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Chun-Nan Hsu and Craig A. Knoblock
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{chunnan, knoblock}lisi.edu

Abstract

A practical heterogeneous, distributed multidatabase system must answer queries
efficiently. Conventional query optimization techniques are not adequate here because
these techniques are dependent on the database structure, and rely on limited informa-
tion which is not sufficient in complicated multidatabase queries. This paper presents
an automated approach to reformulating query plans to improve the efficiency of mul-
tidatabase queries. This approach uses database abstractions, the knowledge about
the contents of databases, to reformulate a query plan into a less expensive but seman-
tically equivalent one. We present two algorithms. The first algorithm reformulates
subqueries to individual databases, the second algorithm extends the first one and
reformulates the entire query plan. Empirical results show that the reformulations
can provide significant savings with minimal overhead. The reformulation approach
provides a global reduction in the amount of the intermediate data as well as local
optimizations on the subqueries.
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1 Introduction

An important and difficult problem is how to efficiently retrieve information from distributed,
heterogeneous multidatabase systems (Sheth and Larson, 1990). Retrieving and integrating
distributed data often requires processing and storage of large amounts of intermediate data,
which can be very costly. This cost can be reduced in some cases by selecting the appropri-
ate sites for processing and employing query optimization techniques (Apers, Hevner, and
Yao, 1983; Jarke and Koch, 1984) to reduce the cost of individual queries. However, these
techniques are often inadequate since they rely on limited information about the syntactic
structure of the queries and databases. This information alone is not usually sufficient for
reducing the cost for complicated distributed, heterogeneous multidatabase queries.

This paper addresses this problem of multidatabase retrieval by bringing to bear a richer
set of knowledge about databases to optimize multidatabase queries. The idea is to use
semantic knowledge of the contents of databases to reformulate queries into equivalent yet
less expensive ones. Using the additional semantic knowledge, the potential cost reduction is
significantly greater than can be derived from optimization based on the syntactical structure
of queries alone. Since the knowledge required can be learned from any database, this
approach is very general.

Consider the following hypothetical example. Suppose that there are two databases in a
multidatabase system, one containing data about ports, and another about ships. A query
is given to retrieve the data of ports that have a depth that can accommodate tankers. This
query may be very expensive because the data about ports must be retrieved and compared
with the draft of all the tankers. Suppose that the system learned from the ship database
that if the ship type is tanker, then its draft is at least 10 meters. With this knowledge,
the original query can be reformulated so that the system only retrieves data about ports
whose depth is greater than 10 meters. This additional constraint may significantly reduce
the amount of data retrieved from the ship database and thus substantially reduce the cost
of executing the query.

In this paper, we present an efficient algorithm to perform this type of semantic re-
formulation. We implement the algorithm in the context of the SIMS project (Arens and
Knoblock, 1992; Arens, Chee, Hsu, and Knoblock, 1993). The SIMS project applies a variety
of Al techniques and systems to build an integrated intelligent interface between users and
distributed, heterogeneous multiple data/knowledge-bases systems. Given a multidatabase
query, the planner of SIMS generates a partially ordered query plan to retrieve the data.
The reformulation algorithm presented here is used to reformulate this initial query plan to
reduce the cost of retrieval.

The query reformulation approach was initially proposed by (King, 1981) and (Hammer
and Zdonik, 1980). Our approach differs from theirs and the following related work (Siegel,
1988; Chakravarthy, Grant and Minker, 1990) in that we do not rely on heuristics to guide
the search in a hill-climbing manner, which often results in local optima. Moreover, we
consider queries for data distributed over multiple sources, while they only consider single
database queries.
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The remainder of this paper is organized as follows. The next section describes the query
planning in SIMS. Section 3 reviews the semantic query optimization and our reformulation
algorithm for single database queries. Section 4 extends the idea to multidatabase queries.
Section 5 shows our experimental results. We compare our approach with related work in
Section 6. Section 7 reviews the contributions of the paper and describes directions for future
work.

2 Query Planning

Figure 1 shows an example SIMS semantic query. This query retrieves the name of the ports
in Germany that have both railroad capabilities at the port and refrigerator storage. SIMS
accepts queries in the form of a description of a class of objects about which information
is desired. This description is composed of statements in the Loom knowledge representa-
tion language (Macgregor, 1990). The user is not presumed to know how information is
distributed over the data- and knowledge bases to which SIMS has access - but he/she is
assumed to be familiar with the application domain, and to use standard terminology to
compose the Loom query. The interface enables the user to inspect the domain model as an
aid to composing queries. SIMS proceeds to decompose the user's query into a collection of
more elementary statements that refer to data stored in available information sources. SIMS
then uses Prodigy (Carbonell, Knoblock, and Minton, 1991) to create a plan for retrieving the
desired information, establishing the order and content of the various plan steps/subqueries.
Figure 2 shows an example partially ordered multidatabase query plan generated by SIMS's
query planner.

(retrieve (?name)
(:and (port ?port)

(port.rail ?port "Y")
(port.refrig ?port ?refrig)
(> ?refrig 0)

(port.geocode ?port ?geocode)

(port.name ?port ?name)

(geoloc ?geoloc)
(geoloc.geocode ?geoloc ?geocode)
(geoloc. country.name ?geoloc "Germany")))

Figure 1: Example SIMS Semantic Query

Each node in the plan corresponds to a subquery to an individual data- or knowledge base.
The edges indicate the data flow direction from one database to another. Data pertaining
to this query is spread over two remote databases - one containing information about ports
and the other about geographic locations. In the figure, the two db-retrieve subqueries are
queries to each of these databases. They will be translated into their corresponding database
query languages before being sent to the DBMSs. The loom-retrieve subquery contains
the interaction constraints involving values from the different remote databases. To execute
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this query plan, the two db-retrieve subqueries will first be executed, and the retrieved
data will be loaded into Loom and translated into objects of semantic classes. Loom then
evaluates the constraints specified in the loom-retrieve to retrieve the resired answer from
the sets of intermediate data.

(afge_•__port ?Port)
(afe_.rt.rail ?port "'r) (-?geocode ?eocode2)(afsc rt -refrigtorage ?port ?refrig)
(o al Ar)f I
(afsc_.port.geocode -'port ?Seocode)

query plan

(Seo__geoloc ?geoloc)

(geo...eoloc.country-narne ?Seoloc "'Germany")

(geo.geoloc.geocode ?geoloc ?geocode2.

Figure 2: Preliminary SIMS Plan for Example Query

Each subquery consists of conjunctions of constraints. In the upper subquery in Figure 2,
the first clause, (afsc.sea-port ?port), binds the variable ?port to the set of port instances
in the database afsc-sea-port. The second clause is a range constraint which restricts
the attribute af sc.port. rail of ?port to have value Y. This indicates that the port has
railroad capability. The clause (> ?refrig 0) is another example of range constraint that
constrains the ports to have non-zero refrigerator storage. Constraints that involves two or
more variables are interaction constraints, such as the one in the loom-retrieve subquery.

The most expensive part of the query plan is often moving intermediate data from remote
databases to the local Loom system. Consider the example in Figure 2, the cost of pairwise
comparison in the final subquery is proportional to the square of the amount of data items
retrieved from the remote databases. If we can reformulate these subqueries such that the
interaction constraints in the final subquery are also considered, the amount of intermediate
data will be reduced.

3 Subquery Reformulation

We start with the subquery reformulation algorithm and then extend it to reformulate the
entire query plan in the next section. The goal of the query reformulation is to use refor-
mulation to search for the least expensive query from the space of semantically equivalent
queries to the original one. Two queries are defined to be semantically equivalent (Chu
and Lee, 1990; Siegel, 1988) if they return identical answer given the same contents of the
database. The reformulation from one query to another is by logical inference using database
abstractions, the abstracted knowledge of the contents of relevant databases. The database
abstractions describe the databases in terms of the set of closed formulas of first-order logic.
These formulas describe the database in the sense that they are true with regard to all
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instances in the database. We define two classes of formulas: range information are propo-
sitions that assert the ranges of the values of database attributes; and rules are of the form
of implications with an arbitrary number of range propositions on the antecedent side and
one range proposition on the consequent side. Figure 3 shows a small set of the database
abstractions. In all formulas the variables are implicitly universally quantified.

The first two rules in Figure 3 state that for all instances, the value of its attribute country
name is "GERMANY" if and only if the value of its attribute country code is "FRG". With these
two rules, we can reformulate the subquery SUBQ1 in Figure 4 to the equivalent subquery
SUBQ2 by replacing the constraint on geo.geoloc. country-name with the constraint on
geo..geolo c. country-code. We can inversely reformulate SUBQ2 to SUBQ1 with the same
rules. Given a subquery Q, let C1,... , Ck be the set of range and interaction constraints in
Q, the following reformulation operators return a semantically equivalent query:

"* Range Refinement: A range-information proposition states that the values of
an attribute A are within some range Rd. If a range constraint of A in Q con-
strains the values of A in some range R1, then we can refine this range constraint
by replacing the constraining range Ri with Ri fl Rd.

"* Constraint Addition: Given a rule A - B, if Q implies A then we can add
constraint B to Q.

"* Constraint Deletion: Given a rule A - B, and Q implies A. If there exists
Ci in Q and B implies Ci, then we can delete Ci from Q.

"* Subquery Refutation: Given a rule A -- B, and Q implies A, if there exists
Ci in Q and B implies ,Ci, then we can assert that Q will return NIL.

Replacing constraints is treated as a combination of addition and deletion. Note that
these reformulation operators do not always lead to more efficient versions of the subquery.
Knowledge about the access cost of attributes is required to guide the search. For example,
suppose the only index is placed on the attribute geo-geoloc. country-name, then reformu-
late SUBQ2 to SUTBQ1 will redice the cost from 0(n) to 0(k), where n is the size of the
database and k is the amount of data retrieved. However, if either geo-geoloc. country-name
and geo-geoloc. country-code are not indexed, then we will prefer the lower cost short
string attribute geo.geoloc.country.coda. In this case, reformulating SUBQ1 to SUBQ2
becomes more reasonable. Figure 5 shows our subquery reformulation algorithm. We ex-
plain the algorithm below by showing how SUBQ-REFORMULATION reformulates the subquery
SUBQ1, the lower query in the query plan in Figure 2.

There are three input arguments in this algorithm. The first argument Subquery is
the subquery to be reformulated. Another argument DB-Knowledge contains the set of
range information and rules that describe the database queried by the input subquery. And
Cost-Model contains the knowledge to decide the execution cost of constraints. Initially, all
the range constraints are refined by applying the range refinement operator. The reason
why we want to refine the constraining ranges is to make the subquery more likely to match
many rules. This is because after range refinement, the constraining ranges are smaller and
more likely to imply the antecedent of a rule. Range refinement also reduces comparisons in
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Range Information:
1: (geogoeoloc count ryname E
("Taiwan" "Italy" "Denmark" "Germany" "Turkey"))

2: (af sc-port.geocode E ("BSRL" "HNTS" "FGTW" "VXTY" "WPKZ" "XJCS"))
3:(0 < afsc-port.refrig.storage < 1000)

Rules:
1 : (geo.geoloc. count ry.name - "GERMANY")

* (geo geoloc.country-code = "FRG")
2: (geo..geoloc. country.code a "FRG")

=* (geo -geoloc. country.name - "Germany")
3: (geo -geoloc.country -code - "FRG")

S(47 .15 < geo-geoloc.latitude < 54.74)
4: (afsc-port.rail - "Y" )

=. (afsc-port.geocode E ("BSRL" "HNTS" "FGTW"))
5:(6.42 < geo-geoloc.longitude < 15.00)

A (47.15 < geo.geoloc.latitude < 54.74)
== (geo geoloc. country-code = "FRG")

Figure 3: Example of Database Abstractions

SUBQ1:
(retrieve (?geoloc ?geocode2)

(:and (geo.geoloc?geoloc)
(geo.geoloc.geocode ?geoloc ?geocode2)
(geo-geoloc. country-name ?geoloc "Germany")))

SUBQ2:
(retrieve (?geoloc ?geocode2)

(:and (geo.geoloc?geoloc)
(geo.geoloc.geocode ?geoloc ?geocode2)
(geo..geoloc. country.code ?geoloc "FRG")))

SUBQ3:
(retrieve (?geoloc ?geocode2)

(-and (geo.geoloc?geoloc)
(geo.geoloc.geocode ?geoloc ?geocode2)
(geo.geoloc. country-code ?geoloc "FRG")
(geo-geoloc.latitude ?geoloc ?latitude)
(>= ?latitude 47.15)
(<a ?latitude 54.74)))

Figure 4: Equivalent Subqueries

evaluating constraints on string type attributes. The only range constraint in SUBQ1 is on
geo.geoloc, country.name, and its constrained value GERMANY is within the range of possible
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values (see the first formula of range information). Thus, this constraint is unchanged.

SUBQ-REFORMULATION (Subquery, DB-Knowledge, Cost-Model)
I.refine range constraints, if Subquery refuted, return Nil;
2.for all appli,.ble rules A -• B in DB-Knowledge:

if Subque-j refuted, return NIL;
else add B to Inferred-Set, add (B,A) to Dependency-List;

3.for all B in Inferred-Set in the order of their cost:
if B is not indexed and 3 (B,A) in Dependency-List

delete B from Subquery, delete (B,A) from Dependency-List;
replace all (C,B) in dependency list with (C,A);

4.return (reformulated Subquery, Inferred-Set)
END.

Figure 5: Subquery Reformulation Algorithm

The second step is to match all applicable rules from the set of database abstractions using
the reformulation operators defined above. If a Subquery Refutation rule is found then the
subquery is refuted and the algorithm halts immediately. When a Constraint Deletion rule
is found, then some constraints in the subquery are redundant and can be deleted from the
subquery without changing the semantics. We only put the constraint in the Inferred-Set
instead of actually deleting it from the subquery. This is because, its redundancy is due to the
logical reason, not the performance consideration. More knowledge and analysis is required
to decide whether it should be actually deleted. In the case that a Constraint Addition
rule is found, we add the constraint to the subquery and also put it in the Inf erred-Set.
The first rule in Figure 3 is matched and fired for SUBQ1 and we get an additional constraint
(geo-geoloc.country-code ?geoloc "FRG"), which is added to the Inferred-Set. Then
the second and third rules are matched because of the additional constraint on country
code. The constraints geo-geoloc. latitude and geo.geoloc. country-name are added to
the Inf erred-Set.

The third step is to select the constraints in Inf erred-Set to delete from the subquery.
The selection is based on the constraint's relative estimated execution cost which is com-
puted by the type of the constraints (range constraint, or interaction constraint), the type
of the attribute's values (integer, string, and their length), and whether they are indexed.
The information required for this estimation is available from the input cost-model pro-
vided by SIMS. The constraints in the Inferred-Set are sorted into the partial order of
their cost and then deleted in this order until the total cost of the remaining constraints
is less than the original subquery. To preserve the semantics of the subquery, we keep a
dependency list of the inferred constraints to avoid deleting all constraints in an implica-
tion cycle. In our example, the attribute geo.geoloc. country-name is deleted because its
long string type is the most expensive. The next most expensive constraint is the one on
attribute geo.geoloc.country-code. However, it should be preserved because the cause
of its deletability (i.e., the constraint on geo-geoloc. country-name) was just deleted. Fi-
nally, the constraint on geo.geoloc. latitude is kept because it is an indexed attribute
that will improve the efficiency of the subquery. The algorithm returns the reformulated
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subquery SUBQ3 as shown in Figure 4, as well as the Inferred-Set, which will be used for
reformulating the succeeding subqueries in the query plan.

Not all rules are matched directly from the database abstractions. For interaction con-
straints, we have axioms for set inclusion and mathematical relations. For example, if there
is an interaction constraint (> ?Y ?X) and we have rules or range information which assert
that (> ?X 17), then wecan add a new constraint (> ?Y 17) because (> ?X 17)A(> ?Y ?X)
=t (> ?Y 17). These axioms are implemented as inference procedures for efficiency.

The worst case complexity of SUBQ-REFORMULATION is O(RN * M + N3 )), where M is the
maximum length of the antecedent of the rules, N is the grea1,'st number of constraints in the
partially reformulated query, that is, the number of original constraints plus the number of
added constraints in Inferred-Set before final selection, and R is the size of DB-Knowledge.
The worst case cost to match a rule is O(MN). Suppose the system matches applicable rules
linearly in the set of the database abstractions, all rules must be matched and this takes
RMN. The complexity of Step 2 is thus O(RI2 MN), in the case that only one rule is fired in
every scan of the database abstractions, and every rule is eventually fired. The complexity
of Step 3 is O(N log N), the cost of sorting. Deleting constraints in the Inferred-Set in
their order of estimated cost takes O(N 2 ) to update dependency links and this will repeat
O(N). So its O(NS).

Because the added constraints are range constraints of an attribute, the number of con-
straints will not exceed the number of the attributes of the relevant database tables.1 There-
fore, N is small compared to R. In the average case, the rule match cost is about O(N),
since the lengths of rules are usually less than 3. The database abstractions are normally
scanned less than 3 times. Therefore, R dominates the complexity of the algorithm. With
small values of R, this algorithm will not introduce significant overhead to the cost of query
processing. To alleviate the impact of a large R on the system's performance, we can adopt
sophisticated indexing and hashing techniques in rule matching, or restrain the size of the
database abstractions by removing database abstractions with low utility.

QPLAN-REFORMULATION (Plan, DB-Knowledge, Cost-Model)
1.KB +- DB-Knowledge;
2.for all subqueries S in the order specified in Plan:

(S',Inferred-Set) +- SUBQ-REFORMULATION(S,KB,Cost-Model);
if S' refuted, return Nil;
else update KB with Inferred-Set; update Plan with S';

3.for all subqueries S whose semantics are changed:
SUBQ-REFORMULATION(S, DB-Knowledge, Cost-Model);

4.return reformulated Plan
END.

Figure 6: Query Plan Reformulation Algorithm

'If there are two constraints on the same attribute, we can always apply the range refinement operator
on them and merge them together.
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4 Query Plan Reformulation

* We can reformulate each subquery in the query plan with the subquery reformulation algo-
rithm and improve their efficiency. However, the most expensive aspect of the multidatabase
query is often processing intermediate data. In the example query plan in Figure 2, the con-
straint on the final subqueries involves the variables ?geocode and ?geocode2 that are bound
in the preceding subqueries. If we can reformulate these preceding subqueries so that they

* retrieve only the data instances possibly satisfying the constraint (- ?geocode ?geocode2)
in the final subquery, the intermediate data will be reduced. This requires the query plan
reformulation algorithm to be able to propagate the constraints along the data flow paths in
the query plan. The query plan reformulation algorithm defined in Figure 6 achieves this by
updating the database abstractions and rearranging constraints. We explain the algorithm

* below using the query plan in Figure 2.

The algorithm takes three input arguments. The argument Plan is the input query plan,
DB-Knowledge and Cost-Model are defined as in SUBQ-REFORMULATION. After the initial-
ization step, in the second step, the algorithm reformulates each subquery in the partial
order (i.e., the data flow order) specified in the plan. The two db-retrieve subqueries
are reformulated first. The database abstractions are updated with Inferred-Set which is
returned from SUBQ-REFORULATION to propagate the constraints to later subqueries. For
example, when reformulating the upper subquery, the fourth rule is fired for adding the
constraint on the variable ?geocode which is bound to the attribute afsc-port .geocode.

* Although this long string type constraint is then selected to be deleted, it reveals the range
of afsc-port .geocode in the output data of the upper subquery. This range information
together with other inferred constraints in Inferred-Set replaces the original range infor-
mation to update the initial database abstractions. In this example, the second formula
of the initial range information is replaced by (afsc-port.geocode E ("BSRL" "HNTS"

* "FGTW")), the consequent condition of the fourth rule. The algorithm uses this updated
range information to reformulate the final subquery and reduces the possible values from six
to three. In addition, the constraint (afsc-port. rail ?port "Y") in the upper subquery
is propagated along the data flow path to its succeeding subquery implicitly.

Now that the updated range information for ?geocode is available, the subquery reformu-
* lation algorithm can infer from the constraint (= ?geocode ?geocode2) a new constraint

(member ?geocode2 ("BSRL" "HNTS" "FGTW")) and add it to the final subquery. How-
ever, this constraint should be executed by the remote DBMS instead of by the local Loom
system, because it does not involve interaction with different databases. In this case, when
updating the query plan with the reformulated subquery, the algorithm locates where the

* constrained variable of each new constraint is bound, and inserts the new constraint in the
corresponding subqueries. In our example, the variable is bound by (geo.geoloc.geocode
?geoloc ?geocode2) in the lower subquery in Figure 2. The algorithm will insert the new
constraint on ?geocode2 in that subquery. In this way, the constraints (afsc-port. rail
?port "Y") and (- ?geocode ?geocode2) are propagated back along the data flow path

* to the lower subquery. This process of new constraint insertion is referred to as constraint
rearrangement.

9
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However, the semantics of the rearranged subqueries, such as the lower subquery in this
example, are changed because of the newly inserted constraints. (Note, that the semantics
of the overall query plan remain the same.) After all the subqueries in the plan have been
reformulated, Step 3 of the algorithm reformulates these subqueries again to improve their
efficiency. In our example, the reformulation algorithm is applied again to the lower subquery,
but no reformulation is found to be appropriate. The final reformulated query plan is shown
in Figure 7.

afsc-sea-ports ?port)
afsc._ports.rail ?p~ort "Y")
aftc..ort.refrig ?port ?retrig)

(< 0 ?reffig)
(afstcports.geocode ?port ?geocode)
(afscports.name ?port ?naxne)

query plan (geocode ?Seocode2)

(geo.geoloc ?geoloc)
(go_.geoloc.country-code ?geoloc "FRG")
(geo_.geoloc.geocode ?geoloc ?geocode2)
(geo.geoloc.latitude ?geoloc ?latitude)
(>- ?latitude 47.15) (<- ?latitude 54.74)
(member ?geocode2 (BSRL HNS FGTW))

Figure 7: Reformulated SIMS Plan for Example Query

This query plan is more efficient and returns the same answer as the original one. In our
example, the lower subquery is more efficient because of the new constraint on the indexed
attribute geo.geoloc. latitude (by SUBQ-REFORMULATION). The intermediate data items are
reduced because of the new constraint on the attribute geo.geoloc.geocode. The logical
rationale of this new constraint is derived from the constraints in the other two subqueries:
(afsc..port.rail ?port "Y") and (= ?geocode ?geocode2), and the fourth rule in the
database abstractions.

The worst case complexity of QPLAN-REFOR14ULATION is O(SR2 N*max(M, log N)), where
S is the number of subqueries in the query plan, and R2N * max(M, log N) is the cost of
SUBQ-REFORMULATION. In the average case, S is less than 5, so the dominating factor is
still the cost of the subquery reformulation R2N * max(M, log N), in which R is the most
important factor. Consequently, if R is relatively small, or we can match rules efficiently,
this algorithm is efficient enough to be neglected in the total cost of query processing.

5 Experimental Results

The reformulation algorithms are implemented in the context of the SIMS system, which,
for the purpose of our experiments, is connected with two distributed Oracle databases.
Table 1 shows the size of these databases. The queries used were selected from the set of
SQL queries constructed by other users of the databases. Table 2 lists the features of these
queries. The first three queries are single database queries. The remaining queries access
both databases, so they have two database subqueries and one subquery for evaluating
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interaction constraints and performing joins in Loom. The number of constraints includes
the number of range and interaction constraints. The number of answers may not equal
the number of retrieved instances, because the answers are results of projection on specified
attributes and all duplicates are removed. Query 3 and 6 are null queries.

Database I Contents Instances Size(MByte)]

Geo Geographical 56708 rows 10.48
locations in 16 tables

Assets Planes,ships 5728 rows 0.51
other assets in 14 tables

Table 1: Database Size

*f The performance statistics are shown in Table 3. All entries are based on an average
of 10 trial executions. The number of rules fired counts both range information and rules
used in reformulation. Note that a rule may be fired twice or more in Step 2 and 3 of
the QPLAN-REFORMULATION algorithm. The amount of intermediate data indicated for each
multidatabase query is the total number of the data instances retrieved from both databases

* and transferred to the SIMS system.

Query (short descriptions) Daabsee Number of Number of Numbe .of
I J Acceued Subquerie. ConaSraiunt Aasweo J

l:Airports: runway>8000, concrete surface Geo 1 2 2
* 2:Locations: location code in state gsa code "TW" Geo 1 2 147

3:Wharves: container cranes and rail track Geo 1 4 0
4:Wharves: container/breakbulk ships Geo,Assets 3 10 6
5:Ports: accommodate ship with code "1240" Geo,Assets 3 4 2
6:Ports: accommodate ship "1207", mob "10C" Geo,Assets 3 4 0

• 7:Ships: dock in channels of port in Long Beach Geo,Assets 3 3 28
8:Ports & Ships: berths storage > ship capacity Geo,Assets 3 1 9
9:Ports & Ships:ship length, fit berth type "TE" Geo,Assets 3 4 20
10:Ports & Ships:Tunisia ports,frozen cargo unload Geo,Assets 3 5 29

*• Table 2: Experiment Multidatabase Queries

The most noticeable cost reduction is achieved by reformulation when the system can
determine the answers of queries from its knowledge. In these queries, the system can
eliminate the corresponding database access. For example, the system refutes Query 3 and

* 6 and returns the answer NIL immediately. In Query 7, the system asserts the answer of a
database subquery. This subquery is eliminated, and the query reduces to a single database
query. Query 8, 9, and 10 are typical multidatabase queries, the system reformulates them
and eliminates a large amount of intermediate data. Query execution time is thus reduced by
about a factor of 2. Query 2 is an expensive single database query. The system reformulates

* it by introducing a constraint on an indexed attribute and saves a considerable amount of
time.

11
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query I1 12 3 _ 4 1 5 6 7 8 9 10
planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8
reformulation time 0.1 0.1 0.0 0.5 0.1 0.0 0.0 0.1 0.1 0.3
rules fired (times) 37 18 1 126 6 8 17 15 19 71

intermediate data w/o ReP - 145 41 1 810 956 808 810
intermediate data w/ Ref` - 145 35 0 28 233 320 607

query exec. time w/o Ref 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8
query exec. time w/ Ref 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2
total elapsed time w/o Ref 0.8 8.5 1.2 14.4 12.4 2.7 251.7 402.3 256.3 259.6
total elapsed time w/ Ref 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 196.3

aw/o Ref = Without reformulation.
bw/ Ref = With reformulation.

Table 3: Experimental Results

There are cases where the reformulation did not achieve significant cost reduction. The
first case is when the query is already very efficient. For example, in Query 1, the query
execution time without reformulation is very short, and reformulation appears to be unnec-
essary. Another case is when the system can not reduce the amount of intermediate data,
as in Query 4 and 5. This is due to a lack of sufficient database abstractions, or it may
just be impossible to reduce the cost for some particular queries and databases. However, as
indicated in the experimental results, the reformulation time is so short that even when no
significant cost reduction can be achieved, the overhead will not degrade the performance of
retrieval. To sum up, the reformulation approach is effective and can achieve a substantial
cost reduction.

In this experiment, the system uses a set of database abstractions consisting of 203
rules about range information and 64 implication rules for every query plan. These database
abstractions were prepared by compiling the databases. For range information, the compiling
procedure summarizes the range of each attribute of the database by extracting the minimum
and maximum values for numerical attributes, and enumerating the possible values for string
type attributes. If the number of possible values exceeds a threshold, this range information
is discarded. The implication rules were prepared by a semi-automatic learning algorithm
similar to the KID3 (Piatetsky-Shapiro, 1991). This algorithm takes the user input condition
A, and learns a set of rules of the form A --- B from the database. The algorithm retrieves
the data that satisfy the condition A, then compiles the data for the conclusions B.

6 Related Work

The semantic query optimization approach has been studied extensively in previous work
(Chakravarthy, Grant, and Minker, 1990; Siegel, 1988; King, 1981; Hammer and Zdonik,
1980). These systems demonstrate the benefit of using knowledge of database contents to
optimize queries. The most significant difference between our approach anc 'heirs is that
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they rely on heuristics, and search for the optimal equivalent query in a hill-climbing manner,
while our approach adopts a delayed-commitment strategy. Their systems search for the
optimal query in the space of equivalent queries of the given query. Whenever a rule is fired,
their systems will generate a new equivalent query, until an optimal one is found. This leads
to a combinatorial explosion of equivalent queries among which the system needs to select.
To overcome this problem, they use heuristics and hill-climbing to prune the search space,
but as a consequence, the reformulated query is usually only locally optimal. Sometimes,
this process causes infinite loops that require more heuristics to resolve (Siegel, 1988).

To illustrate the problem of previous work, consider the following situation. SupT
there are two rules in the set of database abstractions, A -- B, and B -+ C. Supp(,
are given a query Q which implies A, and the rule A -- B is the only applicable rule.
B --i C will be applicable if B is added to Q by firing A -+ B. Suppose further that Q and
C are contradictory, and B is a costly constraint. For hill-climbing systems, A - B will
never be fired since adding B will increase the cost. Thus, B -- C will not be applicable.
As a result, the system can not figure out that the answer of the query is null, unless it
can backtrack. But backtracking requires the system to maintain a large set of equivalent
queries. This overhead will make the system impractical.

* In contrast, our subquery reformulation algorithm does not generate queries each time a
rule is fired. Instead, we fire all applicable rules at once and collect the candidate constraints
in a list Inferred-Set and then select only those that will contribute to the cost reduction.
In the example above, our algorithm can consider both rules and refute the query without
maintaining a large set of equivalent queries. This approach is a delayed-commitment strat-

* egy because the system delays the reformulation until it has enough information to make a
decision. Although the algorithm fires all applicable rules, it is still polynomial. The em-
pirical results show that it is efficient. Moreover, it is flexible because no additional specific
heuristics are required. The list Inferred-Set turns out to be the information needed to
propagate constraints among subqueries. Subsequently, the subquery reformulation is easily

* extended to query plan reformulation.

Compared to conventional syntactical optimization techniques for distributed database
systems, our approach differs in both the knowledge brought to bear and the way queries are
optimized. (Apers, Hevner, and Yao, 1983; Jarke and Koch, 1984; Ullman, 1988) describe
approaches that use the semi-join operation to join two database relations in distributed

0 databases. The semi-join techniques propagate constraints by computing a semi-join before
performing the actual join. Our approach propagates constraints from knowledge of database
abstractions without accessing remote databases, and thus has less overhead then the semi-
join. The semi-join techniques may reduce intermediate data when the result of semi-join is
significantly smaller than the entire relevant relations. However, there are situations when
semi-join degrades the performance. The system needs to know the r( iction factors of each
semi-join to decide a semi-join schedule that will save execution cost. To compute reduction
factor requires knowledge of the size of relevant relations and their joining path. It is usually
difficult to estimate the size of an intermediate relation when the query is complicated. Some
semi-join approaches assume a unrealistically simplified model to reduce the overhead, but to
make semi-join approach effective, the system still need to bring to bear extensive statistical
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knowledge to estimate relation sizes (Jarke and Koch, 1984).

Another difference between our approach and the conventional distributed query opti-
mization techniques is that they assume a homogeneous environment. They can transfer data
from one site to another without any transformation. They can also distribute a relation
into fragments and store them in different sites. Data distribution strategy and execution
order scheduling are their major concerns. We assume a heterogeneous environment, so we
focus on flexible reformulation on the semantic aspects of queries. In the future, we also in-
tend to include size and system configuration information in our planning and reformulation
algorithm to optimize query plans on the execution order.

7 Conclusion

This paper presented a problem reformulation approach to reducing the cost of domain-
modeled multidatabase queries. The reformulation is based on logical inferences from database
abstractions. This simple, efficient algorithm reduces the cost of the query plan by reducing
intermediate data and refining each subquery. This is achieved without database implemen-
tation dependent heuristic control. Empirical results demonstrate that this algorithm can
provide significant reductions in the cost of executing query plans.

One of the limitations of our implementation is that the rule match algorithm is linear to
the size of the database abstractions. A very large set of database abstractions could make
the reformulation costly. To avoid this problem, we plan to adopt a more sophisticated rule
match algorithm, such as the RETE algorithm (Forgy, 1982), or its more efficient variations,
to reduce this impact.

One important issue not addressed in this paper is how to automatically acquire the
database abstractions for reformulation (Siegel, 1988). We are now developing a learning
algorithm that is driven by example queries (Hsu and Knoblock, 1993). We plan to use
inductive learning (Cai, Cercone, and Han 1991; Haussler, 1988; Michalski, 1983) to identify
the costly aspects of the example subqueries and propose candidate rules. The candidate
rules will then be refined and learned by the system. After the system has learned a set of
database abstractions, it needs to monitor their utility and validity to maintain the system's
performance. We will address this issue in the future work.
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