'.

If k' E s, this is our conclusion; otherwise k' = p and another use of our induction
hypothesis gives a " VE s2 such that

. I- v : k",

which is our conclusion.

Case: EQUIVPLIT he premises of EQUIV-SPLIT-L must be k p and p x s for some

p. WEAKEN-TYPE gives • I- v p, and then our induction hypothesis gives an r in s such
that

SI-vr,

which is our conclusion.

I Case: EQUIV-SPLrr-R I Then there is a p such that s = s' U {p} and the premises of EQUIV-

SPLIT-R are p = p' and k × s' U {p'} for some p'. By induction hypothesis, there is some r
in s' U {p'} such that

.I- v r.

If r is in s' then we are done; otherwise, r = p' and r p. Thus WEAKEN-TYPE gives

.- v p,

which is our conclusion.

jjCase: ELM-SPLIT I Then s = ,'U{p} where the premises of ELIM-SPLIT are k z s'U p',p1

and p' < p. By induction hypothesis, there is an r in s U {p',p} such that

. I- vr.

If r is in s U {p}, we are done. Otherwise r = p', and WEAKEN-TYPE gives

.- - v :p,

which is our conclusion.

92 CHAPTER 2. REFINEMENT TYPE INFERENCE

Case: SELF-SPLIT I Then - {k}, so we can choose r = k, so our hypothesis. H- v": k is

our conclusion. 0

We need to establish one more lemma, Lemma 2.70 (Value Substitution) on page 93.
This lemma says that substitution for expressions has a natural analogue that works for
refinement type derivations. We use this lemma to prove soundness for the semantics
rules that use substitution. These rules are APPL-SEM and FIX-SEM, so we only have to be
concerned with substituting values or fixed point expressions. It turns out that we cannot
do much better than this; in particular, we cannot substitute refinement type derivations for
arbitrary expressions into each other.

Since we prove this lemma constructively, the proof of the lemma can be read as an
algorithm for doing substitution for derivations. For example, if we perform the substitution

[(ffn y:bool => false ())/x](z (x (true 0)))
we get

(frn y:bool => false ()) ((:fn y:boot => false ()) (true 0)).
Lemma 2.70 (Value Substitution) on page 93 will tell us that, since

4-fn y:bool => false C): tt -- ff fff--f (2.18)

and
[x:= tt---f Aff -- tt] ý-x (x (true ()) :if, (2.19)

we can perform a corresponding substitution on the derivations to get

H ý- (ffn y:bool => false ()) ((rfn y:bool => false ()) (true ()))if. (2.20)

The strategy for doing this is simple: the constructed derivation has the same shape as the
derivation of (2.19), except wherever that derivation examines the type of x, the constructed
derivation incorporates a copy of the derivation of (2.18). For example, if we choose this
derivation for (2.18):

y : tt F- false 0 ff y : ff ý- false 0 : f"
fri y: bool => false () :tt--ff - F Hfn y: bool => false 0(: f--f.

4-[-fri Y:bool => f alse 0 : tti--+ff if --iff

and this derivation for (2.19) (using r as an abbreviation for tt -ff A ff - if):

x:r x'r r<tt-ff ...

x:rF-x'r r < ff --+ ff x : r :tt ---+ff x:r -true tt

x : rx if --*f az:rFx (true 0)):if
z : r F- (x (true 0)l)iff

2.8. SIMPLE SOUNDNESS PROOF 93

then (where we abbreviate fn y: bool => (false ()) as f and replace all copies of the
derivation of (2.18) with ... ".

.. .I-*f:r r _t-*-ff ...
•f'r r<ff--+ff .Ff:tt--ff .Ftrue i)tt

• -f:ff--+ff .F-f (true ()):ff
* I-f ((fn y:bool => (false 0))) (true ()) :ff

Unlike Fact 2.6 (ML Value Substitution) on page 29, we cannot allow substituting
arbitrary expressions in a derivation. For instance, suppose we have a function called
yesno that asks the user a question to which she can answer yes or no. Our environment
VR should assert that yesno has the refinement type -unit --+ Tbo•,. Assuming VR also has
appropriate types for or and not, we can use SPLIT-TYPE to infer

VR(x := T..,] I- or (not x, x): it

and we can infer
VR I- yesno 0: Tboo1

but doing the substitution to get

VR I- or (not (yesno 0)' yesno 0):iti (2.21)

would lead to unsoundness, since the user could cause the expression to evaluate to false
by saying "yes" to yesno () the first time and "no" the second time. Even if use the fact that'
the semantics says the language is completely functional and deterministic so the expression
yesno () must either always evaluate to true or always evaluate to false, the refinement
type system cannot infer (2.21). Incidentally, this example shows that refinement types do
not rely upon determinacy.

The problem is that the type of yesno () has the split {tt,if}, but yesno () has neither
of the types tt nor ff. Thus Lemma 2.70 (Value Substitution) on page 93 does not hold for
general expressions. Fortunately, it does hold for values and for fixed point expressions,
which is all we need.

Lemma 2.70 (Value Substitution) If VR F el : rl, where el is a value or a closed
expression of the form fix f:tj => fn X:t 2 => e", and VR[x r] H e2 : r2, then
VR H- [ei/x]e 2 : r2.

Proof: We prove this by induction on the derivation of VR[: r,] I- e2 r2.

ICase: AND-INTRO-TYPE Then r2 must have the form r3 A r4 where the premises of

AND-INTRO-TYPE are

VR[z := r,] H e2 :r3

94 CHAPTER 2. REFINEMENT TYPE INFERENCE

and
VR[x := rt] F- e2 r4.

Applying the induction hypothesis to each of these gives

VR - [ei/zxe 2 : r3

and
VR H [el/X]e 2 T4.

Using AND-INTRO-TYPE to combine these last two gives

VR H- [ei/xze 2 : r3 A r4

which is what we wanted to show.

Case: WEAKEN-TYPE I The premises of WEAKEN-TYPE must be

VR[:= l] I e2 :3 (2.22)

and
r3 S r2 (2.23)

Applying the induction hypothesis to (2.22) gives

VR - Iei/xle2 : r3

and applying WEAKEN-TYPE to this and (2.23) gives

VR H- [el/x]e2 : r2

which is the desired conclusion.

Case: SPL Either we are splitting x or some other variable.

SubCase: Splitting type of x Then the premises of SPLIT-TYPE must be

and
for all r' in s we have VR[z := r'] H- e2 : r2 (2.24)

SubSubCase: el is a closed fixed point By Theorem 2.54 (Tiferred Types Refine) on

page 68 and FIX-VALID, r, must refine an arrow type. Let r' be any element of s; by
Fact 2.35 (Splits of Arrows are Simple) on page 51, r' = ri. WEAKEN-TYPE gives

VR I- el : r'

2.8. S;MPLE SOUNDNESS PROOF 95

and then our induction hypothesis gives VR I- [e,/z]e 2 r 2, which is our conclusion.

SubSubCase: el is a value I Then Theorem 2.69 (Splitting Value Types) on page 89 tells

us that there is an r' in s such that- I- el : r'. By Fact 2.47 (Non-free Variables are Ignored)
on page 63, this implies VR I- el : r'. Our induction hypothesis applied to this and (2.24)
then gives VR H- [el/I]e2 : r 2, which is our conclusion.

SubCase: Not splitting type of z Then VR has the form VR'[, := k], where we are

splitting the type of y. SPLIT-TYPE gives

k~s

and
for k' in s we have VR'[y Wk', :=] I- e2 r2.

For each k' in s, our induction hypothesis gives

VR'y := Ic'] [e1/xe 2 : r2.

Then SPLIT-TYPE gives
VR'[y := k] [el/]e,2,

which is our conclusion.

ease: VAR-TYPE I We take subcases depending on whether e2 =

SubCase: e=z By VAR-TYPE, ri = r- and [ei/x]e2 = [el/]x =el. Thus the

conclusion is one of the hypotheses.

SubCase: e2 = y and y 0 z I Then [e1 /x]e 2 = e2. One of the hypotheses is

VR[z := rH] F- y : r,.

By Fact 2.47 (Non-free Variables are Ignored) on page 63, this implies

VR - y: r 2,

which is our conclusion.

ICase: ABS- Then e2 must have the form fn y t => e'. We take cases on whether

ISubCase: = Then [ei/x]e 2 = [el/xjfn x:t => e' = fn z:t => e' = e2 , so the

conclusion is one of the hypotheses.

96 CHAPTER 2. REFINEMENT TYPE INFERENCE

I SubCase: y $ z From ABS-TYPE we know that r2 must have the form r3 r 74. For some

t, the premises of ABS-TYPE must be

VR[z ri,,y r3] ý- e': r4 (2.25)

and
r3 - t (2.26)

Thus
[ei/zle2 = fn Y,:t => [el/x]e'.

Applying the induction hypothesis to (2.25) gives

VR[y := r3] H- [e,/]e': 7r4

and applying ABS-TYPE tO this and (2.26) gives

VR F- fn y:t => [ei/x]e' :r3 -+r4

which is our conclusion.

Case: APPL-TYPE I The conclusion of APPL-TYPE tells us that e2 has the form e3 e4 and

the premises of APPL-TYPE have the form

VR[z := rl] I- e3 : r3 --+r2

and
VR[x := rH] ý- e4 : r3.

Applying the induction hypothesis to each of these gives

VR- [et/zje 3 : r3 --+ r2

and
VR H- [ei/x]e 4 :r3.

Using APPL-TYPE on the last two gives

VR :- ([el/z]e3) ([eu/,]e4) :

and since ([ej/z]e 3) ([el/z]e4) = [el/x](e3 e4), this is our conclusion.

I Case: CONSTR-TYPE I Then e2 has the form c e' and r2 has the form rc. The premises of

CONSTR-TYPE must be
def

c : L-+ rc

and
VR[x := r] - e': r.

2.8. SIMPLE SOUNDNESS PROOF 97

The induction hypothesis gives
VR H- [e1/z]e': r

and then CONSTR-TYPE gives
VR I- c [e,/x]e': re.

Since c [e,/z]e' = [e1/z](c e'), this is our conclusion.

Case: CASE-TYPE Then e2 has theform case e' of c, => e, ... c=> e nd:t

and the premises of CASE-TYPE are

VR[z := ri - eo: rc,

r2 E- t,

for all i in 1 ... n and all k, whenever

def kc-.rcwehave (2.27)
VR[z := r] e! r2,

and
rtom(VR[z ri]) F -2:: t. (2.28)

Our induction hypothesis gives

VR F- [el/z]eo : rc. (2.29)

Suppose def

ci" k'-.rc. (2.30).

Then by (2.27), we have
VR[z := ri H e'• k--r 2 ,

and our induction hypothesis gives

VR H- [e,/zje!: k--r 2. (2.31)

Theorem 2.54 (Inferred Types Refine) on page 68 and VR H el r ,i gives

rtom(VR) F- el :: rtom(r1).

Fact 2.6 (ML Value Substitution) on page 29 applied to this and (2.28) gives

rtom(VR) H- [e1/z]e 2 :: t (2.32)

Now we can use CASE-TYPE on (2.29), r2 C t, (2.30) implies (2.31), and (2.32) to get

VR F- (case [ei/]leo' of c, => [el/x]eI. cn => [el/z]e' end:t :)r2

Since

case [ell:]je of c, => [e1/]xze I ... I c => [e1 i/xe" end:t =
(ei/x](case ej, of c, => e'I ... I = > e' end:t),

98 CHAPTER 2. REFINEMENT TYPE INFERENCE

this is our conclusion.

Case: TUPLE Then e2 has the form (ei, ...) e,)and r 2 has the formr *... r

and the premises of TUPLE-TYPE must be

for i in 1... n we have VR[x := ri] F- e, : r,.

By induction hypothesis,

fori in I...n we have VR l- [ej/zje! :r:.

Then TUPLE-TYPE gives

VR H- ([el/x]e', ... , [el/x]e') :, *... *,r,.

Since ([ei/]xze, ... , [eI•1 xe') = [eilx](e', ... , e•) and r2 = r* ... * r', this is our

conclusion.

Case: ELT- Then e2 has the form elt-m-n e' and the premise of ELT-TYPE must be

VR[z := r] F- e' : '

where r2 = r'4. Our induction hypothesis gives

VR ý- [el/x~e' : r, .. rn'

and ELT-TYPE then gives
VR I- elt-m-n [el/l]e': r,.

Since r 2 = r'm and elt-m-n [ei/:]e' = [el/zxeltrrm.n e', this is our conclusion.

Case: Fix-TYPE Thus e2 has the form f ix f:tt --+t2 => fn y:t1 => e'. Ifx = y or

= f, then our conclusion is trivial because [e1/X]e 2 = e2. Otherwise, the premises of
FIX-TYPE are

r 2 E tI ---+ t2 (2.33)

and
VR[f := r 2]I - fn x:t1 => e' : r2.

Our induction hypothesis gives

VR[f :r2 - [elZl:fU y:t => e': r2.

Since x :A y, this is
VR[f:= r 2 l fn y:tj => [el/:]e': r 2.

Applying FIX-TYPE to this and (2.33) gives

VR '- fix f:tl --+t2 => fn Y:tl => [ei/xIe': r 2.

2.8. SIMPLE SOUNDNESS PROOF 99

Since z 0 y and z 0 f, this is our conclusion. 0

Now that we have established all of the lemmas we need for the soundness proof, we
are in a position to show that this version of the system is sound. So we come to the
question: What does it mean for the refinement type system to be sound? It turns out
that until we introduce explicit type declarations or references, all expressions that have an
ML type will also have a refinement type. Thus the notion of ML type soundness used in
Fact 2.3 (ML Type Soundness) on page 27 is trivially true for refinement types, so it is not
interesting here. The most interesting thing we can claim at this point is that if we evaluate
an expression, the value has the same type as the expression:

Theorem 2.71 (Refinement Type Soundness) If e =* v and. I- e : r, then • H- v : r.

We could prove this by induction on the derivation of e =ý v. At each step in the proof,
there would be three inference rules that could have been used to derive • F- e : r. They
are WEAKEN-TYPE, AND-INTRO-TYPE, and one inference rule that deals specifically with the
outermost syntax of e. (SPLIT-TYPE cannot happen here because it requires a nonempty
variable environment.) For example, if e has the form el e2, the last inference rule in
the derivation of e => v must be APPL-SEM and the possible inference rules at the root
of • I- el e2 : r are WEAKEN-TYPE, AND-INTRO-TYPE, and APPL-TYPE. The step of the
proof dealing with APPL-SEM would have to have another induction on the derivation of
SI-- el e 2 : r to strip off the outermost uses of WEAKEN-TYPE and AND-INTRO-TYPE, before

we could use the outer induction to make more progress on the evaluation trace. Since each
step of the proof would have to have this nested induction, the proof would be too large to
manage.

It would not work to prove the theorem by induction on the type derivation. The
substitution in the APPL-SEM rule can make the expression larger, and therefore it can make
the type derivation larger. Thus induction on the type derivation is invalid.

There are two kinds of ways to make progress in the above procedure: We can use
AND-INTRO-TYPE or WEAKEN-TYPE to make the type derivation smaller while leaving the
evaluation derivation constant, or we can use any of the semantics rules to make the
evaluation derivation smaller while possibly making the type derivation larger. All of
these possibilities make the ordered pair (evaluation trace, type derivation) lexicograph-
ically smaller. Since any decreasing chain in the lexicographic ordering on the pair is
finite, proof by induction on the pair is a valid induction principle, and this is the induction
principle we shall use.

The base cases of this induction are the minimal elements in the lexicographic ordering.
These consist of a use of a semantics rule that requires no premise paired with a use of a
refinement type rule other than WEAKEN-TYPE, AND-INTRO-TYPE, or SPLIT-TYPE. It turns
out that there are three base cases:

(ABS-SEM, ABS-TYPE)

(TUPLE-SEM, TUPLE-TYPE) for a tuple of zero elements
(FIX-SEM, FIX-TYPE)

100 CHAPTER 2. REFINEMENT TYPE INFERENCE

Proof: The proof is by induction on the pair (derivation of e => v, derivation of. H- e : r).
We shall label each case with the with an indication of the pairs to which it applies. The
label will either be "any" if the case applies to pairs with any value for that component,
or the name of an inference rule if the case applies only to pairs where that component of
the pair has that inference rule at the root of the derivation. The most interesting case is
(APPL-SEM, APPL-TYPE), since that case uses the machinery developed earlier in this chapter.
There is an example after this proof on page 103.

I Case: (any, AND-INTRO-TYPE) I Then r has the form r, A r2. The premises of AND-INTRO-

TYPE must be • F- e : ri and • F- e : r2. Applying the induction hypotheses to each of these
gives - I- v : r, and- I- v : r 2. Combining these with AND-INTRO-TYPE gives

• H- v: r A r 2

which is our conclusion.

Case: (any, WEAKEN-TYPE) [he premises of WEAKEN-TYPE must be

Se: r (2.34)

and
r < r. (2.35)

Applying the induction hypothesis to (2.34) gives

Applying WEAKEN-TYPE tO this and (2.35) gives

• I- v :r,

which is our conclusion.

Case: (any, SPLIT-TYPE) This case is unreachable because SPLIT-TYPE assumes the envi-

ronment is nonempty, but the hypothesis of this theorem assumes it is empty.

Case: (ABS-SEM, ABS-TYPE) By ABS-SEM, V = e. Thus our hypothesis . ý- e : r is our

conclusion.

ICase: (APPL-SEM, APPL-TYPE) I Then e must have the form el e2 and the premises of

APPL-SEM must be

el =:> fn z: t => e 3 (2.36)

e2 =• v' (2.37)

[v'/xle3 => v (2.38)

2.8. SIMPLE SOUNDNESS PROOF 101

and the premises of APPL-TYPE must be

-e : r'--+ r (2.39)

F- e2 : r'. (2.40)

Applying the induction hypothesis to (2.36) and (2.39) gives

• I- fn z:t -> e3 :rI--+ r

and Lemma 2.68 (Subtype Irrelevancy) on page 88 tells us

• H-f n z:t => e3 :-r -r.

The last inference of this must be ABS-TYPE with the premise

x : r' F e3 : r. (2.41)

Applying the induction hypothesis to (2.37) and (2.40) gives

, F- V' I :r

and using Lemma 2.70 (Value Substitution) on page 93 to substitute this into (2.41) gives

- H [z/I:1e3 :r.

Applying the induction hypothesis to this and (2.38) gives

S- : r

which is our conclusion.

ICase: (CONSTR-SEM, CONSTR-TYPE) 1Then e must have the form c e' and r must have the

form rc and v must have the form c v' where the premise of CONSTR-SEM is e' = v' and
the premises of CONSTR-TYPE are

def
c :k rc~

and
. He':k.

Our induction hypothesis gives
F- v1 k

and then CONSTR-TYPE gives

SC V ": rc,

which is our conclusion.

Case: (CASE-SEM, CASE-TYPE) The e must have the form

case e0 of c, => el I ... I c,, => e,, end:u.

102 CHAPTER 2. REFINEMENT TYPE INFERENCE

The premises of CASE-SEM must be

for some i we have eo =• c4 vi

and
ei Vi =* v

and the premises of CASE-TYPE must include

• I- eo: rc,

r~ F u,

and
for all i in 1... n and all k, if

dlef

theni k c rc (2.42)

.F- ei : k--+ r

Using the induction hypothesis on eo gives

• F- ci vi: rc.

Lemma 2.68 (Subtype Irrelevancy) on page 88 then gives

• H-cj vi : rc.

The last inference of this must be CONSTR-TYPE with the premises

def
C• k-rc

and
"H vi: .

By (2.42), we have
* - ei k --+r.

Using APPL-TYPE on these gives - I- ei vi : r. Using the induction hypothesis on this gives
F- v : r, which is our conclusion.

Case: (TUPLE-SEM,TUPLE-TYPE) Then e has the form (el, ... , e,,) and r has the form

r ... * r,, and v has the form (vi, ... , v,,). The premises of TUPLE-SEM are

for i E i ... n we have ej =ý vi

and the premises of TUPLE-TYPE are

for i E 1... n we have. F- ei :ri.

2.8. SIMPLE SOUNDNESS PROOF 103

The induction hypothesis gives

fori E 1... n we have - vi: ri,

and then TUPLE-TYPE gives

• t P- (, :..., r. r ,

which is our conclusion.

ICase: (ELT-SEM, ELT-TYPE) Then e must have the form elt--m-n e'. The premise of

ELT-SEM must be

where v = v,,, and the premise of ELT-TYPE must be

- ý- e I: r, * ... * rn

where r = r,,,. Our induction hypothesis gives

- ý- (vi, ... , v,) : r * r,.

By Lemma 2.68 (Subtype Irrelevancy) on page 88, this implies

S- (vi, , v,) : rm *... * r,,

The last inference of this must be TUPLE-TYPE, and one of the premises must be

- t- m ": r.,

which is our conclusion.

Case: (FIX-SEM, FIX-TYPE) I Thee has the form fix f:t' => fn z:t" => e'. By FIX-

TYPE, t' has the form t1 -- t2 and t" = t1 . The premises of FIX-TYPE must be r F- t1 -- t2
and

[f := r] ý- -fn x:tj =f> e' : r.

Using Lemma 2.70 (Value Substitution) on page 93 on this and

.He:r

gives
H [e/f](fn z:t1 => e') : r (2.43)

By FIX-sEM, v is [e/f](in z : t1 => e'), so (2.43) is ouri conclusion. 0

The role of SPLIT-TYPE in these theorems is interesting, since it can appear at a non-
root position in the type derivation in the hypothesis of Theorem 2.71 (Refinement Type
Soundness) on page 99, but none of the cases in that proof deal with that rule. The

104 CHAPTER 2. REFINEMENT TYPE INFERENCE

resolution to this paradox is that the proof of Lemma 2.70 (Value Substitution) on page 93
never constructs a derivation with SPLIT-TYPE at the root.

This can be most easily understood by walking through the reasoning in the APPL-SEM

case of Theorem 2.71 (Refinement Type Soundness) on page 99 for a carefully chosen
example. For the purposes of this example, let or stand for

fn pair: bool * bool =>
case #1,2 pair of

true => fn -: tunit => true 0
I false => fn _:tunit => #2,2 pair

end: bool

and not stand for

fn b: bool =>
case b of

true => fn _:tunit => false 0
I false => fn -: tunit => true ()

end: bool.

We shall choose e = (fn x: bool => or (not x, x)) (true ()) and r = tt, so we need
v = true (). We will abbreviate or (not x, x) as e' and true () as tr when necessary
to get the following derivations to fit on a page. The derivation of e =ý' v is

0 ...
fn x:bool => e'=ý-fn x:bool => e' tr= tr or (not tr, tr)=ý- tr

(fan x: bool => e') tr tr

and a derivation of. t- e : r is

z :ff -e':tt : tt F- e' : it Tb* Ii{tt,ff} I_...

z :T b**1 -e': tt F- true 0:it t < Tb.i

f-In x:bool => e' :T ,i--tt • t- true):Ti,oi
I- (fn x: bool => e') (true 0t): .

Notice the use of SPLIT-TYPE in this; it is the rule with the premise T*b . {tt,ff}.
This example would be less than ideal if we had no size constraint because it is also
possible to derive our conclusion without ever using SPLIT-TYPE; we could sir. ply start
with z : it F- e' : it, use ABS-TYPE tO infer - F- fn x: bool => e' : it --- it, and then use
APPL-TYPE and - F- true) : it to infer our conclusion. For a more serious but larger
example, we could replace the true () by an expression with the principal type T&..1 , thus
requiring the use of SPLIT-TYPE to reach the strongest conclusion.

2.9. FINITE REFINEMENTS, PRINCIPALITY 105

However, let us instead show how the theorem manipulates the example as it stands.
First the theorem trivially applies the induction hypothesis to

f n x:bool => (or (not x, x)) =ý' f n x:bool => (or (not x, x))

and
[-fn X:bool => (or (not x, x)): Tb.. t

to get • I- fn x: bool => (or (not x, x)): Ti,o -tt.

Then it uses Lemma 2.68 (Subtype Irrelevancy) on page 88 on this to get

SH-fn x:bool => (or (not x, x)): T-b**, -* it,

Since the last inference of this must be APPL-TYPE, we must have

[w := Tb..] - (or (not x, x)): tt. (2.44)

Another trivial use of the induction hypothesis uses true () =• true () and - true ()
Tbie to infer

• I- true 0 4: T. 1. (2.45)

Then we eliminate the use of SPLIT-TYPE by substituting (2.45) into (2.44) to get

- F-or (not (true ()), (true))): it.

Using the induction hypothesis on this and or (not (true ()), (true 0))) => true ()
yields. H true () : tt, which is our conclusion.

This concludes the soundness proof of the monomorphic version of refinement types.
This proof has roughly the same shape as the proofs of soundness for polymorphic refine-
ment types and refinement types with declarations and references.

2.9 Finite Refinements, Principality

Now we shall give several lemmas leading up to the proof that, roughly speaking, each ML
type has only finitely many distinct refinements.

This proof below is slightly more complex than necessary. A simpler proof would show
by induction on the ML type that each ML type has finitely many distinct refinements. In
this proof, the interesting induction case would happen when the ML type has the form
t --- u; if t has n distinct refinements and u has m distinct refinements, then there are at most
n * m distinct refinements of the form r --+ k where r E- t and k C- u. Every refinement
of t ---+ u is equivalent to an intersection of some subset of these, so there are at most 2"*"

refinements of t --+ u.

106 CHAPTER 2. REFINEMENT TYPE INFERENCE

The problem with this simple approach is that it overestimates the numberof refinements
of many ML types. For example, the refinement types Tb,6 -+ it A it --+ it and Tb.,i --+ tt
are equivalent, but they are both counted in the enumeration implied in the argument above.
The implementation sometimes has to enumerate the refinements of an ML type, so it is
worthwhile to explore a more conservative enumeration in the finiteness proof.

The strategy behind the proof below is to interpret a refinement of t -- u as a monotone
function from equivalence classes of t to equivalence classes of u. Two refinement types
are equivalent if and only if their interpretations are equal, and we can enumerate without
repetition all refinements of a functional ML type by enumerating all monotone functions
with an appropriate domain and codomain, as we shall describe below.

For any r refining a functional ML type, we will define the interpretation I(r) of r in
terms of a simpler function i(r) that maps refinement types to refinement types instead of
equivalence classes to equivalence classes.

There is a natural way to read the interpretation i(r): If f has the type r and x has
the type k, then the best type we can infer for f z is i(r)(k). Our plan is to set up some
machinery that allows us to define i in terms of the subtype relation, and then to show that
two types k and k' are equivalent if and only if i(k) and i(I') are suitably similar. Then we
will define I to be i lifted in a natural way to operate on equivalence classes of refinement
types. It will turn out that any types k and k' are equivalent if and only if I(k) and I(k')
are equal. Then we finish the proof by showing that there are only finitely many distinct
values for I(k).

To make the proof more regular, we will use the symbol ns as the result of i(r)(k)
when the corresponding expression would have no type. For example, i(t -- ff)(ff) = ns.
Adding ns requires us to introduce notation for metavariables that can be either a refinement
type or ns. We will write these metavariables as r?, k? or p? and call the values of these
metavariables generalized refinement types. Comparing them is straightforward:

Definition 2.72 We define the binary relation -< on generalized refinement types by the
following cases:

r -k ifandonlyifrr < k
r _ ns always

ns -< k never
ns _< ns.

We can base a natural notion of equivalence on -:

Definition 2.73 We say r? ; k? if r? -< k? and k? - r?.

We could get the same effect by defining r? ,I k? to mean that either r? = k? or r? = k? =

ns.

We can also define intersection on generalized refinement types:

2.9. FINITE REFINEMENTS, PRINCIPALITY 107

Definition 2.74 We define the binary operation A mapping pairs of generalized refinement
types to generalized refinement types by the equations:

r Ak = rA k
r A ns = ns A r = r

ns A ns = ns.

The A operation inherits commutativity, associativity, and idempotence from A.

The big advantage of A over A is that A has an identity, specifically ns. Thus we can
define A to work on a finite set of refinement types even if the set is empty:

Definition 2.75 If s is a finite set of refinement types, then As is the following generalized
refinement type:

If a is empty, then As = ns.

Ifs = {r,...,r,},then As = r, A ... Ar,.

We shall continue to use s as a finite set of refinement types for the rest of this section.

This definition is slightly ambiguous, since the order of the elements in a set is not
determined and A is only commutative if we ignore the difference between equivalent
refinement types that are not equal. For example, A{tt,ff} could be it A ff as well as
ff A it. This ambiguity makes no difference to the reasoning below, and we shall ignore it.

When all refinement types in s refine the same ML type t, the generalized refinement
type As either refines t or is ns. We extend the notion of refinement to include sets of
refinement types and generalized refinement types, so we can simply say that if s [: t, then
As C t. In this extension of the meaning of F-, both the empty set {} and ns both refine all
ML types.

The A operator has several properties that follow from analogous properties of A,
commutativity and associativity of A, and trivial induction arguments:

Fact 2.76 (A Elim Sub) If s D s' and s F- t then

As -< As'.

Fact 2.77 (A Intro Sub) If s1, S2, and 83 all refine t and

ASI - As 2

and
As 1 -A As 3

then
As 1 -_ A(s 2 U S3).

108 CHAPTER 2. REFINEMENT TYPE INFERENCE

Fact 2.78 (Transitivity of -<) If r? -< k? and k? -< p? then r? -_ p?.

Now we have enough machinery to define i(r) and prove some simple properties of it:

Definition 2.79 Suppose k? F t -+ t' and r C t. If k? has the form ki --+ kl' A... A k,, k,,
we define

i(k?)(r) = A{k• I j is between 1 and n and r < ki}.

Otherwise k? = ns an4 we define i(k?)(r) = ns.

For example, if
k = tt , T boo A Tboo, -+ ff A ff - tt

then
i(k)(tt) = T6b** A ff i- ff
i(k)(ff) =ff A tt = -Lbo,,

ST = ff
i(k)(-L-b,) = Tb.0 A ff A tt --- b**l

In this example, as r gets larger, i(k)(r) also gets larger. This property is true in general.

Lemma 2.80 (i Monotone in Second Argument) If r E t and k? C t -- t' and

r <r

then i~k?)(,-) : i~k?)(,-').

Proof: If k? = ns, then our result follows directly from the definitions of i and -<. Otherwise

k? has the form k, -- k', A... A k,, - k,. As in the definition of i, let

s = {k' I between 1 and n and r < ki}

and
a' = {k1 I j between 1 and n and r' < kj}.

Since r < r? and < is transitive, we have s D s'. Since k E t t t', all of the k,'s must
refine t', so S r" t'. Thus we can use Fact 2.76 (A Elim Sub) on page 107 to get

As -< As'.

According to the definition of i, this is our conclusion. 0

It is also true that as k? gets larger, i(k?)(r) gets larger, but the proof is somewhat more
involved:

2.9. FINITE REFINEMENTS, PRINCIPALITY 109

Lemma 2.81 (i Monotone in First Argument) If r E- t and k? C t --- t' and

k? P<

then i~k?)(,.) _i(p?)(r).

Proof: By induction on the derivation of k? • p?.

Case: p? = ns Then i(p?)(r) = ns, and our result follows from the definition of -<.

Case: k? = ns IThen p? = us, so the previous case holds.

Case: S - Trivial.

Case: AND-ELIM-R-SUB I Since k? E t -- t' we know that k? has the form ki. -- k' A ... A

kIq -q- . The shape of AND-ELIM-R-SUB tells us there is some n less than q such that

p? = k --+ k'l A..- A k, --+ kn.

Let
a = {k• I j between 1 and q and r <- k,}

and
S' = {k• I j between I and n and r < k}..

Since n < q we have a D a'. Thus Fact 2.76 (A Elim Sub) on page 107 gives

AL -< A'L,

and by definition of i, this is our conclusion.

Case: AND-ELIM-L-SUB Similar.

Case: AND-INTRO-SUB Then p? has the form p, A p2, where the premises of AND-INTRO-

SUB are

k? <P 1

and
k? <P2.

Applying our induction hypothesis to these gives

i(k?)(,.) : i~w)(,.)

110 CHAPTER 2. REFINEMENT TYPE INFERENCE

and
i(k?)(r) -< i(p2)(r).

Since p? = p, A p2, the definition of i tells us that i(p?)(r) = i(p1)(r) A i(p2)(r). Thus
Fact 2.77 (A Intro Sub) on page 107 gives i(k?)(r) -< i(p?)(r), which is our conclusion.

Case: TRANS-SUB I Then the premises of TRANS-SUB must be

k? <r'

and
r' < p?.

Applying the induction hypotheses to these gives

i~k?)(,.) i(.)(.

and
i(r')(r) :: i(p?)(r).

Using Fact 2.78 (Transitivity of -_) on page 108 on these gives our conclusion.

[ICase: ARROW-SUB] Then k? has the form k, -- k' and p? has the form p, --+ p and the

premises of ARROW-SUB are

Pi < ki

and
k _< A.

If i(p?)(r) = ns then our conclusion follows immediately, so instead suppose that i(p?)(r)
is a refinement type. From the definition of i we must have r < P, and i(p?)(r) = pl.
TRANS-SUB and p, < k1 give r < kh, and the definition of i gives i(k?)(r) = k'. Thus
k < p, is our conclusion.

Case: ARROW-AND- ELM-SUB Then k? must have the form k, --+ k' Ak1 -. 1 and p? must

have the form k, --+(k' A k). If i(p?)(r) = ns then the definition of 5 gives our conclusion
immediately. Otherwise the definition of i gives r < k, and

i(k?)(r) = k'^ A14

and
i(p?)(r) = k', A 4.

Before we use SELF-SUB to get our result we must find a u' such that kW A k C- u'. The
premise of ARROW-AND-ELM-SUB is

k --+(k'(A)t.

2.9. FINITE REFINEMENTS, PRINCIPALITY 111

This can only be derived by using ARROW-REF, so t must have the form u -u i' and the
premises of ARROW-REF must be

ki E- U

and
k' A EU'.

The latter and SELF-SUB give our conclusion.

Case: RCON-SUB, RCON-AND-ELIM-SUB, TUPLE-SUB, TUPLE-AND-ELIM-SUB

None of these cases can happen because we assume that k? and p? refine a functional ML
type. 0

This has a simple corollary:

Corollary 2.82 (Bound on Argument to i Gives Bound on i)
Ifk < r--+-p then i(k)(r) < p.

Proof: The definition of i gives i(r --+ p)(r) = p. By Lemma 2.81 (i Monotone in First
Argument) on page 109, i(k)(r) < i(r - p)(r), and rewriting i(r -+ p)(r) to p gives our
result. 0

We will call r ,... , r,, the components of the refinement type r, A ... A r,,.

From the definition of i, it is clear that if r --* r' is one of the components of k, then
i(k)(r) < r'. The converse of this is false; for example, if k = it --+ ff A it -- tit and r = it,.

then i(k)(r) = ff A it but it ---(ff A it) is not one of the components of k. However, we
do have k < tt ---(ff A it), and this sort of assertion is true in general.

Lemma 2.83 (i Gives an Upper Bound) If k? : t -+ t' and r C- t1 and

then
k? < r -- r'.

Proof: We know that k? 0 ns, because if k? were ns then i(k?)(r) would be ns and our

hypothesis would be false.

Since k? C- t -- t', we know that k? has the form k --+ k A... A kn --+ k'. Let

S = {j between I and n I r < k,}.

We know that i(k?)(r) is not ns because ns --< r' cannot be true, so S is not empty. Let

k'= Ak,-+k IjE S}.

112 CHAPTER 2. REFINEMENT TYPE INFERENCE

Since all components of k' appear in V?, we have

k? < k'.

Let
V" = A{r-, k liE S}.

Since each component of k' is a subtype of the corresponding component of k", we have

le' < k".

Let
k"'=r-.A{k ij S}.

Repeated use of ARROW-AND-ELIM-SUB gives

k" < k".

Since A{k• I j E S} = i(k?)(r) < r' is a hypothesis of this lemma, RCON-SUB gives

W"' < r -'.

Repeated use of TRANS-SUB gives k? < r r', which is our conclusion. C3

If we have two functions f, and f2 with common domain and codomain, and we can
compare elements in the codomain, then we can naturally compare f, and f2 pointwise.
That is, f, is greater than f2 if for all z in their common domain, f, (z) is greater than f2(x).

It turns out that this ordering when used on i(k) is the same as the subtype ordering on k.

Lemma 2.84 (Ordering on i) If k? and p? refine t --+ t' and for all r refining t we have

i(k?)(r) < i(p?)(r)

then
k? -< p?.

Proof: If k? = ns, then for all r refining t we have i(k?)(r) = ns, so i(p?)(r) = ns.
This can only be the case if p? = ns, so by definition of -< we have k? P p?, which is our
conclusion.

If p? = ns then we immediately get k? -< p? by definition of -.

Otherwise, since p? C- t -- t', we know that p? has the form p, --+ pi, A... A p,,, -+ p,,.
By the definition of i, for all j between I and m we have

i(p?)(pj) <p.

By our hypothesis
k)P,) <i(p?)(P_).

2.9. FINITE REFINEAMENn, PRINCIPALUTY 113

TRANS-SUB gives

Lemma 2.83 (i Gives an Upper Bound) on page 111 gives

k? <_p -+p,.

Since this is true for all j, we can repeatedly use AND-INTRO-SUB to get

k? < p?,

which is our conclusion. 0

Now we can show that i preserves all the information about its first argument. This is
our main result about i; the remainder of the argument after the following lemma is little
more than repackaging i to get our interpretation function I, and translating the following
lemma to a statement about I.

Lemma 2.85 (i Preserves Information) Suppose r? and r?' both refine t -- t'. Then

for all k and k' refining t we have k- k' implies i(r?)(k) ,: i(r?')(W') (2.46)

if and only if
r? r?'. (2.47)

Proof of (2.46) implies (2.47): From (2.46) we get

for all k and k' refining t we have k = k' implies i(r?)(k) -< i(r?')(k')

Since k f- t, we can choose k' = k and we have k - k. Thus

for all k refining t we have i(r?)(k) -<_ i(r?')(k)

and Lemma 2.84 (Ordering on i) on page 112 gives

r? < r?'.

A symmetric argument gives
r?' < r?,

and together these imply our conclusion.

Proof of (2.47) implies (2.46): From(we get

r? < r?',

and we can then use Lemma 2.81 (i Monotone in First Argument) on page 109 to get

ir)k -<

114 CHAPTER 2. REFINEMENT TYPE INFERENCE

The premise of the implication in (2.46) gives

k < k',

and Lemma 2.80 (i Monotone in Second Argument) on page 108 gives
i(r?')(k) -

Fact 2.78 (Transitivity of ý) on page 108 gives
i(r?)(k) _-<r'(k)

A symmetric argument gives
i(r?')(k') _-< rk)

and together these are our conclusion. I

Now we will repackage i as a function mapping equivalence classes to equivalence
classes. First we must define some notation for manipulating equivalence classes:

Definition 2.86 If r? is a generalized refinement type, then the equivalence class C(r?)
containing r? is the set {r?' I r?' ; 0?}.

Definition 2.87 If t is an ML type, then EC(t) is the set of equivalence classes of generalized
refinements oft, or in symbols, {C(r?) I r? E- t}.

We shall use c as a metavariable standing for the equivalence class of a refinement type,
and c? as a metavariable standing for the equivalence class of a generalized refinement type.

Now we have the machinery to define the interpretation of refinement types as a mapping
from equivalence classes to equivalence classes:

Definition 2.88 If c?' E EC(t') and c E EC(t) and r? C t -* t', then we write

0'-= I(r?)(c)

if there is a k E c such that c?' = C(i(r?)(k)).

By Lemma 2.80 (i Monotone in Second Argument) on page 108, we know that i(r?)
is a function that maps equivalent refinement types to equivalent refinement types. Thus
I(r?) is a function. We can also show that I maps equivalent refinement types to equal
functions:

Lemma 2.89 (I Preserves Equivalence) Suppose k? and p? refine t - t'. Then

I(k?) = I(p?)

if and only if
k? p?.

2.9. FINITE REFINEMENTS, PRINCIPAUTY 115

Proof: By definition of equality for functions we have I(k?) = I(p?) if and only if for
all c in EC(t) we have I(k?)(c) = I(p?)(c). By definition of I, this is true if and only if
whenever r _= r' we have i(k?)(r) ,t i(p?)(r'). By Lemma 2.85 (i Preserves Information)
on page 113, this is equivalent to k? - p?. 0

Theorem 2.90 (Finite Refinements) For each ML type u we have EC(u) is finite.

Proof: By induction on u.

I Case: u=uc By Assumption 2.8 (Finite Predefined Refinements) on page 31, uc has only

finitely many refinements, so it can have only finitely many equivalence classes.

Case: u ... =*t Any refinement of u must have the form

(ri* ... * A... A (r'... •

By Fact 2.23 (Tuplesimp Sound) on page 41, this is equivalent to a refinement type of the
form k, * ... * k,1. By TUPLE-SUB, two refinements of u of this form are equivalent if and
only if they are equivalent componentwise. Since our induction hypothesis tells us that
there are only finitely many equivalence classes for each component, there are only finitely
many equivalence classes of tuples without a toplevel A. Since each refinement of u is
equivalent to one without a toplevel A, there are only finitely many equivalence classes of
refinements of u.

Case: t By our induction hypothesis, EC(u) and EC(u') are both finite. By

Lemma 2.89 (I Preserves Equivalence) on page 114, for all r refining t we have C(r) is
uniquely determined by I(r). Since I(r) maps elements of EC(u) to elements of EC(u'),
there are only finitely many distinct values for I(r), and therefore only finitely many values
of C(r) and only finitely many values in EC(t). 0

Finite Refinements straightforwardly gives us principal refinement types. Later on we
prove that there is an algorithm that computes principal refinement types; this proof can
also be interpreted as a proof that principal types exist, but it has the disadvantage of being
much more complex than the simple proof we give here.

Corollary 2.91 (Principal Refinement Types) If

VR e: r

then there is a k such that
VR e: k

and for all p we have
VR F- e : p implies k < p.

116 CHAPTER 2. REFINEMENT TYPE INFERENCE

We prove this by choosing k to be the intersection of all refinement types such that
VR F- e : k, with suitable perturbations to ensure that this intersection is finite.

Proof: By Theorem 2.54 (Inferred Types Refine) on page 68, there is a t such that r E- t
and

rtom(VR) ý- e :: t. (2.48)
Let

sc = {c E EC(t) I for some r in c we have VR F- e" r}.

and for c in sc let k. be an arbitrary but fixed element of c. By Theorem 2.90 (Finite
Refinements) on page 115, EC(t) is finite. Thus sc is finite and we can choose

k = A{kc I c E ac}

without creating an infinite syntactic object. Now we have to prove that k has the two
properties required by our conclusions.

Proof of VR F- e: k: By construction of sc, for each k. there is a k, such that k =- k', and

VR F- e: K1c.

WEAKEN-TYPE immediately gives VR F- e : k,, and repeated use of AND-INTRO-TYPE gives

VR F- e k.

Proof of VR F- e : p implies k < p: Suppose VR F- e : p. By Theorem 2.54 (Inferred
Types Refine) on page 68, there is a u such that p E[u and rtom(VR) F- e :: u. By Lemma
2.4 (Unique Inferred ML Types) on page 27, we must have u = t. Thus, by construction
of sc, p must be in some equivalence class c in sc. Since c is an equivalence class, k, - p.
By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB, we have

k_<p.

Since this argument is valid whenever VR F- e : p, we have

VR F- e : p implies k < p,

which is our second conclusion. C

2.10 Decidability

This section will describe an algorithm for finding the principal refinement type of an
expression. This requires being able to list one representative of each equivalence class
of refinements of an ML type and being able to decide whether one refinement type is a
subtype of another. These last two algorithms are mutually recursive, so we will describe
them together in Subsection 2.10.1. Then we will give an algorithm for finding the principal
split of a refinement type in Subsection 2.10.2. A notion of least upper bound for refinement
types is defined in Subsection 2.10.3, then we use all of these in an algorithm for deciding
refinement types in Subsection 2.10.4.

2.10. DECIDABIUTY 117

2.10.1 Deciding Subtyping and Enumerating Refinements

Now we will describe procedures for determining whether one refinement type is a subtype
of another and for enumerating the refinements of an ML type. The strategies for doing both
of these are very straightforward except when we are dealing with functional ML types.

To determine whether r < k when both r and k refine a functional ML type tI -- t2, we
check whether, for all p refining t1, we have i(r)(p) :_ i(k)(p). If this condition is true for
all p, then r < k.

To enumerate all refinements of a functional ML type t, -+ t2, we enumerate all possible
monotone functions i(r) mapping refinements of t, to generalized refinements of t2, and
convert each function to a refinement type. Converting these functions to refinement types
is the job of the fntoref procedure described below; this procedure is the inverse of i,
since when we only specify the first argument of i, it maps a refinement type to a monotone
function from refinement types to generalized refinement types.

We will describe the algorithms for computing this in stages. In this introduction we
will briefly list the functions and give an intuitive idea of what they should do. Then
in Subsubsection 2.10.1.1 we will give a formal specification of the functions along with
pseudocode implementing them. Finally, in Subsubsection 2.10.1.2 we will prove each
function satisfies its specification.

The functions involved are:

Aft sComputes the intersection of refinement types in s.

botfn tComputes the least refinement of t.

allref s tReturns a set containing one representative from each equivalence class of
refinements of t.

subtypep r? k? tDetermines whether r? < k?, assuming both r? and k? refine t.

ifn r? p tComputes i(r?)(p), assuming p r t and for some u we have r? F- t - u.

fntoref f t If f is a monotone function from refinements of t to generalized refinements
of some u, and r refines t, then f(r) ; i(fntoref f)(r).

2.10.1.1 Specifications and Definitions

We will describe the algorithm by using a mixture of SML and mathematical notation. In
this notation, we use braces ({ }) to denote mathematical sets, not SML records. We will
also freely use ellipses (...) and set comprehensions ({ 1}) when the meaning is obvious
and obviously computable. We will assume an infix operator x takes the cross product of
several sets of refinement types and combines them into tuples; for example,

{tt,ff} x {T&.Il} x {runit} = {tt * Tb.** * runit,ff * T ., * runit}.

118 CHAPTER 2. REFINEMENT TYPE INFERENCE

Afn First we have a trivial utility procedure to compute A and give an example of our
notation for algorithms. If a is a finite set of refinement types, the function call Afn a must
return Aa. For example,

Afn {tt,ff} = t Aff.

We define Afn as follows:

fun Afn u}= s
I Afn {r} =r

I Amn ({r,k}Us) = rA(Afn ({kjua))

The last case may be a little confusing because we are using SML's destructuring notation to
destructure a mathematical object. It means "whenever the argument to Afn has the form
{r, k} U a, the result is r A (Afn ({k} U a))". This notation is vague about which elements
of a we choose to name r and k; this vagueness (and similar vagueness in algorithms that
follow) makes no important difference, and we shall ignore it.

The above function is the only one that does not participate in the mutual recursion to
come.

botfn The function call botin t returns the least refinement of t. That is, if r C t, then
(botfn t) < r. The code for botfn is:

fun botin t = A(allrefs t)

Note that there may be values of ML type t with the refinement type botfn t; for example,
if have a datatype d and with no declared refinements, there will be only one refinement of
d; call it Tj. Then botfn d = Td, which will be inhabited by all values with ML type d.

allrefs The function call allrefs t returns a list of one representative of each equiv-
alence class of refinements of t the refinements of t. If r C t, then there must be a
k E allref s t such that r _ k. Also, for all t we must have allrefs t is finite.

For example,

allrefs bool = {it,if, T .. , _L

It would be consistent with the specification for allrefs bool to return {tit A tt,ff A
T&1 , T 1.. 1, it A iff}. The code for al1ref s follows. As in Standard ML, when we have
multiple mutually recursive procedures, we introduce all but the first with the and keyword
instead of the fun keyword.

2.10. DECIDABILITY 119

and allrefs (i *4...* t) = allrefs t1 x ... x allrefs t,
I allref. (t- u) =

{fntoref f t
f is a function from allrefs t to (allref 9 u) U {ns}
and f(botfn t) : n-
and for all r and k in allrefs t we have

subtypep r k t implies subtypep (f r) (f A:) u}
def

allrefs te = {IC I rc C tc}

subtypep The function call subtypep r? k? t determines whether r? - V?, assuming
that both r? and k? refine t. For example,

subtypep tt ff bool = true.

The code for subtype follows; note that it uses the tuplesimp and rconsimp functions,
which are defined on pages 41 and 42, respectively.

and subtypep - ns - = true
I subtypep ns k - = false
I subtypep r k (tl *...* th) =

let val r, *... * rh= tuplesimp r
val kI *... *kh = tuplesimp k

in
for j in l... h we have subtypep ri ki tj

end
I subtypep r k (tr-ot 2) =

for allp E allrefs tj we have subtypep (ifn r p t1) (ifn k p t1) t2

I subtypep r k t, =
let val rc = rconsimp r

val kc = rconsimp k
in

def
rc < kc

end

We could make the t1 --+ t2 case more efficient by replacing it with

subtypep r k (it--+t2) =
let (1c, - ^WcA... Ak--+ k) = k
in

for all j in 1... n we have subtypep (ifn r k,, tI) k, t2
end

but this would be slightly more difficult to prove, and it does not work for the representation
of refinement types used in the serious exploration of efficiency in Chapter 7. Thus we will
stay with the simpler but less efficient version.

120 CHAPTER 2. REFINEMENT TYPE INFERENCE

ifn The function call ifn r? p t computes i(r?)(p), assuming that for some u we have
r? C- t --* u and p r- t. For example,

ifn (tt--+tt A ff --+ff) -L .. boot = tt A ff

and
ifn (tt -- tt) ff bool = ns.

The code for ifn is:

and ifn r? p t =

if r? = ns then ns
else

let val rl -+r; A... A r,--+r,, = r?
in Afn {?•' I h E 1... n and subtypep p rh t}
end

fntoref The function fntoref is an inverse of sorts to ifn. If f maps refinements of t
to generalized refinements of some other ML type, and f is monotone, and f(botfn t) is
not ns, then fntoref f t is a refinement type and for all k refining t we have

f(k) ; i(fntoref f t,k).

We need to require f to be monotone because i is monotone in its second argument, so
the equivalence just displayed could not possibly be true if f is not monotone. We need
f(botfn t) to be something other than ns to ensure fntoref f t is always a refinement
type. The code for fntoref is:

and fntoref f t =

Afn {r-, f(r) I r E allrefs t and f(r) $ ns}

2.10.1.2 Soundness

To prove these algorithms sound, we need to prove they always terminate and they fit their
specifications. First we will show partial correctness, then we will give an informal proof
of termination.

Theorem 2.92 (Subtype Decidability) All of the functions discussed in Subsubsec-
tion 2.10.1.1 fulfill their specification when they terminate.

Proof: By induction on the evaluation of the function.

2.10. DECIDABILUTY 121

Afn meets its specification Trivial.

botfn meets its specification We need to show that if r E t, then botfn t _< r. By
induction hypothesis, we can assume that allrefs is sound; thus there is a k in allref s t
such that r = Ic. By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB we have
A(allref s t) < k. Then TRANS-SUB gives A(allrefs t) < r, which is our conclusion.

allref s meets its specification We need to show that for all t we have allref s t is
finite, and that if r E- t, there is a k E allref s t such that r = k.

Case: allref s (t1 *... * t,) The code for this case is

fun allref s (t, * ... * tn) = allref 9 t1 x ... x allrefs tn

Suppose r C tj * ... * t,. Then tuplesimp r must be defined and have the form
ri *... * rn,, and soundness of tuplesimp gives tuplesimp r =r *... * r,. By induction
hypothesis, for h in I ... n there is a Ph in al1ref s th such that rh P ph. Then TUPLE-SUB

gives
r *...*n APl *--*Pn

and TRANS-SUB gives
r - p *..I p,.

The definition of x then gives

Pi * ... * p-, E allrefs tj x ... x allrefs tn-

Thus Pi * ... * p, is the member of allref s t that we seek. Since the cross product of a
finite number of finite sets is finite, allref s t is a finite set, so we are done.

Case: allref s t -+ u The code for this case is

I al1ref s (t -u) =
{fntoref f tI

f is a function from allrefs t to (aliref s u)U {ns}
and f(botfn t) # ns
and for all r and k in allref s t we have

subtypep r Ic t implies subtypep (f r) (f k) u}

Suppose r C" t- u. Then r has the form r, -+r ... Ar - r,.' Define

f ,. ns if i(r, k) = ns
= any p in allrefs u such that p = i(r, k) otherwise.

122 CHAPTER 2. REFINEMENT TYPE INFERENCE

We will show that fntoref f t is in allrefs t - u, and that r -= fntoref f t.

By definition of i, we know that f(botf n t) is r' A ... A r', which is certainly not ns.
Since i(r, k) is monotone in k we know that f is monotone. Thus the code for tais case of
allref tells us

fntoref f t is in allrefs (t --+ u).

Let r' = fntoref f t. Since fntoref is sound, we know that

for all k refining t we have f(k) z i(r', k).

By definition of f we have

for all k refining t we have f(k) a i(r, k).

By transitivity of -, these imply

for all k refining t we have i(r', k) ; i(r, k).

By Lemma 2.85 (i Preserves Information) on page 113, this implies r' = r.

We know that allrefs t -- u is finite because by induction allrefs t and allrefs u
are finite, and there are finitely many functions from a finite set to a finite set.

[Case: allrefs tc I The code for this case is
def

allrefs tc = { rc rc E tc}

By Assumption 2.8 (Finite Predefined Refinements) on page 31, allrefs tc is finite.

Suppose r C tc. Then r must have the form rce A ... A rVc, where for all i, rci C tc.
Then Lemma 2.24 (Refinement Constructor Intersection) on page 41 gives

def defr---- rc 1 A ... A rcn.

def def
By Theorem 2.21 (Subtypes Refine) on page 36, rc, A ... A re,, C tc; this can only be

def def d def def

inferred by using RCON-REF with the premise rcI A ... A rc,, - tc. Thus rce A ... A rC, E
allref s tc, which is what we wanted to show.

subtypep meets its specification We need to show that if both r? and k? refine t, then
subtype r? k? t returns true if and only if r? V k?.

Case: subtypep r? ns l The code for this case is

and subtypep - ns _ = true

2.10. DECIDABILITY 123

The definition of _ gives r? __ ns, which is what we wanted to show.

Case: subtypep us k? - The code for this case is

I subtypep ns - _ false

The definition of < tells us that ns -< k? is false, which is what we wanted to show.

Case: subtypep r k (t, * ... * t,,) The code for this case is

subtypep r k (ti *-.. *th) =
let val rj * ... * rh = tuplesimp r

val k, *... * kh tuplesimp k
in

for j in 1 ... h we have subtypep ri kj ti
end

Since r and k both refine tt *... * t,, tuplesimp r and tuplesimp k are defined and

tuplesimp r has the form r * ... *rh

and
tuplesimp k has the form k, *... * kh.

By soundness of tuplesimp,

and
k ki *...*kh.

Suppose
r < k. (2.49)

By TRANS-SUB, this is equivalent to

1 *'..*rh ki *...*kh.

By TUPLE-SUB and Corollary 2.27 (TuPLE-sUB Inversion) on page 45, this is equivalent to

for j in 1... h we have ri < ki.

By induction hypothesis, subtypep is sound, so this is equivalent to

for j in 1... h we have subtypep ri ki ti. (2.50)

Summarizing the above argument, (2.49) is equivalent to (2.50). By definition of subtype,
this is our conclusion.

Case: subtypep r k (t1 ---t2), The code for this case is

124 CHAPTER 2. REFINEMENT TYPE 4RENCE

s subtypep r k (tI-+t2)
for all p E allrefs tj we have subtypep (ifn r p t1) (ifn k p t1) t2

Suppose
r < k (2.51)

By Lemma 2.84 (Ordering on i) on page 112 and Lemma 2.81 (i Monone in First
Argument) on page 109, this is equivalent to

for all p' E- t1 we have i(r)(p') -_ i(k)(p). (2.52)

Since we can assume by induction that recursive calls to allref s are sound, for all p' E- t1
there is a p in allrefs t1 such that p = p'. This and Lemma 2.81 (i Monotone in First
Argument) on page 109 give

for all p' C ti there is a p in allref s ti such that

i(r)(p) ; i(r)(p') and i(k)(p) ;, i(k)(p').

We can use this with Fact 2.78 (Transitivity of 5) on page 108 on (2.52) to got

for all p in allref s t1 we have i(r)(p) :_ i(k)(p). A

By induction, we can assume that recursive calls to subtypep and ifn are sound, so this is
equivalent to

for all p in allref s t1 we have subtypep (ifn r p ti) (ifn k p t1) t2 (2.53)

Summarizing the argument so far, (2.51) is equivalent to (2.53). This is our conclusion.

Case: subtypep r k tc

The code for this case is

. . I subtypep r k tc

let val rc = rconsimp r
val kc = rconsimp k

in
def

rc<kc
end

By assumption, r and k refine tc; therefore both calls to rconsimp are valid. By Fact 2.23
(Tuplesimp Sound) on page 41, r = rc and k = kc.

Suppose r _< k. By TRANS-SUB, this is equivalent to re < kc; by RCON-SUA and Fact
def

2.29 (RCON-SUB Inversion) on page 45, this is equivalent to rc < kc. Summarizing the
def

argument so far, r < k if and only if rc < kc. By definition of subtypep, this is our
conclusion.

ifn meets its specification The code for ifn is

Al

2.10. DECIDABILITY 125

and ifn r p t
lot val r, --,r, A... A r,--,r' = r

in Afn {r' I h E l...n and subtypep p rh t}
end

and we need to show that ifr C t--+,uandp C- tthen ifn r p t = i(r,p). This is
obviously correct, since we can assume by induction that the recursive calls to subtypep
are sound.

fntoref meets its specification The code for fntoref is

and fntoref f t =
Afn {r -+ f (r) I r E allrefs t and f(r) : ns}

and we need to show that if there is a u such that

f maps refinements of t to generalized refinements of u

and
f is monotone

and
f (botfn t) is not ns,

then for all k C t we have

f (k) ; i(fntoref f t)(k).

Since f (botfn t) is not ns, we know that (botfn t) --+ f(botfn t) is one of the com-
ponents in fntoref f t. Thus fntoref f t is not ns, and we can let r = fntoref f t.

Suppose k C- t. By definition of i,

i(r)(k) = A{f(p) I k < p}.

SELF-SUB gives k < k, so f(k) is in {f(p) I k < p} and Fact 2.77 (A Intro Sub) on
page 107 gives

f(k) _ A{(p) I k <_ p}.

Since f is monotone, k < p implies f (k) •_ f(p). Thus all elements of {If(p) I k < p} are
greater than f((k), so Fact 2.76 (A Elim Sub) on page 107 gives

A{M(p) I k <_ p f f(k).

Thus i(r)(k) ,t f(k), which is our conclusion. 0

Theorem 2.93 (Termination for subtypep and allref s) All algorithms defined in Sub-
subsection 2.10.1.1 terminate for all inputs.

126 CHAPTER 2. REFINEMENT TYPE INFERENCE

The function Afn terminates because its argument is a finite set. An infinite execution
of any other function must involve infinitely many recursive calls to some function, call it
f. Examination of the code tells us f must have an argument that is an ML type, and that
ML type must get smaller from one call to f to the next. Since all ML types are finite, this
is a contradiction. Thus all executions are finite. 0

2.10.2 Deciding Splits

In the refinement type inference algorithm we present in Subsection 2.10.4, the SPLIT-TYPE
rule is always done as early as possible; each variable is split exactly once when it is
added to the variable environment. For example, if the algorithm is considering what might
happen if z has type Tb..,, it will split this into the possibilities z : tt and x : ff when z is
added to the environment, and it will not consider splitting z again. The appropriate split
to use is the principal split of the type of z, as discussed in Subsubsection 2.6.2.2. This
Subsection gives a procedure for computing principal splits.

2.10.2.1 Computing Principal Splits

We will give a constructive proof that principal splits exist which can also be used as an
algorithm for computing them. But first we will give an algorithm anysplit that returns
a useful split of a refinement type if there is one. If there are none, then anysplit returns
the singleton set containing its argument.

fun anysplit r (ti *...*th) =

let val rT * ... * = tuplesimp r

in
anysplit r, x ... x anysplit rh

end

I anysplit r tc =
let val rc = rconsimp r

in
if re has a useful predefined split sc
then sc

else {r}
end

I anysplit r (tl --+ t2) = {r}

Soundness of his algorithm follows by induction on the ML type argument.

Assuming anysplit works, it is straightforward to find a principal split. Just split all
of the fragments so long as there is one with a useful split, and then use ELIM-SPLIT to
eliminate as many elements as possible.

2.10. DECIDABILITY 127

Theorem 2.94 (Principal Split Existence) If r C t and r - a then we can construct an 5'
that is a principal split of r.

Proof: Let s. = .. For i > 1, if there is an element ri of si with a useful split s<, then let

+= (a, - {r,}) U .t'.

This process has to stop eventually, because by definition of useful the elements added to
each si are strictly subtypes of the elements we take from s,, and t has only finitely many
refinements. Let n be the last value of i; by construction, we know that

for all k in a,, all splits of k are useless.

By repeated use of TRANS-SPLIT,

for all i we have r - Si.

Once we eliminate as many elements as possible from a,, we will have our result. This is
straightforward: arbitrarily order the elements of Sn such that

{ki,...,m} = 8n.

Let

a' = {k, I j in I...,m and whenever kh E -,, and ki < k, we have ki -= k, and h >j.}.

By construction, ELIM-SPLLT can eliminate no more elements from a'. By repeated use of-
ELM-SPLrr, r x a'. Since a' is a subset of a,

for all k in a', all splits of k are useless.

Thus, by Lemma 2.46 (Fragments of Principal Split have Useless Splits) on page 58, a' is
a principal split of r. 0

2.10.3 Join

A refinement type for a case statement is an upper bound of the refinement types of the
reachable branches, and the principal refinement type of the case statement is the least upper
bound of the principal refinement types of the reachable branches. Therefore we need to
be able to compute least upper bounds of refinement types. For example, assume that
we have an ML datatype type blist with only the refinement Tblit and a function emptyp
with refinement type TbuIa --+ Tb,,t and a value nil () of type Tblia. The intuition is that
emptyp determines whether the list is empty, but the programmer has not declared interest
in the distinction between empty blist's and nonempty blist's, so refinement type inference
will not notice this. Then the expression euptyp (nil 0) has the principal type T 1 ,,t,
and computing the principal type of the statement

128 CHAPTER 2. REFINEMENT TYPE INFERENCE

case emuptyp (nil 0)) of
true => fn ignored:tunit => true 0
f false => fn ignored: tunit => f alse ()

end: bool

requires finding the least upper bound of the principal types of the expressions true ()
and false (), yielding Ti. 1. In general, the least upper bound will not always exist; in
that case the case statement has no refinement type. For example, assuming x has the type
it --+ it and y has the type ff --+ if, trying to find a type for the statement

case emptyp (nil ()) of
true => fn ignored: tunit => x

I false => fn ignored: tunit => y
end: bool --+ bool

requires finding a least upper bound for it -+ it and ff --+ ff. There is none, and this statement
has no refinement type. (The reader may object that we cannot write an expression that
has the principal type ti --+ tt. This is true for the language constructs introduced in this
chapter, but it will be false after we introduce the <I operator in Chapter 6. In any case, it
is consistent with the theory to hypothesize such a variable.)

We will call these least upper bounds "joins" rather than "disjunctions" or "unions".
Calling them disjunctions would conflict with existing nomenclature used in type theory.
Calling them unions would be misleading because if we interpret the refinement types as
sets, the interpretation of the join of two refinement types may be a proper superset of the
union of their interpretations. For example, the join of the refinement types T brio -- ti and
T bl. --+ff is Tbli.t -+ Tb.. The function emptyp is in the interpretation of T blit T b.,,
but it is not in the interpretations of either Tbiut --+ it or T iat - if, so it is not in the union
of their interpretations.

According to John Reynolds [personal communication, 19931, type inference for
Forsythe uses a similar notion of least upper bounds for the same purpose.

2.10.3.1 Definition of Join

The least upper bound, if it exists, is the greatest lower bound of all of the upper bounds.

Definition 2.95 If r? C- t and k? C t then we define

r? U h? = A{p E allreofs t I r? -< p and k? --. p}.

We would say "p C t" instead of "p E allref s t" except A is meaningless for infinite
sets, and if we compare refinements of t by mathematical equality rather than refinement
type equivalence, there are infinitely many refinements of t.

2.10. DECIDABILITY 129

We also define a join operator for refinement type constructors:

Definition 2.96 If rc Ic tc and kc E- tc then we define

clef def def clef
rc U kc = A{pc I rc pc and kc <_ pc}.

def
If the set is empty, then rc U kc is undefined.

It is easy to see that r? U k? is an upper bound of r? and k? in the _< ordering; we can
derive r? -< r? U k? by using the definition of U and repeated use of Fact 2.77 (A Intro
Sub) on page 107.

It is also easy to see that it is a least upper bound; if p is an upper bound of r? and V?, it is
one of the components in r? U k?, so repeated use of AND-ELIM-R-SUB and AND-ELIM-L-SUB
gives r? U k? -< p. The definition of _< tells us that ns is also an upper bound of r? and k?
and that r? UI k? -< ns.

We can effectively compute U because allrefs and -< are both computable. Unfortu-
nately, the obvious algorithm derived directly from the definition is inefficient because the
size of the set returned by allrefs is exponential in the size of the argument to allrefs.
In this section we will present a more efficient algorithm.

If the obvious slow algorithm were used to find it --+ ti U it --, if, it would first find
allrefs (bool --+ bool) and then take the intersection of all types in that set that are greater
than both it --+ it and it --+ ff. The algorithm presented in this subsection would only.
need to evaluate allrefs bool. The algorithm presented here is still exponential though;
for instance, it will evaluate allrets (bool -- bool) if asked to find (t --+ it) -- it U
(it --+ff) --. i.

Theorem 2.97 (Join is Decidable) There is an algorithm j oinf mapping two generalized

refinement types and an ML type to a generalized refinement type such that if

r? E t

and
k? c t

then all of the following are true:

r? -< p and k? -< p implies joinf r? k? t -< p

r? - joinf r? k? t

k?< joinf r? k? t

computation of joint r? k? t terminates.

130 CHAPTER 2. REFINEMENT TYPE INFERENCE

Proof: We will present the definition of joint as we prove it correct. The proof is by
induction on t. In each case we will omit the proof of k? - joinf r? k? t because it is
essentially the same as the proof of r? -_ joinf r? k? t.

Since least upper bounds are unique, our conclusion is equivalent to

joinf r? k? t ; r? U V?.

SCase: joinf ns - or joinf - ns IThis case reads

fun joint ns - - = ns

I joinf - ns - = ns

Both of these cases are trivial. In all future cases, we will assume that r and k are not ns.

Case: joint r k (t, *...*th) This case reads

r k (t,*..th) =

1t val rl*...* rh = tuplesimp r
val kl *... *kh = tuplesimp k

in
if for j in 1... h we have (joinf r, ki ti) / ns
then (joint rli ki t) ,... (joint rh kh th)

else ns
end

SubCase: r <pandk <_ pimplies (joinf r k t *...*th)<p Suppose r < pand

k < p. By Lemma 2.22 (Tuple Intersection) on page 40, there are p, through ph such that
Pi * ... * Ph p p. By TRANS-SUB, Corollary 2.27 (TUPLE-SUB Inversion) on page 45, and
soundness of tuplesimp, we have

for j in 1... h we have ri < pi and kj <pi.

By induction we can assume that recursive calls to j oint are sound, so this implies

for j in I... h we have j oinf r, ki t, : _p, (2.54)

and then TUPLE-SUB and TRANS-SUB give

(joint r, k, t1)*...* (joinf rh kh th) •_ P.

(2.54) tells us that for j in 1... h we have (joint r, ki tj) 0 ns, so the definition of
joinf gives

joint r k (t, !... •t)<p,

2.10. DECIDABILITY 131

which is our conclusion.

I SubCase: r -ý joint r k t By Fact 2.23 (Tuplesimp Sound) on page 41 we know that

S... *rh r. By soundness of the recursive call to j oinf,

forj in 1... h we have ri _- j oinf rj ki ti.

If any of the j oinf rj ki t1's are hs, then the definition of _ gives

r -<- ns.

Otherwise TUPLE-SUB and TRANS-SUB give

r < (joint r, kI ti) ,... • (joint rh kh th).

Either way, by definition of this case of j oiuf we have

r -< joint r k (t t,...t,),

which is our conclusion.

SubCase: joint terminates. I Trivial.

Case: joint r k (t,-- t2) The code for this case uses the ifn function defined on

page 120 to compute the interpretation i of a refinement type. Here it is:

joinf r k (tI--+t2) =
A{p-+ joinf (ifn r p t1) (ifn k p tL) t2

p E allrets t, and
(joint (ifn r. p t1) (ifn k p t1) t2) 7 ns}

Before showing that this case of joint works reasonably, we need to show that its inter-
pretation works reasonably. Formally, we will start by showing that if p E- tL then

i(joinf r k (ti --+ t2))(p) a i(r)(p) U i(k)(p).

Suppose p is given and p C ti. Consider

i(joinf r k (ti -- t2))(p). (2.55)

By definition of joint, this is equal to

i(Ar' -. joinf (i(r)(p')) (i(k)(P)) t2 l
p' E allrets t, and
(joint (i(,)(p')) (i(k)(p)) t2 0 ns)})(p)

132 CHAPTER 2. REFINEMENT TYPE INFERENCE

and bv definition of i, this is equal to

A{join: (i(r)(p')) (i(k)(p')) t2 1
p' E allref s tj and (2.56)
(join:f (i(r)(p)) (i(k)(p)) t2) 0 ns and
p<_,}.

By our induction hypothesis,

joinf (i(r)(p')) (i(k)(p')) t2 ý i(r)(p) U i(k)(p).

Thus (2.56) is - to

A{i(r)(p') U i(k)(p') I
p' E al1refs ti and (2.57)
(joint (i(r)(p)) (i(k)(p')) t2)W ns and

By Lemma 2.80 (i Monotone in Second Argument) on page 108 and monotonicity of U,

p < p' implies i(r)(p) u i(k)(p) < i(r)(p') U i(k)(p').

Since we can eliminate components from the set in (2.57) that are known to be greater than
other components in (2.57) we know that (2.57) is equivalent to

A{i(r)(p) U i(k)(p) I (joint (i(r)(p)) (iWk)(p)) t2) $ ns}.

By our induction hypothesis, joinf (i(r)(p)) (i(k)(p)) t2 is ns if and only if i(r)(p) U
i(k)(p) is ns. Thus this simplifies to

i(r)(p) U i(k)(p). (2.58)

Summarizing (2.55) through (2.58), if p F- tj then

i(joinf r k (t -- t2))(p) z- i(r)(p) U i(k)(p). (2.59)

SubCase: r -< pandk - p implies joinf r k (ti -- t2) "< p j Supposer < pandk < p.

By Lemma 2.81 (i Monotone in First Argument) on page 109 we have

for all p' C t1 we have i(r)(p') _ i(p)(p')

and likewise for k gives

for all p' C- t1 we have i(k)(p') _ i(p)(p').

Since U is a least upper bound, this implies

for all p' C t1 we have i(r)(p) U i(k)(p) • i(p)(p),

2.10. DECIDABILITY 133

and (2.59) gives

for all p' E tj we have i(joinf r k (tl -- t2))(p') _ i(P)(p),

and Lemma 2.84 (Ordering on i) on page 112 gives

joinl r k (tl --+ t2) _ P,

which is our conclusion.

SubCase: r _ joinf r k (t --+ t2) I Since U is a least upper bound, we have

for all p C t1 we have i(r)(p) -_ i(r)(p) U i(k)(p).

By (2.59) and Lemma 2.81 (i Monotone in First Argument) on page 109, this implies

for all p C t1 we have i(r)(p) / i(joint r IC ti --+ t2)(p) U i(k)(p).

By Lemma 2.81 (i Monotone in First Argument) on page 109, this implies

r __ joinf r ktI -+ t2,

which is our conclusion.

SubCase: Termination The only loop in this code is over a finite set, and by induction

we can assume that the recursive calls to joint terminate.

Case: joiT r ktc] The code for this case uses rconsimp, which is defined on

page 2.6.1. Here is the code:

I joinl r k tc =
let val rc = rconsimp r

val kc = rconsimp k
in

defif rc U dkc is undefined
then ns

else re U kc
end

SubCase: r p andk p implies joinI r k tc p Suppose r < p andk< p. Then

p E ic, so by Lemma 2.24 (Refinement Constructor Intersection) on page 41 there is a pc
such that p = pc. Fact 2.25 (Rconsimp Sound) on page 42 gives

r E-rc

134 CHAPTER 2. REFINEMENT TYPE INFERENCE

and
h-- kc.

def def def
Fact 2.29 (RCON-SUB Inversion) on page 45 gives rc <_ pc and kc < pc. Therefore re U kc
is defined and

dlef def
rcu kc < pc.

By RCON-SUB, TRANS-SUB, and the definition of this case of joint, this implies
joint r k tc is not ns and

joint r k tc < p.

By definition of -, this implies

joint r k tc - p,

which is our conclusion.

SubCase: r • joint r k tc If joint r k tc is ns, then by definition of -< we are

done.
def def

Otherwise, re U kc is defined. By soundness of rconsimp, re r. By properties of U,

def def
rc < reU kc.

Using RCON-SUB, TRANS-SUB, and the definition of joint, this implies

def
r < j oinf r k tc,

which is our conclusion.

SubCase: Termination Trivial. 0

We will also define a simple function sj oint that finds the least upper bound of a finite
set of generalized refinement types:

fun sjoinf t {} I= botfn t
I sjoint t({r?}Ua?) = joint r? (sjoint .9?) t

We use botfn t as a base case for this recursive function because for all r refining t we
have

(botfn t) U r = A{p E allref I t r •pandbotfn t - p}
= A{p E allrefs t Ir p}
---- 1•.

2.10. DECIDABILITY i35

2.10.4 Deciding Refinement Types

In this subsection we will give an algorithm called infer and prove that it finds principal
refinement types. First in Subsubsection 2.10.4.1 we will give an overview of the algorithm
by giving examples of how it works for each case in the syntax. Th-n in Subsubsec-
tion 2.10.4.2 we will give a technical lemma that makes the proof much simpler. Finally in
Subsubsection 2.10.4.3 we will describe the algorithm infer and prove it correct.

This algorithm is similar to the one actually implemented. The main difference between
the algorithm described here and the implementation is the evaluation order; infer is eager
and the implementation is lazy. For example, when confronted with the expression

fn x: bool =>
case x of

true => fn => false()
I false => fn = > true 0

end: bool

infer eagerly finds a type for this by assuming x can have all possible refinements of bool,
yielding the result

_L- _Lb ., Art - ff A ff -+ tt A Tb.. 1 -- Tbo,.

The implementation postpones evaluation as long as possible. It returns a function that, for
instance, when passed tt, will return ff. This strategy is faster than eagerness when we are
only interested in evaluating functions on a few points in their domain. If pursued in the
simplest way, this strategy would be slower than infer if we evaluate the function, say,-
100 times at Ut. The implementation is able to perform well in this case by memoizing. We
will discuss the implementation in more detail in Chapter 7.

2.10.4.1 Overview of the Algorithm

In this section we will present the algorithm informally by giving examples of how it
behaves for each variety of syntax.

The algorithm has one invariant that needs to be maintained: all types in the environment
must have no useful splits. This requires finding a principal split every time we add a variable
binding to the environment. The only syntax that adds variable bindings to the environment
is abstractions, so all the responsibility for maintaining this invariant falls on that case of
the algorithm.

Variable references This case is trivial; just look the variable up in the variable envi-
ronment. For example, in the environment [x := tt], the type we infer for x is tt.

Abstractions Except for the fact that we have to maintain our invariant, we could find a

136 CIIAPTER 2. REFINEMENT TYPE INFERENCE

principal type for fn x: bool => or (not x, x) using the following procedure: for each
refinement of bool, bind x to that refinement, and find a principal type for or (not x, x)
in the resulting environment. Then we would encode the results as an intersection of arrow
types; for example, if assuming x has the type ff leads to the conclusion or (not x, x)
has the type it, then one of the components of the result is ff - it.

Modifying this procedure to enforce our invariant is fairly simple. Instead of binding x
to a type r in the environment, find a principal split of r. Bind x to each fragment of r and
find a principal type for or (not x, x) in the resulting environment. Let k be the join of
the results; then the component we should add to our result in this case is r --+ k.

For example, when we consider the refinement T--,t of bool, we find its principal split
{Itt, ff }. We bind x to each of the fragments and find types for or (not x, x) in the result-
ing environments, yielding it and it. Then we join these, yielding it. The final contribution
of this reasoning to our result is Tb., -- it. The type for fn x: bool => or (not x, x)
that results from this procedure is

T** -- i t A it ---+ it A ff -- it A 2-,I _L'--6,

Applications Applications become a call to i at the type level. For example, to find
a principal type for not x, first we find principal types for not and x; suppose we get
it --- ff A ff --+ it A T &. , --* T b.1 and tt, respectively. Then our result is

i(tt --- ff A ff ---* t A T b,.1 --+ T b.)(tt),

which is ff A T b.1 .

Constructor Applications This case is straightforward. Using the bitstr datatype first
introduced on page 17 as an example, if we want to find the principal type of an expression
like One (Empty ()), we first find a principal type for Empty (), yielding em. Then our

def
result is the least type rc such that one : em rc; in this case it is nf.

By Assumption 2.51 (Constructor And Introduction) on page 67, the least rc such that
def def

One : em rc is the intersection of all of the rc's such that One : em -* re. This
intersection can be precomputed when the constructors are defined, so this does not affect
performance

Case Statements Finding the principal type of a case statement starts as an approximate
dual of finding a principal type for constructor applications. First we find a principal type
for the expression the case statement is examining; we can use rconsimp discussed on
page 42 to simplify this type to something of the form re. For each branch of the case

def
statement with a constructor c we find the set of greatest r's such that c : r -4 re. These
r's are the possible types of the argument to c that could have given rise to our case object.

2.10. DECIDABILTY 137

The analogy with constructor application is only approximate because we cannot join
def

all of the r's in this set to get a k where c : k - rc; in other words, there is no dual
to Assumption 2.51 (Constructor And Introduction) on page 67. This is case because A
accurately forms intersections of refinement types if we interpret them as sets, but U only
returns an upper bound of the union.

If the set of possible r's for some constructor is empty, then that branch is unreachable.
Recall that in the formal language, a branch of a case statement is a function that will
be applied to the arguments of the constructor. For each reachable branch e of the case
statement we find a principal type for the application of e to some hypothetical value of
type r; by the argument we gave for the application case, this is simply a use of i. Since
we do not know which of the reachable cases will be taken during execution, we have to
take the join of all of these types as the principal type of the case statement.

For example, consider the case statement

case Zero (One (Empty 0))) of
Zero => fn arg: bitstr => arg

I One => fn arg: bitstr => One arg
I Empty => fn azrg:runit => (Empty ())

end: bitstr

From the earlier discussion of application, the principal type of Zero (One Empty) is nf.
The reachable constructors are Zero and One, where Zero has the possible input type nf
and One has the possible input types nf or em.

The best type for fn arg: bitstr => arg applied to a value of type nf is nf, and the
best type of fn arg: bitstr => One arg applied to a value of type nf or em is nf. Thus
the principal type of the case statement is nf U nf, or nf.

Tuples The principal type for a tuple is simply the product of the principal types of
the components. For example, to find the principal type for (not, true 0) we first find
the principal types of not and true (), yielding tt -f if A ff - tt A Tboo, - Tboot and tt
respectively. Thus the type for (not, true ()) is

(tt --+ ff A ff -+ tt A TYo -. Tb,,1) * ft.

Element Selection To find a principal type of an expression of the form elt-rn-n e,
find a principal type for e, simplify it with tuplesimp, and then select the appropri-
ate element. For exanlple, a principal type for (true (), false ()) is (tt * Tb**l) A
(Tb*.* * if). Then tup2gasimp returns (tt A Tboo) * (Tb,,l A if), so a principal type for
elt-2_2 (true (), false ()) is Tb**1 A if, which is equivalent to ff.

Fixed Points We find the principal type for a fixed point by iterative approximation. Our

138 CHAPTER 2. REFINEMENT TYPE INFERENCE

first approximation to the refinement type of the function is the least refinement of its ML
type; each successive approximation is the principal type of the body of the fixed point,
assuming that recursive references to the function have the previous approximation as their
type. When the approximations stop increasing, the last approximation is our principal
type.

For example, determining a type for the expression

fix inc: bitatr -- bitstr => fn n: bitstr =>
case n of

Empty -> fn = runii > One (Empty ()
I One => fn rest:bitstr => Zero (inc rest)
I Zero => fn rest:bitstr => One rest

end: bitatr

yields these successive approximations to the fixed point:

T bitgr -ý - bitstr

L biu-'- J bitt. A em -- nf A nf --- nf A Tbist, -- T-sit4 ,

.-Lbitao, -L -bits, A em -- nf A nf n uf A Tbit~gr, T Tbit.,..

Since the last two approximations are equivalent, the process terminates and the last ap-
proximation is our result.

2.10.4.2 Technical Lemnma for Principality

To show that the types from infer are principal, we will have to prove

if VR H- e : r then (infer VR e) < r.

The premise VR F- e : r is awkward to use because the root inference of its derivation may
be an inference rule that makes syntactic progress, or it may be WEAKEN-TYPE, AND-INTRO-

TYPE, or SPLIT-TYPE. It turns out that it is sufficient to show

if VR H- e : r then (infer VR e) < r

where the root inference of the premise must make syntactic progress. The SPLIT-TYPE case
of the proof is most interesting.

Lemma 2.98 (Syntactic Progress Decidability Sufficient) Let r' be given. If

for all r we have VR H- e : r implies r' < r

and
VR F- e: p

2.10. DECIDABIUIY 139

and for all z in the domain of VR we have

all splits of VR(x) are useless

then
rI <p.

Proof: By induction on the derivation of VR I- e : p. The proof is relatively short because
we can trivially handle the cases where the root inference of this derivation makes syntactic
progress.

Case: AND-INTRO-TYPE The p has the form p, Ap2 where the premises of AND-INTRO-TYPE

are
VR l- e •p

and

VR - e: p2 .

Two uses of the induction hypothesis give

r' < P,

and
r7 <P2.

Then AND-INTRO-SUB gives
r' < P, A p2,

which is our conclusion.

SCase: WEAKEN-TYPE Then the premises of WEAKEN-TYPE are

VR F- e : p'

and
p' <p.

By induction hypothesis,
r' < PI,

so TRANS-SUB gives

r' _<p

which is our conclusion.

1 Cas: SPL- Then VR has the form VR'[y := k] where the premises of split-type
are

kxa

140 CHAPTER 2. REFINEMENT TYPE INFERENCE

and
for kW in a we have VR'[y:= k'J [- e: p.

By hypothesis, a is a useless split of k, so we can choose a k' in 3 such that k _ k'.

We will be putting k' in an environment and then using the induction hypothesis, so we
need to know that all splits of k' are useless. To show this, suppose that k' × s'. Then
EQUIV-SPLIT-L gives k - a', and by hypothesis there is therefore a k" in a' such that k= k".
TRANS-SUB then gives k' = k". Thus,

all splits of k' are useless.

Now we have to take cases on the form of e to show that

VR'[-y := '] ÷H e r implies r' < r.

The most interesting of the following cases is when e is some variable other than y.

SubCase: e is not a variable Suppose that

VR'[y := k'] H- e r.

Lemma 2.66 (Environment Modification) on page 81 gives

VR'[y := k] ÷ e: r

and our hypothesis gives
Tr < r.

Summarizing, the reasoning so far in this subcase gives

VR'[y k'] H- e : r implies r' < r.

SubCase: e has the form y Suppose

VR'[y j:='] H- y. r.

The last inference of this must be VAR-TYPE, so r = W'. VAR-TYPE gives

VR'[y := k] H y : k,

so our hypothesis gives
r' < k.

Since k =_ ', this implies r' < r. Summarizing the steps in this subcase so far,

VR'[y := k'] H- y : r implies r' < r.

2.10. DkCIDABUTY 141

SubCase: e has the form z, where z 0 y Suppose

VR'[y := W]zk'] z r.

Since z 0 y, this derivation ignores y, so we also have

VR'[y := k] z:- r.

By hypothesis, this implies

Summarizing the steps in this subcase so far,

VR'[y :=k'W] - z : r implies r' < r.

Regardless of which subcase we use, one of the premises of SPLIT-TYPE is

V'[y:=k'] W- e: p.

We can use the induction hypothesis on this and the result from whichever subcase we used
to get

rD < P,

which is our conclusion.

Case: Any rule that makes syntactic progress In that case we have

VRH-e:p

so our hypothesis gives

*which is our conclusion. 0

2.10.43 Definition and Proof of Refinement Type Inference Algorithm

The decision procedure for monomorphic refinement types is in Figures 2.7 and 2.8. This
procedure takes an expression and an environment mapping variables to refinement types,
and it returns a principal refinement type for the expression if there is one, or ns otherwise.
It has three interesting properties: it always terminates, it returns a refinement type for
the given expression, and the type is principal. We will prove one of these properties in
each of the next three theorems. The most interesting theorem in this Subsubsection is
Theorem 2.101 (Infer Returns Principal Type) on page 151; the most interesting cases of
each theorem deal with case and fix statements.

The portions of the algorithm that deal with case and fix statements use the "as"
keyword. This has not appeared so far in this thesis. It simultaneously binds a variable
to a structure and other variables to the parts of the structure; for example, binding the
pattern x as (y, z) to the value (true, false) binds y to true, z to false, and x to
(true, false).

142 CHAPTER 2. REFINEMENT TYPE INFERENCE

fun infer VR y =

if for some t we have VR(y) C t
then VR(y)
else ns

infer VR (fn z:t => e') =

if there is a u such that rtom(VR)[z := t] F- e' :: u
then

let val u = the unique u such that rtom(VR)[z t] F- e' :: u
fun do-one r =

sjoinf u {infer (VR[z :']) e' r' E split r)
in

Afn {r -+ do-one r I r E allrefs t and (do-one r) # ns}
end

else ns
I infer VR (e, e2) =

lot val r? = infer VR el
val k? = infer VR e2

in
if r? = ns or k? = ns
then ns
else

let
val u- t = rtom(r?)
val u' = rtom(k?)

in
if U = U'
then ifn r? k? u
else us

end
end

infer VR (c e') =
let val k? = infer VR e'

val t = the unique t such that c t t- tc

in deft

Afn {rc 'E allrefs t and subtypep k? r t and c • r - rc}
end

Figure 2.7: Decision Procedure, for Refinement Types Part 1

2.10. DECIDABIL1TY 143

I infer VR (e as (case eo of c, => el ... I c=>eend:t))=
if not rtom(VR) F- e:: t then us
else lot val r? - infer VR e0

in if r? = ns then ns
else let val rc = rconsimp (r?)

in
sjoinf t {ifn (infer VR eh) p u

hE 1..n
and Ch : "4. UC

and p E allrefs u
def

and ch p--+ rc}
end

end
I infer VR (el, ... , e,) -

if for any i in l..n we have infer VR ei = ns
then us
else infer VR el * ... * infer VR en

I infer VR (elt -m..n e') =
let val A:? = infer VR e'
in

if k? = us then us
else let val kl *... * k,, = tuplesimp (k?)

in In end
end

I infer VR (e as (fix f:t => fn z:t1 => e')) =
let fun loop r =

let val next? = infer (VR[f := r)) (fn z:t, => e')
in

if subtypep nezt? r t then r
else if nezt? = ns then ns
else loop nezt?

end
val t'--+ t2 = t

in
if t' j t• then ns
else if ML type inference does not give rtom(VR) - e:" tI -t2
then ns
else loop (botfn (tI --+ t2))

end

Figure 2.8: Decision Procedure for Refinement Types Part 2

144 CHAPTER 2. REFINEMENT TYPE INFERENCE

According to Theorem 2.54 (Inferred Types Refine) on page 68, the refinement type
inference rules in Figure 2.6 ensure that the refinement type environment gives a well-
formed refinement type for each free variable in the expression and that the expression
has an ML type. Since infer is an implementation of these rules, it does the same. The
alternative would be to assume we only use infer on terms and environments that are
consistent with ML typing. The extra hypothesis would complicate the proofs and obscure
the correspondence between the refinement type inference rules and the algorithm, so the
approach used below seems best.

The algorithm has an invariant: the refinement types in the environment must have no
useful splits. Because of this assumption, we never need to consider using the SPLIT-TYPE

rule to split variables that are in the initial environment. As we execute the algorithm, we
maintain the invariant by taking the principal split of the type of each new variable before we
add it to the environment. The discussion of principal splits above should make it intuitively
clear that this is appropriate; for a formal justification, see the cases for abstractions and
fixed points in the proof of Theorem 2.101 (Infer Returns Principal Type) on page 151.

We start with a simple lemma saying that the argument of the tail recursive loop in
the fix case of infer always refines the same ML type. The hypothesis of the lemma is
always true since it is implied by Theorem 2.100 (Infer Returns Some Type) on page 145;
the hypothesis saves us from having a lemma nested inside a theorem. Note that the
variables t, and t 2 mentioned in the lemma are defined in the fix case of infer.

Lemma 2.99 (Fix Case of Infer is Well-Behaved) In the fix case of infer, we will ab-
breviate fn x: ti => e' as e". If, for all r,

infer (VR[f := r]) e" is notns

implies
VR[f := r] I- e": infer (VR[f := rJ) e",

then the argument of loop always refines t1 - t2.

Proof: By induction on the evaluation loop.

Case: Initial call to loop This is trivial, since the argument to the initial call of loop is

botfn (tl --+ t2), which obviously refines t, ` t2.

Case: Recursive calls to loop I We can assume the incoming argument r of loop refines

tl I t2, and we need to show that the value next? that will be passed to the next recursive call
also refines t -- t2. Since nezt? = infer (VR[f := r]) (fn z: t, => e'), our hypothesis
gives

VRLf := r] - e": nezt?.

Theorem 2.54 (Inferred Types Refine) on page 68 then gives a t' such that nezt? E t' and

rtom(VR[f := r]) I- e" :: t'.

2.10. DECIDABIUTY 145

Since r C tj h,

rtom(VR[f := r]) = rtom(VR)[f := tl -- t2].

If we ever call loop then t must have the form t1 -- t2, and we must also have

rtom(VR) F- e :: t1 --+ t2.

The last inference of this must be FIX-VALID with the premise

rtom(VR)[f :-=t -- t2] F- e" :: tl -+ t2

Thus Lemma 2.4 (Unique Inferred ML Types) on page 27 gives t' = tj -+ t2. Since
nezt? c- t', this is our conclusion. 0

In the next theorem we have the hypothesis "infer VR e terminates". By Theorem
2.102 (Infer Terminates) on page 160, this is always true. Once again we are using these
always true hypotheses to break up the decidability proof into manageable chunks.

Theorem 2.100 (Infer Returns Some Type)
If infer VR e terminates and infer VR e is not ns then

VR I- e : inf er VR e.

Proof: By induction on e.

Case: e = y] The code for this case is

fun infer VR y =

if for some t we have VR(y) C t
then VR(y)

else ns

Since infer VR e is not ns, it is VR(e) and for some t we have VR(e) E- t. Thus
VAR-TYPE gives VR F- e : infer VR e, which is our conclusion.

Case: e = fn x:t => e' I The code for this case is

I infer VR (fn z::t => e') =
if there is a u such that rtom(VR)[z := t] F- e' :: u
then

let val u = the unique u such that rtom(VR)[x := t] F e' :: u
fun do-one r =

sjoinf u {infer (VR[z := r']) e' Ir' E split r}
in

Afn {r --+ do-one r Ir E allrefs t and (do-one r) : ns}
end

else ns

146 CHAPTER 2. REFINEMENT TYPE INFERENCE

Since infer VR e is not ns, there is a u such that rtom(VR) F- e' :: u. By Lemma 2.4
(Unique Inferred ML Types) on page 27, there is exactly one such u.

Since infer VR e terminates, soundness of Afn tells us that all calls to do-one
terminate. Since infer VR e is not ns, at least one of the calls to do-one returns a
refinement type instead of ns. Suppose do-one r does not return ns; by definition of
do-one, this implies

for all r' in split r we have infer (VR[:-]r') e' terminates and is not ns.

We can use our induction hypothesis to get

for all r' in split r we have VR[z r'] F- e' : infer (VR[z r'J) e'

By WEAKEN-TYPE and soundness of sjoinf, we get

for all r' in split r we have VR~z := r'] F- e': do-one r.

Soundness of split tells us r × split r. Thus SPLIT-TYPE gives

VR[z := r] F- e': do-one r.

Then ABS-TYPE gives

VR F- fn z:t => e': r--+do-one r.

This is true for all r refining t for which do-one r is not ns, so repeated use of AND-INTRO-
TYPE gives

VR F- fn z:t => e': infer VR e,

which is our conclusion.

ICase: e =el e2 The code for this case is

infer VR (el e2) =

let val r? = infer VR el
val k? = infer VR e2

in
if r? = ns or k? = ns
then ns
else

let
val u--+t = rtom(r?)
val u' = rtom(k?)

in
if U = U'

then ifn r? k? u
else ns

end
end

2.10. DECIDABIUTY 147

Since infer VR e is not us, both r? and k? must not be ns. Call them r and k respectively.
Since r = infer VR el and k = infer VR e2, the induction hypothesis gives

VR l- el : r

and
VR 1- e2 : k.

Since r C u -* t, we know that r has the form r, --+ r' A... A r,,-* r,. By soundness
of ian,

ifn r, k u=ArI E ... ,,andk < rj}.

Since VR F e2 : k, WEAKEN-TYPE gives

for j in 1... n such that k :_ ri we have VR e2 : ri.

Since VR I- el : r, we can use WEAKEN-TYPE to get

for all j in 1... n we have VR F- el : r- r,.

Therefore APPL-TYPE gives

for j in 1... n such that k < rj we have VR F- el e2 rI

and repeated use of AND-INTRO-TYPE gives

VR I- el e2 : ifn r k u.

By definition of this case of infer, this is our conclusion.

Case: e = IThe code for this case is

infer VR (c e') =
let val k? = infer VR e'

def
val t = the unique t such that c " t -+ tc

in
def

Afn {rc I r E allrefs t and subtypep k? r t and c : r - rc}
end

Since infer VR e is not us, soundness of Afn and subtypep tell us that k? cannot be
ns. Thus we will call it k. The value of infer VR e must have the form

rc A ... A rci
def

where for i in 1... n we have an ri refining t such that C : ri - rci and k < ri. By
induction hypothesis,

VR I- e': k,

148 CHAPTER 2. REFINEMENT TYPE INFERENCE

and by WEAKEN-TYPE,

for i in 1... n we have VR ý- e': ri.

Then CONSTR-TYPE gives

for i in I... n we have VR l- c e' : rci

and repeated use of AND-INTRO-TYPE gives

VR- c e': rc A ... A mn,

which is our conclusion.

Case: e = case eo of c, -> el I ... I c,, => e,, end:t I The code for this case is

I infer VR (e as (case eo of cl => el [... I c, => e, end:t)) -
if not rtom(VR) F- e:: t then ns
else let val r? = inter VR eo

in if r? = ns then ns
else let val rc = rconsimp (r?)

in

sjoinf t {ifn (infer VR eh) p u
h E 1..n

def
and Ch :: U -- * uc

and p E allrefs u
def

and ch : P "+M
end

end

Let k be the result of this case of infer. By hypothesis this case does not return ns, so
infer VR eo is defined. Our induction hypothesis, soundness of rconsimp, and WEAKEN-
TYPE give

VR I- eo : re.

Let h in 1... n, u, and p' C u be given such that

Chdf P, _e. (2.60)

By soundness of allrefs, there is a p in allrefs u such that p p', and Assumption
2.52 (Constructor Argument Strengthen) on page 67 gives

def
Ch : P--+ r.

Then, by soundness of sjoinf, we have

ifn (infer VR eh) p u < k.

2.10. DECIDABILUTY 149

By soundness of ifn and Lemma 2.83 (i Gives an Upper Bound) on page 111, this implies

infer VR eh < p - k.

By induction hypo.thesis,
VR I- eh : inter VR eh,

and then WEAKEN-TYPE gives
VR F- eh: p --+ k.

Since p = p', we have p - k = p' -- k, so using WEAKEN-TYPE again gives

VR F- eh : p' - k.

Summarizing the argument from (2.60) to here,

for all h in I ... n,
def

Ch p '-+ rc

implies
VR I- et, p' - k.

The algorithm explicitly ensures that

rtom(VR) I- e "" t.

Since sjoinf t s always returns a refinement of t,

kct.

Thus we can use CASE-TYPE to get

VR F- e: k,

which is our conclusion.

Case: e = (ei, ... , e,,) The code for this case is

infer VR (el, ... , e,) =
if for any i in l..n we have infer VR ei = ns
then ns
else infer VR el * * infer VR en

Since infer VR e is not ns, for h in I ... n we have infer VR eh is not ns. By induction
hypothesis, this implies

for h in 1 ... n we have VR F- eh " infer VR eh

and then TUPLE-TYPE gives

VR H (el, ... , en) : infer VR e *...*infer VR e,

which is our conclusion.

Case: e = elt-m-n e' I The code for this case is

150 CHAPTER 2. REFINEMENT TYPE INFERENCE

infer VR (elt-m.n e') =

let val k? = infer VR e'
in

if k? = as then ns
else lot val A, * ... * k, = tuplesimp (k?)

in k, end
end

Since infer VR e is not ns, infer VR e' must not be ns; call it k. By induction
hypothesis we must have

VR I- e': k.

By soundness of tuplesimp, hi *... * =_,- k, and by WEAKEN-TYPE, VR F- e': k! *... * k,.
Then ELT-TYPE gives VR F- elt-m-n e': kmc, which is our conclusion.

Case: e = fix f:t -> fn z:tj)> e' The code for this case is

infer VR (eas (fix f:t > fn x:t => e'))
let fun loop r =

let val nezt? = infer (VR[f :=r]) (fn z:t, => e')
in

if subtypep nezt? r t then r
else if nezt? = ns then ns

else loop nezt?
end

nval t'--t 2 = t
in

if t' $ tj then ns
else if ML type inference does not give rtom(VR) F- e :: t 2 --

then ns
else loop (botfn (t 1-- t2))

end

We will abbreviate fn z: t1 => e' as e". Suppose infer VR e returns r. The definition
of loop tells us that nezt? -< r where

next? = infer (VR[f := r]) e".

Our induction hypothesis gives

VR[f := r] F- e": nezt?

and WEAKEN-TYPE used with nezt? -< r gives

VR[f := r] F- e": r.

2.10. DECIDABILITY 151

Lemma 2.99 (Fix Case of Infer is Well-Behaved) on page 144 gives r E- tI --+ t2, so FIX-TYPE

gives

VRh-fix f:tl-t 2 => e":r

which is our conclusion.

The next theorem shows that when infer returns a refinement type, it returns a principal
refinement type. One of the hypotheses is that infer terminates on its input. Theorem
2.102 (Infer Terminates) on page 160 tells us this is always true, but we have to have an
explicit hypothesis here because we have not yet proved that theorem. An alternative would
be to prove both theorems at once; that would lead to one large proof instead of two smaller
ones.

Theorem 2.101 (Infer Returns Principal Type) If

all splits of types in VR are useless

and

infer VR e terminates

then
if there is an r such that VR I- e : r then

(infor VR e) -< r.

Proof: By induction on e. But first we need to derive the simple consequence of Lemma
2.98 (Syntactic Progress Decidability Sufficient) on page 138 that we will use to prove
principality:

Suppose

VR H e : r implies (2.61)
(infer VR e) -< r.

Also suppose
VR H- e: r. (2.62)

Clearly any derivation of (2.62) is going to include a derivation of VR H- e : r' for some r'.
Therefore, (2.61) gives

infer VR e is not ns (2.63)

and Lemma 2.98 (Syntactic Progress Decidability Sufficient) on page 138 gives

(infer VR e) < r. (2.64)

152 CHAPTER 2. REFINEMENT TYPE INFERENCE

Thus (2.62) implies (2.63) and (2.64), which is our principality result. The reasoning so far
tells us that (2.61) implies principality:

For all r,
(VR H- e : r implies

(infer VR e) _< r)
implies (2.65)
For all r,
(VR F- e : r implies

(infer VR e) - r)

In each case of the proof below, we shall use (2.65) to establish principality instead of doing
it directly.

Case: e = y] IThe code for this case is

fun infer VR y =

if for some t we have VR(y) C- t
then VR(y)
else ns

Suppose VR H- y : r. Then the last inference of this must be VAR-TYPE with the premises
VR(y) = r and r C t. Since VR(y) C t, we know that infer VR y returns VR(y). By
SELF-SUB, this implies (infer VR e) < r, which in turn implies (infer VR e) -< r.
Thus (2.65) gives principality.

Case: e = fn z: t => e' The code for this case is

I infer VR (fn z:t => e') =
if there is a u such that rtom(VR)[z := t] F- e' :: u
then

let val u = the unique u such that rtom(VR)[x := t] F- e' :: u
fun do-one r =

sjoinf u {infer (VR[a := r']) e' Ir' E split r}
in

Afn {r--*doe-one r I r E allrefs t and (do-one r) # ns}
end

else ns

Suppose
VRH-(fn x:t => e') : p.

The last inference of this must be ABS-TYPE, where p has the form k" -+ k' and the premises
of ABS-TYPE are

ki C t

2.10. DECIDABILITY 153

and

VR[z:= k"] I- e': k'.

By soundness of allrefs, there is a k in allrefs t such that k =_ k". Suppose r' is
in split k. Then r' _< k, so r' < k" and Lemma 2.66 (Environment Modification) on
page 81 gives

VR[zx r'] F- e': V'.

Because split is sound, r' has no useful splits. Thus we can use our induction hypothesis
to get

(infer (VR[ix r']) e') V k'.

Because sjoinf is sound and U is a least upper bound,

do-one k - k'.

Thus ARROW-SUB gives

k--+do-one k < k- '.

Since k = V", we can use TRANS-SUB and RCON-SUB to get

k -- do-one k <_ V" --+ V'.

Thus the definition of infer and repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB

give

(infer VR e) < k" - '.

Summarizing the argument so far in this subcase,

VR H- fn z: t => e' : p implies
(infer VR e) < p.

By (2.65), this implies our conclusion.

I Case: e = el e2 I The code for this case is

154 CHAPTER 2. REFINEMENT TYPE INFERENCE

I infer VR (e, e2) =
let val r? = ine or VR el

val l? - infer VR e2
in

if r? = ns or k? = ns
then ns
else

let
val u -- t = rtom(r?)
val u' = rtom(k?)

in
if u = U,
then ifn r? k? u
else ns

end
end

Suppose VR H- el e2 p'. The only way to infer this is with APPL-TYPE with the premises

VR F- el : p--+ p'

and
VR I- e2 : p.

Since infer VR e terminates, both infer VR el and infer VR e 2 must terminate.
Thus we can use the induction hypothesis on each of these to get

infer VR el : p--,p'

and
infer VR e2 -< p.

Abbreviate infer VR el as r and infer VR e2 as k.

Uninteresting reasoning about refinement types tells us that rtom(r) will indeed have
the form u --, t and that rtom(h) = U.

By definition of i we have i(p -- p')(p) = p'. Lemma 2.81 (i Monotone in First
Argument) on page 109 implies i(r)(p) • i(p --* p')(p), and Lemma 2.80 (i Monotone in
Second Argument) on page 108 implies i(r)(k) : i(r)(p). Thus

i(r)(I) -< p'. (2.66)

Thus infer VR e is not ns. We can use the definition of infer to rewrite (2.66), yielding

infer VR e < p'.

2.10. DECIDABIUTY 155

The argument in this subcase so far can be summarized as

VR H- el e2 : p' implies
infer VR e -- p'.

By (2.65), this implies our conclusion.

jCase: e The code for this case is

infer VR (c e') =
let val k? = infer VR e' def

i val t = the unique t such that c t -*tc
in

def

Afn {rc I r E allrofs t and subtypep k? r t and c r•f r rc}
end

Suppose
VRH-c e':p.

The last inference of this must be CONSTR-TYPE, where p has the form pc and the premises
of CONSTR-TYPE are

def p

and
VR F- e': p'.

Our induction hypothesis gives
h? __ p'.

By Assumption 2.2 (Constructors have Unique ML Types) on page 26, there are unique t
def

and tc such that c V t ,-+ tc. By Assumption 2.49 (Constructor Type Refines) on page 65,
p' C t, so there is an r in allrefs t such that p' - r. Then Assumption 2.52 (Constructor

Argument Strengthen) on page 67 gives

def
c : r -4 pc

and TRANS-SUB gives
k? -<r.

def
Thus pc e{re I r E allrefs t and subtypep k? r t and c r •4- rc}.

Since this set is not empty, this call to infer does not return ns. By repeated use of
AND-ELIM-L-SUB and AND-ELIM-R-SUB,

(A{rc I r E allrefs t and subtypep k? r t and c • r d -- rc}) :_ pc.

Summarizing the argument so far in this subcase,

VR H- e : p implies
(infer VR e) _• p.

156 CHAPTER 2. REFINEMENT TYPE INFERENCE

By (2.65), this implies our conclusion.

Case: e = case eo of c, => el I ... I c,, => e, end:t I The code for this case is

infer VR (e as (case e0 of c= => e . c, -> e, and:t)) =
if not rtom(VR) F- e:: t then ns
else let val r? = infer VR eo

in if r? = ns then ns
else let val rc = rconsimp (r?)

in
sjoinf t {ifn (infer VR eh) p u

h E l..ndlef
and ch u -+ uc

and p E allref s udel

and ch . p C Fe}

end
end

Suppose we have an r such that VR H- e : r. The last inference of this must be CASE-TYPE
with the premises

VR eo : kc,

r i- t,

for h in 1 ... n and all k such that
def

Ch ICk - kc (2.67)
we have

VR I- eh : k r,

and
rtom(VR) I- e :: t.

Thus the ML type checking in this case of infer succeeds and this case of infer
evaluates infer VR eo. Since this case of infer terminates, infer VR eo must
terminate. Thus our induction hypothesis gives (infer VR eo) __< kc. Let rc =

rconsimp (infer VR eo); soundness of rconsimp then gives rc < kc.
dlef

Now we shall show that for all h in 1... n and all p such that Ch " pP 4 rFe,

i(infer VR eh)(p) < r.

def
First choose h in 1... n and p such that Ch : p -* Fe. By (2.67), this implies VR H- eh

p - r. Then the induction hypothesis gives

infer VR eh _< p -IF.

2.10. DELIDABILUTY 157

By Corollary 2.82 (Bound on Argument to i Gives Bound on i) on page 111, this implies

i(inf er VR eh)(p) < r.

def
Since this holds for all h in 1... n and all p such that Ch p p- rc, the call to sjoinf in
this case of infer does not return ns. Thus

infer VR e is not ns

and sjoinf computes a least upper bound, so

(infer VR e) -< r.

Summarizing the argument so far,

VR H- e : r implies
(infer VR e) -< r.

By (2.65), this implies principality.

Case:e = (e, ... , e,) The code for this case is

I infer VR (el, ... , e =

if for any i in 1..n we have infer VR ei = ns
then ns

else infer VR el * ... * infer VR en

Suppose VR HI-(e 1 , ... , e,,) : r. The last inference of this must be TUPLE-TYPE, so r has.
the form r* ... * r, and the premises of TUPLE-TYPE are

for h in 1 ... n we have VR [- eh : rh.

Our induction hypothesis gives

for h in 1 ... n we have (infer VR eh) -< rh.

This immediately tells us that infer VR e is not ns. RCON-SUB gives

infer VR el * ... * infer VR en _< ?" * r•

and by definition of this case of infer, this is equivalent to

infer VR e < r.

Summarizing the argument so far,

VR H- e : r implies
(infer VR e) -< r.

By (2.65), this implies principality.

Case: e = elt-m-n e' IThe code for this case is

158 CHAPTER 2. REFINEMENT TYPE INFERENCE

infer VR (elt.mn e') =
let val k? = infer VR e'
in

if k? - ns then ns
else let val kj, ... * ki, = tuplesimp (k?)

in kc,. end
end

Suppose VR H- elt-mn e' : r. The last inference of this must be ELT-TYPE with the
premise VR F- e' : r, * ... * rn where r = r,.. By induction hypothesis, infer VR e' is
not ns; call it k. The induction hypothesis also gives k < r, * ... * r,.. By Theorem 2.21
(Subtypes Refine) on page 36, there must be a t such that k C t and r *,... * r C: t. We
can only have r, * ... * r, E" t if t has the form t1 * ... * tn. Thus k is a valid input to
tuplesimp, and soundness of tuplesimp gives k =_ tuplesimp k.

Let k, *...,*k,. = tuplesimp k. Then TRANS-SUB gives ki *...,k,* <k r *. .. ,r, and
Corollary 2.27 (TUPLE-SUB Inversion) on page 45 gives ki _< r•.. But km = infer VR e
and r, = r, so we have (infer VR e) < r.

Summarizing the argument so far,

VR H- elt..m.n e' : r implies
infer VR e -< r.

By (2.65), this implies principality.

Case: e = fix f:t => fn x:t, => e' The code for this case is

infer VR (e as (fix f:t => fn x:tj => e')) =

lot fun loop r =
let val next? = infer (VR[f:=r]) (fn x:t1 > e')
in

if subtypep nezt? r t then r
else if nezt? = ns then ns
else loop nezt?

end
val t'--+t2 = t

in
if t' t• then ns
else if ML type inference does not give rtom(VR) - e:" tl -t
then ns
else loop (botfn (tl--+t2))

end

We will abbreviate In z: t => e' as e".

2.10. DECIDABIIfTY 159

Suppose
VRM -fix f:t => e":k. (2.68)

The last inference of this must be FIX-TYPE, so

t has the form tj --+ t2 (2.69)

and the premises of FIX-TYPE are
k C t --t-t 2

and
VR[f := k] F- e" : k. (2.70)

We will show by induction on the execution of this case of infer the following properties
of the argument r of loop:

r<k

and
infer (VR[f:= r]) e" is not ns.

For the base case, r = botfn t. Soundness of botfn gives r < k, and Lemma 2.66
(Environment Modification) on page 81 applied to (2.70) gives VR[f := r] F- e" : k. By
Fact 2.35 (Splits of Arrows are Simple) on page 51, r has no useful splits; thus the outer
induction hypothesis tells us that infer (VR[f := r]) e" is not ns, which is what we
wanted to show.

For the induction case, this call to loop is from the body of loop. Thus we can assume
by induction that r < k and we have to show that nezt? < k and that infer (VR[f :=
nezt?]) e" is not ns. Lemma 2.66 (Environment Modification) on page 81 starting with
(2.70) gives

VR[f := r] F e": k.

The outer induction hypothesis applies because Fact 2.35 (Splits of Arrows are Simple) on
page 51 tells us r has no useful splits, so we have

infer (VR[f := r]) e" is not ns; call it nezt?

and
next? < k. (2.71)

Lemma 2.66 (Environment Modification) on page 81 starting with (2.70) again gives

VR[f := nezt?] H- e": k

and the outer induction hypothesis (using Fact 2.35 (Splits of Arrows are Simple) on page 51
to conclude that next? has no useful splits) gives infer (VR~f := nezt]) e" is not ns.
This and (2.71) are our conclusions. This completes the inner induction.

160 CHAPTER 2. REFINEMENT TYPE INFERENCE

Now we have everything we need to show that infer VR e is not ns. Theorem 2.54
(Inferred Types Refine) on page 68 applied to (2.68) gives a t' such that k C t' and

rtom(VR) H- e:: t'. (2.72)

Lemma 2.10 (Unique ML Types) on page 31 gives t = t'. By (2.69) and (2.72), the if
statements before the initial call to loop do-not cause infer to return ns. By the most
recent induction, the call to loop does not return ns. Thus

infer VR e is not ns.

The most recent induction also gives

(infer VR e) < k.

Summarizing this subcase so far,

VR H- e : k implies
(infer VR e) -< k.

By (2.65), this implies principality. 0

The next theorem shows that infer always terminates. The case of this theorem dealing
with fix statements uses Theorem 2.101 (Infer Returns Principal Type) on page 151.

Theorem 2.102 (Infer Terminates) If

all splits of types in VR are useless

then
infer VR e always terminates.

Proof: By induction on e. The cases are all very simple, except the case for fix statements.

[Case: e = y I The code for this case is

fun infer VR y =
if for some t we have VR(y) Et
then VR(y)

else n's

and termination is trivial.

Case: e = fn z: t => e' IThe code for this case is

2.10. DECIDABILITY 161

inf er VR (fn z:t -> e') -

if there is a u such that rtom(VR)[z:= t] I- e':: u
then

let val u = the unique u such that rtom(VR)[z t] I- e' :: u
fun do-one r =

sejoinf u {inf er (VR[z r']) e' I E split r}

in
Afn {r -do-one r rE alnref s t and (do-one r) - ns}

end
else ns

By soundness of split, all r' in split r have no useful splits. Thus, by induction
hypothesis, the recursive calls to inf or all terminate. Since principal splits are computable,
all calls to split terminate. Since the refinements of an ML type are enumerable, calls to
allrefs terminate. Thus this case of infer terminates.

[Case: e 2 The code for this case is

infer VR (e, e2) =
let val r? = infer VR el

val k? = infer VR e2
in

if r? = ns or k? = ns
then ns
else

let
val u- t = rtom(r?)
val u' f rtom(k?)

in
if U = Us'
then ifn r? k? u
else ns

end
end

By induction hypothesis, the recursive calls to infer terminate. By soundness of ifn it
always terminates. Thus this case of infer terminates.

[Case: e = c e' [The code for this case is

162 CHAPTER 2. REFINEMENT TYPE INFERENCE

I infer VR (c e') =
let val k? = infer VR e' def

val t = the unique t such that c :: t -* tc
in det

Afn {rc I r E allrefs t and subtypep k? r t and c • r -- rc}
end

All loops in this case of infer loop over finite sets, and our induction hypothesis tells us
that the recursive call to infer terminates.

Case: e = case eo of c1 => el I ... I = > e, end:t IThe code for this case is

infer VR (e as (case e0 of cl => el I ... I c, => e. end:t)) =

if not rtom(VR) F- e:: t then ns
else let val r? = inter VR eo

in if r? = ns then ns
else let val rc = rconsimp (r?)

in
sjoinf t {ifn (infer VR eh) p u

hE 1..n
def

and Ch :: u "- uc
and p E allref s u

def
and Ch P p-- rC}

end
end

By induction hypothesis, all recursive calls to infer terminate. All other operations in this
case are calls to functions that terminate or iterations over finite sets, so this case of infer
terminates.

Case: e = (e!, ... , e,) The code for this case is

infer VR (el, ... , en) =

if for any i in 1..n we have infer VR ej = ns
then ns
else infer VR el * ... * infer VR en

By induction hypothesis, all recursive calls to infer terminate, so this case of infer
terminates.

Case: e = elt-m-n e' I The code for this case is

Z10. DECULMM/TY 163

infeor VR (olt.m-n e')
lot val k? = infer VR e'
in

if le? = ns then ns
else lot val ki ,... * k= tuplesimp (k?)

in k,. end
end

By induction hypothesis, the recursive call to infer terminates. Calls to tuplesimp always

terminate. Thus this case of infer terminates.

Case: e= fix f:t => fn z:t, => e' IThe code for this case is

infer VR (e as (fix f:t => fn ::t1 => e'))

let fun loop r =
let val next? = infer (VR[f :=r]) (fn z:t1 => e')
in

if subtypep nezt? r t then r
else if nezt? = ns then ns
else loop nezt?

end
val t'-+ t2 = t

in
if t, 5 tl then ns
else if ML type inference does not give rtom(VR) F- e "" t 2 -*

then ns
else loop (botfn (t, -. t2))

end

We will abbreviate fn x: tj => e' as e".

If we never get to the call to loop in this case of infer, then we obviously terminate
and return ns. Otherwise, Theorem 2.100 (Infer Returns Some Type) on page 145 and
Lemma 2.99 (Fix Case of Infer is Well-Behaved) on page 144 tell us that the argument r
to loop always refines tI -- t2. By Fact 2.35 (Splits of Arrows are Simple) on page 5 1, r
has no useful splits, so our induction hypothesis applies and tells us all recursive calls of
the form infer (VRIf := r]) e" terminate. Thus the computation progresses from each
recursive call to loop to the next. Now we have to show that there are only finitely many
recursive calls, and then we will know that the outer call to loop terminates.

Let rl, r2,... be the values of r in the successive recursive calls to loop. Thus r, =

botfn (tt -- t2). We will show by induction that for all h > 0 we have rh -- rh+l.

The base case is trivial. Since r, = botfn (tl --* t2), we know that r, is a subtype
of any refinement of t1 -- t2. Earlier argument tells us that r2 E tl -. t2, so this implies
" _< r2.

164 CHAPTER 2. REFINEMENT TYPE INFERENCE

For the induction case, we can assume that rh-1 I< rh. By definition of loop, rh+1 =

inter (VR[f := rh]) e". Theorem 2.100 (Infer Returns Some Type) on page 145 therefore
gives

VR[f := rh] H- e"• rh+1

Then we can use Lemma 2.66 (Environment Modification) on page 81 and rh-& _I rh to get

VR[f :-- rh-] [- e": rh+1.

Since rh-1 C: tl -+ t2, Fact 2.35 (Splits of Arrows are Simple) on page 51 tells us that rh-1

has no useful splits. Thus Theorem 2.101 (Infer Returns Principal Type) on page 151 gives

(intfr (VR[f := dh-1) e") -< rh+.

By definition of loop, this is equivalent to

rh • rh+lI

which is what we wanted to show. This completes ue inner irituction.

Repeated use of TRANS-SUB with the inner induction gives

h < j implies rh •_ rj.

By definition of loop and soundness of subtypep, we would not get to iteration h + 1 if
r,+ 1 •_ rh; thus, for all h we have

rh+1 ýKrh

From this we can use the following reasoning to show that no two of the rh's are
equivalent. Suppose by way of contradiction that rh - rj where h < j. Then h + 1 < j,
so we have rh+! < rj. Then we can use TRANS-SUB on this and rh = rj to get rh+1 _< rh.

This contradicts our result from the previous paragraph, so we cannot have rh = ri when
h<j.

By Theorem 2.90 (Finite Refinements) on page 115, the sequence ri, r 2 ,.. only contains
representatiN -s from finitely many equivalence classes of refinements of t1 - t2. Since they
are all from distinct equivalence classes, there must be only finitely many of them. Thus
there are only finitely many rh's, and loop and this case of infer always terminate. 0

Chapter 3

Declaring Refinements of Recursive
Data Types

3.1 Introduction

The previous chapter defined refinement type inference in terms of sets of refinement
type constructors refining each ML type constructor. This chapter describes rectype
declarations, which are a compact way to specify these sets of refinement type constructors
and the operations on them.

We shall call the types appearing in rectype declarations recursive types. These types'
bear some resemblance to the recursive types of [AC90]; we compare the two systems on
page 169.

Because refinement type constructors must be closed under intersection, we must either
require rectype declarations to include enough definitions to ensure closure, or we need
to allow the theory to introduce refinement type constructors that do not appear in any
rectype statement. For example, the declaration

datatype bool = true () I false 0
rectype tt = true (runit)

and ff = false (runit)

does not define a refinement type constructor for the intersection of tt and ff. It would
better to automatically synthesize such a definition than to require the programmer to
augment the rectype declaration. The theory below does this; the synthesized type is
it & Yf. Here & is an infix operator that combines one or more of the identifiers defined
by the rectype statement (which we shall call recursive type constructors) to form a
refinement type constructor. Since & is infix, the assumption we have made so far that the
rectyTl. statement above defines the refinement type constructors tt and ff is true with this
interpretation.

165

166 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Another concern is interacting smoothly with the global environment used in the previ-
ous chapter. In that chapter, we wrote assertions like

def

nil :: runit - blist

as though they were simply true, instead of treating them as assumptions from an explicit
list of assumptions, or environment; to put it another way, the environment was an implicit
global variable. The environment never changed, so this was very convenient. In contrast,
the declarations introduced in this chapter specify new assumptions to add to the environ-
ment. We could clarify the manipulation of the environment by making the environment
explicit, but that would create notational problems when we refer to results from the previ-
ous chapter, so instead we will continue to manipulate it implicitly. Since we are describing
changes to the environment, we have "old" assertions that are already in the environment
and in this chapter we describe the "new" ones that will be added. The words "old" and
"new" will be used consistently in this sense throughout this chapter.

With this distinction in mind, we can give the following grammar for rectype state-
ments. The metavariable names in this chapter are slightly awkward because both "recur-
sive" and "refinement" start with "r". We resolve the ambiguity by using "n" (standing for
"new") in the names of metavariables concerned with recursive types. For example, in the
grammar below, we use the terminal nrc to stand for recursive type constructors. We also
use rc to stand for old refinement type constructors, r to stand for old refinement types, tc
to stand for ML type constructors, and c to stand for new value constructors:

rstmt rectype defn and ... and defn
defn nrc = enr
e r::= rc I c (enr) I r -enr

enr *... * enr I runit I bottom tcl
enr & enr I enr I enr

In this grammar the name of the nonterminal enr stands for extended recursive types (which
are slightly more flexible than the recursive types that will be introduced below). Notice
that the metasymbol "I" is used in the grammar to define a language construct containing
the character "I ". We shall assume throughout that the syntactic operators & and I are
associative, commutative, and idempotent; thus, for example, tt & ff and ff & tt are the
same syntactic object.

The intuitive meaning of these declarations is fairly simple: think of them as a notation
for defining sets of values. The recursive type constructor on the left hand side of the "="

is defined by the extended recursive type on the right hand side. The extended recursive
type c (enr) contains all values that can be constructed by applying the constructor c to
iome value in enr. The extended recursive type bottom (tc) contains no values and it
refines tc; it should be distinguished from the identifier I t,, which is the typeset form of the
identifier bottomctc and can in principle be given an arbitrary definition by the programmer
(although defining it as anything other than bottom (te) would be atn unnecessary surprise).
The extended recursive type enr1 I enr 2 contains all values appearing in either enrl or

3.1. INTRODUCTION 167

enr 2. The meanings of the other extended recursive types should be clear by analogy with
refinement types.

The notation c (enr) is meant to resemble the use of value constructors to construct
values. We increase the resemblance by allowing c (enrl,... , enr,,) as syntactic sugar
for c (enri * ... * enr,). To make parsing easier, we require the parentheses to always
be present; this makes it possible to parse rectype statements without knowing in ad-
vance which identifiers are value constructors and which are refinement or recursive type
constructors.

As we did for refinement types, we shall use runit to stand for the empty tuple of
recursive types. Comparing this grammar with the one for refinement types on page 30
makes it clear that all refinement types look like extended recursive types; although there
is a natural correspondence between the two, it is best to think of them as distinct. Context
will make it clear which is meant. An alternative would be to add notation to make the two
kinds of types appear distinct; this seems too laborious.

The notation bottom tc gives a way to write types that contain no values; we shall say
that these types are empty. If there are two or more value constructors, we can also write
an empty type as an intersection; for example, given the datatype declaration

datatype blist = cons of bool * blist I nil of tunit

we can write the empty type as

rectype -L-bhit = cons (T-b6 .t,-J-b1t)& nil (runit)

However, it seems better to provide the bottom notation as well, since this is more direct
approach. When we transform the syntax described here into a normal form, only the direct
approach will be available.

In this thesis, we will require the declaration of a datatype and the unique rectype
declaration specifying refinements of that datatype to appear together. A more general
approach would allow declaring a datatype followed by some expressions using that datatype
followed by a declaration of refinements of that datatype, or even rectype declarations
that have their scope limited by a let statement. In the general case, two problems arise:
what to do with the types of variables in the environment when entering the scope of a
rectype declaration and what to do when we leave the scopc of a rectype declaration.
These problems seem solvable, but nevertheless beyond the scope of this thesis. Because
we forbid separating corresponding datatype and rectype declarations, when we analyze
a rectype declaration it is possible to make a clear distinction between "new" value
constructors and ML type constructors and "old" ones: the new constructors appear in the
associated datatype statement, and the old ones do not.

The syntax of rectype stltements above outlaws recursion on the left hand side of
by only permitting old refinement types on the left hand side of --. This avoids situations

168 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

where there is no obvious fixed point of a declaration; for example, suppose the restriction
were lifted and consider the declaration

datatype d - A of d--bool I B of Lunit
rectype r = A of r - tt

From an intuitive point of view, it is entirely unclear how to determine whether a particular
value is in r because as we include more values in r, the definition of r tells us there are
fewer values in r. Formally, the problem with recursion on the left hand side of -* is that
the definition of membership of a value in a recursive type in Figure 3.2 ceases to be a
monotone function, so we no longer know that it has a fixed point. This is discussed in
more detail on page 182 after we present that definition.

3.1.1 Outline of this Chapter

A rectype declaration is accepted by type inference if it satisfies some minor semantic
restrictions described in the next section and it can be rewritten as a set of definitions of the
form:

defn ::= nrc >- c(nr) I bottom (tc)
"nr ::=r -- nr I nr & nr I I rc I nr*... *nr I runit

Unlike the previous grammar, this one only allows value constructors at the top level, and
it disallows the symbol" I". We have also replaced the "=" with ">-"; this is meant to imply
that we now allow multiple declarations of a type for a given nrc to (roughly speaking)
mean that nrc stands for the union of all the definitions that appear. The meaning is formally
defined in Section 3.2. For example, rewriting the declaration

datatype blist = cons of bool * blist I nil of tunit
rectype betf = cons (Tb * cons (T 4,., * bev)) I nil (runit)

starts by creating a new type name (the implementation will select names that look like
g 398) and results in the set

{be >-- cons(Tb..1, * g398),
bev >- nil(runit),
g398 _- cons(Ti.., * bev),
Tb6 i, >" cons(Ti.., * Tbt),
Ybtii t nil(runit)}

In Section 3.3, we describe how to infer that some recursive types are empty. For
example, we can infer that in the presence of the declaration above, the recursive type
bev & g398 contains no.values. This inference system is only valid because our con-
structors are eager, if they were lazy, the type be, & 939 8 would contain the infinite value

3.1. INTRODUCTION 169

cons (true (), cons (true () ...)), which could be constructed by using a fixed point
operator.

In Section 3.4, we describe how to infer when one recursive type is a subtype of another.
This inference system can reason about empty types; for example, if we add the definition

bern >- nil(runit)

we can infer bev & g398 < bern.

In Section 3.5, we describe how to infer that one type is contained in a union of other
smaller types. For example, we can infer T bi,, - {bev, g398}.

In Section 3.6, we define the new refinement type constructors in terms of the recursive
type constructors appearing in the declaration, and we prove that all of the assumptions
made in Chapter 2 about the behavior of refinement type constructors hold when they are
defined by rectype statements. We also prove that whenever a value has a refinement
type, it has the corresponding recursive type.

3.1.2 Related Work

We can think of a recursive type as a recognizer for a sublanguage of the language of
values; in this sense, a recursive type is similar to a regular tree automaton as described in
[GS84]. One difference is that our language of values includes functions; another difference
is that our procedure for deciding subtypes for recursive types is weaker than the decision'
procedures for deciding inclusion of regular tree automata in [GS84J, even for recursive
types that contain no function types. See the example on page 193.

The algorithms presented in this Chapter are similar to the ones in [TZ9 1]. Our recursive
types differ from their term grammars in that we have function types but they do not, and
their term grammars are closed under union and complement but our recursive types are not.
Some of the proofs below use an induction principle that appears in their paper, specifically
induction on the pair (complement of the trail, some tree) ordered lexicographically.

The algorithms presented in this Chapter also resemble the ones in [AC901. The abstract
declarations appearing here are very similar to the regular systems described in that paper,
and our algorithm for subtyping recursive types is a version of the algorithm described on
page 24 of that paper, modified to deal with the features we have added to our type system.
Our recursive types disallow the recursion on the left hand side of arrows that is allowed
in [AC90], and our system has intersections, which do not appear in [AC90]. The proof
in this chapter that the algorithm used here is correct does not resemble theirs at all; they
reason about finite approximations to infinite trees to show that their algorithm is consistent
with another axiomatization of subtyping, whereas we have axioms for determining when
a value has a recursive type, and we prove that the inclusion relation from this algorithm is
consistent with membership of values in types.

170 CHAPTER 3. -iCLARING REFINEMENTS OF RECURSIVE DATA TYPES

In both [AC90] and this chapter, there are two conceptually distinct fixed points in
the definition of membership of a value in a recursive type. One fixed point converts the
recursive type to a potentially infinite non-recursive type; in [AC90], this is a least fixed
point. In this Chapter, we require each recursive definition to have the form nrc >- c(...);
since the constructor c is always present, the recursion makes progress and the infinite tree
is uniquely determined. (In [AC90], the recursive type is rewritten to make the fixed point
unique before the subtyping algorithm is used.)

The second fixed point determines whether a value is in this potentially infinite non-
recursive type. In this chapter, the fixed point is a greatest fixed point. In [AC90], enough
explicit types appear in the terms to uniquely determine the fixed point. Using a greatest
fixed point is appropriate, since we want to assign as many types to as many terms as
possible while preserving soundness.

There are four important relations axiomatized in this Chapter: membership of a value
in a recursive type, emptyness of a recursive type, subtyping for recursive types, and
splitting for recursive types. All of these are greatest fixed points of the axiom system,
rather than the customary least fixed points. Informally, this means infinite proof trees
are permitted. Formally, we think of each inference system as a monotone function and
consider a judgement to be valid if it is a member of the greatest fixed point of the function.
A proof technique commonly used in the literature (and in this thesis) with greatest fixed
points is co-induction, as described in [MT91al, among other places.

3.2 Abstract Declarations

def def

In the previous chapter, we assumed that information about the primitives :, <, and so
forth appeared in a global environment. When type inference encounters datatype and
rectype statements, the global environment must be updated appropriately. In this chapter,
we will assume that the datatype statement has already been added to the environment,
and we will describe how to add the rectype statement.

The proofs and inference systems are simpler if we simply assume that & for recursive
types is commutative, associative, and idempotent.

Declarations given by the programmer need to be manipulated in several ways before
they become regular enough for simple algorithms to apply to them. In this section we
will informally describe how the user's declarations are converted to a normal form called
abstract declarations, and we will define well-formedness for abstract declarations. All of
the algorithms described in future sections take well-formed abstract declarations as input.

3.2. ABSTRACT DECLARATIONS 171

3.2.1 Expansion

Circular definitions of recursive type constructors are potentially confusing. For example,
consider the declaration

datatype d = D of d
and e = E of e

rectype loop = loop

We could decide that the fixed point by which we give meaning to these declarations is
a least fixed point, as was done in [AC90]; with this interpretation this declaration would
mean that loop is an empty type. Alternatively, we could decide that it is a greatest fixed
point, in which case loop should contain all of the refinements of some ML type. However,
there is no natural way to determine which ML type loop refines, so instead this declaration
is considered an error. In this Subsection we will detect all errors of this kind by making
sure each definition of a recursive type constructor makes progress before recurring.

Define the toplevel of an extended recursive type to be the outermost subterms of the
recursive type that do not use the "&" or "1" operators. For example, the toplevel of the
extended recursive type

cons (Tb.,e * bern) & (cons (it * bnem) I bern)

consists of the subterms cons (T1 .,1 * bern), cons (it * bnem), and bern. To perform
expansion, repeatedly replace all refinement type constructors at the toplevel with their
definitions until there are no refinement type constructors at the toplevel, or some definition.
is expanded more than once. If a definition is expanded more than once, we have a circular
definition and the rectype declaration is rejected as meaningless.

For example, the declaration

datatype nat = Succ of nat I Zero of tunit
rectype loopl = loop2

and loop 2 = loopI

is rejected because attempts to expand the definitions of both loop1 and loop2 fail to
terminate. On the other hand, the declaration

datatype nat =Succ of nat I Zero of tunit
rectype loopl = loop2

and loop2 = Succ (loopl)

is accepted and the result of this manipulation is

datatype nat =Succ of nat I Zero of tunit
rectype loopi = Succ (loopi)

and loop2 = Succ (loopl).

172 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

3.2.2 Flattening

Declarations given by the programmer will often require inventing new refinement type
names to get the expected effect. For example, with the declaration

datatype blist = cons of bool * blist I nil of tunit
rectype bev = cons (Ti., * cons (Tbt* bev)) I nil (runit)

we would expect the expression cons (true (), cons (true (), nil ())) to have the
refinement type bev. If the only refinement of blist is bev, we cannot infer this type for
this expression because we have no type for the expression bons (true (), nil ()).
To get the expected type for cons (true (), cons (true (), nil ())), we need to
automatically add another refinement of blist. In practice, the new refinement would be
given a nonmnemonic name like g398, and the rectype declaration would be treated as
though it were written

datatype blist = cons of bool * blist I nil of tunit
rectype bev = cons (T b,1 * g398) I nil (runit)

and g398 = cons (Tj.,1 * bev)

(The programmer can define a usable name for odd length lists by doing this expansion by
hand, using some mnemonic name such as "bod" in place of "g398".) The manipulation of
the rectype statement that adds these new recursive type constructors is called flattening.

The problem is that we have value constructors that are not at the toplevel, and the
solution is to introduce new recursive type constructors until all value constructors are at
the top level. To describe this formally, we will have to speak in terms of a context C,
which is an extended recursive type with a hole. For example, we can write

cons (T&, * cons (Tb.,1 * bev)) I nil (runit)

as C[T.. 1], where C[.] = cons (-* cons (Tb.., * ben)) I nil (runit). With this defini-
tion, we can formally specify how to flatten a rectype declaration: whenever we encounter
a definition of the form

nrc = C[nr]

where the • in C[.] does not appear at the toplevel, but all toplevel subexpressions of nr
have the form c (nk) or bottom (tc), we choose a new recursive type constructor nkc and
replace this definition with the two definitions

nrc = C[nkc]
nkc = nr

3.2. ABSTRACT DECLARATIONS 173

The requirement that does not appear at the toplevel of C[.] is necessary ensure that
the manipulation actually makes the rectype simpler, without the requirement, the result
of applying this manipulation to the above example could be

datatype bliet = cons of bool * blist I nil of tunit
rectype hev = 9398

and 9398 = cons (Tb.., * cons (T6.1 * bet)) I nil (runit)

which is hardly an improvement.

The requirement that all toplevel subexpressions of nr have the form c (nk) or
bottom (tc) is necessary to ensure that all refinement type constructors created by this
manipulation refine an ML type constructor, instead of refining some ML type. For exam-
ple, without this restriction the result of applying this manipulation to the above example
could be

datatype bliut = cons of bool* blist I nil of tunit
rectype bev = cons (Tb * cons (9398)) 1 nil (runit)

and g398 = Tb,•, * bey

which will not satisfy the semantic restrictions that appear below because the new recursive
type constructor g398 refines bool * blist, which is not a new ML type constructor.

3.2.3 Simplification

Now we can manipulate the rectype statement to ensure that the toplevel of each definition
is simply a call to a value constructor or bottom, rather than an intersection or union of
calls to value constructors or bottom. We can also eliminate some unions; any unions not
eliminated by this manipulation cause an error.

Repeat the following rewrites until none of them apply:

"* If the definition has the form

nrc = enr! I enr 2

replace it with the two definitions

nre = enrI

nrc = enr2 .

"* If the definition has the form

nrc = c (enr 1)&c (enr2)&...

174 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

replace it with

nrc - c (enrl & enr 2)&...

o If the definition has the form

nrc = cl (enr) & c2 (enr2) &...

where cl and c2 are different, replace it with

nrc = bottom tc

where ic is the ML type of the result of cl.

These rewrites will rewrite many rectype statements so each definition has the
form nrc - c (enr) or nrc = bottom (tc). If they do not, then the rectype state-
ment is considered meaningless; for example, the results of rewriting may have the form
nrc 2a enr l -+ enr 2 or nrc = c (enrl) & (enr 2 * enr 3). These are and should be disal-
lowed; the former because the user has apparently attempted to declare a new refinement
of -, and the latter because the new recursive type constructor must refine both the output
type of c (which must be a datatype) and some tuple type.

3.2.4 Adding Top

Suppose we declare the booleans as

datatype bool = true of tunit I falso of tunit
rectype it = true (runit)

and ff = false (runit).

If this only gives rise to the refinement type constructors it, if, and it & ff refining bool,
then there would be no type for an expression when refinement type inference cannot infer
that it always evaluates to true () or it always evaluates to false (). For example, most
calls to the function samelength defined by

fun samelength (cons (x, tlx)) (cons (y, tly)) = samelength tlx tly
I samelength nil nil = true
I samelength - - = false

will get a type error. Our options at this point are to declare that most calls to samelength
cause a type error unless the user adds a definition

... and Tb.,1 = true (runit) I false (runit),

3.2. ABSTRACT DECLARATIONS 175

or we could implicitly add the definition. Since there will often be expressions where
refinement type inference does not deduce precise information, we choose to implicitly add
definitions of catch-all types like Tb1 ,* to every rectype declaration.

When the value constructors have arguments, the added definitions will mention the
maximal refinement of other refinement types. For example, the definition we would add
to

datatype d = C of bool

rectype dtrue = C (tt)

would be

... and Ti = C (Ti.,).

When the datatype includes functions, the catch-all refinement type will have to have
minimal refinement types on the left hand side of each arrow, as well. For example, the
implicit definition of the catch-all type for the declaration

datatype d = C of bool -- bool

is

rectype Td = C ((tt&ff)--Tb..i)

and not

rectype T, = C (Tb.,- T-..)

because the latter does not assign a type to an expression C x when x has the type it -- it.
As explained in Subsection 2.7.2 on page 74, we cannot yet construct values with the least
type tt -+ tt, but we will be able to in Chapter 6.

The general procedure for creating catch-all types is straightforward and will not be
given here. It starts to break down when we introduce polymorphic type constructors; see
Subsection 5.8.3 on page 272.

This procedure is not meaningful with a datatype declaration that is recursive on the
left hand side of -- such as

datatype d = A of d-- bool I B of tunit

because the generated rectype declaration would have recursion on the left hand side of
the ---, which is not consistent with the grammar given above for rectype statements.
The user cannot use a rectype statement to specify refinements of d either, for the same
reason. The best approach seems to be to give datatypes like this exactly one refinement,
which would be called T4 in this case, and to give trivial definitions of the primitives used
in Chapter 2 that satisfy the assumptions made.

176 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

3.2.5 Definition of Abstract Declarations

This chapter deals with recursive types, which we define in terms of recursive type con-
structors and refinement types. We shall use the following metavariables in this chapter:

nrc, nkc, npc Recursive type constructors.
nrcs, nkcs, npcs Sets of recursive type constructors.
nr, nk, np, nq Recursive types.
nrs, nks, npa Sets of recursive types.

This naming scheme is meant to be mnemonic; "n" stands for "new", "s" stands for "set",
"c" stands for "constructor", and "r", "k", "p" and "q" simply distinguish multiple names
of each type. We will also occasionally use metavariables defined in the previous chapter.

After we rewrite rectype statement given by the programmer as described above, we
can summarize the rectype statement as a set D of expressions of the form nrc >- c(nr)
or the form nrc >- bottom(tc).

For example, the declaration

datatype blist = cons of bool * blist I nil of tunit
rectype bey = cons (Tr0 *,, cons (Tb 0,5 , bev)) I nil (runit)

and bod = cons (T 6..I, bev)
and /Lai,t = bottom (blist)

corresponds to the abstract declaration

{Tbi. > cons(Tb.o * Tblist),
T bliti, nil(runit),

bev >- cons(TbL * bod),
bev >- nil(runit),
hod >- cons(Tbo., * bev),
-Ll-bt, t bottom(blist)l.

The environments of most of the type inference rules below will include an abstract
declaration, usually called D. There will be no corresponding description of the ML typedef
environment; instead, we will assume that appropriate assumptions of the form c :: t --+ tc
reflect the datatype declaration when c is new. We do thi, because this thesis is not
concerned with ML type inference and the extra notation does not seem worthwhile. A
complete description of an ML dialect that included rectype declarations should have an
explicit environment that includes descriptions of the datatype declarations in effect as
well as the rectype declarations.

3.2. ABSTRACT DECLARATIONS 177

DI-nrr-t DF-nkEt
AND-RECREFINES: D I- nr & tk E t

Dt - Dnr&-nk t

ARROW-RECREFr t D nr t2ARRO-RECEFIN_•: D 1- r --+ nr [-tI "--+ t2

for all c and nr such that nrc >- c(nr) E D

there is a t such that c t - tc
NEW-RECREFINIjr all tW' such that nrc >- bottom(tc') E D

we have te = tW'
D I- nrc Etc

defrc E tc
OLD-RECREFRNE: r

D I- rc E tc

TUPLERECRFNU: for all i we have D F- nri C" ti
TUPLE-RECREFINES: n~it

D F- nrtr * ... * nri E: t, * ... * t,

Figure 3.1: Monomorphic Recursive Type Refinement Rules

3.2.6 Well-formedness

In this section, we will give some conditions that abstract declarations used in this chapter
must satisfy. Rectype declarations giving rise to abstract declarations that do not satisfy
these conditions are rejected by type inference.

Given an abstract declaration, we must first check that it is well-formed. Since this
thesis is about refinement type inference and not ML type inference, we will assume

def
without further ado that assertions of the form c " t -+ tc derived from the datatype
statement are available. For instance, given the declaration

datatype blist = cons of bool * blist I nil of tunit

we should immediately have the assertions
def

cons "" (bool * blist) --- blist

nil de tunit - blist.

Given these assertions, it is possible to use the inference rules in Figure 3.1 to infer that
certain recursive types refine certain ML types.

These rules are analogous to the monomorphic refinement rules in Figure 2.3 on page 31,
except we have added a rule NEW-RECREF[NES which is not similar to any rule from

178 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Figure 2.3. This rule makes clear the purpose of the "bottom" declarations that can appear
in D; they constrain the ML type of recursive type constructors that would otherwise
be entirely absent from D. This is the only place we will use the "bottom" declarations.
Without these declarations, a completely empty recursive type constructor would not appear
at all in the abstract declaration, so it could refine all ML type constructors, which would
make Fact 3.9 (Recursive Unique ML Types) on page 179 false.

As in Chapter 2, we will consider runit and tunit to be tuples of zero elements, so we
can use the TUPLE-RECREFINES rule to infer D F- runit C tunit.

Now that we can determine when a recursive type refines an ML type, we can say what it
means for an abstract declaration to be well-formed. An abstract declaration is well-formed
if the next six conditions all hold. These conditions can all be easily checked by a program.

First we require all definitions in the abstract declaration to be consistent with the ML
types of the value constructors:

Condition 3.1 (Refinement Consistency) If D is well-formed then for all nrc >- c(nr) E

D, there are must be t and tc such that c týf t -+ tc and D I- nrc C tc and D H- nr E t.

The distinction between "new" and "old" constructors mentioned earlier is only useful
if the new constructors are limited in how they interact with the old ones. An appropriate
restriction is:

Condition 3.2 (New Recursive Type Constructors Defined) Every well-formed abstract
declaration must define all new recursive type constructors.

We need this because there is no way to determine the ML type refined by a new recursive
type constructor that does not appear in the declaration. This restriction is satisfied naturally
if the set of new recursive type constructors is taken as the recursive type constructors that
appear in the abstract declaration.

Condition 3.3 (New Value Constructors Defined) Every well-formed abstract declara-
tion must mention all new value constructors.

Without this restriction, the behavior of the new value constructors on refinement types
would not be determined. This restriction is enforced naturally when catch-all recursive
types are added.

Condition 3.4 (New Value Constructors Only) Every well-formed abstract declaration
must not mention any old value constructors.

Without this, the abstract declaration could define new refinements of old ML types. For
example:

3.2. ABSTRACT DECLARATIONS 179

datatype bool = true of tunit I false of tunit
... some code ...
datatype blist = cons of bool * blist I nil of tunit
rectype U = true (runit)

We have several more conditions that simply formalize some of the behavior of
datatype declarations. This restriction prevents incrementally declaring refinements of
existing data types:

Condition 3.5 (New Value Constructors Closed) The output type of each new value con-
structor must be a new ML type constructor.

Condition 3.6 (Declarations are Finite) All well-formed abstract declarations are finite.

The abstract declaration, as written, gives one or more definitions for some of recursive
type constructors. It is also possible to think of it as giving one or more definitions for
some intersections of recursive type constructors; we call the set of all of the intersections
the closure of D, and formally define it as follows:

Definition 3.7 (Intersection Membership) Define D to be the set with elements of the
form nrct & ... & nrc. >- c(nrl & ... & nra) where for i between 1 and n we have
nrci >t c(nri) E D.

Simple reasoning tells us that Condition 3.1 (Refinement Consistency) on page 178
extends naturally to intersections of recursive type constructors:

Fact 3.8 (Intersection Refines) If c.•f t - tc and &nrcs >- c(nr) E D then

D -nr E t

and
D V- & nrcs E- tc.

An analogue of Lemma 2.10 (Unique ML Types) on page 31 holds for recursive types:

Fact 3.9 (Recursive Unique ML Types) If D I- nr C t and D I- nr E u then t = u.

The proof of this is a straightforward induction on nr.

180 CHAPTER 3. DECLARING REFINEWMF.NT OF RECURSIVE DATA TYPES

nrs has two or more elements

AND-RECVALUE: for each nr in nrs we have D F- v E nr
D F v E &nr8

for all v and all v' we have
ABS-RECVALUEF v : r and (fn z: t => e) v =, v' imply D v' E nr

D (fn z:t => e) Er-+ nr

nrc c(nr) E D D u- v E nrNEW-RC-REC VALUEF c v E nrc

Sý-V: rc

OLD-RC-RECVALUE: D F- v E rc

for all i we have D F- vi E nri
D F- (vi, ... , V,,) E nr1 *... * nr,

Figure 3.2: Whether a Value is in a Recursive Type; Greatest Fixed Point

3.2.7 Meaning of Recursive Types

We can think of recursive types as standing for sets of values. Ip this section we will
specify when a value is in a recursive type. For technical reasons described below, the
inference system must be given an unusual interpretation that permits infinite proof trees.
The inference system is also somewhat unusual in that some inferences can have infinitely
many premises. Fortunately, this inference system does not need to be decidable. First we
will explain why we need infinitely tall inference trees, and how to formalize this. Then we
will explore various alternatives to the rule with infinitely many premises.

If one attempts to write inference rules for proving that a value has a recursive type,
apparent success comes quickly. If we write "with the abstract declaration D, the value v
has the recursive type nr" as D F- v E nr, then we get the inference rules in Figure 3.2.
(The need for the requirement of two or more elements in nks in the AND-RECVALUE rule
and the meaning of the phrase "Greatest Fixed Point" in the caption will be explained in a
moment.)

An ordinary interpretation of these inference rules works well for all values without
functions embedded in them. Unfortunately, it is possible to use function objects to define
possibly infinite lazy lists in ML, and a straightforward interpretation of the inference rules
in Figure 3.2 draws wrong conclusions in this case. We can declare possibly infinite lazy
lists of booleans with the declaration

datatype lazy = A of tunit -- (bool * lazy)

3.2. ABSTRACT DECLARATIONS 181

and we can distinguish lazy lists where all elements are true () with this declaration:

rectype alltrue = A (r-snit --+ it * alltrue)

The corresponding abstract declaration is

D = {alltrue >- A(runit -- tt * alltrue)}.

If the function object in a value with ML type lazy fails to terminate, then it vacuously
satisfies the ABS-RECVALUE rule. Thus if we let

v0 = A (fn x => (fix f => fn x => (f x)))

we have
D I- vo E alitrue

and if we let vi+j = A (fn x => (true (), vi)) for i > 0, we also have

D I- vi E alltrue.

However, because the normal interpretation of inference systems disallows infinite proofs,
we cannot use the normal interpretation of this system to give a type to the infinite lazy list

A (fn - => ((fix f => fn - => (true (), A f)) ())).

There are several possible ways to deal with this. In theory, one could imagine a type
system that gives no type to the infinite lazy list. Distinguishing the infinite lazy list from
lists that have a finite number of elements followed by an infinite loop when the next one
is fetched is equivalent to the halting problem, so that type system would also have to give-
no type to some finite lazy lists. This seems awkward.

Instead, we use an informal interpretation of the above inference system that permits
infinite proofs. Normally, the relation defined by an inference system is considered to be
the least relation consistent with the inference rules. Instead, we will interpret it as the
greatest relation consistent with the inference rules. This is the cause of the restriction of
AND-RECVALUE to sets of two or more elements; if we allow sets of one element, then the
conclusion of the rule is the same as the premise, and the greatest fixed point would include
all possible conclusions because for any value v and any recursive type r we would have
the infinite inference tree

"... [AND-RECVALUE]
DI-vErD I-2) E r[AND-RECVALUE]

Formally, we interpret this inference system as the greatest fixed point of a function.
Take D as fixed for the time being. A greatest fixed point must be within some universe;
let our universe U be the set of all possible pairs of the form (v, nr). We can encode the
inference system in Figure 3.2 as a function F mapping subsets of U to subsets of U. If we
abbreviate "nr has the form e" as "nr oc e", the part of the definition of F corresponding
to the AND-RECVALUE and ABS-RECVALUE rules is:

182 CHAP 3. DECLARING REFINEMEN73 OF RECURSIVE DATA TYPES

(v, nr) E F(Q) if and only if
(nr oX &nks where nks has 2 or mere elements, and

for all nk in nka we have (v, nk) E Q)
or
(nr oc r-*nk and v oc fr z:t => * and

for all v" and v' we have
if I- ,." : r
and (:fn z:t => e) v" =•,'
then (v',nk) EQ)

or
... omitted cases ...

where the omitted cases are always false if nr ox &nki where nks has 2 or more elements,
or nr oX r -- nk. With this definition of F, we say D F- v E r if (v, r) is in the greatest
fixed point of F, which we shall write as gfp(F).

It is easy to see that F is monotone. As we admit more premises of the form D [- v E r,
we can use the inference rules in Figure 3.2 to infer more conclusions of that form. By
contrast, if we allow recursion on the left hand side of arrows, the natural version of
ABS-RECVALUE would be

for all v and all v' we have
D I-v E nk and (fn z:t => e) v =:' v' imply D I- v' E nr

D I- (:fn x:t => e) E nk--+ nr

which is not monotone, since we have the premise D F- v E nk on the left hand side of an
implication.

Another option that seems attractive at first is defining membership of a function in a
recursive type in terms of some other type inference system. More specifically, we would
say that fn z: t => e has the type r --- nr if, in some sense, when we assume that z has
the type r we can infer that e has the type nr. Unfortunately, we do not have a type
inference system on hand that infers when an expression with free variables has a recursive
type. We could make a recursive type inference system analogous to the refinement type
inference system in Chapter 2, but the description of such a system might be about as large
as Chapter 2. This inference system, on the other hand, is concise and sufficient for our
purposes.

We use co-induction to reason about these greatest fixed points, as described in [MT9 I b,
page 216]:

Fact 3.10 (Co-induction) Let U be any set, and let F be a monotonic function mapping
subsets of U to subsets of U. For any Q C U, in order to prove Q C gfp(F), it is suff.:zient
to prove Q c F(Q).

The first co-induction in this chapter is Theorem 3.20 (Emptyness Consistency II) on
page 190.

3.3. EMPTY TYPES 183

Before we turn away from membership of values in recursive types, we note that co-
induction is not necessary in the simple proof of an extended version of NEW-RC-RECVALUE

that applies to intersections of recursive type constructors:

Fact 3.11 (Intersection Value Membership) If &nrcs - c(nr) E and D I- v E nr then
D I- c v E &nrcs.

3.3 Empty Types

The value constructors in Standard ML are eager, but the simplest type systems are more
appropriate for lazy value constructors. The algorithm introduced in this section allows
rectype statements to ignore certain distinctions that are unimportant in SML, but would
be important if we had lazy value constructors. For example, if we have the declarations

datatype blist = cons of bool * blist I nil of runit
rectype bev = cons (Tb.., * boad) I nil (runit)

and bod = cons (T6.,. * bev)
and bnem = cons (Tboo/* Tbisa)

and bern = nil (runit)

and value constructors are lazy, then bev & bod contains the infinite value

cons (true (), cons (true (0 ...)),

but if value constructors are eager, there are no infinite values and this type is empty. By
contrast, the type bern & bnem is empty regardless. Thus, if our type system takes no
account of the fact that value constructors in SML are eager, we will have

bern & bnem < bod & bev

but not
bod & bev < bem & bnem.

This distinction is an unintuitive nuisance to a programmer who expects value constructors
to be eager.

These unnecessary distinctions seem to arise most often for empty recursive types. In
this section we define an algorithm that determines when a recursive type is empty if value
constructors are call by value. The definition of subtyping for recursive types that appears
in the next section ensures that empty recursive types are always subtypes of other recursive
types that refine the same ML type. Thus, we will be able to derive

bod & bev < bem & bnem.

184 CHAPFTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

def def def

RCON-EMPTY: re, A ... A rc,• empty
-rc &... & re,, empty

for some i in 1...n• we have I- rli A... A rmi empty
REF-TUPLE-EMPTY: (rl rl,) ... (r..) empty

Figure 3.3: When a Refinement Type is Empty

We will describe the algorithm for determining whether a recursive type is empty in
several steps. First in Subsection 3.3.1 we shall postulate a property of refinement type
constructors that says whether they are empty. This can easily be extended to a judgement
1- r empty that says when a refinement type r is empty. We assume that these judgements
are consistent in certain ways. Then in Subsection 3.3.2 we shall give declarative inference
rules for the judgement that a recursive type is empty, written D H- nr empty, where D
is an abstract declaration and nr is the recursive type in question. Infinite proofs with
these inference rules will be allowed, as they were for the D I- V E r judgement. We also
present type inference rules for a relation D; S F- nr alg-empty which includes a set S of
intersections of recursive type constructors that are presumed empty. Proper use of these
inference rules only allows finite proofs, and can be easily read as an algorithm. Then in

Subsection 3.3.3 we will prove several properties of these judgements; the most interesting
ones are that the algorithmic and declarative are equivalent and that types judged empty
actually contain no values.

3.3.1 Emptyness for Refinement Types

We start by assuming that some refinement type constructors are empty. We write the
def

assertion that re is empty as rc empty. If we assume that certain refinement type constructors
are empty, it is straightforward to conclude that certain refinement types are empty. We call
the judgement for this H- r empty and define it by the rules in Figure 3.3.

def
For these rules to work properly, we need some consistency between the rc empty

and the I- r empty judgements; we can also regard these as consistency conditions on the
implicit global environment, as were the assumptions listed in Chapter 2. First, if a value
constructor returns something with an empty type, it was given something with an empty
type:

def def
Assumption 3.12 (Emptyness Constructor) If rc empty and c : r --, rc then H- r empty.

Also, if a refinement type constructor is empty, any smaller refinement type constructor
must also be empty:

3.3. EMPTY TYPES 185

def def def
Assumption 3.13 (Emptyness Subtyping) If rc empty and kc <_ rc then kc empty.

These a iumptions are sufficient to show that emptyness for refinement types is sound,
in the sense that empty refinement types contain no values:

Fact 3.14 (Soundness of Refinment Type Empty) IfF- r empty and• F v :: t and r C t
then we do not have • F v : r.

The proof of this is a straightforward induction on v that we shall omit.

3.3.2 Emptyness for Recursive Types

Emptyness for recursive types is more interesting because we must either allow infinite
proofs to get correct behavior in the presence of recursion, or use trails to ensure termination.

For example, using the rectype declarations on page 183, we should be able to infer
that bev & hod is empty. Suppose, by way of contradiction, that a value has this type; then
the value will be in both bey and hod. By the declarations of these types, the outermost
constructor of this value must be cons, and the argument to cons will be in both of the
types T.1, * hod and Tb6 , * bey. This can only be the case if there is some value in the
type hod & bey. We assume that & for recursive types is commutative, so this is equivalent
to the problem we started with. We can either continue to produce an infinite argument, or
we can keep track of the set of subproblems already encountered (this set is called a trail).
so we can observe that we have encountered this problem before and stop. Since there are
actually no values with this type, either approach should lead to the conclusion that the type
is empty.

If we take the approach of permitting infinite proofs, we get the inference system in
Figure 3.4. For this example, the infinite proof tree for D H bey & bod empty is

"'" [NEW-INFER-EMPTY]

D F- bod & bev empty [REC-TUPLE-EMPTY]

D F- T&,,g * bd & T b*, * bev empty [NEW-[NFER-EMPTY]

D - bev & bod empty

Finding an intuitively meaningful reading is straightforward, with the possible exception
of NEW-INFER-EMPTY. Translating it into words yields "If the only way to construct an
element of a recursive type nr is by starting with elements of other types that are all empty,
then nr is empty.", which seems plausible.

If, instead, we take the approach of using a trail to keep track of the pending subproblems,
we get the inference system in Figure 3.5. In this system, the trail is the set S, which

186 CHAIF_.R 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

for all c and all rt such that &nrcis - c(nr) E D we have
NEW-INFER-EMPTY: D F- nr empty

D F- &nres empty

def def

OLD-EMPTY: A rcs empty
D F &rcs empty

for some i in 1... n we have D F nri &... & nrni empty
REC-TUPLE-EMPTY DF- (nri, *... * nrtI) & ... & (nrnm *... * nrn,i) empty

Figure 3.4: Declarative Emptyness for Recursive Types (Greatest Fixed Point)

& nres E S
ALG-NEW-ENY-EMPTY: D; S H- &nrcs alg-empty

for all c and all rt such that &nrcs >- c(nr) E D we have
ALG-NEW-INFER-EMPTY: D; S U {&nrcs} F nr alg-empty

D; S F &nrcs aig-empty

def def

ALG-OLD-EMPTY: A rcs empty
D; S F &rcs alg-empty

for some i in 1... n we have
ALG-REC-TUPLE-EMPTY: D; S F- nrli & ... & nrri alg-empty

D; S F (nril *... * nri,) & .. . & (nr,, *... * nr,,) alg-empty

Figure 3.5: Algorithmic Emptyness for Recursive Types

contains the intersections of recursive type constructors that we are already attempting to
prove empty. For example, the following derivation is a proof that bev & bod is empty:

D; {bev & bod} -bod & bev alg-empty [ALG-E C- T L T

D; {bev & bod} -Tb., bod & Ti.,1 * bev alg-empty [ALG-REC-TUPLE-EMPTY]

D; {} F 6ev & bod alg-empty [ALG-EWFEmpr1]

This inference system can easily be read as an algorithm. Simply try to construct a
derivation starting at the root with an empty trail, and use ALG-NEW-ENV-EMPTY instead of

3.3. EMPTY TYPES 187

ALG-NEW-INFER-EMPITY whenever a choice arises. Informally speaking, the algorithm for
inferring D; S F- nr alg-empty is sure to terminate because at each step either S stays the
same and nr gets smaller, or S gets larger. Since D is finite and S contains intersections
of sets of recursive type constructors mentioned in D, the largest possible S is finite.
Formalizing this requires introducing two new definitions: a measure of the size of nr that
we shall call depth(nr) and the maximal value of S which we call emptyU(D).

Because of the ALG-REC-TUPLE-EMPTY rule, we cannot say that if S remains constant,
nr is replaced by a subterm of itself. For instance, given the problem D; S H- (tt *

if) & (ff * if) alg-empty, we would examine the subproblems D; S I- tt & ff alg-empty
and D; S t- ff & ff alg-empty. Neither of these recursive types appear literally within
(tt *•if) & (ff *if). They are smaller in the sense that their printed representation is smaller,
but this is awkward to reason about. Instead we regard the recursive type as a tree, and think
in terms of the height of the tree. Since & for recursive types is assumed to be idempotent,
we have to give the same "height" to both tt& tt and tt; thus we call it "depth" to distinguish
it from the ordinary notion of tree height, and we define it so intersection operators do not
increase the measure of a recursive type:

Definition 3.15 (Depth of a Recursive Type) We define the depth of a recursive type by
the equations

depth(&nrs) = max{depth(nr) I nr E nrs}
depth(r -* nr) = depth(nr) + 1

depth(rt, * ... * rtn) = max{depth(nri I i E 1 ... n)} + I
depth(rc) = 0

depth(nrc) = 0.

By Condition 3.2 (New Recursive Type Constructors Defined) on page 178, all recursive
type constructors that can appear in S are defined in D. Thus we can define the universe
from which S is chosen as all possible subsets of the types defined in D:

Definition 3.16 Define emptyU(D) to be {&nrcs I all nrc E nrcs are defined in D}.

With these definitions, we can say that the natural algorithm derived from the rules in
Figure 3.5 terminates because the pair (emptyU(D) - S, depth(nr)) always lexicographi-
cally decreases. Not surprisingly, this measure will also ensure that some induction proofs
below make progress.

3.3.3 Properties of Empty

We shall show that the algorithmic and declarative versions of emptyness inference are
equivalent, and that types judged empty actually contain no values.

188 CHAPER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Fact 3.17 (Algorithmic Emptyness Strengthening) If D; S, F- nr alg-empty then

D; S, U S 2 F- nr alg-empty.

Proving this is a trivial induction on the derivation of the hypothesis. The derivation of
D; S, U S2 ý- nr alg-empty has the same shape as the derivation of D; S1 f- nr alg-empty;
the only difference is that in the former derivation all of the trails are larger.

Lemma 3.18 (Empty Eliminable Assumptions) If

D; {} F- &nkcs alg-empty

and
D; S U {&nkcs} F- nr alg-empty

then
D; S F- nr alg-empty.

Proof: By induction on the derivation of D; S U {&nkcs} - nr alg-empty.

ICase: ALG-NEW-ENV-EMPTY, nr = &nkcs a Applying Fact 3.17 (Algorithmic Emptyness

Strengthening) on page 188 to D; {} -- &nkcs alg-empty gives D; S F- &nkcs alg-empty,
which is our conclusion.

ICase: ALG-NEW-ENV-EMPTY, nr • &nkcs Then nr x &nrcs where the premise of ALG-

NEW-ENV-EMPTY is &nrcs E S U {&nkcs}. Since nr • &nkcs, this implies &nrcs E S,
and ALG-NEW-ENV-EMPTY gives D; S F- &nrcs alg-empty, which is our conclusion.

Case: ALG-NEW-INFER-EMPTY Then nr cX &nrcs and the premise of ALG-NEW-INFER-

EMPTY must be

for all c and all nk such that &nrcs >- c(nk) E D we have
D; S tU f&nkcs,&nrcs} F- nk alg-empty.

By induction hypothesis,

for all c and all nk such that Anrca >- c(nk) E D we have
D; S U {&nrcis} - nk alg-empty.

and ALG-NEW-INFER-EMPTY gives our conclusion.

Case: ALG-OLD-EMPTY Then nr ox &rcs and the premise of ALG-OLD-EMPTY is

def
F- A rcs empty. ALO-OLD-EmrPrY gives our conclusion.

3.3. EMPTY TYPES 189

ICase: AL-REC-TUPLE-EMPTY IThen nrx(nr* nr) &(nrmi..nrmn)

and the premise of ALG-REC-TUPLE-EMPTY is

for some i in I ... n we have D; S U {&nkcs} IF- nrli & ... & nr., aig-empty.

By induction,

for some i in I ... n we have D; S F- nrni & ... & nr,,., aig-empty,

and ALG-REC-TUPLE-EMPTY gives our conclusion. 0

Now we can show that the algorithmic and declarative versions of emptyness infer-
ence are equivalent. We have separate proofs showing each is at least as strong as the
other. The first proof is by induction on the pair (emptyU(D) - S,depth(nr)) ordered
lexicographically; the second is the first co-induction in this chapter.

Theorem 3.19 (Emptyness Consistency I) If D F nr empty and for all &nrcs E S we
have D F- &nrcs empty then D; S F nr alg-empty.

Proof: By induction on the pair (emptyU(D) - S,depth(nr)), ordered lexicographically.
The declarative emptyness rules constrain the form of nr, so we have the following cases:

[Case: nr ccs If nr E S, then ALG-NEW-ENV-EMPTY gives our conclusion.

Otherwise, the last inference of D - nr empty must be NEW-INFER-EMPTY with the
premise

for all c and all nk such that &nrcs >- c(nk) E D we have D F- nk empty.

Combining the two hypotheses of this theorem,

for all &nkcs E S U {&nrcs} we have D F &nkcs empty.

The induction hypothesis gives

for all c and all nk such that &nrcs >- c(nk) E D we have
D; S U {&nrcs} F- nk alg-empty,

and ALG-NEW-INFER-EMPTY gives our conclusion.

Case: &rcs I Then the last inference of D F nr empty is OLD-EMPTY with the
def def

premise A rcs empty and ALG-OLD-EMPTY gives D; S F- nr alg-empty, which is our
conclusion.

190 CHAPER 3. DECLARING REIEMENTS OF RECURSIVE DATA TYPES

Case: nr oc (nr1 *... nr,,) &... & (nr,,, *... * nr,,) Then the last inference of

D 1- nr empty is REC-TUPLE-EMPTY with the premise

for some i in 1 ... n we have D - nri & ... & nrni empty.

The induction hypothesis gives

for some i in 1 ... n we have D; S - nrli & ... & nrni alg-empty.

and ALG-REC-TUPLE-EMPTY gives our conclusion. 0

Theorem 3.20 (Emptyness Consistency 1H) If D; {} - nr alg-empty then D H- nr empty.

Proof: By co-induction. Take D to be fixed, and let F be the natural encoding of the
rules in Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let
Q = {nr I D; {} H- nr alg-empty}; thus our goal is to show Q C gfp(F). By co-induction,
it suffices to show Q C F(Q). Let nr be an element of Q. We will show by cases on nr
that nr is in F(Q) as well.

[ICase: nr c &nrcs I The last inference of D; {} - nr aig-empty must be ALG-NEW-INFER-

EMPTY with the premise

for all c and all nk such that &nrcs >- c(nk) E D we have D; {&nrcs} H- nk alg-empty.

By Lemma 3.18 (Empty Eliminable Assumptions) on page 188 we have

for all c and all nk such that &nrcs >- c(nk) E 1 we have D; {} H nk alg-empty

and the definition of Q gives

for all c and all nk such that &nrcs >- c(nk) E D we have nk E Q.

By NEW-INFER-EMPTY, this implies &nrcs E F(Q), which is what we wanted to show.

The next two cases are trivial, but they are also short, so we include them for complete-
ness.

Case: nr oc &rcs I The last inference of D; {} H nr alg-empty must be ALG-OLD-EMPTY

def def
with the premise A rca empty. By OLD-EMPrY, this implies nr E F(Q), which is our
conclusion.

Case: nr a (nrl, *... * nri,) &... & (nr,, *.. * ,,,,,) Then the last inference of

D; {} H nr alg-empty is ALG-REC-TUPLE-EMPTY with the premise

for some i in I ... n we have D; {} - nrli &... & nrmi alg-empty.

3.3. EMPTY TYPES 191

The definition of Q gives

for some i in 1... n we have nrli &... & nri E Q.

REC-TUPLE-EMPTY then gives nr E F(Q), which is our conclusion. 0

We shall say that the last inferences of a derivation have some property if every path
from the root of the derivation starts with one or more inferences that have that property.
For an example, see the first case of the following proof.

Theorem 3.21 (Soundness of Empty) We never have D F- nr empty and D I- v E nr.

Proof: By induction on v.

Case: v occ v' where c is new I Then the last inferences of the derivation of D I- v E nr

must be AND-RECVALUE and NEW-RC-RECVALUE, so nr cx &nrcs. The last inference of
D H nr empty must be NEW-INFER-EMPTY with the premises

for all c and all nk such that &nrcs > c(nk) E D we have D H- nk empty. (3.1)

The premises of AND-RECVALUE and NEW-RC-RECVALUE leading up to D I- v E nr must be

for all nrc E nrcs there is a np,, such that
nrc - c(npn,.e) E Dand (3.2)
D I- v' E np,,.

By definition of intersection membership,

&nrcs >- c(&{npn.• Inrc E nrcs}) E D

thus (3.1) gives
D h &{np,,, I nrc E nrcs} empty.

Applying AND-RECVALUE to (3.2) gives

D H v' E &{ np., I nre E nrcs}.

The induction hypothesis applied to the last two displayed formulae yields our contradiction.

Case: v oc v' where is old I Then the last inferences of D I-v E nr must be AND-

RECVALUE and OLD-RC-RECVALUE, so nr oc &rcs and for all rc in rcs we have - F c v' : re.
By AND-INTRO-TYPE we have

c v' : &rcs.
def def

The last inference of D H nr empty must be OLD-EMPTY with the premise A .rcs empty;
RCON-EMPTY then gives t &rcs empty and by Fact 3.14 (Soundness of Refinement Type
Empty) on page 185 we do not have

H c v': &rcs.

192 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

This is our contradiction.

ICase: vc (vi, ... , I) Then the last inferences of D 1- v E nr must be AND-RECVALUE

and TUPLE-RECVALUE, so nr oc (nrlI * ... * nri,) & ... & (nr.i *... * nrmh,). Thus the
last inference of D [- nr empty must be REC-TUPLE-EMPTY with the premise

for some i in 1... n we have D F nrvi & ... & nri empty. (3.3)

The premises of AND-RECVALUE and TUPLE-RECVALUE leading up to D F- v E nr must be

for all i in 1... n and all j in 1... m we have D F- vi E nryj

and AND-RECVALUE gives

for all i in 1... n we have D F- vi E nrli &... & nri. (3.4)

Our induction hypothesis applied to (3.3) and (3.4) gives our contradiction.

I Case: v oc fn : t => e I Then the last inferences of D I- v E nr must be ABS-RECVALUE

and AND-RECVALUE, so nr cx r, --# nr' & ... & rn --* nr,, and there is no way to -infer
D F- nr empty. 0

The intersection of an empty recursive type and any other recursive type is also empty,
if it the intersection is well-formed. We include the proof to give another example of
an ordinary co-induction proof, slightly more complex than Theorem 3.20 (Emptyness
Consistency 11) on page 190.

Theorem 3.22 (Empty Intersection) If D F- nr empty and D F- nr & nk : t then D -
nr & nk empty.

Proof: By co-induction. Take D as fixed, and let F be the natural description of the rules
in Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let
Q = { nr & nk I D F- nr empty and there is a t such that D F- nr & nk C t}. We need to
show Q C gfp(F); by co-induction, it suffices to show Q C F(Q). Let nr & nk be an
arbitrary element of Q; it suffices to show that nr & nk E F(Q). We take cases on the form
of hr.

[Case: nr_: o&nes] Then by definition of Q we have D F- &nrcs empty and D F

(&nrcs) & nk C t. We can only infer the latter if nk oc &nkes. The last inference of
D F &nrcs empty must be NEW-INFER-EMPTY with the premise

for all c and all nry such that &nrcs >- c(nr') E D we have D F- nr' empty.

Let c and np be given such that &(nrcs U nkcs) • c(np) E 1). By definition of intersection
membership, we can write np as nr'& nk' where &nrcs >- c(nr'). By Fact 3.8 (Intersection
Refines) on page 179, there is a u such that D F- nr' & nk' C u, so the definition of Q gives

for all c and all np such that &(nrcs U nkcs) • c(np) E D we have np E Q

3.4. SUBTYPING 193

Thus, by NEW-INFER-EMPTY, &(nrcs U nkcs) E F(Q), which is our conclusion.

Case: cc &rcs I Since D I- nr & nk E t, we know nk oc &kcs. The last inference of

def def
D I- nr empty must be OLD-EMPTY with the premise A rcs empty. Simple reasoning about
def def def def def def
A gives (A ca)dA (A kcs) < (A rcs), so Assumption 3.13 (Emptyness Subtyping) on

def def def def
page 185 gives (A rcs) A (A kcs) empty. OLD-EMPTY then gives (&rcs)&(&kcs) E F(Q),
which is our conclusion.

Case: nr oc (nr, .nrin)&... &(nr *.. Since D F- nr& nk C t,

we must have nk oc (nkll * ... * nki•) & ... & (nkqi *... * nkqn). The last inference

of D t- nr empty must be REC-TUPLE-EMPTY with, for some i, the premise D I- nr1 i &
... & nrmi empty. Simple reasoning about recursive refinement types gives a u such

that D I- nrli & ... & nrmi & nkli & ... nki Er- u. The definition of Q then gives
nrli & ... & nri & nkli & ... nk• E Q, then REC-TUPLE-EMPTY gives nr & nk E F(Q),

which is our conclusion.

3.4 Subtyping

The type inference system for subtyping recursive types is similar to the system in the
previous section for inferring when a type is empty. For subtyping we have two similar
systems, one declarative using a greatest fixed point and no trail, and one algorithmic
using a least fixed point and a trail. In this case a trail is a set with elements of the form
(&nrcs, &nkcs); each element represents the assertion that we are already working on the
problem D I- &nrcs < &nkcs.

The declarative system is described in Figure 3.6, and the algorithmic system is Fig-
ure 3.7. The OLD-RECSUB and TUPLE-RECSUB rules are self-evident; explanations of the
other two follow.

One way to understand the NEW-INFER-RECSUB rule is by walking through a sketch of
that case of Theorem 3.34 (Recursive Subtype Soundness) on page 204. Suppose some
value c v is in &nrcs. Then there must be some definition of &nrcs of the form c(nr)
where v is in hr. If nr is empty, then we have a contradiction and we are done. Otherwise,
if there is a definition of &nkcs of the form c(nk) for some nk larger than nr, then v is in
nk and c v is in &nkcs.

Although this rule is sound, it could be stronger. For example, consider the declaration

datatype d = C of bool
rectype d, = C (Tb-o,)

and d2 = C (tt) I C (if)

194 CHAPTER 3. DECLARING REFINEMN OF RECURSIVE DATA TYPES

D- & nrc, tc
D & nkc -tc

NEW-IER-RECSUB: for all c and all nr such that &nrcs >- c(nr) E D
either D I- nr empty
or there is a vak such that &nkca >- c(nk) E D7 and D F- nr < vak

D I- &nrcs < &nkca

D I- & {ri --- nri I i E1... n} r- t
ARROW-RECSUB: for3 j E ... mwe have D I- &f{nri liE I ... nandle • ri} < k,

DA&{U o r- & - nrOi i E l..-}&{ri -... n} ! _ -nk I E ... m}

def rC)def (def

OLD-RECSUB: (A"c (< A kca)
D I- &rcs < &kcs

for i E 1... n we have D I- nr.i &... & nrmji•< nk1i & ... & nki
TUPLE-RECSUB: D F- (nrlu *... * nrin) &... & (nr,mi *... * nrn,) :

(nkj *... * nkmn) &... & (nkq *... * nkq 1)

Figure 3.6: Declarative Rules for Recursive Subtyping (Greatest Fixed Point)

With this declaration, all values in d, are also in dg, but if we convert this declaration into
an abstract declaration D we cannot infer D I- d, < d4. The cause of this is that Tb.., is
less than the union of it and if, but it is not less than either it orff taken individually. Since
it is possible to decide whether the language recognized by one regular tree automaton is a
subset of the language recognized by another ([GS841), and rectype statements that do not
contain "--+" are essentially descriptions of regular tree automata, it is in principle possible
to make a practical system that is complete in the first-order case.

The ARROW-RECSUB rule is motivated by Lemma 2.83 (i Gives an Upper Bound) on
page 111. It would probably be possible to take the approach of Chapter 2 and have simple
axioms defining recursive type inference and then restructure the system completely to find
a practical algorithm that uses ARROW-RECSUB, but such an analysis might be as long as
Chapter 2. Our grammar does not admit & with zero arguments, so this rule does not apply if
any of the sets mentioned are empty. For example, suppose D includes the usual definitions
of refinements of bool and we are trying to prove the false assertion D I- tt --+ ff < ff -- it;
then one of the premises would have to be D I- A{} < it, which is malformed.

The algorithmic and the declarative systems are consistent in the same sense the systems
for emptyness were consistent. The proof is i.ntirely analogous to the proof that the systems
for emptyness are consistent. We start by establishing that we can manipulate the trail:

Fact 3.23 (Subtype Strengthening) If S' C S and D; S' F- nr < nk then D; S I- nr < nk.

3.4. SUBTYPING 195

D I- & nrcs c tc
D I- & nkcs C" tc

ALG-NEW-ENV-RECSUB: (&nrcs, &nkcs) E S

D; S I- &nrcs < &nkcs

D F- & nrcs C tc
D I- & nkcs C" tc

for all c and all nr such that &nrcs >- c(nr) E D
ALG-NEW-INFER-RECSUB: either D F nr empty

or there is a nk such that
&nkcs >- c(nk) E V and D; S F- nr < nk

D; S I- &nrcs < &nkcs

D V" &{ri--*,nri Ii E 1...n} C" t

ALG-ARROW-RECSUB: for j E 1... m we have
D;S - &{nri I i E 1... n andki !5 ri} •_ nkj

D; S F- &{r,-, r. l i E I...n} <_ &{k1 --+ nki Ie 1...,mE

def def def

ALG-OLD-RECSUB: (A rca) < (A kcs)
D; S ý &rcs < &kcs

for i E ... n we have
D; S -nrli & ... & nr,,i _ nkli & ... & nk.

ALG-TUPLE-RECSUB: D; S F- (nrl' ,... * nrin) &... & (nrmi *... * nrmn) •
(nki. ,...) •... & (k,... •)

Figure 3.7: Algorithmic Rules for Recursive Subtyping

The proof is a simple induction on the derivation of D; S' F- nr < nk.

Fact 3.24 (Subtype Eliminable Assumptions) If D; {} I- &nrcs <_ &nkcs and D; S U
{(&nrcs,&nkcs)} I- nr < nk then D; S I- nr < nk.

The proof is by induction on the derivation of D; S U {(&nrcs, &nkcs)} - nr < nk.

As we did for the rules for emptyness, we must define a universe of all possible members
of the trail:

Definition 3.25 Define subtypeU(D) to be

{(nr, nk) I nr E emptyU(D) and nk E emptyU(D)}.

196 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

and continue with separate proofs for the if and only if cases:

Fact 3.26 (Recursive Subtype Consistency I)
If D F- nr < nk and for all (&nrcs,&nkcs) E S we have D t- &nrcs <_ &nkcs then
D; S I- nr < nk.

Proof is by induction on the pair (subtypeU(D) - S, depth(nr)), ordered lexicographi-
cally.

Fact 3.27 (Recursive Subtype Consistency H) If D; {} H nr < nk then D ý- nr < nk.

Proof is by co-induction, and is similar to the proof of Theorem 3.20 (Emptyness
Consistency 1i) on page 190.

An analogue for Theorem 2.21 (Subtypes Refine) on page 36 holds for recursive types:

Fact 3.28 (Recursive Subtypes Refine) If D t- nr < nk then there is a t such thatD D-
nr E- t and D I- nk C- t.

Proof is by induction on the depth of nr.

For refinement types, we explicitly assumed that intersection is a greatest lower bound.
For recursive types, we must prove it. The proof is not very interesting; it is included
because it is a proof about recursive subtyping that has no analog in Section 3.3.

Lemma 3.29 (Recursive Intersection Lower Bound) If D I- nr < nk and D V- nr &np E
t then D I- nr & np < nk.

Proof: By co-induction. Take D as fixed, and let F be an encoding of the declarative
subtype inference system in Figure 3.6 as a function from sets of pairs of recursive types to
sets of pairs of recursive types. Let

Q = {(nr & np, nk) I D - nr < nk and for some t we have D ý- nr & np C- t}.

Then our goal is to show Q C gfp(F), and by co-induction, it suffices to show Q C F(Q).
Let (nr & np, nk) be any element of Q; if we can show (nr & vip, nk) E F(Q), we are
done. We must have D I- nr & np C t, so nr must have one of the following forms:

[Case: r a 7&] Then the last inference of 0 I- yr < vk must be NEW- UER-RECSUB,

so nk ox &nkcs and the premises of NEW-INER-RECSUB are

D- & ncs C tc
DI- & nkcs a: tc

3.4. SUBTYPING 197

where tc is new and

for all c and all nr' such that &nrca >- c(nr') E -D
either D t- nr' empty (3.5)
or there is a nk' such that &nkcs >- c(nk') E -D and D I- nr' < nk'

Let c and np" be given such that (&nrcs) & (&npcs) t c(np") E D. By definition of
intersection membership, rip" oc nr' & np' for some nr' such that &vnrcs >_ c(nr') E D.
By Fact 3.8 (Intersection Refines) on page 179, there is a u such that

D I- nr'& ip' r- u (3.6)

By (3.5) we have the following cases:

SubCase: D - n"empty By Theorem 3.22 (Empty Intersection) on page 192 we have

D h ni & rip' empty.

[SubCase: otherwise I Then by (3.5) there is a nk' such that &nkcs - c(nk') E D and

D h- nr' < nk'. By definition of Q, this implies (he' & np', nk') E Q.

IEnd SubCase
Summarizing,

for all c and all np" such that (&nrcs) & (&npcs) • c(np") E V we have
either D F- np" empty
or there is a nk' such that &vnkcs ý- c(nk') E D and (np", nk') E Q

Thus NEW-INFER-RECSUB gives ((&nrcs) & (&npcs), nk) E F(Q), which is what we
wanted to show.

Case: nr oc &{; .--* nri I i E 1 ... n I Then the last inference of D I- nr < nk is ARROW-

RECSUB and nk = &{k, --+ nk, I i E I... m}. The premises of ARROW-SUB include

forj in I... m we have D F- &{nri I i E I... n and kj 5r} <i nkj.

The last inferences of D F- nr & np E t must be AND-RECREFINES and ARROW-RECREFINES
so np oc &{ri --+ nri i E n + 1... q} and t ct t- t2 and the premises of ARROW-

RECREFINES are
for i E 1 ... q we have ri C' t

and
fori E 1... q we have D F- nri E t2.

Using AND-RECRERNE gives

forj E 1... m we have D F- & {nri I i E I... q and kj <• ri} 1' t2.

198 CHAFFER 3. DECLARING REFNEMEMNT OF RECURSIVE DATA TYPES

The definition of Q gives

forj in I...m we have (&{nri I i E I...q and k• < T}, nkj) E Q

and then ARROW-RECSUB gives (nr & up, nk) E F(Q), which is our conclusion.

[Ca: c& I Then the last inference of D I- nr < .k must be OLD-RECSUB, where
def def def

nk oc &kcs and the premise of OLD-RECSUB is (A rcs) < (A kcs). The last inferences of
D I- nr &np E- t are AND-RECREINES and OLD-RECREFNES, so np oc &pcs and t c tc
where tc is old and the premises of OLD-RECREFINES include

def
for rc E rcs U pcs we have rc r- tc.

By Assumption 2.16 (A defined) on page 34, A(rca U pcs) is defined, and by Assumption
2.17 (A Elim) on page 34 we have A (rcs U pea) ' < kcs. The OLD-RECSUB gives

def def
(A (rcs U pcs), A kca) E Q, which is our conclusion.

Case: nr oc (nri *... * nrin) & ... & (nrm, *... * nrnmn) Then the last inference of

D I- nr < nk is TUPLE-RECSUB, so nk cc (nkj * .. *nkin) &... & (nkqi *... * nkqn) and

the premises of TUPLE-RECSUB are

for i E 1... n we have D I- nrli & ... & nrm, •_ nkli &... & nkqt.

The last inferences of D F- nr & np F- t must be AND-RECREFINES and TUPLE-RECREBhES,

SO t OC t *... * tn and np oc (nr(m+l)l *... * nr(m+1)n) &... & (r~ *...* nr,•) and the
premises of TUPLE-RECREFINES must be

fori E I... nandj E I... z we have D F- nrij C- ti.

AND-RECREFINES then gives

for i E 1... n we have D F- nrl &... & nrzi E ti,

and the definition of Q then gives

fori n we have (nrli & .. .& nrzi, nkl &. .. & nkqt) E Q.

TUPLE-RECSUB then gives (nr & up, nk) E F(Q), which is our conclusion. 0

Intersection is also a greatest lower bound for recursive types.

Fact 3.30 (Recursive Intersection Greatest) If D I- nr < nk and D H- nr < np then
D F nr:< nk&np.

3.4. SUBTYPING 199

The proof is a straightforward co-induction, and we omit it.

All recursive types that refine some ML type are subtypes of themselves, but to make
the co-induction go through we must first instead prove a stronger assertion:

Lemma 3.31 (Self Recsub) If D I- &nrs i t thenfor any nks C nrs we have D I- &nrs <
&nks.

Proof: By co-induction. Take D as fixed and let F be the natural encoding of the inference
rules in Figure 3.6 as a function from pairs of recursive types to pairs of recursive types.
Let Q = {(&nrs,&nks) I D f- & nra C- t and nks C nrs}. Then our goal is to show
Q c gfp(F), and by co-induction it suffices to show Q C F(Q). Proof is by cases on
&nrs.

The most natural statement of this theorem would only allow nrs and nks to be identical,
each with exactly one element. The case for arrow types required strengthening the co-
induction hypothesis to include the possibility that nrs contains more than one element.
Once we allow nrs to contain more than one element, the case for recursive type constructors
required including the possibility that nks has more than one element.

]Case: &nrs = &ris IThen &nks oc &nkcs. Let c and nr' such that &nrcs >- c(nr') E

V be given. By definition of intersection membership, nr' (X &nrs', and there is a
nks' C nra' such that &nkcs >- c(&nks') E D. Definition of Q gives (&nrs', &nks') E Q.
Summarizing this case so far (and adding an otherwise unnecessary disjunction to make the
summary have the right form),

for all c and all &nrs' such that &nrcs >- c(&nrs') E D
either D H- &nrs' empty
or there is a &nks' such that &nkcs > c(&nks') E D and D I- &nrs' < &nks'

By NEW-INFER-RECSUB, this implies (&nrcs, &nkcs) E F(Q), which is what we wanted to
show.

Case: &nrs oc &{ri--+ nri Ii E ... n}] Then &nks oc &{ri-+ nri I i E l... m}

where m < n. By SELF-SUB we have

forj in 1 ... m we have r- < r.

and some simple set manipulation and the definition of Q gives

forj in 1.. .m we have (&{nr I i E 1 ... n and ri < ri , nri) E Q.

ARROW-RECSUB then gives (&nrs, &nks) E F(Q), which is what we wanted to show.

def
Cs:&nrs oc &as Then &nka oc &kcs, where kcs C rcs. Simple reasoning about A

def def d -f
gives (A rca) < (A kcs), and by OLD-RECSUB this implies (&nrs,&nka) E Q, which is
our conclusion.

200 CHAPThR 3. DECLARING REINEMfENT7 OF RECURSIVE DATA TYPES

Case: nrac(nrI .nr 1 ,,3&. & ... (,, ...&,) Then &nkac(nn ...,

nr,1 ,) & ... & (nr,) where q < m. Set manipulation and the definition of Q give

for i in I... n we have (nrli &... & nr,,i, nrli &... & arK) E Q

and TUPLE-RECSUB gives (&nra, &nks) E F(Q), which is our conclusion. 0

Now we can move on to prove that recursive subtyping is transitive, which is somewhat
more work. Since the subtyping rules mention emptyness, we need to first show that a
type smaller than an empty type is also empty. Proving this requires a slightly unusual
co-induction; we include the case of the proof that makes the unusualness necessary:

Theorem 3.32 (Empty Transitivity) If D I- nk empty and D I- nr < nk then D I-
nr empty.

Proof: Take D as fixed, and let F be the natural encoding of the rules for emptyness in
Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let Q' =

{nr I there is a nk such that D I- nk empty and D I- nr < nk}, and let Q = Q' U gfp(F).
(This definition of Q allows the first subcase of the first case below to work.) Our theorem
is true if Q' C gfp(F), which is true if and only if Q C gfp(F). By co-induction it suffices
to show Q C F(Q). Proof is by cases on some nr E Q.

If nr E gfp(F), then by definition of greatest fixed point, nr E F(gfp(F)), and by
monotonicity of F we have nr E F(Q). Thus our result always holds if nr E gfp(F), and
we only need to consider nr E Q' in the cases below.

Case: ar m &nrcs] Then the last inference of D h nr < nk must be NEW-INFER-RECSUB,

so nk cx &nakcs and the premises of NEW-INMER-RECSUB are

D H- & nrc3 r- tc
D F- & nkcs -- tc

for all c and all nr' such that &nrcs >'- c(nrl) E D
either nr' E gfp(F) (3.7)
or there is a nk' such that &nkcs >- c(nk') E V and D H- nr' <_ nk'.

The last inference of D [- nk empty must be NEW-INFER-EMPTY with the premise

for all c and all nk' such that &nkcs - c(nk') E D we have D H- nk' empty (3.8)

and by NEW-INFER-EMWTY it suffic"s to show

for all c and all nr' such that &nrcs >- c(nr') E -D we have hr' E Q

Let c and nr' such that & nrca >- c(nr') E V be given. By (3.7), we have these cases:

3.4. SUBTYPING 201

1SubCase: nr' E gfp(F) I Then, by definition of Q, we have nr' E Q. (This is the step

that requires Q to be larger than Q'.)

[SjbCas: Otherwise Then there is a nk' such that &nkcs >- ck') E D and D H nr' <

nk'. By (3.8), this implies D F- nk' empty. Definition of Q' gives nr' E Q', and then
definition of Q gives nr' E Q.

End SubCase]

Summarizing the above two cases,

for all c and all nr' such that &nrcs >- c(nr') E D we have nr' E Q

NEW-INFER-EMPTY then gives &nrcs E F(Q), which is what we wanted to show.

[Case: OtherwiseI The remaining possibilities are all straightforward and are omitted. C3

Theorem 3.33 (Subtype Transitivity) If D H- nr < nk and D I- nk < np then D H- nr <
np.

Proof: By co-induction. Take D as fixed, and let F be the encoding of the recursive
subtyping relation in Figure 3.6 as a function from pairs of recursive types to pairs of
recursive types, and let

Q = {(nr, np) I for some nk we have D H- nr < nk and D [- nk < np}.

We need to prove Q C gfp(F), and by co-induction it suffices to show Q c F(Q). Proof
is by cases on an nr such that (nr, np) E Q. Delicate use of the fact that intersection for
recursive types is a least upper bound is necessary in the case where nr refines an arrow
type.

I 3Case: 5 •3 n, Let nk be as given in the definition of Q. Since D F- nr nk, by

NEW-RNFER-RECSUB we have nk oc &nkcs and the following:

D- & nrcs C- tc

D H & nkcs C- tc

for all c and all nr' such that &nrcs >- c(nr') E D
either D F- nr' empty (3.9)
or there is a nk' such that &nkcB >- c(nk') C T and D H- nr' < nk'.

Similarly, since D H- nk < np, by NEW-INFER-RECSUB we know np cx &npcs and the
following:

D F- & npcs E tc

202 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

for all c and all nk' such that &nkca >- c(nk') E V
either D F- nk' empty (3.10)
or there is a np' such that &npcas c(np') and D F- nk' < np'

Our goal is to prove (&nrca, &npcs) E F(Q), and by NEW-INFER-RECSUB it suffices to
show

for all c and all nr' such that &nrcs >- c(nr') E D
either D F- nr' empty (3.11)

or there is a np' such that & npes >- c(np') E D and (nr', np') e Q

To prove this, let c and nr' such that &nrcs >- c(nr') E D be given. By (3.9), either
D F- nr' empty (in which case we are done) or there is a nk' such that &nkcs >- c(nk') E D
and D F- nr' < nk'. Applying (3.10) to this gives two cases:

SubCase: D F- nk' emp Because D F- nr' < nk', Theorem 3.32 (Empty Transitivity)

on page 200 gives D F- nr' empty, which implies (3.11).

I SubCase: herwis~e] Then there is a np' such that &npea - c(np') E D and D F- n'k' <

np'. The definition of Q then gives (nr', np') E Q.

IEnd SubCs

Summarizing, (3.11) is true regardless. By NEW-iNFER-RECSUB, this implies our conclusion.

Case: nr c &{ri -+ nri Iie 1... n} Then the last inference of D - nr < nk must be

ARROW-RECSUB, SO nk oc {k, --- +k, I m 1...m}and, similarly, np oc {p. - np, I z E
1 ... q}. The premises of ARROW-RECSUB must include

DF- &{r 1--+nriliE...n}Ct (3.12)

for j E I ... m we have D F- &{nri I i E I ... n and k• < r} _nki (3.13)

for z E 1... q we have D F- &{nkj I j E 1... m and p. _ •i}• np, (3.14)

By the form of nr, we must have t oc ti -- t2.

By repeated use of Lemma 3.29 (Recursive Intersection Lower Bound) on page 196
with (3.13) we have

for z E 1 ... q and j' 1.. .m we have
pz -5 ki, implies

D F- &{&{nri li 1 l...nand kj , r i e I j E...mandp. S k,}• nkj,

and Fact 3.30 (Recursive Intersection Greatest) on page 198 then gives

for z E I... q we have
D I- &{&{nri I i E 1...n and k, •_ ri} lj I 1...mandp. <

&{nkj, Ij' E 1...mandp. :_ kp}.

3.4. SUBTYPING 203

Set manipulation gives

{&{nri liE 1...nand k _ri} liE I...mandp._5 kj}

{nri I i E ... nandj E 1...mandp. _ ki andki < ri}.

By TRANS-SUBTYPE, p, • kj and kI !5 ri implies p. • ri, so

{nri I i E 1 ... nandj E I...mandp , !5 ki and k, _ ri}
C

{nri I i E 1.. n and p. !5 ri}.

Thus Lemma 3.29 (Recursive Intersection Lower Bound) on page 196 gives

for z E 1... q we have
D I- &{nrl Ii E I...n andp. :5 r,}• _ &{nki, Ij' E 1...mandp. _< kj,}

From this, (3.14), and the definition of Q, we can infer

for z E 1... q we have (&{nri I i E 1... n and p. _5 r1}, np) E Q,

and ARROW-RECSUB then gives (nr, np) E F(Q), which is our conclusion.

[Case: nr oc &rcs I Then the last inference of D I- nr < nk is OLD-RECSUB and nk cx
def def def

&kcs. Similarly, np cx &pcs. The premises of OLD-RECSUB are (A rcs) (A kcs).
de s def def def f def

and (A ka) : (A pcs). By Assumption 2.14 (trans-_•) on page 34 we have (dAf rcs) <
def

(A pcs), and then OLD-RECSUB gives (nr, np) E F(Q), which is our conclusion.

Case: nr cx (nnr1 *... * nrl,) &... & (nrli *.. * nrm,)] Then the last inference of

D H- nr < nk is TUPLE-RECSUB, so nk oc (nk1 *...*nkl,) &... & (nkql *... * nk/c).

Similarly, np cx (nP11 ,... *npin) &... & (np 1 *... * np2,,)and the premises of TUPLE-
RECSUB are

for i E 1... n we have D F- nrli & ... & nr,fmi _ nkli & .f.k . & nkqi

and
for i E 1... n we have D F nkii & ... & nkqi :_ npli &... & npi.

The definition of Q then gives

for i E I... n we have (nri, &... & nrmi, npli &... & npj) E Q,

and TUPLE-RECSUB then gives (nr, rp) E F(Q), which is our conclusion. 0

Finally, we can show that recursive subtyping is sound:

204 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Theorem 3.34 (Recursive Subtype Soundness) If D F- nr < nk and D F- v E nr then

DF-vEnk.

Proof: By co-induction. Take D to be fixed, and let F be the natural encoding of the

recursive subtyping relation defined in Figure 3.6 as a function from pairs of recursive

types to pairs of recursive types, and let

Q = {(v, nk) I for some nr we have D F- nr < nk and D ý- v E nr}.

We want to show Q C gfp(F), and by co-induction it suffices to show Q c F(Q). Proof

is by cases on a (v, nk) E Q. The proof is straightforward, but we include it because the

result is important.

Case: nk a &nks where nks has two or more elements I Then there is an nr such that

D F- nr < &nks and D F- v E nr. By Lemma 3.31 (Self Recsub) on page 199,

for all nk' E nks we have D F- &nks < nk'

and by Theorem 3.33 (Subtype Transitivity) on page 201,

for all nk' E nks we have D F- nr < nk'.

By definition of Q, this implies

for all nk' E nks we have (v, nk') C Q

and by AND-RECVALUE this implies (v, &nks) E F(Q), which is our conclusion.

I Case: nk o k --+ nk' Then there is an nr such that D F- nr < k-- nk' and D F-v E nr.

The only way to infer the first of these is by using ARROW-RECSUB, so nr Oc &{ri - nri I

i E 1 ... n} and the premises of ARROW-RECSUB are

D F- & {ri --+ nri I i E I... n} t

and
D F- &{nri I i E I...nandk < ri} < nk'. (3.15)

The last inferences of D F- v E nr must be AND-RECVALUE and ABS-RECVALUE, so v oC

fn z: u => e and the premises of ABS-RECVALUE are

for i in 1 ... n, all v', and all v" such that

F ý- v": k and

(fn x:is => e) v"= v' (3.16)

we have
D F- v' E nri

3.4. SUBTYPING 205

We want to show ((fn z: t -> e), k - nk') E F(Q). We can only infer this by using
ABS-RECVALUE with the premise

for all v' and v" such that
-Iý- v": k and
(fn z:t => e) v" =# v' (3.17)

we have
(,',.k') E Q

To prove this, let V' and v" be given such that. I- v" : k and (fn z: t => e) v1" # v'.
By (3.16),

if i E 1... n and k < ri then D h- V' E nri,

and then AND-RECVALUE gives D F- v' E &{nri I i E 1... n and k < ri}. Then (3.15) and
the definition of Q imply (V', nk') E Q. Thus (3.17) is true, which implies our conclusion.

Case: nk The last inference in D I- nr < nk must be NEW-INFER-RECSUB wher:

nr oc &nrcs and the premises of NEW-INF*R-RECSUB are

D I- & nrcs E- tc
D F- nkc F tc

for all c and all nr' such that &nrcs >- c(nr') E D
either D F- nr' empty (3.18)
or there is a nk ' such that nkc > c(nk') E D and D F- nr' < nk '.

The last inferences of D F- v E nr must be AND-RECVALUE and NEW-RC-RECVALUE where
V cc c V' and the premises oi NEW-RC-RECVALUE are

for all nrc E nrcs we have some nr' such that
nrc >- c(nr',•) E D and
D F- V' E nrne

Let np = &{nr,, I nrc E nrcs}. By definition of intersection membership, &nres >-
c(np) E D. By AND-RECVALUE, D F V' E np. By Theorem 3.21 (Soundness of Empty)
on page 191, we cannot have D F np empty, so (3.18) implies there is a .ik' such that
nkc >- c(nk') E D and D F- np < nk'. By definition of Q, this implies (V', nk') E Q, and
NEW-RC-RECVALUE then gives (c V5, nkc) E F(Q), which is what we wanted to show.

ICase: nk x kc I Then the last inference of D F- nr < nk is OLD-RECSUB where nr cc &rcs

df def
and the premise of OLD-RECSUB is (A rcs) < kc. The last inferences of D F- v E nr must
be OLD-RC-RECVALUE and AND-RECVALUE with the premises

for rc E rcs we have F- v : rc.

206 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

del
Simple manipulation of refinement types then gives- F v : A rcs; then WEAKEN-TYPE gives

F- :•: kc and OLD-RC-RECVALUE gives (v, kc) E F(Q), which is our conclusion.

Case: nk oc nkj *... * nk,, Then the last inference of D F- nr < nk is TUPLE-RECSUB

and nr oc (nr l ... *nrin) & ... & (nrn, *... * nrn,) and the premise of TUPLE-RECSUB
is

for i E 1... n we have D F- nrli & ... & nrmi ! nki.

The last inferences of D F- v E nk must be AND-RECVALUE and TUPLE-RECVALUE where
V cx (v,,... , v,) and the premises of TUPLE-RECVALUE are

fori E 1... nandj E 1... m we have D F- vi E nrji.

AND-RECVALUE gives

for i E 1... n we have D F- vi E nri, & ... & nri.

Then the definition of Q gives

fori E 1... n we have (vi, nki) E Q

and TUPLE-RECVALUE then gives ((tVl,... ,vn),nk1 * ... * nkn) E F(Q), which is our

conclusion. C

3.5 Splitting
def

This section describes a type inference system for inferring the relation - from an abstract
declaration.

The type inference rules for splitting recursive types are in Figure 3.8. The x operator
used in the TUPLE-RECSPLIT rule was introduced on page 117. The ARROW-RECSPLIT and
TUPLE-RECSPLT rules are straightforward; we shall explain the other two.

The main idea behind the NEW-RECSPLIT rule is, wherever the type &nrcs has the
definition c(nr), there laust be some consistency between the splits of ur and the splits of
&rrcs. One way to understand the details is by stepping through an explanation of why it
is sound. Suppose a value c v is in &nrcs; then we need to know it is in some fragment
&nkcs of &ures. There must be some definition c(nr) of &nrcs such that v is in nr. Thus
v is in some fragment nk of nr. If there is some definition c(np) of &nkcs such that np is
larger than nk, then we know that v is in np and c v is in &nkcs.

Another way to understand it is to look at an example. If we take the datatyp.
declaration

datatype blist = cons of bool, blist I nil of ,unit

3.5. SPLITTING 207

a is a nonempty set, and
for all nk in a we have D H- nk < &nrcs, and
for all c and nr such that &nrcs >- c(nr) E D
there is an a' such that

NEW-RECSPLIT: D I- nr - a'
for all nk E a', there is an &nkca E a and a np such that

&nkca >- c(np) ED
D H nk < np

D I- & nrcs × a

ARROW-RECSPLIT:ARRW-RCSPIT"D F- r, --+ nrl &... & r,, --+ nrn >ý {r, --+ nrl & ... & rn - nrn}

def def def def
OLD-RECSPLIT: rrc A ... Arcn X {Arcs Ircs Ea}

D F- nrl & ... & nr,, × {&rcs Ircs E a}

for i E 1 ... n we have D nrli & ... & nrmi si
TUPLE-RECSPLITD (n, *...* & ... & (nrn, * ... * nrn) xs, X ... X S×

Figure 3.8: Splitting for Recursive Types (Greatest Fixed Point)

and the abstract declaration

D = {Tblu* _ cons(Tb.., * Tblij)
Tbtia • nil(runit)

bev >- cons(T.,o * bod)
bev >- nil(runit)

bod >- cons(Tb.o, * bev)},

we can infer D F- Tblj t ý: {bev, bod}. The root inference of the derivation of this is
NEW-RECSPLIT with the premises:

{bev, bod} is a nonempty set

"D F bev < Tblit

"D I- bod < Tbli.t
D F T 1 , * Tti.it : IT&, 1 * bev, T&,.1 * bod}

bev >- cons(Ta.., * bod) E D
D H- T6.1 * bod < Ti.. * bod
bod >- cons(Tb..L** bev) E D

D H Ti, 1 * bev•< Tb1 ., * bev

D F runit - {r unit}
bet, >- nil(runit) E D

D I- runit < runit

208 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Despite the lack of intuitiveness of this rule, it seems to work well in practice.

A previous version of OLD-RECSPLIT simply said
def def de

rc1 A ... A rc, -

D F- nrl &... & nr, ×a

which is straightforward. The problem with this definition is that we need to prove an
analogue of Lemma 2.43 (Split Intersection) on page 54 for recursive types. This requires
sometimes having intersections of recursive types as fragments of recursive types; the
previous version does not permit this, but the rule as stated allows it.

It is not clear how to make an efficient algorithm for this inference system. The
implementation attempts to use a brute-force search to find the principal splits directly; I do
not know if that strategy is sound. Roughly speaking, the implementation enumerates all
fixed points of the function arising from this inference system such that each intersection
of recursive type constructors has exactly one split, and that no two elements of that split
are comparable. A fixed point that contains the smallest types in the splits is chosen, and
we assume it contains principal splits. I do not know whether there will always be a fixed
poin, ,vith the least types.

We can show if a value is in a recursive type, then it is in some fragment of that recursive
type.

Theorem 3.35 (Recursive Split Soundness) If D H- nr -_ nks and D F- v E nr then for
some nk E nks we have D I- v E nk.

Proof: By induction on v.

Case: v cccv' where c is new Then the last inferences of D F- v E nr must be AND-

RECVALUE and NEW-RC-RECVALUE so nr has the form &nrcs and the premises of NEW-RC-
RECVALUE are

for nrc E nrcs we have nrc >- c(nr,•) E D (3.19)

and
for nrc E nrcs we have D t- v' E nr,,,. (3.20)

The last inference of D I- nr X nks must be NEW-RECSPLIT with the premises

nks is a nonempty set

for all nk E kts we have D F- nk < &nrcs

and
for all c and all nr' such that &nrcs > c(nr') E D
there is an a' such that

D F- nr' - .'
for all np' E s' there is an &nkcs E nka and a np such that (3.21)

&nkcs - c(np) E
D F- np' < np

3.5. SPLITTING 209

Let nr' = &{hr., I nrc E nrca}. Using the definition of intersection membership and
(3.19) gives &nres >- c(nr') E -D. Thus we can use (3.21) to get an a' such that

D l- nr' - '

and
for all np' E a' there is an &nkcs E nus and a np such that

&nkca >- c(np) E D (3.22)
D I- up' < up.

Using AND-REVALUE on (3.20) gives D I- v' E nr', so our induction hypothesis gives a
up' E a' such that D F- v' E np'. Thus (3.22) gives a &nkcs E nka and a np such that
&nkcs >- c(np) E -D and D F- np' < np. Theorem 3.34 (Recursive Subtype Soundness) on
page 204 gives D F- v' E np, and Fact 3.11 (Intersection Value Membership) on page 183
then gives D I- c v' E &nkcs, which is our conclusion.

The remaining cases are simple, but they are also short, so we include them for com-
pleteness.

Case: v oc fn z t => e I Then the last inferences of D [- v E nr must be AND-RECVALUE

and ABS-RECVALUE where nr cc r, -- nr1 & ... & r,, --+ nrn. Thus the only way to infer
D F- nr x nks is by using ARROW-RECSPLIT so nks = {Ir} and our premise D F- nr x nks
is our conclusion.

ICase: v cc c v' where c is old Then the last inferences of D F- v E nr are AND-RECVALUE

and OLD-RC-RECVALUE where nr cc &rcs and the premises of OLD-RC-RECVALUE are

for nr E rcs we have F t- c v• : rc.

The last inference of D F- nr - nks must be OLD-RECSPLIT where for some set a of
sets of refinement type constructors, kts {&kcs I kcs E s} and the premise of OLD-def def e

RECSPL1T is A rcs x { A kcs I kcs E al. Simple reasoning about refinement types gives
F- c v' : &rcs and Theorem 2.69 (Splitting Value Types) on page 89 gives a &kcs E nks

def
such that• F- c v' : A kcs. By WEAKEN-TYPE, OLD-RC-RECVALUE, and AND-RECVALUE this
implies D F- c Vi E &kcs, which is our conclusion.

Case: v x ("l, ... , ,(,v) Then the last inferences of D F- v E nr must me AND-

RECVALUE and TUPLE- ECVALUE where nr cc (nrl *..I.* nrn) & .. & (nrm *..nr)

and the premises are

fori E 1... nandj E 1... m we have D I- vi E nrij.

The last inference of D F- nr - nks must be TUPLE-RECSPLIT where nks cc s, X ... X Sn

and the premises of TUPLE-RECSPL1T are

for i E 1... n we have D F- nrli &... nrmi x ai.

210 CHAPTER 3. DECLARING REIEM ENTS OF RECURSIVE DATA TYPES

AND-RECVALUE gives

fori E 1... n we have D t vi E nrli &... & nrmi,

and then our induction hypothesis gives

fori E 1... n there is a nki E si such that D vi E nki.

TUPLE-RECVALUE then gives D F- (vi, ... , V,') E nkj * ... * nk,,. The definition of x
gives nk1 * ... * nk,, E nks, which is our conclusion. 0

It is also possible to show that intersection interacts with splitting in a natural way.
Compare this to Lemma 2.43 (Split Intersection) on page 54.

Fact 3.36 (Recursive Split Intersection) If D F- nr X s and D F- nr E t and D F nk C t,
then D F nr &nk n_ {np & nk I np E a}.

Proof of this is a straightforward co-induction.

3.6 Recursive Types provide Refinement Type Construc-
tors

In this section we show that the assumptions made in Chapter 2 and the assumptions made
def

about empty in this chapter actually hold for recursive types as defined in this chapter.

In Subsection 3.6. 1, we define the operators that were taken as predefined in Chapter 2
in terms of recursive type operations defined in this chapter. Then in Subsection 3.6.2 we
enumerate the assumptions from Chapter 2 and prove them. Finally, in Subsection 3.6.3
we will prove a grand soundness result for this entire chapter: if refinement type inference
concludes a value is in a refinement type, then it is also in the corresponding recursive type.

3.6.1 Defining the Primitives
def def def

First we need to define the primitives A, <, :, and so forth in terms of recursive type
inference as defined in this chapter. We assume at this point that there is some specific
abstract declaration D we are adding to the global environment, and the primitives are

def
being expanded to include the new declaration. For example, we expect c : r -- nr to be
true if either it was true before we encountered the declaration D, or c, r and nr satisfy the
definition we give below.

If two refinement type constructors refine the same ML type constructor, then by
def def

Assumption 2.16 (A defined) on page 34 their intersection (using A) is a refinement type

3.6. RECURSIVE TYPES PROVIDE REFINEMENT TYPE CONSTRUCTORS 211

constructor. This is not true for recursive type constructors, so we cannot simply define
the new refinement type constructors to be the new recursive type constructors. Instead,
we define a refinement type constructor to be any intersection (using &) of recursive type
constructors that all refine the same ML type constructor.

We can easily promote this way to construct refinement type constructors from recursive
type constructors to a way to construct refinement types from recursive types. However,
since we consider & for recursive types to be associative, commutative, and idempotent,
but we do not assume the same for A for refinement types, there are many refinement types
corresponding to one recursive type. For example, the recursive type bern & bod & Tbl,.
corresponds to any of the refinement types

bern A bod A Tbl6 ,t,
bod A bern A (Tb11 .j & bern),

bern & bod & Tbli.,

or infinitely many others. We could represent this as a one-to-many relation between
recursive types and refinement types. Instead, we will represent it as the inverse of a
many-to-one function rtort from refinement types to recursive types. (Hence the name
rtort.) Formally, we have the following definition:

Definition 3.37 Define the function rtort from refinement types to recursive types by the
recursion equations

rtort(r , -r 2) = r, -+rtort(r 2)
rtort(rl A r 2) = rtort(rl) & rtort(r2)

rtort(rc) = rc
rtort(&nrcs) = &nrcs

rtort(r *,... * r,.) = rtort(ri) *... • rtort(r,)

It is very straightforward to define when a refinement type constructor refines an ML
type constructor in terms of the behavior of the recursive types:

def
Definition 3.38 We say &nrcs E- tc if D F & nrcs E tc.

With this definition, recursive types refine ML types if and only if the corresponding
refinement types refine the same ML types:

Fact 3.39 Under the assumptions arising from D we have r [- t if and only if D -
rtort(r) Et.

Proof of this is by induction on r.

To find the intersection of constructed refinement type constructors, we take the inter-
section at the recursive type level:

212 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

dd
Definition 3.40 We say &nrcs A &nkcs = &(nrcs U nkcs) whenever there is a t such that
D F- & (nrcs U nkcs) C- t.

The definition of subtyping refinement type constructors in terms of subtyping recursive
types is also straightforward:

def
Definition 3.41 We say &nrcs <_ &nkcs if D F &nrcs <_ &nkcs.

With this definition, the subtyping relation for refinement types coincides with the one
for recursive types:

Fact 3.42 (Refinement and Recursive Subtyping Equivalence) We have D I- rtort(r) <
rtort(k) if and only if, under the assumptions arising from D, we have r < k.

One proof of this takes the "if" and the "only if" cases separately. To prove the "if"
case, use Theorem 2.21 (Subtypes Refine) on page 36 to find a t that both r and k refine, and
proceed by induction on that t. To prove the "only if" case, we use Fact 3.28 (Recursive
Subtypes Refine) on page 196 to find a t that both rtort(r) and rtort(k) refine, and again
proceed by induction on that t.

"This implies that, whenever two refinement types coerce to the same recursive type,
they are equivalent:

Corollary 3.43 (Eiluivalence rtort) If rtort(r) = rtort(k) and r : t and k C t then r = k.

Proof: By Lemma 3.31 (Self Recsub) on page 199, D I- rtort(r) _< rtort(k), and Fact 3.42
(Refinement and Recursive Subtyping Equivalence) on page 212 gives r < k. Similarly
k < r, and together these imply r = k. 0

This can be used to show that recursive splitting and refinement type splitting are
consistent:

Fact 3.44 (Refinement and Recursive Split Consistency) If D F rtort(r) ×{rtort(k) I
k E s}andr C tthenr - s.

The proof of this is a straightforward induction on t.
def

Whenever we have &nrcs >- c(rtort(r)) E D, we can say that c : r -+ &nrcs.
In general, the converse does not hold, because Assumption 2.52 (Constructor Argument
Strengthen) on page 67 and Assumption 2.53 (Constructor Result Weaken) on page 67 place

constraints on the behavior of d# that may not be satisfied by our abstract declaration. For

3.6. RECURSIVE TYPES PROVIDE REFINEMENT TYPE CONSTRUCTORS 213

example, in the presence of the example abstract declaration appearing on page 183, these
constraints give

def
cons : Ti(bev& bod)) --+ bev

delf

because bev >- cons(Ti..a * bod) E D and (bev & bod) !5 bod. Reasoning about def

requires first defining a version of intersection membership that allows the argument to the
constructor to be strengthened and the result to be weakened:

Definition 3.45 (Weakened Intersection Membership) We define D to contain all ele-
ments of the form &nrcs > c(nr) where there are nk and nkcs such that &nkcs >- c(nk) E D
and D H- nr < nk and D F- &nkcs < &nrcs.

This relation makes a natural statement about membership of values in recursive types:

Fact 3.46 (Weakened Intersection Soundness) If &nrcs > c(nr) E D and D F- V' E nr
then D h c V' E &nrcs.

The proof is little more than two uses of Theorem 3.34 (Recursive Subtype Soundness)
on page 204.

We can sometimes use the definition of recursive subtyping to eliminate one of the
subtyping assertions in the definition of Weakened Intersection Membership:

Lemma 3.47 (Weakened Intersection Simplification I) If nrc > c(nr) then either D H
nr empty or there is a nk such that D I- nr < nk and nrc >- c(nk) E D.

Proof: The definition of weakened intersection gives npcs and np such that

& npcs - O(np) E D (3.23)

D H- nr < np (3.24)

D h &npcs < nrc (3.25)

The last inference of (3.25) must be NEW-INFER-RECSUB with the premise

for all cand all np' such that &npcs t c(np') ED
either D H- np' empty
or there is a nk such that nrc >- c(nk) E D and D H- np' < nk

Using (3.23) and (3.25), we get

either D HF np empty (3.26)
or there is a nk such that nrc >- c(nk) E D and D H- np < nk(

214 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

If D I- np empty, then Theorem 3.32 (Empty Transitivity) on page 200 and (3.24) give
D F- nr empty, which implies our conclusion.

Otherwise, let nk be as given in (3.26). Thus nrc >- c(nk) E D and D F- np • nk;
Theorem 3.33 (Subtype Transitivity) on page 201 and (3.24) give D F- rc < nk. These
imply our conclusion. 0

We can also do the same simplification if we replace nrc by an intersection of recursive
type constructors:

Lemma 3.48 (Weakened Intersection Simplification II) If &nrcs > c(nr) E V then ei-
ther D F- nr empty or there is a nk such that D F- nr < nk and &nrcs >-_ c(nk) E D.

Proof: By Lemma 3.31 (Self Recsub) on page 199,

for all nrc E nrcs we have D I- &nrcs < nrc.

By definition of weakened intersection, &nrcs > c(nr) E f implies there are &nkcs and
nk such that

&nkcs >- c(nk) E -,
D F &nkcs < &nrcs,

and
D I- nr < nk.

Theorem 3.33 (Subtype Transitivity) on page 201 gives

for all nrc E nrcs we have D F &nkcs < nrc

and definition of weakened intersection then gives

for all nrc E nrcs we have nrc > c(nr) E D.

and then Lemma 3.47 (Weakened Intersection Simplification I) on page 213 gives

for all nrc E nres, either
D F- nr empty

or there is a nk,, such that (3.27)
D F- nr < nkn,
nrc >- c(nk,,,) E D

If D F nr empty, we are done. Otherwise let nk = &{nkf I nrc E nrcs}. By (3.27)
and the definition of weakened intersection, we have &ntrs >- c(nk) E D, and by (3.27)
and Fact 3.30 (Recursive Intersection Greatest) on page 198 we have D F- nr < nk. These
last two are our conclusion. 0

def
We can define : in terms of this. To make Assumption 2.50 (Split Constructor Consis-

def
tent) on page 66 hold, we need to also say that c : r - re whenever r is empty; see the
counterexample that arises if we do not assume this in the discussion of Split Constructor
Consistent on page 217.

3.6. RECURSIVE TYPES PROVIDE REFINEMENT TYPE CONSTRUCTORS 215

de[

Definition 3.49 We say c : r '-+ &nrcs if either &nrcs > c(rtort(r)) E D, or all of the
following hold.

D I- rton(r) empty

and for some t and tc we have
defc :: t '-tc,

D I- & nrcs r- tc,

and
D I- rtort(r) E t.

def
We define empty in terms of emptyness for recursive types:

del
Definition 3.50 We say &nrcs empty if D F- &nrcs empty.

Finally, we define splitting for constructed refinement type constructors in terms of
splitting for recursive types:

def
Definition 3.51 If D F- & nrcs X a, then we say &nrcs f {&nkcs I &nkcs E s}.

With these assumptions, refinement type emptyness and recursive type emptyness co-
incide:

Fact 3.52 (Emptyness Consistency) If D I- rtort(r) empty then under the assumptions
introduced by D we have F- r empty.

The proof is by induction on depth(rtort(r)).

3.6.2 Proving the Assumptions

In this subsection we enumerate the assumptions made in Chapter 2 about predefined
properties of refinement type constructors, and prove that they hold for refinement type
constructors derived from recursive types as described in this chapter. This is only non-
trivial for Split Constructor Consistent, which is discussed on page 217.

Some assumptions are not addressed in this list because they concern only ML type
inference, which for the purposes of this thesis we assume is well-understood. We include
them in the list with the statement that the assumption is entirely about ML types.

Assumption 2.2 (Constructors have Unique ML Types) on page 26: For each c, there
are unique t and tc such that

clefC :: t -* tc.

216 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

This is entirely about ML types.

Assumption 2.7 (Unique Predefined Refinements) on page 31: For all re there is a
dcf

unique te such that re C te.

Proof: If rc is old, this follows from Unique Predefined Refinements before we incorporated
D into the environment.

Otherwise, re is new and has the form &nrea where there is a te such that D ý- & nrMa C
tc. Thus there is at least one re C- te.

To show there is at most one, suppose D F- & nres C tc and D F- & nreas C W'.
Let nre be any element of ures. By AND-RECREFINE we must have D F- nrc c te and
D F- nrc - te'. The last inference of these must be NEW-RECREFINES with the premises

for all c and nr such that nrc >- c(nr) E D

there is a t such that c t ,- tc
for all c and nr such that nre >-- c(nr) E D

def
there is a t such that c "" t * rc'

By Condition 3.2 (New Recursive Type Constructors Defined) on page 178 these universal
quantifications are not vacuous, so by Assumption 2.2 (Constructors have Unique ML
Types) on page 26, tc = to'. 0

Assumption 2.8 (Finite Predefined Refinements) on page 31: Immediate from Condition
3.6 (Declarations are Finite) on page 179.

def
Assumption 2.13 (reflex-<) on page 33: Immediate from Lemma 3.31 (Self Recsub)

on page 199.

def
Assumption 2.14 (trans-<) on page 34: Immediate from Theorem 3.33 (Subtype Tran-

sitivity) on page 201.
def

Assumption 2.15 (Refines <) on page 34: Immediate from Fact 3.28 (Recursive Sub-
types Refine) on page 196 and Fact 3.9 (Recursive Unique ML Types) on page 179.

def
Assumption 2.16 (A defined) on page 34: Immediate from the definition of refinement

type constructors.

def
Assumption 2.17 (A Elim) on page 34: Immediate from Lemma 3.31 (Self Recsub) on

page 199.
def

Assumption 2.18 (and-intro-_S) on page 34: Immediate from Fact 3.30 (Recursive
Intersection Greatest) on page 198.

Assumption 2.30 (Split Subtype Consistent) on page 49: Immediate from the second
premise of NEW-RECSPLIT.

3.6. RECURSIVE TYPES PROVIDE REFINEMENT TYPE CONSTRUCTORS 217

Assumption 2.36 (Refinement Constructor Splits are Nonempty) on page 51: Immediate
from the first premise of NEW-RECSPLIT.

Assumption 2.42 (Predefined Split Intersection) on page 54: Immediate from Fact 3.36
(Recursive Split Intersection) on page 210.

Assumption 2.49 (Constructor Type Refines) on page 65: Straightforward from Fact
3.28 (Recursive Subtypes Refine) on page 196.

Assumption 2.50 (Split Constructor Consistent) on page 66: If

def
c : r L-+ rc

and
defrc (rcl., rc-}

then there is some provable assertion of the form

such that for all j between 1 and m there is an i between 1 and n such that

def
C : rj -- rci.

defIf instead we defined c : r - &nrcs to mean &nrcs > c(rtort(r)) E D, this would
not be true. A counterexample presumes the datatype declaration

datatype d = a of tunit I b of tunit I c of d

and the abstract declaration

D = {em >- bottom(d),
nemo >- a(runit),
neml >- b(runit),
nem2 >- a(runit),
nem2 - c(em),
nem3 >- a(runit),
nem4 >- b(runit)}.

The names em and nem stand for "empty" and "nonempty", respectively. Because
D F- nemr < nem2, we have nemr > c(em) E D. We also have D H- nemr x
{ nem3, nem4 }, so Split Constructor Consistent would give a split of em where c maps
each fragment to either emr or em4. Since the fragments must all be subtypes of em, the

onlyposiblesplt is{em ofdefonly possible split is {em}. If we had the simpler definition of ., this would imply that
either nem3 > c(em) E D or nem4 > c(em) c D, neither of which is true. With the

def def def
actual definition of :, we have both c : em - nem3 and c : em -- nem4. In fact, we
can prove that Split Constructor Consistent is true in general for the actual definition of def

218 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Proof: We must have nr cx &nrcs. By definition of :,either D rtort(r) empty
or &nrcs > c(rtort(r)) E D. In the latter case, Lemma 3.48 (Weakened Intersection
Simplification II) on page 214 gives

either D - rtort(r) empty
or there is a nk such that

D I- rtort(r) < nk
&nrcs >- c(nk) E D.

If D F- rtort(r) empty, by SELF-SPLIT we can choose a = {r}. Let kc be any element of
dl def

sc; then the definition of d. immediately gives c : r •-- kc, which is our conclusion.

Otherwise, there is a nk such that D - rtort(r) < nk and &nrcs - c(nk) E V. If we

let ac' = {rtort(p) I p E ac} the definition of × gives D F- & nrcs x sc'; the last inference
of this must be NEW-RECSPLrT with the premises

ac' is a nonempty set,

for all np E ac' we have D F- np < &nrcs,

and
for all c and nk such that &nrcs >- c(np) E D
there is an .' such that

D F- nk .9', and
for all np in s' there is an &nkcs E ac' and a nq such that

&nkcs >- c(nq) E D, and
D F- np < nq.

Applying the last of these to nk and c gives an s' such, that

D F- nk x a'

and
for all np in .' there is an &nkcs E ac' and a nq such that

&nkcs >- c(nq) E V, and (3.28)
D F- np < nq.

By Fact 3.36 (Recursive Split Intersection) on page 210,

D F nk & rtort(r) × {np & rtort(r) Inp E '}.

Let a = {p&r I rtort(p) E a'}. By Fact 3.44 (Refinement and Recursive Split Consistency)
on page 212, if we choose p such that nk = rtort(p), we have p & r × s. Since D F-
rtort(r) < nk, we have p & r - r, so EQUIV-SPLIT-L gives r x s.

Let k E . be given; thus k cx p&r where rtort(p) E s'. By (3.28), there is an &nkcs E sc'
and a nq such that &nkcs >- c(nq) E Vand D - rtort(p) < nq. By Lemma 3.29 (Recursive
Intersection Lower Bound) on page 196, this implies D - rtort(p) & rtort(r) < nq, and

3.6. RECURSIVE TYPES PROVIDE REFINEMENT TYPE CONSTRUCTORS 219

the definition of rtort immediately gives D F- rtort(k) < nq. The definition of weakened
intersection then gives

&nkca > c(rtort(k)) E
odef def

and the definition of : gives c : k --+ &nkcs. Since &nkcs E sc', Ankcs is in sc, so this
is our conclusion. 0

def

Assumption 2.51 (Constructor And Introduction) on page 67: If c : r * rc and
def def def

c : r -,kcthenc : r -(rc Akc).

Proof: The proof is very straightforward despite its length and may be skipped on the first
reading.

If c is old, then Constructor And Introduction continues to be true for it as it was before
we added the declaration D.

If we infer either of our hypotheses because D H- rtort(r) empty, then the definition of
def.

gives our conclusion immediately.
Sdef

Otherwise, rc Xc &nrcs and kc cx &nkcs and by the definition of : we have &nrcs >
c(rtort(r)) E E and &nkcs > c(rtort(r)) E D. By definition of weakened intersection,
there are np 1, npcs1, nPj2, and npcs 2 such that all of the following are true:

&npcs, t c(npl) E D
D I- rtort(r) < np,

D F- &npcsI < &nrcs
&nPsC2 ý" c(nP2) E V

D I- rtort(r) < nP2
D I- &npcs 2 < &nkcs.

The definition of intersection membership gives

&(npcsI U npcW2) " c(np1 & nrp 2) E D.

Fact 3.30 (Recursive Intersection Greatest) on page 198 gives

D I- rtort(r) :< np, & nP2

and Lemma 3.29 (Recursive Intersection Lower Bound) on page 196 gives

D 1 &(npcs, U npcs 2) < &nres

and
D l- &(npcs, U npcs 2) < &nkcs

and Fact 3.30 (Recursive Intersection Greatest) on page 198 then gives

D I- &(npcs1 U npC82) •ý &(nrcs U nkcs).

220 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Finally the definition of weakened intersection then gives

&(nrcs U nkcs) > c(rtort(r))

af def dcf def
and the definitions of : and A give c : r -- rc A kc, which is our conclusion. 0

def

Assumption 2.52 (Constructor Argument Strengthen) on page 67: If c r ,--+ re anddel

k<rthenc • k ,-+ re.
def

Proof: If we inferred c • r -- rc because D F rtort(r) empty, then Theorem 3.32
(Empty Transitivity) on page 200 gives D - rtort(k) empty, and our conclusion follows
immediately. Otherwise our conclusion follows from Theorem 3.33 (Subtype Transitivity)
on page 201. 0

def def
Assumption 2.53 (Constructor Result Weaken) on page 67: If c : r L-+ rc and re < kc,

then c d r'-.khe

Proof: If we can infer c ae: r --. re because D F rtron(r) empty, then we get our conclusion
immediately. Otherwise it follows from Theorem 3.33 (Subtype Transitivity) on page' 201.
0

def def
Assumption 3.12 (Emptyness Constructor) on page 184: If re empty and c : r L-+ rc

then F- r empty.

Proof: By definition of c : r "4 rc, either D F- rtort(r) empty or rtort(rc) > c(rtort(r)) E
D. If the former is true, then Fact 3.52 (Emptyness Consistency) on page 215 gives our
conclusion. Otherwise the statement of NEW-INFER-E.mPTY, two uses of Theorem 3.32
(Empty Transitivity) on page 200, and Fact 3.52 (Emptyness Consistency) on page 215
give our conclusion. 0

def def
Assumption 3.13 (Emptyness Subtyping) on page 185: If rc empty and kc <_ rc then

def
kc empty. Immediate from Theorem 3.32 (Empty Transitivity) on page 200.

3.6.3 Value Containment

Here we will show that if a value has a refinement type, it has the corresponding recursive
type.

Theorem 3.53 (Value Containment) Under the assunptions introduced by D, if. -F v : r
then D F- v E rtort(r).

Proof: Take D as given, and let F be the natural encoding of the rules for recursive type
membership in Figure 3.2 as a function, and let Q = {(v, rtort(r)) I • - V : r}. We need to
show Q C gfp(F) and by co-induction it suffices to show Q C F(Q). Proof is by cases on

3.6. RECURSIVE TYPES PROVIDE REFINEMENT TYPE CONSTRUCTORS 221

a pair (v, r) in Q. The proof is straightforward and is included only because the result is
important.

Case: r oc & Then rtort(r) - rtort(ri) & rtort(r 2). We can use WEAKEN-TYPE and

F- v : r to infer. H- v : r, and. F- v r2. Thus, by definition of Q, we have

(iv,rtort(ri)) E Q

and
(v, rtort(r2)) E Q.

Then AND-RECVALUE gives (v, rtort(ri) & rtort(r2)) E F(Q), which is what we wanted to
show.

I Case: v oc c v' , c is new, and r cc nrc I By Lemma 2.68 (Subtype Irrelevancy) on page 88

and. H- v : nrc we have
• H-v: nrc.

The last inference of this must be CONSTR-TYPE with the premises

def
cdf '-+ nrc (3.29)

and
.tHv': k.

If we were able to infer (3.29) because D H- rtort(k) empty, Fact 3.52 (Emptyness Con--
sistency) on page 215 gives H- k empty, and Fact 3.14 (Soundness of Refinement Type
Empty) on page 185 contradicts - H- v' : k. Thus we must have inferred (3.29) from
nrc > c(rtort(k)). By Lemma 3.47 (Weakened Intersection Simplification I) on page 213,
either D H- rtort(k) empty or there is a np such that

D H- rtort(k) < np

and
nrc >- c(np) E D.

We have already show that D F- rtort(k) empty cannot be true. Thus the other branch of the
disjunction is true, so we can choose a p such that rtort(p) = np. By Fact 3.42 (Refinement
and Recursive Subtyping Equivalence) on page 212 we have k < p, and then WEAKEN-TYPE

gives. H- v' : p. Thus by definition of Q we have (v', rtort(p)) E Q, and NEW-RC-RECVALUE

then gives (c V1, nrc) E F(Q), which is our conclusion.

Case: v oc c V', c is new, r oc &nrcs where nrcs has two or more elements.

WEAKEN-TYPE immediately gives

for all nrc E nrcs we have . - v : &{nrc}.

222 CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES

Then the definition of Q gives

for all nrc E nrcs we have (v, nrc) E Q

and AND-RECVALUE then gives (v, &nrcs) E F(Q), which is our conclusion.

I Case: v cx c V, c is old, r cc ye Then we can immediately use OLD-RC-RECVALUE to get

(V, re) E F(Q), which is our conclusion.

Case: v oxn • :•t -=> eand r cx r,- 2 I Suppose - v" :r and(fn z:•t -> e) v"

V'. Then, by APPL-TYPE, we have •- (fn z:t f> e) V' : r2, and by Theorem 2.71
(Refinement Type Soundness) on page 99 we have • H V : r2. The definition of Q then
gives (v',rtort(r2)) E Q.

Thus, by ABS-RECVALUE we have ((fn z: t f> e), nr -- rtort(r2)) E F(Q). By defi-
nition of rtort, this is our conclusion.

Case: v oc (vi, ... , v,,) and r oc r, *... * r,-1 By Lemma 2.68 (Subtype Irrelevancy)

on page 88 we have • +- -(v, ... , vn) : r *... * r,,,. The last inference of this must be
TUPLE-TYPE with the premises

for i in 1... n we have • F- vi : ri.

By definition of Q this implies

fori in 1...n we have (vi,rtort(ri)) E Q,

and the definition of rtort and TUPLE-RECSUB give ((vi, ... , v,,), rtort(r)) E F(Q), which
is our conclusion. 0

Chapter 4

Refinement Type Variables

There are two changes that need to be made to add polymorphism to refinement types. We
need to add type variables and refinement type constructors that take type arguments. This
chapter discusses the former, and Chapter 5 discusses the latter.

Adding the type variables is fairly simple. After looking at the various plausible options
in Section 4.1, we will conclude that it seems best for each ML type variable to have exactly
one refinement, which is a refinement type variable. Then in Section 4.2 we will describe
the changes we must make to the machinery in Chapters 2 and 3 to accommodate this.

4.1 Adding Type Variables

The motivating examples behind refinement types have not made interesting use of poly-
morphism so far. Since ML is indeed a polymorphic language, we need a straightforward
correct way to deal with polymorphism. For some examples, the desired behavior is clear.
For instance, since true has the refinement type tt and false has the refinement type if,
we would like the statement

let val id = fn x => x
in

(id true, id false)
end

to get the refinement type tt * ff.

Notation to represent the type for id seems straightforward. The most general ML type
scheme for id is written as V(a).a• --*

By analogy with the notation for the ML type scheme, we shall also write the refinement
type scheme as

V(a).--. a.

223

224 CHAPTER 4. REFINEMENT TYPE VARIABLES

4.1.1 Instantiation

Next we need to understand how to instantiate the refinement type. Instantiating the ML
type is simple; ML type inference tells us that in this example the a in the ML type scheme
should be instantiated to boot, giving a resulting type of boot -+ boot. Instantiating the
refinement type scheme is a little more complex because it must have both of the types
it -# it and ff -- ff. We could take the path used in [Pie9 I a] and instantiate the refinement
type scheme to a list of refinement types that is explicitly given in the expression; in this case
we would be instantiating the a in V(a).a ---+ a to {tt,ff} to get the type tt -- tt A ff -. ff.
However, we know that all of the types in the list must be refinements of boot, and since
boot has finitely many refinements, we can put all of those refinements into the list. We
might as well put all possible refinements into the list since that will yield the most precise
possible result; since there is therefore only one reasonable list, we can omit the list instead
of explicitly specifying it.

Thus, to instantiate a refinement type scheme, we instantiate each refinement type
variable to an ML type. The result is the intersection of all distinct results of substituting
refinements of that ML type for the refinement type variable. For example, instantiating
the refinement type variable a to boot in the refinement type scheme V(a).a -+ a yields

it - tt A ff - ff A T j., -'+ T b1 A I b., -- I b.,

Once we move on to more complex examples, more choices arise. Consider the
expression skeleton:

let val strictif = fn x => fn y => fn z => if x then y else z
in

end

What should be the refinement type scheme for strictif? The ML scheme is

V(a).bool --+ a -+ a -- a.

It is tempting to permit multiple refinements of each ML type variable, since we could give

this expression an informative type scheme like

it A
iff*-43-t A

T-*L a -* a A-

Unfortunately, if we permit arbitrarily many refinements of each ML type variable, then
there are expressions with no principal type. We will illustrate this with an example.

In the example, we shall use the datatype

4.1. ADDING TYPE VARIABLES 225

datatype a option = SOME of a I NONE

to represent a value which may or may not be present. Note that NONE has no argument;
we are using the concise version of the syntax for this example. We want to distinguish
the two constructors of this datatype at the refinement type level, so we use the following
rectype statement:

rectype a some = SOME (a)
and a none = NONE

(Although the value constructor NONE takes no argument, the refinement type constructor
none does take one argument because it refines the ML type constructor option which takes
one argument.)

Suppose we have a collection of rewrite rules which only apply sometimes. We can
represent one of these rules as a function with the type

a -+ a option

If the rewrite rule rew applies to a value z, then rew z =• SOME y, where y is the result of
rewriting x. If the rewrite rule does not apply, then rev z =ý NONE

One natural thing to do with a rewrite rule to repeat it until it no longer applies; the
result is a rewrite rule. We can write this as a straightforward higher-order function:

fun repeat rev x =

case rev x of
NONE => SOME x

I SOME y => repeat rev y

which has the ML type (a --+ a option) --- a --+ a option.

Now, assuming an infinite number of refinement type variables refine each ML type
variable, what is the type for repeat? Suppose the refinement type of the value bound
to x is a,. Perhaps the value bound to x will be rewritten zero times; this happens if the
argument to repeat has type a, --+ a 2 none, so repeat has the type

(at -- a 2 none) --+ aj -* al some

The value bound to x may also be rewritten once. This happens if the rewriter has type

a, --+ a 2 some A a2 --+ Ct3 none,

so repeat also has the type

(a, -* a 2 some A a 2 --+ a 3 none) --+ aI --+ a 2 some.

226 CHAPTER 4. REFINEMENT TYPE VARIABLES

We can continue in this fashion, giving types for repeat that describe its behavior when
the rewrite rule applies any nonnegative number of times. The only type that includes all of
this information is the infinite intersection of all of these possible types. Our system only
has finite refinement types, so repeat does not have a principal type if we permit infinitely
many refinements of an ML type variable. The only natural choices for the number of
refinements of each ML type variable seem to be one or infinitely many. Since we have
ruled out having infinitely many, we shall have only one.

4.1.2 ML Polymorphism vs. Refinement Typing

Once we decide that each ML type variable has only one refinement (or any other fixed
number), ML polymorphism interferes with refinement typing. For example, consider the
expression

let val not = fn x => if x then false else true
val double = fn f => fn x => f (f x)

in
double not true

end

There are two ways to derive an ML type for this expression. Either we can have a
polymorphic double with the type scheme

V(a). (a --+ a) -- a --+ a

and instantiate a to bool when double is used, or we can have a monomorphic double
with the type scheme

V().(6boo--. boot) -- boo! -- boo!

which does not need to be instantiated before it is used.

These two ways to derive an ML type for the above expression have different conse-
quences for refinement typing. If double is polymorphic, then clearly the only refinement
type scheme it can have is

V-.(a -* a) --. a -*

Instantiating a to the refinements of bool gives an intersection with four components:

(tt -- tt) "-- tt -- tt A

(if -,ff) --if -- iff A
(Tb,,, -T --1 Tb., -- Tb.,, A
(1 1 -- J..1) -I k4 . --j 1jb.

If double has this refinement type, then what is the refinement type of
double not true? The first two components do not help us determine this type, since

4.1. ADDING TYPE VARIABLES 227

not has neither of the types tt -- it nor if -- if. The last component is irrelevant because
true does not have the type .L&.. Thus the only usable component is the third and the
best type for double not true is Tba.I.

If, on the other hand, double is monomorphic, then its type is much more informative.
In the definition of double

fn f => fn x => f (f x)

we can assume that f has the type tt --, ff A ff --+ tt and that x has the type tt. Then f x
has the type if, and f (f x) has the type ti, so the best type for double not true is tt.

Thus, the programmer using refinement types will have to have in mind the same
derivation of the ML type that the compiler has in mind if he wants to predict what
refinement types the compiler will assign to a particular expression. This should not be
too difficult, since the algorithms actually used in the compilers always generate the most
general ML type at every opportunity. Thus in the example above the programmer can
expect the compiler to use the most general type for double, which results in the less
informative refinement type for the let statement. If the programmer wanted the let
statement to have the more informative type, he could use explicit ML type declarations to
reduce the polymorphism. One way to do this would be to declare the second argument of
double to have type bool, as in:

let val not = fn x => if x then false else true
val double = fn f => fn x: bool => f (f x)

in
double not true

end

In this thesis we avoid a choice among the various algorithms that could conceivably be
used for ML type inference by stipulating that our terms must have enough embedded ML
type information to uniquely determine how the ML type is derived. This requires us to
at least explicitly specify which variables each let statement generalizes over. This isn't
quite sufficient though; consider the let statement

let id = A(a). fn x => x
in

id true
end

This expression has type bool. We could have derived this type by giving id the type
scheme V(a).a --. a and instantiating a to bool immediately before using id, or we could
have derived it by giving id the unusual type scheme V(a).bool --+ bol and instantiating
a to something arbitrary before using id. To eliminate this ambiguity, we must have an
explicit declaration each place a type variable could be introduced, which means an explicit

228 CHAPTER 4. REFINEAfENT TYPE VARIABLES

declaration each time a variable is used and for each abstraction. Because SML eagerly
evaluates values bound by both let and in, we can make our language more uniform by
declaring an instantiation for every variable reference, including nonpolymorphic variables
such as x in this example. Thus the fully explicit form of the above let statement is:

lot id = A(a). -n X:a => zf[
in

id[bool] true
end

The constructor true does not need the square brackets because it is not a variable
and because constructors will not be polymorphic until Chapter 5. Constructors can be
distinguished from variables because they are explicitly mentioned in the grammar for the
language and in the inference rules.

4.2 Formally Incorporating Type Variables

We will write type variables as a, 3; the mathematical variable that can stand for any
type variable is written a; context should make it clear whether we are talking about one
particular type variable or an arbitrary type variable.

The new grammars for ML types and refinement types have no surprises; we simply
add productions for type variables:

t ::= tl t,... *t tunit t--*t Ia
r :r Ar I r - r c Ir ,... *r I runit Ia

We write a possibly empty vector of type variables as a. We also have vectors of
refinement types F, and so forth. We can substitute a vector of refinement types F for a
vector of type variables d in a refinement type r by using the notation [F/d]r. The length
of the vector d is written length(d), and the i'th element is written 6{i}. The first element
is a{1}, not a{0}.

We define ML type schemes to have the form V(d).t, and refinement type schemeto have
the form V(U).r.

The only changes we must make the object language grammar on page 19 is adding let
statements and adding instantiations after each variable reference as discussed on page 228;
the entire grammar is:

e ::= x i fn z:t => e I e e Ic eI
case e of c => e I ... I c => e end:tl
(e, ... , e) I() eolt...mn el
fix f:t => fn z:t => el
let z = A(z).e in e end

4.2. FORMALLY INCORPORATING TYPE VARIABLES 229

let double = A(a).fn f:a-.a f> in x:a => f[] (f[] x[])
in

let not = A0. fn arg: bool >

case argU of
True => fn => False ()

I False => in _ => True 0
end: bool

in
double[bool] not[] (True 0)

end
end

Figure 4.1: Sample Expression Using Polymorphism

We define an expression scheme to have the form A(z).e, as appears in the grammar for
let statements. If a variable is bound by a let, then the substitution after it specifies how
to instantiate the expression scheme before use. If the variable is bound by a fn, then
the substitution must be trivial (that is, both the vector of ML types and the vector of type
variables must have zero length). For this chapter, we assume that our value constructors are
still monomorphic. An example of the syntax is in Figure 4.1. The problem of converting
human readable code into this syntax is simply ML type inference.

In Chapter 2, we defined substitution of closed expressions for variables in expressions.
Because the expressions were closed and there were no type variables in the language at
the time, the problem of variable capture did not arise. In the present case, we still limit
substitution to expressions with no free object language variables, but they may have free
type variables that can be bound by let statements; thus we now have to deal with the
possibility of type variable capture during substitution. For example, the terms

let y = A(a).xf[] in
y[bool] (true 0) (4.1)

end

and
let y = A(C3).x] in

y ,booll (true 0) (4.2)
end

have the same meaning in some intuitive sense. If we ignore the issue of variable capture
while substituting A0.fn z: a => z [I for x in each of these, we get

let y = A(a).fn z:a => z [I in
y[bool] (true 0)

end

230 CHAPTER 4. REFINEMENT TYPE VARIABLES

and aet y l A(p). fn z:a => z [] in
y[booil (true ()) (4.3)

end.
Something has gone wrong here because these expressions no longer have intuitively
equivalent meanings; in fact, in the ML type system we define below, the first has well-
formed ML types but the second does not. The problem occurred when we substituted an
expression with a free a into a context in which a was bound. There are several ways we
could have prevented the problem.

First, we could simply forbid substitutions that cause variable capture. This would mean
that (4.1) and (4.2) are no longer equivalent, because the substitution above is forbidden
for (4.1) but permitted for (4.2). This is aesthetically unpleasing, but similar to approaches
taken by others in the past; for example, with slightly different notations, the papers
[Car87, CDDK86, DM82, Myc84, Tof88] all define systems that allow one to derive

f a I-:En x ff>x ::Vf.fl--+,6

but not
f :a fn x =x ::Va.a--+ a.

There are other approaches, such as higher-order abstract syntax[PE88, MNPS91,
HHP931 and de Bruijnindices [Bar8O, dB72], that solve the problem by changing or elimi-
nating the notion of "named variable". These seem too radical for the task at hand.

Instead, we will circumvent the problem by giving a different meaning to (4.1) and
(4.2) so they are actually the same mathematical object, as was done in [Bar80, page 261
and [CR36]. In this approach, we identify two expressions if we can transform one into
the other by renaming bound variables, and whenever we write an expression, we really
mean the equivalence class containing that expression. In this case the proper definition of
substitution still forbids variable capture as a special case, but we can always find an element
of the equivalence class that makes the substitution go through. With this interpretation, the
correct result of the substitution mentioned above is (4.3). We use the same strategy to deal
with binding object language variables; thus :fn y: bool => y[] and •fn x: bool => x[] are
the same term, as are

let x = A(a).fn z:a => zf] in x[bool] end

and

let y = A(a).fn z:a => z[] in y[bool] e,-d.

Now that we have a clear policy for dealing with type variable capture, we can modify
the definition of substitution on page 23 so we now substitute expression schemes (not
expressions) for variables in expressions. Only a few of the clauses of the substitution

4.2. FORMALLY INCORPORATING TYPE VARIABLES 231

definition change in a non-trivial way; the first clause listed uses the operation of substituting
ML types for type variables in expressions, which is a simple operation we shall not formally
define here:

[A(•).e/z](z[•]) = [t/i]e if length(i) = length(!)
[A(a).e/z](z[fl) fails otherwise
[A(a).e/z](y[i]) = y[ti if y $ x
[A(?).e 1/x](let y = A(#).e 2 in e3 end)=

(let y = A().[A(U).ei/z]e 2 in [A(a).e1 /zxe 3 end)
where z y and i and 3 have no elements in common.

For example, substituting A(a).fn x: a => x[] for y in y(bool/ (true ()) yields

(fn x:bool => x[]) (true f)),

and substituting Ao.true () for x in (x[], xa) yields (true (), true ()).

The grammar for values is unchanged, but the meaning changes slightly because the
grammar references expressions, and expressions have changed:

, ::= c v I(v, ... , v) I () I fn z:t => e

The changes to the evaluation relation defined in Figure 2.1 on page 24 consist of adding a
rule for let and modifying rules that do substitution to construct trivial expression schemes
so we can use the modified definition of substitution above:

el =ý V1
LET-SEM: [(ACu).,,,)/xle2 :* V2

let z = A(u).e1 in e2 end=•, v2

el =:> fn z:t => e3

e2 => v2
APPL-SEM: [(A0-.2)/z~e3 = V3

el e2 =•V3

FIX-SEM: fix f:t => fn z: u => e•=
[(Ao.fix f:t => fn z:u => e)/flfn z:u => e

Notice that the let-semrule says to eagerly evaluate the variable in let statements. There
have been proposals to evaluate them lazily under some circumstances; we could do that
with the alternative rule

TL-Em': let [(A(Z).e 1)/z]e 2 •: V2
M let = A(a).ej in e2 end =* v2

Since we do not have polymorphic type constructors yet, our value constructors will not
have p9lymorphic outputs. Thus it would be peculiar for them to have polymorphic inputs;
for example, consider this declaration:

232 CHAPTER 4. REFINEMENT TYPE VARIABLES

datatype foo = Bar of a

Standard ML disallows datatype declarations where the constructors have type variables
free in the input type (a in this example) that are not free in the output type (foo in this
example), so we shall forbid them also. Since we cannot have a polymorphic output type
in this chapter, we will outlaw type variables in the input type altogether:

Assumption 4.1 (Free Type Variables in Constructors) If

def
c "" t--tc

then t has no type variables.

The modifications to the ML type system introduce few surprises. The environment
VM now maps variable names to ML type schemes. For uniformity, it maps all variable
names to ML type schemes, even the variables bound by fn and fix; as the ABS-VALID rule
below says, all such variables are bound to vacuous ML type schemes that quantify over
zero tyT -'ariables. We add a rule for let statements, and make slight modifications to the
rules ,. ariables, abstractions, and fixed points to accommodate the new environment:

VM H- el :: t:
for all a in a we have a is not free in VMLET-VALID: VM[x := V(z).t1] F- e2 :: t

VM - lot z = A(Z).ej in e2 end:: t

VM(x) = V().
VAR-VALID: length(i) = length(t)

VM z(t] :: [i/-l]t

ABS-VALID: VM[x := VO.±t1 H- e :: t2
ABS-VA :VM F- (:n t:t1 •> e) :: tI -*t 2

FIX-VALID: VM[f := V().t01 t2] - (fn x: t1 => e) :: t -t2
VM H- (fix f:tl -- t2 => fn x:tI => e) :: t> --+r2

Fact 2.3 (ML Type Soundness) on page 27 and Lemma 2.4 (Unique Inferred ML Types) on
page 27 still hold for the modified language, as do Fact 2.5 (ML Free Variables Bound) on
page 29 and Fact 2.6 (ML Value Substitution) on page 29.

We augment the refinement rules in Figure 2.3 on page 31 b- asserting that each
refinement type variable refines the corresponding ML type variable:

VAR-REF:
o• ct

4.2. FORMALLY INCORPORATING TYPE VARIABLES 233

We say F C i if length(F) = length(!) and, for i between I and length(f), we have
F {i} C i{i}. A refinement type scheme refines an ML type scheme if they quantify over
the same variables and, after stripping off the quantifiers, the underlying refinement type
refines the underlying ML type.

Lemma 2.10 (Unique ML Types) on page 31 is still true; the added case to the proof is
trivial, and we shall omit it. We augment the definition of rtom on page 32 so it also works
on substitutions mapping type variables to refinement types; for example,

rtom([tt/a,ff /3])(:fn x:a * => x[]) =
[bool/a,bool/fl](fn x:a*3 => x[]) =
fn x: bool * bool => x[].

Fact 2.12 (Tuple Refines) on page 32 is still true.

We need to make no change to the subtyping rules in Figure 2.4 on page 35, since the
SELF-SUB rule ensures that refinement type variables are subtypes of themselves. Similarly,
we do not need to change the rules for splitting in Figure 2.5 on page 48 because the
SELF-SPLIT rule deals with refinement type variables.

Now that we have both substitution and subtyping, we have to show that they interact
with each other in the natural way:

Fact 4.2 (Type Substitution Preserves Subtyping) If r < k, then for any well-formed"
substitution s, we have s(r) < s(k).

The proof of this is by induction on the derivation of r < k.

We also need to prove that substitution and splitting interact in a natural way:

Fact 4.3 (Split Substitution) If r ri... r,, r,,}, then for an), r' and a we have

[, .' / < ,,] , × [, .' / c t] , , , .. ., [' c j ,

The proof of this is a simple induction on the derivation of the hypothesis.

The changes to refinement type inference are entirely analogous to the changes to ML
type inference. The variable environment VR now contains refinement schemes rather than
simple refinement types. Starting with the rules in Figure 2.6 on page 60, we add a rule
for let, change the rule for variables, and make minor changes to the rules for abstractions

234 CHAPTER 4. REIEMENT TYPE VARIABLES

and fixed points:

VR F- e
for all a E a we have a not free in VR

LET-TYPE: VR[z:= V(W).ri] F- e2 : r

VR ý-let z = A(d).e1 in e2 end:r

VR(z) =V(a)r

VAR-TYPE: r t

VR F- z(•]: [F/a]r

VR[z:= VO.rI h e: k r E t

VR - fn z:t => e:r--k

r C' t --+t 2

FIX-TYPE: VR(f := VO.r] F- (fn z:tj => e): r
VR F- (f ix f:ti -+t 2 => fn z:tj => e) r

In the syntax example in Figure 4.1 on page 229, using the LET-TYPE rule on the outer let
statement leads us to add the type scheme

V(a).(a -' a) -* a -+ a

for double to the type environment before inferring a type for the inner let statement.
Then we add the trivial type scheme

V(. tt -. tt A if --+ffA _L-b..1 -- 1b ATI.,1 --* T b.

for not. The only way we can instantiate double that allows the application

(double[bool] not[]) (True 0)

to have a type is to substitute T1 .o1 for a; if we do this,

double[bool]

gets the type (Tb.., -- T i.1) --* T b., -+ T . ,

double[booL] not(]

gets the type T b, -- T b1,, and

(double[booll not[]) (True 0)

and the let statement as a whole has the type T1 . ,.

4.2. FORMALLY INCORPORATING TYPE VARIABLES 235

Compatibility with ML is unaffected by the new rules added. We will omit the simple
case for let that must be added to the proof of Theorem 2.54 (Inferred Types Refine) on
page 68, and the proofs of Lemma 2.55 (Value Arrow Type) on page 74 and Fact 2.56
(Value Constructor Type) on page 74 are unchanged. We must add this equation to the
definition of mtor on page 76:

mtor(a) = a;

the proofs of Fact 2.61 (mtor Refines) on page 76 and Fact 2.62 (Unique Refinement) on
page 76 are still trivial, and the case we must add to deal with let statements in Theorem
2.64 (ML Compatibility) on page 77 is simple and we will omit it.

Updating the soundness proof is somewhat more work, and constitutes most of the
remainder of this chapter. The statement of Lemma 2.66 (Environment Modification) on
page 81 does not change; the VAR-TYPE case of the proof changes slightly: The statement
of Lemma 2.66 (Environment Modification) on page 81 does not change; the proof only
changes slightly:

Lemma 4.4 (Environment Modification) If

VR ý- e: r

and
VR' has the same domain as VR

and
for x free in e we have VR'(x) < VR(x)

then
VR'1 - e : r.

Also, if in addition
VRH- e: r

and
e is not a variable

then
VR'H- e: r.

Proof: By induction on the derivation of VR I- e : r.

Case: VAR-TYP Then e has the form z[fl, and r has the form [f/-Jk where the premises
of VAR-TYPE are:

VR(z)= V(a).k

"(4.4)

krt.

236 CHAPE 4. REFINEMENT TYPE VARIABLES

Since VR(z) •_ VR'(z), we know that

VR'(z) oc V(U).k' (4.5)

for some k' < k. By the version of Theorem 2.21 (Subtypes Refine) on page 36 that holds
for this system, k' C- t. Then we can use VAR-TYPE with the premises (4.5), (4.4), and
k' C- t to get

VR' [] :

Then Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 gives [F /i] k' < [/•]k,
and WEAKEN-TYPE then gives VR' F- zx(]: [f/a]k, which is our conclusion.

Case: Otherwise. I Omitted. 0

Lemma 2.67 (Piecewise Intersection) on page 84 and Lemma 2.68 (Subtype Irrelevancy)
on page 88 are unchanged because values do not have let statements at the top level.
Theorem 2.69 (Splitting Value Types) on page 89 is changed slightly because it has to use
Fact 4.3 (Split Substitution) on page 233.

Lemma 2.70 (Value Substitution) on page 93 becomes slightly more interesting. We
have to add a case for let declarations and make nontrivial changes to the case for variables.
The new type inference rule for variables specifies a refinement type substitution, so we need
to be able to substitute refinement types for type variables in refinement type derivations:

Fact 4.5 (Refinement Type Substitution) Suppose VR F- e : r and s is a substitution
mapping type variables to refinement types where for all a in the domain of a we have $(a)
is well formed. Then

a(VR) F- rtom(s)(e) : s(r).

The proof of this is a simple induction on the derivation of VR F- e : r. The SPLIT-TYPE

case uses F-ct 4.3 (Split Substitution) on page 233.

This fact is useful in variable case of Value Substitution; we shall restate that lemma
and give the let and variable cases of the proof:

Lemma 4.6 (Value Substitution) If

VR F- el : rl,

where el is a value or a closed expression of theform fix f : t => fn : t 2 => e", and

VR[x : = V(a).rI] F- e2 : "2,

and none of the variables in dare free.in VR, and the substitution [(A(u).ej)/z] e2 succeeds,
then

VR F [(A(d).ei)/zje 2 r2.

4.2. FORMALLY INCORPORATING TYPE VARIABLES 237

Proof: By induction on the derivation of VR[z V(d).rj] F- e2 : r2.

Case: VAR-TYPE] Then e2 has the form V.[...] for some y. If y is not x, then the desired

conclusion is VR F- e2 : r2. We can get this by eliminating the unused variable z from the
hypothesis VR[z V(d).r1] I- e2 : r2.

Otherwise, e2 has the form z[(]. By the shape of VAR-TYPE, r2 has the form [F/dIrl.
The premises of VAR-TYPE must be F C- 1 and, for some t, ri C t. By Fact 4.5 (Refinement
Type Substitution) on page 236,

[f/ii](VR) ý-rtomn([f/Zi])(ej) : [/dr).(4.6)

By hypothesis, none of the variables in i are free in VR, so [F/N](VR) = VR. By definition
of substitution, [(A(z).e 1)/zje2 = [(A(&).ej)/zj(1[tj) = [/ = rtom([Q/6j)(el).
Since r2 = [F/5]rl, (4.6) is our conclusion.

ITCase: LET- hen e2 has the form let y = A(#).e3 in e 4 end for some y. Rename

variables if necessary to ensure that y and z are distinct, and that & and/3 have no variables
in common. For some r3, the premises of loet-type must be

VR[x := V(d).ri] F- e3 "P3,

for all j3 E / we have 3 not free in VR[z :V(a).r,

and
VR[z :- V(W).ri,, := V(#3).r 3] F- e4 " 2.

Let L abbreviate A(d).el; then our induction hypothesis gives

VR F- [L/a]e 3 : r3

and
VR[y V(/3).r 3] F- [L/zxe 4 : r2.

Then LET-TYPE gives

VR F- let y = A(3).[L/z]e 3 in [L/zle 4 : r2;

by definition of substitution, this is our conclusion.

Case: Otherwise I Omitted. 0

We are finally able to give the modifications of Theorem 2.71 (Refinement Type Sound-
ness) on page 99 necessary for the system described in this chapter. Although the statement
of the theorem does not change, we will repeat it here:

Theorem 4.7 (Refinement Type Soundness) If e , v and. F- e : r, then. F- v : r.

238 CHAPTER 4. REFINEMENT TYPE VARIABLES

Since e is closed, it is not a variable; thus the only change we need to make to the previous
version of the proof is to deal with the possibility that e may be a let statement.

Proof: By cases on the pair (root inference of e =, v, root inference of -F e r).

ICase: (LET-SEM,LEr-TYPE) Then e must have the form lot z = A(d).el in e2 end.

IThe premises of LET-SEM must be

et =>, V1 (4.7)

and

[(A(a).vi)/XIe 2 => v. (4.8)

For some r, the premises of LET-TYPE must include

* I- el : r, (4.9)

and

VR[x V(:).r1 I- e2 : r. (4.10)

Using the induction hypothesis on (4.7) and (4.9) gives

- H- v1 : ri

Value Substitution and (4.10) then give

- [(A(a).vi)/X]e 2 : r.

Using the induction hypothesis on this and (4.8) gives • F- v : r, which is our conclusion.

Case: Othe ise Omitted. 0

The proofs of Theorem 2.90 (Finite Refinements) on page 115 and Corollary 2.91
(Principal Refinement Types) on page 115 are essentially unchanged.

The only significant change to the decision procedure is modifying the int er function
defined in Figures 2.7 and 2.8 on pages 142 and 143 to deal with let statements and the
new syntax for variable references. The new cases are:

4.2. FORMALLY INCORPORATING TYPE VARIABLES 239

fun infer VR y[1] -
if VR(y) is undefined or

VR(y) does not have the form V(i).r
where r refines some t

then ns
else

let val V(U).r = VR(y)
in

Afn {[if/]r I length(f) = length(a) and
for all i we have f{i} Eallrefs(t{i})}

end
Sinfer VR (e as (let z = A(a).ej in e2 end)) =

let val k = infer VR el
val a = split (k)
val u = the unique u such that rtom(VR) I- e ::u
in

sjoin:f u {infer (VR[z:= V(U).p]) e2 p E 8}
end

The correctness proof for the revised case for variables has no surprises, and the proof for
the let case uses no concepts that do not appear in the application or abstraction cases, so
we shall omit them.

By Assumption 4.1 (Free Type Variables in Constructors) on page 232, there cannot
be any type variables in rectype declarations. Thus the argument in Chapter 3 needs no.
revisions to accommodate the type variables introduced in this chapter.

To summarize, once we decide that each ML type variable is refined by exactly one
refinement type variable, the formal description of refinement types with type variables
follows straightforwardly.

Chapter 5

Polymorphic Refinement Type
Constructors

Programmers intuitively know that all even length lists of true's are also even length
lists of booleans. With polymorphic refinement type constructors, we can write this as
it ev < Tjg.. ev, where ev is the type of lists with even length. This chapter is about
formalizing that intuition in the type system.

We say that the type argument to ev is a positive type argument, since as the type
argument of ev gets larger, the type as a whole gets larger. There are other possibilities; for
example, suppose we have the declaration

datatype a pred = Prod of a - bool
rectype a tpred = Prod (a--+ it)

and a fpred = Prod (a--iff)

Using an intuitive reading of this rectype declaration, we would expect to be able to apply
Prod to a function with type t -+ tt and get a value of type tt tpred; similarly, we would
expect to be able to apply Prod to a function with type T1.,, -+* t and get a value of type
Tj.,, tpred. Since T4. 1 -- Ut < it -+ Ut, we expect Tb1. tpred < it tpred. We say the

type arguments of pred, tpred, and fpred are all negative.

There are two other possibilities. We can have a type variable that appears on both the
left and the right side of an arrow, such as

datatype a m = M of a--+ a,

where Ut T. is incomparable with T.. T ,7. We say the type argument of m is mixed.

We can also have type variables that appear nowhere in the type, such as

datatype a i = B of boot

240

241

where it Ti = TIbI T,. We say the type argument of i is ignored. It turns out that positive,
negative, mixed, and ignored are all the possibilities.

Since our type system is an approximation instead of an all-knowing oracle, we have the
option of ignoring any or all of the above distinctions, so long as the resulting approximation
is conservative. We could take the least informative approximation in all cases; this would
mean treating all type arguments as mixed type arguments. In this case the refinement types
it ev and T6 ,1 ev would be incomparable. With this interpretation, it ev would no longer
be a principal type of cons (true, cons (true, nil)), since the type it ev A T 6 , ev
would be another type for that expression that is strictly smaller. This approach has not been
explored enough to determine how many unpleasant surprises it gives the programmer, but
nevertheless we will not go that way.

Another approach is to simplify things by outlawing some of the possibilities; since all
of the possibilities are permitted in Standard ML, this implies becoming less compatible
with Standard ML. The current implementation does this; it outlaws mixed type arguments
and it treats ignored type arguments as though they were positive. However, in this chapter
we will permit and accurately model all four possibilities.

Thus, in general, each polymorphic refinement type constructor will have four kinds of
type arguments. We will represent the different kinds by grouping them together, separated
by semicolons, in the order negative, positive, mixed, and ignored. For example, the true
form of tt ev is (; tt; ;) ev.

Each ML type constructor takes a fixed numberof type arguments; each of these is either
negative, positive, mixed, or ignored. We will assume these type arguments are grouped
as described in the previous paragraph, so we can describe the number of arguments an
ML type constructor takes with a tuple of four nonnegative integers saying how many
arguments it takes of each type. We call this tuple the arity of the ML type constructor,
and if we call the ML type constructor tc then we write its arity as arity(tc). For instance,
arity(list) = (0; 1; 0: 0) and arity(m) = (0; 0; 1; 0). Assumption 2.2 (Constructors have
Unique ML Types) on page 26 still holds, so we can assume that the arity function is defined
for ML type constructors, and define arity(rc) to be arity(tc) for the unique ic such that

def
rc E tc.

With these conventions, we can define arrow and tuple types as uses of ordinary type
constructors. With this interpretation, many of the inference rules concerning tuple or arrow
types are subsumed by more general rules. Specifically, we shall treat the "--" operator
that appears in ML types as an ordinary ML type constructor with arity (1; 1; 0; 0); we shall
call it tarrow when we are thinking of it in this context. We also have an "-" operator in

def
refinement types; we will call it rarrow, and we have the assumption rarrow E tarrow.
We will continue to use "-", but now it is a readable abbreviation for a use of rarrow
or tarrow, rather than part of the syntax. For example bool -+ bool is syntactic sugar for
(boot; bool;;) tarrmo and it -- ff is syntactic sugar for (it; ff;;) arrmw.

Similarly, we can represent tupling of ML types as an ordinary ML type constructor.

242 CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

For example, we give the ML type constructor that takes arguments a, f3, and -y and
constructs a *•0 * -y the name ttuple 3 which has arity (0; 3; 0; 0). In general we have an
ML type constructor ttuple,, for tuples of each nonnegative size n, and arity(ttuple,,) =
(0; n; 0; 0). Refinement type tuples get their own constructor, named rtuple,, and for alldef
nonnegative n we have rtuple, C ttuplek. We will continue to use the old syntax as
syntactic sugar for the new; for example, runit stands for (;;;) rtupleo and boot * bool
stands for (; bool, bool; ;) ttuple2.

We will make the examples more readable by using some other syntactic sugar too.
When a refinement or ML type constructor has no arguments, we eliminate the argument
list entirely; thus we write bool instead of (;;;) bool. Also, if all of the arguments are
positive, we omit the semicolons, and if there is only one argument and that argument is
positive, we omit the parentheses; thus we write bool list instead of (; bool; ;) list.

To make the rest of this chapter more concise, we will introduce special notation for
groups of four vectors of types or type variables. We abbreviate (F1; F2; r3; r 4) as W. We

define t as a similar grouping of four 1's.

With this said, it should not be surprising that after we expand all the syntactic sugar,
the grammars for ML and refinement types have become simpler:

t::= (I)tc I a
r::= r Ar I()rc I a

We change the grammar for expressions by stating explicitly how to instantiate each
value constructor before using it. We do this for the same reason we had an explicit
instantiation after each variable in Chapter 4: we need the object language to uniquely
determine the ML type derivation. We specify the ML types of value constructors with
assumptions of the form

def t -- , (=)tc,

so the easiest way to specify the substitution is by giving a quadruple of types to substitute
for the type variables U. Thus the new grammar for expressions is:

e ::=x11 fn x:t => e I e e I c[il e
case e of c => e I ... I c => e end:tI

(e, ... , e) 0() elt-m_- el
fix f:t => fn z:t => eI
let z = A(M).e in e end

As we did with type constructors, we may omit the substitution after a value constructor if
it is empty; thus we will write true () instead of true[;;;] ().

Intersections of vectors of refinement types happen pointwise; that is, if f and k have
the same length, then F A 1 has that length too, and (F A k){i} = f{i} A k{i} for i
between 1 and length(f).

5.1. ML TYPING 243

The arguments in this chapter are a modification to the arguments in Chapters 2 and 4.
We will disregard trivial changes made to accommodate the change in syntax of the object
language.

The definition of substitution on page 231 does not change, nor do the semantics rules
on page 231.

5.1 ML typing

Now that we have polymorphic type constructors, we can have polymorphic datatype
declarations. To permit this, we need to revise Assumption 4.1 (Free Type Variables in
Constructors) on page 232:

Assumption 5.1 (Free Type Variables in Constructors) If

def.
C :: t-+ t

then all type variables free in t appear in 2.

The only change to the appearance of the ML typing relation specified in Figure 2.2 on
page 27 and updated on page 232 are to the rules for constructors and case statements:

def:: t -* (l') VM F- e
CONSTR-VALID:

VM H- c[i] e:: (i)tc

VM H- e0 :: (1)tc
def ()C

CASE-VALID: for all i we have cj 44 ti, (=a) tc

for all i we have VM - e1 :: /]ti -, u
VM H (case eo of cl => el I ... = c, > e, end:u)::u

The meaning of these rules have changed, though, because now -- and * are syntactic sugar
for uses of polymorphic ML type constructors instead of primitive symbols. The modified
system has all the usual properties; Fact 2.3 (ML Type Soundness) on page 27, Lemma 2.4
(Unique Inferred ML Types) on page 27, Fact 2.5 (ML Free Variables Bound) on page 29,
and Fact 2.6 (ML Value Substitution) on page 29 still hold.

5.2 Subtyping

Because arrows and tuples are no longer primitive, we can eliminate some of rules for
the refines relation "c" defined in Figure 2.3 on page 31 and updated on page 233. The

244 CHAPTER 5. POLYMORP-HC REFINEMENT TYPE CONSTRUCTORS

VAR-REPF: C

r1 C - tr2 C- t
AND-REF: r, A t r2 C t

r, Atr2 C-t

del

RCON-RER: rcC tc FCt

fl' r c E I~tc

r 1 -C tj F2 r- t2 i3 r- t 3 F4 C t 4
QUADRUPLE-RE: (1; '2; r3; r 4) C (t; t2; t 3; *4)

length(f) = length(i)
VECTOR-REP. for all i in 1 ... length(f) we have i {i} C t{i}

Figure 5.1: Polymorphic Refinement Rules

complete set of rules is in Figure 5.1. In these rules we use the abbreviation f C t to mean

that the quadruples F and t have the same shape and, for each r in r and the corresponding
t in t, we have r C t. We are able to get the effect of the old ARROW-REF rule because we
have the RCON-REF and we assume

def
rarrow C tarrow.

Similarly, we get the effect of TUPLE-REF by using RCON-REF and the assumption
def

rtuple,- C: uple,

for all nonnegative n.

Lemma 2.10 (Unique ML Types) on page 31 is still true, and we shall omit the proof.
The definition of rtom on page 32 is unchanged, as is the addition that defines its effect on
substitutions on page 233.

For the same reason, we can simplify the subtyping rules that originally appeared in
Figure 2.4 on page 35. First we generalize RCON-SUB and RCON-AND-ELIM-SUB to deal with
polymorphism, then we eliminate ARROW-SUB, ARROW-AND-ELIM-SUB, TUPLE-SUB, and
TUPLE-AND-ELIM-SUB because those rules are now subsumed by the generalized RCON-SUB
and RCON-AND-ELM-SUB. The entire set of rules is in Figure 5.2.

To use RCON-SUB with arrows and tuples, we need arrow and tuple refinement type
constructors to be subtypes of themselves; thus we need to have

dd
rarrow < farrow

5.2. SUBTYPING 245

SELF-SUB:

rt k t
AND-ELIM-R-SUB: A k <rAk <_*

ret ker
AND-ELIM-L-SUB:

t k t

AND-INTRO-SUB:
r < k, r < k2

r _ kI A ko2

TRANS-SUB:
p _

def

RCON-SUB: - rc kc

r~ rc < kkc

(fI; F2 A F; F3; F4) c
RCON-AND-ELIM-SUB: (F1; F2; F3; F4) rc A (rl; 1; f 3 ; F4) rc' <

(f; 2 A f2; F3; F4) (cA rc'

k, <_ T2 : _k 2 F3 - k 3 F4Et k4 Et
QUADRUPLE-SUB: (fl; 2; F3; f4) _< (k 1; k 2; k3; k 4)

length(f) = length(k)

VECTOR-SUB: for i in 1 ... length(F) we have Y{i} < k{i}
F <

VECTOR-EQUIV: k

Figure 5.2: Polymorphic Subtyping Rules

246 CHAPTER S. POLYMORPHI REFINEMENT TYPE CONSTRUCTORS

and, for all nonnegative n,
def

ttuple, <- ttuple.

Theorem 2.21 (Subtypes Refine) on page 36 still holds. Lemma 2.22 (Tuple Intersection)
on page 40, Fact 2.23 (Tuplesimp Sound) on page 41, Lemma 2.24 (Refinement Constructor
Intersection) on page 41, and Fact 2.25 (Rconsimp Sound) on page 42 will be immediate
corollaries of theorems we will prove below as part of the proof that each refinement type
still has finitely many refinements. Since we only need these theorems for the type inference
algorithm, we will postpone discussion of them until Section 5.5.

Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 still holds, as does Fact
4.3 (Split Substitution) on page 233.

5.3 Finiteness of Refinements

Because we have made polymorphism more general, the lemmas used to prove that each

ML type has only finitely many refinements become much more useful. Thus we shall
describe the appropriate generalization of that proof now, before we use the lemmas in the
soundness and decidability proofs.

In Section 2.9 on page 105, we created two interpretations of each refinement type.
Two refinement types r and k were equivalent if and only if their interpreti ,ons I(r) and
1(k) were equal, which was true if and only if their interpretations i(r) and i(k) mapped

equivalent refinement types to equivalent generalized refinement types. This section
preserves this property while generalizing I and i to apply to arbitrary refinement types
with polymorphic type constructors. The definition of I in cerms of i is straightforward, so
we will discuss generalizing i.

The proper generalization of i is fairly clear once we determine what its inputs and

outputs should be. Since in this chapter we have converted the "--+" refinement type
operator from Chapter 2 into an ordinary refinement type constructor with one negative
and one positive argument, reasoning by analogy with the definition of i from Chapter 2
leads one to expect that the new i will take negative type arguments for input and produce
positive type arguments in its output.

It is possible to declare refinement types that behave similarly to mrrow, except the

output of the function is represented as a refinement type constructor instead of as a positive
type argument. For example, we can reuse the pred datatype:

datatype (a; ; ;) pred = Prod of a -- bool
rectyp. (a;;;) tpred = Prod (a--+ tt)

and (a;;;) fpred Prod (a -- ff)

5.3. FINITENESS OF REFINEMENTS 247

In this case, it is obvious, for example, that a function f has the refinement type tt --+ tt A
ff --- ff if and only if Pred f has the refinement type (U;;;) tpred A (if;;;) Ared. Thus we
expect refinement type constructors to have an analogous role to positive type arguments:
they are outputs from the interpretation.

The problem of determining the role of mixed type arguments remains. We will use this
example:

datatype (;;a;) miz = Mix of a--+(a * bool)
rectype (;;a;) tmiz = Mix (a -*(. * it))

and (;a;) frniz M ix (a--+(a *if))
and (;;a;) botmrc = Nix (a--+(a*I&,b0g))

In this case, the following types are all distinct:

(;;tt;) tmiz A (;; T-b.,o;) botmiz
(;; it;) tmiz A (;; Tb;) tmiz

(;; it;) botmiz A (;; Tb.°;) botmiz
(;; tt;) botmix A (;; T b 1;) tmiz

It seems most natural to give different interpretations to these distinct types by making
mixed type arguments an input to the interpretation. From this example, it is clear that
mixed arguments give rise to more distinct refinements than do negative arguments. We
must therefore have more distinct interpretations of refinement types with mixed arguments;
this happens because the interpretation in general is monotone for the negative arguments
but not for the mixed arguments.

In Chapter 2 we had "generalized refinement types", which were either a refinement type
or ns. In the argument below, we use generalized pairs for a similar purpose. A generalized
pair is either a pair consisting of a vector of refinement types corresponding to the positive
arguments of some refinement type constructor and a refinement type constructor, or it is
ns. We will use the metavanables rr?, kk?, and pp? to stand for generalized pairs. The
operations on generalized refinement types can also be defined on generalized pairs; for
example, che new definition of -__ is entirely analogous to the definition on page 106:

Definition 5.2 We define the binary relation -_ on generalized pairs by the following cases:
def

(F; rc) (k;kc) if and only ifF < I and rc < kc
(f; rc) ns always

As < (!; kc) never
ns < ns.

The definition of - is also analogous:

Definition 5.3 We say rr? ;• kk? if rr? -< kk? and kk? -< rr?.

248 CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

Definition 5.4 We define the binary operation A mapping pairs of generalized pairs to
generalized pairs by the equations:

-- def

(F;rc) A (1;kc) = (f A I;rc A kc)
(f; rc) A ns = ns A (F; rc) = (F; rc)

ns A ns = ns.

Definition 5.5 Suppose a is a finite set of generalized pairs; then we define As as follows.:

If s is empty, then As = ns.

Ifs - {rr?1,... ,rr?n}, then As = rr?i A ... A rr?n.

Sdef

Definition 5.6 We say rr? C" (i; tc) if rr? = ns or rr? oc (f; rc) and i E t and rc c tc.

Definition 5.7 If s is a finite set of generalized pairs, then we define a E (t; tc) to mean
that for all elements rr? of a, we have rr? C (1; tc).

Fact 2.76 (A Elim Sub) on page 107, Fact 2.77 (A Intro Sub) on page 107, and Fact
2.78 (Transitivity of -<) on page 108 transplant easily to this new context, and they continue
to hold.

As discussed earlier, the new interpretation of a refinement type takes as input two
sequences of refinement types corresponding to the negative and mixed arguments and
it outputs a generalized pair. Interpretations have a simple property that can almost be
used as a definition: the interpretation i of a type r is a functibn f such that for all
well-formed F, f", and j"r of appropriate length, if there is a least pair (V'; rc) such
that r < (F; i'; !;"; !".)rc, then f(i; V") = (!'; re); if there is no (V'; rc) such that
r < (f; F'; p"; j"')rc then f(f ; F") = ns. To avoid a circular proof, we cannot yet argue
that these are all the possibilities; in principle there could be an infinite chain of distinct pairs
... - (k 3; kC3) _< (k 2; kc 2) •5 (ki; kci) such that for all i we have r < (F; ki; i"; i')kc1 .
Thus we will not use this simple property to define i; instead give a different, more
constructive, definition of i and then prove that the i defined this way satisfies the simple
property.

Definition 5.8 (Interpretation of a Refinement Type) Suppose k has the form
(1; 1"; 1n ..)kc, A ... A (in ,,;- -";1..)n

and suppose k C (1; '; V"; t")tc and F C r and F" C- i". Then we define i(k)(i; f") to
be

A{(lh;kch) I his in 1...nand F < 1h and •" h

5.3. FINITENESS OF REFINEMENTS 249

We extend i to give an interpretation to generalized refinement types by defining
i(ns)(F; f") = ns.

For example, if we eliminate some of the syntactic sugar from the refinement type
it -+ff A T-&,,* -- it we get (tt;ff;;) rarrow A (T b*.; it;) rarrow. The interpretation
of this is a function; if we pass the function the pair (it;) consisting of the sequence of
refinement types it with length 1 followed by the empty sequence of refinement types, the

def
result is the generalized pair (it A T1 ,j; rarrow A rarow). This has the same information
as the interpretation we had in Chapter 2.

For another example, we can compute i((tt; tpred A (if;;;) fpred); this is a function
def

which, among other things, maps the pair (it A if;) to (; tpred A fpred).

We also give an example using the datatype miz. The refinement type (;i; t;) tmiz A
(;; T..a;) ftmiz is not equivalent to any simpler refinement type; we have

i((;; it;) tmiz A (;; T., 1 ;) frniz)(; it) = (; tmiz),

i((;; it;) tmix A (;;T&*i;) fmiz)(;ff) = (;fmni),

and
i((;; it;) tmix A (;; T,,0j;) ftniz)(; Tb.,1) = ns.

After updating the notation, the theorems proved about i in Chapter 2 are still provable.
The only real difference in the proofs is the convolutedness of the notation, so we shall omit
the proofs.

The new version of Lemma 2.80 (i Monotone in Second Argument) on page 108 has
two parts, because the mixed type arguments are treated differently from the negative type
arguments:

Fact 5.9 (i(k)(F; F") Monotone in F) If

F 1 :---F2

and F, E- t and f" - t" and k (E ; '; .";)tc, then

Fact 5.10 (i(k)(1; i") Respects Equivalence in F") If

fitn -If
"1 2

and F C: 1 and i;*' E: t and k C (t; t,; t'; t .c, then
t F; Ft ;XF F c, he

250 CHAFFER 5. POLYMORPHIC REFLNhEM.NT TYPE CONS7TRUCTORS

Lemma 2.81 (i Monotone in First Argument) on page 109 requires little change:

Fact 5.11 (i Monotone in First Argument) If

k<p

and F C 1 and F" : i" and k c (; 1'; -"; then

The corollary to Lemma 2.81 (i Monotone in First Argument) on page 109 is still
simple:

Fact 5.12 (Bound on Argument to i Gives Bound on i) If

k < (F; f'; f"; f"')rc

then
S_ rc).

Using the facts stated above, we can prove the following generalization of Lemma
2.26 (Tuple Subtyping) on page 42 and Fact 2.28 (Refinement Constructor Subtyping) on
page 45:

Corollary 5.13 (Arbitrary Constructor Subtyping) If (k)kc •_ (W)rc, then = r and
def

kc < rc.

Proof: Suppose r cc F; V'; F"; f". and k c(x ; k'; "'; k". By Fact 5.12 (Bound on
Argument to i Gives Bound on i) on page 250 we have

i((!)kc)(f; jr") -,ý' (f'; ,c). (5.1)

Thus i((k)kc)(1; j;") is not ns, and the definition of i gives

i((I~kc)(in; Fn") = (V'; kc),

and

From (5. 1) and the definition of -.< we have

5.3. FINITENESS OF REFINEMENTS 251

and
clef

kc < re. (5.2)

Theorem 2.21 (Subtypes Refine) on page 36 holds for this system, so there is a " such

that ." E t" and 1" - ". Then the definition of < for sequences gives k < F. This
and (5.2) are our conclusion.

We state the generalizations of the remaining lemmas and theorems from Section 2.8 so
a determined reader will be able to reconstruct the details of the reasoning without going
astray. Nothing very interesting is happening here, so other readers can skip to the next
section.

Fact 5.14 (i Gives an Upper Bound) If

and k C (F; V; F"; F ".)tc and f"" C i', then

k < (F; F1 ; f "; f")frc.

Fact 5.15 (Ordering on i) If, for all k -C and all k" o t", we have

i(,')(i; 1") i~p)C1; V"),

and C (t; i'; i"; r")tc and p C (1; V'; -"; 1"')tc, then

r<_p.

Fact 5.16 (i Preserves Information) Suppose that r, and r2 both refine (1; t'; "; "')tc.
Then for all k C "and k2 C andkF" Ctand k2Ct

we have
k2) and (kI' I k")imply

if and only if

Definition 5.17 We define the equivalence class of a generalized refinement type r? (written
C(r?)) to be the set {r?' I r?' z r?}.

We define the equivalence class of a generalized pair rr? (written C(rr?)) to be the set
{rr?' I rr?' ;z rr?'}.

We define the equivalence class of a sequence of refinement types f (written C(F)) to
be the set {If' I V' = f 1.

252 CHAPTER 5. POLYMORPHIC REFINIEMNIT TYPE CONSTRUCTORS

Definition 5.18 We define the set of equivalence classes of refinements of an ML type t
(written EC(t)) to be {C(r?) I r? C t}.

We define the set of equivalence classes of refinements of a pair (I; tc) (written EC(Q; tc))
to be {C(rr?) I rr? [- (1; tc)}.

We define the set of equivalence classes of refinements of a sequence t (written EC(l))
to be {C(i) I F C:}.

We shall use c as a metavariable standing for the equivalence class of some refinement
type, c? as a metavariable standing for the equivalence class of some generalized refinement
type, cc? as a metavariable standing for the equivalence class of some generalized pair, and
Z as a metavariable standing for the equivalence class of some sequence.

Definition 5.19 If r C- (I; t ; ;')tc and cc? E EC(V;tc) and Z E EC(I) and Z" E
EC(i") then we write

cc? = I(r)(Z; Z")

if there is a 1 and a in Z" such that

cc? = C(i(r)(i; i")).

By Fact 5.9 (i(k)(F; F") Monotone in F) on page 249 and Fact 5.10 (i(k)(F; F") Respects
Equivalence in i") on page 249, for all r we know that I(r) is a function.

Fact 5.20 (I Preserves Equivalence) If r and r' refine (i; tV; t"; .".)tc then

r -=r'

if and only if

for all Z E EC(Q) and all e " E EC('") we have I(r)(e; Z") = I(r')(,; e").

And finally,

Fact 5.21 (Finite Refinements) For each ML type u we have EC(u) is finite.

and, once we define type inference, the same simple argument for principal types used in
Chapter 2 will hold:

Fact 5.22 (Principal Refinement Types) If

VR - e: r

then there is a k such that
VR F- e: k

and for all p we have
VR H- e : p implies k <_ p.

5.4. SPL1TTING 253

5.4 Splitting

Splitting does not simplify as much as subtyping did. We only need a syntactic change to
make the RCON-SPLIT rule in Figure 2.5 on page 48 accommodate polymorphic constructors:

def

RCON-SPLIT:
M(r)rc X{(F)kc IkcE Ycl

None of the other splitting rules in the system change; in particular, the TUPLE-SPL1T rule
does not change. It is tempting to "generalize" it to get an incorrect rule for splitting
polymorphic types where all the arguments are positive:

ki~s
BOGUS: k;;-,. ./-,, k., &+1 I..., ;) ,,km;

{(;;kl,..., k,_.,p, k+I,...,k ;)rc I p E .}

This incorrect rule would allow us to use Tb., { tt,if} to derive T i., ev × {tt e,, ff ev }.
This is not sound; for example, the value cons (true, cons (false, nil)) has the type
Tj..j ev but it does not have either of the types t ev or ff ev.

To make type inference tractable, we assume that if a refinement type constructor splits,
it has no negative or mixed type arguments. Formally,

def
Assumption 5.23 (Split Positive) If rc × {rcl,... , rc,,}, then arity(rc) has the form-
(0; z; 0; y) for some nonnegative integers x and y.

Without this assumption, there might be splittable refinement types that can only be ex-
pressed as an intersection of other refinement types; for example, we could have the
declaration

datatype (a;;;) doublepred ldl of a -- boot I Pred2 of a -+ boot
rectype (a;;;) tpred12 = P- Df a -- I Pred2 of a --+ tt

and (a;;;) tpredl = Pred1 of a--+ it
and (a;;;) tpred2 = Pred2 of a -- t
and (a;;;) fpredl2 = Predl of a-+if I Pred2 of a-iff

where tpredl2 V {tpredl, tpred2}. Then we might have to determine that the principal
split of the refinement type (it;;;) tpred12 A (if;;;) fpredl2 is

{(it; ; ;) tpredl A (if;;;)fpredi2,(it;;;) tpred2 A (if;;;) fpredl2}.

In general, it seem that we might have to search over all of the supertypes of the type we
start with to find splits, and then combine these to get the principal split. The assumption

254 CHATER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCrORS

above saves us from that; with the assumption, all splittable types are equivalent to a type
of the form (I)rc where re has a predefined split.

The theorems Theorem 2.31 (Splits Are Subtypes 1) on page 49, Corollary 2.32 (Split
Types Refine 1) on page 51, Fact 2.33 (Splits Are Subtypes II) on page 51, and Fact 2.34
(Split Types Refine II) on page 51 continue to hold for the new system. To get Fact 2.35
(Splits of Arrows are Simple) on page 51 to hold in the new system, we need to assume that
farrow has no interesting splits:

def
Assumption 5.24 (Arrow Does Not Split) There is no sc such that rarrow × sc.

Fact 2.37 (Splits are Nonempty) on page 51 continues to hold, as do Lemma 2.43 (Split
Intersection) on page 54, Lemma 2.45 (Principal Split Implies Useless Splitting Fragments)
on page 58, and Lemma 2.46 (Fragments of Principal Split have Useless Splits) on page 58.

5.5 Refinement Type Inference

The assumptions we make about value constructors now have type variables embedded. To
say that a constructor c maps values with type r to values with type (-)rc, we write

defc : r-- arc

This notation implies that c maps all instances of r to the corresponding instances of (a)rc.
Only two refinement type inference rules appearing in Figure 2.6 on page 60 and updated
on page 4.2 have to change to accommodate this:

clef

c : r -()rcVR i- e: "[/W]r
CONSTR-TYPE: V H-e

VR }- c[tf e: (=)rc

VR F- eo: (ri)rci A... A (r=,)rc,

rtom(VR) H-(case e0 of el => el I ... I e => e,, end:u)"-u
for all i in I...n and all r1 ,... ,,, whenever

CASE-TYPE: def
for all j in 1... m we havec : rj . (•)rcj

we have
VR F- ej : ([Q~rij-*=r A ... A [rn/I r,,)--+ r

VR H--(case eo of cl => el I ... I c4 => en end:u):r

The CONSTR-TYPE rule is fairly intuitive. To infer that a value constructor returns a
polymorphic type (=)rc, we check that F is well-formed, that the value constructor maps

5.5. REFINEMENT TYPE INFERENCE 255

some type r to rc, and that the argument of the value constructor has an appropriate
instance of r as its type. For example, we can use this rule to conclude that the expression
cons[bool] (true[] (), nil[booi] ()) has the type (; tt;;) od, assuming we have the
premises defcons : (a*•(; a;;) e,,) (;a;) od,

I- (true[] (), nil[bool]) t * (; tt;;) ev,

and
tt E bool.

The CASE-TYPE rule is somewhat more complex; the difficult part is the premise begin-
ning with "for all i in 1 ... n...". An intuitive reasonable reading of this complex premise
of CASE-TYPE is

for all branches of the case statement and all inputs to the constructor in that branch, if
giving an input to the constructor for this branch yields the type of the case object

then
giving that input to the type of this branch must yield the type of the case statement.

We can translate this into the formal notation used in the inference rule as follows:

"* "For all branches of the case statement" becomes "for all i in 1... n".

"• "The case object" is "e0".

"* "The type of the case object" is (FI)rcI A ... A (Fm,,)rc,.

"* "The constructor in that branch" is "cj".

"* "For all inputs to the constructor in that branch" becomes "for all rl,... , r,,,". Roughly
speaking, the input to the constructor is [Fi/]Ir A... A [,m/N]rm.

" "Giving an input to the constructor of this branch yields the type of the case object"
translates approximately to

"4c : ([,/•1r, A ... A [i,./]?r,) -- ((,1),c1 A... A (Wm)rcn)".

However, this is not well formed, since constructors by themselves are not expres-
sions. Doing this one component at a time yields the still ill-formed translation

"for all i in 1 ... m we have ci : [F,/`]r, -(,,)rc,".

We can make a well-formed translation without changing the meaning in any impor-
tant way by omitting the instantiation in the type of c4; this yields

def"for all j in I1... m we have Ci : ri '--- (3)Mij".

256 CHAPTER 5. POLYMORPHIC REF..INEMEVT TYPE CONSTRUCTORS

"* "The type of the case statement" is simply "'".

"* "This branch" is "e1".

"* "Giving that input to the type of this branch must yield the type of the case statement"
translates to "yR I- e, : ([z/-],'a A... A [,,/•]r,,) -,".

For example, if we use the pred datatype introduced on page 240, then the expression

case Prod (in x:bool > x[J) of
Prod E> in f : bol- boo => []

end: boot -- boot

has the type it -- it A ff --+ ff because the following premises hold:

*HPred (fn x: boot => x[]) :(tt;;;) tpred A (f;;;)fpred,

it --+ tt A ff -- ff F- boot - boot,

-(case ... end: boot--"ool) -bool - bool,

and
defProd : (a ---+ tt)- (a;;;) tpred and
defProd : (a--if) - (a;;;)fpred imply

•fn :boot-- boot => f tt -- itt Aff--+ff

5.5.1 Positions of Type Variables

We need to make some assumptions about how the type variables appear in the . relation.
First we must assume that the type variables appear in the proper position; for example, if

def
a is in the positive position of 3, and c : r '-+ (&)rc, then [k/ajr should become larger
as k becomes larger. We will give a formal definition of this assumption below, but first we
will give a concrete example where refinement type inference is unsound if the assumption
does not hold.

We will assume a datatype (a;;;) boz with one negative type argument, one refinement
T1 ,., and one value constructor Box. We shall assume the constructor Box has these
behaviors:

def
Box :: a,- (a;;;) boz
Box de

Since a occupies the first position in the quadruple (a; ; ;) and the first position is negative,
this behavior for Box violates the assumption we are discussing: as a type substituted for
a gets larger, the type a on the left hand side of the -+ also gets larger, but the type
(a;;;) T ,I on the right side gets smaller.

5.5. REFINEMENT TYPE INFERENCE 257

We will also use the value constructor true for the booleans. If we do not use any of
the convenient abbreviations we have introduced so far, true has these behaviors:

deftrue :: (;;;) ttupleo ,- (;;;) bool

Using the abbreviations, we can make these look more familiar:
def

true :: tunit c-- bool

true : runit - t
def

We will also use the assumption that -L-..L < it.

In this context, we can now show that the expression

case Box[bool;;; I (true ()) of
Box => fn x:bool -> x[]

end: bool

has the refinement type -1- 1o. Since this expression evaluates to true (), and true ()
does not have the type -L-..,, our type system is not sound with the assumptions we have
made so far.

First we find a type for Box[tt;;;] (true ()). The expression true () obviously has
the type it. By CONSTR-TYPE and the assumed behavior of Box, the expression

Box[nt;;;] (true ())

then has the type (it;;;) Ti,.. Now we can do the step where we lose soundness: since
L-,,i< it, by RCON-SUB we have (it;;;) Tb,. < (-Ib.1; ;;) T j,,; thus by WEAKEN-TYPE

we can infer that Box[tt;;;] (true ()) has the type (L..; ; ;) T ,.

Now we can continue to find a type for the case statement as a whole. This is a use of
CASE-TYPE with the premises

- I- Box[tt;;;] (true ()): (Ia..,;;;) Tb, 2,

±L b,,, C bool,
- F- case ... end:bool:: bool,

and
Box:. a-(a;;;) T.. and.fnx:bool >

The conclusion of CASE-TYPE is • '- (case ... end: bool) : it. As discussed above, if this
expression has this type, then type inference is not sound.

To prevent this, we need to define what it means for a type variable to be positive,
negative, mixed, or absent from a refinement type, and we will require that whenever

def
c : r -- (Z)rc, the positive type arguments of re are positive in r, the negative ones are
negative, and so forth. The definition is somewhat wordy, but very regular.

258 CHA ER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

Definition 5.25 (Negative, Positive, Ignored) We say a type variable a is negative (or
positive or ignored) in a list of refinement types F if a is negative (or positive or ignored,
respectively) in each element of •.

A type variable a is negative in a refinement type r if

"* r oc r, A r 2 and a is negative in both r, and r2, or

" r oc P where 3 $a, or

"* r oc (F ; F2; F3; F4)rc and a is positive in F , negative in F2, and ignored in F.

A type variable a is positive in a refinement type r if

"* r oc r, A r2 and a is positive in r, and r2, or

"* r oc # (whether or not a = fl), or

" r oc (f 1; F2; F3; f 4)rc and a is negative in f1, positive in F2, and is ignored in 73.

A type variable a is ignored in a refinement type r if

"* r oc r, A r2 and a is ignored in both rl and r2, or

"* r c/ where a 0

"• r Oc (Fi; F2; 73; f 4)rc and a is ignored in F1, r 2, and F3. (It does not matter whether
it appears in F 4.)

Definition 5.26 (Varies properly) We say that a quadruple of type variables dt; 52; a3; d4
varies properly in a refinement type r if all the variables in d, are negative in r, all variables
in 52 are positive in r, and all variables in a4 are ignored in r.

def
Assumption 5.27 (Variance) if c r - (=)rc, then a varies properly in r.

Fact 5.28 (Variant Weakening) If Wa varies properly in r, and <_ r= , and r C t, then

Tero b <i

The proof is by induction on r.

5.5. REFINEMENT TYPE INFERENCE 259

5.5.2 Intersection and Polymorphism

In this Subsection we will make an assumption that eliminates the need to use RCON-AND-

ELIM-SUB to reason about types for constructors. The assumption is:

Assumption 5.29 (Predefined Intersection Distributivity) For all value constructors c,

if
def -* (•)rc

and
def jcd: r' (3)rc'

and a has the form (Zi; 42; a3; d4), then for any well-formed -k and k' of appropriate
length, we have

[hii2Ir A [V'/i2]r' < [i A V'/42](r A r').

Now we can explain which uses of RCON-AND-ELIM-SUB this makes unnecessary. Sup-
pose an expression e has the type [i/d2Jr A [h'/a2]r'. By WEAKEN-TYPE it has each of
the types [1/62]r and [h'/a2]r'. Then we can use CONSTR-TYPE twice to determine, for

an appropriate t, that c[=] e has each of the types (;i; k; 3;4)rc and (a; V'; d 3; d 4)rc'.
Then AND-INTRO-TYPE tells us it has the type (di; k;d 3; d 4)rc A (ii; V; a 3; 4)rc', and

WEAKEN-TYPE and RCON-AND-ELIM-SUB tells us ithas the type (61; !AV'; a3; .4)(rcef A ').

Predefined Intersection Distributivity tells us we can come to the same conclusion-
without usin? RCON-AND-ELIM-SUB. First we use WEAKEN-TYPE to conclude that e has the
type [k A hk /i2(r A r'); then by Assumption 2.52 (Constructor Argument Strengthen)

on page 67 and Assumption 2.51 (Constructor And Introduction) on page 67 we have
def def

c : r A r (a)(rc A rc'), and then by CONSTR-TYPE we know that c[l] e has the type

-k,;Zi3 ZY4(rCdef
(dl; k A kA;a 3 ;a 4)(rc/A rc').

Having an assumption that makes it unnecessary to use certain inference rules with
constructors is something we have done before. For example, Assumption 2.51 (Constructor
And Introduction) on page 67 makes it unnecessary to use AND-INTRO-TYPE in some cases,
and Assumption 2.52 (Constructor Argument Strengthen) on page 67 and Assumption 2.53
(Constructor Result Weaken) on page 67 make some uses of WEAKEN-TYPE unnecessary.
All these assumptions eliminate the need to use refinement type inference to infer types for
constructors from the CASE-'4 YPE rule. Perhaps it would be possible to make a system with
fewer assumptions but a more complex proof if we used refinement type inference for the
constructors in case statements; but that is beyond the scope of this thesis.

There are no interesting changes to the theorems asserting compatibility between re-
finement type inference and ML type inference.

260 CHAPTER 5. POLYMJRPHJC REFINEMENT TYPE CONSTRUCTORS

5.6 Soundness

The statement and proof of Lemma 4.4 (Environment Modification) on page 235 do not
change. The new version of Lemma 2.67 (Piecewise Intersection) on page 84 needs to make
nontrivial use of Predefined Intersection Distributivity; we will restate the lemma and show
how it depends on Predefined Intersection Distributivity before we show the modifications
to the proof.

Lemma 5.30 (Piecewise Intersection) If

for all i in 1... m we have H-v : (ki)kci (5.3)

and
(11)kc, A ... A (k,,)kc,, <_ý (=r,)rc, A ... A (=r,)rc,, (5.4)

then for all j in 1... n we have
H- ÷ (=j)rci .

Without Predefined Intersection Distributivity, this is false. For a counterexample, suppose
we have the declarations

datatype (a;;;) d = C of bool-•a
rectype (a;;;) z = C (Lt-+a) I C (ff---+a)

Then, if it were not for Predefined Intersection Distributivity, we could use a straightforward
procedure to determine that C has the behaviors

C a (tt +a) -+ (a;;;) z

and
def

C d (ff a) --- (a;;;) z

but not
Cd: (..L --+ a) -, (a;;;) Z.

Then these premises of Piecewise Intersection could be true:

•H- Cbooll (fn x:bool => x[]) (it;;;) z

H- C[bool] (fn x: bool => xt[)'(ff;;;) z
(tt;;;) z A (if;;;) z < (±Lb.,;;;) z

but we would not have the conclusion

• 4-C[bool] (f n x: b => x[]) z

5.6. SOUNDNESS 261

because the only way to derive this conclusion uses WEAKEN-TYPE as the last inference,
and the meaning of H+- specifically excludes WEAKEN-TYPE as the last inference.

Proof: By induction on the derivation of (k I)kc, A... A(k m)kc,,m < (r=j)Trc A... A(r=,)rc,,.

[Case: RCONS Then m = n = Iand the premises of RCON-SUB are k I 1 and

def
kc, < rcl. From here we take cases on the form of v.

SubCase: v Xc c[tl] v'. The last inference of . H- v: (k I)kc, must be CONSTR-TYPE with

the premises
def

and
kE.

def
By Assumption 2.53 (Constructor Result Weaken) on page 67 and kc 1 < rc1, we have

clef ,. a (5.5)

By Assumption 5.27 (Variance) on page 258 we know that = varies properly in r. Thus Fact

5.28 (Variant Weakening) on page 258 gives [k I/=Jr < (fl /Nar, and then WEAKEN-TYPE
gives

V v':

and CONSTR-TYPE and (5.5) give

•R V-4• '. (=I)reI,

which is our conclusion.

SubCase: Otherwise. IOmitted.

Case: RCON-AND-ELIM-SUB. Then (5.4) has the form

def
C)

(k,; k2; k3; k4)kCI A (ki; k'; k 3; k4)kc 2 !5 (ik; k2 A k_'; i 3; k4)(kc, A kc 2).

From here we shall take cases on the form of v.

SubCase: v cc c[=] v'. I Then (5.3) says

• ÷ c•1 ,, (ij)kc,:

262 CHAPTER 5. POLYMORPCREPINEMENT TYPE CONSTRUCTORS

and • H- c[l] V1" : ()22.

The last inferences of each of these must be CONSTR-TYPE with the premises

dCf ' '-- (a)kc2

* d- ,k 2 i3*] 2

k2 C t
Then AND-INTRO-TYPE gives

F v-: (•/1 3]k, A k 2 /ý]; 2.

Suppose N has the form ; d2; a 3 ; a 4 ; then Assumption 5.29 (Predefined Intersection

Distributivity) on page 259 gives

[12/a 2Ik, A [1'/d21k2 :_ [2 A '2/' 2](k A ^•2).

Using Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 on this gives

[k l=]k1 A [k2/ajk2 < [I/,l](k, A k).
Then WEAKEN-TYPE gives -I- V1 : [=r/-ai(kj A k2).

def
Assumption 2.18 (and-intro-_<) on page 34 and Assumption 2.52 (Constructor Argument

Strengthen) on page 67 give

def def
C (k, A k2) -- + (U-J)(kci A kC2),

and then CONSTR-TYPE gives

def
-c[ati vý': (=)(kc, A kC2),

which is our conclusion.

SubCase: Otherwise. i Omitted.

hCase: Oherwse. Omitted. 0

Lemma 2.68 (Subtype Irrelevancy) on page 88, Theorem 2.69 (Splitting Value Types)
on page 89, and Fact 4.5 (Refinement Type Substitution) on page 236 continue to hold
with no interesting changes. The version of Value Substitution as revised in Chapter 4
on page 236 also has only notational changes. Refinement Type Soundness as revised in
Chapter 4 on page 237 has no interesting changes either, the only nontrivial changes needed
to deal with polymorphic type constructors are in the lemmas, not in the main theorem.

5.7. DECIDABILITY 263

5.7 Decidability

The changes in this chapter only affect the cases of the type inference algorithm that deal
with constructors and case statements. The changes required to the algorithms are intuitive;
the changes required to the proofs are simple, except the proof that the algorithm derives
principal types for case statements is awkward.

Since types have become more general, we need to generalize some of the utility
functions used by infer. First, we make versions of allref s that find refinements for a
vector or quadruple of refinement types:

fun vallrefs t =
{fI length f = length t and

for i E ... length t we have
f {i} E allrefs t{i}}

fun qallrefs t1; t 2; t 3;t 4 =

{f ; f2; r 3 ; f4 1

f E vallrefs 11 and
f2 E vallrefs t2 and
F3 E vallrefs t 3 and
f4 E vallrefs 14}

The new definition of the interpretation i works for arbitrary refinement types, instead of
just functions. We call the function for computing this iconstr by analogy with the if n.
function defined on page 120. In this definition, iconstr r? (P; P') (t; t") computes
i(r?)(p; p"), assuming that p E i and p" E t" and, for some tc, V, and i". we have
r? C (1; t'; t"; l')tc. This definition assumes that Afn has been revised to work on
generalized pairs, and that vsubtypep is a generalization of subtypep that works on
vectors; both of these are easy to write.

fun iconstr r?(; (P) =

if r? = ns then ns
else

le ",l (f 1;F ;f)rcl A ... A (F,,;rf,,;- rF,"; r-" •)rcn r

in
Afn {(f ; ?'Ch) I

h E l...n and vsubtypep P rh t and
vsubtypep P" T t" and vsubtypep F •" t"}

end

It is easy to give an alternative definition of the old function if n in terms of iconstr.
Here ifn r? p t evaluates to i(r?)(p), using the old definition of i from Chapter 2,
assuming that p C- t and for some u we have r? F1 t -- u.

264 CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

fun ifn r? p t =
case iconstr r? (p;) (t;) of

us =>. us
I (k;r rroa) => k

We also define a utility function deval that de-evaluates a constructor, more specifically,def

if c : r -- (Z)rc, then there is some type equivalent to r in deval c rc. This is used
only in the case of infer for case statements that appears below. Because there are finitely
many possible inputs to deval, it can be evaluated quickly by table lookup at type inference
time. The implementation does this.

fun deval c rc =
def

let val u = the unique u such that c :: u -+ (3)tc
in dlef

{r IE allref s u and c : -• (:)a}
end

The new cases of the infer algorithm are:

fun infer VR (c[l] e') =
let val k? = infer VR e'

defval t = the unique t such that c :: t c-. tc
vals = allrefs (M)

in
Afn {(i) rc E s and for some r E allrefs t we have

c r - (N)rc and subtypop k? t}
end

infer VR (e as (case e0 of c, => el I ... I c, => e, end:t)) =
if not rtom(VR) - e:: t then ns
else let val r? = infer VR eo

val u = the unique u such that rtom(VR) H 0 eo :: u
in if r? = ns then ns

else let val (I)rc, A ... (F,)rc. = r?
fun seq h = (deval ch rc, x ... x deval Ch rc,,,)

in
sjoinf t

{ifn (infer VR eh, [rl/c]rl A ... A [um/•]Pm) U
he 1. ...n and (r,,...,rn) E (seq l)}

end
end

A full proof of this would require replacing two of the cases in each of the proofs of
Theorem 2.100 (Infer Returns Some Type) on page 145, Theorem 2.101 (Infer Returns

5.7. DECIDABILITY 265

Principal Type) on page 151, and Theorem 2.102 (Infer Terminates) on page 160. Most of
these new cases would be very similar to the cases they replaced, so we shall omit them.
The exception is the case of Infer Returns Principal Type for case statements, which we
give below, after a lemma.

Before we can prove that the algorithm for inferring types for case statements returns
a principal type, we must show that as the refinement type of the case object becomes
stronger, the type inferred for the case statement as a whole becomes stronger. To state
this formally, we speak in terms of the premises of CASE-TYPE:

Lemma 5.31 (Case Statement Body) If

(Fi)rcl A ... A (m,,,)rc, < (k 1)kcI A ... A (k,,)kcn (5.6)

and, for all kt,..., k, we have

deffor all h in 1... n we have c • kh ((•)kch

implies (5.7)
VR F- e : ([Qk/Z]k1 A... A [kn/a]kn) r

and def(
5 8for all j in I... m we have c • rj •-- ()rcj, (5.8)

then
VR I- e : ([i/a],-r A... A / -fr.

The proof is not particularly interesting, but it is long enough that it was a nuisance to
discover, so we include it here.

Proof: Suppose that k h has the form

kh; ki; kit; kil

and ýr has the form

and 3 has the form
-- .-- I. -- II --41

and let p abbreviate (= I) rc A... A (=m,,)rc,m. By Fact 5.12 (Bound on Argument to i Gives
Bound on i) on page 250 and (5.6),

for h E I ... n we have i(p)(1h; 1") - (k; kch). (5.9)

Define
a(h) ={jE 1...m I 1h kh and 1 =f}. (5.10)

266 CHAPFER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

Then, by definition of i and (5.9),

for h E 1...n we have A{(Fi; rci) I j a(Eh)} --< (ih; kch)

which implies for h E l.. .n we have A{lf I j E s(h)} < ki' (5.11)

and

forh E 1...nwehave A{rcij E s(h)} < kch. (5.12)

We can use (5.8) and Assumption 2.52 (Constructor Argument Strengthen) on page 67 to

get
for h E I... n and all j in s(h) we have cdf A{rji j E s(h)} -+ (N)rci

and then Assumption 2.51 (Constructor And Introduction) on page 67 gives

dlef
for h E 1...n we have c : A{ri I J E s(h)} j- (=a)(dAc{rc li E a(h)})

and Assumption 2.53 (Constructor Result Weaken) on page 67 with (5.12) then gives
del

for h E 1...n we have c : A{rj Ij E s(h)} • (N)kch. (5.13)

Define kh to mean A{ri I j E s(h)}. Then by (5.7), we have

VR I- e: ([kj/-]kj A... A [/Cn/ýjk,-) r. (5.14)

The remainder of the proof consists of showing that

([ý1/3k 1 A ... A [^]k,1) --+ r < ([1/3Iri A ... A [-F , r.

Once we prove this, we can use WEAKEN-TYPE with (5.14) to get our conclusion.

By Assumption 5.27 (Variance) on page 258, for h E I... n and all j E s(h) we have
a varies properly in rj. By definition of s(h), we have

for h E 1... n we have j E s(h) implies kh • ih

and
forh E I ... n we havej E s(h)implies k',= .

By SELF-SUB,

for h E 1... n we have j E s(h) implies <_

Thus by the definition of < for quadruples we have

forh E 1... n and all j E s(h) we have =j < 1, ; f ; 1h; Ch.

Then Fact 5.28 (Variant Weakening) on page 258 gives

for h E I ... n and all j E s(Ih) we have [r ~j l rj [1h; j,; -"h; -'-'hri.

5.7. DECIDABILITY 267

Then
for h E 1... n we have
^{[ru/3lri I j E (h)} _ (5.15)
A{[kh; f.; 1; ,./a..f I i j a(h)}

because each element of the set on the left hand side is a subtype of the corresponding
element of the set on the right hand side.

It is easy to use induction to generalize Assumption 5.29 (Predefined Intersection
Distributivity) on page 259 to apply when more than two refinement types are involved in
the intersection; thus we have

for h E 1 ... n we have
^{[L••lrjI i E s(hz)} <

[A{ I j E s(/h)}/&'](A{,j I • E a(h)})

Then Fact 5.28 (Variant Weakening) on page 258 used with (5.11) gives

for h E 1... n we have
[A{• I.i E s(h)}/j'1(A{rj I j c s(h)}) <• [1c'/Z](A{rj I j E ,(h)}).

Then TRANS-SUB applied to these gives

for h E 1... n we have A{[f/ ']ri I j E s(h)} •_ [kh/d'](A{r j Ij E s(h)}).

By Fact 4.2 (Type Substitution Preserves Subtyping) on page 233, this implies

for h E 1... n we have
[1h; 1"; /aý,• W'; W](A^I{[j;•' I jIj E s (h))<
[kh; 1"; k .'-/i; r; -"l[-'(l-[](^{r j I j E s(h)}),

and the definitions of substitution and kh then give

for h E 1. .. n we have
V;[,;- ..-/d; W; W'; W"1r I j E s(h)} _

[!h/3jkh

Then TRANS-SUB with (5.15) gives

for e 1 ... n we have A{[=,/=Irj I j E s(h)} _ [kh/=]Ikh.

By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB, this implies

for hE 1 ... n we have [rl/7i]r, A... A [r,,/=]r, < [=hI•Ikh,

and by repeated use of AND-INTRO-SUB, this implies

[=,/=Ir, A ... A [,./=I.,h : [IINlk1 A ... A [,/=]kn.

268 CHAPTER 5. POLYMORPHIC REYINEMENT TYPE CONSTRUCTORS

Finally, we can use RCON-SUB to infer

([L/],A ... A r•./]),, <_(•/N],. A ... A [r`,,/"aN],.,) --+ r-

and then WEAKEN-TYPE with this and (5.14) gives our conclusion. 0

Now we can give the case case of Theorem 2.101 (Infer Returns Principal Type) on
page 151. We will restate the theorem first.

Theorem 5.32 (Infer Returns Principal Type) If

all splits of types in VR are useless

and
infer VR e terminates

and
VR F- e: r

then
(inter VR e) --< r

Proof: By induction on e. As in Chapter 2 on page 152, we will use

For all r,
(VR H- e : r implies

(inftor VR e) _ r)
implies (5.16)
For all r,
(VR F- e : r implies

(inftr VR e) _ r)

Case: e o case e0 of c, => el I ... = c > en end-t Suppose we have an r

such that
VRH- e: r. (5.17)

The last inference of this must be CASE-TYPE with the premises

VR F- eo: (kI)kc, A ... A (Ic)kcz,

rC-t,

for all h E 1... n and all k,...., k,,, whenever
def

for all q E I... z we havech :k -- (
we have

VR F- eh: ([(,l]ku, A...'A [kz1/Gk.) --+r,

5.8. DECLARING POLYMORPHIC TYPE CONSTRUCTORS 269

and
rtom(VR) I- e:: t.

Since infer VR e terminates, infer VR eo must terminate. By induction hypothesis,

infeor VR e0 .- (k ()kc, A ... A (k,)kc,.

Suppose infer VR e0 has the form (r1)rc1 A... A (rm)rc,,,. We will show that for all h
and all (r,...,r)in seq h, we have

ifn (in:fer VR eh, [WI/3 1,, A ... A [AI../],'h) _< r.

Then trivial properties of join will give infer VR e < r, which is our conclusion.

First, choose any h in I ... n and (rT,... ,r.) in seq h. By the definition of seq, this
implies

def
for j E I... m we havech : rj -+ (rcj.

Lemma 5.31 (Case Statement Body) on page 265 then gives

VR H- eh- ([:,/W],r A^... A [Fn/W])rn -- r.

Since infer VR e terminates, infer VR eh must also terminate. Our induction hypoth-
esis then gives

infor VR eh !5 [FI/]r" A ...- [+,n/•]", -A".

Hence, by Fact 5.12 (Bound on Argument to i Gives Bound on i) on page 250 we have

ifn (infer VR eh, [F`l•], r^ A... A [rr]/]r) <_ .

Since this holds for all h and all (ri,... ,r,) in seq h, soundness of sjoinf gives'
infer VR e < r. Summarizing (5.17) to here,

VR H- e : r implies infer VR e -< r

By (5.16), this implies our conclusion.

I Case: Otherwise. I Omitted. 0

5.8 Declaring Polymorphic Type Constructors

Three new issues arise when analyzing rectype declarations with polymorphic type con-
structors: we must determine which type arguments are mixed, positive, negative, and
ignored; we must ensure that Assumption 5.29 (Predefined Intersection Distributivity) on
page 259 holds; and we must construct default refinement types that expressions written
without concern for refinement types can inhabit.

Except for these issues, analyzing rectype declarations with type variables is very
similar to analyzing the same declarations with all the variables replaced by constants, so
the theory from Chapter 3 applies directly.

270 CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

5.8.1 Separating Mixed, Positive, Negative, and Ignored

We can use a straightforward abstract interpretation of the type declaration to distinguish
the different kinds of arguments to type constructors. We separately infer whether a type
variable appearing as an argument occurs positively and whether it occurs negatively in the
definition of the type; if neither is true, the argument is ignored, and if both are true, the
argument is mixed. For example, given the datatypeq

datatyp. (a,1f) mi, = Nix of a--(a

we immediately determine that a is mixed and)3 is positive. When several mutually
recursive type constructors are declared simultaneously, we may have to iterate to determine
the best classification. For example, given the declaration

datatyp. (a,"3) ml =
A of (a,i3) m2 I B of a* a

and (7f,6) m2 =
C of (-y,6) ml I D of 8--6

we will have to use at least two iterations to determine that a and -' are positive and13 and
6 are mixed. Implementing this is straightforward.

5.8.2 Enforcing Predefined Intersection Distributivity

The best way to enforce Assumption 5.29 (Predefined Intersection Distributivity) on
page 259 is unclear. The following theory says it is possible to effectively discover
declarations for which this assumption is not true; we could simply reject them, but it
would be better to silently repair declarations to cause the rule to be true. It is not obvious
how to repair the declarations.

The following fact has an immediate corollary which leads to an algorithm that rec-
ognizes declarations for which the assumption is not true. The main idea is that we can
determine whether the assumption is true for all vectors of refinement types we could sub-
stitute by checking it in one special case. The special case uses a vector tc of monomorphic
ML type constructors and two vectors a and b of monomorphic refinement type construc-
tors, where all three vectors have the same length and the type constructors in all three of
these vectors are distinct from each other and from any other type constructors mentioned
in the lemma, and for all i E 1 ... length(tc), the only refinements of tc{i} are, a{i}, b{i},def-

and a{i} A b{i}. Similarly, we use the vectors a, a, and W" where all three vectors have
the same length as 1- and no type variable appears more than once in all three vectors.
Then we have:

5.8. DECLARING POLYMORPHIC TYPE CONSTRUCTORS 271

Fact 5.33 (Predefined Intersection Distributivity Technical) Suppose a and b are as de-
scribed above, and that k and 1' are vectors of refinement types where • A V' refines some
L Let

a = [/6,-bS/,((A L)/1Z"]

and

W = [k /Zk/,,(k A V)/d"].

Then, for any refinement types k and k' in which none of the a{i}'s or b{i}'s appear, if

s(Ic) •_ a(k')

then

J'(k) _• s'(k').

The proof of this is a straightforward induction on the derivation of s(k) < a(k'). Then we
have the following corollary:

Corollary 5.34 (Predefined Intersection Distributivity Decidable) Suppose d and b are
as described above, and that k and Vc' are vectors of refinement types where k A Vc' refines
some t. Then,for any refinement types k and W' in which none of the a{ i}'s or b{i}'s appear.
if

[ii/ar A [6/Zlr' < [d A b/ij(r A r')

then

[k /ir A [k'/I/I' •< [I A '/al(r A r').

Proof: Use the previous fact, with k = r A [W/ljr' and k' = [a"/dj(r A r').

At this point, an admittedly slow algorithm for checking the assumption is clear: each
time we analyze a rectype declaration, for each constructor c where

C."" t - (Z1;42;43;*4)iC,

temporarily introduce new t--, !, and 6 as described in the corollary above. Enumerate all
def def I (

r, r', rc, and rv' such that c : r - (ý)rc and c : r -- (3)rc'; in each case, verify that
[a/5217 A [6/62jr' < [d A 6/6 2 1.

There may be faster algorithms for doing this test, and there may be ways to repair
rectype declarations that fail this test without violating the intuitive expectations of the
programmer. All this is future work.

272 CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS

5.8.3 Default Refinement Types

As the example in Subsection 2.7.2 on page 74 shows, if any ML type has more than one
refinement, there will be programs with an ML type that have no refinement type. Once
we permit mixed type arguments, we get into an even stranger situation: there will be ML
types with no maximal refinement. For example, assuming the usual refinements of the
booleans and the declared ML type m on page pagerefexample:mixed, the refinements of
bool m are it Tm, ff Tm, -Ibj T-, Tj,,i T,, and intersections of these. There is no
refinement of bool m that is greater than both T6.1 T,. and it T,.

Since there is no refinement type that includes the others, the terminology "catch-
all type" that we used in previous chapters is not appropriate. Instead, the purpose of
the default type is to provide a refinement type that terms with an ML type can inhabit
whenever the strangeness from Subsection 2.7.2 does not happen. With this understanding,
constructing the default type of a given ML datatype is still straightforward: define the
default refinement type to be any constructor that constructs the ML datatype, applied to
the default type refining the argument ML type of the constructor. For example, given the
datatype

datatype (;;a;) mix= Mix of a - •--(a * bool)

the default refinement type is defined as

rectype (;; a;) T.miz = Mix (a --*(a * Tt.t))

Chapter 6

Declaring Refinement Types for
Expressions

In this chapter we add explicit refinement type declarations to the language of.expressions;
for example, the expression

fn x:bool => (xG <1 tO)

will have the type tt --+ tt but not the type ff -+ ff. Adding this feature is surprisingly
simple.

The <1 operator is coercive, in the sense that the best refinement type of a expression'
of the form e <I r will be r, if it has any type at all. We can also imagine a non-coercive
version, which we shall call <4'. The best type of e <1' r would be the best type of e, if that
type is less than r; otherwise the expression has no type.

Both operators are simple, but <1 is more elegant because we can use <1 to implement
<1', but not vice versa. To use <I to implement <I', regard the expression e <1' r as an
abbreviation for (fn z: t => ((fn x:t => in y:t => x[]) z[] (z[] -1 r))) e, where t is
a valid ML type for e.

Type inference for <I is simple. First we add the syntax to the language; we will still
have a use for expressions without any <1 operators, so we will keep the metavariable e with
the meaning it was given on page 242 and use the metavariable d to stand for expressions
that may have <1 operators. Thus the grammar for d is:

d::= d 4 rI

z[f] Ifn x:t => d Id d Ic(=t] d
case d of c => d I ... I c => d end:tj
(d, ... , d) () I elt-m-n dl
fix f:t > fn z:t => dI
let z = A(•).d in d end

273

274 CHAPTER 6. DECLARING REFINEMENT TYPES FOR EXPRESSIONS

Our language of types is unchanged, so results such as Fact 5.21 (Finite Refinements) on
page 252 continue to hold. Type inference for expressions with refinement type declarations
is the same as type inference for expressions without refinement type declarations, except
we add this rule:

VR H d: r
DECL-TYPE:VR I- (d < r): r

Strictly speaking, we also need to take the rules in effect for e (see page 254) and assert that
they still hold, except all e's in those rules should be changed to d's.

Instead of using coercive declarations to implement non-coercive declarations, we could
treat non-coercive declarations directly by adding this rule:

DECL-TYPE,,R H d:r r < k

VRF- (d<4'k):r

The presence or absence of this rule has little impact on the reasoning below.

With these declarations there comes a new phenomenon: expressions can now have free
refinement type variables. Attempts to directly define a notion of evaluation on expressions
with declarations lead to pointless questions about how to instantiate free refinement type
variables while evaluating leot statements. To avoid these questions, we simply erase the
refinement type declarations before evaluating:

Definition 6.1 (Erase) We use the notation erase(d) to mean d with all of the refinement
type declarations erased.

Our soundness result therefore reads as follows:

Theorem 6.2 (Refinement Type Soundness) If erase(d) =:, v and. - d : r, then. H v : r.

Proof- We can use induction to prove that - H- d : r implies • F- erase(d) : r. Thus
H F- erase(d) : r, and we can apply Theorem 4.7 (Refinement Type Soundness) on page 237

to get our conclusion. 0

The algorithm for inferring refinement types for expressions with refinement type dec-
larations is also simple. We add the following case:

fun inter VR d < r =
if rtom(VR) H erase(d) :: t then

let t = the unique t such that rtom(VR) H- erase(d) :: t
in

if subtypep (infer VR d) r t then r else ns

end

else ns

The soundness proof for this is straightforward and we omit it.

Chapter 7

Implementation

An implementation of refinement type inference has been written in Standard ML. It
corresponds well with the theory developed in the previous chapters, and it runs reasonably
quickly. This chapter discusses the technical issues that had to be resolved to create
this implementation; this chapter is not meant to be complete instructions for using the
implementation.

Since the language of the implementation resembles the object language, there is poten-
tial for confusion between the object and the implementation languages. Worse, examining
types of expressions in the implementation language is useful when trying to understand the
implementation, so we must add yet another kind of type to the discussion. We call types
in the implementation language "SML types", to distinguish them from the "ML types" in,
the object language described in the previous chapters.

The syntax for the expressions recognized by the implementation is similar to the
grammar appearing on page 274, except we implement ML type inference so explicit ML
types need not appear in terms. The grammar does not closely resemble true SML. A
simple interaction with the implementation is below. In the example, the refinement type
declaration operator "<4" is written as "<:" and the operator "-" is written as "->". Input
typed by the user is preceded by >- or >=.

275

276 CHAPTER 7. IMPLEMENTATION

>- datatype bool - true of unit I false of unit
>- rectype tt = true (unit) and ff = false (unit);
>- true;

it: (unit -> bool)
(unit -> tt)
>- true <: ff;
Failed to unify (unit -> bool) and bool

while HL type checking true <: ff.
ML type check failed.
>- (true ()) <: ff;
it: bool
<: invalid for term (true[] 0)"
It actually had the type:
tt
You tried to coerce it to the type ff.
>- (true 0) <: tt;
it: bool ::
tt

As is the case in the theory described in previous chapters, all value constructors take
exactly one argument. Notice that at no point do we calculate a value; this implementation
of refinement type inference does not implement any kind of evaluation.

The implementation has many boolean flags that the user can manipulate to turn on and
off various performance optimizations in the type checker. The flags are all false b) default;
the flags are defined in such a way that the default is usually best. A given flag f can be
set with the top level command "setf lag f;" or cleared with the top level command
"clearf lag f ; ". A list of all flags with a description and the present value of each is
printed whenever the flag argument to setf lag or clearf lag is invalid.

Most of the optimizations discussed below can be turned off by setting some flag. We
justify most optimizations to type inference by citing how turning off the optimization
makes some example run more slowly. All run times in this chapter were measured on a
SPARCstation iPX.

7.1 Representations

This section discusses how the various mathematical objects discussed in previous chapters
are represented in the implementation.

7.1. REPRESENTATIONS 277

7.1.1 Type Constructors

The Definition of Standard ML [MTH90] makes a distinction between a type name and a
type identifier. Type identifiers are simply the strings appearing in the program text that
refer to various types; for example, if we have a declaration of the form type t = ...
that is shadowed by a later declaration of the form datatype t = ... , both of the types
have the same identifier t. In contrast, type names are unique for each type; since the two
types with identifier t are different, they will have different type names.

In the implementation refinement types we make even more distinctions. First we have
refinement type identifiers (refconid's) and ML type identifiers (miconid's), which are
both implemented as strings. Then we have refinement type names (ref conname's) and
ML type names (milconname's), which are unique identifiers. These are equality types,
so they can easily be used as keys for tables. Finally, we have ML type constructors
(miconstructor's), which have an miconname and other information describing all the
refinements of that ML type name.

Refinement type identifiers and names are represented as follows:

type refconid = string
type refconname = {refconid : refconid, uniqueid : int, index : int}

The uniqueid field of ref conname's is used to distinguish different refinement type
constructors with the same name. If an ML type constructor tc is refined by the refinement
type constructors rc ,.. ., rc,,, then the index field of the representations of these refinement
type constructors will be distinct integers in the range 0,..., n - 1, in some order. This
allows us to implement functions mapping a refinement of tc to some other value as a
simple array reference.

ML type identifiers and names are represented as follows:

type mlconid = string
type low-mlconname = mlconid * int
datatype mlconname =

Tuple of mnt
I Arrow

SCustom of low-mlconname

This is all very straightforward: Tuple n stands for ttuplek, Arrow stands for tarrow,
and Custom (s, i) stands for the user-defined ML type constructor with the name S. The
integer i has the same role as the uniqueid field of refinement type constructor names.

.Note that mlconname's distinguish separate cases for arrow and tuple types, but
ref conname's do not. This does not create ambiguity because whenever the implemen-
tation uses a refinement type constructor, it always has on hand the ML type constructor
that this refinement type constructor refines. Thus if a refinement type constructor refines

278 CHAPTER 7. IMPLEMENTATION

an ML type constructor with the name Arrow, it must be the representation of rarow. In
this case we put arbitrary values in the ref conid, uniqueid, and index fields. We do the
same for tuple refinement type constructors.

The ML type constructor itself is a record containing the ML type constructor name,
along with other information describing its refinements. The meanings of the fields are
discussed below.

datatype miconstructor =

NLConstr of

{name : mlconname,
unique-refinements refconname list,
nonunique-refinements : (refconname, refconname) S. substitution,

bottom : refconname,
bottom-emptyp : bool,

top : refconname,

tor : (ref conname * ref conname) -> ref conname,

tand : (ref conname * ref conname) -> refconname,

tleq : (refconname * refconname) -> bool,

negargpos : int list,
posargpos : int list}

The unique-refinements and nonunique-refinements fields are used to keep redun-
dant refinements of an ML type from slowing refinement type inference. For example, if
this declaration is given to refinement type inference:

datatype bool = true of tunit I false of tunit

rectype tt = true (tunit)
and ff = false (tunit)
and I j.i = bottom bool;

def
then the refinement types tt A ff and _&..1 will be equivalent. The unique-refinements

def
field has a list of the refinements we will use (which excludes tt A if), and
nonunique-refinements has a substitution mapping each refinement we will not use

def
into the corresponding one we will use (in this case, tt A ff is mapped to IL, 1).

Skipping forward, the tor, tand, and tleq fields contain functions that can join,
intersect, and compare the refinements of this ML type constructor. The functions tor and
tand only have elements of unique-refinements as their range, to make it possible to
pay as little attention as possible to the redundant refinement type constructors.

The fields bottom and top have the least and greatest refinement of this ML type
constructor, respectively. These fields are redundant; we could compute them by us-
ing the functions stored in the teand and tor fields to combine the types listed in
nonunique-refinement s.

7.1. REPRESENTATIONS 279

The bottom-amptyp field is used to evaluate the I- r empty judgement described in
Chapter 3. If this flag is true, we assume that the refinement in the bottom field is empty,
otherwise we assume it is not. We assume that all nonredundant refinements other than
the one in the bottom field are not empty, since otherwise they would be equivalent to the
refinement in the bottom field, and therefore they would be redundant.

All type arguments in the implementation are either positive or negative. Mixed
arguments are outlawed and ignored arguments are treated as positive. Syntactically, each
ML type constructor has one linear list of arguments, as they do in SML; but internally,
we treat the negative type arguments very differently from the positive ones, so we keep
them segregated into separate lists. The posargpos and negargpos fields say how to do
the segregation. If we sequentially assign numbers (starting with zero) to the syntactic
type arguments, then posargpos is a list of the numbers for positive type arguments and
negargpos is a list of the numbers for negative type arguments. For example, given the
declaration

datatype (a,/,8-y) d = D of 8,*(a-47)

argument number 0 (a) is negative and arguments 1 (/p) and 2 (-y) are positive, so the
negargpos field of d will be [01 and the posargpos field will be [1, 2].

7.1.2 ML types and type schemes

We represent ML types with the datatype

datatype mlty =

NLCon of {neg : mlty list,
pos : mlty list,
con : mlconstructor}

I NLTyvar of V.tyvar

where V. tyvar is a representation of type variables. This is a direct encoding of the
grammar for ML types given on page 242, except we have already segregated the negative
and positive type arguments; from the negargpos and posargpos fields of the constructor,
it is obvious how to merge the neg and pos fields to get the type arguments in the order the
user expects.

The encoding of ML type schemes is straightforward as well:

datatype mlscheme =
MLScheme of (V.tyvar list * mlty)

These encodings of ML types are straightforward enough that we will ignore them in
this chapter, and use the same notation for ML types in this chapter that we have used in
previous chapters.

280 CHAPTER 7. IMPLEMENTATION

7.1.3 Refinement Types

The implementation has different representations for the refinement types appearing in
explicit declarations (such as tt in (true ()) <1 tt) and refinement types that are inferred
for an expression by the implementation. After we describe both representations, we will
explain below how the special representation for refinement types in explicit declarations
allows quick checking of the assertions in expressions containing <I.

The representation for refinement types appearing in explicit declarations is simple, and
similar to the representation of ML types:

datatype syntp =
SAnd of syntp list

I SCon of {pos : syntp list,
neg : syntp list, refcon : refconname}

I SVar

Since we usually know which ML type a refinement type refines, we only have one
representation SVar for all type variables appearing in explicitly-declared refinement types.

We represent inferred refinement types with a function that computes the interpretation
i of the refinement type as in Definition 5.8 on page 248, along with a few other fields that
make some optimizations possible. The representation of refinement types is:

datatype tp =
Ref Con of (teqopt * bool * mlconstructor *

(tp list -> (tp list * ref cormame)))
I Reftyvar

Reftyvar is analogous to SVar; it stands for a type variable, but it does not bother to say
which one, because there is generally an ML type on hand that makes that clear. If the
refinement type is not a type variable, then the constructor is RefCon with a tuple of four
components as its argument.

Skipping ahead, the fourth component of the tuple is the interpretation, represented as a
function in the obvious way. We only have one argument to the function because we outlaw
mixed type variables.

The first component of the tuple has the type teqopt which we have not yet dis-
cussed. This type is used for memoizing refinement type equality, and it is discussed with
memoization in Subsection 7.2.4 below. In practice, the implementation uses a utility pro-
cedure called eRef Con that inserts the teqopt; eRef Con takes as argument a tuple with the
last three components of the argument to Ref Con, it constructs and inserts an appropriate
teqopt, and it calls Ref Con and returns the resulting tp.

The implementation of refinement types uses references when it finds a type for a fixed
point. As the values stored in these references change, the behavior of the functional

7.2. REFINEMENT TYPE INFERENCE 281

component of some refinement types can change; we say these refinement types are not
constant. It is important not to memoize these refinement types, because the information
stored in the memo table may not be accurate by the time it is used. To ensure this, we use the
second component of the .uple in each refinement type created by Ref Con to record whether
the refinement type is constant. For a more complete discussion, see Subsection 7.2.2.

The third component of the tuple is the ML type constructor. This is redundant and
could be eliminated; it is presently used so we can recognize arrow and tuple types when
printing refinement types during debugging, and so we can form intersections and joins of
refinement types without having to pass around the ML type that they refine.

Given the functional component of a tp and a syntp, one can efficiently determine
whether the tp is a subtype of the syntp. If the syntp is an intersection, then the tp
is a subtype of the syntp if and only if it is a subtype of all of the components of the
intersection. If the syntp is SVar, then ML type inference should have ensured that the
tp is Reftyvar, so the tp is a subtype of the syntp. Lastly, if the syntp is a SCon, then
we use the definition of i to convert the negative arguments of the syntp into a tp, we
pass those negative arguments to the functional component of the tp, and we recursively
compare the result of the function call to the positive arguments of the syntp.

7.2 Refinement Type Inference

Refinement type inference is similar to the type inference algorithm described at the ends
of Chapters 2, 4, and 5. The main change is the lazy representation of refinement types;
this immediately leads to the needs for memoization, pending analysis for fixed points,
and an interesting instantiation algorithm. Lazy representations of types also appear in
[HM94]. Once these issues are understood, there is little to be gained by writing out the
entire algorithm; instead, we will only deal with interesting cases of it below.

7.2.1 Laziness

Often a function will only be used at a few of the types for which it is defined. This
tendency is especially strong for higher-order functions, since functional ML types can
have so many distinct refinements. For example, assuming the usual rectype declaration
for the booleans is in effect, the refinement type given to double by the declaration

val double = fn f => fn x => f (f (x:bool));

is an intersection of 112 components. By representing refinement types as functions that
can compute the relevant components of the intersection on demand, we can usually avoid
computing all 112 components and storing them in memory.

282 CHAPTER 7. IMPLEMENTATION

The case of type inference that reflects this principle most clearly deals with abstractions.
Using the notation in the original definition of the type inference algorithm in Figure 2.7
on page 142, this is the modified algorithm:

infer VR (fn z:t => e') =
if there is a u such that rtom(VR)z := tj - e' :: u
then

let val u = the unique u such that rtom(VR)[: := t] F- e' :: u
fun do-one r =

sjoinf u {inf or (VR[z := r']) e' r' E split r}
in

RefCon (..., ... , tarrow, fn [x => ((do-one x], rarrow))
end

else ns

where we have omitted the first two components of the argument of Ref Con. In the actual
implementation, the ML type u of the entire abstraction is stored in the abstract syntax of
the abstraction, so refinement type inference does not have to invoke ML type inference.

7.2.2 Fixed Points

The method for finding least fixed points in the f ix case of the algorithm in Figures 2.7
and 2.8 on pages 142 and 143 is an instance of a general technique: start with the least
possible value, and repeatedly apply the function we want the fixed point of until the result
stops changing. This technique does not work well with lazy representations of refinement
types because comparing the results of one iteration to the results of the next causes us to
evaluate both results completely.

Instead, we use a technique called pending analysis. This technique allows one to
evaluate the abstract interpretation of a fixed point at any given point; this evaluation
examines a minimal number of other points. It is easiest to explain this with an example;
for a more formal description, see any of [Jag89, Dix88, You89]. The tables of pending
values resemble the minimal function graphs of [JM86].

Suppose we have the declarations

7.2. REHNEUMENT TYPE INFERENCE 283

datatype a list = cons of a* a list I nil of tunit
rectype a e' = nil (tunit) I cons (a*•a od)

and a od - cons (a**a ev)
and a em = nil (tunit)
and a nem = cons (a* a T11.5)
and a ±I = bottom (a list);

datatype bool = true of tunit I false of tunit
rectype tt = true (tunit)

and ff = false (tunit)
and 1.., = bottom heel;

and (using the concise syntax) the function definitions

fun not (true 0) = false 0
I not (false 0) = true 0

fun boolmap (f:bool -> bool) ((nil O):bool list) = nil 0
I boolmap f (cons (hd, tl)) = cons (f hd, boolmap f tl)

or, in the formal syntax, the function definitions

val not = fn x:bool =>
case x of true => false [false => true end: bool;

val boolmap =
fix boolmap:(bool--+ bool)-- bool list--+ bool list =>

fn f : bool -+ bool => fn 1: bool list =>
case 1 of

nil => fn : tunit => nil ()
I cons => fn p: bool * bool list =>

cons (f (elt-1_2 p), boolmap f (elt_2_2 p))
end: bool list;

and suppose we want to find the principal type for

boolmap not (cons (true (), nil 0)).

We start with an abstract interpretation using a strategy very similar to the strategy for
actually evaluating the expression. This becomes interesting when we must tke steps to
ensure that abstract interpretation terminates even in the presence of recursion. The type of
boolmap has the form

RefCon (teqopti, true, tarrow, boolmapfn'),

where tarrow is an ML constructor representing arrow types and boolmapfn' is some
function. Similarly, the type of not is some unimportant structure wrapped around a function

284 CHAPTER 7. IMPLEMENTATION

we shall call notfn'. From the declaration of RefCon on page 280, we know that both
boolmapfn' and notfn' have the SML type tp list -> (tp list * refconname).
Because the ML type constructor named Arrow has one negative argument, the list of tp's
passed to boolmapfn' and no*tfn' will always have exactly one element. Because Arrow
has one positive argument, the list of tp's returned from bool.mapfn' and notfn' will
also always have exactly one element. Since Arrow is refined by only one refinement type
constructor, the refconname returned from both boolmapfn and notfn will always be
that refinement type constructor. Thus we can represent all the information in boolmapfn'
and notfn' using functions with the SML type tp -> tp; we will call these functions
boolmapfn and notfn.

The interior structure of the type of cons (true (), nil ()) is not relevant for this
example, so we will write that type as a mathematical refinement type: ttod.

We take the behavior of notfn as given, and our goal in this example is to describe the
behavior of boolmapfn when it is passed the arguments notfn and ttod.

If we had no concerns about termination of type inference, we could simply make
the abstract interpretation of boolmap recur at the same point in the code where boolmap
itself recurs. We would start with f having the type notfn and 1 having the type tt od.
(Throughout this scenario, f will have the type notfn, so we will not mention it again.)
We can summarize this situation with the notation

boolmapfn notfn (tt od) .?

We can construct an odd length list starting with either an empty list or an nonempty,
even length list, so the abstract interpretation would make two recursive calls to the body
of boolmap: one where 1 has the type tt em (this returns immediately with the result

def
-l-..i em) and one where 1 has the type tt (ev A nem). We can summarize the current
situation with the table

boolmapfn notfn (tt od) -9

boolmapfn notfn (tt em) =±s**o em
def

boolmapfn notfn (tt (ev A nem)) = ?

def
Continuing, the call with argument U (ev A nem) gives rise to a recursive call where 1 has
the type tt od. This is the argument we started with, so if we continue in the fashion we
have up to this point, we will have an infinite loop.

The solution to this problem is the essence of pending analysis. Instead of
continuing with the recursion, we behave as though the inner recursive call to
boolmapfn notfn (tt od) simply returns the least type we have observed so far for
the expression boolnmpfn notfn (ttod). Since our table lists "?" as the entry corre-
sponding to boolmapfn notfn (tt od), we have not yet observed any types returned from
this expression, so we return the least available type for the expression, which is L-b6,• I ia.

def
Under this assumption, the value returned when 1 is tt (et A nem) is if 11dat. This type is

7.2. REFINEMENT TYPE INFERENCE 285

less than the true type when 1 is it (ev '5A' nem); we will revise it later. This table describes
the current situation:

.boolmapfn notfn (it od) = 9

boolzuapfn notfn (tt em) =- _L b em
def

boolmapfn notfn (it (ev A nem)) = ff lliut

Now we can finish this part of the abstract interpretation; we take the join of -l.., em and
ff _L-t.i and apply cons, yielding ff od and the following table:

boolmapfn notfn (t od) = ff od
boolmapfn notfn (it em) =-b./ em

de'
boolmapfn notfn (it (ev A nem)) - ff 11",

Call this table "Generation 1". Although we have the correct answer to the problem we are
interested in, this table is peculiar because the solutions to the subproblems listed on the
second and third lines are too small. We were lucky this time; in general, at this point in
the computation, the proposed solution to the top-level problem can be too small.

This happened because we knew too little when we computed some of the subproblems.
A natural approach is to repeat the computtion, but whenever a subproblem that would
otherwise cause a loop arises, we use the value from Generation 1 instead of the least type
available. Doing this results in the correct result for the top-level problem again, and also
a correct table:

boolmapfn notfn (it od) = ff od

boolmapfn notfn (it em) = ff em
b(t (edef def

boolmapfn notfn (A nem)) = f (ev A nem)

Call this "Generation 2". We only know this is a correct table because we have foreknowl-
edge of the correct result; the only way the implementation can determine that this table is
correct is by using it to calculate a third generation, and seeing that Generations 2 and 3 are
identical.

It is plausible, but not at all obvious, that this procedure gives correct results. For
proofs, see [Dix881.

The implementation organizes the table representing these generations as an association
list. Searching the association list can be expensive, in general, because comparing types
can be expensive. Therefore each entry in the table is a reference that can be updated in
place; this avoids the usual accumulation of useless entries in an association list as new
entries are added to the beginning.

Unfortunately, this also means that some refinement types have functions embedded
in them that make non-trivial use of references. In general, if a subexpression has a free
variable that is bound by a surrounding fix operator, its type will contain a function that

286 CHAPTER 7. IMPLEMENTATION

may change as we search for the fixed point. Putting this type in a memo table would cause
problems, because the behavior of the type may change with time. To ensure that these
types are never placed in a memo table, each refinement type other than Ref tyvar has a
boolean field that is set to true if it definitely uses no references (that is, it is constant),
and f alse if it may use nontrivial references of this kind. This is the second component of
the tuple argument to Ref Con on page 280.

7.2.3 Optimizing Equality

The at ive technique requires us to look up types in a table and to determine whether one
table is identical to another. Both of these problems rely heavily on determining when types
are equal to each other. There are several steps that can be taken to make this efficient.

The straightforward implementation of type equality (based on a generalization of the
subtypep function from page 119 to operate on refinement type constructors with negative
type arguments) is fairly fast for types without any negative arguments because in that case
allreo s is never used to enumerate the refinements of an ML type. However, whenever
we compare refinements of an ML type with non-trivial negative type arguments such as
(bool -+ bool) --+ bool, we will have to enumerate all of the refinements of the negative type
arguments; in this example, we have exactly one negative type argument bool -, bool.

To have as few of these expensive enumerations as possible, we memoize type equality.
Whenever a refinement type is not Reftyvar, it contains a tuple where the first component
has the type teqopt which is used for this purpose. The definition of teqopt is:

datatype teqopt = TeqOpt of {sameas: UF.set,
differentfrom: UF.set list ref}

This definition is a datatype with only one constructor rather than a type abbreviation
because SML does not allow type abbreviations in signatures. The type UF. set represents
equivalence classes; UF is a name for a structure with this signature:

signature UNIONFIND =

sig
type set
val newset : unit -> set
val union : set -> set -> unit
val sameset : set -> set -> bool

end

Think of a set here as a name for something. The function newset creates a new name,
uniondeclares that two names really stand for the same thing, and sameset reports whether
all of the union's done so far imply that two given names stand for the same thing. As the
name of the signature implies, this is the classic Union-Find problem, discussed in [AHU74,

7.2. REFINEMENT TYPE INFERENCE 287

page 1241. The names set and union are part of the standard nomenclature used with that
problem. The implementations of these operations run in almost constant time.

With this understanding of UF. set, it should be clear how teqopt's are used. Using
sameset on two sameas fields will return true if we have already observed that the two
refinement types are equal. Using sameset to search the differentfrom fields will tell
us if we have already determined that two refinement types are different. If we have to
compare two refinement types, and the teqopt fields do not make it clear that they are
either equal or unequal, then we do the comparison using whatever expensive enumerations
are necessary, and then we update the teqopt fields as necessary to record the result of the
comparison. As an exception, we do not try to memoize type equality for refinement types
that are not constant.

This strategy works well in practice. The most expensive aspect is searching the
differentfromnfields. We can improve this even further by only memoizing type equality
when expensive iterations are involved (that is, when the type constructor has negative type
arguments). Since programs often have many refinements of simple types such as tuples,
booleans, and lists, and few refinements of higher-order types, this usually helps. In the
boolmap example above, memoizing type equality would avoid all comparisons of notfn
with itself when we are searching the generation tables, but no use of the teqopt field
would be made when we compare the refinements of bool list.

This optimization ought to make a difference when evaluating a fixed point requires
comparing function objects with large types. This optimization can be turned on and
off by setting the dont._teq-unionf ind flag, and experiments with this flag show that
this optimization rarely makes a difference. Memoizing functional refinement types, as-
discussed below, makes the amount of work saved by this optimization trivial when function
types are fairly small.

7.2.4 Memoizing Refinement Types

When analyzing typical programs, the type inference algorithm described in previous
chapters often finds the interpretation of a type and then evaluates that interpretation many
times at the same point. Since we represent types by their interpretations, we can hope
to save time by memoizing these interpretations. This means that after the first time we
evaluate the function at a given point, if an occasion to evaluate it at the same point arises
again, we look up the old value in a table we maintain for this purpose instead of repeating
the work. The implementation does this.

The most straightforward implementation of memo tables would implement the tables
as association lists, and always use type equality to search for a relevant entry in the
table. The present implementation does indeed implement the tables as association lists,
but searching the tables is slightly more clever. Since type equality can be slow when types
have negative arguments, we compare types with negative arguments using the sameas field
of the teqopt; this is essentially the same as using pointer equality, except that if two types

288 CHAPTER 7. IMPLEMENTATION

have been found equal while searching pending analysis tables, we use that information
when searching the memo tables.

Memoization of refinement types can be turned off by setting the dont-memoize flag.
This optimization does help; we can run the CNF example from Chapter 1 in 22 seconds
with the flag clear, and 27 seconds with the flag set.

As a special case, we use a simpler algorithm to memoize types with no negative
arguments. In this case the argument to the function in the argument to Ref Con is always
the empty list, so we can omit the work of searching the memo table altogether.

This special case can be turned off by setting the lazy.ref con flag. When this is done,
these types are memoized with the general-purpose memoizer only. In the ONF example
from Chapter 1, there are many simple types with no negative arguments, so setting the flag
causes an even larger slowdown than dont-memoize. This example runs in 22 seconds
with this flag clear and 28.5 seconds with the flag set.

Non-constant types are not entered into memo tables or compared with types in memo
tables.

7.3 Instantiating Refinement Types

Instantiating refinement types is straightforward when they are represented explicitly. For
example, instantiating a to bool in the refinement type (a -- a) -- a --- a yields

(itt * it) ---+ it ---+ it A
(ff"ff)-ff -- "ff A
(Trot "-- T •1i) -+ -T T A
(._ boot ---.+ I) -* 1 b.1 .

An algorithm for this is straightforward: simply enumerate all refinement type substitutions
refining the ML type substitution, apply each of them to the original refinement type, and
take the intersection of all the results. Unfortunately, this procedure is slow; the number of
refinement type substitutions to consider grows exponentially as a function of the number
of type variables to be instantiated. In this section we give an instantiation algorithm that
instantiates lazily represented refinement types without enumerating all possible refinement
type substitutions. The correctness proof for this algorithm is future work.

The purpose of this section is t- make the instantiation algorithm intuitively plausible
and to describe it well enough to permit interested people to attempt to prove or disprove
soundness. One obstacle to the soundness proof is devising specifications for the various
subroutines in the algorithm that are both formal and correct. All specifications below will
be informal.

7.3. INSTANTIATING REFINEMENT TYPES 289

7.3.1 Instantiation Example and Algorithm

The function

fn f:a--ia => fn x:a => f[] (f[] X[J)

has the refinement type scheme V(a).(a -- a) -, a -- a. Call this function double. Our
example consists of using a lazy representation of refinement types to determine the principal
refinement type of double[booll not[] (true ()), where the booleans have the usual
refinements and not is the obvious function mapping booleans to booleans. As the argument
in Subsection 4.1.2 on page 226 shows, the correct result is T&.oI.

To make the explanation simple, we use a simplified version of the lazy refinement type
representation introduced above:

datatype boolref a TT I FF I Bot I Top
datatype tp = Ground of boolref

I Later of (tp -> tp)
I Reftyvar

In this datatype, Ground constructs refinements of bool in the obvious way. Later is a
simplified version of the Ref Conconstructor that only applies to function types; Later f is
the refinement type with the interpretation (as defined in Chapter 2) f. The value constructor
Reftyvar stands for a refinement of a type variable. It is always clear from context which
type variable Ref tyvar refines.

To conveniently describe types in terms of this datatype, we will need an inverse for
Later:

exception Bug of string
fun now (Later f) = f

I now - = raise Bug "now"

Using this, we can write something equivalent to the representation of the refinement type
of double that would arise from the natural type inference algorithm:

Later (fn f => Later (fn x => (now f) ((now f) x)))

With the exception of the insertions of the Later's and now's, this has the same structure
as the definition of double itself. This is not surprising since refinement type inference is a
form of abstract interpretation and double contains no value constructors. Here we assume
that the refinement type given for f will always refine a -,-* a and the refinement type given
for x will always refine a; this implies the type passed for x will always be Reftyvar.
(Later, we will consider an alternative valid refinement type for double other than the one
that would arise from the natural type inference algorithm.) We can also give the type for
not[I in this format:

290 CHAPTER 7. IMPLEMENTATION

lot fun notfb TT - FF
I notfb FF = TT
I notfb Top = Top
[notfb Bot - Bot

fun not a (Ground x) - (Ground (notfb x))
I notfa - = raise Bug "notfa"

in Later notfa end

and the type of true () is Ground TT.

The heart of the instantiation algorithm we will describe below only works for types
with no negative type arguments. Thus the first step toward determining the type for
double[bool] not[] (true)) is postponing the real work of instantiation until we are left
with the problem of instantiating a type with no negative type arguments. This postponment
is necessary for the correctness of the algorithm we describe below. An example where the
algorithm is incorrect if this step is omitted appears on page 292.

The ML type type of double[bool/ is (bool --+ bool) --- bool --+ bool, which has negative
type arguments. Thus we postpone work; the refinement type generated for double[hool]
is simply Later (fn fI => ...), where we will fill in the "..."in a moment.

While finding the type for double[bool] not[], we will strip the Later from the type
of double[bool] and pass Later notf a to the resulting function. The result of this must
be a refinement of bool --+ bool, so we postpone work further by giving this the form
Later (fn V' => ...). This implies the refinement type of double[bool] must have the
form Later (fn fI => Later (fn x' => ...

While finding the type for double[bool] not[] (true 0),we will strip the Later from
the type of double[booll not[] and pass Ground TT to the resulting function. The result
will refine bool, which has no negative type arguments; thus we are finished with the stage
where we are postponing the real work of instantiation.

Once we have I and x', we will search for the least substitution mapping type variables
to refinement types that is consistent with the types f' and x'. In our example, f ' is bound
to the type of not (] as described above and x' is bound to Ground TT. Given a substitution
ro, we can convert f I and x' into refinement types we can pass for f and x in the before-
instantiation type of double. We call this process "reshaping".

We will talk about two different reshaping processes. One is called reshapeab because
it reshapes an after-instantiation refinement type like f I into a before-instantiation refine-
ment type like f. Another is called reshapeba because it reshapes a before-instantiation
refinement type into an after-instantiation refinement type. These two procedures are mu-
tually recursive. They refer to two global variables: ro- is the present substitution of
refinement types for type variables, and mo is a fixed substitution of ML types for type
variables.

As described above, we are looking for a least ro" that is consistent with the types f'
and x'. We perform this search by starting with the least ror and revising it as necessary

7.3. INSTANTIATING REFINEMENT TYPES 291

until it is consistent with the types f ' and x'. The code below indicates that revisions are
necessary by raising an exception; specifically, the exception TooSmall (a, r) is raised
to indicate that ror should be replaced by ro'[a := r].

Although 'we have no formal specification for reshapeab and reshapeba, we can
formally describe a few invariants used in it. Whenever reshapeab r t is called, r E
ma'(t). When evaluating reshapeab r t raises no exception, the result refines t. Whenever
reshapeba r t is called, r C t, and any result refines ma(t).

fun reshapeab (Later f) (t 1-- t2)
Later (in r -> reshapeab (f (reshapeba r ti)) t2)

I reshapeab r bool = r
I reshapeab r a =

if subtypep r ror(a) mor(a) then
Reftyvar

else
raise TooSmall (a, joinf r ra(a) mo'(a))

and reshapeba (Later f) (tl -- t2)
Later (fn r => reshapeba (f (reshapeab r ti)) t2)

I reshapeba r boot = r
[reshapeba r a = rol(a)

To solve the instantiation problem at hand, we will use reshapeab to convert f and x'
to the f and x expected in the uninstantiated type for double. Then we will use reshapeba
to convert the value returned from the type for double into a refinement of bool.

Now we shall apply these algorithms to fI and x'. For the instantiation problem we
have in mind, ma, is

[a:= boo!];

we will leave ro- undetermined for the time being. Evaluating reshapeab f (a O a)
and simplifying yields

Later (fn r =>
if subtypep (notfa (ro(a))) ro-(a) bool then

Reftyvar
else raise TooSmall (a, joinf r r(r(a) bool))

and evaluating reshapeab x' a and simplifying yields

if subtypep (Ground TT) ra(a) bool then
Reftyvar

else
raise TooSmall (a, joint (Ground TT) ro(a) bool)

292 CHAPTER 7. IMPLEMENTATION

We start by assuming that rt is the least possible substitution that refines moe, which is

[a :G=Ground Bot].

With this assumption, determining reshapeab x' a immediately raises the exception

TooSmall (a, Ground TT),

so we revise re- to
[a:= Ground TT].

Starting with the new rt, we find that reshapeab f I a yields

Later (fn r ->
if subtypep (notfa (Ground TT)) (Ground TT) bool then

Reftyvar
else raise TooSmall (a, joinf r (Ground TT) bool))

and reshapeab x' a yields a. Now we pass these two values for f and x respectively in

(now f) ((now 1) x); the definition off then raises the exception

TooSmall (a, Ground Top).

Thus we revise the substitution to

[a:= Ground Top]

and try again. This time no exceptions are raised, and the value returned by

(now f) ((now f) X)

is Ref tyvar. Then we call reshapeba Reftyvar a, which yields Ground Top, which is
our solution.

If we do not postpone as much work as possible, this algorithm gives incorrect
results. For example, suppose we want to instantiate a to bool in refinement type
Later (fn z -> z) interpreted as a refinement of a -- a. If we do not postpone any
work, we start with the assumption 'o- = [a := Ground Bot] and end with the same sub-
stitution. The result from instantiation is reshapeba (Later (fn z => z)) (a-- a),
which simplifies to

Later (fn z' => reshapeba (reshapeab z' a) a)

which in turn simplifies to

Later (fn z' => if subtypep z' (Ground Bot) bool then Ground Bot else
raise TooSmall (a, X')).

7.3. INSTANTIATING REFINEMENT TYPES 293

Thus instantiation returns a refinement type that will raise TooSmall under some conditions;
this is clearly malformed.

To finish the instantiation algorithm, we will describe the code wrapped around the
definitions of reshapeab and reshapeba, and we will describe and fix one situation where
the above code is incorrect. The resulting procedure has no known bugs but no correctness
proof.

There are two parts to the remaining code: the procedure for postponing work until we
have no negative type arguments and the loop searching for an appropriate ro'. Both of
these are straightforward; we will present postponing the work first, since it is outermost. In
the following definition, the call inst r .na t instantiates the refinement type r according
to the substitution meu mapping type variables to ML types, under the assumption that r
refines t. In the code below, we assume that mapsubst f o- constructs a substitution with
the same domain as o- and for all a in that domain, (mapsubst f 0)(a) = f(u'(a)). The
botfn function was introduced on page 118 for computing the least refinement of any ML
type. We will fill in the definition of the function looper later.

fun inst r mou t =

let fun instargs args argtys r (tl -- t2) =

Later (fn arg => instargs (ar: args) (t, argtys) r t2)
I instargs args argtys r t =

let fun looper r =.

in
looper (mapsubst botfn mu)

end
in

instargs D (1 r t
end

The above code is straightforward; it simply accumulates refinement types and ML types
in the args and argtys arguments until the refinement type does not refine a functional type,
and then it calls looper with a suitable initial value for r'.

Now we can give a definition of. the function looper that iterates to find the least
substitution consistent with the constraints. This definition has the free variables args,
argtys, r, and t. In the code below, rev is the standard function for reversing lists.

294 CHAPTER 7. IMPLEMENTATION

fun looper ro -

let exception TooSmall of string * tp
fun reshapeab ... = ...
and reshapeba ... = ...
fun call (Later f) (arI :: argmst) (atl :: atest) =

call (Y (reshapeab argl atl)) argwrest atrest
I call z [0 = reshapeba z t
I call _ _ _ = raise Bug "call"

in
(call r (rev arga) (rev &rgtys)
handle
TooSmall (ar, tp) =>

looper (r-[var tp])
end

This code is fairly straightforward; it uses the stored argument lists to repeatedly call the
uninstantiated refinement type, changing ro- as indicated by the TooSmall exceptions until
ro is a usable substitution.

The symmetry between reshapeab and reshapeba is pleasing, and the algorithm
specified above seems to work if all refinement types are generated by a natural algorithm
starting with expressions without any explicit refinement type declarations, and all argu-
ments are used. Unfortunately, making an algorithm that appears to work in general breaks
the symmetry. For example, this let statement

let foo = A(a).fn f : a-+a => fn x:a => x[]
in ... end

will add the refinement type scheme

V(a).(a --+ a) -* a -+ a

to the environment before it typechecks the expression within the scope of the let statement.
This is the same as the refinement type scheme resulting from the double example above,
except now the representation of the refinement type that results from the natural algorithm
is

Later (fn f => Later (fn x => x)).

Since f is never used, the above instantiation algorithm will not inspect the type of f.
This is clearly wrong; since the refinement type of foo is the same as the refinement type
of double, instantiating the type of foo should pull the same information out of f that
instantiating the refinement type of double does.

Suppose we used the present algorithm to determine the type of

foo[bol] noto (true 0).

7.3. INSTANTIATlINO REFINEMENT TYPES 295

The instantiation algorithm would start with ro equal to

[a Ground Bot].

As in the earlier example, this would be observed to be inconsistent with the type of true 0'
so we would revise ro" to

[a := Ground TT].

Here the resemblance to the earlier example ends, because unlike that example the type of
not [] is never examined; the algorithm is finished and the result is Ground TT.

Intuitively, it seems plausible that the problem is that the final substitution is not
consistent with the type of not[]; in other words, if we use reshapeab to de-instantiate the
type of not[] with the final ro', the resulting type raises an exception for all inputs. Since
the interpretation of a refinement is always a monotone function, it will fail for all inputs if
and only if it fails for the least input. Thus we can detect this problem by passing the least
refinement of the input ML type to the function and discarding the result; any problems will
be dealt with as a consequence of the resulting TooSmall exception. Thus we rewrite the
function case of reshapeab as follows:

fun reshapeab (Later f) t1 --+t2 =
(reshapeab (f (botfn (applysubst ma ti))) t2 ;
Later (fn arg => instargs (arg :: args) (t, :: argtys) r t 2))

With this rewritten case, the algorithm has no known bugs. Assembling the pieces of code
appearing in this chapter yields the completed algorithm in Figure 7.1.

7.3.2 Memoizing Instantiation

Every variable is instantiated before it is used, although the instantiation is often trivial. This
makes memoizing instantiation very important. If we do notdo this, then each type is created
anew every time a variable is referenced; these newly created types have empty memo tables,
so unmemoized instantiation undoes many of the other memoization optimizations. The
implementation normally memoizes instantiation; the flag dont-memoize-inst can be set
to turn this off.

As implemented, the instantiation algorithm quickly deals with nonpolymorphic types
by using a special case. Thus the CNlF example above cannot be used to illustrate this
optimization. We can illustrate it by using a simple polymorphic type, such as polymorphic
lists, even if we make no interesting use of the polymorphism. For example, if we distinguish
even length lists from odd length lists and empty lists from nonempty lists, then a simple
function for appending lists:

296 CHAPTER 7. IMPLEMENTATION

fun inst r ma t

let fun instarga arga arytya r (tI --+ t2)=

Later (fn arg => instargs (arg ergs) (t, arytys) r t2)

Iinstarga arga argtya r t
let fun looper ra- =

let exception TooSmall of string * t
fun reshapeab (Later f) t, --+t2 a

(reshapeab (f (botfn (applysubst ma- ti))) t2 ;
Later (:fn arg =>

instarga (arg :: rgs) (t, : argtga) r t2))
Ireshapeab r bool a r
Ireshapeab r a =
if subtypep r ra(a) ma-(a) then

Ref tyvar
else

raise TooSmall (a, joinf r ra,(a) mo,(a))
and reshapeba (Later f) (tI --+t2) =

Later (fn r => reshapeba (f (reshapeab r tj)) t2)

Ireshapeba, r bool = r
Ireshapeba r a = rar(a)

fun call (Later f) (argi argreut) (atl atrest)=
call (f (reshapeab argI ati)) argreat at re at

I call z 0) 0) = reshapeba z t
I call --- raise Bug "call"

in
(call r (rev arga) (rev argtyis)
handle
TooSmall (var, 4,) =>

looper (ra-[var := tp])
end

in
looper (mapsubst botfn moa)

end
in

instargs 0] 0J r t
end

Figure 7. 1: Instantiation algorithm.

7.4. ANALYZING RECTYPE DECLARATIONS 297

fix ap:a l89 i *a iat -+a &it =>
fn x:a list => fn y:a list =>
case x of

cons -> fn hdtl:a*a list =>
cons (eltl_2 hdtl, ap (olt_2_2 hdtl) y[])

I nil => fn x:tunit => y]
end:a list

has a refinement type that is an intersection of 49 components. Computing this type takes
7.3 seconds with dontumemoize-inst turned off, or 60 seconds with dont_mmaoize_inst
turned on.

7.4 Analyzing Rectype Declarations

Most of the code for analyzing rectype declarations is either obvious or an implementation
of some algorithm in Chapter 3. A brief description of the known shortcomings of the
implementation follows.

No attempt has been made to enforce Assumption 5.29 (Predefined Intersection Dis-
tributivity) on page 259. Sometimes this assumption does not hold and the implementation
behaves strangely; for example, with the usual declaration for bool and this declaration:

datatype a d = C of bool -- a
rectype a z = C (tt -- a) I C (ff-+a);

the implementation infers that C ((fn x => x) <1 (tt -+ tt)) has the principal type tt z
and

C ((fn x => X) -4 (iff))
has the principal type ff z, but it also infers that

C ((fn x => x) <4 (ff -+ifAtt-- tt))

has the principal type T 1 1, z. This means that the behavior inferred for C is not monotone,
a serious bug. Fixing this by inferring a different behavior for C seems more satisfying than
fixing it by outlawing declarations similar to this one, but the best way to do this is not
immediately clear. In this example, the instantiation algorithm is misbehaving in circum-
stances where Predefined Intersection Distributivity is false; thus it is reasonable to guess
that any soundness proof for the instantiation algorithm will use Predefined Intersection
Distributivity.

When we infer the predefined splitting relation from the rectype declaration, we
assume without proof that it suffices to consider exactly one most informative principal
split of each constructor. The implementation uses a brute force search to find all of the

298 CHAPTER 7. IMPLEMENTATION

"plausible" principal splits of each constructor; in this context a proposed split is plausible
if no two types in it are comparable, and all of the fragments are less than the constructor
of which they are proposed fragments. Then another brute force search lists fixed points of
the inference system in Figure 3.8 on page 207 where we assume each new refinement type
constructor has at most one split in the fixed point. We assume without proof that the most
informative of these is an appropriate predefined splitting relation.

7.5 Differences Between Implementation and Theory

There are a few differences between the implementation and the theory that do not fit neatly
into any of the topics listed above.

We treat case statements where the case object is a variable specially. For example,
suppose we have the declarations

datatype maybe = true of tunit I false of tunit I maybe of tunit.
rectype tt = true (tunit)

and ff = false (tunit)
and tf = true (tunit) I false (tunit)

datatype forget = C of maybe

Then the best type for x from

val x = case C (true ()) of C => fn y => y end:maybe

is T,..,b. Reading the type system strictly, the statement

case x of
true => fn => false ()

Ifalse => fn = > x
I maybe => fn = > false ()

end: maybe;

has the best type T,..,k because in the false case, the type of the variable x is still Tm.,1 ,
since case statements do not affect variable bindings. This surprises many users because
the case statement obviously always returns false (). To eliminate the surprise, when the
case object is a variable (x in the example), the implementation binds that variable to a better
type while analyzing each branch of the case statement. The better type is computed by
applying the constructor for each case to the inferred type of its argument; in this example,
the constructor is false and the inferred type of the argument is the unique refinement
of tunit, so x is bound to the type ff within the scope of the false branch of the case
statement.

7.5. DIFFERENCES BETWEHEN IMPLEMENTATION AND THEORY 299

Another practical inaccuracy in the implementation is that types appearing at the top
level are not split. For example, assuming the usual definitions of the booleans, not, and
or, splitting causes the expression

(:fn x => (or x (not x))) ((true ()) < Tb.w,)

to get the type it. However, if the declaration

val x = (true) <1T.,;

is followed by the expression

or x (not x),

then the latter expression only gets the type Tb,. We do this because the implementation
of splitting requires reanalyzing the entire scope of the binding for each fragment of the
split; if the scope is the entire future history of the type checker, then we cannot afford to
do this.

Chapter 8

Conclusion, Critical Evaluation, and
Future Work

Refinement type inference shows signs of being a useful type inference system. The
types have an intuitively appealing meaning, type inference can be described with read-
able inference rules, type inference provably has some useful properties, and a working
implementation exists.

As with any work of this size, this one has shortcomings. Some of the shortcomings
represent tradeoffs made to ensure that refinement type inference is efficiently decidable.
Other shortcomings could be remedied by experimenting, adding new language features,
proving more theorems, or by improving the implementation.

8.1 Tradeoffs Made for Tractable Type Inference

There are numerous situations where a program has a property that can be expressed as a
refinement type, but refinement type inference cannot infer as strong a type as one would
like.

Refinement type inference only makes the distinctions specified by the programmer in
rectype declarations. Even if a true property of a program can be described in terms of
those distinctions, if one must use other distinctions to infer this, refinement types cannot
infer that the property is true. For example, consider the declarations from Chapter I that
distinguish lists of length zero, one, and two or more from each other:

datatype a list = nil I cons of a* a list
rectype a empty = nil

and a singleton = cons (a, nil)
and .- long = conr (a, cons (a, a T-,t))
and a ljl. = bottom (list)

300

8.1. TRADEOFFS MADE FOR TRACTABLE TYPE INFERENCE 301

Then the function

fn x => case cons (X, cons (X, nil)) of
cons (-, cons (-, nil)) => cons (x, nil)

I - > nil

will always return a list of length one, but it will not have the refinement type
a -- a singleton because we can only determine that the function will always return a
list of length one by recognizing a list of length exactly two, and we have assumed that no
rectype declaration has been made that will distinguish lists of length exactly two. It is
easy to express this distinction as a rectype statement:

rectype a twolist = cons (a, cons (a, nil))

In general, rectype statements are descriptions of regular tree automata [GS84], and
sets of values that are not recognizable by a finite tree automaton cannot be described with
a rectype statement. For example, we can make the usual distinction among the booleans

datatype bool - true of tunit I false of tunit
rectype tt = true (runit)

and ff = false (runit)

and write a function to test whether two lists have the same length:

fun samelength (cons (x, tlx)) (cons (y, tly)) = samelength tix tly
I samelength nil nil = true
I samelength - - - false

With this definition, for any list I we know that samelength I 1 returns true, but we
cannot declare any finite set of distinctions within list to cause samelength to have the
refinement type Ttiat --+ T.i°, --+ tt. The problem here is that the infinite set of possible
lengths cannot be encoded in the state of a finite tree automaton. Similarly, refinement type
inference cannot reason about closed expressions in a representation of the lambda calculus
because the infinite number of possible sets of bound variables cannot be encoded in the
state of a finite tree automaton.

Another shortcoming is that refinement type inference does not know when a function
is deterministc and unaffected by side effects. Thus, if 1 is some list, we will not be able to
infer that the expression

if samelength I I then true else not (samelength 1 1)

has the refinement type tt. If refinement types were able to use the information that
samelength is deterministic and does not use side effects, it could infer that the if

302 CHAPTER 8. CONCLUSION, CRITICAL EVALUATION, AND FUTURE WORK

statement has the type tt even if it could not infer that samelength 1 I can be given the
type tt.

A different shortcoming stems from the fact that refinement type inference is defined in
terms of expressions with explicit ML types, but the programmer writes expressions with
implicit ML types. In general, a term with implicit ML types may correspond to multiple
terms with explicit ML types. To predict the behavior of refinement types, the programmer
needs to know which one of these the compiler will select. Fortunately, the prototype
implementation (and every Standard ML implementations that uses the simplest algorithm)
always selects the explicitly typed term containing the most general types.

The need to insert a rectype declaration before refinement type inference provides
more information than ordinary ML type inference can also be regarded as a shortcoming.
However, it is hard to imagine doing without rectype declarations. In the normal case,
refinement type inference will be used to find errors in a recently modified program.
Analyzing the program to automatically find the important distinctions to make is likely
to be hopeless when the program is incorrect. The often-suggested option of omitting
rectype statements and instead automatically creating one refinement containing each
value constructor is unworkable; refinement type inference will give some information in
this case, but the information will rarely be useful. For example, it would not have been
useful for any of the examples in the introduction.

8.2 Experience Yet to Be Gained

Sometimes it is not clear which distinctions need to be made in a rectype declaration to
get the desired conclusion. In the function

fun lastcons (last as cons (hd, nil)) = last
I lastcons (cons (hd, tl)) = lastcons tl

we need to use a rectype declaration to distinguish lists of length two to be able to infer
that lastcons has the type a T -i* - a singleton. If we give the type of lists of length two
the name a long, the following argument shows why we need to distinguish a long to get
the best type for last cons: All values of type a T-it are in one of a empty, a singleton,
or a long. Each of these cases falls squarely into one of the branches of the definition of
lastcons: if the argument is of type a long, then we will always get to the recursive call
lastcons; if the argument is of type a 3ingleton, then we return the argument; and if the
argument is in a empty, then we raise an exception because of a missing case.

If we omit the declaration of long, then we can no longer say that all values of type
a T1j, are in one of several smaller types. If the argument to lastcons has type a Tuit,
then the first case of lastcons is reachable, and we return last, which is the argument to
lastcons and therefore has the type a Tu15 . Thus, from the viewpoint of type inference,
lastcons appears to be able to return a value of a Tiuag. This could be fixed by a more

8.3. FUTURE WORK IN LANGUAGE DESIGN 303

careful understanding of how patterns bind to variables that gives last the type a singleton
in this case, or, as we mentioned in the previous paragraph, it could be fixed by adding the
refinement type long.

As larger programs are checked with refinement type inference, the programmer will
become more experienced, but there will also be greater opportunity for surprising scenarios
like the one described in the previous paragraph to happen. It is unclear whether this process
will lead to sufficiently rare surprises in the long run; more experience is necessary.

More experience is also necessary to determine how fast and how useful refinement type
inference will be for large programs. The largest program run through the type checker so
far is the conjunction normal form example in Section 1.2, which is only 50 lines of SML
code.

8.3 Future Work in Language Design

The correct interaction between refinement types and signatures is not clear. For example,
suppose we have a structure List that implements lists and operations on them such as
append, and suppose another structure uses List and uses a statement to make a distinction
between empty and nonempty lists. Getting the best possible refinement type for append
in the second structure requires re-analyzing the code in the context of the added rectype
statement; assuming that type inference respects the privacy of List, re-analyzing the code
will require repeating the code in the second structure, which is poor software engineering..

Another option would be to allow List to declare the implementation of append in its
signature to give type inference permission to re-analyze append as necessary when new
rectype declarations are added. Putting expressions in signatures is a big change to SML;
more work is necessary to determine whether this is worthwhile.

Some data types such as string and int are predefined rather than declared with a
datatype statement. It makes sense to have refinements of these; for example, we could
imagine distinguishing positive integers, negative integers, and zero from each other. How-
ever, this will require a declaration other than a rectype statement, since rectype state-
ments rely upon having a finite number of constructors for each data type. It may be
worthwhile to find some other way to declare refinements of predefined data types.

If we omit the declaration of long in the list example, lastcons does not get the right
type. Adding long brings about the right result because we can then infer that all values
in it list are in one of the types it empty, it singleton, or it long; without long, there are
values such as cons (true (), cons (true (), nil)) that are in a list but are not in
any smaller type. The example with cnf is not analogous; we can infer an accurate type for
toCnf without having a refinement type that represents all boolean expressions that are not
in CNE In general, small variations in the rectype declaration have a subtle effect on the
outcome of refinement type inference. Perhaps some useful rules of thumb will arise from

304 CHAPTER 8. CONCLUSION, CRITICAL EVALUATION, AND FUTURE WORK

experiments with larger programs.

Every visible rectype declaration increases the number of cases that refinement type
inference must examine and therefore slows down type inference. Thus it is very important
to have good mechanisms for restricting the scope of a rectype declaration to a small
extent of code. The problem with this is that it is not immediately obvious what should
happen when we leave the scope of a rectype declaration. For example, suppose we have
the declarations of bool, it, and ff on page 301 and consider the statement

let datatype a list = nil I cons of (a * a list)
val x = cons (true, nil)

in
let rectype a ev = nil I cons (a* a od)

and a od = cons of (a*a ev)
in

(x <4 it od;
cons (true, nil))

end
end

In Standard ML, the type constructor ist becomes anonymous once we leave the scope of
the outer let statement; this means that the type still exists, but it cannot be named in type
declarations. Should the same happen to the recursive type constructors ev and od when
we leave the scope of the outer let statement? The practical and theoretical consequences
of this have not been explored.

It would be better if the specification of the meaning of rectype declarations in Chap-
ter 3 were more declarative. Also, because many properties of regular tree sets are ef-
fectively decidable, it is possible in principle to do perfect reasoning about rectype dec-
larations that do not mention function types. An example of this weakness of rectype
declarations as currently specified is on page 193. It would be more satisfying to have a
specification of the meaning of rectype statements that was as accurate as possible in that
case.

8.4 Future Theoretical Work

The soundness theorem in Chapter 2 states that if we evaluate a closed expression to get
a value, then the value has any refinement type the closed expression did. It does not
immediately follow that every time we evaluate a subexpression of the form e <1 r, all
values computed for e actually had the type r. A more ambitious soundness proof would
show this.

A version of refinement type inference that deals with imperative features such as
references exists and has a soundness proof, but has not yet been written up.

8.5. FU7VRE MPLEMENTATONS 305

The type inference system in Figure 3.8 for deriving the splitting relation from rectype
statements is not directly implementable. The prototype implementation does something
that seems to work well in practice, but it needs to be verified.

Likewise, the instantiation algorithm used by the implementation seems to work well
in practice but it needs to be verified.

8.5 Future Implementations

The present implementation uses memo tables in many places to improve performance.
These memo tables are all implemented as lists; profiling shows that the implementation
spends 80% of its time searching these lists. This could be sped up dramatically by using
arrays and an appropriate hashing scheme.

The implementation does not use true SML syntax. For instance, the syntax for defining
functions is separate from the syntax for destructuring data types. Also, constant value con-
structors like true are not permitted; instead, every value constructor takes one argument,
so the best we can do is true 0.

The theory allows for four ways a type variable can appear as an argument to a poly-
morphic data type constructor: positive, negative, ignored, or mixed. We only implement
positive and negative. Ignored arguments are treated as though they are positive, and mixed
ones generate an error. Type variables appearing in references behave as though they are
mixed, so the prototype does not implement references either.

Typically the refinement type of a function is very large, and we are only interested
in a small part of it. For example, we can verify that toCnf has the type Tboo,.g, -+ cnf
fairly quickly, but there are several refinements of boolexp, so it takes a while to print
the entire type of toCnf. The implementation needs to be more careful not to print these
expensive-to-compute types.

For a similar reason, when a refinement type error occurs, it is difficult to discover why.
A good approach to this might be to provide an interactive dialogue so the user can ask the
type inference engine questions about how the error occurred. This has been explored for
ML [Wan86].

Refinement type inference can in principle be used to make code more efficient. For
example, in the expression

case lastcrns y of
cons (x, nil) => print x

refinement type inference could guarantee to the compiler that the value returned by
lastcons will be a cons cell, so the case statement does not have to verify this.

Bibliography

[AC90] Roberto M. Amadio and Luca Cardelli.
Subtyping recursive types.
Research Report 62, Digital Systems Research Center, Palo Alto, California,

August 1990.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[Bar80] H. P. Barendregt.
The Lambda-Calculus: Its Syntax and Semantics.
North-Holland, 1980.

[Car87] Luca Cardelli.
Basic polymorphic typechecking.
Science of Computer Programming, 8:147-172, 1987.

[CDCV80] Mario Coppo, Mariangiola Dezani-Ciancaglini, and B. Venneri.
Principal type schemes and A-calculus semantics.
In Jonathan P. Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, pages 535-560.
Academic Press, London, 1980.

[CDDK86] Dominique Cldment, Joelle Despeyroux, Thierry Despeyroux, and Gilles
Kahn.

A simple applicative language: Mini-ML.
In Proceedings of the 1986 Conference on LISP and Functional Programming,

pages 13-27. ACM Press, 1986.

[CG92] M. Coppo and P. Giannini.
A complete type inference algorithm for simple intersection types.
In J.-C. Raoult, editor, 17th Colloquium on Trees in Algebra and Programming,

Rennes, France, pages 102-123, Berlin, February 1992. Springer-Verlag
LNCS 581.

[CR36] Alonzo Church and J.B. Rosser.
Some properties of conversion.
Transactions of the American Mathematical Society, 36(3):472-482, May

1936.

306

BIBUOGRAPHY 307

[dB72] N. G. de Bruijn.
Lambda-calculus notation with nameless dummies: a tool for automatic for-

mula manipulation with application to the Church-Rosser theorem.
Indag. Math., 34(5):381-392, 1972.

[Dix88] Alan J. Dix.
* Finding fixed points in non-trivial domains: Proofs of pending analysys and

related argorithms.
• Technical Report YCS 107, University of York Department of Computer

Science, Heslington, York, YO I 5DD, England, 1988.
An undated addendum has been written that describes significant improve-

ments.

[DM82] Luis Damas and Robin Milner.
Principal type schemes for functional programs.
In Proceedings of the 9th ACM Symposium on Principles of Programming

Languages, pages 207-212. ACM SIGPLAN/SIGACT, 1982.

[DZ92] Philip W. Dart and Justin Zobel.
A regular type language for logic programs.
In Frank Pfenning, editor, Types in Logic Programming, chapter 5, pages

157-187. MIT Press, Cambridge, Massachusetts, 1992.

[FM89] You-Chin Fuh and Prateek Mishra.
Polymorphic subtype inference: Closing the theory-practice gap.
In Proceedings of the International Joint Conference on Theory and Practice

of Software Development, Barcelona, Spain. Springer-Verlag, March 1989:

[FM90] You-Chin Fuh and Prateek Mishra.
Type inference with subtypes.
Theoretical Computer Science, 73:155-175, 1990.

[GS84] Ferenc Gdcseg and Magnus Steinby.
Tree Automata.
Akademiai Kiad6, Budapest, 1984.

[Har86] Robert Harper.
Standard ML.
Technical Report ECS-LFCS-86-2, Laboratory for the Foundations of Com-

puter Science, Edinburgh University, March 1986.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin.
A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1): 143-184, January

1993.

[HL94] Robert Harper and Mark Lillibridge.
A type-theoretic approach to higher-order modules with sharing.
To appear in POPL '94., 1994.

308 BIBLIOGRAPHY

[HM94] Chris Hankin and Daniel Le Mdtayer.
Deriving algorithms from type inference systems: Application to strictness

analysis.
In Proceedings of the Twenty-First Annual ACM Symposium on Principles of

Programming Languages, Portland, pages 202-212. ACM, January 1994.

[HMM+881 Robert Harper, Robin Milner, Kevin Mitchell, Nick Rothwell, and Don San-
nella.

Functional programming in Standard ML.
Notes to a five day course given at the University of Edinburgh, April 1988.

[HP91] Robert Harper and Benjamin Pierce.
A record calculus based on symmetric concatenation.
In Conference Record of the Eighteenth Annual ACM Symposium on Principles

of Programming Languages, pages 131-142, Orlando, Florida, January
1991.

[Jag89] Nigel Jagger.
An inductive approach to finding fixpoints in abstract interpretation.
Fourth IEEE Region 10 International Conference, pages 1059-1064, 1989.

[Jat89] Lalita A. Jategaonkar.
ML with extended pattern matching and subtypes.
Master's thesis, Massachusetts Institute of Technology, August 1989.

[JM861 Neil D. Jones and Alan Mycroft.
Data flow analysis of applicative programs using minimal function graphs:

Abridged version.
In Conference Record of the Thirteenth Annual ACM Symposium on Principles

of Programming Languages, St. Petersburg Beach, pages 296-306. ACM,
January 1986.

[JM88] Lalita A. Jategaonkar and John C. Mitchell.
MI with extended pattern matching and subtypes (preliminary version).
In Proceedings of the 1988 ACM Conference on Lisp and Functional Pro-

gramming, pages 198-211. ACM, July 1988.

[KTU89] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn.
Type-checking in the presence of polymorphic recursion.
To appear in TOPLAS, October 1989.

[LW91] Xavier Leroy and Pierre Weis.
Polymorphic type inference and assignment.
In Proceedings of the Eighteenth Annual ACM Symposium on Principles of

Programming Languages, Orlando, pages 170-181. ACM, Januay 1991.

[Mac88] David B. MacQueen.
An implementation of Standard ML modules.
In Proceedings of the 1988 ACM Conference on LISP and Functional Pro-

gramming, Snowbird, Utah, pages 212-223. ACM Press, July 1988.

BIBLIOGRAPHY 309

[Mi178] Robin Milner.
A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348-375, August 1978.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51:125-157, 1991.

[MP91] Spiro Michaylov and Frank Pfenning.
Natural semantics and some of its meta-theory in Elf.
In L.-H. Eriksson, L. Hallnis, and P. Schroeder-Heister, editors, Proceedings of

the Second International Workshop on Extensions of Logic Programming,
pages 299-344, Stockholm, Sweden, January 1991. Springer-Verlag LNAI
596.

[MT91a] Robin Milner and Mads Tofte.
Co-induction in relational semantics.
Theoretical Computer Science, 87:209-220, 1991.

[MT9Ib] Robin Milner and Mads Tofte.
Commentary on Standard ML.
MIT Press, Cambridge, Massachusetts, 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts, 1990.

[Myc84] Alan Mycroft.
Polymorphic Type Schemes and Recursive Definitions, pages 217-228.
International Symposium on Programming. Springer-Verlag, New York, 1984.
LNCS 167.

[PE88] Frank Pfenning and Conal Elliott.
Higher-order abstract syntax.
In Proceedings of the SIGPLAN '88 Symposium on Language Design and

Implementation, Atlanta, Georgia, pages 199-208. ACM Press, June 1988.

[Pfe921 Frank Pfenning, editor.
Types in Logic Programming.
MIT Press, Cambridge, Massachusetts, 1992.

[Pie9la] Benjamin Pierce.
Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, Pittsburgh,

Pennsylvania, February 1991.

[Pie9lb] Benjamin C. Pierce.
Programming with Intersection Types and Bounded Polymorphism.
PhD thesis, School of Computer Science, Carnegie Mellon University, De-

cember 1991.
Available as Technical Report CMU-CS-91-205.

310 BIBLIOGRAPHY

[RA9] Didier Rdmy.
Typechecking records and variants in a natural extension of ML.
In Proceedings of the Sixteenth Annual ACM Symposium on Principles of

Programming Languages, pages 77-87, Austin, Texas, January 1989.
ACM.

[Rey88I John C. Reynolds.
Preliminary design of the programming language Forsythe.
Technical Report CMU-CS-88-159, Carnegie Mellon University, Pittsburgh,

Pennsylvania, June 1988.
[Tof87] Mads Tofte.

Operational Semantics and Polymorphic Type Inference.
PhD thesis, Department of Computer Science, Edinburgh University, 1987.

[Tof88] Mads Tofte.
Type inference for polymorphic references.
Superseded by a version published in Information and Computation, vol 89,

number 1, pages 1-34, November 1990., October 1988.

[TZ91] Rodney Topor and Justin Zobel.
Operations on regular term grammars.
To appear in Acta Informatica., June 1991.

[Wan86] Mitchell Wand.
Finding the source of type errors.
In Proceedings of the Thirteenth Annual ACM Symposium on Principles of

Programming Languages, St. Petersburg Beach, Florida, pages 38-43.
ACM Press, January 1986.

[YFS921 Eyal Yardeni, Thom Fruehwirth, and Ehud Shapiro.
Polymorphically typed logic programs.
In Frank Pfenning, editor, Types in Logic Programming. MIT Press, Cam-

bridge, Massachusetts, 1992.

[You89] Jonathan Hood Young.
The Theory and Practice of Semantic Program Analysis for Higher-Order

Functional Programming Languages.
PhD thesis, Yale University, May 1989.

Index

_, 168 abstract declaration, well-formed, 177-
(equivalence for refinement types), 36 178

x (cross product of tuples), 117, 206 abstract declaration, 169-170, 176-178
I, 166, 168 abstract interpretation, 3, 282-285
C- (refines), 65, 177 abstract syntax, higher-order, 230
<: (ASCII version of coercion operator), ABS-TYPE, 60-61, 71, 75, 77, 83, 85-86,

280 89, 95-96, 101, 104, 146, 152,
<1 (coercion operator), 13, 273, 304 234
× (splitting), 46, 65, 93, 253, 297, 299, ABS-VALID, 27-28, 71, 74, 77, 232

305 ALG-ARROW-RECSUB, 195

_• (subtyping for refinement types), 65, ALG-NEW-ENV-EMPTY, 186, 188-189
244 ALG-NEW-ENV-RECSUB, 195

t (equivalence for generalized pairs), 247 ALG-NEW-[NFER-EMPTY, 186-190
i (equivalence for generalized refinement ALG-NEW-INFER-RECSUB, 195

types), 106 ALG-OLD-EMPTY, 186, 188-190
_ (subtyping for generalized pairs), 247 ALG-OLD-RECSUB, 195

_ (subtyping for generalized refinement algorithm, instantiation, 305
types), 106 algorithmic emptyness for recursive types

A Elim Sub, 107-109, 125, 248 (D; S'i- r alg-empty), 186
A Intro Sub, 107, 110, 125, 129, 248 Algorithmic Emptyness Strengthening,
A (intersection for generalized pairs), 248 188
A (intersection for generalized refinement algorithmic subtyping for recursive types

types), 107, 118 (D; S - nr < nk), 195
Afn, 117-118, 121,263 ALG-REC-TUPLE-EMPTY, 186-187, 189-
U (least upper bound of refinement types), 190

128 ALG-TUPLE-RECSUB, 195
A (intersection for refinement types), 3, allr-efs, 117-118, 121, 263, 286

16, 18, 30,211 analysis, pending, 281-282, 284
A (intersection for vectors), 242 And, 6
& (intersection for recursive types), 165- AND-ELIM-L-SUB, 35-37, 40, 43, 59, 84,

* 166, 168,170,211 109,116,121,129,153,155,245,
267

U{i}, 228 AND-ELIM-R-SUB, 35-37, 40, 43, 59, 84,
ABS-RECVALUE, 180-182, 192, 204-205, 109,116,121,129,153,155,245,

209,222 267
ABS-SEM, 24, 100 AND-Eum-TYPE, 59

311

312 INDEX

d bitstrings, 65
and-intro-<, 34, 216, 262 bit, 65
AND-INTRO-SUB, 35-37, 40, 42-44, 84, -t-si, 167

109, 113, 139, 245,267 blOGt, 167, 172-173, 177,207
AND-INTRO-TYPE, 59-61, 67, 69, 75, 80- BOGUS, 253

81, 83, 86-89, 93-94, 99-100, Tboo, 7, 15
116,138-139,146-148,191,259, booea 7,e15,174,224, 226
262 boolea expressions, 6-7

AND-RECREFINE, 177, 197-198, 216 booleans, 15

AND-RECVALUE, 180-181, 191-192, 204- Tb•,,7

206,208-210,221-222 boolexp, 6

AND-REF, 31-32,36-37,39-40,43,70,244 boolmap, 283

anysplit, 126 boolref, 289

append, 303 botfnz, 117-118, 121,134,293

APPL-SEM, 24, 92, 99-100, 104, 231 bottom tc, 166-168, 173-174, 176-178

APPL-TYPE, 60, 71, 75, 78, 89, 96, 99, Bound on Argument to i Gives Bound on

101-102, 104-105, 147, 154, 222 i, 111, 157, 250, 265, 269

APPL-VALm, 27-28, 72,77 bound variables, 230

applying a substitution, 8 de Bruijn indices, 230

apsubst, 8
Arbitrary Constructor Subtyping, 46, 250 C, 114
arguments, ignored type, 241,270 capture, type variable, 229-230
arguments, mixed type, 240, 270 case, missing, 6-7
arguments, negative type, 240, 270 Case Statement Body, 265, 269
arguments, positive type, 240, 270 case statements, type inference for, 68
arguments, type, 240-241, 270 case statements, 243, 257, 259, 263, 265,
arity(tc), 241 298
arrow (-+), 241 CASE-SEM, 24-25, 102
Arrow Does Not Split, 254 CASE-TYPE, 29, 60, 63, 67-69, 72, 75, 78-
ARROW-AND-ELIM-SUB, 34-35, 38,44,85, 79, 89, 97, 102, 149, 156, 254-

110, 112,244 255,257, 259, 265,268
ARROW-RECREFINES, 177, 197 CASE-VALID, 27-28, 63,78,243
ARROW-RECSPLIT, 206-207,209 catch-all refinement type Tt, 3
ARROW-RECSUB, 194, 197-199, 202-204 claims of this thesis, 12
ARROW-REF, 31-32, 38-39, 72, 111, 244 classes, equivalence, 106
ARROW-SUB, 34-35, 38, 44, 71, 79, 85, clearf lag, 276

110, 153, 197, 244 closed expressions, 22
ASCII version of coercion operator (<:), closure of D (D), 179, 212

280 CNF (conjunctive normal form), 8-9, 288,
association lists, 285 295
atom, 8 cnf, 8
automaton, regular tree, 169, 194, 301 coercion operator (<1), 13, 273, 304

coercion operator, ASCII version (<:),
biNsar, 17, 65 280

INDEX 313

co-induction, 170, 182, 190, 192, 196, D H- r empty (emptyness for recursive
199-201,204, 210, 220 types), 185

compatibility between ML and refinement D; S H- nr < nk (algorithmic subtyping
type inference, 68 for recursive types), 195

components, 111 D; S I- r alg-empty (algorithmic empty-
computing principal splits, 126 ness for recursive types), 186
concrete syntax, 275, 305 D H- v E nr (membership of a value in a
conjunctive normal form (CNF), 8-9, 288, recursive type), 180

295 D (weakened closure of D), 213
cons, 1-2 Damas-Milner type inference, 63
constant refinement types, 281, 286 de Bruijn indices, 230
CONSTR-SEM, 24, 101 decidability of refinement type inference,
CONSTR-TYPE, 60, 67, 72, 78, 86-87, 89- 3, 116, 263

90, 96-97, 101-102, 148, 155, decidable ML type inference, 64
221, 254, 257, 259, 261-262 Deciding Refinement Types, 135

Constructor And Introduction, 67, 87, deciding splits, 126
136-137, 219, 259, 266 deciding subtyping, 117

Constructor Argument Strengthen, 67, 87, declaration, abstract and well-formed,
148, 155,212,220, 259, 262, 266 177-178

Constructor mtor Consistent, 76, 78 declaration, abstract, 169-170. 176-178
Constructor Result Weaken, 67, 86, 212, Declarations are Finite, 179, 216

220, 259, 261,266 declarations, explicit refinement type,
Constructor Type Refines, 65, 72, 79, 155, 273,280

217 DECL-TYPE', 274
Constructors have Unique ML Types, 15, DECL-TYPE, 274

28, 72, 155, 215-216, 241 def
<, 33

constructors, ML type (miconstruct or), def
277-278 " 4'

constructors, polymorphic refinement ::, 65
def

type, 240 empty (emptyness for refinement type
constructors, properties of, 64 constructors), 184, 210, 215
constructors, type, 223 defmtor Rerines, 76
constructors, value, 242 def

C, 30,211
CONSTR-VALID, 27-28, 72,78,243 def
contexts, 172 ×, 47, 206, 215

def
<,210,212

def
D, 176 U, 129
S(closure of D), 179, 212 defAdefined, 198, 210, 216
D I- nr < nk (subtyping for recursive def

A Elim, 34, 38, 41, 198, 216
types), 169, 193-194 de'

D F- nr × s (splitting forrecursive types), A, 33, 210, 212
def206-207 A-defined, 34

D I- nr C- t, 177 Depth of a Recursive Type, 187

314 INDEX

depth, 187 r empty), 184, 279
deterministic function, 301 Emptyness Subtyping, 185, 193, 220
deval, 264 emptyU, 187
diagnosing refinement type errors, 305 Environment Modification, 81, 85, 140,
disj, 8 153, 159, 164, 235,260
disjCnfs, 9 equality, polymorphic, 7
dont..me,-oize, 288 equivalence classes, 106, 114, 251
double, 226,281,289, 294 equivalence for refinement types (-), 36
doublepred, 253 Equivalence rtort, 212

EQUIV-SPLr-L, 48, 50, 54-56, 58, 82, 91,
e =* v (evaluation), 24 140,218
eager value constructors, 183 EQUIV-SPLIT-R, 48, 50-51, 54, 56-57, 91
EC, 114 erase, 274
effective verification of refinement types, error detection, 9

12 error, 7
efficiency, 6 ev, 240-241
ELI-SPLrr, 48-50, 52, 57, 91, 126-127 eval, 6-7
ELT-SEM, 24, 103 evaluating boolean expressions, 6
ELT-TYPE, 60, 73, 80, 89, 98, 103, 150, evaluation (e =ý, v), 22, 24, 231

158 expansion, 171
.LT-VAuiD, 27, 29, 7 3, 79 explaining refinement type errors, 305

Empty Eliminable Assumptions, 188, 190 explicit ML type declarations, 227
Empty Intersection, 192, 197 explicit ML types, 20, 302
empty refinement type, 3 explicit refinement type declarations, 273,
empty set, 3 280
empty splits, 62 expression scheme, 229
Empty Transitivity, 200, 202, 214, 220 expression schme , 229expressions, grammar for, 19, 229, 242
empty types, 167-169, 183 expressions, substitution for, 92
empty, 2 expressions, substitution, 23

def
empty (emptyness for refinement type expressiveness of refinement types, 12

constructors), 184, 210, 215 extended recursive type, 166
Emptyness Consistency I, 189
Emptyness Consistency II, 182, 190, 192, F (monotor:2 function representing an in-

196 ference system), 181
Emptyness Consistency, 215, 220-221 False, 6
Emptyness Constructor, 184, 220 false, 7, 223
emptyness for recursive types, algorith- if, 223-224

mic (D; S I- r alg-empty), 186 Finite Predefined Refinements, 31, 115,
emptyness for recursive types (D - 122,216

r empty), 185 Finite Refinements, 63, 115-116, 164,
emptyness for refinement type construc- 238,252, 274

def
tors (empty), 184, 210, 215 finite set of refinements of each ML type,

emptyness for refinement types (H- 3,63, 105

INDEX 315

Fix Case of Infer is Well-Behaved, 144, i (interpretation), 106, 108, 13 1, 246, 248,
151,163 263, 280

fixed point, greatest, 170, 181, 193 I (interpretation), 106, 114, 246, 252
fixed point, least, 193 i Gives an Upper Bound, 111, 113, 149,
fixed point of monotone function, 168 194, 251
fixed points, 63, 168, 280-282, 286-287, i(k)(f; f") Monotone in f, 249, 252

298 i(k)(f; p") Respects Equivalence in f",
FIX-SEM, 24,92, 103,231 249,252
FIX-TYPE, 60, 73, 80, 83, 89, 98, 103, 151, i Monotone in First Argument, 109, 111,

159, 234 113, 124, 132-133, 154, 250
FIX-VALID, 27, 29, 74, 80, 94, 145, 232 i Monotone in Second Argument, 108,
flattening, 172 114, 132, 154,249
Aft, 117-118, 121 I Preserves Equivalence, 114-115, 252
fntoref, 120, 125 i Preserves Information, 113, 115, 122,
Fragments of Principal Split have Useless 251

Splits, 58, 127, 254 iconstr, 263
fragments, 47 id, 223
Free Type Variables in Constructors, 232, identifiers, ML type (miconid), 277

239, 243 identifiers, refinement type (ref conid),
free type variables, 229 277
Free Variables Refine, 63-64 identifiers, type, 277
function, deterministic, 301 if, 117, 120, 124, 131, 264
function graphs, minimal, 282 ignored type arguments, 241, 270
function, monotone, 168, 170 ignored type variables, 13, 258, 279, 305 -

general types, selecting the most, 302 implementation, prototype, 6, 14, 275,

generalized pairs, 247 302,305

generalized refinement types, 106, 247 implicit ML types, 19, 302

gfp, 182 implicitly declared refinements, 7

grammar for expressions, 19, 229, 242 indices, de Bruijn, 230

grammar for ML types, 18, 242 Infer Returns Principal Type, 141, 144,

grammar for rectype statements, 166, 151,160, 164, 265,268

168 Infer Returns Some Type, 144-145, 163-
grammar for refinement types, 30, 242 164,264

grammar for values, 22, 231 Infer Terminates, 145, 151, 265
grammars, term, 169 infer, 135, 144, 238, 263-264, 274, 282
graphs, minimal function, 282 Inferred Types Refine, 19, 27, 59, 68-69,
greatest fixed point, 170, 181, 193 74, 94, 97, 116, 144, 160, 235
greatest lower bound, 36 infinite lazy lists, 180
ground boolean expression, 6, 8 infinite proofs, 181
ground substitution, 8 informative splits, 52
ground, 7 inst, 293

instantiation algorithm, 305
higher-order abstract syntax, 230 instantiation, 7, 14, 63, 224, 242, 281,

316 INDEX

288,295 looking up a value in a substitution, 7
int, 303 lookup, 7-8
interpretation, abstract, 3, 282-285 looper, 293
interpretation (i), 106, 108, 131, 246,248, lower bound, greatest, 36

263, 280
interpretation (1), 106, 114, 246, 252 malformed refinement type, 30, 62

intersection for recursive types (&), 165- Iapsubst, 293

166, 168,170,211 maybe,46

intersection for refinement types (A), 3, membership of a value in a recursive type

16, 18, 30, 211 (D H- v E nr), 170, 180

intersection for vectors (A), 242 memo tables, 305

Intersection Membership, 179 memoization, 14, 281, 287, 295, 305

intersection, monotonicity of, 36 Milner-Mycroft type inference, 64

Intersection Refines, 179, 192, 197 minimal function graphs, 282

Intersection Value Membership, 183, 209 Mini-ML, 19
missing case, 6-7

Join is Decidable, 129 miz, 247,249,270
Join, 127 mixed type arguments, 240, 270
joinf, 129 mixed type variables, 13, 279, 305

ML Compatibility, 77,235
lastcons, 1-2 ML Free Variables Bound, 29, 64, 232,
Later, 289 243
lazy lists, 180 ML type constructors (mlconstructor),
lazy representations, 281 277-278
lazy value constructors, 183 ML type declarations, explicit, 227
lazy, 181 ML type identifiers (mlconid), 277
lazy_.lef con, 288 ML type inference, compatibility with re-
least fixed point, 193 finement type inference, 68
least refinement of an ML type, 16 ML type names (mlconname), 277
length of a vector, 228 ML type schemes, 223, 228, 279
let statements, 228, 231, 238-239, 294 ML Type Soundness, 27, 29, 99, 232, 243
LET-SEM', 231 ML type variables, 7
LET-SEM, 231, 238 ML types, explicit, 20, 302
LET-TYPE, 234,237-238 ML types, grammar for, 18, 242
LET-vALID, 232 ML types, implicit, 19, 302
±ti., 2 ML types, quadruples of (1), 242
List, 303 ML types, 25, 279
True, 3 ML typing relation (VM H- e :: t), 26
list, 1, 7 ML Value Substitution, 29, 93, 97, 232,
lists, association, 285 243
lists, lazy, 180 mlconid (ML type identifiers), 277
lists representing substitutions, 7 miconname (ML type names), 277
literal, 8 mlconstructor (ML type constructors),
long, 2 277-278

INDEY 317

ulschem, 279 notf a, 290
mdty, 279 now, 289
monomorphic refinement type inference, np, 176

13 npc, 176
monomorphic refinement types, 15 npca, 176

r monotone function, 168, 170 nps, 176
monotonicity of intersection, 36 nr, 176
mtor Refines, 76-77, 79-80, 235 nrc, 176
mtor, 76 arcs, 176
multiple refinements of type variables, nra, 176

224 ns, 16, 106-112, 118-123, 125, 129-134,
141,144-152, 155, 157-160, 163,

names, ML type (miconname), 277 247-248
names, refinement type (refconname),

277 old, 166-167, 178
names, type, 277 OLD-EMPTY, 186, 189-191,193
naming convention, 26 OLD-RC-RECVALUE, 180, 191, 205-206,
negative type arguments, 240, 270 209, 222
negative type variables, 13, 258,279, 286, OLD-RECREFINES, 177, 198

305 OLD-RECSPLIT, 207-209
New Recursive Type Constructors De- OLD-RECSUB, 193-194, 198-199,203,205

fined, 178, 187, 216 omitting rectype statements, 302
New Value Constructors Closed, 179 Only def

New Value Constructors Defined, 178 option, 225

New Value Constructors Only, 178 Or, 6
new, 166-167, 176, 178 Ordering on i, 112-113, 124, 133, 251
NEW-INFER-EMPTY, 185-186, 189-193,

200-201,220 pairs, generalized, 247
NEW-INFER-RECSUB, 193-194, 196-197, pending analysis, 14, 281-282, 284

199-202, 205,213 Piecewise Intersection, 67, 74, 84, 89,
NEW-RC-RECVALUE, 180, 183, 191, 205, 236,260

208, 221 polymorphic equality, 7
NEW-RECREFINES, 177, 216 polymorphic refinement type construc-
NEW-RECSPLrT, 206-208, 216-218 tors, 240
nil,2 polymorphic refinement type inference,
nk, 176 13
-n/k, 176 polymorphic type constructors, 13
nkcs, 176 polymorphism, 13
nka, 176 positive type arguments, 240, 270
none, 225 positive type variables, 13, 258, 279, 305
IONE, 225 postponing work during instantiation, 292
Non-free Variables are Ignored, 63, 82, 95 practical refinement type inference, 6, 13
not, 283 pred, 246
Not,6 predefined data types, 303

318 INDEX

Predefined Intersection Distributivity De- rectype statements, grammar for, 166,
cidable, 271 168

Predefined Intersection Distributivity rectype statements, 2, 7, 13, 74, 165,
Technical, 270 239, 269, 297, 300-301, 303, 305

Predefined Intersection Distributivity, recursion on the left hand side of --+, 167,
259, 262, 267, 269-270, 297 169, 175, 182

Predefined Split Intersection, 54, 217 recursion, 63
Principal Refinement Types, 115, 238 Recursive Intersection Greatest, 198, 202,
principal refinement types, 105 214,216,219
Principal Split Existence, 127 Recursive Intersection Lower Bound,
Principal Split Implies Useless Splitting 196, 202-203, 218-219

Fragments, 58, 254 Recursive Split Intersection, 210, 217-218
principal splits, computing, 126 Recursive Split Soundness, 208
principal splits, 52, 126 Recursive Subtype Consistency I, 196
principal types, 3, 224, 241 Recursive Subtype Consistency II, 196
profiling the implementation, 305 Recursive Subtype Soundness, 193, 204,
progress, syntactic, 80, 88 209, 213
properly, varies, 258 Recursive Subtypes Refine, 196, 212,
properties of constructors, 64 216-217
prototype implementation, 6, 14, 275, recursive type constructors, 165

302, 305 recursive type, extended, 166

qallref s, 263 recursive type, membership of a value in

QUADRUPLE-REF, 244 (D F- v E nr), 170, 180
quadruples of ML types (t), 242 recursive types, 165quadruples of rM t types (t), 242_ Recursive Unique ML Types, 178-179,quadruples of refinement types (fl, 24221
QUADRUPLE-SUB, 245 216

ref conid (refinement type identifiers),

I- r empty (emptyness for refinement 277
types), 184,279 ref:conname (refinement type names),

F (quadruples of refinement types), 242 277
rarrow, 241, 246, 254 references, 305
RCON-AND-ELIM-SUB, 34-35, 38, 41, 44, Refinement and Recursive Split Consis-

67, 86, 111,244-245,259, 261 tency, 212, 218
RCON-EMPTY, 184, 191 Refinement and Recursive Subtyping
RCON-REF, 31, 38, 72, 122, 244 Equivalence, 212, 221
Rconsimp Sound, 42, 133, 246 Refinement Consistency, 178-179
rconsimp, 42, 133 Refinement Constructor Intersection, 41-
RCON-SPLIT, 47-49, 54, 90, 253 42,54, 122, 133,246
RCON-SUB Inversion, 45-46, 124, 134 Refinement Contirctor Splits are
RCON-SUB, 34-35, 38, 42, 44-45, 49, 86, Nonempty, 51, 217

111-112, 124, 134, 153, 157,244- Refinement Constructor Subtyping, 45,
245, 257,261,268 250

REC-TUPLE-EMYr, 186, 190-193 Refinement to ML (rtom), 32

INDEX 319

refinement type constructors, polymor- rtom, 32
phic, 240 rtort, 211

refinement type constructors, 223 rtupke,* 242
refinement type error, 305 rules, rewrite, 225
refinement type identifiers (ref conid), ,rnit, 30-31, 34, 167, 178

277
refinement type inference, compatibility samelongth, 174, 301

with ML type inference, 68 scheme, expression, 229
refinement type inference, monomorphic, schemes, ML type, 223, 228, 279

13 schemes, refinement type, 223, 228
refinement type inference, polymorphic, schemes, type, 64

13 scoping rectype statements, 304
refinement type names (refconname), selecting the most general types, 302

277 Self Recsub, 199, 204, 212, 214, 216
refinement type schemes, 223, 228 SELF-SPLTrr, 48-51, 57, 66, 92, 218, 233
Refinement Type Soundness, 99, 103-104, SELF-SUB, 35-36, 42-43, 45, 50, 83-84,

222, 237,262,274 109-111,125,152,199,233,245,
Refinement Type Substitution, 237, 262 266
refinement type variables, 7 semantics, 243
refinement types, constant, 281,286 separating datatype and rectype decla-
refinement types, generalized, 106, 247 rations, 167
refinement types, grammar for, 30, 242 sotflag, 276
refinement types, monomorphic, 15 signatures, 303
refinement types, principal, 105 simplification, 173
refinement types, quadruples of (:r), 242 singleton, 2, 301
refinement types, soundness of, 13, 80, sjoin: 134

120,260,304 some, 225
refinement typing relation (VR i- e : r), SOME, 225

58 Soundness of Empty, 191. 205
refines (C), 65, 177 Soundness of Refinement Type Empty,

d& 185, 191,221
Refines <, 34, 38, 216

def soundness of refinement types. 13, 80,
reflex-<, 33, 216 120, 260, 304
REF-TUPLE-EMPTY, 184 Split Constructor Consistent, 49, 66, 90,
regular systems, 169 214,217
regular tree automaton, 169, 194, 301 Split Intersection, 48,54,58, 82, 208,210,
repeat, 225 254
representations, lazy, 281 Split Positive, 253
reshapeab, 291,295 Split Substitution, 236, 246
reshapeba, 291 Split Subtype Consistent. 49. 216
reshaping, 290 Split Types Refine 1, 51, 56, 70, 254
rev, 293 Split Types Refine 1I, 51, 71, 254
rewrite rules, 225 split, useful, 57
rewriting rectype declarations, 168 split, useless, 57

320 INDEX

Splits are Nonempty, 51,63, 70, 254 subtyping for recursive types, algorithmic
Splits Are Subtypes 1, 49, 51, 58, 254 (D; S I- nr < nk), 195
Splits Are Subtypes II, 51, 254 subtyping for recursive types (D f- nr <
splits, computing principal, 126 nk), 169, 193-194
splits, informative, 52 subtyping for refinement types (•), 65,
Splits of Arrows are Simple, 51, 94, 159, 244

163-164, 254 sugar, syntactic, 241-243, 249
splits, principal, 52, 126 Syntactic Progress Decidability Suffi-
spLrr-suB. 61-62 cient, 138, 151
splitting forrecursive types (D ý- nr - .), syntactic progress, 80, 88

206-207 syntactic sugar, 241-243, 249

splitting (x), 46, 65, 93, 253, 297, 299, syntax, concrete, 275, 305

305 syntax, higher-order abstract, 230
Splitting Value Types, 65, 89, 95, 209, syntp, 280

236, 262 systems, regular, 169

SPuT-TYPE, 46, 51, 59-63, 70, 80-82, 88- T,,, 240-241
89, 93-95, 99-100, 103-105, 126, 8 (quadruples of ML types), 242
138-139, 141, 144, 146, 236 tables, memo, 305

statements, case, 243, 257,259, 263,265, arrow, 241, 277
298 teqopt, 280, 286

statements, let, 228, 231, 238-239, 294 term grammars, 169
statements, rectype, 2, 7, 165, 239, 269, Termination for subtypep and allrels,

297, 300-301,303 125
strengthening, 63 toCnaf, 9, 305
strictif, 224 TooSmall, 292-295
Ta,•,r. 7 toplevel, 171-172
string, 303 tp, 280, 289
substitution for boolean expressions, 7 trail, 185, 193
substitution for expressions, 23, 92 def

trans-<, 34, 203, 216
substitutions represented as lists, 7 Transitivity of -<, 108, 110, 114. 124, 248
substitutions, 228-230, 243, 290 TRANS-SPLrr, 47-48, 50, 53, 56, 58, 91,
Subtype Decidability, 120 127
Subtype Eliminable Assumptions, 195 TRANS-SUB, 35-37,44-45,50,52,85, 110,
Subtype Irrelevancy, 75, 84, 88, 90, 101- 112-113, 121, 123-124, 130-131,

103, 105, 221-222, 236, 262 134, 139-140, 153, 155, 158, 164,
Subtype Strengthening, 194 245,267
Subtype Transitivity, 201, 204, 214, 216, TRANS-SUBTYPE, 203

220 tree automaton, regular, 169, 194, 301
subtypep, 117, 119, 122, 263, 286 True, 6
subtypeU(D), 195 true, 7, 223
Subtypes Refine, 36, 44, 50-51, 56, 63, Ut, 15, 223-224, 240-241

70, 122, 158, 196, 212,236,246, tupke,, 242, 246, 277
251 tunit, 18,21, 30-31, 178

INDEX 321

Tuple Intersection, 40-41, 55, 130, 246 type names, ML (mlconname), 277
Tuple Refines, 32, 44, 233 type names, refinement (retconnamo),
Tuple Subtyping, 33, 42, 45, 250 277
tupling (a *,8 * -"), 242 type names, 277
TUPLE-AND-ELIM-SUB, 34-35, 39-40, 45, type schemes, ML, 223, 228, 279

87, 111,244 type schemes, refinement, 223, 228
TUPLE-RECREFINES, 177-178, 198 type schemes, 64
TUPLE-RECSPLIT, 206-207, 209 Type Soundness, ML, 27
TUPLE-RECSPLT, 206 Type Substitution Preserves Subtyping,
TUPLE-RECSUB, 193-194, 198, 200, 203, 236, 246, 262, 267

206,222 type variable capture, 229-230
TUPLE-RECVALUE, 180, 192,206,209-210 type variables, free, 229
TUPLE-REF, 31-32, 39, 43, 49, 73, 244 type variables, ignored, 13, 258, 279, 305
TUPLE-SEM, 24, 102 type variables, mixed, 13, 279, 305
Tuplesimp Sound, 41, 115, 124, 131, 246 type variables, multiple refinements of,
tuplesimp, 41-42 224
TUPLE-SPLur, 47-49, 55, 90, 253 type variables, negative, 13, 258, 279,
TUPLE-SUB Inversion, 45-46, 123, 130, 286, 305

158 type variables, positive, 13, 258, 279, 305
TUPLE-SUB, 34-35, 39-40, 42, 44-45, 50, type variables, 7, 13, 223-224, 228-229,

87, 111, 115, 121, 123, 130-131, 239,258,279,286,305
244 types, constant refinement, 281, 286

TUPLE-TYPE, 47, 60, 73, 79, 87-91, 98, types, empty, 167-169, 183
102-103, 149, 157,222 types, generalized refinement, 106, 247

TUPLE-VALID, 27-28, 73, 79 types, grammar for ML, 242
type arguments, ignored, 241,270 types, grammar for refinement, 242
type arguments, mixed, 240, 270 types, ML, 279
type arguments, negative, 240, 270 types, principal, 3, 224, 241
type arguments, positive, 240, 270 types, quadruples of ML (t), 242
type arguments, 240-241, 270 types, quadruples of refinement (F), 242
type constructors, ML (mzlconstructor), types, soundness of refinement, 13, 80,

277-278 120,260, 304
type constructors, polymorphic refine- typing relation, ML (VM h- e :: t), 26

ment, 240 typing relation, refinement (VR I- e : r),
type constructors, 13, 223 58
type declarations, explicit refinement,

273, 280 U (universe), 181

type identifiers, ML (miconid), 277 Union-Find problem, 286
type identifiers, refinement (ref conid), UNIONFIND, 286

277 Unique Inferred ML Types, 27, 70, 116,
type identifiers, 277 145-146,232,243
type inference, Damas-Milner, 63 Unique ML Types, 31, 36-37, 65, 72, 74,
type inference, Milner-Mycroft, 64 160, 179, 233, 244

322 INDEX

Unique Predefined Refinements, 31-32, VECTOR-SUB, 245
38,216 VM 1- e :: t (ML typing relation), 26

Unique Principal Splits, 52 VM, 26
Unique Refinement, 76, 79, 235 VR - e: r, 81
UNrr-REF, 32 VR - e : r (refinement typing relation),
universe (U), 181 58
useful split, 57 VR (variable to refinement type mapping),
useless split, 57 58

vsubtypep, 263
valirefs, 263
Value Arrow Type, 74, 85-86, 235 weakened closure of D (D), 213
Value Constructor Type, 74, 86, 235 Weakened Intersection Simplification 1,
value constructors, 242 213-214, 221
Value Containment, 220 Weakened Intersection Simplification II,
value, membership in a recursive type 214, 218

(D i- v E nr), 170, 180 Weakened Intersection Soundness, 213
Value Substitution, 29, 51, 92-93, 101, weakening, 63

103-104 "16 WEAKEN-TYPE, 59-61, 64, 67, 70, 75, 79-
Value Tuple Ty, .87,90 81, 83-85, 87-89, 91, 94, 99-100,
values, gramnmai . 22, 231 116, 138-139, 146-150, 206, 209,
Var, 6-7 221,236,257,259,261-262,266,
variable capture, type, 229-230 268
variables, bound, 230 well-formed abstract declaration, 170,
variables, free type, 229 177-178
variables, ignored type, 13, 258, 279, 305
variables, mixed type, 13, 279, 305
variables, multiple refinements of type,

224
variables, negative type, 13, 258, 279,

286, 305
variables, positive type, 13, 258, 279, 305
variables, type, 7, 13, 223-224, 228-229,

239,258,279,286, 305
Variance, 258, 261, 266
Variant Weakening, 258, 261, 266-267
varies properly, 258
VAR-REF, 232,244
VAR-TYPE, 60, 63, 71, 77, 80, 83, 89, 95,

140,145,152,234-237
VAR-VALID, 27-28, 63, 71, 77, 232
VECTOR-EQUIV, 245
VECrOR-REF, 244
vectors (U), 228, 242
vectors, intersection for (A), 242

