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Abstract

This investigation explored the relative performance of several small-sample

point and interval estimators for series system reliability. Among point estimators,

the maximum likelihood estimator (MLE) was compared to the corresponding Bayes

estimator. In addition, four interval estimators were compared: Easterling's mod-

ified maximum likelihood integer estimator, the Lindstrom-Madden estimator, and

Bayesian probability interval estimators constructed using approximate beta and

Bayes Monte Carlo empirical posterior densities.

The relative performance of the point estimators was assessed by comparing

their mean square errors. For the four interval estimators, the interval coverage

probability and the average interval lower bound were examined. The values of

these performance measures were generated for 32 representative series systems using

Monte Carlo simulation.

The results of the Monte Carlo study showed that the accuracy of the available

prior information determines whether a Bayesian or a classical approach should be

used to estimate series system reliability. If there is high confidence that the mean of

each component prior distribution is within 20 percent of the true component relia-

bility, Bayesian point and interval estimators constructed from an approximate beta

posterior should be used. Otherwise, the MLE point estimator and the Lindstrom-

Madden interval estimator should be chosen.
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POINT AND INTERVAL ESTIMATION OF

SERIES SYSTEM RELIABILITY USING

SMALL DATA SETS

I. Introduction

Background

The allocation of firepower to a list of key enemy targets is an important part

of strategic war planning. When assigning scarce strategic resources to a particular

target, operations planners need an accurate assessment of the likelihood that an

assigned weapon (the warhead and delivery system) will neutralize that target. This

likelihood is called damage expectancy, and can be evaluated using the equation

D= PxPk (1)

where P, is the probability that the warhead will detonate on target and Pk is the

probability that the detonation will inflict the desired damage level. The quantity

Pa is a function of several other probabilities. It is calculated using the equation

P, = A x P. x R x P. (2)

where A is weapon system availability, P8 is the probability that thc -eapon system

survives launch, R is the weapon system reliability (WSR) and Pp is the probability

that the weapon system penetrates enemy defenses [2].

While all aspects of damage expectancy are important, this research focuses

on estimating WSR. According to Cardaronella et al., WSR is the probability that a

• • i a a I I I I1



strategic weapon will detonate near the intended target, with no consideration of the

effect of enemy defenses [7]. This means that, for a strategic mission to be successful,

the delivery system must get within an acceptable radius of the target center and

the warhead must detonate at the proper yield.

Modeling WSR. Headquarters Air Combat Command (ACC) is responsible to

the Joint Staff for estimating WSR for weapon systems that include manned bomber

aircraft. ACC's WSR model is based on statistical reliability theory. Since damage

expectancy is a single-weapon probability, the model assumes the weapon delivery

system is composed of three critical elements: the bomber aircraft, the air-launched

missile, and a single warhead. The ACC model is comprehensively described in [7];

the remainder of this section is based on material from that source and from (13].

To construct the WSR model, the weapon system is decomposed into a series

structure with three independent components. These components correspond to

the three critical elements listed above. Each of these components can be viewed

as a "subsystem," although the calculation of hardware reliability is not the goal

of the model. Rather, each subsystem in the reliability model can be viewed as the

contribution to mission success of each of the critical elements of the weapon system.

The series modcl is used because if any of these elements fails to complete its portion

of the mission, the mission will not be a success. The summary WSR model is shown

in Figure 1.

Figure 1. Summary WSR Model.

To meet the Joint Staff's reporting requirements, the aircraft's contribution

to mission success is broken down one further level to a series of three components:

the avionics system, the weapon release system, and the aircraft vehicle. The mis-

sion contribution of a component is declared successful if that component functions

2



properly until the weapon is deployed. At that point, the contribution of the air-

craft to mission success ends, and whatever happens to it after missile launch is not

considered in the model.

In contrast to the aircraft's contribution, the weapon's contribution is broken

down into two mission phases: captive carry and free flight. (The warhead contri-

bution is considered separately.) The weapon must function properly during both

phases for the mission to be successful. The captive-carry phase starts when aircraft

power is applied to the aircraft avionics during the operations preflight inspection and

lasts until the aircraft launches the missile. The free-flight phase begins immediately

upon missile launch and lasts until the planned warhead detonation time. During

the free-flight phase, the weapon contribution is further decomposed into a series of

components, each of which must function for the entire phase to guarantee mission

success. These components are the engine, the fuel system, the navigation/guidance

system, the air vehicle, and the fuze mechanism.

When the contributions of all the delivery systems are decomposed to the lowest

level, the system devolves to a series structure with ten independent components.

This expanded WSR model is shown in Figure 2.

Data Source. Since it is obviously not feasible to collect failure data under

combat conditions, such data must come from other sources. ACC's Follow-On

Operational Test and Evaluation Phase II (FOT&E II) programs are a primary

source of system failure data. Since an FOT&E II program uses fully operational

versions of the system being tested, ACC conducts FOT&E II in an attempt to assess

the performance of its strategic systems in the most realistic environment possible.

Currently, this program provides the only failure data that can be used to estimate

WSR (although ACC is currently investigating using ground test data to supplement

data from FOT&E II missions).

3
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Figure 2. Expanded WSR Model.

Estimating WSR. ACC currently uses classical statistical theory to estimate

WSR. A point estimate is obtained using the maximum likelihood estimator (MLE),

while Easterling's Modified Maximum Likelihood Integer (MMLI) estimator is used

to calculate a 90 percent lower confidence limit [7] (these techniques are fully ex-

plained in Chapter II).

Statement of the Problem

Funding for ACC's FOT&E II program has been substantially reduced in recent

years. These reductions have severely limited ACC's ability to gather data for use

in estimating WSR. This means that, for some newly fielded weapon systems, the

failure database is likely to remain very small (that is, less than ten data points) for

some time.

In the cases where failure data is scarce, the WSR estimates made using ACC's

current approach may produce spurious results. It is well known that classical point

estimators decrease in accuracy as sample size decreases [16:2]. Furthermore, because
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the MMLI estimator has its roots in asymptotic theory, it is not intended to be used

with small data sets [121; it is often unusable in such a sampling situation because of

mechanical difficulties with its implementation (see Chapter II for further discussion).

The need for strategic readiness demands meaningful estimates of WSR. Since

the data sets available through the FOT&E II program are small, such estimates

cannot be made using the MLE/MMLI approach. Therefore, the problem consists

of finding one or more acceptable alternate estimation techniques that can be applied

to small samples.

Assumptions and Limitations

The following assumptions and limitations apply to this research effort:

1. The context of this inquiry is limited to weapon systems composed of a combi-

nation of bomber aircraft and air-launched missiles (although the results of this

study can easily be extended to delivery scenarios involving gravity weapons

or ballistic missiles, since they can also be modeled as series structures).

2. In this investigation, all the system components are assumed to have bino-

mial failure distributions. Although time dependence is an important part of

the WSR model, the effect of estimating WSR using a mixture of pass-fail

and time-dependent failure distributions is not explored. The only system re-

liability estimators that have been developed for the mixed-distribution case

require the time-dependent failure distributions to be exponential; this would

require gross assumptions about the mission process. Furthermore, these esti-

mators are either derived using asymptotic approximations or are impractical

to implement.

3. This effort focuses on one-sided intervals since they are the limits of interest

in most practical reliability estimation situations. However, it is possible to

derive either one- or two-sided interval estimates for system reliability.

5



4. Only series systems are considered in this research effort, since the WSR model

is a series structure.

General Approach

This investigation explores the performance of several classical and Bayesian

alternatives to ACC's current combination of estimators. (Appendix A contains

an overview of Bayesian statistics for the benefit of the reader unfamiliar with the

subject.) The performance of the MLE for system reliability is compared to that of

the corresponding Bayes estimator. Among interval estimators, the MMLI estimator

is compared to three alternatives: the Lindstrom-Madden estimator and Bayesian

probability interval estimators constructed using approximate beta and Bayes Monte

Carlo empirical posterior distributions.

The relative performance of the point estimators is assessed by comparing their

mean square errors. For the four interval estimators, the interval coverage probability

and the average interval lower bound are compared. The baseline values of these

performance measures are generated using Monte Carlo simulation.

For the Monte Carlo comparison study, 32 representative systems are con-

structed. The number of components, the underlying component failure probabil-

ities, the component test sample sizes, and the strength and accuracy of the prior

information are varied across the systems. Sample sizes are limited to ten or less.

Using sets of simulated failure data, the reliability of each system is estimated re-

peatedly, and performance measures generated for each estimator. The sensitivity

of the results of the study to variations in system characteristics is analyzed.

Based on the analysis of estimator performance, the best point and interval

estimators are recommended as replacements for the current WSR estimators. These

best estimators are selected based on their performance across systems.

6



Sequence of Presentation

Chapters II and III present a survey of system reliability estimation methods.

In Chapter II, classical point and interval estimators are considered, while Chapter

III describes Bayesian estimators. Each major system reliability estimation approach

is described, and its strengths and weaknesses are discussed with respect to small-

sample analysis.

Chapter IV outlines the methodology used in the Monte Carlo comparison

study. The simulation design is constructed and the methodology of the compari-

son is described in detail. Technical issues associated with the simulation are also

discussed.

Chapter V presents the findings of the Monte Carlo study. The simulation

results axe reported and analyzed, conclusions are drawn about method performance,

and the preferred estimation methods are identified. Recommendations for further

research are also included.
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II. Classical System Reliability Estimation

Overview

This chapter surveys the key results in classical system reliability estimation

theory. In keeping with the scope of the investigation, the treatment is limited to

the case of a series system of independent components, each with a binomial failure

distribution.

The survey begins with point estimation. The MLE of system reliability is

derived, and its asymptotic variance is developed. In addition, the advantages and

disadvantages of using the MLE with small samples are explored.

The discussion of point estimation is followed by three sections on interval

estimators. Buehler's exact lower confidence limit (LCL) is presented first, followed

by several analytical and bootstrap approximations to the exact limit. In each

section, the estimators are described, and their performance with respect to small

samples is considered.

Point Estimation

The MLE for System Reliability. In general, the reliability of a component is

the probability that it will function for a specified period of time. If the component

is repeatedly tested over a fixed operating time, its reliability can be modeled with

a binomial failure distribution. In mathematical terms, if the ith component in a

system has a binomial failure distribution, its reliability is defined as

R, = 1 - pi (3)

where pi is the probability that the component will fail. Since a series system will

not function unless all of its components function, it is easy to see that the reliability

8



of that system must be the product of the component reliabilities. That is,

k k

R = J1 R, = 1I(1- p,) (4)
i=1 i=i

where k is the number of components in the system. Since the pi are unknown

parameters, they must be estimated (which, in turn, requires that the R- and R be

estimated). MLEs are usually used to obtain the point estimates, because they have

convenient mathematical properties like asymptotic normality and invariance [9:53].

The invariance property of MLEs is useful for developing a point estimator for

R. This property states that an arbitrary transformation of an MLE space is the

MLE of that tranformation (Mood et al. formally state and prove the invariance

theorem [33:2851). Suppose that, for component i, ri failures are observed in ni

component tests. Since it can be shown that the MLE for pi is ii = ri/ni [32:420], the

invariance property can be applied to Equation (3) to get the MLE of the component

reliability:

S= 1 -f, (5)

A second application of the invariance property to Equations (4) and (5) yields the

MLE of system reliability:

R=lli (6)
i=l

The Reliability Estimator's Asymptotic Variance. The variance of R is impor-

tant to the development of certain interval estimation methods. The delta method,

which is based on the asymptotic normality property of MLEs, can be used to derive

an asymptotic approximation for this variance [9]. Let 0 = {O ,.. .dk} be the MLE

of 0 = {01,. . . ,Ok}. Also, define the arbitrary function • g(O). By the invariance

property, 4 g(O) is the MLE of ý. It can be shown that the variance of 4 can be

9



asymptotically approximated by

= ~ ~) ov[9,Oj(7)

[9:52]. Equation (7) can be applied to a reliability context by letting • =/1, 0 = {/}

and 0i = hi. This yields

k a ( E Cov[I OR\ nr

E (8)i=1 d~j {h j A.,)

Since the system's components are assumed to be independent., Equation (8) becomes

_ý = R, (9)

where cV- is the variance of I,.. This variance can be approximated in the limit byRi

Rioh•( - k.) (10)
Ri - fl

[12], so Equation (9) reduces to

k r& = A2  -' [ rhi ri) (11)
i=1

Small-Sample Reliability Point Estimation. The advantages of using MLEs

instead of other estimators are treated at length in many advanced statistics texts

(such as [16]). These advantages are such that MLEs are the preferred point esti-

mators in a variety of situations. Like any other classical estimator, however, the

accuracy of the estimates produced by an MLE decreases as the size of the data set

used in the estimate decreases [16:2]. Further, the approximate normality of MLEs

may not hold for small samples, so the asymptotic variance of the MLE is likely to

10



be a poor approximation of its true variance [9:64]. Therefore, the MLE of system

reliability should be used with care when data is scarce.

Interval Estimation: Buehler's Exact LCL

Because the point estimator of series system reliability is the product of the

estimators of the component reliabilities, it seems intuitive that a confidence interval

for R could be constructed by taking the product of the component interval bounds.

While this approach will indeed produce a confidence interval, it will not yield the

shortest possible interval estimate for R [6]. The construction of this shortest interval

is not a simple task.

In 1957, R. J. Buehler proposed a method for obtaining the exact limit of the

shortest one-sided confidence interval for the product of two binomial parameters [6].

Buehler's work was generalized and applied to system reliability by Lipow [21] and

Steck [42]. The general form of Buehler's method is examined in detail in several

sources; the discussion in Crowder et al. [9:189-191] is followed here.

Let r- = {ri, i = 1,.. . , k} be a vector of component failure observations from

some system test. Further, let f5 = {p3 , i = 1,... , k} be any possible combination of

observed failure levels for the system other than that defined by i". Also, define an

arbitrary ordering function w(-) such that lower values of w(.) are more desirable.

Given these definitions, Buehler's exact 100(1 - -y) percent LCL for the reliability of

a series system is the solution to the following nonlinear program:

minimize RL = fl ri
i=1

subject to

r ni ( r) 'r(• '

Si=1 ri

O< [ft1, i( :,)k (12)

11



where = {,f: w(p-) 5 w(F)}. Crowder et al. suggest that w(-) = [Ii p,/ni (the MLE

of the system failure probability) is an intuitive ordering function (9:1911. This form

of w(.) does not always produce intuitive results. For example, Reiser and Jaegar

find that the resulting interval estimate does not uniformly shorten as the component

sample sizes increase; nonetheless, the failure probability estimator is the ordering

function most commonly used in the solution of the Buehler minimization problem
(371.

Lipow and Riley provide tables of solutions to Equation (12) when the com-

ponent sample sizes are equal and k < 3 [221, [231. For k > 3 or large ni values,

solving Equation (12) may not be possible, or may require computational resources

beyond those available to most analysts [9:191]. Willits finds that, for series systems,

the nonlinear optimization program MINOS can easily be used to find the solution

to Equation (12), provided the number of components is less than three and the

test samples are not too large; however, a general solution algorithm cannot be im-

plemented for systems with four or more components because of the computational

complexity of the problem [481.

Interval Estimation: Approximation Methods

Because Buehler's exact LCL is difficult to obtain in most practical experimen-

tal situations, several anal, tical methods for approximating it have been proposed.

Some of the more significant of these approaches are summarized below.

This section does not contain an exhaustive catalog of analytical approxima-

tions. Many of the proposed strategies for approximating Buehler's limit have been

shown to be ineffective. Only those estimators that have been considered in a wide

variety of sources are included. The reader interested in a comprehensive treatment

of analytical interval estimation methods is referred to Section 10.3 of [27].
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The Lindstrom-Madden Estimator. D. L. Lindstrom and J. H. Madden pro-

pose a conceptually simple method for approximating the exact LCL of R. In the

Lindstrom-Madden method, the system test is construed as a single binomial exper-

iment where n* = mini{ni} tests produce r* = (1 - ?)n* failures. The 100(1 - -f)

percent LCL of R can then be calculated, as it is for a single binomial component,

by solving for RL in the following expression [241:

(n ( ) (1 - RL)i(RL)- = 
'-= 

(13)

It is clear that r* will not always be an integer; in that case, Equation (13)

cannot be used to evaluate RL. This problem can be avoided by using the identity

(1- i F(n±1) +

= I(p;n-r,r+1) (14)

where I(.) is the incomplete beta function [17:214-2151. The approximate 100(1 - 'Y)

percent LCL can be found by solving the following equation for RL [24]:

I(RL; n* - r*, r* + 1) = -y (15)

Equation (15) can only be used when r* # n*; fortunately, this condition holds in

nearly all practical circumstances, since r* = n* if and only if ? = 0.

The Lindstrom-Madden estimator has both weaknesses and strengths. Ac-

cording to Winterbottom, Lindstrom-Madden performance deteriorates as the min-

imum component sample size decreases [50]. Also, Martz and Duran find that the

Lindstrom-Madden confidence limits can be far too conservative in certain circum-

stances [29]. However, Sudakov finds that if r* is an integer, the Lindstrom-Madden

estimator produces Buehler's exact LCL. Sudakov also shows that if r* is not an

13



integer, Buehler's limit is bounded by RL (the solution to Equation (15)) and RL,

which is the solution to

I(RL;n* - tr*, [r" + 1) = y (16)

where [r* is the greatest integer less than r*. Thus, Buehler's exact LCL is always

bounded by two Lindstrom-Madden limits [431. (Soms claims that Sudakov's proof

is flawed, but that in most practical situations the Lindstrom-Maddeu solutions still

bound the exact limit [39].)

Interval Estimation Based on Asymptotic Normality. Since f? is a MLE, a

straightforward way to obtain a LCL on system reliability is to take advantage

of the fact that MLEs are asymptotically normal [16:43-44]. It is clear that if f

is normal with mean R and variance defined by Equation (11), then (h - R)/rA•

has an asymptotic standard normal distribution. This means that an approximate

100(1 - 7) percent LCL can be estimated by solving the following equation for RL:

Pr (- R) < RL= (17)
l ail I

In the literature, this approach is often referred to as the maximum likelihood (ML)

method (although occasionally it is called "linearization" [25J).

An obvious weakness of the ML method is its use of a symmetric distribution

with infinite support (the normal distribution) to approximate a random variable

with an unsymmetric, bounded distribution (RL). In other words, it is possible in

some situations to produce a LCL that lies outside the unit interval. The next five

estimators presented attempt to improve this situation.
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The MMLI Estimator. Easterling's MMLI estimator is a modification of the

ML approach described in the previous section. As with the Lindstrom-Madden

estimator, Easterling conceives of the system as undergoing a single binomial exper-

iment rather than a set of independent component-level experiments. The difference

between the MMLI and the Lindstrom-Madden estimators is that Easterling de-

rives r* and n* by equating the variance of I under the single experiment with the

asymptotic variance of the estimator of a binomial probability.

If R is construed as a parameter of a Binomial(n*, R) distribution, and R? is

the MLE of R, Equation (10) can be applied to get the variance of R:

2 R((1- R) (18)

Setting the variances in Equations (11) and (18) equal yields

2 k (19),i=1 (• r) n*

which, when solved for n*, produces the expression

S( R) (20)

It follows immediately that r* = (1 - R)n*.

The values of r* and n" are often not integers. Based on empirical evidence,

Easterling concludes that rounding both r* and n* up to the next integer improves

the approximation of Buehler's limit. Applying the identity in Equation (14), the

100(1 - -y) percent LCL can be found by solving

I(RL; (r-n* - [r*), ([r* + 1))= 7 (21)

15



for RL, where rrt and [n* are the smallest integers greater than r* and n*, respec-

tively [12]. It should be noted that when R = 1, n* = 0 and r* is indeterminate,

so the MMLI estimator cannot be used. With respect to small-sample analysis, this

is a major weakness, since R often equals one when ni values are small and the Ri

values are reasonably high.

Asymptotic Expansion. Winterbottom proposes another refinement to the ML

method based o Cornish-Fisher asymptotic expansions. This approach improves the

approximation of the LCL by using the expansions to correct for bias and skewness.

The result is an approximate LCL that, for certain large-sample situations, performs

very well. Winterbottom's approximate 100(1 - f) percent LCL is

RL = R. K (22)

where

(z + 1) 3 (1-.R
2 )(n*)2  3 (1-Aid(1-2)i(nj•2

VG_* 6n* a2

o"- =al/R2 , n* - min,{ni} and z1,_ is the 100(1 - y)th percentile of the standard

normal distribution. Winterbottom notes that the approximation requires ri > 0 Vi.

The derivation of Equation (22) is omitted here; for details, see [49) and [501.

The Likelihood Ratio (LR) Lower Bound. Madansky proposes an asymptotic

approximation method based on the LR test statistic. For a series system, A = R/lR

is the LR test statistic for system reliability. Wilks shows that, for general A, -2 In A

has a limiting X 2 distribution with one degree of freedom [47]. Using Wilks' result,

Madansky derives the following 100(1 - -1) percent LCL for R [251:

RL = inf {R: -21nA < X2(1)} (23)
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Madansky's result, while of historical importance, does not improve the gross approx-

imation of the ML method enough to be practically useful. In addition, Equation

(23) is very difficult to solve on a computer [491,[501.

The Approximately Optimal (A4) Nonrandomized LCL. Based on asymptotic

theory, Mann develops an approximate LCL that compensates for the case where

ri = 0 for some i. (For a series system, most other approximation methods ignore the

impact of this case.) Mann's derivation, which is beyond the scope of this discussion,

centers around the development of asymptotic approximations for first two moments

of the random variable - In R.

If fQ is the set of components with at least one observed failure in a sample

(i.e., Q = {i : 1 < i < k, ri 0}), then the approximations of the first two moments

of - In R are given by

0.5[1 + (l/v)] 1 - (
N 1 - 0.5(1-A) (24)

and and 0.511 + (VAI (25)

'2 = N

where

N =[inf Ini ] [1 - 0.5(1 - R) 2](- 0.5(1 - 1?](26)

and

V= [in{ Jn}] z1(27)iE - n. n2i

Mann applies Equations (24) and (25) to get the following expression for the AO

nonrandomized 100(1 - -y) percent LCL [261,27]:

RL = exp {f-Y. - + 1 (28)
9• 1t 31it,2

17



Poisson Approximation. When the component reliabilities are known to be

high, Buehler's exact LCL can be approximated by assuming each ri has a Poisson

distribution. If the sample sizes are equal and large, it can be shown that

RL = 1 (29)
2n*

where v = 2[(E¶j ri) + 11 and n* = mini{ni}; if the sample sizes differ, Equation

(29) produces a conservative LCL 150]. The Poisson assumption breaks down when

samples are small; for a detailed treatment of Poisson-related techniques, see Section

10.3 of [27].

Using Approximation Methods with Small Samples. All the interval estimators

presented in this section, except the Lindstrom-Madden estimator, are based on

asymptotic theory. Asymptotically-derived estimators are meant to be used with

sufficiently large data sets; when sample sizes are small, the approximation is often

inaccurate [9:64]. In some cases, as with the Poisson approximation, the inaccuracy

is severe; in other instances, as with ML and LR, the approximations are not the

best available even when they are used with a large sample [50].

Some approximate estimators suffer because they fail to account for the case

where no failures are observed for one or more components [26]. When ri = 0, ML,

MMLI and LR all ignore the contribution of component i to RL; when ri = 0 for

every component, these estimators cannot be used at all. Also, asymptotic expansion

is useless if ri = 0 for one or more components. Mann's AO LCL is an attempt to

rectify this situation, but its derivation is still based on asymptotic theory.

The only approximate estimator that can be legitimately used for small data

sets is the Lindstrom-Madden estimator. While this method has its drawbacks, it is

nonetheless a viable alternative to the MMLI method for small test samples.
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Interval Estimation: Bootstrap Methods

According to Crowder et al., the use of Monte Carlo simulation to approximate

system reliability confidence limits dates to the 1963 work of Rosenblatt. Efron

refined and extended the method, and is generally credited with originating the

term "bootstrap" [9:192]. In bootstrap interval estimation, Monte Carlo random

variates are generated and used to construct an empirical cumulative distribution

function (CDF). The appropriate quantile of this CDF is used to approximate the

exact confidence limit. The steps in the general procedure, as implemented by Levy

and Moore, are as follows:

1. Determine the underlying component failure distributions from the observed

data set using the methods of ML.

2. Generate a set of simulation component reliabilities using the component dis-

tributions identified in Step 1.

3. Calculate the simulated system reliability as a function of the component reli-

abilities.

4. Repeat Steps 2 and 3 N - 1 times, where N is some large number (say, 10000).

5. Rank order the simulated system reliabilities, with the lowest magnitude first.

6. Use the (N-/)th simulated system reliability as the approximate 100(1 - -Y)

percent LCL.

While Levy and Moore are concerned primarily with continuous component fail-

ure distributions, the above procedure is applicable to systems with binomially-

distributed components [20].

Asymptotic Normal Monte Carlo (ANMC). Rice and Moore proposed a vari-

ant of the bootstrap method for the all-binomial case. This refinement recognizes

that since the parameters of the underlying failure distributions are MLEs, their
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values can vary under repeated sampling. The asymptotic normality of these MLEs

is used to account for the estimation uncertainty. (The refined method also compen-

sates for cases when r; = 0.) The steps in ANMC are as follows:

1. From the observed test data, determine ri for i = 1,.... , k. If ri = 0 for some

i, calculate r, by solving

(r*)' + (2n, - 3)r* + (n, - 1) ln[x'l,_: = 0. (30)

2. Calculate
1 -(ri/ni) ifri>0 (31)

S1 -(r!/ni) if ri 0

and

i2 2 (1-,) (32)

3. Set N large (say, 10000). For j = 1,... , N, generate a set of k standard normal

deviates zij (i = 1,..., k).

4. Calculate 1.,j = zl + 14, V(i,j).

5. Calculate hj = Ili, 1,j, v(i,j).

6. Rank order the values of !Rj to get the order statistics R_.

7. Approximate the lower limit as RL = R(Ny).

Rice and Moore observe a slight upward bias in the confidence intervals ANMC

produces [38].

The Modified ANMC Method. Chao and Huwang propose a modification to

ANMC to correct its inherent bias. In modified ANMC, Bayes estimates are used

for the component reliabilities. (Although this makes the modified method pseudo-

Bayesian, it is considered here instead of in Chapter III because it is intended to be

20



used in a classical context.) The steps for the modified method are the same as those

for the original method, except that the following terms are defined differently:

r+1a (33)ni + a + •(3

and
•'j=1 pi +a(4

ni + a +/•(4

where Pi - Bi(ni, kR), and a and are fixed prior parameters. Based on empirical

evidence, Chao and Huwang find that the modified ANMC method produces the

best interval coverage if 0.1 < a < 0.2 and /3 = 0 [8].

Using the Bootstrap with Small Samples. Martz and Duran find that the per-

formance of the standard bootstrap varies widely, depending on the situation in

which it is used; in many cases, it produces quite optimistic intervals [29]. Also, the

standard bootstrap does not accomodate the case where one or more components has

no failures observed; if ri = 0 for some i, the component is treated as if it had per-

fect reliability. Rice and Moore rectified this situation with the ANMC method [38].

Unfortunately, the device they use to incorporate the variability of the reliability

estimates is based on the asymptotic normality of the estimators, and their method

produces slightly optimistic LCLs. Chao and Huwang avoid the use of asymptotic

theory when correcting the bias; for component sample sizes of ten, the method

appears to yield reasonable results [8]. However, no computational experience has

been reported for smaller samples or for unequal sample sizes.
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III. Bayesian System Reliability Estimation

Overview

This chapter summarizes Bayesian system reliability estimation theory. As

with Chapter II, the methods considered are limited to the case of a series system

of independent binomial components. After introductory remarks concerning the

selection of the component prior densities and the nature of reliability estimation,

methods for determining the posterior density of R are surveyed and evaluated. The

chapter concludes with a brief justification for investigating Bayesian alternatives to

classical reliability techniques.

Selecting the Prior Density of R

When a component has an underlying binomial failure density, one possible

prior probability density function (pdf) is the Beta(a,fl) density

F= (a + #) p_1 (_ - p)I-I (35)

( (a) (f)-

(other forms, such as the uniform density, are used as well). Since a beta prior is

a natural conjugate prior for a binomial proportion, it has desirable mathematical

properties (see Appendix A). Further, Weiler showed that assumption of a beta

prior when the true form is other than beta has negligible effect on the posterior

of R [46]. Because of these advantanges, the beta family is most often used in a

binomial sampling situation.

When the Beta(a,/3) density is used as the prior pdf of a component, its hy-

perparameters are usually chosen as a = s? + 1 and f = n? - s? + 1. The values of

s? and n?, which represent the number of successes and trials in a prior pseudo-test

of component i, attempt to adequately translate the subjective prior information

about the reliability of component i into numerical values [30:2361. The values of
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s? and n? can be determined somewhat objectively (using, for example, test data

from a similar system or component), or the estimation process may be completely

subjective.

If the subjective approach must be used, the prior hyperparameters should not

be assigned values directly. Mosleh and Apostolakis recommend that the source of

the prior assessment be the perceived quantiles of the prior distribution. This is

because the resulting prior variance tends to be too small otherwise [34]. Building

on research by Weiler [461, Waterman et al. (reproduced in [30:236-237]) propose

an assessment method for beta hyperparameters which uses the mean and one other

quantile. The procedure requires that the assessor assign perceived values of the

mean and the fifth or 95th percentile of the prior density. Using tables provided by

Waterman et al., these assignments can be translated into equivalent values of sq

and n?.

Using Waterman's procedure, Duran and Booker examine the effect on system

reliability estimation of faulty subjective assessments of beta prior hyperparameters.

They find, not surprisingly, that as the accuracy of the prior assessment worsens,

the posterior variance of R increases [11]. Since this adversely affects the quality

of the system reliability estimates, extreme care should be taken when subjectively

assessing the hyperparameters of the component prior densities.

Bayes Estimators and Probability Intervals

When the posterior pdf of R is determined, point and interval estimates for

R can easily be derived. As was shown in Appendix A, the Bayes estimator is the

mean of the posterior pdf if a squared-error loss function is assumed. Similarly, the

100(1 - -y) percent Bayesian lower probability limit is the (100-Y)th percentile of

the posterior CDF, which is found by solving Equation (49) (see Appendix A). Since

these calculations are usually straightforward when the form of the posterior density

is known, the primary task in Bayesian system reliability estimation is to derive the
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posterior for R. Three methods for generating this posterior can be applied to the

all-binomial case. These methods are described in the next section.

Methods for Deriving the Posterior Density of R

The Exact Posterior. Springer and Thompson propose an analytical method

for deriving the posterior distribution of series system reliability in the case where

all components have binomial failure distributions. Since the posterior derived using

this method is exact, the Bayesian point and interval estimates it yields are also

exact.

Mellin transform theory can be readily applied to the problem of obtaining the

posterior density for R (see Appendix B for a discussion of the Mellin transform). Let

M{f(x); u} be the Mellin transform of f(x) with respect to the complex parameter

u. Springer and Thompson show that

k

Mf{g(RJs); u} = IM {gi(Ri.si);u} (36)
t=1

where .9 = f{81... , Sk}. If R, has a Beta(s° + 1, n? -s?+1) prior, the Mellin transform

of the posterior pdf of R is

M{g(Rjs_); u} (n.l) 1 1 (37)
i=_ s! I -j_•(u + s + j)C,

where s! = s? + si, n* = n? + ni, s = maxis*, n = maxin*, Re(u) > -s, and cj

is the number of times (u + s + j) occurs over the component Mellin transforms.

The posterior pdf of R, which is not stated here, can be obtained by evaluating the

inversion integral of the Mellin transform in Equation (37).

The mean of the posterior pdf is

E[RI-] = M{g(Rls; u = 2} = 'I + (38)
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This expression is also the Bayes estimator of R for a squared-error loss function

[41].

The closed form of the posterior CDF of R is obtained by integrating the pdf.

Springer and Thompson show that this CDF is

G(Rls-) [• ' A 3,i(-ln(R))Y-] (39)
j=- I~c

where I _ Ki,j+.

Aj,, j,+ (40)(i-1)! -=o (s8 + j )m+

and

I d Cf_% [( + s + j)ci Mjg(Rjs`); ju=. c

Kj, im= (1im( duci --- (41)
0 cj=0

Springer and Thompson develop computer code to evaluate quantiles of this CDF.

However, their experience (and that of others, notably Martz et al. [31]) shows that

such implementations are numerically unstable, especially for systems with high

reliability.

In addition to the application of Mellin transforms, other methods exist for

finding the exact posterior CDF of R. While these approaches are of theoretical

interest, they are not without their difficulties. Tang and Gupta provide a set of

recurrence relations that can be used to find the exact pdf of a product of indepen-

dent beta random variables [44]; the problem with this approach is that it requires a

cumbersome term-by-term integration of the resulting pdf to find the CDF. As an-

other alternative, Wolfe uses a probabilistic argument to develop a multiple integral

expression for the exact posterior CDF [51]; however, when k is large, the dimen-

sionality of the integral makes it difficult to solve. A detailed discussion of these

methods is omitted. The interested reader is directed to the appropriate references.
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The Approximate Beta Posterior. Computationally, it is very difficult to find

the exact posterior of R. Springer and others suggest overcoming this difficulty by

approximating the exact posterior density of R with a beta density sharing the same

first two moments [40:268-2691,[45],[50]. According to Springer, such approximations

can often be quite close to the exact form [40:268]. Thompson and Haynes report

that, at least for moderate sample sizes (ni >_ 20), this beta approximation yields

excellent results [45].

Using Springer's approach, the approximate beta posterior can be constructed

easily. The first two moments of the exact posterior pdf of R can be found by setting

u = 2,3 in the density's Mellin transform. The resulting moments are

k sj* + (42)

and
2 k (s + s + 2)-)

j=1 (ný + 2)(n + 3)

The Beta(a, 3) density with these same first and second moments has the parameters

a = L2 1 _ A) _a lp (44 )

and
l _ (1- ) 2  - 0,'(1 _i) (45)

[40:269].

The Bayes Monte Carlo Empirical Posterior. Martz and Duran propose a

Monte Carlo method for approximating a 100(1 - -y) lower probability limit. This

approach, which is a variant of the bootstrap, has as its goal the generation of an

empirical posterior CDF for R. While Martz and Duran use noninformative priors
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in their implementation, their method can be easily adapted to handle informative

priors.

The steps in Bayes Monte Carlo are as follows:

1. Set N large (say, 10000). For j = 1,..., N, generate the random variate 1,,j

from a Beta(n/- ri + aj, ri + Pi) distribution, where ai and 3i are the parameters

of the ith prior density.

2. Calculate hj = [i= kB, vj.

3. Rank order the values of !Bj to obtain the order statistics Rj).

4. Approximate the 100(1 - -y) lower probability limit as RL =/R(N,,) [29].

Martz and Duran find that this method generally outperforms the classical bootstrap

[29].

Bayes Monte Carlo is only intended to produce approximate probability limits.

If a Bayes estimate of R is desired, Equation (38) (the first moment of Springer and

Thompson's exact posterior distribution) should be used.

The Bayesian Estimation of WSR

Martz and Waller argue convincingly for the use of Bayesian inference in relia-

bility analysis. They claim that the Bayesian approach has the following advantages

over classical reliability techniques:

1. If the prior information is valid, the Bayesian inferences are more accurate.

2. Bayesian analyses usually require smaller samples.

3. In a Bayesian test, unacceptable results are a consequence of bad assumptions

(i.e., inaccurate prior information) rather than questionable methodology.

4. Bayesian probability intervals for R are easier to obtain and understand than

classical confidence intervals [30:170-174].
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On the face of it, Martz and Waller's arguments are persuasive, but the Bayesian

approach is far from universally accepted. In fact, controversy has raged between

Bayesian and classical statisticians for many years as to the validity of the list of
"advantages" given above (see Appendix A).

The discussion in Chapter II showed, however, that (1) ML estimation perfor-

mance suffers when sample sizes decrease, and (2) the Lindstrom-Madden estimator

provides the only classical interval estimator that can be legitimately applied when

component test samples are small. In the face of these difficulties, it seems reasonable

to accept the Bayesian paradigm as a valid alternative to frequentist theory. This

increases the list of potential replacement estimators, and avoids having to accept

the MLE/Lindstrom-Madden combination by default.

The problem is that there is no small-sample comparison between Bayesian

and classical system reliability estimation techniques published in the reliability lit-

erature. The remainder of this thesis is devoted to conducting such a study.
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IV. The Monte Carlo Comparison Study

Overview

This chapter describes the Monte Carlo study undertaken in this research effort.

First, the estimation methods that were compared are identified, as are the measures

of merit upon which the comparison was based. The series systems used in the study

are described next, followed by a discussion of technical considerations related to

the Monte Carlo implementation. The chapter concludes with a description of the

methodology used in the simulation.

Candidate Estimation Methods

The purpose of this study was to find some set (or sets) of point and upper-tail

interval estimators that performs better for small test samples than those presently

used by ACC. Accordingly, the performance of several classical and Bayesian estima-

tors were considered as possible replacements for both the MLE (R?) and the MMLI

interval estimator.

The Bayes estimator in Equation (38) was examined as an alternative to the

MLE. This estimator was chosen for comparison because it is the first mome of all

three posterior forms considered in Chapter III.

Two forms of the Bayesian interval estimator in Equation (49) (see Appendix

A) were compared to the MMLI estimator. The first form was constructed from the

approximate beta posterior CDF; the second used the BMC empirical posterior CDF

(the exact posterior was not used because of the computational difficulties associated

with its implementation). Since the Lindstrom-Madden estimator is the only classical

interval estimator suitable for use with small test samples, it was also compared to

the MMLI estimator. All interval estimators considered were constructed at two

levels of significance (0.10 and 0.05) to aid sensitivity analysis.
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Measures of Merit

The measure of merit used to compare the point estimators was mean square

error (MSE) (see Appendix A). Since the Bayes estimator under consideration min-

imizes the squared-error loss function, MSE was the logical measure to use. The

point estimator that produced the smallest estimated MSE for a given system was

considered the superior performer for that system.

For the interval estimators, the measures of merit were the coverage propor-

tion (the percentage of generated intervals containing the true system reliability)

and the average interval lower bound. These measures are often used to compare

interval estimators (see, for example, Martz and Duran [29]). An interval estimator

that produced a coverage proportion less than (1 - y) was considered optimistic.

For a given system, the interval estimator that produced the largest average inter-

val bound at both significance levels without being optimistic was considered the

superior estimator for that system.

Hypothetical System Structures

The basic concepts of experimental design were used to construct a comprehen-

sive set of hypothetical series systems for study. Table 1 shows the design strategy

that was used to develop the systems. This strategy was based on a completely

randomized 2' factorial design. Although a more complex approach could have been

taken, only two factor levels were considered so that the number of systems remained

manageable. Table 2 presents the details of the randomized design.

The hypothetical systems were developed using the components described in

Table 3. These components were constructed so that their true reliabilities were

between 0.90 and 0.999, a reasonable range for many real-world applications. The

strength and accuracy of the component prior information were determined by the

values chosen for s? and n?. For the purposes of this study, it was assumed that

setting n? P 25 provided sufficiently strong prior information; for a weak prior, n?
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was fixed at around 10. The accuracy of the prior information was controlled by

varying the magnitude of the difference between (s?/ln) and the true component

reliability R, (that is, j(s°'/n°) - R11). To provide a component with accurate prior

information, si and n? were selected so that I(s?/nq) - Ri( _< 0.2; an inaccurate

prior was constructed by choosing the hyperpararneters I(s?/n?) - RI > 0.2. Table 4

shows the component-by-component structure of each series system.

Table 1. Design Strategy.

Factor Level 1 Level 2
k 5 10

Sample sizes ni = 4 V i ni = 10 V i
A equal unequal

Component Prior
Info Strength uniformly weak uniformly strong

Component Prior
Info Accuracy uniformly inaccurate uniformly accurate
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Table 2. Design Strategy Implementation.

I Component Prior Information
System k ni Ri Strength Accuracy

1 5 4 equal weak inaccurate
2 5 4 equal weak accurate
3 5 4 equal strong inaccurate
4 5 4 equal strong accurate
5 5 4 unequal weak inaccurate
6 5 4 unequal weak accurate
7 5 4 unequal strong inaccurate
8 5 4 unequal strong accurate
9 5 10 equal weak inaccurate

10 5 10 equal weak accurate
11 5 10 equal strong inaccurate
12 5 10 equal strong accurate
13 5 10 unequal weak inaccurate
14 5 10 unequal weak accurate
15 5 10 unequal strong inaccurate
16 5 10 unequal strong accurate
17 10 4 equal weak inaccurate
18 10 4 equal weak accurate
19 10 4 equal strong inaccurate
20 10 4 equal strong accurate
21 10 4 unequal weak inaccurate
22 10 4 unequal weak accurate
23 10 4 unequal strong inaccurate
24 10 4 unequal strong accurate
25 10 10 equal weak inaccurate
26 10 10 equal weak accurate
27 10 10 equal strong inaccurate
28 10 10 equal strong accurate
29 10 10 unequal weak inaccurate
30 10 10 unequal weak accurate
31 10 10 unequal strong inaccurate
32 10 10 unequal strong accurate
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Table 3. Component Specifications.

Prior Info
Type TrueRP (sJP n?)

1 0.999 25/25
2 10/10
3 19/25
4 " 7/10

5 0.99 25/25
6 10/10
7 19/25
8 7/10
9 0.95 24/25
10 10/10
11 19/25
12 " 7/10
13 0.90 22/25
14 10/11
15 18/25
16 6/10
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Table 4. System Structures.

I Number of Each Component Type 1
No.[ 11 21 3 [1 [1 8 [ 110[ 111 121 131 14I 15 1 R
1 5 0.9960

2 5 0.9510

3 5 0.7738

4 5 0.5905

5 2 2 1 0.9292

6 1 2 2 0.7237

7 2 2 1 0.8106

8 1 2 2 0.7931
9 5 0.5905

10 5 0.7738

11 5 0.9510

12 5 0.9960

13 2 3 0.9684

14 3 2 0.8757
15 2 3 0.6579

16 2 1 1 1 0.8448

17 10 0.9044

18 10 0.9900
19 10 0.5987

20 10 0.3487

21 3 3 2 2 0.7072
22 4 6 0.5105

23 6 4 0.9548
24 4 6 0.5293

25 10 0.5987

26 10 0.3487

27 10 0.9900

28 10 0.9044
29 3 3 4 0.6347
30 3 4 3 0.5920

31 4 3 3 0.6004

32 3 4 3 0.8211
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Technical Considerations

The Monte Carlo software was written in FORTRAN 77; the accuracy of each

module's output was verified using a set of hand-computed results. Most of the

statistical calculations required by the simulation were performed using the Interna-

tional Mathematical anid Statistical Libraries (IMSL) Stat/Library. IMSL routines

called by the simulation software included the binomial deviate generator DRNBIN

[14:967], the beta deviate generator DRNBET [14:993], and the inverse beta function

DBETIN [14:915).

IMSL Stat/Library's uniform random number stream, which it uses to generate

other random deviates, was evaluated for independence and uniformity. A stream

of random numbers was generated on each computer used in the simulation; each

stream was then evaluated using a runs-up test and a chi-square goodness-of-fit test.

Each test was conducted using the guidelines in Section 7.4 of Law and Kelton [19].

The tests showed that the uniformity and independence assumptions were justified.

Methodology

The following series of steps was executed for each of the 32 hypothetical

systems:

1. A set of system failure data was constructed by simulating a binomially-

distributed failure count for each of the system's k components. Five thousand

of these data sets were generated.

2. ML and Bayes estimates of R were calculated using each of the 5000 data sets;

the MSE was then calculated for each estimate.

3. MMLI 90 and 95 percent lower bounds on R were computed using each of the

5000 data sets. Each data set with no observed failures for any component

(that is, where 1? = 1.0) was ignored. If more than 500 data sets were ignored,

the coverage proportion and the average lower bound were not reported; other-
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wise, these measures were calculated using only those lower bounds that were

evaluated.

4. Lindstrom- Madden 90 and 95 percent lower bounds on R were computed using

each of the 5000 data sets, and the coverage proportion and the average lower

bound were calculated.

5. The performance measures for the approximate beta posterior 90 and 95 per-

cent lower proportion limits on R were derived using the methods in Step 4.

6. For each of the 5000 data sets, a BMC empirical posterior CDF of R was

constructed according to the method described in Chapter Ill. Each CDF was

composed of 10000 data points. The appropriate order statistics were used as

the 90 and 95 percent lower proportion bounds on R.

Using these six steps, a set of performance measures was compiled for each estimator

under consideration. These performance measures are reported and analyzed in the

next chapter.
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V. Findings

Overview

This chapter presents the findings of the Monte Carlo comparison study. In

the first section, the performance measures of the point estimators are reported and

analyzed; the same is done in the second section for the interval estimators. After

the analysis of the results, conclusions are drawn about estimator performance. The

chapter ends with a list of recommendations for further research.

Results and Analysis: Point Estimators

Table 5 lists the MSE by system for the ML and Bayes estimators of R. The

ratio of the losses (ML to Bayes) is also included; if the ratio is greater than one,

the Bayes loss is smaller than that of the MLE (and therefore the Bayes estimator

performed better). The MLE outperformed the Bayes estimator for 23 of the 32

systems. Appendix C contains a discussion of the Monte Carlo sampling statistics

for the point estimators.

An analysis was conducted to determine if any of the structural aspects of

the hypothetical systems had a statistically significant effect on the choice of the

best estimator for a given system. Contingency tables were used because of the

nominal nature of the explanatory variables (the structural factors in Table 1) and

the response variable (the estimator judged best). The analysis, which followed the

guidelines in Chapters 2 and 3 of Agresti [11, was conducted at significance level 0.05.

Only main factor effects and pair-wise factor interactions were investigated; higher

level interactions were assumed to be negligible. The results of the analysis are in

Tables 6 and 7; the relevant contingency tables are in Appendix D.
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Table 5. Point Estimator Performance Measures.

Ratio of MSEs

System MSE(JR) MSE(Bayes) (ML to Bayc)

1 0.0012 0.5747 0.0021
2 0.0114 0.0562 0.2026
3 0.0414 0.2573 0.1608
4 0.0504 0.0162 3.1052
5 0.0158 0.4867 0.0324
6 0.0463 0.0197 2.3504
7 0.0374 0.3060 0.1224
8 0.0393 0.0167 2.3447
9 0.0203 0.1506 0.1347
10 0.0160 0.0079 2.0290
11 0.0046 0.3676 0.0125
12 0.0005 0.0155 0.0307
13 0.0030 0.3695 0.0081
14 0.0102 0.0190 0.5366
15 0.0197 0.1467 0.1345
16 0.0126 0.0116 1.0830
17 0.0211 0.7224 0.0292
18 0.0025 0.2181 0.0113
19 0.0375 0.0938 0.3995
20 0.0509 0.0149 3.4237
21 0.0471 0.4424 0.1065
22 0.0499 0.0427 1.1699
23 0.0105 0.7710 0.0136
24 0.0491 0.0326 1.5062
25 0.0194 0.2474 0.0785
26 0.0138 0.0117 1.1712
27 0.0009 0.7528 0.0012
28 0.0106 0.0191 0.5543
29 0.0201 0.3052 0.0658
30 0.0196 0.0282 0.6964
31 0.0184 0.3388 0.0544
32 0.0136 0.0262 0.5204
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Table 6. Main Factor Effects: Point Estimators.

Significant Goodman and
Factor P-Value at a = 0.05? Kruskal's r

System Size 0.5000 No 0.005
Sample Size 0.2166 No 0.043
Reliability

Levels 0.5000 No 0.005
Component Prior

Info Strength 0.5000 No 0.005
Component Prior

Info Accuracy 0.0004 Yes 0.391

Table 7. Pair-Wise Factor Interactions: Point Estimators.

Significant Goodman and
Factor 1 Factor 2 P-Value at a = 0.05? Kruskal's r

System Size Sample Size 0.6368 No 0.053
Reliability

System Size Levels 0.9268 No 0.014
Component Prior

System Size Info Strength 0.9268 No 0.014
Component Prior

System Size Info Accuracy 0.0050 Yes 0.401
Reliability

Sample Size Levels 0.4014 No 0.092
Component Prior

Sample Size Info Strength 0.4014 No 0.092
Component Prior

Sample Size Info Accuracy 0.0016 Yes 0.478
Reliability Component Prior

Levels Info Strength 0.9268 No 0.014
Reliability Component Prior

Levels Info Accuracy 0.0050 Yes 0.401
Component Prior Component Prior

Info Strength Info Accuracy 0.0050 Yes 0.401
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Table 6 shows that prior information accuracy is the only factor with a sig-

nificant main effect. However, all pair-wise interactions involving prior information

accuracy were significant as well (see Table 7). Since the association between prior

accuracy and estimator choice (as measured by Goodman and Kruskal's r) is an

order of magnitude larger than any of the other association levels, the significance

of the pair-wise interactions is most likely an artifact of the dominance of the prior

accuracy main effect. According to these tests, then, prior information accuracy is

the only structural characteristic of the hypothetical systems that affects the choice

of the best estimator.

According to Table 5, systems with inaccurate prior information (the odd-

numbered systems) overwhelmingly favored the MLE, while those with accurate

component priors were evenly split between the estimators. These results support

the intuition that, if there is a large gap between the prior distribution mean and

the true component reliability, the MLE should outperform the Bayes estimator.

However, the results are not consistent with Martz and Waller's rule of thumb that

the Bayes estimator outperforms the MLE if the prior information is accurate. The

inconsistency may result from the fact that, in this study, a component's prior in-

formation was deemed "accurate" if the prior mean was within ±20 percent of the

truth. For some types of systems, this latitude in prior information accuracy may

be too broad.

Results and Analysis: Interval Estimators

Tables 8 through 11 show the interval estimator performance measures by sys-

tem. The estimator judged the best performer for a given system is designated with

an asterisk (*). For most systems, either the beta approximation or the Lindstrom-

Madden method provided the most desirable interval estimates, although for three

systems (14, 26 and 32) there was no clearly superior estimator. Appendix C contains

a discussion of the Monte Carlo sampling statistics for the interval estimators.
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Table 8. Interval Estimator Performance Measures, Systems 1-8.

90% LowerBound 95% Lower Bound
[System j R Method Avg Limit Coverage Avg Limit Coverage

MMLI ** ** ** **

L-M* 0.5579 1.0000 0.4689 1.0000
1 0.9960 Beta Approx 0.1435 1.0000 0.1228 1.0000

BMC 0.0952 1.0000 0.0784 1.0000

MMLI ** ** ** **

L-M 0.5176 1.0000 0.4316 1.0000
2 0.9510 Beta Approx* 0.5769 1.0000 0.5333 1.0000

BMC 0.5114 1.0000 0.4609 1.0000

MMLI ** ** ** **

L-M* 0.3603 1.0000 0.2895 1.0000
3 0.7738 Beta Approx 0.1932 1.0000 0.1752 1.0000

BMC 0.1367 1.0000 0.1208 1.0000

MMLI ** ** ** **
L-M 0.2256 1.0000 0.1726 1.0000

4 0.5905 Beta Approx* 0.3686 1.0000 0.3424 1.0000
BMC 0.2979 1.0000 0.2709 1.0000

MMLI ** ** ** **

L-M* 0.4959 1.0000 0.4116 1.0000
5 0.9292 Beta Approx 0.1396 1.0000 0.1193 1.0000

BMC 0.0927 1.0000 0.0763 1.0000

MMLI ** ** ** **
L-M 0.3230 1.0000 0.2567 1.0000

6 0.7237 Beta Approx* 0.4507 1.0000 0.4108 1.0000
BMC 0.4029 1.0000 0.3600 1.0000

MMLI ** ** ** **

L-M* 0.3947 1.0000 0.3202 1.0000
7 0.8106 Beta Approx 0.1857 1.0000 0.1681 1.0000

BMC 0.1329 1.0000 0.1175 1.0000

MMLI ** ** ** **

L-M 0.3789 1.0000 0.3601 1.0000
8 0.7931 Beta Approx* 0.5634 1.0000 0.5326 1.0000

BMC 0.5357 1.0000 0.5027 1.0000

* Best Estimator. ** Not reported.
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Table 9. Interval Estimator Performance Measures, Systems 9-16.

90% Lower Bound 95% Lower Bound

System R Method Avg Limit Coverage Avg Limit Coverage

MMLI 0.3265 1.0000 0.2832 1.0000
L-M* 0.3528 0.9664 0.3044 0.9664

0.5905 Beta Approx 0.1306 1.0000 0.1142 1.0000
BMC 0.0857 1.0000 0.0726 1.0000

MMLI 0.4515 1.0000 0.4006 1.0000
L-M 0.5312 0.9236 0.4762 1.0000

10 0.7738 Beta Approx* 0.5849 1.0000 0.5482 1.0000
BMC 0.5217 1.0000 0.4795 1.0000

MMLI ** ** ** **

L-M* 0.7328 1.0000 0.6780 1.0000
11 0.9510 Beta Approx 0.2669 1.0000 0.2469 1.0000

BMC 0.2020 1.0000 0.1828 1.0000

MMLI ** ** ** **

L-M 0.7879 1.0000 0.7346 1.0000
12 0.9960 Beta Approx* 0.7995 1.0000 0.7740 1.0000

BMC 0.7611 1.0000 0.7292 1.0000

MMLI ** ** ** **

L-M* 0.7563 1.0000 0.7021 1.0000
13 0.9684 Beta Approx 0.2581 1.0000 0.2324 1.0000

BMC 0.1940 1.0000 0.1697 1.0000

MMLI ** ** ** **

L-M 0.6403 1.0000 0.5844 1.0000
14 0.8757 Beta Approx 0.6293 1.0000 0.5924 1.0000

BMC 0.5767 1.0000 0.5337 1.0000

MMLI 0.3709 1.0000 0.3244 1.0000
L-M* 0.4154 0.9156 0.3639 0.9832

15 0.6579 Beta Approx 0.2067 1.0000 0.1895 1.0000

BMC 0.1547 1.0000 0.1390 1.0000

MMLI ** ** ** **
L-M 0.6083 1.0000 0.5525 1.0000

16 0.8448 Beta Approx* 0.6512 1.0000 0.6231 1.0000
BMC 0.6236 1.0000 0.5926 1.0000

* Best Estimator. ** Not reported.
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Table 10. Interval Estimator Performance Measures, Systems 17-24.

90% Lower Bound 95% Lower Bound
System R Method Avg Limit Coverage Avg Limit Coverage

MMLI ** ** ** **
L-M* 0.4721 1.0000 0.3899 1.0000

17 0.9044 Beta Approx 0.0252 1.0000 0.0200 1.0000
BMC 0.0177 1.0000 0.0140 1.0000

MMLI ** ** ** **

L-M* 0.5526 1.0000 0.4638 1.0000
18 0.9900 Beta Approx 0.3864 1.0000 0.3491 1.0000

BMC 0.3479 1.0000 0.3092 1.0000

MMLI 0.0654 1.0000 0.0448 1.0000
L-M* 0.0856 0.9848 0.0593 0.9848

19 0.5987 Beta Approx 0.0248 1.0000 0.0212 1.0000
BMC 0.0171 1.0000 0.0145 1.0000

MMLI ** ** ** **

L-M 0.2315 1.0000 0.1778 1.0000
20 0.3487 Beta Approx* 0.3832 1.0000 0.3571 1.0000

BMC 0.3456 1.0000 0.3184 1.0000

MMLI ** ** ** **

L-M* 0.3129 1.0000 0.2478 1.0000
21 0.7072 Beta Approx 0.0184 1.0000 0.0144 1.0000

BMC 0.0132 1.0000 0.0104 1.0000

MMLI 0.1114 1.0000 0.0796 1.0000
L-M 0.1728 0.9320 0.1288 1.0000

22 0.5105 Beta Approx* 0.2022 1.0000 0.1775 1.0000
BMC 0.1835 1.0000 0.1597 1.0000

MMLI **

L-M* 0.5203 1.0000 0.4340 1.0000
23 0.9548 Beta Approx 0.0481 1.0000 0.0420 1.0000

BMC 0.0354 1.0000 0.0305 1.0000

MMLI ** ** ** **
L-M 0.1833 0.9262 0.1373 1.0000

24 0.5293 Beta Approx* 0.2659 1.0000 0.2444 1.0000
BMC 0.2546 1.0000 0.2333 1.0000

* Best Estimator. ** Not reported.
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Table 11. Interval Estimator Performance Measures, Systems 25-32.

1 90% Lower Bound 95% Lower Bound
System R Method Avg Limit Coverage Avg Limit Coverage

MMLI 0.3374 1.0000 0.2937 1.0000
L-M* 0.3616 0.9624 0.3126 0.9624

25 0.5987 Beta Approx 0.0597 1.0000 0.0510 1.0000
BMC 0.0449 1.0000 0.0379 1.0000

MMLI 0.1704 0.9772 0.1423 0.9936
L-M 0.1546 0.9770 0.1227 0.9842

26 0.3487 Beta Approx 0.1688 1.0000 0.1503 1.0000
BMC 0.1403 1.0000 0.1232 1.0000

MMLI ** ** ** **
L-M* 0.7820 1.0000 0.7284 1.0000

27 0.9900 Beta Approx 0.0845 1.0000 0.0759 1.0000
BMC 0.0655 1.0000 0.0581 1.0000

MMLI ** ** ** **

L-M 0.6355 1.0000 0.5797 1.0000
28 0.9044 Beta Approx* 0.6433 1.0000 0.6156 1.0000

BMC 0.6138 1.0000 0.5831 1.0000

MMLI 0.3555 1.0000 0.3101 1.0000
L-M* 0.3939 0.9378 0.3433 0.9884

29 0.6347 Beta Approx 0.0468 1.0000 0.0396 1.0000
BMC 0.0366 1.0000 0.0308 1.0000

MMLI 0.3298 1.0000 0.2864 1.0000
L-M* 0.3544 0.9660 0.3058 0.9660

30 0.5920 Beta Approx 0.3226 1.0000 0.2643 1.0000
BMC 0.3012 1.0000 0.2725 1.0000

MMLI 0.3856 1.0000 0.3382 1.0000
L-M* 0.4343 0.9846 0.3819 0.9846

31 0.6004 Beta Approx 0.0656 1.0000 0.0585 1.0000
BMC 0.0509 1.0000 0.0449 1.0000

MMLI ** ** ** **

L-M 0.5820 1.0000 0.5263 1.0000
32 0.8211 Beta Approx 0.5696 1.0000 0.5421 1.0000

BMC 0.5466 1.0000 0.5172 1.0000

* Best Estimator. ** Not reported.
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For the interval estimators, a contingency table analysis was conducted using

methodology similar to that of the analysis of point estimator performance (see the

previous section); Appendix D contains the related contingency tables. As can be

seen from Tables 12 and 13, this set of tests yielded the same conclusion as the point

estimator tests: only the accuracy of the prior information significantly affected the

choice of the best estimator for the hypothetical systems.

One obvious feature of the results is the conservatism of the interval estimates.

To capture the degree of conservatism for each method, each system's 90 percent

Lindstrom-Madden and approximate beta interval estimates were arbitrarily reduced

by 10, 20 and 50 percent. Table 14 shows the effect of the reductions on the coverage

proportions. The reduction data show that, for many systems, both estimators

produced interval estimates that were so conservative they all would have covered R

even if they were cut in half.

System 10 was chosen at random to illustrate the effect of the interval reduc-

tion on best estimator selection. For each interval estimation method, the length

of each of System 10's 90 percent interval estimates was reduced until the coverage

proportions were equal and as close to 0.9 as possible. A comparison of the average

lower bounds of the reduced intervals (see Table 15) shows that the beta approxima-

tion still yields the shortest intervals; this outcome is unchanged from the original

comparison.
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Table 12. Main Factor Effects: Interval Estimators.

Significant Goodman and
Factor P-Value I at a = 0.05? Kruskal's r

System Size 0.3612 No 0.016
Sample Size 0.6388 No 0.000
Reliability

Levels 0.6388 No 0.000
Component Prior

Info Strength 0.3612 No 0.016
Component Prior

Info Accuracy 0.0000 Yes 0.778

Table 13. Pair-Wise Factor Interactions: Interval Estimators.

Significant Goodman and

Factor 1 Factor 2 P-Value at a = 0.05? Kruskal's r

System Size Sample Size 0.9171 No 0.016
Reliability

System Size Levels 0.9171 No 0.016
Component Prior

System Size Info Strength 0.6768 No 0.048
Component Prior

System Size Info Accuracy 0.0000 Yes 0.810
Reliability

Sample Size Levels 0.9171 No 0.016
Component Prior

Sample Size Info Strength 0.9171 No 0.016
Component Prior

Sample Size Info Accuracy 0.0000 Yes 0.778
Reliability Component Prior

Levels Info Strength 0.9171 No 0.016
Reliability Component Prior

Levels Info Accuracy 0.0000 Yes 0.778
Component Prior Component Prior

Info Strength Info Accuracy 0.0000 Yes 0.810
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Table 14. Coverage Proportions for Reduced Intervals.

[ MReduction Percentage

System Method 0_ 10 30 50

L-M 1.0000 1.0000 1.0000 1.0000

I Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 1.0000 1.0000 1.0000
2 Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 1.0000 1.0000 0.64101
3 1 Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 T 0.8806 0.8806 0.3624
4 Beta Approx 1.0000 1.0000 1.0000 0.0000

L-M 1.0000 1.0000 1.0000 1.0000

5 Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 1.0000 1.0000 0.7218
6 JBeta Approx 1.0000 1.0000 1.0000 0.3528

1 L-M 1.0000 1.0000 1.0000 1.0000
7 Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M t1.0000 .0000 1.0000 1.0000

8 Beta Approx 1.0000 1.0000 1.0000 0.5986
L-M 0.9664 0.8848 0.7474 0.0776

9 Beta Approx 1.0000 1.0000 1.0000 0.9948

L-M 0.9236 0.9236 0.9236 0.45621
10 Beta Approx 1.0000 1.0000 0.9236 0.2404

L-M 1.0000 1.0000 1.00 1.000011 Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 1.0000 1.0000 1.0000
12 "Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 1.0000 1.0000 1.00007
13 ýBeta Approx 1.0000 1.0000 1.0000 1.0000

L-M 1.0000 1.0000 1.0000 0.7474
14 Beta Approx 1.0000 1.0000 1.0000 1.0000

L-M 0.9156 0.9156 0.7724 0.2126
15 Beta Approx 1.0000 11.0000 11.0000 1.00001

L-M 1.0000 E1.0000 0.8116 10.8116
16 Beta Approx 1.0000 1 1.0000 1.0000 J 0.8116
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Table 15. Interval Reduction Data for System 10.

Original Reduction New New
Method Limit Multiplier Coverage Avg Limit]

Beta Approx 0.5849 0.3706 0.9236 0.7387
L-M 0.5312 0.3284 0.9236 j- 0.6852
BMC 0.5217 0.4395 0.9236 0.7320

Conclusions

Based on the assumptions made and the results of the Monte Carlo comparison

study, four conclusions can be drawn:

1. If the accuracy of the component prior information is in doubt, then the MLE

and the Lindstrom-Madden estimator are clearly the best estimators for R.

However, if confidence in the prior information is high, the Bayes estimators

constructed from the approximate beta posterior should be used instead.

2. Because of its extreme conservatism, the interval estimator constructed from

the Bayes Monte Carlo empirical posterior distribution should not be used for

component sample sizes under ten.

3. Easterling's MMLI method should not be used when the sample sizes are uni-

formly under ten, especially when the component reliabilities are known to be

high.

4. Any small-sample interval estimate generated with any of the methods consid-

ered will be conservative.

In summary, the results of this investigation show that both the beta ap-

proximation and the Lindstrom-Madden method to be useful with small data sets.

However, neither of these estimators is strongly preferable to the other. ACC could

use either approach, depending on the quality of the prior information available.
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Recommendations for Further Research

Since this study is only a first step in understanding small-sample reliability

estimation, ample opportunity exists to broaden the scope of the results. Several

areas with potential for additional research are suggested:

1. Additional hypothetical systems should be considered to incorporate the fol-

lowing extensions to the design:

(a) More than two levels of k and ni should be examined. For example, a

possible extension could be k = {3, 5, 10, 151 and ni = {4, 10, 20}.

(b) The accuracy and strength of the component prior information and the

component sample size should be allowed to vary across components.

(c) Parallel and complex systems should be considered as well as series sys-

tems.

2. As mentioned previously, the definition of "accuracy" applied to the component

prior information in this study may have been both simplistic and overly liberal.

The effect on the study results of variations in prior density accuracy should

be analyzed more thoroughly. Possible avenues for incorporating error into

the prior include adjustments to its mean or variance (or both). Such a study

would yield valuable information about the impact of prior information on

small-sample Bayes estimation.

3. It was shown earlier in this chapter that large decreases in small-sample interval

estimates can sometimes be made at a relatively low cost in significance. An

analytical understanding of this phenomenon could result in the development of

interval reduction methods, which would in turn lead to small-sample interval

estimates of higher quality.
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Appendix A. Bayesian Statistical Inference

Introduction

This appendix provides a brief introduction to Bayesian statistical inference.

With the aid of this presentation, the reader with little or no exposure to the Bayesian

paradigm can understand the Bayesian reliability methods discussed in this thesis.

The Nature of Probability: Two Views

Before undertaking a meaningful discussion of Bayesian statistical methods,

it is important to understand how and why those methods differ from the classical

statistical techniques taught in most universities. The two approaches are dissimilar

because they are rooted in different understandings of the fundamental nature of

probability.

The classical school of probability (also called the frequentist or objectivist

school) holds that probability is a measure of the relative frequency of an event

during repeated experimentation. Consider an experiment for which fQ is the set of

all possible outcomes. Define as one of those outcomes the event E such that E E a.

A frequentist statistician would view the probability of E (that is, the likelihood

of event E occurring) as P[E] = lim,,-,.(e/n), where e is the number of times E

occurs during n experimental trials. Thus, P[E] is the long-run frequency with

which E occurs. According to the classical viewpoint, the value of this frequency is

an unknown constant that can be reasonably approximated if enough experiments

are conducted.

In contrast, the Bayesian school (which takes its name from the British clergy-

man and amateur mathematician Thomas Bayes) adopts a subjectivistic (or person-

alistic) view of probability. The Bayesian views P[E] not as an objective estimate

of the unknown constant likelihood of E, but as a rational expression of his or her
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degree of belief that E will occur. Since probability is subjective, different people

can assign different values to P[E] based on varying perceptions of prior experience.

Thus, from the Bayesian perspective, this prior experience replaces experimentation

as the source of the probability estimate. However, the Bayesian does not abandon

experimentation, because it is an important means of refining his or her assessment

of P(E].

To illustrate these divergent views of the nature of probability, consider a

simple experiment. A certain coin is flipped, with the outcome being either "heads"

or "tails"; that is, fl = {heads, tails}. Suppose the likelihood of each outcome is

unknown. Further, define the event E = {heads}. In order to make a probability

statement about E, the frequentist would perform n experiments (where n is large,

say 1000), observe m occurrences of E, and declare that, for this particular coin,

P[E] ;t m/n. On the other hand, the Bayesian might conclude, based on experience

with similar coins, that E is just as likely to occur as not. Therefore, he or she would

declare that PJE] = 1/2, then conduct a series of experimental trials to validate and

refine that estimate.

There is a great deal of controversy over the legitimacy of the Bayesian view

of probability. Many theoretical statisticians reject the Bayesian approach because

they believe that statistics, as a science, should be as objective as possible. However,

Press and others have pointed out that the methods of classical statistical inference

incorporate a great deal of subjectivity, although they purport to be objective. The

subjective nature of the Bayesian statistics is not a weakness but a strength, because

valuable prior experience can be accounted for in the inference process [36:1-14].

Bayes' Theorem

Bayes' Theorem, which is presented below, is both stated and proven using

the definition of conditional probability. This definition, which can be found in any
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introductory probability text, provides a convenient mechanism for incorporating

subjective probability information into a statistical analysis.

Theorem A.1 (Bayes) Let QI be a sample space. Define the mutually exclusive

events Fi such that (1) F, E Ql Vz and (2) U?', F, = Q. Further, let E be an

event such that (1) the conditional probabilities P[EIF,] are defined for all i, and (2)

P[E] > 0. Then

P[FIE] = , P[EIF,]P[Fi]

The proof of this theorem, which is a straightforward application of the definition of

conditional probability, is given by Biswas [5:281.

Bayes' Theorem had its origin in Bayes' 1763 paper An Essay Towards Solving

a Problem in the Doctrine of Chances, where it was originally limited to the binomial

sampling problem [3]. Laplace, working independently, published the general form

of this theorem in 1774 [18]; he developed it more ful'.y in several subsequent papers.

The modern fusion of Bayes' Theorem with subjective probability is due mostly to

the 1939 work of Jeffreys; De Groot, Savage, de Finetti, Ramsey and R6nyi also

made significant contributions to the development of Bayesian theory [36:8,16].

Foundations of Bayesian Inference

Consider a failure density with some parameter 0. Based on earlier discussion,

the frequentist view of 0 is that its true value is a fixed, unknown constant that can

be discovered through infinite sampling. From the Bayesian perspective, however,

the true value of 0 could be any of a range of values, some of which are more likely

to be the true value of 0 than others. It is not surprising, then, that the perceived

value of 0 is viewed as a random variable in Bayesian inference. (In the discussion

that follows, the symbol 0 will be used to refer to the random variable; 0 will refer

to a particular value of 0.)
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Since O is viewed as a random variable, subjective information about the likeli-

hood of its possible values may be encoded in a probability density or mass function

g(O). Once g(O) is defined, experiments can be conducted to validate and refine the

assessment of 0. Bayes' Theorem is the mechanism for combining the subjective

information with the experimental results.

The subjective assessment of 0 is refined in a straightforward manner. First,

a random sample of size n of independent, identically-distributed random variables

Xi is taken ({Xi = xi, i = 1 ... n}). The probability mass/density function of Xi is

f(x:iO) (that is, the form of the density/mass function of Xi depends on the value of

0). After the random sample is taken, the information from the sample is combined

with the a priori information assumed about 0 (i. e., g(O)) to get an a posteriori

refined probability statement about 0. If 0 is assumed to be a discrete random

variable, this procedure is captured in the following extension to Bayes' Theorem.

Theorem A.2 Let 0 be a discrete random variable with probability mass function

g(O). Further, let X ={ X1,..., X,,} be a set of independent, identically-distributed

random variables, each with probability mass/density function f(xIO), and let Y -

{1x1 ,... , xn} be a set of random samples from those random variables. Then

h(OI•) = g(0) I= f(x,I1)
ZE {[H=IL f(xiO)]g(o)}

The proof of this theorem is omitted because it is trivial [36:24]. A similar extension

to Bayes' Theorem can be derived for continuous 0. (Note that Xi can be either

discrete or continuous, despite of the form of g(O).)

Since g(O) incorporates a priori information about 0, it is called the prior

density of E; its parameters are called hyperparameters to differentiate them from

the parameters of, say, f(xlO). Similarly, h(9)Y) is called the posterior density of

0. These respective terms are usually shortened to "prior" and "posterior" for

simplicity.
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The Prior Distribution

It should be obvious that a Bayesian estimate is only as good as the accuracy

of the prior assessment of 0. This means, then, that the selection of the prior density

g(O) must be made with great care.

The prior density of E can take any form that seems reasonable. Usually, a

proper prior (a probability density or mass function) is used. However, the prior need

not integrate to unity (in which case it is called an improper prior). The prior can

even be an empirical function. In most practical applications, however, priors are

selected from two classes: natural conjugate priors (sometimes called convenience

priors), and noninformative priors (also called indifference or vague priors).

When a natural conjugate prior is used, the resulting posterior is of the same

family. The form of this prior depends on the form of f(x 1O). For example, a natural

conjugate prior of a binomial probability is the beta density. This prior returns

a posterior that is also a beta density. Press discusses the advantages of natural

conjugate priors at length, and catalogs the common conjugate prior families [36].

A noninformative prior is used when there is little or no reason to prefer any one

value of E over another. There are various types of noninformative priors discussed

in the literature; the most common form used is the uniform distribution. The use

of noninformative priors has been the subject of much debate; many statisticians see

no justification for the Bayesian approach if no meaningful prior information exists.

See Press [36:46-51] for a detailed discussion of the noninformative prior.

Once the family of the prior is chosen, its hyperparameters can be assigned

values based on any reasonable criterion. In some cases it is perfectly acceptable to

choose hyperparameter values based on "gut feel." For example, a group of design

engineers might feel strongly (perhaps because of prior design or manufacturing ex-

perience) that a certain switch has a failure probability of 0.01. In other situations,

it may be advisable to estimate the hyperparameters from a data set derived from
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a different (but conceptually related) experimental situation. In any case, the hy-

perparameters should be estimated with care. If the choice is made blindly, it can

render the entire analysis meaningless. For example, Kapur and La-nrberson show

that the parameters of a beta prior can be selected so that the experimental results

will not substantially affect the form of the posterior, even if those results completely

contradict the the prior information [15:380-3821.

Determining the form of g(O) is a difficult process, and the results are often

controversial. The key point to remember when selecting the prior is that, although

the choice is ultimately based on subjective factors, that choice should be both

reasonable and justifiable.

Bayesian Point Estimation

A point estimate is essentially a decision about the value of the parameter being

estimated. It is possible, if not rigorous, to avoid decision theory when introducing

the basics of classical point estimation. However, Bayesian point estimation must be

introduced in a decision-theoretic framework.

Before Bayesian point estimation is discussed, several concepts from decision

theory must be defined. These definitions, which deal with a single parameter only,

are adapted from the general forms given by Mood et al. [33:297-299, 344].

Definition A.1 Let 6 = 0(XI,...,X,) be an estimator of a parameter 0, and

let 0 be a particular value of E. The loss function measures the error sustained

by estimating 0 by 0. This function is denoted by A(O; 0), and has the following

properties: (1) ,A(0; 0) is a real function, (2) A(O; 0) > 0 V0, and (3) A(O; 0) = 0

when 0. = .
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There are several possible loss functions. The one most often seen in practical

applications is the squared-error loss function:

A(0;0) = ( - 0)2 (46)

Definition A.2 For some loss function A(9; 0), the risk function of the estimator 9

is

p6(0) = EtI(6; 0)]

2
The risk associated with a squared-error loss function is E[(O - 0)], which is easily

recognized as the mean square error of 6.

Definition A.3 The Bayes risk of the estimator 6 with respect to the loss function

A(O; 9) and the prior density g(o) is

S= Ie p6(0)g(e)d0

With the above terms defined, Ba;7,s estimators can now be introduced.

Definition A.4 The Bayes estimator EY of E (with respect to the loss function

A(O; 0) and the prior density g(O)) is the estimator with the smallest Bayes risk; that

is, O" is the estimator for which

IZ,\(0*) = inf{7,,g(0)}

It is straightforward to find the Bayes estimator for a given loss function and

prior density. For a squared-error loss function, Mood et al. show that the Bayes

estimator is the mean of the posterior density (i.e., 6* = E[OElx) [33:345].

One other property of Bayes estimators is useful in certain situations. Biswas

shows that Bayes estimates and maximum likelihood estimates converge as sample
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size approaches infinity. Further, this property holds regardless of the form of the

prior [5:338].

Bayesian Interval Estimation

The interpretation of a Bayesian interval estimate is different from that of

its classical counterpart, the confidence interval. Recall that a frequentist assumes

the parameter 0 estimated is an unknown constant. In a classical interval estimation

method, the estimators of the end points of the interval are random variables. There-

fore, a classical confidence coefficient is not an explicit probability statement about

0. Instead, it is the probability that the interval estimator will generate an interval

that will contain the true value of 0 (and is therefore a declaration of confidence in

the estimate) [32:353].

In the Bayesian view, however, 4 is a random variable, so a Bayesian proba-

bility (or credibility) interval is a direct probability statement about the value of 0.

Thus, the two-sided 100(1 - -) percent probability interval [OL, Ou] has an intuitive

interpretation: E) will take on a value within the interval with probability 1 - Y (that

is, P{E E [OL, 0uI} = 1 - 7). The bounds of the interval [DL, Ov] can be evaluated

directly by solving f°_ h(9l )dO =(47)
S(47

00 2

and

I'jh(DVY)dO - _ (48)', 2

for OL and Ou. This leads to a symmetric probability interval for 0. There are other

types of two-sided Bayesian probability intervals, but the symmetric interval is most

often used because it is simple to calculate (30:208].

A one-sided Bayesian probability interval has an interpretation similar to that

of the two-sided interval. The lower probability bound, which is considered exten-
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sively in this thesis, is found by solving the following equation for OL:

L0h(OIX-)dO = -y (49)

This is an obvious adaptation of Equation (47). An expression for the upper bound

can be formulated by similarly manipulating Equation (48).

Empirical Bayesian Inference

A school of thought that tries to mitigate the subjectivity of Bayesian inference

is the empirical Bayes approach. Empirical Bayes procedures compensate for the un-

certainty over the form of the prior density by estimating its hyperparameters from

the current data set. Because they violate Bayes Theorem by making the hyperpa-

rameters dependent on the test data, empirical Bayes procedures are controversial

[36:431. Furthermore, empirical Bayes estimates require a data set of adequate size;

when the data set is small, it makes no sense to use these methods (philosophical

issues notwithstanding). Since empirical procedures are not used in this thesis, they

are not developed here. The interested reader is referred to [28] and Chapter 13 of

[30].

Further Reading

Press, who has been cited frequently in this appendix, provides a general intro-

duction to Bayesian statistics that is well-written and easy to understand [36]. Also,

Martz and Waller's reliability text [30] and Berger's book on decision theory [41 con-

tain brief, but comprehensible, introductions to Bayesian inference as a foundation

for their primary subject matter (with Berger's treatment being considerably more

rigorous). For an advanced treatment of Bayesian probability theory, the reader

should refer to De Groot [101.
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Most standard reliability textbooks contain at least a chapter introducing

Bayesian inference and describing its applications to reliability. Some of the texts

containing particularly enlightening expositions of Bayesian theory include Crowder

et al. [91, Kapur and Lamberson [151, and Mann et al. (271.

For a reliability text written exclusively from the Bayesian viewpoint, the

reader is referred to Martz and Waller [301. This book is the standard reference

work on Bayesian reliability methods.
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Appendix B. The Mellin Transform

The Mellin transform of f(x) with respect to the complex parameter u is

S00

M{f(x);u} = x-' yf(x)dx (50)

If f(x) is the density function of the continuous random variable X and u is an

integer greater than 2, it immediately follows that

M{f(x);u} = E[Xu-1 ] (51)

which is the (u - 1)th central moment of X.

The Mellin transform is useful for finding density functions for products and

quotients of random variables. Consider the independent, nonnegative random vari-

ables X1 ,. . , Xk with density functions fi(x1), ... ,f•(xk). If the random variable

Y = [lt= Xi has a density function h(y), it can be shown that

k

M{h(y);u} = "IM{f,(x2 );u} (52)
i=1

The function f(x) associated with the Mellin transform M{f(x);u} can be

derived using the Mellin inversion integral:

1Iim U AX-'Mjf(x);utdul (53)

f r)= i J. i

Since tables of Mellin transform pairs are available for common functional forms, it

is often possible to avoid evaluating the inversion integral.

Springer, from whose book this discussion is digested, provides a comprehensive

treatment of the Mellin transform [40:91-97]. Oberhettinger provides an extensive

catalog of Mellin transform pairs [351.
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Appendix C. Assessment of the Monte Carlo Process

Overview

When a Monte Carlo study is conducted, it is important to understand the

variability inherent in the simulation process. If a simulation's variance is too high,

its results are suspect; this usually happens when the sample size of the simulation is

too small. Two measures of merit are often used to judge the quality of a Monte Carlo

simulation: the Monte Carlo standard error (MCSE) and the Monte Carlo confidence

interval (MCCI). This appendix presents the theory behind these statistics, then uses

them to assess the simulation conducted during this investigation.

Theory

Since the variability of the simulation process is under consideration, the MCSE

is the standard error constructed from the expected value of the parameter being

simulated. Consider a simulation parameter 9 with mean pi and variance o?. Fur-

ther, define N as the Monte Carlo sample size. From Theorem 7.1 in Mendenhall

et al. [32:304], it follows that the Monte Carlo variance is

2 01?ri
aMC = Var[yiJ- N (54)

so the MCSE is obviously

1oMC (55)

The unbiased estimator for aMc is

= = 1 N
SMC = -N d - AX) (56)SM vW(N - 1) i~
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where {0i, i = 1,..., N} is the set of simulated estimates and

N 6) (57)/•= N

is the estimator of pi.

If the MCSE is known, the general form of the MCCI can easily be derived

using the pivot method. Since pi is normally distributed with standard error aMC,

it immediately follows that the 100(1 - y) percent MCCI for pj is

[AA Z+y/2 OMC] (58)

Results and Analysis

Tables 16 lists the estimated MCSE and a 95 percent MCCI by system for each

type of point estimate. Table 17 contains the same information for lower confidence

and probability limits generated by the Lindstrom-Madden and approximate beta

interval estimators (due to technical difficulties, no statistics are presented for the

other two interval estimators). The sampling statistics show that, for N = 5000, the

variability in the simulation process is reasonably low.

The Monte Carlo statistics for the Bayesian estimators are much lower than

those derived for the classical estimators. However, this is not surprising since the

prior information dominates the small sets of simulated test data. A comparison of

the Bayesian results in Table 16 with the MSE values for the Bayes estimator (see

Table 5) suggests that there is a significant bias component in the Bayes estima-

tor's MSE; the size of the bias seems to be a function of the accuracy of the prior

information.
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Table 16. Monte Carlo Statistics: Point Estimates.

1 _MLE Bayes Estimator
System Suf F 95% MCCI SMC 1 95% MCCGCI

1 0.0005 [0.9945, 0.99641 0.0000 [0.2369, 0.2370]
2 0.0015 [0.9498, 0.9557] 0.0003 [0.7143, 0.7155]
3 0.0029 [0.7663, 0.77761 0.0002 [0.2663, 0.2669]
4 0.0032 [0.5850, 0.59751 0.0003 [0.4646, 0.4659]
5 0.0018 [0.9261, 0.9331] 0.0001 [0.2314, 0.2320]
6 0.0030 [0.7185, 0.7305] 0.0006 [0.5890, 0.5914]
7 0.0027 [0.8078, 0.8185] 0.0001 [0.2573, 0.2579]
8 0.0028 [0.7890, 0.8000] 0.0003 [0.6650, 0.6662]
9 0.0020 [0.5860, 0.5939] 0.0004 [0.2026, 0.2041]
10 0.0018 [0.7705, 0.7775] 0.0008 [0.7011, 0.7040]
11 0.0010 [0.9498, 0.9536] 0.0001 [0.3445, 0.3449]
12 0.0003 [0.9945, 0.9957] 0.0001 [0.8706, 0.8709]
13 0.0008 [0.9689, 0.9719] 0.0002 [0.3603, 0.3609]
14 0.0014 [0.8714, 0.8770] 0.0006 [0.7428, 0.7450]
15 0.0020 [0.6536, 0.6614] 0.0003 [0.2749, 0.2759]
16 0.0016 [0.8424, 0.8486] 0.0004 [0.7397, 0.7413]
17 0.0021 [0.8994, 0.9074] 0.0000 [0.0544, 0.0545]
18 0.0007 [0.9885, 0.9912] 0.0001 [0.5228, 0.5232]
19 0.0027 [0.3436, 0.3544] 0.0000 [0.0423, 0.0425]
20 0.0032 [0.5934, 0.6059] 0.0003 [0.4784, 0.4797]
21 0.0031 [0.7055, 0.7176] 0.0001 [0.0420, 0.0422]
22 0.0032 [0.5026, 0.5150] 0.0005 [0.3056, 0.3073]
23 0.0014 [0.9529, 0.9586] 0.0000 [0.0767, 0.0768]
24 0.0031 [0.5208, 0.5330] 0.0003 [0.3492, 0.3503]
25 0.0020 [0.5962, 0.6039] 0.0002 [0.1012, 0.1019]
26 0.0017 [0.3437, 0.3502] 0.0005 [0.2457, 0.2477]
27 0.0004 [0.9897, 0.9914] 0.0000 [0.1224, 0.12241
28 0.0015 [0.8670, 0.8727] 0.0003 [0.7311, 0.7324]
29 0.0020 [0.6308, 0.6387] 0.0001 [0.0821, 0.0827]
30 0.0020 [0.5881, 0.5959] 0.0007 [0.4293, 0.4318]
31 0.0019 [0.6740, 0.6815] 0.0001 [0.0973, 0.0976]
32 0.0017 [0.8184, 0.8249] 0.0004 [0.6607, 0.6621]
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Table 17. Monte Carlo Statistics: Interval Lower Bounds (Selected Estimators).

_ Lindstrom-Madden Limit 1 Approximate Beta Limit
System SMC 1 95% MCCI SMC 95% MCCI

1 0.0005 [0.5570, 0.5589] 0.0000 [0.1434, 0.1435]
2 0.0014 (0.5148, 0.5203] 0.0003 [0.5763, 0.5776]
3 0.0024 [0.3556, 0.36491 0.0001 [0.1930, 0.1935]
4 0.0023 [0.2211, 0.2300] 0.0003 [0.3680, 0.3692]
5 0.0016 [0.4926, 0.49911 0.0001 [0.1394, 0.1398]
6 0.0024 [0.3183, 0.3277] 0.0006 [0.4495, 0.4519]
7 0.0023 [0.3901, 0.3992] 0.0001 [0.1855, 0.1859]
8 0.0023 [0.3744, 0.38351 0.0003 [0.5628, 0.56411
9 0.0018 [0.3492, 0.3565J 0.0003 [0.1301, 0.1312]
10 0.0019 [0.5275, 0.5349] 0.0008 [0.5833, 0.5865]
11 0.0012 [0.7305, 0.7351] 0.0001 [0.2667, 0.26711
12 0.0004 [0.7872, 0.7887] 0.0001 [0.7993, 0.79961
13 0.0010 [0.7544, 0.7582] 0.0001 [0.2578, 0.2583]
14 0.0016 [0.6371, 0.6436] 0.0006 [0.6281, 0.6305]
15 0.0019 [0.4116, 0.41911 0.0002 [0.2063, 0.2072]
16 0.0018 [0.6049, 0.6118] 0.0004 [0.6504, 0.6521]
17 0.0019 [0.4684, 0.4758] 0.0000 [0.0251, 0.0252]
18 0.0007 [0.5512, 0.5539] 0.0001 [0.3862, 0.3866]
19 0.0015 [0.0827, 0.0884] 0.0000 [0.0247, 0.0248]
20 0.0023 [0.2270, 0.2360] 0.0003 [0.3826, 0.3838]
21 0.0024 [0.3082, 0.3177] 0.0000 [0.0184, 0.01851
22 0.0021 [0.1687, 0.1769] 0.0004 [0.2015, 0.20291
23 0.0014 [0.5176, 0.5229] 0.0000 [0.0481, 0.0482]
24 0.0021 [0.1792, 0.1874] 0.0002 [0.2654, 0.2664]
25 0.0018 [0.3581, 0.3652] 0.0001 [0.0595, 0.0600]
26 0.0012 [0.1522, 0.1570] 0.0004 [0.1680, 0.1696]
27 0.0006 [0.7809, 0.7831] 0.0000 [0.0846, 0.0846]
28 0.0017 [0.6323, 0.6388] 0.0004 [0.6426, 0.6439]
29 0.0019 [0.3902, 0.3976] 0.0001 [0.0466, 0.0470]
30 0.0018 [0.3509, 0.3580] 0.0006 [0.3215, 0.3237]
31 0.0019 [0.4306, 0.4380] 0.0001 [0.0655, 0.0658]
32 0.0018 [0.5785, 0.5856] 0.0004 [0.5689, 0.5704]
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Appendix D. Contingency Tables

Point Estimator Tables

This section contains the contingency tables that were used to test for the

significance of factor effects on the choice of the best point estimator. The single-

factor tables (numbers 18 to 22) are listed first, followed by the pair-wise tables

(numbers 23 to 32). For two-by-two tables, Fisher's Exact Test was used to derive

the p-values; for larger tables, the p-value was found using Pearson's chi-squared

statistic. The values for Goodman and Kruskal's r, a measure of nominal association,

are also included.

Table 18. Main Effect Test: System Size.

MLE Bayes Row Totals
k =5 11 5 16

k =10 12 4 16

Column Totals 23 9 32

P-Value = 0.5000 r = 0.005

Table 19. Main Effect Test: Sample Size.

MLE Bayes Row Totals
ni =4 10 6 16

ni =10 13 3 16
Column Totals [23 9 D 32

P-Value = 0.2166 r = 0.043
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Table 20. Main Effect Test: Ri Levels.

MLE Bayes Row Totals
equal j12 4 16

unequal 1l 5 16
Column Totals j 23 9 32

P-Value = 0.5000 r = 0.005

Table 21. Main Effect Test: Prior Information Strength.

MLE Bayes Row Totals
uniformly weak 12 4 16

uniformly strong 11 5 16

Column Totals 1 2319 32

P-Value = 0.5000 r = 0.N05

Table 22. Main Effect Test: Prior Information Accuracy.

MLE Bayes Row Totals
uniformly inaccurate 16 0 16
uniformly accurate 7 9 16

Column Totals ] 23 ] 9 If 32

P-Value = 0.0004 r = 0.391
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Table 23. Interaction Test: System Size and Sample Size.

MLE Bayes Row Totals
k =5 and ni = 4 5 3 8
k=5andni=10 6 2 8

k= 10andni=4 5 3 8
k=10andni=10 7 __1_1 8_ _

L Column Totals 23 1 9 32

X2 = 1.700 P-Value = 0.6368 T = 0.053

Table 24. Interaction Test: System Size and Ri Levels.

MLE Bayes Row Totals
k = 5 and Ri equal 6 2 8

k = 5 and Ri unequal 5 3 8
k = 10 and R; equal 6 2 8

k = 10 and Rj unequal 6 2 8

Column Totals 1 231 9 32

X2 = 0.464 P-Value = 0.9268 r = 0.014

Table 25. Interaction Test: System Size and Prior Information Strength.

MLE Bayes Row Totals
k =5 and weak priors 6 2 8

k =5 and strong priors 5 3 8

k =10 and weak priors 6 2 8
k =10 and strong priors 6 2 8 8

Column Totals ]23 1 9 32

X2 = 0.464 P-Value = 0.9268 -r = 0.014
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Table 26. Interaction Test: System Size and Prior Information Accuracy.

MLE Bayes Row Totals
k = 5 and inaccurate priors 8 0 8

k = 5 and accurate priors 3 5, 8
k = 10 and inaccurate priors 8 0 8
k = 10 and accurate priors 4 4 8

Column Totals 23 9 32

X -= 12.831 P-Value = 0.0050 r = 0.401

Table 27. Interaction Test: Sample Size and Ri Levels.

MLE Bayes Row Totals
ni = 4 and Ri equal 6 2 8

ni = 4 and Ri unequal 4 4 8
ni = 10 and Ri equal 6 2 8

ni = 10 and Ri unequal Y 1 8

Column Totals 23 9 32

X' = 2.937 P-Value = 0.4014 r = 0.092

Table 28. Interaction Test: Sample Size and Prior Information Strength.

MLE Bayes Row Totals
n= 4 and weak priors 6 2 8

ni =4 and strong priors 4 4 8
n= 10 and weak priors 6 2 8

ni =10 and strong priors 7 1 11 8

Column Totals 23 T 9 11 32

X2 = 2.937 P-Value = 0.4014 r = 0.092

68



Table 29. Interaction Test: Sample Size and Prior Information Accuracy.

MLE Bayes Row Totals
n= 4 and inaccurate priors 8 0 8
ni = 4 and accurate priors 2 6 8

ni 10 and inaccurate priors 8 0 8
ni= 10 and accurate priors 5 3 -311 8 j

Column Totals 123 1 9 IF 32

X2 = 15.304 P-Value = 0.0016 r = 0.478

Table 30. Interaction Test: R, Levels and Prior Information Strength.

MLE Bayes, Row Totals
Ri equal and weak priors 6 2 8

R, equal and strong priors 6 2 8
Ri unequal and weak priors 6 2 8

Ri unequal and strong priors 5 3 8

Column Totals ]231 91 32

X- = 0.464 P-Value =0.9268 r = 0.014

Table 31. Interaction Test: Ri Levels and Prior Information Accuracy.

MLE Bayes Row Totals
R, equal and inaccurate priors 8 0 8

R, equal and accurate priors 4 4 8
Ri unequal and inaccurate priors 8 0 8

RI, unequal and accurate priors 3 5 8

Column Totals [ 23T 9 11 32

X' = 12.831 P-Value = 0.0050 r = 0.401
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Table 32. Interaction Test: Prior Information Strength and Accuracy.

MLE Bayes Row Totals
weak, inaccurate priors 8 0 8
weak, accurate priors 4 4 8

strong, inaccurate priors 8 0 8
strong, accurate priors 3 5 8

Column Totals 23 9 32

X -= 12.831 P-Value = 0.0050 r = 0.401

Interval Estimator Tables

This section contains the contingency tables that were used to test for the

significance of factor effects on the choice of the best interval estimator. Frequency

counts for the tied cases (Systems 14, 26 and 32) were grouped with the frequency

counts of those systems preferring the approximate beta estimator; this was necessary

to keep the expected cell frequencies sufficiently large.

The single-factor tables (numbers 33 to 37) are listed first, followed by the

pair-wise tables (numbers 38 to 47). For two-by-two tables, Fisher's Exact Test was

used to derive the p-values; for larger tables, the p-value was found using Pearson's

chi-squared statistic. The values for Goodman and Kruskal's r, a measure of nominal

association, are also included.

Table 33. Main Effect Test: System Size.

L-M Not L-M Row Totals

k=5 8 8 16
k =10 10 6_ 16

Column Totals 18 14 IF 32

P-Value = 0.3612 T = 0.016
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Table 34. Main Effect Test: Sample Size.

L-M Not L-M Row Totals
ni = 4 9 7 16
n_ _ _ 10 9 7 16

Column Totals 18 14 32

P-Value =0.6388 r = 0.000

Table 35. Main Effect Test: R, Levels.

L-M Not L-M Row Totals
equal 9 7 16

unequal 9 7 16

Column Totals 18 14 ]1 32

P-Value = 0.6388 r = 0.000

Table 36. Main Effect Test: Prior Information Strength.

L-M Not L-M Row Totals
uniformly weak 10 6 16

uniformly strong 8 8 16

Column Totals j 18 14 32

P-Value = 0.3612 r = 0.016
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Table 37. Main Effect Test: Prior Information Accuracy.

L-M Not L-M Row Totals
uniformly inaccurate 16 0 16
uniformly accurate 2 14 16

Column Totals 18 14 32

P-Value = 0.0000 r = 0.778

Table 38. Interaction Test: System Size and Sample Size.

L-M Not L-M Row Totals
k =5 and ni =4 4 4 8

k =5 and ni =10 4 4 8
k=10andni=4 5 3 8
k=10andni=10 5 _ 3 8

Column Totals [ 18 14 32

X2 = 0.508 P-Value = 0.9171 -r = 0.016

Table 39. Interaction Test: System Size and Ri Levels.

L-M Not L-M Row Totals
k = 5 and Ri equal 4 4 8

k = 5 and R, unequal 4 4 8
k = 10 and Ri equal 5 3 8

k = 10 and Ri unequal 5 3 1 8

Column Totals ] 18 1 14 1 32

X2 = 0.508 P-Value = 0.9171 r = 0.016
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Table 40. Interaction Test: System Size and Prior Information Strength.

L-M Not L-M Row Totals
k =5 and weak priors 4 4 8

k = 5 and strong priors 4 4 8
k =10 and weak priors 6 2 8

k = 10 and strong priors 4 4 8

Column Totals [18 14 32

X2 = 1.524 P-Value = 0.6768 r = 0.048

Table 41. Interaction Test: System Size and Prior Information Accuracy.

L-M Not L-M Row Totals
k = 5 and inaccurate priors 8 0 8
k = 5 and accurate priors 0 8 8

k = 10 and inaccurate priors 8 0 8
k = 10 and accurate priors 2 6 8

Column Totals 1 18 1 14 32

X' = 25.905 P-Value = 0.0000 - = 0.810

Table 42. Interaction Test: Sample Size and R, Levels.
L-M Not L-M Row Totals

ni -= 4 and R equal 5 3 8
ni = 4 and R, unequal 4 4 8
ni = 10 and R, equal 4 4 8

ni = 10 and R, unequal 5 3 8

Column Totals 18 14 lI 32

X2 = 0.508 P-Value = 0.9171 r = 0.016
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Table 43. Interaction Test: Sample Size and Prior Information Strength.

L-M Not L-M Row Totals
ni= 4 and weak priors 5 3 8

ni =4 and strong priors 4 4 8
ni =10 and weak priors 5 3 8

ni 10 and strong priors 4 4 8
Column Totals j 18 14 11 32

X -= 0.508 P-Value = 0.9171 r = 0.016

Table 44. Interaction Test: Sample Size and Prior Information Accuracy.

L-M Not L-M Row Totals
ni =4 and inaccurate priors 8 0 8
ni = 4 and accurate priors 1 7 8

ni =10 and inaccurate priors 8 0 8
ni= 10 and accurate priors 1 7 8

Column Totals ] 18i 14 11 32

X -= 24.889 P-Value = 0.0000 r = 0.778

Table 45. Interaction Test: R, Levels and Prior Information Strength.

L-M Not L-M Row Totals
R, equal and weak priors 5 3 8
R, equal and strong priors 4 4 8

R, unequal and weak priors 5 3 8
R, unequal and strong priors 4 4 8

Column Totals J 18 14 If 32

X -= 0.508 P-Value = 0.9171 r = 0.016
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Table 46. Interaction Test: R, Levels and Prior Information Accuracy.

L-M Not L-M Row Totals

Ri equal and inaccurate priors 8 0 8
R, equal and accurate priors 1 7 8

R, unequal and inaccurate priors 8 0 8

R, unequal and accurate priors F1 7 8

Column Totals 1 181 14 32

X2 = 24.889 P-Value = 0.0000 r = 0.778

Table 47. Interaction Test: Prior Information Strength and Accuracy.

L-M Not L-M Row Totals
weak, inaccurate priors 8 0 8
weak, accurate priors 2 6 8

strong, inaccurate priors 8 0 8
strong, accurate priors 0 8

Column Totals ) 181 14 32

X2 = 25.905 P-Value = 0.0000 r = 0.810
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