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Decomposition and Monte Carlo sampling-based algorithms hold much promise for solving stochastic
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ensure the quality of the solution. In this paper, we develop a stopping rule theory for a class of

algorithms that estimate bounds on the optimal objective function value by sampling. We provide

rules for selecting sample sizes and terminating the algorithm under which asymptotic validity of
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1 Introduction

Practical planning problems with deterministic forecasts of inherently uncertain parameters often

yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to

be modeled as random variables with known distribution, but the size of the resulting mathematical

programs can be formidable. Dantzig [5] and Beale [1] introduced stochastic programming with

recourse; some example applications from the literature include capacity expansion planning [7],

forest harvest planning [12], hydroelectric scheduling [20,27], and portfolio management [22,26).

Stochastic programming algorithms are typically one of three types: (i) exact solution procedures,

(ii) approximation and bounding schemes, and (iii) sampling-based methods. Exact methods include

simplex-based algorithms that exploit special structure of bases [17], decomposition or L-shaped

schemes [2,31], interior point methods [24], and the Progressive Hedging algorithm [29]. A classic

approximation scheme involves calculating deterministic lower and upper bounds via the inequalities

of Jensen and Edmundson-Madansky, respectively; see [3,4,11,21] for extensions and alternatives.

Stochastic quasigradient (SQG) methods [9,13] are sampling-based. Another set of sampling-based

algorithms are rooted in the L-shaped method [6,14,19,27]. In many models, as the number of random

parameters and the number of scenarios grow, exact solution procedures and approximation and

bounding schemes become more difficult to apply due to required computational effort. Sampling-

based algorithms may provide an attractive alternative for such models. Stopping criteria for SQG

methods are examined in [28]. In general, however, sampling-based approaches lack stopping rules

that can control a priori the quality of the proposed solution. In this paper, we develop rules

designed to rectify this shortcoming for a particular class of sampling-based algorithms.

A host of questions arise when one replaces deterministic upper and lower objective function

bounds generated by a decomposition algorithm with estimates formed from sample means. How

should an "optimal" solution be characterized and how should the sampling procedure proceed so

as to ensure an appropriately defined notion of convergence? The primary purpose of this paper

is to provide a framework in which these issues may be addressed. The stopping rules we develop

are comprised of two components: (i) a criterion for terminating the algorithm and (ii) a rule for

selecting the sample sizes. The main results, detailed in §2, provide stopping rules that guarantee
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asymptotic validity of the desired confidence interval statements as the interval width shrinks and the

sample sizes grow. Application of these methods to an algorithm for a class of multistage stochastic

linear programs [27] is described in §3. Empirical coverage results for a simple example are given in

§4, and the paper is summarized in §5.

2 Stopping Rules

This section begins by outlining our framework of assumptions on the underlying sampling-based

algorithm. Consider the following general optimization problem:

z* = minimize z(z)
subject to z E X.

Suppose we have at hand an algorithm that at each iteration k selects a sample size nk, produces a

feasible decision zk, and generates estimates for upper and lower bounds on the optimal objective

function value denoted Uk(nk) and Lk(nk), respectively. It is assumed that at each iteration k the

difference random variable, Dk(nk) = Uk(nk) - Lk(nk), satisfies the central limit theorem (CLT):

v/'W(Dk(nk)-p1) N(O,o-k) as nk-.00, where ok >0 (2)

and where => denotes convergence in distribution; N(p, a2) denotes a normal random variable with

mean p and variance o 2. The sample size parameter will typically be suppressed when referring to

the upper, lower, and difference random variables. The true upper and lower bounds at iteration

k are denoted Uk and ik and satisfy Uk *:= uk and Lk =*' lk as nk -ý oo, where i1 _< z 5< uk,

and (necessarily) Pk = Uk - lk. If Uk and Lk are independent and satisfy respective CLT's then

hypothesis (2) follows as a consequence.

The algorithm is terminated on the first iteration, T, in which the difference random variable

drops below zero; i.e.,

T = inf {k : Dk < 0). (3)
k>1

The feasible decision XT generated at the random stopping iteration satisfies UT Ž_ Z(zT). In

addition, we assume that, at the stopping iteration, the algorithm permits re-evaluation of the

difference random variable through independent resampling. The algorithm is said to stop correctly
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if z(ZT") < z* + c where e is a positive confidence interval width. Stopping correctly is ensured if

PT < e; we use this observation and the CLT hypothesis (2) to prescribe sample sizes, nk, under

which a statement can be made regarding the probability that the algorithm stops correctly. At the

heart of the procedures we develop is the idea that the sample sizes must increase as the algorithm

proceeds.

In order to illustrate the underlying ideas in a simple setting, we assume in §2.1 that the difference

random variables at each iteration are normally distributed. Under this assumption, we show it

suffices to increase the sample size at a rate proportional to log k to guarantee that the probability

of stopping correctly satisfies a prescribed confidence level. In §2.2, the normality assumption is

replaced with the CLT hypothesis (2) and an O(log2 k) sample-size formula is provided under which

the results of §2.1 can be recovered in the form of an asymptotic validity result. Moreover, we indicate

that with respect to required computational effort, the O(log2 k) sample-size formula is preferable

to the O(log k) formula. In §2.3 we verify the asymptotic validity result under a weaker history-

dependent CLT hypothesis in which the difference random variable may depend on the (potentially)

random history of the algorithm in previous iterations. In §2.4 we address issues associated with

finite stopping times and incorporation of sample variance estimators.

2.1 Stopping Rules: Normal Differences

In this subsection we replace the CLT hypothesis (2) with the following more restrictive assumption:

At the ktV iteration of the algorithm, we choose a sample size nk and then observe the random

variable:

Dk•- N (pk,o /nk), where ok > 0. (4)

Example 1 This example indicates that a fixed sample size, nk = n, can lead to unattractive

results. Suppose uk = P = p > for k = 1,...,K; pk = 0 for k > K + 1; and ok = o > 0 for all k.

The algorithm will not stop correctly if and only if it terminates prior to iteration K + 1. By

choosing K sufficiently large we can make the probability we stop correctly, P{D1 > 0,..., DK >

0) = [P{DI > 0 }]K, arbitrarily close to 0. U
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Theorem 2 provides a sample-size formula that overcomes the difficulty illustrated in Example 1;

in particular, it ensures that the probability the algorithm stops correctly satisfies a minimum

prescribed confidence level of 1 - a; e.g., 0.95. We require the following lemma regarding bounds on

the tail of a normal distribution (see Feller "Ohapter VII §1 [10]).

Lemma 1 Ifz > 0 then

P {N(O, 1) z) < 2 /2.

Theorem 2 Assume (3), (4), and define

_Lk> ()3+2plnk), (5)

where c > 0,/i = max {2In [((p)/(V2o)], 1), 0 < a < 1, and ((p) = = k-P, p > 1. Then

P {PT : E}- 1C -.

Proof

DT _ 0 implies

P{ATT >C} • P{PT Ž DT +,E)

EP{D > 0,...,Dk.l > O, Dk :_ O, Dk _ Pk- C)
k=1

00

<Z FP{Dk < Pk Pk.

k=1

Now ' 1 [a//(p)] k-P = a; thus, it suffices to show

To this end consider

SP{DkI< pk-} P I

= P{N(0,1)> cv/nWj/lk)

< P{N(0,1) + (/+2p Ink)1/2 )

Since 03 > 1, the tail bound from Lemma 1 yields:

P{Dk <:Pk -4<2...-- exp - (3+2p ln k)
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Hence it suffices to show

, X-ep - (0+2plnk) _<5--k-P,

and this inequality follows from the definition of /. U

Remark I The coverage result of Theorem 2 states that [0,E] is a (1 - a) *100% confidence interval

for PT. In terms of the optimization problem (1) this implies:

P z(XT) !_ z" +} _)> 1 -- a.

Remark 2 Tables of values of the Riemann-Zeta function, C(p), may be found in Dwight [8]; C(p)

is also an intrinsic function in some mathematical software packages such as Mathematica [32]. We

return to the topic of choosing values for the parameter p to minimize the total number of samples

required in §2.2.

Remark 3 The term "ktPh iteration" should be interpreted liberally; a better phrase is "kkth stopping

cycle" with one possible definition as follows: A stopping cycle consists of a number of algorithm

iterations in which a fixed sample size is used plus one resampling iteration in which the sample-

size formula (5) is applied. The fixed sample-size phase of a stopping cycle is terminated when

a heuristic pre-test is passed; e.g., a negative difference is observed. The sample-size formula

and stopping criterion described above are then applied to a realization of the difference random

variable generated from an independent sample. This idea, illustrated in the application of §3, helps

to minimize computational burden.

Remark 4 The purpose of our analysis is to control the quality of the proposed solution XT. Any

number of heuristic stopping rules can generate a feasible solution, ZT'. By resampling the asso-

ciated difference random variable, one can form a (1 - 6) . 100% confidence interval of the form

[ z*, z* + D+, + w6 crT, /'n-] for Z(ZT') where n denotes the resampling sample size, w6 satisfies

P{N(0, 1) _< w6} = 1-6, and D+, - max{DT,,O}. (We use D+, because it is known that PT' > 0.)

The disadvantage of results based on heuristic stopping rules is that we have inadequate control

of the interval width, D+, + w6aT,l/Vi. The primary purpose of Theorem 2 (and the subsequent

generalizations we present in this paper) is to provide a priori control on the confidence interval

width.
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Remark 5 We regard the specific values of z" and z(ZT) of secondary interest relative to controlling

the quality of the proposed solution, ZT. However, if UT and LT are each normally distributed (or

more generally satisfy respective CLT's) then one can also develop confidence intervals for these

quantities through the resarnpling procedure.

Remark 6 The coverage result of Theorem 2 does not depend on any convergence structure of

the optimization algorithm. The sample-size formula is designed so that if the algorithm does not

converge then the stopping criterion will not be satisfied with probability, at least, 1 - a. This

property contributes to the conservative nature of the coverage result since many algorithms have

some underlying convergence structure. We provide conditions under which finite termination can

be ensured (with probability one) in §2.4.

2.2 Stopping Rules: CLT Differences

In §2.1, under the assumption of normally distributed difference random variables, we derived a valid

confidence interval for all positive interval widths, c. In this subsection, we replace the normality

assumption with an asymptotic normality hypothesis (2) and provide conditions under which the

confidence interval of §2.1 is valid in the limit as the interval width shrinks and the sample sizes

grow. In particular, we show

lim P {Z(XT(f)) < z* +} >1-a (6)

where the stopping time, T = T(c) is once again the first iteration in which the observed difference

drops below zero.

Example 1 was appropriate under the assumptions of §2.1 only because the confidence interval

statement was made for all positive interval widths; for sufficiently small c, adequate coverage results

are achieved. In Example 2 we again use an identical sample size for all iterations and construct

a problem in which the probability of stopping correctly is zero in the limit as the interval width

shrinks to zero.

Example 2 Let Dk - N(k- 1 , nk 1) be independent and define m = [c-11 -1. (The ceiling operator,

., yields the smallest integer greater than or equal to its argument.) If the algorithm terminates
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prior to iteration m + 1 it has stopped incorrectly. Thus,

P{PT(,) <5} <PfD > 0,...,Dm >0)

=- P P{N(O, 1) < k--',l .
k=1

Let e = Cnj 1
/

2 > 0 so that the sample size has the same value for all iterations and observe:

P{pT(,) <5} < 1-HP{N(0,1) < k-'(mr+ l)C}
k=1

m•

< j P{N(0,1)<(m+1)C/rrn/2])
k= rm/21

<[P {N(0, 1) < 3Q}]m/2.

Hence P{PT(,) ! 5} ". 0 as f O.10

Example 2 demonstrates that a fixed sample size, no matter how large, may lead to "confidence"

intervals with unsatisfactory coverage properties. The key idea, once again, is that we must increase

the sample size as the algorithm proceeds; Theorem 3 provides stopping rules under which the

desired confidence intervals are asymptotically valid.

Theorem 3 Assume (2), (3), and

:sup E exp [Y(D]- k is bounded for I'1 _< -y.. (7)

Let j' = ma,, {2l [0(p)/(v',,a)], 1), where 0(p) = _ k-P"1 ", p> (2"y02)- 1 and 0 < <1.

If

% > ( 2 + 2pln2 k) (8)

then lim P {PT(,) < 1) > 1-

Proof

Let Zk = uo1v/'-k(Dk - Pk). We begin as in the proof of Theorem 2 and see that it suffices to show
00

limZ P {Zk < -(,Y' + 2pIn2k)1/2} <a. (9)
CIO k=1
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Next we show the order of the limit and sum on the left hand side of (9) may be exchanged with

equality by employing the dominated convergence theorem. Applying Markov's inequality (see, e.g.,

Loive §9 (23]) to e-'Yzh, 7 > 0 we have

PI{Z, <5-(13' + 2p In2 L-)1/'2 1 5exp + 2p In2 k)'12]1 E e--z-. (10)

With y -y o, the right hand side of (10) is bounded above by {supk>1 E e-o'Y } k-•o"7. As

0v/p > 1, the order of the limit and sum may be exchanged with equality and it remains to show

00

Z'ini P{Z, : -~(,6'+2pln 2k )1/2} < a.
k= to

By applying the CLT (2) we may complete the proof in a fashion analogous to that of Theorem 2. U

Under a weaker hypothesis on the difference random variables, we have recovered the coverage

result of Theorem 2 in an asymptotic sense. The asymptotic validity result of Theorem 3 may be

interpreted as follows: For sufficiently small choices of c, [z*, z" + c] is an approximate (1 - a). 100%

confidence interval for Z(XT).

We now address two issues with respect to the hypotheses of Theorem 3. First, we provide

conditions under which the bounded expectation assumption (7) holds and then we examine the

function O(p). Verification of (7) is straightforward when each difference random variable may be

expressed as a sample mean of independent and identically distributed random variables (i.i.d.r.v.'s):

in particular, it suffices to verify that the underlying random variables have moment generating

functions for 1IyI 5 -y.. Indeed, this observation is at the core of an elementary proof of the central

limit theorem for i.i.d.r.v.'s (see, e.g., Hogg and Craig [16]). Proposition 4 summarizes this result;

we use the following notation: For each k, Dk I, DO.... denote i~id.r.v.'s, Dk -L Dki,

ED&k = Ik, and E(Dkl - pk) 2 = 0, where 0 < a2 < c .

Proposition 4 If sup E exp, [7 < <00 then sup E erp [_y ( is bounded.
k>1 O >

We now turn our attention to 4(p) = •=1 k-Pn" By comparing terms of the O(p) series and

k= k- 2 for sufficiently large i we conclude Ob(p) < oo if p > 0. Proposition 5 provides bounds on

O(p) that facilitate numerical function evaluations and further characterizes both O(p) and C(p) so

that we may subsequently address the issue of choosing good values for the parameter p.
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Proposition 5

(i) Let VN = VF (InN - (2p)-1 ] and Kp = /TV exp [(4p)-1], p > O. Then
N

Kp P{N(O,1)ŽvjVN+I) < : (P)-:k-pn' < Kp P{N(O,1)_>vN)
k=1

and

Kp (P {N(O,1) >_ VN) - P{N(O, 1) > VN+fT}) 1< N-PnN.

(ii) ln C(p) and InO(p) are convex functions on (1,oo) and (0,oo), respectively.

Proof

Based on the inequalities

k+l

(k + I)-Pln(k+1) < j u-plnudu < k-PInk

we find
Ic N 00

l-plnudu < O(p) - Zk-PIn k < I u In udu.
N+1 =1 IN

A change of variables yields

j -uinudu = (2p)-1/2exp [(4p)-'] e-u/ du = K, P{N(O, 1) Ž vy},

where v = V72p [In y - (2p)-1]. This establishes the first part of (i), and the error bound follows

from

-p In j pIn InJ - lnudu -f_ u- ludu _< N-PnN

For result (ii) we require the infinite series version of H61der's inequality:

E--jakbhl < jxakr I'l

where r, s > I and 1/r + I/s = 1. For the Riemann-Zeta function we must show

InC(Apj+(1- A)p 2 ) 5 Aln((p)+(I)-A)lnC(p 2).

Using the definition of C(p) we see it suffices to show:

E (k-P)x (-P)- <E- k-

k~l k9



This inequality follows from Holder's inequality. The proof for In 0(p) is virtually identical. N

The O(log2 k) sample-size formula of Theorem 3 is driven, in large part, by the moment gener-

ating function hypothesis (7). By making the stronger assumption,

sup E exp DkM•-Ilk - 2 is bounded for 17yI1-y.o,
k>1 _

the O(logk) sample-size formula of Theorem 2 can be recovered; the difficulty, however, lies in

developing analogs of Proposition 4. The moment generating function hypothesis is attractive be-

cause it is easily verified and because with respect to required computational effort, the O(log2 k)

sample-size formula is preferable to the O(log k) formula for practical problems. For the purpose

of verifying this statement we will assume Uk/( is constant as would be the case if c is selected

proportional to 9k (see subsequent Remark 7). Minimizing the total number of samples or "work"

over T iterations then corresponds to minimizing

WC(p)= Tmax {2 In [((p)/(vr a)], 1} + 2p ( Ink)
\k=1

for sample-size formula (5) or

WO(p) = T. max {2 In [O(p)/(V ,a)], 1) + 2p In2 k)

for sample-size formula (8). From Proposition 5, part (ii) it is clear that WC(p) and WO(p) are

convex functions on (1, oo) and (0, oo), respectively. Table 1 displays the results of minimizing the

respective work functions for various choices of T with a = 0.05. While T, of course, is unknown a

priori, rough estimates for T (or ET) may be available for certain classes of problems.

formula (5) O(log k) formula (8) O(log2 k)
T p" (p') W(p) p OW)" W(p')
10 1.5 2.612 375 106 0.4 5.048 588 96
25 1.35 3.459 237 323 0.25 9.379 868 291
50 1.29 4.046 193 731 0.19 14.865 183 660

102 1.24 4.761 075 1 630 0.155 22.270 678 1 473

103 1.15 7.254 695 21 715 0.09 94.647 997 19 720
104 1.11 9.676 075 269 211 0.065 325.046 04 246 153
110 1.09 11.694 841 3 199 021 0.050 1 175.999 4 2 944 556

Table 1: Optimal Choices of p
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For each value of T, Table I contains the minimized (within 0.1%) work function values, the

corresponding minimizers, p*, and ((p') and 0(p*) for reference. Table I indicates that the O(log2 k)

sample-size formula outperforms the O(log k) formula for values of T dramatically larger than of

practical interest (see Remark 3). The reason is as follows: Sample-size formula (5) requires p > 1,

and this leads to a multiplier greater than 2 on the ET I In k term of the work function while the

corresponding term for W#(p) can have any positive coefficient. Theorem 2, of course, could be

restated with the O(log2 k) formula; the bounding serits C(p*) was initially selected because it lead

to a better rate of growth. When applying Theorem 3, one may not be able to use the recommended

values of p due to the p > (27o2)-' condition. In many practical problems, however, the underlying

random variables may be bounded, and under the i.i.d. hypotheses of Proposition 4 one can then

choose any p > 0.

Well-designed stopping cycles (Remark 3) help minimize required computational effort by reduc-

ing the number of times that the sample size is increased. However, we wish to emphasize that even

under poorly designed stopping cycle schemes the increase in computational effort as the algorithm

proceeds is relatively modest. As an example, consider c = 20rk/V,3-0 and a = 0.05. The sample sizes

required by the O(log2 k) sample-size formula with p = 0.155 at the Is', 10 'h, 1 0 0 th, and 1 0 0 0 th

stopping cycles are 78, 91, 128, and 189.

2.3 Stopping Rules: History-Dependent CLT Differences

We can generalize the results of Theorem 3 with respect to the assumptions on the interaction of

the algorithm with the upper and lower bound estimates. In the development above, we assume

{pk,crk'}j-= is simply a sequence of constants, but in many applications these parameters may

depend on the random history of the algorithm through iteration k - 1 which we denote 7Nk- . For

example, in an L-shaped algorithm for two stage stochastic programs in which cuts are obtained by

sampling (see Dantzig and Glynn [6]), the sequence of master program decisions depends on which

scenarios were (randomly) selected to compute cuts in previous iterations. In this example, it is

clear Pk, at, and Dk are random variables that are sample-path dependent. A realization of 7k

may be thought of as the information necessary to reconstruct exactly the steps of the algorithm

through iteration k. In this more general setting, we will assume that conditioned on the history

11



random variable, the mean and variance are constants and the difference random variables satisfy

PI Dk -p- < (11)
o', /-k 72=, 0

Theorem 6 Assume (3), (7), (1), and define nk and the corresponding parameters as in Theo-

rem 3. Then lir P {PT(,) < ( > 1 -.
t10

Proof

Let Zk = ark';V
1 '(Dk - pk). We begin as in Theorem 2 and see it suffices to show

CO

lim_ P {Zr, <-(,6' + 2pln2 k)1/2} < cf.

From the proof of Theorem 3 we know hypothesis (7) permits exchanging the order of limit and

summation with equality. Now observe

E limJP { Z1 <-(/3 + 2pin k)1 / 2  7trk-1 } dPp..,
k=1 11 ,: (,' pnk -

oZflm P {Z, < -(,' + 2pin 2 k) 1
/

2 Ik-j dP~t,_,
Cok=1

- JfP {N(O, 1) < -(13' + 2 k) 1/ 2 dlk,

EP {N(O, 1) _< -(#'+ 2pln 2 k)1/21.
k=1

The remainder of the proof is analogous to that of Theorem 2. 1

Remark 7 The asymptotic validity results of Theorems 3 and 6 both still hold when we select C

proportional to ork; i.e., a relative precision confidence interval. In particular, with C = 1 Ork the only

technical modification required is replacing lim,1 0 with limilo.

Remark 8 A sufficient condition for verifying (7) in the history-dependent setting is

E exp 7 (k -Pk 74-i] < M for -'t., (12)

where M and y'. do not depend on the iteration k, the history, 7Wk, or the confidence interval width,

t (which determines nk). This test may often be more natural to apply than attempting to verify

(7) directly.
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2.4 Stopping Rules: Additional Considerations

In this subsection we address two additional issues. First, we describe how sample variance estimates

may be incorporated in confidence interval construction, and second, we examine the issue of finite

stopping times.

2.4.1 Sample Variance Estimators

If the confidence interval width, c, is a sufficiently small, pre-selected, fixed value then we interpret

Theorems 3 and 6 as providing an approximate absolute precision confidence interval. However, the

population variance terms, 01, are typically unknown; hence nk is unknown and the procedure is

not implementable. Alternatively, if c is proportional to ak, we obtain a relative precision confidence

interval (see Remark 7) with unknown width coT. There are standard approaches to this difficulty

based on well-known results from parameter estimation in statistics. For simplicity, we describe one

possible approach in the setting of Theorem 3 for the relative precision case. We replace the CLT

hypothesis (2) with the following assumption:

= - _N(O, 1) as nk - oo, (13)

Sk/7nWk

where sk is a sample variance estimator. We may then form a "sample-variance" analog of Theorem 3

by replacing o2 with s' in (7) and (8). However, this result is of limited value because the sample

variance equivalent of the moment generating function hypothesis (7) may be difficult to verify; if

Dk is a sample mean of i.i.d. normal random variables then s' 1 V/n-i"(Dk - pL) is a Student's T

random variable and does not have a moment generating function. (The situation for an absolute

precision confidence interval is at best unimproved.)

A simple solution to this difficulty is as follows: At iteration T we can resample the difference

random variable at the proposed solution XT (see Remark 4). We denote this random variable DiT

and assume it satisfies the CLT (2) with mean pT and variance 4. Coupled with a weakly consistent

sample variance estimator, 4, this ensures the sample variance version of the CLT hypothesis (13)

holds for DT. From this we infer

z'+ + D TI (14)
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is an approximate 100(I-6)% confidence interval for z(zr) where n denotes the (resampling) sample

size and w6 satisfies P{N(O, 1) < w6} = 1 - 6, As Theorems 3 and 6 ensure PT is not too large,

we have a priori control on the confidence interval width. Restated: For sufficiently small c and for

sufficiently large n = n(q) we have

i ++- - > CT + 1 forany Y7>0. (15)

2.4.2 Finite Stopping Times

It would be undesirable if the stopping rules we have developed precluded finite termination for

"well-behaved" algorithms. To this end, we introduce the notion of a stopping tolerance c' satisfying

0 < e' < c and make the following assumptions. The stopping time is redefined as

T = inf {k : Dk < '}. (16)k_>1

Under this termination criterion P{T > m} = P{D1 > c', D2 > c ...... , Dm > }'), and we assume

P{D1 > c',D 2 > f',...,Dm > r'- = _JP{Dk > C'IIkl dP1 _-,,_, (17)

which is a natural generalization of inter-iteration independence of the difference random variables

to the history-dependent setting. With regard to the convergence structure of the algorithm we

assume there exists a subsequence of {pk, }O that converges to zero with probability one; i.e.,

P {w : 71.0 (w) implies 3 {pk,(w)},91 1 such that Pk%(W) `-- 0} =1. (18)

In this framework the following modification of Theorem 6 incorporates a finite stopping result.

Theorem 7 Assume (7), (11), (16), c' > 0 and define

nnk--o ) (ft' + 2pln2 k) (19)

and the corresponding parameters as in Theorem S.

Then

lira P {PT(,) <4 C1 1 - a. (asymptotic validity)

If, in addition, (12), (17), (18) hold and 0 < e' < c then

P{T(c) < oo} = 1. (finite stopping time)

14



Proof

By hypothesis (17)

P{T <001Ž 1- JIIP{Dk> e'I74-iJdP~i,_,.
k=1

We know from the bounded convergence theorem it suffices to show

M

lim flP{Dk > C'1 7_l} = 0 w.p.1.
k=1

For any e > 0, condition (12) and nk/O -- oo as k -- oo ensures there exists K such that k > K

implies E {IDk - Adi 74-1 } < c'/4. Applying (a conditional version of) Markov's inequality we

find

P {IDk -Ik 2l> c'/2 1 74-1) } E {IfDk - P11 74i-i }/(c'/2).

Define/Cm = {k : k < m, k > K, c</2}, and observe

]-I P{Dk>'I>-1•-i }_< JJ P{I~ k-pkl>_I/217.-l}<(l/2)IK:I.
k=1 kEX,

The finite stopping result follows as (18) implies IJCmI -- 00 as mn -- w.p.1.

The proof of the asymptotic validity result is virtually identical to that of Theorem 6. U

3 Application

A T-stage stochastic linear program with recourse (SLP-T) may be formulated as follows:

T

minimize eW

t=1 wIEfle

subject to -B__ I zi_ .t. + A~'x" = b", z4 > 0, Wt E Ot
SLP-T

for t = 1,...,T

where B - 0.

A sample point (scenario) in the stage t sample space, fli, is denoted wt. A stage t > 2 scenario,

wt, has a unique stage t - 1 ancestor denoted a(wt), and a stage t < T scenario has a set of stage

descendant scenarios denoted A(wt). A stage t realization, ý" = vec(cd, b,", B- 1 , A"), is

to be read column-wise as a vector in RN, where Nc = nt + mt +mt - n1_1 +mt - nt; A' t is an

mt x at matrix and the remaining matrices and vectors are dimensioned to conform. We assume
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ts has finite support and a probability mass function given by P {It = ý' } = Pe". For notational

convenience, we assume a first stage sample space, Q, that is a singleton set where C" represents

the known state at the time decisions are made in the first stage; clearly, pel' has value one. At

the time decisions are made in stage t, the observation .' and the previous stage's decision Z(.')

are known to the decision maker; the goal is to find a first stage decision, x1, that minimizes the

expected cost of operating the system over T stages.

Pereira and Pinto [27] have proposed a sampling and decomposition-based algorithm for SLP-T

models with interstage independence of the stochastic parameters and a "manageable" number of

descendants, IA(wt)l, for each node in the scenario tree. Note that if 7 is moderately large, appli-

cation of exact methods or bounding and approximation schemes (see §1) may be computationally

impractical. The basic idea behind the algorithm is to compute upper bound estimates by sampling

paths through the scenario tree on a forward pass, and to compute deterministic outer-linearization

cuts on a backward pass. Figures 1 and 2 are designed to illustrate this concept.

Figure 1: Forward pass (left to right) Figure 2: Backward pass (right to left)

A sample path, w = (Wl,W2,-.. ,WT), specifies exactly one node per stage in the scenario tree

and has the property that the nodes identify a path from the stage 1 node to a stage T leaf node.

Nonanticipativity constraints are satisfied on a forward pass along a sample path: The first stage

problem is solved with only previously generated cut information regarding the future. The first

stage decision is then passed to the right-hand-side of a randomly selected second stage subproblem,

sub(w2 ), and the process is then repeated from stage 2 to 3. A forward pass along a sample path

16



simulates operation of the system given the cuts collected in previous iterations. A new cut is then

appended to the set of cuts at each stage on a backward pass along each sample path. Under the

assumption that the stochastic parameters are interstage independent, the cuts computed for any

stage t subproblem are valid for all other subproblems on that stage. The algorithm for SLP-T is

summarized in Figure 3.

step0 letk=0;

append lower bounding cuts Ot Ž -Mg, t = 1,... - 1;

step 1 solve the stage 1 master program and obtain (4, Of);

let zk = cZc k+ok;

step 2 select a set of random sample paths Sk according to e,-';

do w E Sk

do t = 2 to T
form RHS of sub(wt): BY.' I[z*(wl)]Lk + bw9;
solve and obtain [zxt]&;

enddo

enddo

let -z = clx +TwsE 2 g[tk

step 3 if Tk - zk < 0 then stop: xk is the proposed solution;

step 4 dot=T-1 downto I

do w E Sk
do Wt+1 E A(wt)

form RHS of sub(wt+1 ): Bt++1 [xa(w•'+)]k + bl+l '

solve and obtain dual variables;
enddo
use dual variables to compute cut;

append the set of stage t cuts with Ot - Gz 1 >_ gt;

enddo

enddo

step 5 let k=k + 1; goto step 1;

Figure 3: Decomposition Algorithm for SLP-T
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The algorithm of Figure 3 generates valid lower bounds (i.e., they contain no error due to

sampling) and in the history-dependent sense, sample mean upper bounds on the optimal objective

function value; applying Theorem 6 in this setting is straightforward. The first stage decision at the

kth iteration, 4h, is a random variable; it depends on the set of first stage cuts, and these cuts, in

turn, depend on which sample paths were selected in previous iterations. However, given the history

of the algorithm through the first k - 1 iterations, 76-1, the decision xk is known, and the upper

bound estimate 1T is the sum of a deterministic constant, c 1 4,, and a sample mean of i.i.d.r.v.'s

with realizations of the form [z2Jk = i=2 c't[4t"k. Thus, the upper bound estimate satisfies a
history-dependent CLT with mean Uk = c 1 t + Ez and variance 2 = E (z" - Ez•) 2 . The lower

bound, zk = 1k, is deterministic when conditioned on *Hk-1. Thus the difference random variable

Dk = y - zk satisfies the history-dependent CLT hypothesis (11) of Theorem 6 where Ijk = Uk - 1k

and a. = au. The random vectors •t = vec(cl,bt, Bt_1,A,), t = 2,..., T are bounded and if we

assume, for example, that the subproblems at each stage have bounded primal feasible regions then

the random variable Z2 is bounded. Thus the conditional moment generating function hypothesis

(12) is satisfied (see Proposition 4), and hypothesis (7) then follows.

We now describe the recommended algorithm for SLP-T based on the stopping rule theory

of §2. The modified algorithm utilizes the idea of stopping cycles (see Remark 3) which help to

minimize computational burden. The existing steps of the algorithm in Figure 3 are modified

as follows. To step 0 we append "define c > 0; let v = 0, n, > 0, p > 0, 0 < a < 1, and

let fl = max {2In [O(p)/(v,/ a)] , 1}." See Section 2.2 for recommended values of p and the

corresponding values of 0(p). In step 2 we select the random sample Sk to be of size ni,. In step

3, if the heuristic pre-test is satisfied then a stopping cycle is complete and we go to step 6. The

additional steps are detailed in Figure 4. (Note that we have redefined c to be the i of Remark 7 so

that we are employing a relative precision confidence interval.)

The sample-size formula (8) of Theorem 6 is satisfied by the modified algorithm, and hence the

asymptotic validity result holds. Note P{PT _< COV) 2! 1 - a implies P{IT 5 Z(ZT) :_ IT + LOT} 2:

1 - a; moreover, in this setting, 1T is a known lower bound when the algorithm terminates (see

Remark 5). While UT is unknown, as a practical matter one may be satisfied that the solution
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step 6 let v = -P- 1; and n, - If-2 (8' + 2pIn2 v)I

step 7 independently select a set of new sample paths Sk according to p•T of size n,;

do w E Sk
do t = 2 to T

form RHS of sub(wt): B,' I[z'(t)lk + br";
solve and obtain [z•']k;

enddo

enddo
let 7 k = c4 + i,= 2 cS ;

step 8 if T - z k < 0 then stop: Xk is the proposed solution; otherwise goto step 4

Figure 4: Additional "Stopping Rule" Steps to the Algorithm for SLP-T

ZT is of sufficiently high quality based on sample variance estimates observed during the course of

the algorithm. Alternatively, the resampling procedure described in Section 2.4 may be applied to

obtain a confidence interval of the form (14); we can also replace z* by the known lower bound 1T

in (14).

4 Empirical Coverage Results

In this section we present preliminary empirical coverage results that illustrate dangers associated

with naive stopping rules and show empirical performance of the recommended stopping rules devel-

oped in §2. The simplistic "test problems" are motivated by Example 1, and we use a pseudo-random

number generator [30] to directly form the difference random variables.

In the first group of these problems, the true gap is pk = 2/3 for k - 1,..., K and pk = 0 for

k > K + 1, and the pre-specified confidence interval width is c = 1/3. We terminate on the first

iteration in which the difference random variable drops below zero; if the algorithm stops prior to

iteration K + 1 it will have stopped incorrectly. The difference random variables are sample means of

i.i.d.r.v.'s of the form U(- VN, V3) + 2/3, where U(a, b) is a uniform random variable on the interval

(a, b). The choice of (a, b) = (-v3-, V3) yields ak = 1. Table 2 depicts the empirical coverage

results for two separate stopping rules on four test problems with different values of K. The first
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stopping rule ignores the sequential nature of the problem and uses the fixed sample size that would

generate an asymptotically valid 95% one-sided confidence interval of width 1/3 for the true gap, if

the algorithm consisted of only one iteration We choose a = 0.05 which yields z, = 1.645 and thus

= [(zaOrk/C)21 = 25. In the second stupping rule, we increase the sample size at each iteration

according to sample-size formula (8). The parameter p is selected from Table 1 for each value of K.

Table 2 is based on 1000 replications and shows that ignoring the sequential nature of the problem

does not lead to undercoverage results in this setting until K grows large and formula (8) leads to

100% coverage in each case.

K n n=25 1 nk=O(log'k)
coverage

10 0.997 1.000
100 0.963 1.000
1000 0.692 1.000
10000 0.029 1.000

Table 2: Coverage Results: c = 1/3 and p = 2/3

Next we consider the case in which Pk = = 1/3 for k = 1,..., K. Thus the only modification

to the previous group of test problems is that the difference random variables are sample means of

i.i.d.r.v.'s of the form U(-V3/, ,/3) + 1/3. This is a more demanding test of the stopping rule theory

because the true gap and the confidence width are identical. The coverage results are summarized

in Table 3. The coverage results obtained via sample-size formula (8) significantly exceed the 95%

confidence level in each case. As one might expect, the naive stopping rule has very poor coverage

results in this setting.

K n = 251% = O(log k)
coverage

10 0.613 0.994
100 0.007 0.995
1000 0.000 0.993
10000 0.00 0.9W

Table 3: Coverage Results: c = 1/3 and p = 1/3
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5 Summary

In this paper we developed a stopping rule theory for a class of optimization algorithms that estimate

upper and lower bounds on the optimal objective function value via sampling. While our immediate

motivation lies in developing stopping rules for a class of Monte Carlo sampling-based stochastic

programming algorithms, the theory may also be applicable to other optimization algorithms that use

simulation techniques. In the main result, we assume that the difference random variables satisfy

history-dependent central limit theorems and provide appropriate conditions and a sample-size

formula under which the desired confidence interval for the objective function value of the proposed

solution is asymptotically valid. We regard the recommended procedure as conservative because:

(i) underlying convergence properties of the optimization algorithm are ignored in developing the

methodology; and (ii) the normal tail bound used to derive the sample-size formula is not sharp,

particularly in the early iterations. Moreover, through well-designed stopping cycles and because of

the slow growth of the sample size formula, the recommended stopping rules are practical from an

implementation standpoint.

The applicability of the stopping rule theory was illustrated on an algorithm for a class of mul-

tistage stoch,-stic linear programs (Pereira and Pinto [27]) that generate sample mean upper bound

estimates and deterministically valid lower bounds. In other sampling-based stochastic program-

ming algorithms for two stage programs (Dantzig and Glynn [6], Infanger [19], Higle and Sen [14]),

sample mean upper bounds are readily available, but lower bound estimates have proved more dif-

ficult to analyze. Development and analysis of lower bound estimators for these sampling-based

algorithms remains an active area of research [15,18,25]; the procedures we have developed here

should be useful for asymptotically normal estimators.
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