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Gauss elimination by segments and multivariate polynomial interpolation

C. de Boor I

Abstract. The construction of a polynomial interpolant to data given at
finite pointsets in IRd (or, most generally, to data specified by finitely many linear
functionals) is considered, with special emphasis on the linear system to be solved.
Gauss elimination by segments (i.e., by groups of columns rather than by columns)
is proposed as a reasonable means for obtaining a description of all solutions and
for seeking out solutions with 'good' properties. A particular scheme, due to Amos
Ron and the author, for choosing a particular polynomial interpolating space in
dependence on the given data points, is seen to be singled out by requirements of
degree-reduction, scale-invariance, and a certain orthogonality requirement. The
close connection, between this particular construction of a polynomial interpolant
and the construction of an H-basis for the ideal of all polynomials which vanish at
the given data points, is also discussed.

1. Introduction

Polynomial interpolation in d variables has long been studied from the fol-
lowing point of view: one is given a polynomial space, F, and seeks to characterize
the point sets e C IRd for which the pair (0, F) is correct in the sense that F
contains, for each g defined at least on 9, exactly one element which agrees with
9 on 0. Further, the space F is either the space Hk of all polynomials on IRd of
degree < k, or is, more generally, a D-invariant space spanned by monomials. See
R. A. Lorentz [9] for an up-to-date accounting of the many interesting efforts in
this direction.

In contrast, de Boor and Ron [5] starts with an arbitrary finite point set
0 C IRd and proposes a particular choice, denoted He, from among the many
polynomial spaces F for which (E, F) is correct. To be explicit (an explanation
can be found at the end of Section 7), the definition of He makes use of the
least term f, of a function f, which, by definition, is the first, or lowest-degree,
nontrivial term in the expansion of f into a sum f = fo + fi + f2 + ... in which
fj is a homogeneous polynomial of degree j, all j. With this, He is defined as the
linear span

He := span{lf : f E expel

of least terms of elements of the linear span expe of exponentials es : x " exp(O.x),
o E 9. Because of this, we have come to call the resulting interpolant

Peg

' Computer Sciences Department, 1210 W. Dayton St., Madison WI 53706-
1685, USA (deboortcs.wisc.edu)
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to a given function g, defined at least on E), the least interpolant to g.
The connection between the least interpolant and Gauss elimination (applied

to the appropriate Vandermonde matrix) was already explored in de Boor [2] and
de Boor and Ron [7]. However, this earlier discussion left the (wrong) impression
that a particular variant of Gauss elimination was needed in order to obtain the
least interpolant. The present paper corrects this impression, in the process of
examining the question of what might single out He from among all polynomial
spaces F for which (E, F) is correct. To be sure, de Boor and Ron [8] already
contains such a discussion, but not at all from the point of view of elimination.
As in [8], the discussion here is actually carried out in the most general situation
possible, namely of interpolation to data of the form Ag, with A an arbitrary linear
map to IR' from the space H of all polynomials on IRd. Since such 'data maps' are
of finite rank, it would be trivial to extend them to functions on IRd other than
polynomials.

In the discussion, two properties of He are seen to play a particularly impor-
tant role: (i) PE is degree-reducing, i.e.,

deg Peg < degg, Vg E rl;

and (ii) He is scale-invariant, i.e., for any r > 0 and any p E Hie, also p(r.) E IHe.
The latter property is equivalent to the fact that Hle stratifies, i.e., He9 is the
direct sum Hle = (D.k H°k of its homogeneous subspaces

rIH, :=e n rNO

(with '° the space of all homogeneous polynomials of exact degree k (including
the zero polynomial)). Also, the most intriguing property of fle (see de Boor and
Ron [8]), namely that

no =n kerpt(D),

is looked at anew. Here, pt is the leading term of the polynomial p, i.e., the last,
or highest-degree, nontrivial term in the expansion p = po + p +P +... of p with
pj homogeneous of degree j, all j.

In addition, it is shown how to make use of the construction of Ile by elim-
ination to construct an H-basis for the polynomial ideal of all polynomials which
vanish on 0. This responds to questions raised by algebraists during talks on the
algorithm given in [2] and [7].

The paper highlights Gauss elimination by segments. In this generalization
of Gauss elimination, the matrix A to be factored is somehow segmented, i.e., is
given in the form

A = [Ao, A 1,....

with each segment, Aj, comprising zero or more consecutive columns of A. (Here
and throughout, we use MATLAB notation.) Correspondingly, elimination is to
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proceed, not column by column, but segment by segment. In the case of polynomial
interpolation, the segmentation naturally arises by grouping monomials of the
same degree together and because there is no natural ordering for the monomials
of the same degree. Because of this particular application, we start the indexing
of the segments of A with 0.

By definition, Gauss elimination by segments appiied to A = [Ao, A1,....
produces a factorization

[Ao, A,,...,] , M[Ro, R,....]

with M invertible and

R := f/o, ,..

a segmented row-echelon form, the segmentation corresponding to that of
A. This means that R is block upper triangular, R = (Rj) say with R. =
[Roj; RIj;. ... having exactly as many columns as Aj does, with each diagonal
block R12 onto. (A casual search of the literature failed to turn up earlier occur-
rences of this concept of a segmented row echelon form. However, in hindsight, the
notion is so natural that it is bound to have been used before.)

Except for trivial cases, a segmented matrix has infinitely many such factor-
izations. Nevertheless, all such factorizations have certain properties in common.
For our purposes, the most important property is the fact that, for each j, the
row-space of Rjj depends only on A (and the segmentation). In particular, it is
independent of the details of the elimination process which led to R. We take the
trouble to prove this since, as we also show, the row-space of Rjj provides all the
information needed to construct the space fl0,j = fie n 11H of homogeneous poly-
nomials of degree j in 11e. We also identify the numerical procedure proposed in
[2] and [7] as a particularly stable way for obtaining such a segmented row-echelon
form.

For simplicity, the paper deals with real-valued functions only. All the results
are true if matrix transpose is replaced by conjugate transpose and, correspond-
ingly, certain quantities by their complex conjugate.

Finally, the paper is also meant to illustrate the perhaps debatable point that
it is possible to write about polynomial interpolation in several variables without
covering entire pages with formulae.

The paper had its start in a discussion I had with Nira Dyn, in August of 1992,
concerning possible alternatives to the algorithm in [7], and subsequent discussions,
in February of 1993, concerning possible alternatives to the least interpolant. In
particular, the use of column maps below is my response to Nira Dyn's very direct
and useful way of describing the least interpolant.
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2. Polynomials

A polynomial in d variables is customarily written in the form

p(X) - C•(a), (2.1)

with

x()( ... x(d)a), x = (x(1),...,x(d)) E IRd

and the sum taken over the set

2Zd = {a E lRd: a(j) E 2Z+, all j}

of multiindices. Further, the coefficient sequence c has finite support.
Since it is important to distinguish between the polynomial p and its value

p(x) at the point x, a notation for the power map x '-+ xa is needed. There being
no standard notation around, we'll use for it 0(a. Here is the formal definition:

() : lRd _+ R: X : X.

In these terms, the polynomial p of (2.1) can be written

p = Oca)

As already indicated by the unusual positioning of the coefficients, this formula
for p can be viewed as the result of applying the 'matrix'

X : [0 E 2 +]

with 'columns' ()' to the 'vector' c in the standard way, namely by multiplying
the 'column' with index a with the entry of c with index a and summing. Thus,

p = Xc.

This notation (taken from de Boor [3]) turns out to be very convenient in what is
to follow.

Formally, we think of X as a linear map, defined on the space

dom X := (2Z_ -- R)o := {c: . _4+ lR: # supp C < co}

of finitely supported real-valued sequences indexed by 2zz., and mapping into the
space JRd -- JR of real-valued functions of d arguments.
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Note that X is 1-1 and its range is H, the space of polynomials in d inde-
terminates, interpreted here as functions on IRd. Any linear subspace F of H of
dimension n is of the form

F = ranXW,

with W a 1-1 linear map from 1Rn into domX, hence V := XW (or, in more
traditional language, the sequence of columns of V) is a basis for F. To be sure,
both IV and V are linear maps on ]Rn, hence are, in the language of [3], column
maps. This language is meant to stress the fact that any linear map B, from n-
dimensional coordinate space IFn to some linear space S over the scalar-field IF,
is necessarily of the form

B = [b1,...,b,]: IF" -4 S: c bjc(j),

with
bj := Bij

the jth column of B and

ij : ( 0 '. . . ..O , 1 , 0 ,. . . ).

j- I zeros

We denote by
#B

the number of columns in the column map B. If the target, S, of the column map
B E L(IFn, S) is itself a coordinate space, S = IF't say, hence B is (naturally
identified with) an m x n-matrix, then the columns of B as a column map are,
indeed, its columns as a matrix.

For any linear map A, whether a column map or not, we denote by

ran A, ker A

its range (or set of values) respectively its kernel or nullspace.

3. Interpolation

As discussed in the Introduction, we are interested in interpolation at a given
finite point set 0 C Rd, of cardinality

n := #E),

say. Define
A : H -+ 1R' : g •+ gl := (g(O) : 0 E 0).
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Then, f E IT interpolates to g at 0 iff f solves the equation

A? = hg. (3.1)

We ' wve introduced the map A here, not only for notational convenience, but
also in order to stress the fact that most of the discussion to follow is valid for
any onto linear map A : I -+ IR'. We call any linear map A :I -4 IR' a data
map and note that it is necessarily of the form A : -+ (Aig i = 1,... , n) for
some linear functionals A\ on TI, which we call the rows of A, for obvious reasons.
Given an onto data map A, we say that (A, F) is correct (or, F is correct for
A) if (3.1) has exactly one solution in F for every g E TI. In that case, we denote
the unique interpolant in F to g E TI by

PF9.

Here, for completeness, are certain known facts about interpolation.

Lemma 3.2. Let F be an n-dimensional polynomial space, let V E L(IRn, TI) be
a basis for F, and let A E L(II, IRn) be onto. Then, the following are equivalent:

(i) (A, F) is correct.
(ii) A IF is invertible.

(iii) A is 1-1 on F.
(iv) AV is invertible.

Further, if any one of these conditions holds, then

Pp = V(AV)-1 A.

Proof. Since A is onto, i.e., its range is all of IR'1 , correctness of (A, F)
is equivalent to having the linear map F -+ IR' : f •- Af be invertible, and,
since both domain and target of this map have the same dimension, n, this is
equivalent to having this map be 1-1. Finally, since V is a basis for F, the linear
map VIF : IR' -+ F : a '-+ Va is invertible. Since AV = A I VIF, it follows that
AIF is invertible iff AV is invertible. 0

In order to investigate what spaces F are correct for A, we look at all possible
polynomial interpolants to a given g, i.e., at all possible solutions of (3.1). Since
X is 1-1, the solutions of (3.1) are in 1-1 correspondence with solutions of the
equation

AX? = Ag.

This equation is a system of n linear algebraic equations, albeit in infinitely many
unknowns, namely the power coefficients c(a), a E 2Z, of the interpolant. Never-
theless, we may apply Gauss elimination to determine all solutions.

4. Gauss elimination

Gauss elimination (with row pivoting) produces a factorization

AX = MR,
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with M invertible, and R 'in row-echelon form', i.e., 'right-triangular' in the follow-
ing sense. Each row other than the first is either entirely zero, or else its left-most
nonzero entry is strictly to the right of the left-most nonzero entry in the preceding
row. The left-most nonzero entry (if any) in a row is called the pivot element
for that row, and the row is called the pivot row for the unknown associated
with the column in which the pivot element occurs. An unknown is called bound
or free depending on whether or not it has a pivot row. It is a standard result
that an unknown is bound if and only if its column is not in the linear span of the
columns to the left of it.

Since AX is onto (X being onto 11 and A being onto), every row of R will be
a pivot row. Let ( a1,...,on) be the corresponding sequence of indices of bound
unknowns, and set F = ran V with

V :=

Then AV is invertible, hence (A, F) is correct.
This construction is quite arbitrary. As should have been clear from the

language used, Gauss elimination depends crucially on the ordering of the columns
of AX, i.e., on the ordering of the columns of X. On the other hand, for d > 1,
there is no natural ordering of the columns of X, i.e., of the monomials. The best
we can do, offhand, is to order the monomials by degree. Here, to be sure,

degXc = max{jao: II llI = a(i) c(o) # O}.

Equivalently, degp = min{k : p E flk}, with

nlk := ran X<k,

where
Xk := [X0,...- , X1.]

and
Xj := [() : InI = A].

Assume that X is graded, i.e., segmented by degree, i.e.,

X = [Xo, X1 ,..-1.

This has the following happy consequence.

Result 4.1 ([7; (2.5)]). If X is graded, then polynomial interpolation from the
space F spanned by the monomials corresponding to the bound columns of AX is
degree-reducing, i.e.,

deg PFg _deg g Vg Erl.

7



Proof. Recall, as we did earlier, that an unknown is bound if and only
if its column is not a linear combination of preceding columns. In particular, any
column is in the linear span of the bound columns not to the right of it. This
implies that, if degg = k and therefore Ag E ranAX<k, then Ag is necessarily
in the linear span of the bound columns in AX<k. Since f := PFg is the unique
element in F with Af = Ag, it follows that PFg is already in

F& := F nHk.
0

In particular, for d = 1 and A = le, we recover in this way the standard
choice for F, namely [I<,. However, for d > 1, F still depends on the ordering of
the columns within each Xk and there is no natural ordering for them. It is for
this reason that we now consider Gauss elimination by segments.

5. Gauss elimination by segments

To recall from the Introduction, Gauss elimination by segments applied to
the segmented matrix A = [Ao, A.,.. . produces a factorization

[Ao, A,,....] = AM[& , Rt,....

with M invertible and

R :=fRoR,....

a segmented row-echelon form, the segmentation corresponding to that of A. This
means that R is block upper triangular, R = (Rij), say, with

S= (RoF ;R ij; .1 = [U j;R j; := [R ]

#Rj = #A,, and with each diagonal block Rjj onto. (Use of semicolon as in
lvIATLAB.)

While, except for trivial cases, a segmented matrix has infinitely many such
factorizations, some properties of such a factorization depend only on A and the
particular segmentation used. Here are the basic facts.

Lemma 5.1. Let A, B, C, M, S, Q, T be matrices with

M invertible, #B = #S, and S onto. Then
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(i) The transpose S' of S is (i.e., the rows of S form) a basis for the row-space
of B, i.e., for ran B'.

(ii) The row-space of T, i.e., the space ranT', depends only on A and #T =

#A - #B. Explicitly,

ranT' = {y E IR*T : (0,y) E ranA'}.

(iii) For all c I ran T', there exists b so that (b, c) E ker A.

Proof. (i): Since #B = #S, we have B = MS, with Al invertible, hence
ranB' = ran S'M' = ranS'.

(ii): Since M is invertible, ran A' = ran S/ T'. In particular, for any

#T-sequence y and any #S-sequence x, (x, y) E ran A' if and only if

(x.y) = (S'z1,,Q'z 1 + T'z2)

for some sequence z = (zl, z2). In particular, since S is onto and therefore S' is
1-1, such x is zero iff z, = 0. In other words, (0, y) E ran A' if and only if = T'z2
for some z.2.

(iii): If c I ranT' then c E kerT, therefore, for any #S-vector b, A(b,c) =
M(Sb + Qc, 0). It follows that (b,c) E kerA if and only if Sb = -Qc and, since S
is onto by assumption, such a choice for b is always possible. 0

Corollary 5.2. Let
AX = MR

with M invertible and R = (R,,) a segmented row-echelon form, segmented cor-
responding to the segmentation X = fX0, X1 ,...] of X. Then,

(i) for any k, R..k is a basis for

{y E 1R1" : (O,y) E ran(AX<k)'},

with rk. := #Rkk. In particular, ran R'kk depends only on A.
(ii) for any k, #Rk.k = rankRkk = rank AX<k - rank AX<I.

Proof. (i): This follows from (ii) of Lemma 5.1, with the choices B
AX<k, C := AXk, S := (R 3 : 0 <_ i,j < k), Q := [Rok;... ; Rk-1,k], and T := R~k.

(ii): Since M is invertible,

rankAX<k = rank R<k,

and the latter number equals '-<k #R'j since R<k = (Rj : i = 0, 1,...;. =

0,..., k) is block upper triangular-with each diagonal block onto. In particular,
each Rjj has full row rank, hence #R~j = rankRij, all j. 0

We briefly discuss the construction of a segmented row-echelon form for a
given segmented matrix A = [AO, A1 ,...].

• I | I I9



It follows from Lemma 5.1 that, in step 0 of Gauss elimination by segments
applied to the segmented matrix A = [Ao, A 1,...], one determines, by some means,
some basis Pho for ran A'. While this could, of course, be done by Gauss elimina-
tion, with the nontrivial rows of the resulting row-ec."Alon-form for Ao providing
the desired basis, i.e., providing the rows for the matrix Roo, more staMe proce-
dures come to mind. For example, one could construct RPo as an orthogonal basis,
or even an orthonormal basis, for the row-space of A0. The favored numerical pro-
cedure for this would be to construct the QR factorization for .4A, preferably using
Householder reflections and column interchanges, and use the resulting orthonor-
mal basis for ran A'0 .

Since R& is a basis for ran .4A, there is a unique No so that Ao = NoRoo. In
fact, No, or some left inverse for No, is usually found during the construction of
Roo. In any case, since the rows of Roo are a basis for the row-space of Ao, No is
necessarily 1-1, hence can be extended to some invertible matrix Mo = [No,...].
This gives the factorization

A = [Ao, AI,A 2 ,...] = Ao [Ro Q ..1 0 T I T 2 . . "

Subsequent steps concentrate on the segmented matrix T := [T1, T2 ,...].
This discussion of Gauss elimination by segments was only given in order to

indicate the many different ways available for constructing a factorization A = MR
of a segmented matrix A = [Ao, A , ... ] into an invertible M and a correspondingly
segmented row-echelon form. The existence of such a factorization was never in
doubt, as any factorization A = MR obtained by Gauss elimination with partial
pivoting is seen to be of the desired form after R is appropriately blocked.

6. A "natural" choice for F

We have already seen that a correct F canl be so chosen that PF is degree-
reducing. The following result characterizes all such choices F.

Result 6.1 ([8]). If (A, F) is correct, then, PF is degree-reducing if and only if
each Fk. = F n Ilk. is as large as possible.

We give a simple proof of this in a moment, for completeness. But first we
explore what limits if any might actually be imposed on the dimension of FL. Since
correctness of (A, F) implies that A is 1-1 on F, A must be 1-1 on every Fk, hence,
for every k,

dim Fk = dim A(Fk) _< dim AX_<k = rank AX<k.

Moreover, equality is possible here for every k; it is achieved by the subspace F
spanned by the monomials corresponding to bound columns in A[Xo, X1 ,.. .. This
proves the following

10



Corollary 6.2. Assume that (A, F) is correct. Then, PF is degree-reducing if and
only if

dim Ft = rank AX<k, k = 0, 1, 2,.... (6.3)

In other words, if V = [Vo, YV,...] is a graded basis for F, i.e., V<k is a basis
for Fk for every k, then PF cannot be degree-reducing unless

#V1<k = rankAX<k, k- 0,1,2,.... (6.4)

In terms of any segmented row-echelon form R (R,1 ) for A[Xo, Xj, ... ], (6.4) is,
by (ii) of Corollary 5.2, equivalent to

#Vk =#Rkk, k =0,1,2,....

Note that consideration of a graded basis for F imposes no restriction since
such a basis can always be constructed inductively, starting with k = -1: With a
basis VT<_k for Fk already in hand, a requisite 1,j+1 is obtained by completing 17<k

to a basis for Fk+I. For the proof of Result 6.1, we require the evident fact that
we are free to include in Vk.+ any one element from Fj+l\Fk.

Proof of Result 6.1 If PF is degree-reducing and G is any polynomial
space correct for A, then PF is 1-1 on G (since, by Lemma 3.2, PF = V(AV)-'A
with both V and (AV)- 1 1-1, and also A is 1-1 on G), therefore, for any k,
dimGk = dim PF(Gk) _• dim Fk, since PF(Gk) _ PF(ilk) _ Ilk n F Fk (using
the fact that PF(flk) 9 lk since PF is degree-reducing).

Conversely, if PF fails to be degree-reducing, then there exists g with k
deg g < deg PFg =: k'. Since PF9 E Fk, \Fk ,- , we may (by the last sentence before
this proof) include it in a graded basis V for F. Let U be the column map obtained
from V by replacing PFg by g. Then AV = AU, hence also AU is invertible and
therefore also G := ran U is correct for A. However, dim Gk > dim Fk. 0

We are now ready to discuss use of an appropriately segmented row-echelon
form

R = (Rij) = M-'A[X 0,[, X, --

for AX in checking whether a polynomial space F satisfying (6.3) is correct for
interpolation at A. If V is any basis for F, then (A, F) is correct iff the matrix AV
is invertible. With V =: XW, this is equivalent to having RW invertible (since M
is invertible by assumption). Now assume that V = [Vo, VI .... ] is a graded basis
for F. Let

V1 =: XWk, k = O,l.

Then V - <XiWij, all i,j, i.e., the column map W, from 1R, into domX,
given by V =:W, is 1-1 and block upper triangular, with Wij having #Xj rows
and #Vj columns. Since (6.3) holds, #Vj = #R,,, all j. Hence, the matrix RW is
block upper triangular, with square diagonal blocks. Therefore, RW is invertible
if and only if RkkWkk is invertible for each k. We have proved the following.

11



Proposition 6.5. Let MR be any factorization for A[Xo, X, ... ] with M invert-
ible and R = (R1j) a correspondingly segmented row-echelon form. Assume that
the polynomial space F satisfies (6.3), and let V = XW be a graded basis for F,
hence W = (W,,) is block upper triangular, with W,1 having #Xi rows and #R'j
columns. Then (A, F) is correct if and only if RkkWkJk is invertible for every k.

Note that this condition only involves the diagonal blocks of W. This suggests
that we choose all off-diagonal blocks of TV to be zero, thus keeping the structure
of F simple. This is equivalent to the requirement that

F = (eXkTVkk,
k

which, in turn, is equivalent to having F be scale-invariant.
Note further that the condition of the Proposition can always be met, since,

by construction, each Rkk is onto, hence has right inverses.
If Rkk is square, then invertibility of RkkIVk-k implies that Wkk is invertible,

hence then
ran Xk Wkk = ran Xk = [12.

In other words, there is then no real choice; regardless of how Wkk is chosen, F
contains all homogeneous polynomials of degree k.

If Rkk is not square, then the invertibility of Rkk[VVkk does not completely
determine the kth homogeneous component of F. How is one to choose from among
the infinitely many possibilities?

The choice
Wkk=R'k, k = 0, 1,2,... (6.6)

suggests itself, as it guarantees that Rkkl'Vkk is invertible (since Rkk is onto). More-
over, if R.k was chosen as an orthonormal basis, then the diagonal block RkkWkk

becomes an identity matrix, thus facilitating the calculation (by backsubstitution)
of the coefficient vector c of the resulting interpolant Xc from F to the given g.
Indeed, the interpolant is of the form XWa, hence a solves the linear system

AXW? = Ag,

therefore solves the equivalent linear system

RW? = M-'Ag. (6.7)

From a, the coefficient vector c in the power form Xc for the interpolant is obtained
as

c = Wa.

The resulting interpolation scheme PF has additional nice properties. How-
ever, we don't bother to derive them here since PF has a major flaw: Even if

12



A : g t-+ gle, PF depends on the coordinate system chosen in IR , i.e., it fails to
have the desirable property that

PFTg:= TPFg

for all g E II and all 'reasonable' changes of variables, T.

7. Example

Suppose that A : g ý-+ gJ with E = {s10,..., s,•O} for some nontrivial 0 and
some (scalar) n-set {si,..., s,}. Then, for each k,

h k =[ ,...., .]' [0' : Ial = k).

This shows that each AXk has rank 1. Therefore, regardless of how the segmented
row-echelon form R = (Rij) for A[Xo, X 1 .... J is obtained, each Rkk has just one
row, and this row is a scalar multiple of the vector (0' : lal = k). Consequently,
V= XkWkk has just one column, namely the polynomial

Pk := 1 0a S()•6'•

al=k

This is unfortunate, for the following reason. If 0 = ii for some i, then F consists
of all polynomials of degree < n in the ith indeterminate only, and that is good.
However, if 0 has more than one nonzero entry, then F usually differs from the
natural choice in that case, namely the space of all polynomials of degree < n
which are constant in any direction perpendicular to 0. For F to be that space,
we would need to choose each PA as some scalar multiple of

1 0°0*/a!,
Jal=k-

e.g., as the polynomial
X + (O.X)k.

This means that, instead of Wkk= Rkk; we should choose

wkk = n-i R', (7.1)

with

f~k := diag(a! :lal = k). (7.2)

The space F resulting from this choice is the least choice, i.e., the space

fA = (e ran XkLi.Q R'lk =: ran[Vo, Vi, V2 ... ] (7.3)
k

13



of de Boor and Ron [8]. In particular, it is the space 1 1e of [5] in case A = 1e

Correspondingly, we denote by

PA, resp. Pe

the resulting interpolation projectors.
To be sure, [8] arrived at this choice in a completely different way, as the

linear span of all the least terms of elements of a certain space of formal power
series. To make the connection between (7.3) and the definition of HA in [8], let v,
be one of the columns of [Vo, VI, V2 ,.... 1. Then vi is of the form

vi = 1: 0'/a! Ri. a)
lal=k

for some k and, for that k, R(i, a) = 0 for all )al < k. This implies that v, =

(see the Introduction for the definition of f ,), with fi the formal power series

f,: ••0' /a! R(i, a).

Further, R = M-'AX, for some (invertible) M. Consequently, the f1 form a basis
for the space G spanned by the formal power series

gj := •ol/a! Aj()a, j = 1,...,n,

with Aj the jth row of the data map A. Further, if g is any element of G with
degg , = k, then, by Lemma 5.1(ii), g, is necessarily in the range of Xkfl~'. k.
So, altogether, this shows that the right-hand side of (7.3) is, indeed, the linear
span of all the leasts of elements of G, hence equal to IIA as defined in [8].

Taking, in particular, A = le, hence Aj = 69 (i.e., point evaluation at 9) for
some 9 E ), we get

thus showing that, for this case, (7.3) does, indeed, give the space spanned by all
the leasts of linear combinations of exponentials eq with 0 E G.

It has been pointed out (after a talk on this material, by someone whose
name I never learned) that the simple choice (6.6) actually provides (7.1) if X1'
were changed to

xk [X F--•+ Hx(,(i)): 0 E {1,.... ,d} 11
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i.e., if the monomials were treated as if the indeterminates did not commute, with
"a corresponding change of f01, to the scalar matrix k!.

8. The least choice

The least choice, (7.3), not only provides the 'right' space in case e lies on
"a straight line, it has a rather impressive list of properties which are detailed in
[5,7,8]. Of these, the following is perhaps the most unusual. Its statement uses
the notation pt, for the leading term of the polynomial p, as introduced in the
Introduction. Further, if p = Xc, then

p(D) :=ED'c(a),

at

with Da = DO(") ...-D-(d),
= I d

and Di the derivative with respect to the ith argument.

Result 8.1 ([7]).
He= n kerpt(D).

P10=0

A proof is provided in [8], as part of a more general argument. A direct proof
can be found in [4].

It is informative to consider this result in the light of elimination, as a further
motivation for the choice (7.1) for the Wkk. For this, we continue to denote by
MR any factorization of A[Xo, Xl,...] into an invertible M and a correspondingly
segmented row-echelon form.

Lemma 8.2. Let p E rlk\rl<k with pt =: Xkc. Then, there exists q E r"<k with
A(p - q) = 0 if and only if c 1 ran R'kk.

Proof. Suppose that ci_ ran R.'.. Then Rkkc = 0, hence, by (iii) of Lemma
5.1, there exists b so that (b, c) E kerR<k. This implies that (b,c) E kerAX<k, i.e.,
p X<_. (b, c) is in ker A.

Conversely, if p is of (exact) degree k and in ker A, then p = X<_k (b, c) for
some b,c with pt = Xkc, and 0 = Ap = AX<_k (b,c) = MR<_ (b,c), hence, since
M is invertible, also R<k (b, c) = 0, in particular RkkC = 0, i.e., cL ran R'.k. []

This lemma characterizes ran R'.k as the orthogonal complement of the set

{c: 3{p E kerA} pt = Xkc}

of leading coefficients of polynomials of exact degree k in the kernel of A. Since

lA,k := rA n` 0 = -1 ,

this provides the following characterization of the kth homogen, is component of

HA, i.e., of IIAk.
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Proposition 8.3.

Ak k fn{kerpt(D) : p E IIk\H<k, Ap = 0}.

Proof. Assume that q is a homogeneous polynomial of degree k, i.e.,
q =: Xkc, and consider the corresponding differential operator q(D). Then HI<k C
kerq(D) trivially. Hence, for any g E HIk\HI<k, setting gt =: Xka, we have

q(D)g = q(D)(gt) E Z c(a)a!a(a).
Ickl=k

In particular, with QA. as given in (7.2),

q(D)g=O c.-CI ka.

If now g is an element of HA,, then gt = Xk fS.iR'1kb for some b, therefore

Oka = R'kkb.

Consequently, HA nl Hk C kerq(D) if and only if cL.ranR'k, i.e., if and only
if RkkC = 0, i.e., by Lemma 8.2, if and only if q is the leading term of some
polynomial in ker A. 0

Note that, for the case A = le, Result 8.1 is much stronger than Proposition
8.3. For, in this special case, not only is r°,A annihilated by pt(D) in case p E
Hk\H<k and Pie = 0, but all of He is annihilated by such pt(D). In particular,

pt(D)Xjf 'Rj'j = 0

for any j.
The reason for this much stronger result in the case A = le is that, in this

case, ker A is a polynomial ideal and, consequently, HA is D-invariant, i.e., f E HA
and a E 2d+ implies Daf. See [8] for details.

9. Construction of an H-basis for a polynomial ideal with finite variety

Customarily, a polynomial ideal 1 is specified by some finite generating set
for it, i.e., by describing it as

I = l
gEG

for some finite G C Hl. Given this description, it is nontrivial to determine whether
or not a given f E H belongs to 1, except when G is an H-basis for 7, meaning
that, for every k,

. := Innlk = Ik--deggg.

9EG
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Such a generating set is also called a Macaulay basis or a canonical basis for
1.

Indeed, if G is an H-basis for 1, then, with

0 := ({pt:p p}

the associated homogeneous ideal, we have

L. 1°1 o all k.
Z1=2flfn rI Ofk-degggtai .

gEG

Thus, f E I if and only if
ft = Z p~gg

gEG

for some p9 E rlok.deg 9, and in addition, for these Pg,

f -- 1 pgg E I.

gEG

Since the last condition involves a polynomial of degree < deg f, this leads to a
terminating recursive check.

If an ideal is not given in terms of an H-basis, then it is, in general, nontrivial
to construct an H-basis, except when the direct summands 40 are known in the
sense that bases are known for them.

In that situation, one can construct an H-basis G for I by constructing

Gk :=Gnl'k

inductively, i.e., for k = 0, 1,2,..., so that

=k- 1: rif-degg9, (9.1)
gEGA,

as follows.
Assume that we already have Gk-1 in hand (as is surely the case initially for

any k with VL- = {0}, e.g., for k = 0). We claim that the choice

Gk := Gk-i U B,

with B C I.k so that [Bt] is a basis for a linear subspace in 40 complementary to

x: nk-degggt,
gE~k-,
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does the job, i.e., satisfies (9.1).
Indeed, if p E 1&., then pt E 4LO, hence

pt = [Bt]a + Z pggt
9EGi.-I

for some a E CB and some p. E rk-deg9 , all g E Gk1-. However, then

p -[Bla - E p~g E j-i= 1: r4-l-degggi
gEGi.-i gEGO-a

therefore

P EZ og + j H _-deggg,
9 EB 9EGk-1

which was to be shown.
Note that the H-basis constructed is minimal in the sense that any proper

subset of it would generate a proper subideal of I.
An appropriate B can be constructed by: (i) starting with C for which [CT]

is a basis for 0-1 (as constructed in the preceding step), (ii) selecting from the

columns of [()Oc : c E C, = 1,.. .,d] a column map C which is maximal with
respect to having [0t] 1-1, (iii) extending this to a column map [C, B] with (B C I
and) [0N, Bt] a basis for V;.

Of course, this requires that one have in hand, for each k, a Bk C I for which
[BkT] is a basis for 4L, and it is in this sense that one needs to "know" the 4JOL.
This information is easy to derive in case I is an ideal with finite codimension or,
what is the same, with finite variety.

It is well-known (see, e.g., de Boor and Ron (6] for a detailed retelling of the
relevant facts) that a polynomial ideal has finite codimension exactly when it is of
the form kerA, with A' =: [ A1 ,..., ,•] a basis for a subspace of I' of the form

S5 9 Pe(D) = {JE Jep(D): pe E Pe} (9.2)

with E, the variety of the ideal, a finite subset of Cd, 66 : p '-4 p(B) the linear
functional of evaluation at 0, and each Pe a D-invariant finite-dimensional linear
subspace of H. To put it differently, a correct polynomial interpolation scheme
with data map A E L(fl, ]Rn) is ideal (in the sense of Birkhoff [1]) if and only if it
is Hermite interpolation, i.e., its set of interpolation conditions is of the form
(9.2).

Of course, if I = kerA for some explicitly known map A E L(l, IR'), then
membership in I of a given f E H is trivially testable: simply compute Af. On the
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other hand, an H-basis for such an ideal is likely to have its uses in the construction
of error formulae for the associated polynomial interpolation schemes.

In any case, if I= kerA for some onto A E L(lIIIR), then

Z= X kerR,

with
AX = MR

any particular factorization of AX with a 1-1 M.
In particular, let R = (Raj) be a segmented row-echelon form, segmented

corresponding to the segmentation X = (X0 , X, .... 1. By Lemma 8.2, p E HO. is
in 70 iff c := Xk.1p E kerRkk. Consequently, any basis KA for kerRkk provides
a basis, XkKk, for V... Since R = (Rj) is in segmented row-echelon form, each
Rjj is onto while Raj = 0 for i > j; therefore we can find Ko,... , Kk-._ so that

FZj<k RajK 1 = -RikKk for all i < k, while this holds trivially for all i > k. This
implies that Bk := F-j<k X'3 'J is a column map into 1, with Bkt a basis for 2r,.

If the rows of Rkk are, as in (7], constructed as an orthonormal basis (of the
row space of a certain matrix and with respect to some inner product), then a
convenient choice for K1. is the completion [Rkk, Kk] of R'kk to an orthonormal
basis for all of IRnk

10. The construction of rules

The least rule for / E fl' from A E L(fl, 1R1 ) is, by definition, the linear
functional

.p,-

Since PA = V(AV)-'A (with V some basis for RA; see Lemma 3.2), we can also
write the least rule explicitly in terms of the rows Ai of A as

/.P,% = a * A a(i)A,, (10.1)

with

a := pV(AV)- 1 .

Since our basis V = [VO, V1,.. .] =: XW for IIA has the simple segments
Yk=Xk S-1 ',, k = 0, 1,2,..

Vk=X kflk-r~kk, k012...,

(see (7.3)) it is not hard to apply the inverse of the matrix (AV)' = (AXW)' =

(MRW)' to the vector pXW. In fact, the resulting work can be carried out right
along with the construction of the factorization if one is willing to record M` in
some convenient form, as we now show.
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The idea is to apply the program described in [7], not just to the matrix
AX but to the 'augmented' matrix [A; p]X. (The choice of the word 'augmented'
here is quite deliberate; it stresses the fact that, what is about to be described, is
nothing than the dual of the standard procedure of applying Gauss elimination to
the augmented matrix [A, b] in order to compute a solution of A? = b.) For this
to work, this additional, last row must never be used as pivot row. To recall, the
program in [71 constructs each RUk as an orthogonal basis for the row space of a
certain working array, call it Bk, whose rows consist of the Xk-part of each row
not yet used as pivot row. In other words, the columns of Bk, i.e., the entries in
each row of Bk, are naturally indexed by a with lal = k. Orthogonality is with
respect to the inner product

(b,c)k := b-A 1c. (10.2)

The construction consists of making all rows in Bk not yet used as pivot rows
orthogonal to those being used as pivot rows. Without that additional last row,
work on Bk ceases once all rows not yet used as pivot rows are zero. With that
additional row, work on this segment still ceases when all rows not used as pivot
rows are zero, except for that additional row. This may leave that additional row
nonzero, but it is certain to leave it orthogonal to the rows of the resulting Rkk

with respect to the inner product (10.2).
At the end, we obtain the factorization

[Ax [M ] [R]

with AX = MR the earlier factorization, and with u the segmented sequence
(uo, u ,...) such that

Uk-•k. Rk-k = 0

for every nonempty Rkk. One verifies that

Im 011= [-Mr-1 " 0

(Here, m is a 1 x (m - 1)-matrix rather than a sequence, hence I write mM-1
rather than the (undefined) m.M-1.) This implies that

(-mM-'A + )V = (-mM-'A + )XW = -uf?-R'k =, 0
k

Consequently, mM-1 AV = pV, hence the desired coefficient vector a for (10.1)

equals the one row of mM-'.
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11. A second look at Gauss elimination by segments

Here is a second look at Gauss elimination by segments, from the point of view
of the data map A E L(fl, IRV). This discussion is applicable to any (segmented)
matrix A = [Ao, A, .... ] since an arbitrary matrix A E IF" J can be thought of as
such a product AX of a row map A E L(S, IF) with a column map X E L(IFJ, S)
in at least two ways:

(1) S = IF' and A = id, hence X = A = [A(:,j) : j E J].
(2) S = IF" and V = id, hence A = A E L(S, F)).

At the same time, it is to be hoped that elimination by segments will be found
of help in other applications where it is more natural to do elimination by cer-
tain segments rather than by columns. For example, a process requiring a certain
amount of column pivoting might be a good prospect.

For this reason, in this section, X = [Xo, X 1,.. . is any segmented column
map, from IFo" := (J -+ F)o into some linear space S, with J some set, and A is
any onto data map or row map on S, and the matrix of interest is

A := AX = [AXo, AX,,.... =: [Ao, Al,...],

as before.
We have already made use of the following facts: With A.,..., \,, the rows

of the data map A E L(S, IF'), the dual map A' E L(F't , S') for A is of the form

A' .... \,IF - a aSi a

Since A is onto by assumption, A' is 1-1, hence a basis for its range.
For each k, let Ak be a data map whose rows, when restricted to Sk=

ran X<k, provide a basis for the linear space

Lk := {AIS& : A E L, AX<&. = 0}.

Equivalently, A& is any onto data map with its dim L4 rows taken from ran A', for
which A&X<k = 0 while Aky;k is onto.

However this is actually done numerically, we will have constructed a basis

(A'.: k = 1, 2,...

for ran A'. As A' is 1-1, hence a basis for its range, this means that we have, in
effect, constructed an invertible matrix M' E lRamx m so that

A' = [A'.: k -- 0, 1, 2,.. .]MI.

Thus,

AX = A = MR,
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with
R := [Ao; A,; A2; ... I [Xo, X1, X2,.... = (Ro :,j= 0, 1,2,...

a block upper triangular matrix since

P-, = A1X3
is trivial tor i > j.

Consider now, in particular, the diagonal blocks,

Rkk = AkXk.

If A is any linear functional in ran A' which vanishes on f1<jL, then there is exactly
one coefficient sequence c so that A = A'.c on rlk. In other words, the rows of Rkk

provide a basis for the linear subspace {(A()* : al = k) : A E ran A',AX<k = 0}.
In particular, RMik is 1-1, and its range is independent of the particular choice of
the map A.. This recovers (i) of Corollary 5.2 in this more general setting.
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