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Abstract

oncept of a visual software environment which fa-

cilitates man-machine cooperation during software development. The focus is on

"'oracle" operations performed by a human user during the man-machine coopera-

tion. In the environment, graphics and equations are combined to enhance software

understanding that is essential in software development.

The environment consists of the following components: (1) visual program-

ming: an icon-based graph editor is used for composing an array graph of an equa-

tional language program, for interactive syntax analysis, and for consistency checking

of the array graph and equations. (2) compilation: an equational language pro-

gram is statically checked in accordance with its semantics during compilation. (3)

equational visual testing: test adequacy criteria are defined for the equational

visual testing; the testing process becomes simple and intuitive; oracle operations

such as path selection, path examination, finding test input values, monitoring ex-

ecution, and evaluation are facilitated. (4) verification: equational reasoning is

combined with graphical representation of programs. (5) knowledge acquisition:

expertise in old legacy code in procedural languages such as algorithms and methods

is transferred to rules of knowledge bases via equations. AOOSSIOU Tor
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Chapter 1

Introduction

1.1 Research Problem

The objective of this dissertation is to investigate concept of a software cnvironment

where a human user performs software development tasks such as composition, com-

pilation, testing, verification, and knowledge acquisition using graphical tools. The

crucial element of the environment is man-machine cooperation during develop-

ing software systems. Software understanding is essential to the man-machine

cooperation. It is well-known that a graphical representation of software facilitates

software understanding. The question is how to use graphics for facilitating the

man-machine cooperation. The research is focused on human tasks, specially "ora-

cle" operations, that are required to achieve the software development tasks. The

research will show how graphs, tables, and software tools help human users in per-

forming difficult software development tasks.

1.2 Contributions

Figure 1.1 illustrates the concept of software environment and man-machine co-

operation. The graphical tools facilitate the software development tasks such as

composition, compilation, testing, verification, and knowledge acquisition.

' ' ! I I1



Software Environment

Tasks:

Composition

Compilation

Man-Machine Graphics Testing

Cooperation Verification

Knowledge Acquisition

Figure 1.1: Software Environment and Man-Machine Cooperation.

A visual software environment is particularly effective when it is applied to equa-

tional programming. Figure 1.2 provides an overview of the visual software environ-

ment for equational programming. It provides interactive graphical tools for visual

composition, compilation, testing, verification, and knowledge acquisition.

The environment enables programmers to perform equational programming vi-

sually via a data dependency graph called array graph [Lu81, PP83]. They draw

array graphs and enter equations and declarations. The array graph facilitates un-

derstanding of inherent algorithms of programs by visualizing dependencies among

equations and variables. It is difficult to describe such data dependencies in textual

form. The visualized graph expresses the dependencies in terms of nodes and edges.

It makes equational programming easy to learn and use.

Syntax analysis and compilation of the equational language are visually per-

formed as a user composes an array graph which represents an equational language

program. The environment also provides a new testing method, called Equational

2



Viua Compilation Testing Verification Knweg
Visual Knowledge

Composition Acquisition

S~ Graphical User Interface

visual/textual retrieval

icon-based graph editing

menu selection
programs, requirements,

graphs, equations, data

declarations, testing reports,

proofs, rules, etc.

REPOSITORY

Figure 1.2: Visual Software Environment.

Visual Testing, based on analysis of array graphs. Equational reasoning is performed

to construct proofs of assertions about the correctness of a program.

The graphical user interface facilitates man-machine cooperation. The reposi-

tory of the environment contains programs, requirements, graphs, equations, testing

reports, proofs, rules, etc.

The environment has innovative aspects in visual programming, compilation.,

testing, verification, and knowledge acquisition as follows:

(1) Visual Programming:

A user composes a program by drawing an array graph. An array graph helps

a user in perceiving programs. Algebraic definitions of variables and equations

are precisely expressed in an equational language. The visual programming

method can express a complicated system using graphics and equations.

A node of an array graph denotes a variable or an equation. An edge visualizes

3



data dependencies among equations and their associated variables, hierarchical

structures of variable nodes, or parameter precedence between variables. Every

variable is defined by a unique equation. Every equation node is fired as soon

as all of its inputs are available. Therefore a user can examine a variable,

an equation, or a group of connected variables and equations locally in the

displayed array graph. A separate navigation window contains a map of a whole

graph so that a user can easily traverse the graph. Syntax of an equational

language ' and an array graph 2 can be interactively checked as a user draws

graphs. It is implemented by syntax-directed graph editing.

An interactive syntax analysis is performed visually, while an array graph is

composed. The interactive syntax analysis makes the visual programming re-

liable by detecting errors at the early stage of program development.

(2) Compilation:

A composed array graph is checked with respect to the semantics of the equa-

tional language during compilation. The requirement of an equational language

states that every variable must be defined. The equational compiler of the envi-

ronment examines whether (1) there are ambiguous definitions and incomplete

definitions of variables and equations in programs, (2) variables references are

consistent in their dimensionalities, data types of variables and ranges of sub-

script expressions, (3) there is a causality path that computes a solution set for

a given input values, and (4) conditions of terminating iterations are specified.

The equational compiler produces warning/error messages whenever inconsis-

tency or incompleteness is found. It is not easy to interpret the messages and

relate them to their associated nodes and edges on a visualized array graph.

The environment displays the error/warning messages in a separate message

window. When a user wants to examine a message, he clicks a corresponding

'See Appendix A.
2See Appendix B.
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message icon on the message window. The environment locates nodes and/or

edges on the array graph which are associated with the message. Then it

graphically emphasizes them, i.e. shading and high-lighting. It facilitates a

user's debugging during the visual programi,;ing.

(3) Testing:

A new testing method for equational programming (Equational Visual Test-

ing) is based on the array graph. The graph directly visualizes data flow of an

equational specification. The test adequacy criteria of the Equational Visual

Testing are defined in terms of visualized paths of the array graph. Test ade-

quacy criteria, similar to those used in testing of procedural programs, are: (1)

The equational all-paths criterion defines a finite number of source-to-target

paths based on acyclic array graphs. This makes the criterion practical. (2)

The equational all-du-paths criterion defines a two-edge path, from an equation

node, where a variable is defined, to equation nodes, where the variable is used.

The path can be selected for traversal by providing test input values that sat-

isfy at most two conditions. (3) The equational all-uses criterion is based on a

single-edge path from a variable node to an equation node where the variable

is used. The path can be traversed by satisfying at most one condition. This

reduces labor of the testing in length of conjunction of the conditions. (4) The

equational all-definitions criterion is shown to be trivial. Any single execution

will traverse all definition paths.

The visual software environment facilitates performing the "oracle" operations

in the testing as follows: (1) A path is traversed by satisfying conditions on

the path. For each test adequacy criterion, a different set of paths are required

to be traversed. Given test adequacy criterion, the environment generates a

condition table where conditions and conjunctions of conditions are listed. The

conditions in the table must be satisfied in order to satisfy the test adequacy

criterion. (2) A human tester uses an array graph for selecting paths according

5



to a specific test adequacy criterion. (3) Note that a path can be traversed by

satisfying the conjunction of all conditions on the path. If any of the condition

or the conjunction of the conditions is unsatisfiable, the path is not feasible.

The human tester can use the visualized path and the condition table during

the decision making. (4) The environment shows a causality path from the

respective input variable nodes to a specific condition node in the array graph.

It is used in backtracking input values. This reduces the labor of finding the

test input values. (5) The human tester can view interim values of the variables

and also refer to a specific iteration or a specific index of an array element. This

is possible because every element of array variables is defined and the interim

values are recorded during test execution. This further reduces the labor of

evaluating test results. (6) The progress of testing is visually expressed via the

array graph. It is useful during the evaluation.

(4) Verification:

An equational language program consists of equations. The correctness of the

program is verified by checking if assertions about the correctness (also ex-

pressed as equations) can be derived from the equations of the program and

general algebraic laws of arithmetic and logical operations using deduction

rules. The basic deduction rules of equational reasoning are Reflexivity, Sym-

metry, Transitivity, Replacement, and Substitutivity. Induction, Case Anal-

ysis, and Tactic are added to the deduction rules. There is no need to trace

program states during program verification because of the single assignment

rule and the referential transparency. Note that program verification of the

procedural paradigm is quite complicated because transition of program states

must be examined. It requires a highly trained expert. A user guides the

verification system in deducing equations from programs and general algebraic

laws based on deduction rules. An inference engine handles the complexity of

exercising program verification by mechanically applying the rules to deduce

6



expressions.

It is critical to understand software in verification. The array graph can used

as a visual aides to facilitate software understanding during verification.

(5) Knowledge Acquisition:

There is valuable expertise in legacy programs that can be automatically

translated to rules in order to enrich knowledge bases of rule-based expert

systems. The environment allows users to extract such expertise frorr

legacy programs and accumulate it as rules in knowledge bases. The

lation is exercised through the following steps: (1) use an existing method

[Lu81, GP89] to translate procedural language programs into equational lan-

guage programs (2) translate the equational language programs to rule-based

language programs[Kim911. Through the translation steps, the expertise in

programs can be transferred to knowledge bases. The translation reduces hu-

man labor in collecting expertise for a rule-based expert system.

1.3 Outline of the Dissertation

Chapter 2 provides an introductory example and an overview of the environment.

An icon-based graph editor of the visual programming under the environment is

described in Chapter 3. Compilation is combined with graphics by visualizing warn-

ing/error messages as presented in Chapter 4. Chapter 5 discusses the new Equa-

tional Visual Testing methodology. An equational reasoning system and its appli-

cation to program verification are described in Chapter 6. A method of extracting

expertise from old legacy programs via language translation is presented in Chapter

7. The grammar of the equational language is formally expressed in Appendix A.

An attribute grammar for visualizing an array graph is formulated in Appendix B.

Appendix C lists error/warning messages produced by the M(CEL compiler.

7



Chapter 2

Overview

2.1 Introduction

This chapter discusses an overview of the visual software environment. The require-

ments of the environment are visualization, reliability, and knowledge acquisi-

tion.

An introductory example is given in Section 2.2. The equational language,

MODEL, is the basis of the environment. The syntax and semantics of the language

are described in Section 2.3. The visual programming is implemented in terms of an

icon-based graph editor in the environment. Section 2.4 explains the visual program-

ming using an icon-based graph editor. Checking, testing, and program verification

are performed to increase reliability of programs. Section 2.5 discusses checking.

Section 2.6 describes testing. Program verification through equational reasoning is

presented in Section 2.7. Section 2.8 discusses knowledge acquisition in the environ-

ment which is exercised via extraction of rules from existing procedural programs.

The rule extraction is based on language translation from the procedural programs

to rule-based programs via equations.

8
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Figure 2.1: An array graph of Greatest Common Divisor.
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2.2 Example

A user can develop a software system as follows: (1) The user draws nodes and edges

of an array graph denoting an equational specification, (2) The user types data dec-

larations and algebraic definitions of equations to complete the graph, (3) The user

exercises syntax analysis and checking to find errors in the graph and the specifica-

tion, (4) The user performs testing and program verification of the specification via

the graph, and (5) The user translates the equations of the specification to rules for

knowledge bases.

An icon-based graph editor for MODEL is illustrated in Figure 2.1. It displays

an array graph which denotes a MODEL specification for finding the Greatest Com-

mon Divisor (GCD) based on the Euclid algorithm. The text corresponding to the

graph is presented in Figure 2.2. Figure 2.1 shows a graphics window which consists

of a canvas for drawing the graphs, a control panel containing icons of "SCALAR

VARIABLE", "FILE", "1-D-ARRAY". "EQUATION", etc.. and pull-down menus

of "VIEW", "EDIT", "TOOLS", "FORMAT", and "HELP". The graph visually

expresses the data declarations, the equations, and the dependencies between equa-

tions.

The symbols (nodes) of the array graph denote files, records, groups, variables,

and equations. The connectors (edges) of the graph represent their data dependencies

and hierarchical dependencies.

A user creates symbols by selecting icons from the control panel with a mouse.

Either a data declaration or an algebraic definition of an equation must be entered

for a symbol in textual form. The equational language, MODEL, is used in defining

the data declaration and the equation. The text of the data declaration and the

equation is entered by selecting a symbol and providing its definition into a separate

form window. Figure 2.3 shows a form window for entering the data declaration

of a record variable, in.rec. The symbol name is defined as "SCALAR-VAR" as

displayed in Figure 2.3. The name of the symbol is entered as in..rec in the figure.

10



/* Header */
MODULE: GCD;
SOURCE: injfile;
TARGET: out_file;

/* Data Declarations */
1 in-file IS FILE,

2 in-rec IS RECORD,
3 xl IS FIELD (PIC 'ZZZ9'),
3 x2 IS FIELD (PIC 'ZZZ9');

I out-file IS FILE,
2 out-rec IS RECORD,

3 z IS FIELD (PIC 'ZZZ9');

/* Subscripts */
(i) IS SUBSCRIPT;

/* Equations */

/* Eq 1 */
yl(i) = IF i=1 THEN IF xl>x2 THEN xl ELSE x2

ELSE IF yl(i-1)>y2(i-1) THEN yl(i-1) - y2(i-1)
ELSE yl(i-l);

/* Eq 2 */
y2(i) = IF i=1 THEN IF xl>x2 THEN x2 ELSE xl

ELSE IF yl(i-1)>y2(i-1) THEN y2(i-1)
ELSE y2(i-1) - yl(i-1);

/* Eq 3 */
END.yl(i) = (yl(i) - y2(i));
/* Eq 4 */
z = IF END.yl(i) THEN yl(i);

Figure 2.2: A MODEL specification of Greatest Common Divisor in textual form.

11



Edit Form:

SYMBOL: SCALAR-VAR

Attributes: Name:

Name: In..rec
Field (FLD) / Group (
Data Type:

View access: Read/Write

Figure 2.3: Data declaration.

Then its sort, e.g., a field, a group, or a record, must be specified. In this particular

example, it must be "RECORD". The data type should also be defined. An algebraic

definition of an equation is entered via another form window. The syntax of the data

declaration and the algebraic definition of the equation is checked with respect to

the MODEL grammar presented in Appendix A.

A connector is created between two symbols to represent either data, hierarchical.

or parameter dependency. A data connector is like the connectors (a solid arrow)

between xi (node number 3) and Eq 1 (node number 5) and x2 (node number

4) and Eq 1 in Figure 2.1. They denotes data dependency between variables and

equations. That is, if the connectors comes from variable nodeF to an equation node.,

it means that the variables are inputs of the equation; if the connector comes from

an equation node to a variable node, it means that the variable is defined by the

equation. A hierarchy connector like a connector (a broken arrow) between in-file

(node number 1) and in._rec (node number 2) expresses a hierarchical dependency

between the input file, in-file, and the record variable, in.rec. This means that

the record variable is included in the input file. A parameter connector is denoted

by a dotted arrow with double heads. The connector from END . yl (i) (node number

12



10) to yl(i) (node number 6) is a parameter connector. This means that the control

variable, END.yt(i), represents the condition of determining the size of the array

variable, yl(i).

Editing an array graph is completed when all of symbols are created, the symbols

are connected by connectors, and the definitions of the symbols and the connectors

are specified. Then the syntax and the semantics of the graph are examined. For

example, a hierarchy connector can connect data symbols but it is not allowed to

connect an equation symbol and a data symbol. The consistency between the graph

and the texts (the data declarations and the algebraic definitions of the equations in

MODEL) is also checked. The equation symbol, Eq 1 (node number 5 in Figure 2.1).

is connected to an output data symbol, yl(i) (node number 6), and connected to

four input data symbols, xl (node number 3), x2 (node number 4). yl(i-1) (node

number 6), and y2(i-1) (node number 7). Then the algebraic definition of the

equation symbol must have a left-hand side (LHS) variable, yl (i), and right-hand

side (RHS) variables, xl, x2, yl(i-1), and y2(i-1).1 The definition must satisfy

the MODEL syntax and semantics. The errors detected by the checking mechanism

are reported in terms of warning/error messages in both textual form and graphical

form.

There are test adequacy criteria defined for the Equational Visual Testing. The

program is modified and compiled to be used in testing. The modification includes

(1) expanding a complex conditional equation into a series of simple conditional

equations (2) declaring interim variables as output variables to expose the interim

values of the variables. An overview of the testing is discussed in Section 2.6. The

more details is described in Chapter 5.

Equational reasoning is adopted for verification of the correctness of programlls.

First, proof goals are formulated in the form of a MODEL equation. Equations

1The labels of connectors represent subscript expressions of corresponding data dependencies.
We know that yl(i-1) and y2Ci-1) are inputs of Eq 1 without examing the algebraic definition
of Eq 1. A user only defines the equation and the data declarations. Then the checking mechanism
extracts subscript expressions for connectors and labels the connectors.
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of a program to be verified are regarded as axioms during the reasoning. Then a

proof or a disproof for each assertion is constructed by applying the deduction rules

to the axioms and the assertion. The whole procedure of the program verification

is dictated by a user via a graphical user interface. An overview of the program

verification is presented in Section 2.7 and Chapter 6 discusses the more details.

Expertise encoded in algorithms and methods of programs can be translated to

rules for knowledge bases. The procedure enriches the knowledge bases by inserting

the rules. Section 2.8 discusses an overview and Chapter 7 presents the details.

2.3 Equational Language

MODEL is a high level mathematical language, i.e. an equational language such

as EPL[Szy9l], Haskell [Hud9l], and MODEL [PP83, SP88. Hud89]. There are no

implicit states, no side-effects and no predefined sequence of computation. It can be

used for composing data declarations and algebraic definitions of equations that spec-

ify algorithms. A user can compose programs without considering implementation

details [HudS9, Kim9l]. A MODEL specification2 consists of data declarations and

equations. A MODEL specification can be understood by programmers with ease

because it is based on regular and Boolean algebras. Formal program verification

of the correctness of a MODEL specification is easier than that of procedural lan-

guage programs, because it utilizes only algebraic manipulation of equations, namely

equational reasoning, and there is no need to trace changes of program states. The

reasoning is based on deduction rules by which equations can be deduced from the

MODEL equations and general algebraic laws [Kim9l].

A MODEL specification has the following requirements:

9 A user must assure a causality (or a causal chain) for all the inputs of equations.
2The MODEL compiler translates MODEL code to a procedural language program such as

C and Ada[Lu8l, PLGS88]. Then the procedural language program is complied and executed. In
order to distinguish the MODEL code from the procedural language program, it is called a MODEL
specification.
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* An equation must compute the unique value of its left-hand side (LHS) variable

by evaluating its right-hand side (RHS) expression.

2.3.1 Functional Units

A functional unit in MODEL consists of a header, data declarations and equations.

A header is an interface of a functional unit and specifies its type (module, function.

or procedure), name and a list of inputs and outputs. A multi-unit specification

consists of a main functional unit, called module and a set of subsidiary functional

units, either functions or procedures [PLGS88]. A function accepts structures of

input parameters and returns a single output structure. A procedure has input.

output and update (treated as " new" and " old") parameters. As will be shown,

definitions of subsidiary functions or procedures are in fact definitions of operations.

An individual functional unit does not have recursive definition in itself, although it

can use itself as an operation thus creating recursion. In the following, we focus on an

individual module, function or procedure which are called "programs-in-the-small".

For "programs-in-the-large", see [LP90].

2.3.2 Data Declaration

Data structures and their types are declared in a declaration part of a functional

unit. There are input, output and interim variables. Input and output variables

are declared in its header. A structure of each input and output variable, that is.

an entire hierarchy of the structured variable, must be specified in a declaration

part (it is keyed-in). Interim variables are used within a functional unit and cannot

be accessed from the outside. Their declaration is optional. If there is no explicit

declaration for an interim variable in a declaration part, a translator from MODEL

to a procedural language inserts its declaration automatically. A primitive type of

a variable is one of the followings: Boolean, integer, real, or literal. The primitive

type is defined either explicitly or implicitly in the data declaration.
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2.3.3 Equations

The syntax of a MODEL equation is formally defined in Backus-Naur Form (BNF)

and presented in Appendix A. An equation is either a conditional equation or a

simple equation. It defines an LHS variable in terms of an RHS expression. In

composing a MODEL specification, only a variable, either a scalar variable or an

array variable, is allowed in the LHS of the equality in an equation.3 Array variables

are indexed by subscript expressions.

An expression in the RHS of an equality defines the value of the LHS variable.

Integer and real type variables are defined by arithmetic expressions. Boolean expres-

sions define Boolean variables. Conditional expressions are built over either IF-THEN

or IF-THEN-ELSE.

2.3.4 Array and Scalar Variables

A MODEL variable is either a scalar or an array. An array variable is indexed by

a subscript expression. Just as in mathematics, each variable has a single value

in MODEL. Once its value is assigned, the value never changes (the referential

transparency). On the other hand, a subscr~pt variable assumes all positive integer

values in the range (size) of the elements of the arrays. Such subscripts are further

discussed below.

Every array has a data declaration or an equation that defines its dimensionality.

either implicitly or explicitly. For example, an equation END.x(i) = exp(i) may

be defined for the range of an array x with a subscript i, where exp is a Boolean

expression and a function of i. The variable END.x(i) is called a control variable

[LuSl, MOD89]. END is prefixed to the array variable x. It is a "shE.dow" variable of

x in the sense that it has the same shape as x. See Figure 2.4. The value (either TRUE

or FALSE) of the control variable is defined by the equation END. x(i) = exp(i).

3The restriction that only a variable is allowed in the LHS is relaxed by [Ge89]. In his extension,
an LHS expression is defined as equal to an RHS expression. We use the extended MODEL language
in formulating axioms and the MODEL calculus.
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Figure 2.4: An array variable x and its "shadow" array variable END. x.
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The values of END.x(i) are FALSE except for the value of the last element in the

most right dimension that is TRUE. The size of the array variable x can be alternately

defined directly by another prefixed control variable, SIZE. x. The array variable x is

defined only when its subscript i satisfies a predicate 1 < i < SIZE. x. If the array is

finite, SIZE.x has a finite value. Every element of END . x has the FALSE value while

the last element ENDD.x(SIZE.x) is TRUE. If x is an infinite array, however, there is no

TRUE element in the array END. x, that is, the value of SIZE. x is infinite. It concludes

that the following two equations are equivalent:

o Rule of Control Variables:

(END.x(i) = exp(i)) S (exp(i) = IF (i = SIZE.x) THEN TRUE ELSE FALSE)

2.3.5 Operations

The expressions of a MODEL specification use a set of operations. The operations

are defined by operators, functions and their arguments. The followings are MODEL

operators for expressions:

"* Arithmetic Operators: + (addition), - (subtraction), * (multiplication) and /

(division).

"* Relational Operators: < (less than), <= (less than equal), > (greater than),

>= (greater than equal), = (equal) and ! = (not equal).

"* Logical Operator: & (and), I (or), ! (not), IF-THEN, and IF-THEN-ELSE.

"• String Operator: II (concatenation), string search and string replacement.

Functions are viewed as operations on their input arguments. They are either built-in

or user-defined.
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2.3.6 Implicit Universal and Existential Quantifiers

The most distinctive difference between a procedural language and an equational

language is that a variable has a single value in an equational language such as

MODEL, namely the referential transparency. On the other hand, we can change

the value of a variable in a procedural language as many times as we want to.

A MODEL equation, x(i) = x(i-1) + 1, defines all elements of x indexed by

the subscript i. It means that the equation represents a class of all equations such

that V i, 1 < i < SIZE.x.

The MODEL equation, x(i) = x(i-1) + 1, can be interpreted into the follow-

ing code in a procedural programming language such as FORTRAN:

DO I = 1, SIZEX

XfiX+ 1

ENDDO

In FORTRAN, the assignment statement X = X + 1 cannot be executed if the in-

dex variable I is out of its range, that is, either I < 1 or I > SIZEX. It can be

executed only when the index variable is properly defined, 1 < I < SIZEX. Like-

wise, a MODEL equation is defined only when its LHS variable subscript expression

is within the range. If the LHS variable is size 0 or its subscript expression is out

of range, the equation is undefined. A MODEL equation that has undefined LHS

variable is invalid. Such an equation is called a null (or invalid) equation.

There is also the case of a null equation for specific subscript values: a conditional

expression without ELSE in the RHS of the equation. Suppose we have the following

equation: y = IF i = 10 THEN x(i) + 1. y is a scalar and its value is defined

only for the equation instance of i = 10. The equation is invalid for other value of

i. However there must be one instance (value of i) where the equation defines y,

that is, y exists. In short, an instance of an equation becomes a null equation if its

LHS variable is undefined or its RHS expression cannot define valid operations for

its legal LHS variable.
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Figure 2.5: The Existence Condition.

A MODEL specification is regarded as a collection of valid equations. A valid

equation is defined to be able to uniquely determine the value of its LHS variable

in terms of its RHS expression. All the subscript expressions of every LHS variable

should be defined within their legal range. There exists a unique RHS expression of

a valid operation (that determines its value) for each element of an LHS variable. If

multiple equations define the same LHS variable, they must be mutually exclusive

of each other.

It concludes that existential (3) and universal (V) quantifiers implicitly exist for

each MODEL equation. Consider an equation

X(il, ... , in) -- f j 0 , i., ,, var i(j 1, ... , in), ... vark(j 1, ... , j,,))

where the LHS variable x is defined by the function f; the LHS variable is indexed

by the subscripts ij, ..., in and the function f may have subscripts j I,-, i. and the

RHS variables varl(j l, ... , j=),..., vark(j l,...,j) as its arguments. If the ranges
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of the subscripts are I < i1 :< SIZEi 1 , 1 < i 2 •5 SIZEi2, etc.. the equation can be

interpreted as the following logical expression which denotes the existence condition

of the variables and the equation:

V ii, .. ,i, I < ii _• SIZEi1 ,..., 1 < in • SIZEi.,

3 in, 1 < j 1 :5 < Zjj. , 1 < sIzsj,,

3varX (j 1, ... , j-),f..., vark( j 1, ..., ji),

X(il, ... ,I in) =- f (j i,"" nj , VaLrl(j 1, "", j"), "'-, vark(j 1, ... , ja))

The expression denotes the following:

For all combinations of subscripts, il, ... , in, of the LHS variable, x, and the

function, f, there exists at lease one combination of the subscripts in the legal

range, ji, ... , j,, and all the RHS variables, varl(j 1, -., j), ., vark(j 1, -..., i,)

of the function. The value of the LHS variable, x, is uniquely defined from the

subscripts, the RHS variables and the function.

The existence condition of the equation, in fact, describes one of the requirements

that must be satisfied by MODEL equations in a specification: Every variable must

exist and be uniquely defined. The composition of such MODEL specifications is

facilitated by the checking mechanism as will be discussed in Chapter 4. Incom-

plete, ambiguous and/or inconsistent definitions of subscript expressions, variables

and equation are assumed to be removed after being detected by the checking mech-

anism. Anv cyclic definition of variables is removed by the checking mechanism

[Lu81, SLPP84].

2.4 Visual Programming

The environment offers an icon-based graph editor where a user can compose a

MODEL specification by drawing an array graph on a graphics window and by typing
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Figure 2.6: Composing, parsing, and checking an array graph.

data declarations and algebraic definitions of equations in textual forms via a form

window. The graph editor is combined with a MODEL parser to perform interactive

syntax analysiq on the entered data declarations and equations. A user corrects

syntax errors which are detected during the analysis. Consistency between the graph

and the text are then checked. A user may correct the graph, the declaration, or the

equations to correct any inconsistency detected during the checking. The interactive

procedure of composing, parsing, and checking an array graph is illustrated in Figure

2.6. Chapter 3 discusses the more details of the visual programming.

2.5 Checking

A composed array graph with data declarations and equations can be directly trans-

lated to a MODEL specification in a textual form. Then the MODEL compiler

generates an excutable code from the MODEL specification. During the compila-

tion, the compiler checks if the specification satisfies the requirements of MODEL

such that every variable must be defined by a unique equation. The MODEL com-

piler detects errors and warns a user if satisfying the requirements of a MODEL
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Message Type I Explanation
Error A problem in the specification is severe. No code is generated.
Failure A problem internal to the checking system is found.
Limit The specification requires an allocation beyond

what is presently allowed.
Warning The checking system makes an assumption about

the specification. Verify the cause of the warning and determine
whether the assumption is the intended meaning.
Modify and recompile accordingly.

Table 2.1: Classes of Error Messages

specification is conditioned on the values of input data. The user must correct the

graph according to the messages. Note that a user composes a MODEL specification

by drawing an array graph. Therefore the error/warning messages must be presented

in a graphical form.

The following stages are performed on the specification on which the syntax

analysis has been already performed:

" Precedence4 Analysis: The compiler examines the data dependencies' and the

hierarchical dependencies6 in the specification to complete an extended version

of a symbol table called dictionary [Lu8l]. The system finds incompleteness of

naming variables and equations and produces error/warning messages.

"* Dimension Propagation: Dimensionalities of variables are propagated through-

out equations and variables with respect to data dependencies. This stage of

checking detects missing subscripts of variables and inconsistencies in defini-

tions and references of dimensionalities for variables. The subscript expressions

(the labels of the connectors such as (W) and (i-1)) in Figure 2.1 are obtained

during the dimension propagation stage.

"* Range Propagation: The compiler identifies all subscripts of the same range

4Data and hierarchical dependencies.
5The data connectors of the array graph in Figure 2.1 visualize the data dependencies.
6The hierarchy connectors in Figure 2.1 denote the hierarchical dependencies.
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(the maximum value of a subscript) in this stage. The information is essential

to find an efficient execution sequence of the specification. Missing ranges of

the subscripts and discrepancies among them are reported.

The error/warning messages are classified as shown in Table 2.1. The nodes and the

edges of the visualized array graph, which are related to the messages, are graphi-

cally emphasized to facilitate users' understanding of the messages. Responding to

the warning/error messages, a user fixes the faults in the specification. Chapter 4

discusses the details of the checking mechanism.

2.6 Testing

An equational specification is modified (possibly automatically) and recompiled be-

fore it is tested. The modified program execution stores the values of interim vari-

ables and facilitates tracing exclusive paths from input nodes to output nodes. A

complex conditional equation is expanded each to a set of simple conditional equa-

tions. The conditions in the set of simple conditional equations must be exclusive.

Equations are also added to define explicitly the conditions in the simple conditional

equations. The modified equational specification is then compiled for the testing.

An array graph is generated for the visualization. Executable code is generated and

used for executing the tests.

The tester selects the conditions, one by one, from the array graph. Next. test

input values are selected to satisfy the selected condition. The equational specifica-

tion in then executed with the test input values. The nodes of the conditions. which

have been previously selected and tested, are cumulatively shaded. The more con-

ditions are satisfied during tests, the more condition nodes are shaded in the graph.

This visualizes the progress in test coverage. The testing process ends when the test

adequacy criterion is satisfied. This may mean that all conditions required by the

adequacy criterion are shaded. The adequacy criterion may require one or multiple

test input values that satisfy each condition. Note also that each test input value
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set may cause the shading of more than one condition node. In some test adequacy

criteria, conjunction of conditions must be satisfied. A condition table is constructed

to list the conjunctions.

The input data variables are obtained by backtracking, along the causality paths,

from the selected condition to the respective input variables. The test input values

are chosen from the domains of the input variables that satisfy the condition. Deter-

mining values of input variables that satisfy the condition may be complex. This is

an assumed human operation which finds the values of the input variables satisfying

the conditions. This is an "Oracle" assumption 3Bei90]. If the conditions are not

satisfiable, then the tester reports the developer to fix the problem. The input data

are entered by pointing to the nodes of the associated input variables of the array

graph. Respective files for input variable values are then created.

The compiled specification is executed with each selected test input values, shad-

ing condition nodes and producing the test results. The output values from the test

execution can be viewed via pointing to their corresponding variable nodes. Note

that a time-out is used to terminate the test if execution time is unreasonably long.

It is assumed that the human tester will be able to determine whether or not

the output values from a test are correct. This is also an oracle assumption [RW85,

Bei90]. If the results are incorrect, the tester reports the errors to the developer so

that the equational specification can be fixed and then testing is restarted. Other-

wise, the testing process continues until the test adequacy criterion is satisfied.

The more details of the testing method are described in Chapter 5.

2.7 Program Verification

Verification of the correctness of a MODEL specification is simple and intuitive,

because it utilizes only algebraic manipulation of equations, namely equational rea-

soning. It is based on simple deduction rules by which equations can be deduced
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Figure 2.7: An overview of a process of the program verification.

from equations and general algebraic laws. MODEL calculus (an equational reason-

ing system for MODEL) specifies the general algebraic laws and the deduction rules

[Kim9l].

Figure 2.7 illustrates the system for program verification based on equational

reasoning: Given a MODEL specification which is a collection of equations, a user

provides proof goals. The proof goals are represented as MODEL equations. The

verification system (called MODEL calculus) is equipped with general algebraic laws

(also represented as equations) and deduction rules. From the MODEL specification

and the general algebraic laws (a set of equations) the verification system tries to

derive each equation of the proof goals using the deduction rules. If the system

can deduce an equation of the proof goals, the equation is said to be proved. The

derivation tree, which records the derivation of the equation, becomes a formal proof

of the equation. Otherwise, the equation is not proved. The derivation trees (the

formal proofs of the equations in the proof goals) are output of the reasoning system.
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Equations of a MODEL specification are regarded as axioms during the verifica-

tion. Thus the followings are required:

"* A user must assure that all the inputs to each equation are available.

"* Every equation must compute the unique value of its LHS variable by evali-

ating its RHS expression.

* There must exist at least one causal chain [GR89] from input to output via the

equations in a MODEL specification.

"* The execution of a specification must terminate with a solution.

The verification process aims to prove the correctness of the specification as pre-

sented in the proof goals. The proof goals may consist, in the simplest case. of

constraints on inputs and their expected outputs. They may consist of axioms (ex-

pressed as MODEL equations) about computational properties of the specification.

Proof goals are decomposed into a collection of subgoals that can be proved through

equational reasoning. Chapter 6 contains more details and an example.

2.8 Knowledge Acquisition

Many widely used programs in procedural languages contain a great deal of knowl-

edge such as algorithms and methods which can be accumulated as rules of a rule-base

expert system. The knowledge acquisition in the environment is based on language

translation. Figure 2.8 illustrates an overview of the knowledge acquisition method.

First, the procedural programs are translated to MODEL specifications. An equa-

tion of the MODEL specifications can be regarded as an assertion or a rule. Thus,

the MODEL specifications are translated to rules in a rule-based language. This

method offers an easy way in which knowledge bases of a rule-based expert system

are enriched.
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Figure 2.8: Rule extraction for a rule-based expert system from programs.

28



We must ensure that (1) the translation from the procedural programs to the

MODEL programs does not change algorithms and methods in the procedural pro-

grams and (2) the translation from the MODEL programs to the rules maintains

algorithms and methods in the MODEL programs. [PGLS90] has already shown

that the procedural-to-equational translation is successfully implemented and works.

We must show that the equational-to-rule translation can maintain algorithms and

methods in this section. It is demonstrated by showing a fact that a rule of a rule-

based language can simulate an equation of MODEL.

A rule of a rule-based expert system can be expressed as precondition

action. If a precondition of a rule is satisfied, an action is performed in rule-

based programming. On the other hand, a MODEL equation is executed only if

its existence condition is satisfied. Thus execution of an equation can be envis-

aged as inference of a rule; its existence condition can be regarded as a precondi-

tion of a rule: its equation body as an action of a rule. The rule is represented

as existence.condition =• equation. Thus a MODEL specification consisting of

equations can be viewed as a set of rules. An input variable in a MODEL speci-

fication such as "x" with a value 3 can be interpreted as a fact (or relation) of a

rule-based expert system such as "(define-fact (x 3))"1.7 An array variable like

".y(i,j ,k) = 47;" can be expressed as a fact that maps multiple fields of its sub-

scripts to its value such as "(define-fact (y i j k 47) As for an equation.

the existence condition of its input variables can be checked like the precondition of a

rule is checked. The execution of the action of a rule is equivalent to the execution of

the equation. The execution of a specification (a set of equations) can be envisaged

as inference (or reasoning) of rules on given facts in a rule-based expert system. The

order of firing represents causal chain among the rules [GR891. Since a specification

is assumed to have at least one order of firing that leads to a solution, there is at

least one causal chain for a given set of facts.

It concludes that the execution of a MODEL equation is similar to the executicn

7We follow the syntax of a rule-based language, CLIPS[GR89] in this document.
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of a rule in the expert system. Therefore, an array graph for a MODEL specification

can be translated into the sequence of pattern matching scheduled by the Rete

algorithm [For82, GR891 without losing algorithms and methods of the MODEL

specification. The more details are discussed in Chapter 7.
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Chapter 3

Visual Programming

3.1 Introduction

The objective of this chapter is to describe an icon-based graph editor for visual

programming of the environment. The icon-based graph editor is implemented using

DECdesign which is a meta-environment based on graphics [DEC91]. It helps a

user to analyze and design software systems according to sound rules of a design

methodology. The implementation is exercised by providing the methodology of

visual programming to the DECdesign core environment in terms of graphical objects

and rules.

This chapter is organized as follows: The icon-based graph editor and its use in

the composition via graph drawing are described in Section 3.2. As the first example,

the Euclid algorithm of finding the Greatest Common Divisor (GCD) of two integers,

which was presented in Chapter 2, is re-visited. Steps of defining data declarations

and equations are explained in Section 3.3. Parsing data declarations and equations

is discussed in Section 3.4. The composed graph and text must be consistent with

respect to their meanings. The consistency checking of graph and text is discussed

in Section 3.5. The graph can be used as graphical user interfaces for other functions

such as static checking and testing which are discussed in Chapter 4 and Chapter
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Figure 3.1: A DECdesign window.

3.2 Graph Drawing

3.2.1 Repository

A user opens a library where the visual programming methodology is encoded using

Methodology Implementation Facility (MIF). A programming language of MIF is

called Methodology Implementation Language (MIL) [DEC91]. The methodology

is loaded on a workspace of DECdesign from the library. A user creates, saves.

updates, and retrieves an array graph file to and from the repository of the environ-

ment. Figure 3.1 shows a user interface for managing the repository. It illustrates a

status where the visual programming methodology called "ARRAY" is loaded and

an array graph file ("ARRAY-GRAPH") titled "GCD" is created on the workspace

("Workspace").

The array graph file can be viewed, updated and saved into the repository using
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the icon-based graph editor illustrated in Figure 3.2. The editor has a control panel

for selecting icons, a canvas for drawing graphs, pull-down menus, and scroll bars.

3.2.2 Icons

Symbols (nodes) and connectors (edges) of an array graph are denoted by icons.

The icons are listed in a control panel of the icon-based graph editor as shown in

Figure 3.2. The symbol icons denote files, records (physical units of communicating

with external devices), groups (logical units of data), fields (physical memory cells

containing values) or equations. The records, groups, and fields can be either a scalar

or a multi-dimensional array. A scalar is denoted by a rectangle icon. Its name

and node number are displayed in the rectangle icon. A multi-dimensional array is

represented by an icon consisting of a rectangle and (an) arrow(s). A rectangle icon

contains a name and a node identification number of a multi-dimensional array. The

number of arrows denotes dimensionality of an array. For an array of more than 4

dimensions, the "n-D ARRAY" icon with 4 arrows is used. Arrows are annotated

by their associated subscripts. For example, a three-dimensional array, x (i, j ,k),

has three arrows which are annotated with subscripts, i, j, and k, respectively.

As will be discussed in Section 3.2.3, a user only provides a name for a symbol. Its

node number is automatically assigned by the icon-based graph editor. As the editor

parses the node name, it finds the associated subscript and annotates arrows with

their associated subscripts.

The icons without a shaded or a striped background like xl, x2, yl (i), etc.

in Figure 2.1 denote fields. Records and groups are shaded like the icons, in-rec

and out..rec, in Figure 2.1. A user selects. an icon (either a scalar or an array)

from the control panel and specifies that it is either a record or a group. The editor

analyzes the information and shades the icon. The details will be discussed in the

next section. Control variables are striped like END .yl (i) (node number 9) in Figure

2.1. The editor recognizes the symbol as a control variable when it parses its name.
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The inside of the icon is striped by the editor if its name has a prefix like END and

SIZE.

Data connectors (arrows of a solid line) represent data dependencies between an

equation symbol and fields. Hierarchy connectors (arrows of a broken line) denote

hierarchical data dependencies among fields, groups, records, and files.

Entity-relation relationships among icons are as follows. An equation symbol can

be connected to field symbols via a data connector and vice versa. Two different

field, group, record, or file symbols can be connected to each other via a hierarchy

connector and vice versa. The more detailed relationships are presented in Table 3.1:

The "FILE" symbol can represent either an input or an output file. When it denotes

an input file, it can be connected to either input record symbols or input group

symbols via hierarchy connectors. Otherwise, there are hierarchy connectors from

either output record symbols or output group symbols. The "SCALAR VARIABLE"

symbol can be a field, a group, or a record. If the symbol is neither shaded nor

striped, it denotes a field and can be connected to and from an equation symbol via

a data connector. If the symbol is an input field, it can be connected to an input

record or an input group via a hierarchy connector. If it is an output, a hierarchical

connector goes to either an output record or an output group from the symbol. A

shaded "SCALAR " symbol represents either a record or a group. It can connected

to other fields, groups, or records via hierarchy connectors. Note that a record of

records is not allowed in MODEL while a record of groups, a group of records, and a

group of groups are possible. A control variable is treated as same as a field is, except

that its associated icon is striped. The relational information about array symbols

and an equation symbol is described in Table 3.1. All relationships are tested to find

any syntax error in the graph by the editor whenever symbols and connectors are

created.
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Symbol Color Meaning Direction Other Symbols Connector

FILE none input file - input rec, grp h conn
output file _ output rec, grp h conn

SCALAR none scalar variable - equation d conn
VARIABLE - inp-t rec, grp h conn

(field) - output rec, grp h conn
shaded scalar variable -- input rec, grp, fld h conn

(record, group) output rec, grp, fld h conn
striped scalar variable equation d conn

- input rec, grp h conn
(control var) - output rec, grp, fld h conn

1-D none 1-d equation d conn
ARRAY array -- input rec, grp h conn

(field) - output rec, grp h conn
shaded 1-d array - input rec, grp, fld h conn

(record, group) - output rec, grp, fld h conn
striped 1-d --. equation d conn

array - input rec, grp h conn

(control var) - output rec. grp. fid h conn
2-D none 2-d - equation d conn

ARRAY array input rec, grp h conn
(field) - output rec, grp h conn

shaded 2-d array - input rec, grp, fld h conn

(record, group) -- output rec. grp, fid h conn
striped 2-d - equation d conn

array - input rec. grp h conn

(control var) -- output rec, grp, fld h conn
3-D none 3-d • equation d conn

ARRAY array -- input rec, grp h conn

(field) - I output rec, grp h conn
shaded 3-d array -4 input rec, grp, fld h conn

(record, group) - output rec, g:p, fld h conn
striped 3-d 4 equation d conn

array -- input rec, grp h conn
(control var) - output rec, grp, fid h conn

n-D none n-d - equation d conn
ARRAY array ,- input rec, grp h conn

I (field) - output rec, grp h conn

shaded n-d array --- input rec, grp, fld h conn
(record, group) -- output rec, grp, fid h conn

striped n-d I equation d conn
array ,- input rec, grp h conn

(control var) 4-- output rec, grp, fld h conn
EQUATION none equation +- fld d conn

Table 3.1: Icons and their connectivities.
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3.2.3 Editing

There is no specified sequence of creating symbols and connectors for editing an

array graph. We assume that a user starts to define a header such as an array graph

name, a source file name, and a target file of an array graph. A name of an array

graph, a source file name, and a target file name should be defined via a separate

form window.

Then a file symbol can be created on a canvas of an array graph window. A

user clicks a file symbol from the control panel and moves a cursor to the canvas

to locate it on the right place. With one more click, a file symbol is created on the

designated position. Since this node is created first, its node number is assigned as

1. The editor manages node numbers of symbols. Its name must be defined by a

user via a form window. The name must be consistent with one defined as a source

file name. Otherwise, a warning message is issued by the editor.

A user can create a connector, either a hierarchy connector (a solid arrow named

"HIERARCHY CONNECTOR" in the control panel) or a data connector (a broken

arrow named "DATA CONNECTOR"). The following explains steps of creating a

connector:

"* A user selects a source symbol of a connector. Then, a number of attach points

appear on the boundary of the selected symbol.

"• A user chooses one of the attach points.

"* After the selection, all the attach points of the symbol except the selected one

disappear.

"* A user selects a target symbol of the connector. Again, a number of attach

points appear on the selected symbol.

"* A user selects one of the attach points. Then, a connector is drawn from the

selected attach point of the source symbol to the attach point of the target

symbol.
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3.2.4 GCD Example

The Euclid algorithm, which computes the Greatest Common Divisor (GCD) of two

input numbers, can be encoded as a module named GCD in Figure 2.1. The input

file, in-f ile, contains a record, in.rec, which has two input fields, xl and x2. The

output of the module, i.e. the GCD of xi and x2, is another field named z. Its

value is contained in a record, outtrec, of an output file, out-ile. Such hierarchies

among fields, records and files are represented by hierarchy connectors as shown in

Figure 2.1.

The Eq 1 equation determines values of the interim variable, yl (W). The equation

needs values of xl. x2, yl(i), and y2(i). The data dependencies among the Eq 1

equation and the variables are expressed by data connectors as shown in Figure 2.1.

The detailed definition of the equation is provided via a separate form window as will

be discussed in Section 3.3. Similarly, the Eq 2 equation determines values of the

interim variable, y2(i). Data dependencies among Eq 2 and its inputs and output

are visualized. The variables, yl (i) and y2(i), contain partial results of the Euclid

algorithm. The sizes of the variables are limited by a control variable, END. yl (i),

computed by Eq 3. The one-dimensional array icon denoting the control variable is

striped as shown in Figure 3.3. Finally, the GCD of the inputs, z, is calculated by

Eq 4.

A user does not have to specify any sequence of execution or control. He just de-

fines variables, equations, and hierarchies and data dependencies among variables

and equations. A composed array graph denotes an equational specification in

MODEL. An array graph must satisfy the following requirements: (1) Every variable

must be uniquely defined and has a single value. (2) Every equation is fired as soon

as all values of its inputs are available.
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3.3 Data Declarations and Equations

A user creates symbols and connectors. Detailed data declarations and algebraic

definitions of equations are typed in via separate form windows. For a data symbol,

a form window is created. A user specifies a name of a symbol, its sort (field.

group, or record), its data type, etc. For the equation symbol form window, name,

comments, algebraic definition in MODEL, etc. are typed by a user.

3.4 Interactive Syntax Analysis

After drawing an array graph and entering required information for the graph and

symbols, a syntax analysis is interactively performed. The purposes of the syntax

analysis are:

"* Detecting syntax errors with respect to the MODEL grammar.

" Completing a dictionary (an extension of a symbol table) which will be used

for checking consistency of graph/text (Section 3.5) and the static checking

(Chapter 4).

"* Finding subscripts of arrays and annotating the corresponding array symbols

with the subscripts.

"* Recognizing records and groups to shade them.

"* Recognizing control variables to stripe them.

A graph resulted from the analysis is shown in Figure 3.3. If there is a syntax

error, the syntax analysis stops and an error message is issued for each symbol as

shown in Appendix C.

3.5 Consistency Checking of Graph/Text
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Id. Message
1 Missing MODULE NAME
2 Missing SOURCE FILE NAME
3 Missing TARGET FILE NAME
4 Conflict in SOURCE FILE NAME
5 Conflict in TARGET FILE NAME
6 Conflict in INPUTS of EQUATION
7 Conflict in OUTPUT of EQUATION
8 Dimension Mismatch: Misuse of Scalar Icon
9 HIERARCHY_-CONNECTOR cannot attach to EQUATION
10 HIERARCHY-CONNECTOR cannot connect SYMBOL to ITSELF
CIi DATA-CONNECTOR cannot connect DATA SYMBOL to DATA SYMBOL
12 DATA-CONNECTOR cannot connect SYMBOL to ITSELF

Table 3.2: Error messages from the consistency checking mechanism of graph/text.

An array graph must satisfy the following requirements:

"* A data symbol and its name must be consistent with each other in their di-

mensionality.

"* An equation symbol can have multiple inputs (incoming data connectors) but

a single output (an outgoing data connector).

"* Data declarations of data symbols and their references in equation symbols

must be consistent.

"* A hierarchy connector cannot connect a data symbol and an equation symbol.

"* A hierarchy connector cannot connect a data symbol to itself.

"* A data connector can only connect a data symbol and an equation symbol.

"* There is only one data connector between a data symbol and an equation

symbol.

"* A data connector is annotated with a subscript expression.

Those requirements are checked. If there is any inconsistency, warning/error mes-

sages are issued as specified in Table 3.2.
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PARSE AND CHECK

EXTRACTION

DISPLAY MESSAGES

TESTING

Figure 3.4: Tools menu.

3.6 Other Functions

A visualized array graph serves as graphical user interfaces for static checking

and visual testing. A user can exercise the checking and the testing by clicking them

from the "TOOLS" menu presented in Figure 3.4. The details of the checking and

the testing will be discussed in Chapter 4 and Chapter 5, respectively.

3.7 Gauss Elimination Example

The Gauss Elimination algorithm, used as the second example in this chapter, is

illustrated in Figure 3.5. The figure illustrates inputs and outputs as sets of simul-

taneous linear equations. The algorithm manipulates input matrix of coefficients

and right hand side constants through successive matrices until it obtains a matrix

with the lower left hand triangle of zeroes. A solution for the equations can then be

readily obtained.

Figures 3.5 portrays graphics for the Gauss Elimination example. The fig-

ure shows how the input matrix, m_i(i,j), is translated into a series of matri-

ces that form a cube, a(i,j ,k), with two associated arrays: q(i,k) denotes non-

zero elements and p(k) denotes positions of pivoting elements. Finally, the output,

m._.o(i,j), is presented. Its associated text is given in Figure 3.6.
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/* Header */
MODULE: Gauss-Elimination;
SOURCE: injfile;
TARGET: out-file;
/* Data Declaration */
/* Source */
1 injfile IS FILE,

2 in-size IS RECORD,
3 m-size IS FIELD (pic '9'), /* size of matrix */

2 in-rec(1:100) IS RECORD,
3 m-i(1:100) IS FIELD (pic '---9v.9'); /* input linear system */

/* Target */
1 out-file IS FILE,

2 out.rec(*) IS RECORD,
3 m-o(*) IS FIELD (pic '---9v.9'); /* output, triangular matrix */

/* Interim variables */
1 aaal,*) IS GROUP,

2 aa(*) IS GROUP,
3 a(*) IS FIELD (pic '---9v.9');

/* Subscripts */
(ij,k) ARE SUBSCRIPTS;
/* Equations */
/* Eq 1 */
a(ij,k) = IF k=l THEN m.i(i,j) /* load input matrix */

ELSE IF p(k-1)=O THEN 0 /* no pivoting, no solution */
/* switch pivoting row p(k-1) with (k-l)th row
ELSE IF i=p(k-1) THEN a(k-l,j,k-1)
/* switch (k-1)th row with pivoting raw p(k-1) */
ELSE IF i=(k-1) THEN a(p(k-1),j,k-1)
ELSE IF i<(k-1) THEN a(i,j,k-1) /* no need to pivot */
/* zeroing the lower left triangle */
ELSE a(i,j,k-1) - a(p(k-1),jk-1)*a(i,k-l,k-1)/a(p(k-1),k-l,k-1);

/* Eq 2 */
q(i,k) = IF i=1 THEN IF a(i,k,k)=O I k>1 THEN 0 ELSE 1

ELSE IF i<k THEN 0 ELSE IF a(i,k,k)=O THEN q(i-l,k) ELSE 1;
/* Eq 3 */
p(k) = IF k=1 & i=1 & q(i,k)=l THEN i

ELSE IF i>1 & k<=i THEN IF q(i-l,k)=O & q(i,k)=l THEN i;
/* Eq 4 */
m.o(ij) = IF k--mrsize THEN a(ij,k);
/* Eq 5 */ SIZE.in-rec = m.size;
/* Eq 6 */ SIZE.m-i = m-size+1;
/* Eq 7 */ SIZE.a = m-size;

Figure 3.6: Gauss Elimination: text.

44



Chapter 4

Compilation

4.1 Introduction

This chapter describes the compilation part of the environment where static checking

is performed for equational specifications in MODEL. A user composes a MODEL

specification by drawing an array graph in an array graph window using an icon-based

graph editor to state equations and declarations. This was discussed in Chapter 3.

Syntax and semantics of an equational specificat;on can be checked. We will use

the static checking mechanism of syntax and semantics of MODEL in the MODEL

compiler [Lu81]. The environment utilizes the compiler for checking of a composed

equational specification. The MODEL compiler has been developed for a MODEL

specification in textual form. An array graph composed using an icon-based graph

editor in graphical form must be transformed into a MODEL specification in order

to utilize the compiler. Though an array graph and a MODEL specification can be

functionally equivalent, there is a gap in their appearances, i.e., graphs and texts.

The gap becomes wider due to a fact that messages from the compiler are in textual

form and based on a text-based MODEL specification. For example, a message refers

to an equation of a specification while a user wants to locate a node in a graph which

represents the equation. To reduce the gap, the environment does (1) conversion of
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an array graph to a MODEL specification before the checking (2) visualization of

messages in the array graph in order to make a user interpret them easier.

The compiler checks a user in composing a MODEL specification that romplies

with semantic requirements of MODEl,. The requirtments are (1) existences of al

variables of equations in a MODEL specification (2) existence of at least one casatlJity

chain from input to output[0R89) via equations of a MODEL specification. Thius a

unique solution for equations must be always computable for a given input tst. A

corollary requirement is that its execution must terminate. The compiler perfornis

static checking that detects errors or warns a user whei) satisfying these requirements

is conditioned on values of input data. The compiler also adds missing statermnt.s or

parts of statements. Responding to the messages, a user fixes faults in a speciification.

The compiler exercises the following:

Ambiguous definitions and incomplete definitions of variables and equa-

tions are detected as their array graph and dic:tionary [Lu81, MOD849) are

completed:' If a same name is used for more than one data structires, it

causes ambiguity. It must be reolved by using qualifying (or prefixing) names

for variables [Lu81, SLPP841. The incomplete definition of an LHS variable of

an equation means that it does not have an RHS expression that defiiirs its

value.

" The existence requirement for defining variables is checked: It is examined

by checking definitions of variables and their refenrices. There may be discrep-

ancies between declarations and references about dimensionalities, data t ypes

of variables and ranges of subscript expressions. They are checked by prtopa-

gating attributes such as dimegisions and ranges isizes of dimensions of array

variables) via edges of an array graph.

"* Causality that computes a soluftion set for a given input values is checked:

'A dictiqnary is an internal repretatioan of i specification. Header, detled declarations of

variables, equations and their precedence relationships wr stored in a dictionary.

46



FP~
May-I1 -Vd6 MON 4P 5

A cyclic definition of variables (called circular lopic (SLPP84I) may cause an

infinite computation. It should not be a part of any causality chain. The

checking mechanism dotects such a cycle in an array graph and tesut, if it

results in a cyclic definition.

a The condition of terminating execution is che'-ked for a specification: Even

though there is no circular logic in an array graph, it may not terminate if

MODEL control variables specifying its ternmi:ation condition such i END

do not have finite values. The presence of such control variables and their

computability are checked. If they are not found on a causality chain or their

values cannot be determined as finite, a warning message is generated.

An example of viewing messages from the compiler is illustrated in Section 4.2.

Section 4.3 describes a method of discovering the anibiguous and the incomplete

definitions. Checking the existence requirement is discussed in Section 4.A. The

method of detecting and removing the cyclic definitions of variables is presented in

Section 4.5. Checking the termination condition is discussed in Section 4.6.

4.2 Example

Checking the GCD example shown in Figure 3.3 illustrates the environment. Chcwk-

ing a MODEL specification is initiated by user's calling the MODEL compiler. The

compiler generates warning/error messages. Since a user is dealing with a visualized

array graph, a method of displaying messages must be consistent with the method

of composing an array graph. A user selects "Display m,.,ssages" from the pull down

menu of "Tools" in an array graph window as shown in Figure 3.4 in order to dis-

play messages from the checking. They are displayed as message icons (boxes) on a

separate message window as illustrated in Figure 4.1. A class of a message such as

"ERROR", "FAILURE", "LIMIrT", and "WARNING" and a mnemonic of a me-.

sage such as "CRD2", "CRI)9', "IIX I", and "DTP1" are printed within a mem.age
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MODEL Chedi: GCD;1

View Edit Help

-WARNING CRD2: THE QUALFIED NAME'-

""WARNING4 CR02: THE QUALIFIED NAME

.WARNING" CRAD: OECLARATION HAS BEEN

"-WARNING" CR09: DECLARATION HAS BEEN

",WARNING" l•X 1: 30k SUBSCRIPTS APPE

.WARNING^ DTP1: INTEGER FIELD INTER

03 Auto snap to grid View access: Read/Write Cancel Opertion

Figure 4.1: Message wiado%.

Mesg i s ... lI ]
!Assoiate nodes am ... ,

Figure 4.2: Pop-up menu for Message.
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Teal Wicdow: "WARNING CRDS:;1

View Edit Help

DECLARATION HAS BEEN SUPPLIED FOR THE UNDECLARED VARIABLE

A

view access: Read/Write

Figure 4.3: Content of message labeled "*WARNING* CRD9:".

icon.2 A fraction of a message is printed next to a mess.ge icon. A user can either

browse contents of messages or locate nodes and edges of an array graph which are

associated with messages. Content of a message can be examined by selecting the

entry of "Message is..." from the pop-up menu shown in Figure 4.2. Figure 4.3

shows a message window of the third message, "*WARNING*:CRDg:", of th mes-

sage window shown in Figure 4.1. If a user wants to locate nodes and edges. of an

array graph, which are asiociated with messages, he must select "Associated nodes

are..." from the pop-up menu in Figulre 4.2. The masociated nodes and edges can be!

searched and visually highlighted as shown in Figure 4.4. At the same time, a siall

dialog box as shown in Figure 4.5 is popped up in ordt-r to inform a user thal the

highlighted nodes and edges are associated with the me.;sage.

'For the detils of checking mesnage mnemonics and their meanings, swe [MOD89).
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DECdesign Message

THE SELECTED NODE, yl(i), IS ASSOCIATED WITH THE MESSAGE.

lAckol Emdl aceHl

Figure 4.5: A user is informed that yl Wi) is highlighted.

Text Window: *ERROR* EED1O:;1

View Edit Help

VARIABLE NAME "X" IS AMBIGUOUS IN ASSERTION AASS8. QUALIFY IT
WITH ITS FILE NAME AS A PREFIX.

View access: Read/Write

Figure 4.6: Ambiguous definition is detected.

4.3 Dictionary Construction

Every variable and its definition are listed in a dictionary of a MODEL specification.

As a dictionary is constructed by the compiler, ambiguous definitions and incomplete

definitions of variables are detected. A warning message is issued for ambiguous or

incomplete definitions.

4.3.1 Ambiguous Definitions
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When several data structures have the same name, it is ambiguous to reference

the data structures from equations. The ambiguity can be partially removed as a

dictionary is constructed. It is done by applying the following rules [Lu81, SLPP84]:

"* An LHS may reference only interim or output variables.

"• An RHS may reference also input variables.

In many cases, however, a user is required to remove ambiguity. He may rename

ambiguous variables by qualifying (or prefixing) them [SLPP84]. For example, we

may have the following declaration statements:

1 a IS GROUP, I b IS GROUP,

2 x(i) IS FIELD NUM(4); 2 x(i) IS FIELD NUM(4);

The following equation has ambiguity because of the field x:

y(i) = IF x(i)>10 THEN x(i) - 10

ELSE x(i);

The compiler would detect this ambiguity and issue a message shown in Figure 4.6.

Such ambiguity can be resolved by using qualified (or prefixed) names as follows:

y(i) = IF a.x(i)>10 THEN b.x(i) - 10

ELSE b.x(i);

4.3.2 Incomplete Definitions

If equations or interim data declarations are omitted, the compiler attempts to pro-

vide an appropriate equation or a data declaration. The process is based on the

following rules [Lu81, SLPP84]:

* If an output data node is not explicitly defined, a new equation may be com-

posed using its implicit input nodes.
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Text Window: *WARNING* CRD2:;1

[ View Edit Help

THE QUALIFIED NAME "END.Y1" HAS AN UNDECLARED SUFFIX; ITS
DECLARATION WILL BE SUPPLIED FOR YOU.

View access: Read/Write

Figure 4.7: Incomplete definition is detected.

* An omitted data declaration of a node (an interim variable) and/or its parent

node can be formulated using its implicit inputs.

If the implicit source of the omitting equations and the declarations are not

found in an array graph and/or a dictionary, the system requests a user to provide

equations and/or data declarations.

The message shown in Figure 4.7 informs a user (1) the system detects an unde-

clared variable, yl, while it checks a qualified variable, END.yl, (2) the system will

provide a default declaration for yl.

4.4 Existence Requirement

The existence requirement of variables is the most important property that a MODEL

specification must employ. To facilitate a user to comply with the requirement, the

compiler provides utilities that examine the consistent definitions/references of di-

mensions and their ranges.
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Text Window: *WARNING' IIXI :;1

View Edit Help

SOME SUBSCRIPTS APPEAR ON THE RIGHT-HAND-SIDE BUT NOT ON THE

LEFT-HAND-SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR "I" IN

ASSERTION AASS 10.,

View access: Read/Write

Figure 4.8: Incomplete definition of a subscript is detected.

For each equation of a specification, an RHS expression, f(i ... , ,in j , Jk,

varj,...,vark), for instance, and its input variables, varj,...,vark, have consistent

definitions of their dimensions. An LHS variable, x(i1 , ... , i,,), has consistent defini-

tions of dimensions with respect to an equation. The dimension propagation algo-

rithm checks consistency in definitions of dimensions and their references through

out equations of a specification. Then ranges (sizes) of their dimensions are prop-

agated along dependency edges of their array graph. Their consistency is checked

by the range propagation algorithms. As a result, the existence condition, namely,

3jl,...,jm.varl,...,vark and 3ij,...,i,, is checked.

The warning message presented in Figure 4.8 is generated during checking of the

existence condition for the following equation:

z = IF END.yl(i) THEN yl(i);
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Figure 4.9: Dimension Propagation.

4.4.1 Dimension Propagation

A user does not have to specify a detailed dimensionality of a variable in MODEL.

It is necessary to check for the compiler if dimensionalities of arrays referenced in

equations are consistent with that of those arrays specified in their respective data

declaration. The compiler completes data declarations and equations whose dimen-

sionalities are not explicitly specified. This is done by dimension propagation.

The compiler propagates attributes of a node of an array graph to another via

an edge that connects the nodes. The attributes of an edge stored in a dictionary

include the following [Lu81, Ge89]:

"* a source node of an edge.

"* its target node.
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Text Window: OERRORa DMP1 :;1

View Edit Help

CONTRADICTION IN DIMENSIONALITY
DETECTED IN AASS7 WITH 0 DIMENSION OMITTED.
THE DATA ELEMENT INF.Y WAS DECLARED WITH 2 DIMENSIONS.
SO. AASS7 MUST HAVE 1 DIMENSION OMITTED.
AGAIN, AASS7 APPEARS TO HAVE 0 DIMENSION OMITTED.,

view access: Read/Write

Figure 4.10: An error is detected by dimension propagation.

"* its type, i.e., hierarchical precedence, data dependency or parameter prece-

dence.

"* difference of the source and the target nodes in their dimensionality (DIMDIF).

"* its subscript expression list.

"* range set for each dimension.

If two nodes are linked by an edge, attributes of the nodes must be matched according

to attributes of the edge.

An algorithm for dimension propagation is described in [Lu81]. Dimensional-

ity differences, DIMDIF, are set up for all edges of an array graph. For input

file nodes, their dimensionalities are 0. An intermediate node, n, (either a vari-

able or an equation) has an initially declared number of denoting its dimension,

D,. Suppose m source nodes, si, ... , s., are connected to a node, n, via respective

coming edges of dimension differences, DIMDIFS1 ,..., DIMDIF8 ,,, There may be

56



k target nodes, tl, ... , tk, connected by k outgoing edges of dimension differences.

DIMDIFtl,...,DIMDIFt., as shown in Figure 4.9. Current dimensionality of a

node, x, is denoted by C,: source nodes, s1, ... , Sm,, have dimensionalities, C0,, .... C,,M

and target nodes, ti ..., tk, have dimensionalities, Cte,.... Ct, Then, dimensionality

of the node n is defined as follows:

C. = maxi<i<,,,,1<j<k(D, C., + DIMDIF3 ,, Ct2 - DIMDIFt,)

The dimension propagation algorithm computes C., for all nodes of the graph. If

every node of the graph has a finite dimension, the algorithm converges [LuS1]. An

infinite propagation cycle of an array graph can be detected by the algorithm. Then.

nodes and edges on the cycle are revealed so that a user can fix it. If dimensionalities

of all nodes and edges are correctly defined, an output file node of the graph must

have 0 dimensionality.

Contradiction in dimensionalities of variables is detected by the demension prop-

agation algorithm. Figure 4.10 displays an error message called "DMP1". A user

declares an input variable, y, as a two-dimensional array and references it as a one-

dimensional array in an assertion' named "AASS7".

Missing subscripts of equations can be filled up during the dimension propagation.

A node subscript list is formulated for each variable node. Based on these lists.

missing subscripts of equation nodes and missing subscript expressions of edges are

filled up. The detailed procedure is described in [Lu81].

4.4.2 Range Propagation

After the dimension propagation, ranges (sizes) of dimensions are examined for all

nodes in an array graph. The basic strategy is to find user specified ranges of nodes

and propagate them to the rest of the nodes in the graph along with edges connecting

tht-m. The propagation aims:
3 Denoted by an equation node in an array graph. A user may want to execute the "Associates

nodes are..." operation from the pop-up menu in order to locate its associate equation node in the
graph.
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"* to derive a range for a node subscript not having an explicit range.

"* to determine range sets each of which contains two node subscripts of the same

range.

"* to check consistency in definitions and references of the ranges.

4.4.2.1 Definitions

A node subscript is defined for a node of an array graph as follows:

* < x, i >: a node subscript for an i-th (i is a positive integer) dimension of a

node of an array variable, x.

* < Eq,,I >: a node subscript for I (a subscript variable) with an equation

node, Eq,.

A range (or size) of a node subscript, < n, d >, is defined as R(< n, d >).

4.4.2.2 User Specified Ranges

A range is specified explicitly or implicitly for each node. It may be explicitly defined

by:

"* a data declaration statement

"* a subscript declaration statement

"* values of control variables (SIZE or END)

"* the system default: the end-of-file or end-of-record marker (ENDFILE) of an

input sequential file
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4.4.2.3 Condition of the Propagation

When two node subscripts of different nodes are related through a certain depen-

dency relation and one of them does not have an explicit range specification, range

of the other node subscript is propagated through the edge denoting the dependency

relation.

If a subscript expression, i - k, where i is a subscript and kc is a positive integer.

is used in an equation, a mapping exists between values of elements indexed by I

aild i - k. It is assumed that a node indexed by i and an equation node indexed by

i - k are in the same range set.

4.4.2.4 Priority of the Propagation

There may be many alternatives to the range propagation. It is performed based on

the following rules:

* All the node subscripts with the same global subscript 4 are considered as a

single group, i.e., a set of variables and statements in a single loop in a pro-

cedural language program. Thus a range of a global subscript is propagated

with the top priority.

* A data array node and its associated control variable such as END and SIZE

must have the same range. A range of a control variable is required to be

explicitly specified. A range is propagated from a control variable to its data

array node with the second priority.

* A range of an output node is propagated to its associated equation node with

the second priority.

* From an equation node to its associated input data node, a range can be

propagated. It has the third priority.

4 defined by either a subscript declaration statement or a control variable, FOR-EACH [Lu8l,
MOD89).
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Figure 4.11: Example of Range Propagation.
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* The lowest priority is given to the range propagation from an input data node

to its equation node.

Consider a simple example illustrated in Figure 4.11. Two simple equations, Eq

1 and Eq 2, of transferring values from an array to another are presented. Ranges

of the arrays, a(subl) and c(subl), are given as 20 and 10, respectively. Note

that the subscript, subl, -s not defined as a global subscript. Since the condition

of the range propagation is satisfied, we can propagate these ranges in order to

determine the ranges of the node subscripts for Eq 1, Eq 2 and b(sub 1). We have

the following alternatives: (1) propagate the range of the local subscript subi of

a(subl) to the equation node, Eq 1, to determine the value of R(<Eq 1,sub1>) or

(2) propagate the range of the subscript subL of the output node, c (sub 1), backward

to the equation node, Eq 2, to get the value of R(<Eq 2, sub 1>). According to the

rules of the range propagation, the first alternative, (1), has the fourth priority

and the second alternative, (2), has the second priority. Thus the value of R(<Eq

2,subl>) is defined as 10. Next, we have the following two alternatives: (1) and

(3) propagate the value of R(<Eq 2,subl>) to its input data node. b(subl). The

alternative, (3), has higher priority. Therefore the value of R(<b, 1>) becomes 10.

Finally, the following two alternatives remain: (1) and (4) propagate the range of

the subscript, sub1, for the output node, b(subl), to its equation node, R(<Eq

1,subl>). The second alternative, (4), has the second priority. It follows that

R(<Eq 1,subl>) is equal to 10.

4.4.2.5 Range Functions and Real Arguments

A node subscript represents an iteration over its range by a loop control statement

in a procedural program [Lu81]. An equation and a data node in an array graph may

have multiple node subscripts and they represent a multi-level nested loop. In such

a situation, a range of a node subscript can be a function of the other subscripts.

For examplc- consider the following MODEL specification:
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a IS FIELD;

b IS FIELD;

Eq 1: b(i,j,k) = a(ij,k);

Eq 2: SIZE.a(ij) = f(ij);

The range of the third dimension, k, of the array variables, a(i ,j ,k) and b(i ,j ,k),

depends on the ranges of the first and the second dimensions, i and j, as Eq 2 de-

fines. The specification is translated into the following code of a procedural language

program [Lu8i]:

DO <a,l>;

DO <a,2>;

DO <a,3> = 1 TO SIZE.a(<a,1>,<a,2>);

b(<a,1>,<a,2>,<a,3>) = a(<a,1>,<a,2>,<a,3>);

END;

END;

END;

An n-dimensional range array, SIZE.x(ij, ... ,Zi',), is regarded as a range function.

The range function accepts integer arguments, iz, ..., i,,, and computes the range of

the n+1-th or higher C' nension of the variable, z. Arguments of a range function are

called real arguments, if they really contribute to determining a value of a function.

An algorithm of finding real arguments of range functions is described in [Lu81].

It is required that loops of an array are nested according to a sequence of their

array dimensions. That is, loops of a variable, x(ij, ... , i,) must be nested in the

following way:

DO <x,l>;

DO <x,2>;
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DO <x,n>;

END;

END;

END;

It follows that a range function for a dimension, ik, 1 < k < n, does not affected by

its lower dimensions for all 1,, k < m < n.

4.4.2.6 Range Propagation Algorithm

There are three basic algorithms for the range propagation. The first algorithm lo-

cates user specified ranges of node subscripts. As discussed before, ranges are spec-

ified by declaration statements (either data or subscript), control variables such as

END and SIZE or the system default (end-of-file or end-of-record). Secondly, explicit

range specifications are propagated. It requires node subscripts to be partitioned

into their corresponding range sets. Finally, a real argument list is formulated for

node subscripts in the same range set and is propagated. See [Lu81] for the details

of the algorithms.

4.5 Causality Chain

A causality chain in an array graph is a path from its input nodes to its output nodes

via its equations. A solution of equations is computed along such a causality chain.

Therefore, a circular definition of variables, namely circular logic (or dependency),

that causes an infinite computation, should not be on a causality chain.

A maximally strongly connected component (MSCC) of an array graph could

result in circular logic. However, not all MSCC's form circular logic. The MODEL

compiler identifies and decomposes an MSCC by deleting edges that represent data
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Figure 4.12: A maximally strongly connected component (MSCC) of an array graph.

dependencies assured by iteration statements [Lu81. SLPP84]. Such edges of itera-

tion can be determined by examining subscript expressions of edges. If its subscript

expression is in the form of .sub- k, where k > 0 and sub denotes a subscript common

to all MSCC nodes, an edge is determined to be representing iteration.

For example, an MSCC can be found in Figure 4.12: a cycle formed by the edge

labeled by i and the edge labeled by i-1. In this particular example, sub = i and

k = 1. Therefore, the edge of i-1 is classified as one representing iteration. It follows

that the MSCC does not have circular logic. Such an iteration solution method is

recursively applied until all MSCC's in an array graph are examined.

A cycle that cannot be decomposed by the iteration solution method is reported

as a possibly infinite loop. A user has to examine and remove such a cycle by

decomposing it. If it is not possible, he may use a set of simultaneous equations

that perform the same function of the cycle. In general, it is very complicated to

remove an infinite loop from a program by a static checking. We only deal with a

specification that always has at least one causality chain of its equations.
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4.6 Termination

Suppose we have an acyclic array graph without any cycle. Then a causality chain

can be formulated. However, it does not mean that a solution of equations is ob-

tained. To check the termination condition, equations defining control variables

such as END and SIZE are examined for each causality chain. It aims to check finite-

ness of subscripts, namely, 1 < il _5 SIZEI,... 1 < i, < SIZEj. and 1 < J, _5

SIZEj3 ,..., 1 < j5 . SIZEj,,, of the existence condition. Values of SIZE variables (=

ranges of subscripts), if computable, may be obtained during the range propagation.

There may exist some constraints of defining ranges that cannot be computed dur-

ing the range propagation. Such constraints are discovered and checked during the

termination checking.

Note that an END variable can define a minimum range of 1 because it must have

at least one boolean value. However, a SIZE variable can have a minimum range of

0. Value of an END variable can be infinite while a SIZE variable has a finite value.

END.x(i 1 , ... , i.) may depend on values of the array, x(i .... ,in). But SIZE.x(ii, ... , in)

must be computed before any element of x(i1 ,..., in) is used.

The termination checking discovers an equation of defining sizes of array variables

such as

"END.x(i 1 , ... , in) = ... " and "SIZE.x(il, ... , in) = ... " for each causality chain of a

specification. If thern equation of such control variables, a warning message is

issued so that a user Ines the termination condition of a specification. Though

such an equation is defined on a causality chain, it may not have an explicit finite

value denoting the termination. In such a case, a warning message is also issued.

65



Chapter 5

Testing

5.1 Introduction

The objective of this chapter is to describe a software testing methodology for

the Equational Visual Programming Environment and discuss its theoretical

background. The objective of software testing is to demonstrate that a program

achieves its requirements.

The testing methodology presented in this chapter is called Equational Visual

Testing. The testing methodology for procedural programs is called Procedural Test-

ing. The approach to the Equational Visual Testing borrows from research into

systematic testing of procedural language programs [DLS78, Nta84, RW85, Wey86,

How87, DMMP87, Ham88, Bei90]. In both methods, the program (equational or

procedural) is executed with a series of input values and the respective results are

evaluated. Both the Equational Visual Testing and the Procedural Testing focus on

analysis of graphs representing respective programs.

Exhaustive testing (using all possible combination of input values in the respec-

tive domains of the input variables) is impractical in both methods. Therefore, a

compromise is made. Lesser testing requirements are imposed. However, the testing

needs to test systematically sequences of program events. Such systematic testing is
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said to meet an adequacy criterion. Adequacy criteria vary in their order of strict-

ness and have been shown experimentally to represent a similar order of program

reliability. The stricter the criteria, the fewer errors go undetected.

Both testing methods are based on representing a program as a graph. They

require selection of input values that force traversal of selected paths in the graphs.

As will be shown, the selection of input values is based on satisfying conditions in

the programs.

Thus the Equational Visual Testing and the Procedural Testing are somewhat

similar. However, the semantics of the graphs differ considerably. The following

differences are selected as significant to the labor required for testing:

(1) The Equational Visual Testing tests the equational specification without re-

garding to how it is executed, e.g., in a sequential or in a parallel computer.

The Procedural Testing is based on the execution of the program in a sequential

computer.

(2) The equational specification uses the language of MODEL and the array

graph (See Chapter 2 for details.) A procedural program uses a sequential

programming language and a control flow graph [Nta84, Wey86, Bei90].

Both methods require test executions that 'raverse selected classes of paths

in the graph. Some of these paths, e.g., a path from a variable definition to

its use, consists of a single edge in the array graph, while they may consist

of multiple edges in the control flow graph. This may impact the difficulty of

finding input values for testing.

(3) A single node in the array graph may represent an array variable or an equation

defining multiple elements of an array variable. As noted, an array variable

node denotes evaluation of all elements in the array. The evaluation of the

elements may be sequential, parallel, or any other order that takes into account

precedences due to dependencies. In contrast, cycles in the control flow graph

represent sequential iteration.
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(4) There may be also maximally strongly connected components (MSCC) in the

array graph. As discussed in Chapter 4, the equational language compiler

deletes edges resulting in a cycle-free array graph. As will be discussed, these

deletion will allow transforming the array graph into an acyclic graph. In

the control flow graph, all loops for defining or updating array elements are

represented by an MSCC. Generally more MSCC's make it more difficult to

analyze and select test input values.

(5) Equational languages have the single assignment rule stipulating that variables

are defined only once and not modified. All variables are defined in every test

execution. There are no undefined variable as in procedural programs. Thus

all values of elements of arrays are available for analysis of execution behavior.

In procedural languages, only the latest modification of a variable is preserved.

The Equational Visual Testing process include a recompilation which preserves

values of all input, output, and interim variables on secondary storage.

These differences and their significance will be further discussed in the sequel.

The plan for this chapter is as follows. Section 5.2 provides a background of the

test methodology for procedural programs. It is based on the work of [Nta84, Weys6I.

It describes use of control flow graphs and adequacy criteria to control the testing

process.

Section 5.3 gives an overview of the Equational Visual Testing. This is based on

the equational language and the array graph described in Chapter 2. It describes an

approach to establish adequacy criteria similar to the ones used in the Procedural

Testing. The remainder of the chapter discusses the steps of the Equational Visual

Testing process described in Section 5.3.

Section 5.4 describes the pre-test compilation needed for the equational language.

Its purposes are (1) to isolate conditions that control traversal of paths and (2) to

retain array variable values needed for analysis of errors in the equational specifica-

tions.
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Adequacy Criterion Mean No. Test Cases Bugs Found (%)
random testing 100 79.5
branch 34 85.5
all-uses 84 90.0

Table 5.1: Ntafos' experiment.

Section 5.5 presents a discussion of the adequacy criteria for the Equational Visual

Testing and corresponding testing processes for satisfying these criteria.

The GCD example of Chapter 2 is used in Section 5.6 to illustrate the testing

steps. The section discusses analyzing the array graph, selecting test input values.

and evaluating the results of test execution.

5.2 Background: Procedural Testing

Testing a program for all the combination of all values in its input domains would

assure that the program has no errors. Such exhaustive testing is impractical. As

an alternative, a finite subset of values is selected from the input domains to satisfy

requirements of an adequacy criterion. The program is executed with the selected

test data. The test results are evaluated.

An empirical study by Ntafos has compared different test adequacy criteria ap-

plied for testing procedural programs [Nta84, Bei90]. As shown in Table 5.1, the

all-uses criterion requires more test cases but finds more bugs than the branch cri-

terion. The all-uses criterion requires fewer test cases than the random testing but

finds more errors. These adequacy criteria are explained in Section 5.2.3. Another

empirical study at IBM showed that the all-uses criterion has the best payoff with

respect to the number of required test cases versus the number of detected errors

[Bei9O].

Theoretical considerations on the basis for adequacy criteria for the Procedural

Testing of procedural language programs have been reported by Weyuker [RW85.

Wey86]. It has been claimed that the use of adequacy criteria is a practical testing
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approach [Wey90]. The adequacy criteria are expressed in terms of paths in a control

flow graph which is described in Section 5.2.1. The process of the Procedural Testing

is presented in Section 5.2.2. Section 5.2.3 reviews the adequacy criteria theory for

the Procedural Testing. It serves as the background for developing adequacy criteria

for the Equational Visual Testing.

5.2.1 The Control Flow Graph

The control flow graph is also called definition use graph [RWS5]. A node of the

graph represents a block of procedural program statements. The block is a segment

of a program with no branching within it. The first statement of the block is the

entrance to the block. The last statement of the block precedes branches from

the block to other blocks. Whenever the first statement of a block is executed.

the other statements in the block are executed in the given order. Each block has

statements for definition of variables and for computational-uses (c-uses, a variable

is used in a computation or an output statement) of variables. An edge between

block nodes represents a conditional or unconditional branch statement. An edge

of a conditional branch is labeled with the condition. The variables used in the

predicate of a condition are called predicate-used (p-use). A path is a finite sequence

of connected nodes, (ni,..., nk), k > 1, such that there is an edge from ni to ni+4 .

for i = 1,2, ... , k - 1. A path is loop-free if all nodes on the path are not in a cycle.

A definition-clear path is defined as a path from a block containing a statement

defining a variable to the block with a statement that uses the variable and where

there are no other intermediate blocks with a statement redefining the variable along

the definition-clear path. A c-use path denotes a definition-clear path from definition

of a variable to c-use of that variable. A p-use path means a definition-clear path

from definition of a variable to use of that variable in a predicate (condition). A

simple path is a sequence of connected nodes, (nli,..., nk), k > 1, where all nodes are

distinct except the first (nl) and last (nk). If all nodes are distinct, it is a loop-free
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path. A du path is a sequence of connected nodes, (nj,...,nk.-i,nk), k > 1, (1) if

the last node (e.g., nk) has a c-use of a variable, x, then the path is simple and

definition-clear with respect to x, or (2) if the last edge (e.g., (nk-i, n7k)) has a p-use

of z and path (ni, ... ,nk-1) is a definition-clear loop-free with respect to x.

Weyuker assumes the following constraints on a control flow graph representing

a procedural program [RW85J:

(1) A control graph has exactly one start node (or block) which is the first node

of the graph. The start node cannot be a destination of an edge.

(2) A control flow graph contains at least one halt node. The final node of the

graph must be either a halt node or a node having an unconditional edge

(branch) to some other node.

(3) A syntactically endless loop is defined as a circular path, n1 , ... , nk, k > 1,

nj = nk, such that none of the nodes on the path contain either a conditional

edge to a node which is not on the path or a halt node. Such a loop causes

an infinite iteration. It is assumed that a control flow graph does not contain

a syntactically endless loop [RW85]. This assumption assures that every node

appears on some path from a start node to a halt node.

5.2.2 Procedural Testing Process

The process of testing procedural programs is shown in Figure 5.1. Assume 0, at a

set of testing requirements is given in which the program must perform. The testing

process is described as follows:

(1) Analyze Control Flow Graph:

This involves three steps:

(a) The tester constructs a node table. There is a row for each node. The

definitions and c-uses of variables in the nodes are entered in the node row.
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Figure 5.1: Procedural Testing Process.
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An edge table is constructed. For each edge, there is a row. Respective

set of p-use variables are listed for each edge.

(b) The tester finds all the definition-clear paths for each variable defined in

each node. There are two types of definition-clear paths. The definition-

to-c-use paths for a variable are obtained by finding the definition-clear

paths that start from the node and end with c-uses of the variable. The

definition-to-p-use paths are defined by finding definition-clear paths for

a variable defined in the node that end with p-uses of the variable.

(c) The tester selects paths for testing to meet the specific adequacy criterion

that are used. For example. the all-uses criterion requires testing of all

the c-use paths and all the p-use paths for all variables (further discussed

in Section 5.2.3).

(2) Select Test Data:

The tester finds test data which cause traversal of each definition-clear path

selected. It is assumed that the tester can find input values which cause execu-

tion traversal of the selected path. This is an oracle assumption. These input

variable values must satisfy instances when all the conditions of edges along

the path are satisfied. Conditions along some paths may not be satisfiable. In

that case, the human tester may also want to report to the developer to fix the

errors causing the conditions unsatisfiable.

(3) Execution:

The program is executed with all the selected input values. The testing is

performed for all paths selected to satisfy the adequacy criterion. If the test

execution does not stop for a long time, the tester stops the execution. This

is a time-out technique. The tester analyzes the program according the the

requirements.

(4) Evaluate the Results:

73



Test results are evaluated by the tester. It is assumed that the tester will be

able to determine whether or not the output values from a test execution are

correct in the sense that they meet the requirements of the tested program.

This may typically require independent calculations that reverse the program

execution. This is an oracle assumption. If the results are incorrect, the

tester reports the errors to the developer to make the necessary corrections.

Otherwise, the testing process continues until the test adequacy criterion is

satisfied.

5.2.3 Procedural Adequacy Criteria

This section concerns the procedural testing adequacy criterion used in step (1) of

the process of Figure 5.1. The notions of the paths used in the Procedural Testing

are the basis of defining adequacy criteria [Bei90, Wey90].

The criteria can be related in terms of a transitive relation called inclusion. D.

which denotes relative "strength" of two criteria [RW85]. A criterion. Ri. is defined to

be "strongeF' than a criterion, R,, if all test cases produced under R. are included in

those produced under Ri, i.e., R, D Rj. Figure 5.2 illustrates a hierarchy of .trength

relations among criteria [RW85]. The criteria are as follows:

"* all-paths: Test input data must cause traversal of every path from the start

node to the halt node of the control flow graph. This is the strongest ci-iterion.

Each test data must satisfy combinations of conditions of the edges along

paths from a start node to a halt node. The paths may include cycles. A cycle

must be traversed at least once in respective iterations but different paths may

be traversed in different iterations. As noted, a cycle with infinite iterations

cannot make the iteration finish. Using a timeout technique. a cycle that is

iterated for a long time may be detected and then analyzed to determine the

cause.

"* alI-du-paths: Test input data must cause traversal of every du path from every
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Figure 5.2: Hierarchy of adequacy criteria in procedural programming.

75



definition of every variable to every use of that definition. The all-du-paths

criterion is weaker but more practical than the all-paths criterion: (a) it in-

cludes paths which are subpaths of those required in the all-paths criterion.

(b) it excludes paths including loops.

"* all-uses: Test data must cause traversal of at least one path from every variable

definition to every use of that variable. There can be several du paths from

a variable definition node to a respective use node (c-use) or a respective use

edge (p-use). The all-uses criterion requires the traversal of only one of such

paths, while the all-du-paths criterion requires traversal of all such paths.

" all-c-uses/some-p-uses: Test data must cause traversal of at least one definition-

clear path from each variable definition to every c-use of that variable. If any

definition is not used in a c-use but used only in a p-use, add such p-use paths.

This will assure that every definition is included in some test. It might well

miss an error caused by omitting some p-use paths.

"* all-p-uses/some-c-uses: Test data must cause traversal of at least one definition-

clear path from each variable definition to every p-use of that variable. If a

definition is not c-used, add such c-use paths. This assures that every defini-

tion is included in some test. It could miss an error caused by omitting some

c-use paths.

"* all-c-uses: Test data must cause traversal of at least one definition-clear path

from each variable definition to every c-use of that variable.

"* all-definitions: Test data must cause traversal of at least one definition-clear

path from each variable definition to some p-use or some c-use.

"* all-p-uses: Test data must cause traversal of at least one definition-clear path

from each variable definition to every p-use of that variable definition.
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e branch (or all-edges): Test data must cause traversal of each edge of a con-

trol flow graph. This requires test data that satisfies the conditions on the

respective edges, but not conjunction of the conditions along a path.

o statement (or all-nodes): Test data must cause traversal of each node of a

definition use graph.

5.3 Equational Visual Testing Process

Figure 5.3 illustrates the Equational Visual Testing process. It is similar to the

process of the Procedural Testing in Figure 5.1 except that it includes an additional

step for recompilation for testing. These steps are briefly described below and then

discussed further in later sections.

(1) Compile for Testing:

An equational specification is modified (possibly automatically) and recompiled

before it is tested. The modified program execution stores the values of interim

variables and facilitates tracing exclusive paths from input nodes to output

nodes. Modifications for testing consist of the following:

(a) Equations with multiple conditional expressions (complex conditional equa-

tions, e.g., nested IF-THEN-ELSE) are expanded each to a set of single

conditional equations, each with a respective expression (a simple con-

ditional equation, e.g., IF-THEN). The conditions in the set of simple

conditional equations must be exclusive. Namely, only one of them can

be satisfied for any input. Equations are also added to define explicitly

the conditions in the simple conditional equations.

(b) Values of interim and control variables are declared as target variables

(See Chapter 2). This amounts to declaring these variables as output on

a secondary storage media.
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The modified equational specification is then compiled for the testing. An

array graph is generated for the visualization. Executable code is generated

and used for executing the tests.

(2) Analyze Array Graph and Select a Test Condition:

An array graph of the modified equational specification is then shown on the

screen. Note that the conditions of the simple equations expanded from a

complex conditional equation must be exclusive. Conditions are selected from

the exclusive set, one by one. Next, input values are selected to satisfv the

condition. The equational specification in then executed with the test input

values. The nodes of the conditions, which have been previously selected and

tested, are cumulatively shaded. The more conditions are satisfied during tests.

the more condition nodes are shaded in the graph. The shaded condition nodes

visually denote the progress in test coverage. The testing process ends when

the test adequacy criterion is satisfied. This may mean that all conditions

required by the adequacy criterion are shaded. The adequacy criterion may

require one or multiple test input values that satisfy each condition. Note

also that each test input value set may cause the shading of more than one

condition node.

(3) Select Test Data:

Test input values are determined to satisfy each selected condition in step

(2). In some adequacy criteria, combination of conditions must be satisfied.

The input data variables are obtained by backtracking, along the causality

paths, from the condition to the respective input variables. The test input

values are chosen from the domains of the input variables that satisfy the

condition. Determining values of input variables that satisfy hIle condition may

be complex. It is further discussed in Section 5.6.3. This is a human operation

which is assumed to be able to find the values of the input variables satisfying

the conditions. This is an "Oracle" assumption [Bei90]. If the conditions are
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not satisfiable, then the tester reports the developer to fix the problem. The

input data are entered by pointing to the nodes of the associated input variables

of the array graph. Respective files for input variable values are then created.

(4) Execution:

The compiled specification is executed with each selected test input values,

shading condition nodes and producing the test results. The output values

from the test execution can be viewed via pointing to their corresponding

variable nodes. Note that a time-out is used to terminate the test if execution

time is unreasonably long.

(5) Evaluate Results:

It is assumed that the human tester will be able to determine whether or not

the output values from a test are correct. This is further discussed in Section

5.6.5. This is also an oracle assumption [RW85. Bei9O]. If the results are

incorrect, the tester reports the errors to the developer so that the equational

specification can be fixed and then testing is restarted. Otherwise, the testing

process continues from step (2) until the test adequacy criterion is satisfied.

5.4 Pre-Test Compilation

The objective of pre-test compilation is to modify the array graph through a compi-

lation to represent conditions and respective simple conditional equations as nodes

in the array graph. This is step (1) in Figure 5.3. The pre-test compilation aims (a)

to use only unconditional or simple equations (with exclusive conditions) (b) to store

away values of all interim variables. The pre-test compilation expands a complex

conditional equation into a set of simple conditional equations. The process of ex-

pansion is similar to the code optimization technique used in an equational compiler

[Bru89].

80



Eqn

Figure 5.4: An equation before the condition expansion.
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Figure 5.5: The complex conditional expressions are expanded and the edges are
marked as definition, c-use, p-use, and control.
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An equation is either non-conditional, simple conditional (with a single con-

ditional expression, e.g., IF-THEN), or complex conditional (with more than one

conditional expressions, e.g, nested IF-THEN-ELSE). A non-conditional equation is

activated as soon as all of its input data are available. A simple conditional equa-

tion is activated when the condition is satisfied and the input data are available.

Therefore, the conditional expression of the simple conditional equation becomes the

condition of executing the equation. A complex conditional equation is expanded

into a series of simple conditional equations of which the conditions are exclusive.

For instance, let the complex conditional equation in Figure 5.4 (the control variable.

SIZE. x, defines the size of the array variable) be:

x(i) = IF cl THEN expl

ELSE IF c2 THEN exp2

ELSE IF c3 THEN exp3

ELSE IF ...

ELSE IF cni THEN expnl

ELSE expn;

It is expanded into a series of simple equations shown below. First, variables.

condl, cond2,..., condn, are introduced for the conditions and defined using the

conditional expressions, cl, c2,. ... cn, by simple equations as follows:

condl = cl;

cond2 = cl & c2;

cond3 = -cl & %c2 & c3;

condn = Thl & -c2 & ... & -cn1;

The equational compiler must assure that a condition variable is not duplicated in

the array graph. Whenever a new condition variable is introduced, the compiler
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compares it with existing condition variables. The simplest method is to compare

two conditional expressions using string matching. A more powerful method would

use a term rewriting system, which transforms every conditional expression into a

normal form, for the expression comparison. The string matching method is used in

the compiler because it is easier to implement.

The complex conditional equation is then split into simple conditional equations

using the conditions as below:

x(i) = IF condl THEN expl;

x(i) = IF cond2 THEN exp2;

x(i) = IF cond3 THEN exp3;

x(i) = IF condn THEN expn;

The process of the condition expansion is applied to each complex conditional equa-

tion in the array graph until every complex condition is expanded.

Finally, all interim variables are listed as target variables (See Section 2.3). These

variables are thus defined as members of target records stored in secondary storage.

5.5 Adequacy Criteria for Equational Visual Test-

ing

It is proposed to use equational all-paths, equational all-du-paths, equational

all-uses, and equational all-definitions adequacy criteria in the Equational Visual

Testing. They are partly similar to the respective criteria in the Procedural Testing.

The equational test adequacy criteria are defined in this section.

The Equational Visual Testing is based on the adequacy criteria specified in terms

of paths. A path in an array graph is a sequence of nodes connected by edges. The

different criteria will require test execution traversal of specific types of paths as

discussed later.
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Recall that edges in an array graph denote the following.

(1) data dependency between a variable node and an equation node or vice

versa: If an edge is from a variable node to an equation node, it means the

variable is used in the RHS (right hand side) of the equation. An edge from the

equation node to the variable node denotes a variable defined by the equation.

(2) parameter dependency between a control variable and its associated array

variables: A control edge from a control variable such as SIZE and END to an

array variable defines either a number of iterations for computing the array

variable (SIZE) or a condition for terminating the computation (END).

(3) hierarchical dependency between files, records, groups. and fields: The

edges denoting hierarchical dependencies are always traversed during test ex-

ecution.

A single-edge path in the Equational Visual Testing can be characterized as

definition, p-use. c-use, and control. The single-edge paths are illustrated in Figure

5.5. The paths are defined as follows:

(1) A definition path is an edge from an equation node to its LHS (left hand side)

variable node. The LHS variable can be a condition. The edges such as (Eqn.

condl), (Eqn, cond2),..., and (Eqn, condn) in Figure 5.5 are definition paths of

the conditions, condl, cond2,..., and condr. The edge of (Eqn, x(i)) in Figure

.5.5 is a definition path of the variable, x(i).

(2) A p-use path is an edge from a condition variable node to a simple condi-

tional equation node that references the condition variable (the simple con-

ditional equations defining x(i) in Figure 5.5) such as (condl, Eqn), (cond2.

Eqn),...,(condn, Eqn).

(3) A c-use path is an edge from a non-conditional variable node to an equation

node that references the variable in its RHS expression, e.g., (cl, Eqn). (c2.,

Eqn),...,(cnl, Eqn), in Figure 5.5.
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(4) A control path is an edge from a control variable to the corresponding array

variable, e.g., (SIZE.x, x(i)) in Figure 5.5.

5.5.1 The equational all-paths criterion

This criterion is the strongest and demands the most complex analysis to select and

verify tests.

Definition

The equational all-paths criterion requires test execution traversal, at least once, of

each existing path from anyone of the source nodes to anyone of the target nodes in

the array graph.

If the array graph contains MSCC's, then edges are deleted to "open" the MSCC's

and obtain an acyclic array graph. The selection of edges to be deleted was discussed

in Chapter 4. The deleted edges are labeled with a subscript expression of the form.

I - K, where I is a subscript and K is a positive integer. Such edges are deleted from

an MSCC, one by one, until no more MSCC is in the graph. A deleted edge has a

node at its inception and a node at its termination. The node at the inception of

the deleted edge is also considered as a target node and the node at the termination

of the deleted edge is also considered as a source node, for the purpose of defining

paths for the equational all-paths criterion. The order of deleting edges may affect

the paths from source to target. In that case, all the different orders of deleting

edges must be investigated to define the source-to-target paths properly.

Thus the acyclic array graph has a finite number of source-to-target paths to be

traversed for satisfying the equational all-paths criterion.

Testing Process

The problem with the equational all-paths criterion is that it requires consider-

ing many tests. To satisfy the traversal of a path, test input values must satisfy
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Test No. Conditions ] Mark
1 cond 11, cond 21,..., cond ml V
2 cond 11, cond 22,..., cond ml

j cond 11. cond 2n 2 ,..., cond mnm v
j+1 cond 12. cond 21,.... cond ml X

Table 5.2: A condition table

conjunctions of conditions along the path. A path may have none, one or several

condition nodes. Some paths may have the same conditions. Some paths are nevef

traversed because the conjunctions of conditions along the paths may not be satisfi-

able. Handling these cases will be discussed below. The following procedure reduces

the average number of test executions and especially the labor of finding test in-

put values that satisfy the conjunctions of the condition variables along a respective

path.

The Equational Visual Testing system can traverse each path and find the con-

ditions along the path that must be satisfied conjunctively. The conditions along

the paths can be listed in a condition table, illustrated in Table 5.2. where / means

that the path is traversed and X means that the path is not traversable. Rows with

duplicate conjunctions of conditions are omitted in the table. The human tester

may select a yet unsatisfied (unshaded, explained later) single condition and find

test input values that satisfy the condition. Next, the test is executed with selected

test input values that satisfy the single condition. The system can examine all the

evaluated values of conditions an.d find the paths in which all conditions were sat-

isfied during the test execution. It then marks the respective rows in the condition

table. It also shades the condition nodes along the marked paths. Thus. more than

one condition nodes may be shaded in the array graph and more than one paths may

be marked due to a single text execution, especially if there are array conditions in

the paths that are satisfied for different element subscript values.
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Figure 5.6: Process of satisfying the all-paths criterion.
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The process of satisfying the equational all-paths criterion is shown in the process

chart in Figure 5.6 which is identical to Figure 5.3 except the exploded node of step

(2), "Analyze Array Graph". After the pre-test compilation in step (1), the human

tester checks the array graph if all the conditions are shaded (satisfied). If not.

the tester selects a yet unshaded (unsatisfied) condition and goes to step (3). If all

condition nodes are shaded, the tester examines the condition table to check if there

is an untested path in the array graph. If all rows of the condition table are marked,

it means that all paths are traversed during the previous test executions. That is,

the equational all-paths criterion is satisfied. Otherwise, a yet unmarked row (a

conjunction of conditions) is selected for the testing. This is step (2). In step (3).

the selected condition or conjunction of conditions are examined. A single condition

must be satisfiable. Otherwise, it must be erroneously composed. This should be

reported to the developers so that the errors can be fixed. If the single condition is

satisfiable, the tester finds test input values to satisfy the selected condition (possibly

for some subscript value). Suppose conjunction of conditions is selected in step (2).

The selected conjunction may not be satisfiable and still this does not mean that this

is an error. Then, the tester marks the row with X meaning that the conjunction is

not satisfiable, i.e., the associated path is not traversable. This must be investigated

by the human tester or developer to find the reason why the path is not traversable. If

the conjunction is satisfiable, the tester finds test input values to satisfy the selected

conjunction. Next, the test execution is exercised with the selected test input values

in step (4). The conditions satisfied during the test execution are shaded. The rows

of the condition table are marked according to the results of the test execution. This

is step (4). Step (5) and the rest of the testing process are as same as described in

Section 5.3. This procedure is repeated until every condition is satisfied and all the

rows of the condition table are marked (the equational all-paths criterion is satisfied).

This procedure reduces both the number of test executions and the labor in

finding test input values for each test. It is further illustrated in Section 5.6.
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Comparison

The procedural all-paths criterion is impractical for testing procedural programs

because of a start-to-end path in a control flow graph that includes cycles (denoting

iteration loops) [RWV85]. It is impossible to define how many times such a start-

to-end path in a control flow graph should traverse cycles. Even if it is required to

traverse all nodes in the graph only once, the problem is still impractical. That is. the

problem becomes the directed Hamiltonian circuit problem which is an NP-complete

problem [AHU74, Eve79, Bol79j. There is a general agreement that an NP-complete

problem is intractable. Thus it is impractical. in general. to define paths for the

procedural all-paths criterion.

If we could obtain an acyclic graph from the control flow graph, the problem of

defining all-paths would become practical. That is, it becomes a problem of finding

the spanning tree of an acyclic graph of which worst-case time complexity is known

to be O(e), where e is the number of edges in the graph [AHU74]. However, it is not

possible to make the control flow graph acyclic. Note that edges of the control flow

graph cannot be deleted because they denote branch statements. If they are deleted.

the control structure of the program is destroyed.

On the other hand, in the equational all-paths criterion, every MSCC of the array

graph can be opened to obtain an acyclic graph by deleting edges (as discussed

in Chapter 4). The process is performed based on subscript expressions of edges

during the compilation. The deletion of an edge from an MSCC means that the

computation of the variables in the MSCC can be exercised without any conflict

in data dependency between the variables. If there is an unopenable MSCC, the

equational compiler generates an error message. Thus the array graph becomes

acyclic in performing compilation so that the program behavior is not affected by

the deleted edges. The tester can also use the acyclic graph to find all paths that can

be traversed. A condition table is generated for the equational all-paths criterion.
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Figure 5.7: A du-path in an array graph.

5.5.2 The equational all-du-paths criterion

This criterion applies to the subpaths of the equational all-paths criterion. Therefore.

it is less severe because it does not require traversing all the possible combinations

of subpaths.

Definition

The equational all-du-paths criterion requires traversal of every path from a variable

definition (an equation node defining a variable) to all the equations that use the

variable (an equation node using the variable). Namely every du-path in an array

graph. A du-path in the array graph is a two edge path from an equation node to

another equation node. This is illustrated in Figure 5.7 and also further exemplified

in Section 5.6.3. Note that it is not required to open MSCC's in the array graph for

this test, in order to define a finite number of paths, as was needed for the equational

all-paths criterion.
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Testing Process

As shown in Figure 5.7, traversal of a du path can be selected by applying test input

values that satisfy at most a conjunction of the two conditions that are inputs to

the equations: a condition for the variable defining equation (such as Conditionil

in Figure 5.7) and a condition for the variable using equation (such as Condition2

in Figure 5.7). There can be at most one condition that is an input to an equation

(see Section 5.4). Again, the Equational Visual Testing system can find all the

paths as defined above in order to construct the condition table. Note that it is not

necessary to open MSCC's. Paths which can be selected by satisfying one condition

or a conjunction of two conditions are placed in the condition table. Paths which

do not have any conditions may be omitted, because they will be traversed on every

test execution. The process of Figure 5.6 is followed here as well.

Comparison

The procedural all-du-paths criterion [RW85] is not as complete as the equational

all-du-paths criterion because it omits testing some cyclic paths (all except a single

edge cycle from definition to c-use). A path from definition to use in the control flow

graph may be longer in number of edges and require satisfying conjunctively more

than two conditions to select traversal of the path. Each variable is an inception node

of all of its du-paths. In the procedural testing, a du-paths may consist of multiple

edges. There can be multiple nodes that are inception nodes of du-paths for the

variable. Thus, it is relatively easy in the Equational Visual Testing to construct

the condition table (O(n), where n is a number of variable nodes in an array graph)

and exercise the testing process for satisfying the equational all-du-paths criterion.

5.5.3 The equational all-uses criterion

This criterion requires traversal of the subpaths of the equational all-du-paths crite-

rion. It involves subpaths of the previous criterion from a variable to its uses.
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Figure 5.8: A use path in an array graph.

Definition

The equational all-uses criterion requires traversal of at least one path from every

variable node to every equation node which uses that variable. The paths for the

criterion are single-edge paths from a variable node to an equation node. Such a path

is shown in Figure 5.8. It is not required to construct the condition table as was for

the equational all-paths and the equational all-du-paths criteria. This is because no

conjunction of conditions is involved.

Testing Process

The equational all-uses criterion requires to select test input values for each un-

shaded condition in the array graph. The tester selects an unshaded single condition

and finds test input values to satisfy the selected condition. The test execution is

performed with the test input values. Condition nodes are shaded according to the

results. The procedure is repeated until all the condition nodes are shaded.

Comparison

The equational all-uses criterion has a simple definition of a path which is represented

by a single edge. In the procedural all-uses criterion, the path may consist of multiple

edges. The testing process can be completed by selecting a condition node, one by

one, and finding test input values to satisfy the selected condition. This reduces the
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labor of finding test input values and evaluating test results.

5.5.4 The equational all-definitions criterion

This is the weakest criterion.

Definition

The equational all-definitions criterion requires traversal of one definition path of

every variable. It does not require to test all exclusive definitions of variables. A

single execution satisfies this criterion.

Testing Process

The process of satisfying the equational all-definitions criterion is trivial. Since every

variable is defined in an equational specification, one execution of the equational

specification satisfies the equational all-definitions criterion.

Comparison

As discussed, it is trivial to satisfy the equational all-definitions criterion. But the

procedural all-definitions criterion requires to traverse multiple assignment state-

ments which define and update variables.

5.6 Example

This section illustrates the Equational Visual Testing through an example of

testing the MODEL specification of the Euclid algorithm for finding GCD of two

integers (presented in Section 2.2). The testing process follows the chart in Figure

5.3.

93



/* EQUATIONS */

/* conditions for expanded equations */
/* Eq c-1 */ condl = (i=l) & xl>x2;
/* Eq c-2 */ cond2 = (i=1) & -(x17x2);
/* Eq c-3 */ cond3(i) = -(i=l) & (yl(i-1)>y2(i-1));
/* Eq c-4 */ cond4(i) = ^(i=1) & ^(y1(i-1)>y2(i-1));

/* expanded equations of Eq 1: define values of y1(i) */
/* Eq 1-1 */ yl(i) = IF condl THEN xl;
/* Eq 1-2 */ yl(i) = IF cond2 THEN x2;
/* Eq 1-3 */ yl(i) = IF cond3(i) THEN yl(i-1)-y2(i-1);

/* Eq 1-4 */ yl(i) = IF cond4(i) THEN yl(i-1);

/* expanded equations of Eq 2: define values of y2(i) */
/* Eq 2-1 */ y2(i) = IF condl THEN x2;
/* Eq 2-2 */ y2(i) = IF cond2 THEN xl;

/* Eq 2-3 */ y2(i) = IF cond3(i) THEN y2(i-l);
/* Eq 2-4 */ y2(i) = IF cond4(i) THEN y2(i-1) - yl(i-1);

/* Eq 3: determines the terminating condition (not expanded) */
END.yl(i) = (yl(i) = y2(i));

/* Eq 4: computes z=GCD(xl,x2) (not expanded) */
z=IF END.yl(i) THEN yl(i);

Figure 5.9: The expanded equational specification for the GCD example.
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Deleted Edge (ordered) Source Target

(END.yl(i), yl(i)) yl(i) END.yl(i)
(END.yl(i), y2(i)) y2(i) END.yl(i)

(END.yl(i), cond3(i)) cond3(i) END.yl(i)
(END.yl(i), cond4(i)) cond4(i) END.yl(i)

(yl(i), Eq c-3) Eq c-3 yl(i)
(yl(i), Eq c-4) Eq c-4 yl(i)
(yl(i), Eq 1-3) Eq 1-3 yl(i)
(yl(i), Eq 1-4) Eq 1-4 yl(i)
(yl(i), Eq 2-4) Eq 2-4 yl(i)
(y2 (i), Eq c-3) Eq c-3 y2(i)
(y2(i), Eq c-4) Eq c-4 y2(i)
(y2 (i), Eq 2-3) Eq 2-3 y2(i)
(y2(i), Eq 2-4) Eq 2-4 y2(i)

Table 5.3: Deleted edges to open MSCC's and new sources and targets.

5.6.1 Pre-Test Compilation (step(I))

The GCD specification is recompiled for testing as discussed in Section 5.4. The com-

plex conditional equations are transformed into simple conditional equations. The

compiler also creates equations for new condition variables, cond1, cond2. cond3 (i).

and cond4(i). The expanded equational specification is presented in Figure 5.9.

5.6.2 Analyze Array Graph (step (2))

The array graph for the recompiled equational specification is visualized in Figure

5.10. The analysis of the array graph depends on the adequacy criterion used.

The Equational All-Paths Criterion

The MSCC's in the array graph are opened to obtain an acyclic graph (see

Chapter 4 and Section 5.4). Edges are deleted, one by one, until all the MSCC's in

the array graph are "opened". Note that there are a number of sequences in deleting

edges. The deleted edges in one of the sequences are listed in Table 5.3. The inception

nodes and the termination nodes of the deleted edges become new target and source
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No.J Conditions 3 Marký

1 cond I___

2) cond2
3 cond3(i)
4 cond4(i)
5 condi, cond3(i)
6 cond2, cond3(i)
7 condi, cond4(i)
8 cond2, cond4(i)
9 condi, END.yl(i)___
10 cond2, END.yl(i)___
11 cond3(i-1), cond4(i)
12 cond4(i-1). cond3(i)___
13 cond3(i-1), END.vl(i) ___

14 cond4(i-1), END.yl(i)
15 condi, cond3(i-I1), END.yl(i) ___

16 cond2, cond3(i-1), END. 3'1(i) ___

17 condi. cond4(i-1), END.vl(i)
18 cond2, cond4(i-1), END.yl(i)
19 cond3(i-2), cond4(i-1), END.yl(i)
20 cond4(i-2), cond3(i-1), END-yl (i) ___

Table 5.4: Condition table for the equational all-paths criterion.
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[No. Conditions [,Mark

1 condl
2 cond2
3 cond3(i)
4 cond4(i)
5 condl, cond3(i)
6 cond2, cond3(i)
7 condl, cond4(i)

8 cond2, cond4(i)
9 condl, END.yl(i)
10 cond2. END.yl(i)
11 cond3(i-1), cond4(i)
12 cond4(i-1), cond3(i)
13 cond3(i-1), END.yl(i)_
14 cond4(i-1), END.yl(i)

Table 5.5: Condition table for the equational all-du-paths criterion.

nodes of the corresponding acyclic array graph, respectively. These are also listed

in Table 5.3. Figure 5.11 illustrates the acyclic array graph for the expanded GCD

example. The source nodes of the acyclic array graph are xl, x2, and the source nodes

listed in Table 5.3. The target nodes of the acyclic graph are z and the target nodes

listed in Table 5.3. The tests must traverse all source-to-target paths of the acyclic

array graph. As discussed in Section 5.5, the Equational Visual Testing system

generates a condition table of the conjunctions of the conditions in respective paths.

The table reflects the different possible order of deleted edges. These are shown

in Table 5.4. Note that multiple paths containing the same condition variables are

merged into one row in the table.

The Equational All-Du-Paths Criterion

It is not required to open MSCC's of the array graph for this criterion. Table 5.5

presents the condition table for the criterion. Note that paths without conditions

are not included as they are traversed in every test execution. Also note that the

rows in Table 5.5 are equal to or subset of the rows in Table 5.4.
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The Equational All-Uses Criterion

The tester selects single conditions, one by one. The test is then applied (step 3, 4.

and 5). This repeats until all conditions have been shaded. It is not necessary to

construct a condition table.

The Equational All-Definitions Criterion

This criterion is trivial. It is not necessary to select any condition for this criterion.

It is even not necessary to transform complex conditional equations into simple

conditional equations in the pre-test compilation. Any single execution with input

values for xi and x2 will satisfy the criterion.

5.6.3 Selecting Test Input Values (step(3))

The tester finds test input values that satisfy a single or conjunctions of the con-

ditions. These are the conditions which were selected in step (2). Each condition

in the original array graph (of which edges are not deleted) may depend on input

variables, interim variables and subscript values. The tester may backtrack along

causality paths from the selected condition node to the respective input variable

nodes. Finding input variable values and subscript values that satisfy the condition

may be complex. This is an oracle operation that is to be done by the human tester.

This operation is illustrated below for the respective criterion.

The Equational All-Paths Criterion

As shown in Figure 5.3, the tester selects first one condition at a time and finds

test input values that satisfy the selected condition. The test is then applied. The

order of selecting single conditions may reduce the number of tests. For example, if

the tester finds test input values for satisfying cond3(i), then it is guaranteed from

the condition table (Table 5.4) that at least three rows will be marked by the single

test execution. Namely, the test execution will satisfy row 3, row 5 or row 6, and
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Single Condition Min. no. of rows marked
condl 1
cond2 1

cond3(i) 3
cond4(i) 3

Table 5.6: Single conditions and their minimum number of marking rows of the
condition table.

Test No. xl x2

1 32 14
2 14I ý32

Table 5.7: Test input values.

row 1 or row 2 of the condition table. This is because condl or cond2 must be in the

paths from xl and x2 to cond3(i). Thus an examination of the condition table may

provide information about reducing the number of tests by ordering the conditions

to be satisfied. Table 5.6 shows the minimum number of rows of Table 5.4 that will

be marked by satisfying each single condition. Thus, generally, it is advantageous to

select conditions that are member of conjunctions of multiple conditions.

The tester first finds test input values to satisfy cond3(i). The tester must

backtrack from cond3(i) along the paths in the array graph to xl and x2. Suppose

i = 4. The subscript value needs then to be retraced from i = 4 to i = 1. The

tester finds a causality path from cond3(4) to xl and x2 for the backtracking. The

path is shown in Figure 5.12. The conditions, condl, cond3(2), cond4(3) and

cond3(4), are defined as follows:

(a) condl = (xl > x2)

(b) cond3(2) = (xl > x2)

(c) cond4(3) = -((xl - x2) > x2)

(d) cond3(4) = (xl - x2) > (x2 - (xl - x2))
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X1 x2

Eq c-I

(xl~ox2) cond I

Eq 1-1 Eq 2-1

(xl) yl(1) y2(1) (x2)

Eq c-3 (2)

(xl~ix2) cond3(2)

Eq 1-3 (2) Eq 2-3 (2)

(xJL-x2) y 1( 2 ) y 2 ( 2 ) (x2)

Eq c-4 (3)

A((xl-x2)::x2) corid4(3)

Eq 1-4 (3) Eq 2-4 (3)

(xl-x2) y ()y2(3) (x2-(xl-x2))

Eq c-3 (4)

Figure 5.12: A causality path.

102



As reviewing the causality path in Figure 5.12, the tester can conclude that the

conditions must be satisfied conjunctively. Namely,

condl & cond3(2) & cond4(3) & cond3(4).

Thus the following conditional expression must be satisfied to satisfy cond3 (4):

(xl > x2) & -((xl - x2) > x2) & ((xl - x2) > (x2 - (xl - x2))).

The expression can be reduced as follows:

(3/2) * x2 < xl <= 2 * x2.

The tester may select test input values xl = 25 and x2 = 14. By symmetry,

cond4(3) is satisfied if

(3/2) * xl < x2 <= 2 * xl.

Test input values of xl = 14 and x2 = 25 can satisfy cond4(i) for i = 4. Two

tests with the test input values are listed in Table 5.7.

The Equational All-Du-Paths Criterion

The tester examines the condition table in Table 5.5. The test input values in Table

5.7 can satisfy for this criterion.

The Equational All-Uses Criterion

The tester must find test input values for traversing the four single conditions. This

criterion will be satisfied by test executions with the test input values in Table 5.7.

The Equational All-Definitions Criterion

Any single execution will satisfy this criterion. Either Test I or Test 2 of Table 5.7

completes the testing for this criterion.
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Test No. i Ix1 x2 Lyl(i) I y2(i) I END.yl(i) ]- 7z
1 1 25 14 25 14 FALSE

2 25 14 11 14 FALSE
3 25 14 11 3 FALSE
4 25 14 8 3 FALSE
5 25 14 5 3 FALSE
6 25 14 2 3 FALSE
7 25 14 2 1 FALSE
8 25 14 1 1 TRUE 1

2 114 25 14 25 FALSE
2 14 25 14 11 FALSE
3 14 25 3 11 FALSE
4 14 25 3 8 FALSE
5 14 25 3 5 FALSE
6 14 25 3 2 FALSE
7 14 25 1 2 FALSE
8 14425 1 1 TRUE T

Table 5.8: Test results from Test 1 and Test 2.

5.6.4 Execution (step (4))

The tester enters the selected input values for the testing in a source file. The

input values in the file must be consistent with their data types and formats as

defined in the specification. A graphical user interface facilitates the process of

entering and formatting input values.

The equational specification is then executed with the selected test input values.

The results are shown in Table 5.8. After Test 1 and Test 2, all of the condition nodes

are shaded and all rows of the condition table are marked. Thus the equational all-

uses criterion is satisfied. The equational all-du-paths and the equational all-paths

criteria are also satisfied.

5.6.5 Evaluation of Results (step (5))

The results from the test execution must be evaluated by the tester to find if there

are errors in the equational specification. This is step (5) of Figure 5.3. It is assumed
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that the tester can determine whether the results are correct or not with respect to

the given input values. This is the oracle assumption.

The tester should evaluate the test results preferably by using a method which is

independent of that used in the specification. The tester may "reverse" the algorithm

in the specification. For example, the tester may evaluate the results as follows.

Suppose the output of the test execution with xl and x2 is z. Let zi = xl / z and

z2 - x2 / z. If z > zi or z > z2, then the result is correct, namely z = GCD(xl,

x2). Otherwise, the tester picks the number of zi and z2 and finds if they have a

common factor greater than z.

The evaluation process is not simple when either xl or x2 are very large. There-

fore it is easier to have small numbers to test the GCD specification.

5.7 Conclusion

The objective of software testing is to find if there are errors in a program (procedural.

equational, etc.), with respect to its requirements. The program is executed with

test input values and the respective results are evaluated. The testing focuses on

analysis of graphs that represent the program. An array graph can be used for the

Equational Visual testing and a control flow graph can be used for the procedural

Testing.

Exhaustive testing, which tries all possible combination of all input values for

the testing, is impractical. Therefore, a notion of adequacy criteria was introduced

with less testing requirements. The adequacy criteria are defined in terms of paths of

the underlying graphs, e.g., the array graph or the control flow graph. The criteria

require selection of test input values that force traversal of selected paths in the

graphs. The adequacy criteria can be classified in terms of their requirements of

path traversals. These also define the order of their strictness. The selection of test

input values is based on satisfying conditions in the programs.

The Equational Visual Testing and the Procedural Testing can be compared in
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the following aspects:

(1) Adequacy Criteria:

The test adequacy criteria and their testing processes defined for the Equational

Visual Testing may be applied more generally than the Procedural Testing.

The equational all-paths criterion defines a finite number of source-to-target

paths based on acyclic array graphs (the equational compiler automatically

opens an MSCC of the array graph). This makes the criterion practical, while

the procedural all-paths criterion requires traversal of undefined number of

paths.

The equational all-du-paths criterion defines at most two-edge paths, from an

equation node (where a variable is defined) to its corresponding equation nodes

(where the variable is used), which can be traversed by satisfying at most two

conditions. This reduces labor of the testing in length of conjunction of the

conditions for which test input values must be found. Note that a du-path

may consist of multiple edges in the procedural testing.

The equational all-uses criterion is based on a single-edge path from a variable

node to an equation node (where the variable is used). The path can be

traversed by satisfying at most one condition. This reduces labor of the testing

in length of conjunction of the conditions.

Satisfying the equational all-definitions criterion is trivial. Any single execu-

tion will traverse all definition paths. On the other hand, the procedural all-

definitions criterion requires to traverse multiple assignment statements which

define and update variables.

(2) Visualization:

The Equational Visual Testing is based on an array graph which directly rep-

resents data flow. This facilitates program understanding which is essential to
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program testing. As discussed, the array graph has constraints which make it

simple to define the adequacy criteria and perform the testing process.

The condition nodes of the array graph are shaded when they are satisfied

during test execution. The conjunctions of the conditions are listed in the con-

dition table. The rows of the table are marked after test execution. according

to the test results. These visualize progress of the testing procedure.

The human tester (a) selects test input values for satisfying specific conditions,

(b) determines if a path is feasible, (c) evaluates test results with respect to the

selected test input values and the test requirements. These are oracle assump-

tions. The visualization facilitates performing the orcle operations. All paths

in the array graph visualizes causality paths. Thus the paths for backtracking

from a specific condition to the respective input variables are explicitly visu-

alized in the array graph. The tester can retrace the paths from the condition

to the input variable nodes as selecting test input values. Each path can be

traversed only if the conjunction of all conditions on the path is satisfied. If

any of the condition is unsatisfiable, the path is not traversable. The condi-

tions are represented by condition nodes of the array graph. The human tester

can also refer to a specific iteration. This is possible because every elements

of array variables are defined and the interim values are recorded during test

execution. These reduce the labor of selecting test input values and evaluating

test results.

The visualization technique can be applied to the Procedural Testing. The the

progress of testing and code coverage can be visualized.
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Chapter 6

Program Verification

6.1 Introduction

A MODEL specification is based on regular and boolean algebras that can be learned

from high school. Formal verification of the correctness of a MODEL specification

utilizes only algebraic manipulation of equations, namely equational reasoning.

It is based on deduction rules by which equations can be deduced from the MODEL

equations and general algebraic laws. A MODEL calculus is defined for the program

verification.

This chapter is organized as follows: The MODEL calculus uses a fragment of

MODEL. It uses general algebraic laws about arithmetics and logical equivalence and

deduction rules which manipulate equations during the verification. They are pre-

sented in Section 6.2. An example is given in Section 6.3 of verifying the correctness

of a MODEL specification under this calculus.

6.2 MODEL Calculus

The MODEL calculus is an equational calculus, that is, a calculus whose formulae

are equations. An equation is an equality between two expressions. An expression

is an algebraic term built over signature, S1, (a set of operation symbols) which is

108



presented in Section 6.2.1. The equations occurring in MODEL specifications are

part of this calculus. The calculus contains another collection of equations which are

not dependent on specific MODEL specifications. They are called general algebraic

laws and formalized in Section 6.2.2. Given a MODEL specification. S, the MODEL

calculus has deduction rules for deducing equations that follow from the equations of

S and the general laws. For the deduced equation, e, a derivation tree is formulated

under the deduction rules; the label of the root node is e; the label of each node

matches the conclusion of some rule whose premises match the children of the node:

the labels of the leaf nodes can be equations of S or the general laws. The derivation

tree is a proof of the equation, e in equational reasoning. Section 6.2.3 presents the

deduction rules.

6.2.1 Basic Notions

The syntax of the MODEL calculus is quite similar to that of the MODEL language.

The syntactic similarity enables equations in a MODEL specification to be a part of

the calculus. Note that the MODEL calculus allows function symbols in LHS of an

equality, while the MODEL language does not. Such extension increases expressive

power of the calculus.

An equation an equality between a left-hand side expression a right-hand side

expression. A semicolon is used as a delimiter between equations:

Equation ::= LHSExpr = RHSExpr;

An LHS expression can be a scalar variable, an array variable, or a function

symbol:

LHSExpr ::= ScalVar I ArrayVar(SubExpr) I UsrFunSym(ArgList)

FunSym ::= UsrFunSym I BltnFunSym

SubExpr ::= SubElem[, SubExpr]
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ArgList ::= ScalVar[, ArgList] I ArrayVar(SubExpr)[, ArgListj

A scalar variable (ScalVar) denotes a single value. An array variable (ArraylVar

(SubExpr)) is indexed by a subscript expression, SubExpr. A subscript expression

(SubExpr) is a list of subscript elements (SubElem) which is a special case of an

arithmetic expression, that is, an arithmetic expression on natural numbers, N. A

user-defined function symbol (UsrFunSym) is a function symbol (FunSyrn) which

can be either user-defined or built-in (BltnFunSym). A user can provide his own

function with a function name (UsrFunSym), its arguments (ArgList) and its def-

inition in terms of an RHS expression. The rank (or arity) of the function is equal

to the number of arguments in its argument list. Some frequently used common

functions are called built-in functions:

(1) sum (array-var):

computes a sum of values of each elements of array variable array-var.

(2) max (varn,...,varn):

finds the maximum values among vat 1 ,... ,varn.

(3) min (var 1 ,. .. ,varn):

selects the minimum values among varl,..., var,,.

(4) sort (array-var, order):

returns a 1-dimensional array containing sorted elements of a 1-dimensional

array variable array-var in the specified order: ascending when order = 1

and descending when order = 0.

Their names are reserved and their ranks are fixed. Since they cannot be redefined

by users, they cannot be an LHS expression.

An RHS expression can be an arithmetic expression, a boolean expression, or a

conditional expression:
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RHSExpr::= ArithExpr I BoolEzpr I CondExpr

CondExpr::= IF BoolExpr THEN RHSExpr [ELSE RHSExpr]

An arithmetic expression (ArithExpr) is constructed over signature. Qq f {+. -.

/, Q}, where Q denotes rational numbers, and the ranks of the operation symbols are

r(+) = 2, r(*) = 2, r(-) = 2, r(/) = 2 and Vq E Q, r(q) = 0. A boolean expression

(BoolExpr) is built over signature, fQb df {<, <, >, >, =. 5, A (and), V (or). -

(not), TRUE, FALSE }, where r(<) = 2, r(5) = 2, r(>) = 2. r(>) = 2. r(=) = 2.

r($) = 2, r(A) = 2, r(V) = 2, r(--) = 1, r(TRUE) = 0 and r(FALSE) = 0.

It follows that the signature, f, includes those signatures, f q and fb. IF-THEN.

IF-THEN-ELSE and the function symbols. The RHS expressions are built over

the signature with the scalar and array variables (ScalVar and ArrayVar) and the

function symbols (FunSym).

6.2.2 General Algebraic Laws

The general algebraic laws (or axioms) of the calculus are expressed as equations.

The laws of arithmetic operations such as addition (+), subtraction (-), multipli-

cation (*) and division (/) are specified. Logical equivalence laws also presented as

equations.

Laws of Arithmetic Operators

(1) Commutativity:

(x + y) = (y + x)

(X * y) = (y X)

(2) Associativity:

X++ (Y+z)=( +y)+ z
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X * (Y *:) (X * y) * z

(3) Distributivity:

x * (y + Z) = (x * y) + (y * z)

Laws of Logical Operators

(1) Commutativity:

(x A y) = (y A x)

(x V y) = (y V x)

(X = y) = (y = X)

(2) Associativity:

(x A (y A Z)) = ((x A y)A A)

(X V (y V -)) =((X v y) V Z)

(3) Distributivity:

(x V (y A z)) = ((x V y) A (y V z))

(x A (y V z)) = ((x A y) V (x A z))

(4) De Morgan's Laws:

-'(x A y) =(-'x V -'y)

-1(x V y) =(-lx A -,y)

(5) Negation: -,(-,x) = x

(6) Excluded Middle: (x V --x) = TRUE

(7) Contradiction: (x A --x) = FALSE
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(8) Implication:

(IF TRUE THEN x) = x

(IF TRUE THEN x ELSE y) = x

(IF FALSE THEN x ELSE y) = y

(9) OR-simplification:

(a, V X) = x

(x V TRUE) = TRUE

(x V FALSE) = x

(x V (x A y)) = x

(10) AND-simplification:

(x A T ) = x

(x ATRUE)= x

(x A FALSE) = FALSE

(xA (x V y)) = x

6.2.3 Deduction

With a set of equations of a MODEL specification and the equations of the general

laws, equational reasoning is performed to deduce equations in the proof goals which

usually concern the correctness of the MODEL specification. For each equation of the

proof goals, a derivation tree is formulated as one of deduction rules is applied to each

step of deduction. Leaf nodes of the tree are equations of the MODEL specification

or the general algebraic laws. The root node of the tree is the deduced equation

which is one of the proof goals. The completed derivation tree denotes a proof of

the deduced equation. We introduce a set of basic deduction rules of equational

113



Axioms Axioms

Derivation Tree Denvafion Tree

E 1(1)=E 2 (1) E l(n+ 1)=E 2 (n+ 1)

E l(i)=E 2(i) (Induction)

Figure 6.1: Induction

reasoning, induction, a method of case analysis and tactics in this section. The

implementation of these techniques are discussed in this chapter.

Basic Deduction Rules

Each branch of derivation trees can be built from the following basic deduction rules

of equational reasoning, where El, E2 and E3 are expressions:

(1) Reflexivity:

El = El

(2) Symmetry:
El = E2

E2 = El

(3) Transitivity:
E = E2 E2 = E3

El = E3

(4) Replazement:
El = E2

E3[El/xI = E 3[E2Ix]

(5) Substitutivity:

EI[E3/x] = E2 [E3/x]
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Induction

A proof technique, induction, is discussed. In general, a property P(x) is said to

be proven, that is, Vx, P(x) holds, "by induction" if both P(O) (called basis) and

Vn E N, P(n) =- P(n + 1) (called step) are proven to be true.

A property of a MODEL specification, S, can be expressed as an equation,

El(i) = E2 (i), which can be indexed by a subscript, i. The equation is interpreted

as follows: for all values of the subscript i, the two expressions, EI(i) and E2 (i),

have the same values. The equation can be proven by examining the basis case

(i = 1) and the step case (Vi > 1). The proof can be formulated by constructing two

derivation trees, as shown in Figure 6.1. If the trees for the two cases are successfully

constructed through equational reasoning, it is concluded that Vi > 1, ELI(i) = E2(i)

is derivable, that is, there exists a derivation tree for the equation using equations

of S and the general laws.

Induction in the MODEL calculus is defined as follows:

Definition: An equation E1 (i) = E 2(i) is derivable, if the followings are deriv-

able:

(basis) E1 (1) = E 2 (1).

(step) Given EI(n) = E2(n) as an additional axiom, E&(n + 1) = E2(n + 1).

Note that three lines of cross-out on the equation El(n) = E2 (n) in Figure 6.1. They

denote the fact that the equation is a temporary assumption provided to derive

Ei(n + 1) = E2 (n + 1). That is, the equation E1 (n) = E 2(n) will be discarded

after induction. Also, the equation El(n + 1) = E2(n + 1) should be discarded after

induction.

Case Analysis

Another derivation rule is case analysis. Suppose an equation contains a boolean

expression B consisting of variables and constants. Since such a boolean expression
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Axioms Axioms

Derivation Tree Derivation Tree

E l- E2 E 1=E2 (Case Analysis)

Figure 6.2: Case Analysis

cannot be evaluated unless all the values of the variables are known, the equation

cannot be evaluated either. However, the equation may be simplified and hopefully

evaluated if the truth value of the boolean expression is recognized. Thus we try

to simplify the equation separately for two possible cases of the truth value of the

boolean expression, namely B = TRUE and B = FALSE. If the two results are

same, say E1 = E2 , we can conclude that the result is always derivable regardless of

the values of B. That is, the following logical statement is true:

(((B = TRUE) =• (Ei = E2)) A ((B = FALSE) =: (E1 = E2))) =* (E1 = E2 )

As shown in Figure 6.2, the idea is implemented as follows:

(1) Supply temporary axioms B = TRUE and B = FALSE.

(2) Derive E1 = E2 for each case.

(3) If the derivation is successful, that is, the roots of the trees are identical, then

conclude that E1 = E2 is derivable.

(4) Delete the temporary axioms on which the cross-out lines are marked.

Tactic
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El-E2 -. Ek--Ek+1 ... Em=-Em+l

Derivation Tree SE1= E2 ... Eý= Ek+l ... Era= Era+1

> E .E m E_

E= E n+I

En= Ft+I

Figure 6.3: A derivation tree is reduced as a single rule called a tactic.

To reduce a size of a proof (or a derivation tree), a series of deduction rules, which

contains multiple deduction steps and is used many times during the whole verifi-

cation process, can be merged into a new rule called a tactic. Since a number of

rule applications can be replaced by a single tactic application, the size of the whole

proof can be reduced. A tactic can be envisaged as a macro in assembly language

programming.

A tactic is virtually another deduction rule derived from either a series of basic

deduction rules or a series of basic deduction rules and other tactics. Once a tactic

is defined, it is regarded as a new deduction rule. Therefore a tactic should be

"correctly" derived from other deduction rules. Its correctness can be proven by

building a derivation tree for the tactic through equational reasoning.

Supýos-' a. derivation tree is constructed as shown in Figure 6.3, that is, all of its

leaf node equations (or premises) are E1 = E 2, ... , Ei = Ek+l, ... , Em = E.+,, and

its root node equation (or conclusion) is E,, = E,+,. We can formulate a single rule

by merging the deduction rules as illustrated in Figure 6.3 such that its premises are

all of the leaf nodes, E1 = E 2, ... , Ek = Ek+1, ... , E, = E.+, and its conclusion is

the root node, E,, = E,,+,.
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Consider the following derivation tree:

a(i) = b(i) b(i) = c(i) + d(i)

a(i) = c(i) + d(i) (Trans)
a(i+ 1) = c(i + 1) +d(i+ 1) (Subs,[(i+1)/i])

We can generalize the derivation. That is, we can merge the rule of Transitivity:

El = E 2 E 2 = E4El = E4

and Substitutivity:
E 1 = E 4

Ei[E3/z] = E 4 [E3/x]

to bear a new tactic as follows:

E= E2  E 2 =E4

EI[E3/x] = E4 [E3/x]

6.3 Example

This section demonstrates the methodology of verification based on equational rea-

soning. Given a set of equations of a MODEL specification, proof goals, which are

also equations formulated by users to verify the correctness of the specification, are to

be proved as the deduction rules are applied. A proof of each equation is a derivation

tree formulated during equational reasoning.

Most verification methodologies keep track of changes of execution states that are

values of program variables [Man74]. Since a variable has a single value in equational

languages such as MODEL, we never trace changes of execution states (values of

program variables) during the verification of an equational language program.

Unlike other equational languages such as Lucid [AW76, AW77], no temporal

operators (first, next, as soon as etc.) are necessary in MODEL. In its calculus,

passage of time [MP81, OL82, Lam83, Kro87] is replaced by the notion of implicit

universal and existential quantifiers (the conditions of existence of variables) and

"firing" of equations: The order of subscripts corresponds to the ordering of firing
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equations to determine variables. In other cases, "firing" of equations may be in

parallel.

Usually, programs being tested are written in a programming language that a

user is familiar with. Their axioms and proof goals are normally expressed in the

object language1 of the formal verification system is often very formal and rigid. It

has been pointed out that the user must spend much time and energy translating the

"natural" descriptions of the programs, the requirements and the proof goals into

the "complicated" logical forms of the object language [Lin88]. Ideally, the object

language of the formal verification system should be close to the language of pro-

grams. In this methodology, the object language is exactly same as the specification

language.

The problem of finding a greatest common divisor (GCD) of two positive integers

in Chapter 2 is chosen as an illustrating example. Proving the correctness of the

specification requires three inputs: the specification equations, axioms and proof

goals. These are discussed in the following. Next, the formal proof of the correctness

is presented.

The user enters axioms about the specification. They define the required behav-

iors of the specification and they become axioms in the verification system. In this

particular example, the following axiom about a gcd of two positive integers v and

w is the basis of the Euclid algorithm:

Axiom 1: gcd(v,w) = IF v = v THEN v

ELSE IF v < v THEN gcd(v,w-v)

ELSE gcd(v-w,w)

Next, goals for program verification are specified as proof goals. The proof goals

consist of goals and their subgoals. The user is responsible for decomposing each

proof goal into a sequence of subgoals. He must assure that a derivation tree (proof)

of each goal is formulated by combining derivation trees (proofs) of its subgoals.

The derivation trees of subgoals are constructed through equational reasoning. The

la logical language in which propositions are expressed and reasoned about
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derivation trees are, in fact, proofs of their corresponding subgoals. The following

proof goal is prepared for this example:

Goal I. z = gcd(xl, x2)

Subgoal 1. gcd(xl, z2) = gcd(yl(1), y2(1))

Subgoal 2. gcd(yl(i),y2(i)) = gcd(yl(i - 1),y2(i- 1))

Subgoal 3. z = gcd(y1(SIZE.yl), y2(SIZE.yl))

The verification process aims to prove that the specification correctly computes the

gcd, z, of the input variables, xl and x2. The first subgoal is to prove that the gcd

of the inputs is equal to the gcd of the first elements of temporal variables, y 1(1)

and y2(1). The second subgoal is to verify the correct computation between any

consecutive elements of yl(i) and y2(i). The third one asserts that the output, z.

is correctly computed. The proof goal, Goal I, is then proven by combining the

derivation trees (or proofs) of the subgoals.

The deduction rules are applied during the process of verification. The subgoals

presented in the proof goals are proven one by one. The followings are the steps of

the verification. For each step of verification, the names of the deduction rules used

for the verification step are given:

Subgoal 1. gcd(xl,x2) = gcd(yl(1),y2(1)):

a. (from Eq 1)

yl(i)-F i=1 THEN IF xl>x2 THEN xl ELSE x2

ELSE IF ylUi-l)>y2(i-l) THEN yl(i-l)-y2(i-l)

ELSE yi(i-1)

--------------------------------- (Subs, [/il])

yl(1)=IF 1=1 THEN IF xl>x2 THEN xl ELSE x2

ELSE IF y1(1-1)>y2(l-1) THEN yl(1-1)-y 2 (l-1)

ELSE yl(l-l)

--------------------------------- (Subs,ETRUE/(1=)])

yl(1)=IF TRUE THEN IF xl>x2 THEN xl ELSE x2
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ELSE IF y1(1-1)>y2(1-1) THEN yl(1-1)-y 2 (1-1)

ELSE yl(1-1)

b. (from (Implication) in the general axioms)

IF TRUE THEN x ELSE y = x

----------- (Subs,E(IF xl>x2 THEN xl ELSE x2)/x])

IF TRUE THEN IF xl>x2 THEN xl ELSE x2 ELSE y

a IF xl>x2 THEN xl ELSE x2

----------- (Subs,[(IF y1(1-1)>y2(1-1) THEN y1(1-1)-y2(1-1)

ELSE yl(1-1))/y])

IF TRUE THEN IF xl>x2 THEN xl ELSE x2

ELSE IF yl(l-1)>y2(1-l) THEN yl(1-1)-y2(1-1)

ELSE y1(1-1)

= IF xl>x2 THEN xl ELSE x2

C. (a) (b)

----------------(Trans)

yl(1)=IF xl>x2 THEN xl ELSE x2

Note that the general law of Implication says: (IF TRUE THEN x ELSE y)

= x. Suppose we have equations, El = IF TRUE THEN E 2 ELSE E3. The RHS

expression IF TRUE THEN E2 ELSE E3 is equal to E 2 by the general law of

Implication. Thus the following derivation is possible:

(Given) (from General Law of Implication)

El = IF TRUE THEN E2 ELSE E3 (IF TRUE THEN E3 ELSE E4) = E3

-------------------------------------------(Trans)

El = E3

The derivation can be simplified as a tactic called TRUE-Eval by removing the

general law of Implication:
TRUE-Eval: El = IF TRUE THEN E2 ELSE E3El = E3

Next, an RHS expression for y2(1) is derived:
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d. (from Eq 2)

y2(i)-IF iml THEN IF xl>x2 THEN x2 ELSE xl

ELSE IF yl(i-l)>y2(i-1) THEN y2(i-1)

ELSE y2(i-l)-yl(i-1)

------------------------------------- (Subs,E[/i])

y2(1)=IF 1=1 THEN IF xl>x2 THEN x2 ELSE xl

ELSE IF y1(1-1)>y2(1-1) THEN yl(1-1)

ELSE y2 (1-1)-y1(1-1)

------------------------------------- (Subs,[TRUE/(=1)]J)

y2(1)=IF TRUE THEN IF xl>x2 THEN x2 ELSE xl

ELSE IF yl(l-l)>y2 (l-l) THEN y2(1-1)

ELSE y2(1-1)-y1(1-1)

-------------------------------------- (TRUE-Eval)

y2(1)=IF xl>x2 THEN x2 ELSE xl

To simplify the two deduced equations, Wc) and (d), that is, to evaluate the

boolean expression, xl>x2, it is required for a user to provide a way to evaluate it.

In this particular example, he provides the following equations which are assured to

be able to cover the possible values of the boolean expression and mutually exclusive:

xl>x2 = TRUE and xl>x2 = FALSE. For each equation, a derivation tree can be for-

mulated. If all the trees have same conclusions, it is interpreted as if the conclusions

are derived from the equations, (c) and Cd). First, it is assumed that xl is greater

than x2, that is, xl>x2=TRUE:

CASE xl>x2:

e. (c)

-------------(Subs, jTRUE/(xl>x2)])

yl(1) = IF TRUE THEN xl ELSE x2

---------------- (TRUE-Eval)

y1() = xl

- - (Symm)

xl = yl(1)
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- (Repl)

gcd(xlx2) = gcd(yl(1),x2)

f. (d)

-(Subs, [TRUE/(xl>x2)')

y2 (1) = IF TRUE THEN x2 ELSE xl

-----------------(TRUE-Eval)

y2 (1) - x2

--- (SyMM)

x2 = y2 (l)

----------------(Repi)

gcd(y1(1),x2) = gcd(yl(1),y2(1))

g. (e) (f)

----------------(Trans)

gcd(xlx2) - gcd(yl(1),y2(1))

Next, another case where xl is not greater than x2 should be taken care of, that is,

xl>x2=FALSE:

CASE xl<=x2:

h. Cc)

--------------- (Subs, [FALSE/(x1>x2)])

yl(l) = IF FALSE THEN xl ELSE x2

A user may need a new tactic, FALSE-Eval, which is dual to TRUE-Eval and

can be derived from the general axioms (Implication) using the deduction rules as

follows:

FALSE-Eval:
El = IF FALSE THEN E2 ELSE E3

El = E3

The tactic is applied to (h):

i. C(h)

-- (FALSE-Eval)
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yl(l) = x2

- (Syma)

x2 = y(1)

- (Repl)

gcd(xl,x2) - gcd(xl,yl(1))

j. Wd)

--------------- (Subs, [FALSE/(xl>x2)])

y2 (1) a IF FALSE THEN x2 ELSE xl

--------------- (FALSE-Eval)

y2 (1) = x1

--- (Symm)

xl = y2 (1)

--------------- (Repi)

gcd(xl,yl(M)) a gcd(y2(1),y1(1))

k. Wi) (j)

-----------(Trans)

gcd(xlx2) = gcd(y2(1),yl(1))

Now, we can derive a new lemma, whose proof is omitted in this document, from

Axiom 1, as follows:

Lemma 1: gcd(xl,x2) - gcd(x2,xl)

It follows that the following derivation is possible:

1. (by Lemma 1)

gcd(y2(1),yl()) = gcd(yl(1),y2(1))

m. (k) (1)

----------- (Trans)

gcd(xl,x2) - gcd(yl(1),y2(M))

It concludes that Subgoal 1, gcd(xlx2)=gcd(yl(1),y2(i)), is proven.

Next, Subgoal 2, gcd(yl(i),y2(i))=gcd(yl(i-1),y2(i-1)),is considered. Note

that (i=l)=FALSE for Subgoal 2. Thus the followings can be obtained:
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Subgoal 2. gcd(yl(i),y2(i))=gcd(yl(i-l),y2(i-1)):

a. (from Eq 1)

yl(i)=IF iul THEN IF xl>x2 THEN xl ELSE x2

ELSE IF yl(i-1)>y2(i-1) THEN yl(i-1)-y2(i-1)

ELSE yl(i-1)

----------------------------------- (Subs,[FALSE/(i=)])

yl(i)=IF FALSE THEN IF xl>x2 THEN x1 ELSE x2

ELSE IF yl(i-1)>y2(i-1) THEN yl(i-1)-y2(i-1)

ELSE yl(i-1)

-------------------------------------(FALSE-Eval)

yl(i)=IF yl(i-l)>y2(i-1) THEN y1(i-1)-y2(i-1)

ELSE yl(i-1)

b. (from Eq 2: (Subs,[FALSE/(i=l)]) and (FALSE-Eval))

y2(i)=IF yl(i-l)>y2(i-1) THEN y2(i-l)

ELSE y2(i-1)-yl(i-1)

Next, three cases, yl(i-l)>y2(i-1), yl(i-l)<y2(i-l) and yl(i-1)=y2(i-l), are

considered. The first case, where yl(i-1)>y2(i-1)=TRUE holds, is:

CASE yl(i-1)>y2(i-1):

C. (a)

---------------------(Subs,[TRUE/(yl(i-1)>y2(i-1))])

yl(i)=IF TRUE THEN yl(i-1)-y2(i-1)

ELSE yl(i-1)

---------------------(TRUE-Eval)

yl1i)=yl1i-1)-y2(i-1)

- ---------------(Symm)

yl(i-1)-y2Ci-1)y1(i)

d. (from (b): (Subs, [TRUE/(yl(i-1)>y2(i-l))]), (TRUE-Eval) and (Symm))

y2(i-1)=y2(i)

From Assertion 1 and the equation, yl(i-1)>y2(i-1)=TRUE, which logically im-

plies
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(yl(i-1)ay2(i-1))=FALSE, we can derive the following equation:

e. (from Axiom 1)

gcd(v,w)1IF vvw THEN v

ELSE IF v>w THEN gcd(v-w~w)

ELSE gcd(v~w-v)

------------------------------------(Subs,[y1(i-1)/vlj)

gcd(yl(i-1),w).IF yl(i-l)=w THEN yl(i-1)

ELSE

IF yl(i-1)>w THEN gcd(yl(i-1)-w,w)

ELSE gcd(y1(i-1),w-y1(i-1))

----------------------------------- (Subs,[y2(i-1)/wJ)

gcd(yl(i-1),y2(i-1))=IF y1(i-1)=y2(i-1) THEN yl1i-1)

ELSE

IF y1(i-1)>y2(i-1) THEN gcd(yl(i-1)-y2(i-1),y2(i-1))

ELSE gcd(yl(i-1),y2(i-1)-y1(i-1))

----------------------------------- (Subs,[FALSE/(yl~i-l)=y2(i-1))J)

gcd(yl(i-1),y2(i-1))=IF FALSE THEN yi1i-1)

ELSE

IF yl(i-i)>y2(i-1) THEN gcd~yl(i-1)-y2(i-1),y2(i-1))

ELSE gcd(yl(i-1),y2(i-1)-yl(i-1))

----------------------------------- (FALSE-Eval)

gcd(yl(i-1),y2(i-1))=IF yl(i-i)>y2(i-1) THEN gcd(yl(i-1)-y2Ci-1),y2(i-1))

ELSE gcd(y1(i-1),y2(i-1)-y1(i-1))

----------------------------------- (Subs,.ETRUE/(y1(i-1)>y2(i-1))])

gcd(yl(i-1),y2(i-1))=IF TRUE THEN gcd(y1(i-1)-y2(i-1),y2(i-1))

ELSE gcd(y1(i-1),y2(i-1)-y1(i-i))

------------------------------------(TRUE-Eval)

gcd(yl(i-1) ,y2(i-1))=gcd(yl~i-l)-y2(i-1) ,y2(i-I))

------------------------------------(Subs,[y1(i-1)-y2(i-1)/y1(i)J)

gcd(yl(i-1) ,y2(i-1))=gcd(yl(i) ,y2(i-1))
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f. Cd)

(Repl)

gcd(yl(i),y2(i-1))=gcd(yl(i),y2(i))

g. (e) (f)

-----------------------(Trans)

gcd(yl(i-l),y2(i-I))=gcd(yl(i),y2(i))

-----------------------(Symm)

gcd(yi(i),y2(i))=gcd(yl(i-1),y2(i-1))

The second case is based on the equation, yt(i-1)>y2(i-1)=FALSE. Thus the fol-

lowing derivation is made:

CASE yl(i-1)<y2(i-1):

h. (a)

------------------ (Subs,[FALSE/(yl(i-1)>y2(i-1))])

yl(i)=IF FALSE THEN yl(i-1)-y2(i-1)

ELSE yl(i-1)

------------------(FALSE-Eval)
yl(i)=y1(i-1)

- - (Symm)
y1(i-1)=y1(i)

i. (from (b): (Subs,[FALSE/yl(i-1)>y2(i-1)]), (FALSE-Eval) and (Symm))

y2(i-1)-yl(i-1)=y2(i)

Given Axiom 1, yl(i-1)>y2(i-1)=FALSE and yl(i-1)=y2(i-1)=FALSE, we can de-

rive the following equation:

j. (from Axiom 1)

gcd(v,v)=IF v=w THEN v

ELSE IF v>w THEN gcd(v-v,w)

ELSE gcd(v,w-v)

--------------------------(Subs,Eyl(i-1)/vD)
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gcd(yl(i-i),v)SIF y1(i-l)nv THEN yl(i-i)

ELSE

IF yl(i-l)>v THEN gcd(yl(i-1)-w,v)

ELSE gcd(yi(i-1),v-yl(i-M)

------------------------------------(Subs.[y2(i-l)/v])

gcd(yl(i-1),y2(i-M)=IF yl(i-l)zy2(i-1) THEN yl(i-1)

ELSE

IF yl(i-1)>y2(i-1) THEN gcd(yl(i-1)-y2(i-1),y2(i-1))

ELSE gcd(yi(i-1),y2(i-l)-yl(i-M)

----------------------------------- (Subs,[FALSE/(yl(i-l)=y2(i-1))J)

gcd(yl(i-1),y2(i-M)=IF FALSE THEN yl(i-1)

ELSE

IF yl(i-l)>y2(i-1) THEN gcd(yl(i-l)-y2(i-1) ,y2(i-M)

ELSE gcd(yl(i-1),y2(i-l)-yl(i-M)

----------------------------------- (FALSE-Eval)

gcd(yl(i-1),y2(i-M))IF yl(i-l)>y2(i-1) THEN gcd(yl(i-l)-y2(i-1),y2(i-1)

ELSE gcd(yl(i-l),y2(i-l)-yl(i-1))

------------------------------------(Subs, EFALSE/(yl(i-l)>y2(i-1))])

gcd(yl(i-1) ,y2(i-M)=IF FALSE THEN gcd(yl(i-l)-y2(i-1) ,y2(i-M)

ELSE gcd(yl~i-1),y2(i-l)-yl(i-M)

------------------------------------(FALSE-Eval)

gcd~yl(i-1) ,y2(i-1))ingcd(yl(i-1) ,y2(i-i)-yi(i-1))

------------------------------------(Subs,[y2(i-1)-yl(i-l)/y2CiX)1

gcd(yl(i-1) ,y2(i-1))=gcd~yl(i-1) ,y2(i))

k. (h)

----------------------------(Repi)

gcd(yl(i-1) ,y2(i))=gcd(yl(i) ,y2(i))

1.QC) (h)

gcd(yl(i-1) ,y2(i-1))-gcd(yl~i) ,y2Ci))

-------------------------------(Symm)

--- 
-- --- -- 

--- 
-- 

--- 
-- 

--- 
-- 
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gcd(yl (i) ,y2 (i)) =gcd(yl (i-l), y2 (i-1))

The third case, yl(i-1)=y2(i-1), turns out to be a condition of terminating the

computation: Since the value of control variable, END.yl(i), is defined as TRUE

as soon as the condition, yl(i)=y2(i), is satisfied, Eq 4 is executed. It results in

z=yl(i), where i=SIZE.yl and the computation terminates. Thus yl(i) and y2(i)

cannot be defined if y1(i-1)=y2(i.-1).

As discussed in Section 2.3.4, the rule of control variables in MODEL can be

applied to the following lemma:

Lemma 2: END.yl(SIZE.yl)=TRUE

Next, a derivation tree for Subgoal 3 is constructed.

Subgoal 3. z=gcd(yi(SIZE.y1),y2(SIZE.yl)):

a. (from Eq 3)
END. y1()= (y1U() =y2 (i)

--------------------- (Subs,I[SIZE.yl/i])

END.yl(SIZE.yl)=(yl(SIZE.yl)=y2(SIZE.yl))

-------------------- (Symm)
(yl(SIZE.yl)=y2(SIZE.yi) )=END.yl(SIZE.yl)

b. (by Lemma 2)

END .x(SIZE.x)=TRUE

- (Subs,[yl/x])

END.yl(SIZE.yl)=TRUE

c. (a) (b)

------------- (Trans)

(yl(SIZE.yl)=y2(SIZE.yl))=TRUE

This conclusion of the reasoning results in the following lemma:

Lemma 3: yi(SIZE.yl)=y2(SIZE.yl)

A new equation is derived from Eq 4 as follows:
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d. (from Eq 4)

z-IF END.y1(i) THEN yl(i)

------------------- (Subs, [SIZE. yl/i])

z=IF END.yl(SIZE.yl) THEN yl(SIZE.yl)

------------------- (Subs, [TRUE/END. y(SIZE.y1)J)

z=IF TRUE THEN yl(SIZE.yl)

---------------(TRUE-Eval)

z=yl (SIZE.yl)

It follows that:

e. z=yl(SIZE.yi) y1(SIZE.yl)=y2(SIZE.y1)

---------------------(Trans)

z-y2(SIZE.yI)

f. (d)

----------- (Repl)

gcd(z,z)=gcd(yl(SIZE.yl) ,z)

g. (e)

(Repl)

gcd(yl (SIZE. yl), z) =gcd(yl (SIZE. yl) ,y2 (SIZE. yl))

h. (f) (g)

--------------------(Trans)

gcd(zz)=gcd(yI(SIZE.yl) ,y2(SIZE.yl))

The following lemma can be deduced form Axiom 1:

Lemma 4: z=gcd(z,z)

It follows that the following derivation is possible:

i. zagcd(z,z) gcd(z,z)ugcd(yl(SIZE.yl),y2(SIZE.yl))

------------------------------(Trans)

z=gcd(yi(SIZE.yi),y2(SIZE.yl))

Thus Subgoal 3 is proven.
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Chapter 7

Knowledge Acquisition

7.1 Introduction

This chapter describes knowledge acquisition for knowledge bases of a rule-based

expert system via rule extraction from equations. It is based on tools of language

translation, namely procedural-to-equational and equational-to-rule translators.

There is valuable expertise in existing programs such as algorithms and methods.

It can be utilized through the following steps of rule extraction: (1) translation

of existing programs to specifications written in an equational language and (2)

translation of the specifications to expert system rules. It follows that the expertise

in existing programs can be transferred to the expert system rules.

As illustrated in Figure 2.8, a procedural-to-equational language translator that

produces MODEL specifications from existing procedural programs can be used in

the automation of knowledge acquisition [PLK911. The programs and the specifica-

tions are stored in the repository of the environment. Next, the equational-to-rule

translator generates CLIPS rules from the MODEL specifications. The rules are

accumulated in the knowledge base of a rule-based expert system.

The MODEL and the CLIPS languages are compared in Section 7.2. Section

7.3 explains the equational-to-rule translator. The translation process is illustrated

131



based on translation of the GCD specification 1 into CLIPS rules in Section 7.4.

7.2 A MODEL Equation vs. a CLIPS Rule

How is an expert system rule similiar to a MODEL equation? As an example,

consider the following equation, Eq 1 in Figure 2.1, Chapter 2:

Eq 1: yl(i) = IF i-i THEN IF xl > x2 THEN xl ELSE x2

ELSE IF yl(i-1) > y2(i-1) THEN yl(i-1) - y2(i-1)

ELSE yl(i-1);

The equation accepts the input values of variables, xlx2, yl(i) and y2(i), where

1 < i < SIZE.yl and computes the values of yl(i) for 1 < i < SIZE.yl. The

existence condition of Eq 1 must be:

Vi, 1 < i < SIZE.y1,(3x1,x2j3y1(i- 1),y2(i- 1))

It means that the values of xl and x2 OR yl(i - 1) and y2(i - 1) must be available

when the value of yl(i) is determined by the equation, Eq 1. The existence condition

can be satisfied either 3xl,x2 or 3yl(i - 1),y2(i - 1) not both. It is because the

first elements of the array variables, yl(1) and y2(1), are initialized by xl and x2.

respectively, and the rest elements of the arrays, yl(i),y2(i), for 2 < i < SIZE.yl.

are computed from their "ancestor" elements, yl(i - 1) and y2(i - 1). Scheduler of

the MODEL compiler is able to detect such data dependency by examining array

graphs [Lu81, MOD89]. It can statically decompose such a complex equation into

the following simple equations:

Eq 1-1: yl(1) = IF xl > x2 THEN xl ELSE x2;

Eq 1-2: yl(i) = IF yl(i-1) > y2(i-1) THEN yl(i-1) - y2(i-1)

ELSE yl(i-1);

'presented in Figure 2.1 of Chapter 2
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Eq 1-1 is similar to an initialization statement of an iteration block while Eq 1-2

can be regarded as a body of the iteration block. Then the existence conditions

for Eq 1-1 is 3:1,x2. On the other hand, the equation, Eq 1-2, has the existence

condition such that Vi, 2 < i < SIZE.yl, 3yl(i - 1), y2(i - 1).

We translate a MODEL equation into a CLIPS rule that performs the same

function as the equation does. A CLIPS rule, in general, has two components:

preconditions and actions. Whenever the preconditions of the rule are satisfied, the

actions are executed. The CLIPS expert system maintains a list of facts stored in its

knowledge base, called fact-list in CLIPS. The satisfiability of the preconditions is

tested through pattern matching [GR89]. We propose that the existence conditions

of a MODEL equation are translated into preconditions of a CLIPS rule; The body

of the equation is denoted by the actions of a CLIPS rule; Every element of array

variables in MODEL is represented by a CLIPS fact in the fact-list; A MODEL

subscript is expressed as a variable in CLIPS.

A set of MODEL equations are translated into a collection of CLIPS rules. Input

values of the equations are provided as facts for CLIPS. Then, the expert system

performs the pattern matching with the patterns specified in the precondition part

and the facts (the input values for the equations) stored in the fact-list. It checks if

the facts of such patterns are in the fact-list (if the required inputs are available). If

so, the values of the variables specified in the precondition part are obtained from

the facts. It follows that the rules, whose preconditions are satisfied, are invoked.

A set of new facts (the outputs of the equations) are generated and the fact-list is

updated.

A CLIPS rule, rulel, which will be shown to be equivalent to the equation, Eq

1-1, is defined as follows:

(defrule rulel ; for Eq 1-1

''preconditions"'

(x1 ?xl) ; get initial values of x1 and x2

(x2 ?x2)
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((rule 
1)

(i-I
Eq -2(y ?y()

(y2 n ?y2)

FACT-LIST RULES

(a) execution of equations (b) execution (pattern matching) of rules

Figure 7.1: MODEL equations and their translation into CLIPS rules.

((actions''

(if (> ?xl ?x2) then

(assert (yl 1 ?xl))

else

(assert (yi 1 ?x2))))

The variables, xl and x2, are represented as CLIPS facts, (xl ?xl) and (x2 ?x2) in

Figure 7.1-(b), where xl and x2 are relation names of the facts and ?xl and ?x2 are

CLIPS variables denoting their values. The CLIPS variables denote the values of the

input variables of the equation, xl and x2. The existence conditions of the equation,

3xl, x2, are encoded as the preconditions of the rule. The body of the equation

is translated into the actions of the rule. As shown in Figure 7.1, rulel defines a

new fact, (yl 1 ?yl), where ?yl is a CLIPS variable for a value computed by the

actions of the rule, from the input facts, (xl ?xl) and (x2 ?x2). It is equivalent
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to the computation such that the equation, Eq 1-1 defines the value of yl(l) from

x1 and x2. For example, the equation computes yl(l) = 65 if xl = 26 and x2 = 65.

The execution can be simulated by CLIPS as follows: The input values are provided

by commands, (assert (xl 26)) and (assert (xl 65)). The satisfiability of the

preconditions is checked through the pattern matching and the CLIPS variables, ?xl

and ?x2, get the values, 26 and 65, respectively. Since the preconditions are satisfied,

the actions are executed. In this particular example, CLIPS command, (assert (yi

1 ?x2)), is invoked. Since x2 is asserted as 65, a new fact, (yl 1 65), is formulated

and stored in the fact-list, as shown in Figure 7.1-(b).

Eq 1-2 is translated into the following rule, rule2:

(defrule rule2 ; for Eq 1-2

(test (> ?i 1)) ; subscript i must be greater than 1.

(yl =(- ?i 1) ?yl) ; yl existence condition, namely,

; the value of yl(i-1) exists.

(y2 =(- ?i 1) ?y2) ; y2 existence condition, namely,

; the value of y2(i-1) exists.

(if (> ?yl ?y2) then

(assert (yl ?i =(- ?yl ?y2)))

else

(assert (yl ?i ?yl))))

The array variables, yl (i) and y2(i), of the equation are represented by multiple argu-

ment facts like (yl i ?yl) and (y2 i ?y2), 1 < i < n, as shown in Figure 7.1-(b).

yl and y2 denote relation names of the facts. The first argument, i, represents the

subscript of the array variables (the index of the facts). The second arguments, ?yl

and ?y2, denote the values of the elements of the array variables, yl(i) and y 2 (i),

respectively. The existence conditions of Eq 1-2 contains Vi,2 < i < SIZE.yl,

where SIZE.yl denotes the maximum value of the subscript i. (yl =(- ?i 1)
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?yl) means that there must exist yl(i - 1). If so, the expert system assigns a value

to the variable, ?yl. Similarly, (y2 -(- ?i 1) ?y 2 ) checks the existence condition

of 3y2(i- 1). The actions of the rule represent the consequence of executing the equa-

tion. New facts, (yl 2 ?yl),. .. , (yl n ?yl), where n = SIZE.yl, are generated

by the rule and they represent the elements of the array variable, yl(2), ... , yl(n).

We can find the following similarities of the two systems:

"* The variables of the equation can be represented by the facts of the expert sys-

tem: The value of a MODEL variable cannot be changed after it is "assigned"

(using "=") by an equation. Similarly, the fact of the expert system cannot be

modified either once it is "asserted" (using the assert command) by a rule.

"* The existence condition of the equation can be regarded as the preconditions

of the rule: The equation is fired only when all of its inputs are available (the

existence condition is true). Similarly, the rule is executed only when all of the

preconditions, which check the existence of facts denoting the MODEL input

variables, are satisfied.

"* The consequences of executing the equation can be simulated by the actions of

the rule: The assertion of new facts in the expert system is equivalent to the

assignment of values to the outputs in MODEL.

It concludes that the execution of a MODEL equation is similar to the execution

of a rule in the expert system, CLIPS. Therefore, an array graph for a MODEL

specification can be translated into the sequence of pattern matching scheduled by

the Rete algorithm [For82, GR89]. In many rule-based expert systems, the Rete

algorithm is used in scheduling efficient pattern matching in a large collection of

rules and facts. Normally, the fact-list of expert systems are modified during each

cycle of the pattern matching process [GR89]. And the changes of the fact-list

during each cycle are typically small percentage of the whole fact-list. Therefore we

can reduce unnecessary computations of searching for facts by having the new or
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updated facts search for rules instead of having rules search for the whole facts in

the fact-list. The details of the algorithm is described in [For82, GR89].

7.3 Translation

A MODEL variable is represented by a CLIPS fact: A subscript and a scalar are

expressed by single argument facts. An array is denoted by a multiple argument

fact. A MODEL equation is translated into CLIPS rule(s) depending on its existence

conditions. The procedure of the translation is described in this section. An example

of translation will be given in the next section.

The translation is performed in the following steps:

"* Data declaration is translated: A subscript and a scalar variable are translated

into single argument fact3. A multi-dimensional array is converted to a multiple

argument fact.

"* The existence conditions of each equation are examined. Depending on the

structure of the existence conditions, an equation may have to be decomposed.

The scheduler of the MODEL compiler can statically decompose such a com-

plex equation into simple ones each of which can be represented by a single

CLIPS rule.

"• The existence conditions of each equation are translated into the preconditions

of the corresponding rule.

"* The equation body of each equation is translated into the actions of the corre-

sponding rule.

A MODEL variable is stored as a CLIPS fact. A scalar variable, xl, is represented

by a CLIPS fact. Thus, a MODEL equation such as xl = 26; is translated into an

assertion of a new fact, (assert (xl 26)). On the other hand, the value can

retrieved by the following command, (xl ?xl), where xl is the relation name and
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?xl is a variable. Through the pattern matching between the asserted fact, (xl 26)

and the command, (xl ?xl), the variable has the value, 26. A subscript variable ib

also denoted by a single argument fact. An element of an n-dimensional array such

as w(i1, i 2 , ... , iW), where il, i 2, ... , in are subscripts, is expressed as a CLIPS fact

such as (u i2 iZ2 ... Z',, val), where val is the value of the element. Its definition

and retrieval are as same as those of the scalar variable.

A MODEL function is translated into a CLIPS function using the deffunct ion

command.

A MODEL equation consists of two parts: the implicit existence condition and

the equation body. The existence condition is translated into the preconditions of a

CLIPS rule. The equation body becomes the actions of the rule.

7.4 Example

The equations of the gcd example shown in Figure 2.1, Chapter 2, are translated

into CLIPS rules to illustrate the translation procedure.

As illustrated in Section 7.2, equation, Eq 1, has to be decomposed into two

simple ones, Eq 1-1 and Eq 1-2, due to its complex existence condition. The simple

equations are translated into CLIPS rules, rulel and rule2. respectively. Similarly.

equation, Eq 2:

Eq 2: y2(i) = IF i=1 THEN IF xl > x2 THEN x2 ELSE xl

ELSE IF yl(i-1) > y2(i-1) THEN y2(i-1)

ELSE y2(i-1) - yl(i-1);

should also be decomposed into the following two simple equations:

Eq 2-1: y2 (1) = IF xl > x2 THEN x2 ELSE xl;

Eq 2-2: y2(i) = IF yl(i-1) > y2(i-1) THEN y2(i-1)

ELSE y2(i-1) - yl(i-1);
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The existence conditions for Eq 2-1 is 3xl, x2. The equation is translated into the

following rule:

(defrule rule3 ; for Eq 2-1

(xl ?xl) ; get initial values of xl and x2

(x2 ?x2)

U>

(if (> ?xl ?x2) then

(assert (y2 1 ?x2))

else

(assert (y2 1 ?xl))))

The equation, Eq 2-2, has the following existence condition:

Vi, 2 < i < SIZE.y2, Syl(i - 1),y2(i - 1)

The rules are translated into the following rules:

(defrule rule4 ; for Eq 2-2

(test (> ?i 1)) ; subscript i must be greater than 1.

(yl (- ?i 1) ?yl) ; yl existence condition, namely,

; the value of yl(i-1) exists.

(y2  (- ?i 1) ?y2) ; y2 existence condition, namely,

; the value of y2(i-1) exists.
a>

(if (> ?yl ?y2) then

(assert (y2 ?i ?y2))

else

(assert (y2 ?i =(- ?y2 ?yl)))))

Those four rules, rulel to rule4, compute the facts, Vi, 1 < i < SIZE.yl, (yl

i yl-i), (y2 i y2-i), where yl-i and y2-i represent the values of yl(i) and

y2 (i), respectively.
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The equation, Eq 3:

Eq 3: END.yI(i) - (yl(i) = y2(i));

becomes the following rule:

(defrule rule5

(yl ?i ?yl) ; yl existence condition

(y2 ?i ?y2) ; y2 existence condition

(assert (end-yl ?i =(= ?yl ?y2))))

The multiple argument fact, end-yl), contains boolean values in its second argu-

ment. The boolean value is determined by evaluating expression, =(= ?yl ?y2).

The expression returns true if the values of ?yl and ?y2. which represcnt the MODEL

variables, yl(i) and y2(i), respectively, are same. Otherwise, it returns false. The

first argument, ?i, is an index of the fact which is in fact a subscript of a MODEL

variable, END.yl. Since yl(i) 0 y2f(i) for all i, I < ' < SIZE.yl, the fact looks

like as follows: (end-yl 1 false), (end-yl 2 false),..., (end-yl SIZE.yl -

1 false), (end-yl SIZE.yl true).

Finally, the equation, Eq 4:

Eq 4: z = IF (END.yl(i)) THEN yl(i);

becomes the following rule:

(defrule rule6

(yl ?i ?yl) ; yl existence condition

(end-yl ?i ?end-yl) ; end-y1 existence condition

(if (?end-yl) then

(assert (z ?yl))))
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Chapter 8

Conclusion

8.1 Summary

The concept of a visual software environment has been investigated. The environ-

ment facilitates man-machine cooperation, especially the "oracle" operations, during

software development. The environment supports visual programming, compilation.

testing, verification, and knowledge acquisition. The environment is designed exclu-

sively for the equational language, MODEL, and implemented using DECdesign.

The visual programming is exercised using an icon-based graph editor. The user

draws an array graph and keys-in the equations and declarations to define nodes of

the graph precisely. The array graph visualizes an equational specification as follows:

The nodes of the graph represent equations and variables of the equational specifica-

tion. The edges of the graph denote hierarchical, data, and parameter dependencies

among the equations and the variables. The graph is displayed in a graphics win-

dow. This helps a user in perceiving the equational specification. The mathematical

definitions of the variables and the equations in MODEL are displayed in a text win-

dow. The combination of graphics and equations facilitates software understanding.

The understanding is further facilitated by the compilation, testing, and verification

capabilities.
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The syntax analysis of the array graph is performed interactively while a user

composes the graph. The MODEL compiler examines the array graph to check if

(1) there are ambiguous or incomplete definitions of variables and equations. (2)

variables references are consistent, (3) there is a causality chain that computes a

solution set for a given input values, and (4) conditions of terminating programs

are specified. The interactive syntax analysis and the compilation detect errors at

the early stage of program development. Messages from the syntax analysis and the

checking are visually expressed in the array graph.

The Equational Visual Testing is based on the array graph that directly visualizes

data flow of an equational specification. (Note that a control flow graph used in the

Procedural Testing does not directly express such data flow information.) The test

adequacy criteria of the Equational Visual Testing are defined in terms of visualized

paths of the array graph. The adequacy criteria are: (1) The equational all-paths

criterion defines a finite number of source-to-target paths based on acyclic array

graphs (the equational compiler automatically opens an MSCC of the array graph).

This makes the criterion practical. (Note that the procedural all-paths criterion

requires traversal of undefined number of paths.) (2) The equational all-du-paths

criterion defines at most a two-edge path, from an equation node, where a variable

is defined, to equation nodes, where the variable is used. The path can be selected

for traversal by providing test input values that satisfy at most two conditions.

(Note that the procedural all du-paths criterion may require finding test input values

that satisfy a conjunction of more than two conditions.) (3) The equational all-

uses criterion is based on a single-edge path from a variable node to an equation

node where the variable is used. The path can be traversed by satisfying at most

one condition. This reduces labor of the testing in length of conjunction of the

conditions. (4) The equational all-definitions criterion is shown to be trivial. Any

single execution will traverse all definition paths. (Note that the procedural all-

definitions criterion requires to traverse multiple assignment statements which define

and update variables.)
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The visual software environment facilitates performing the "oracle" operations

in the testing as follows. The conjunctions of the conditions are listed in a condition

table. The rows of the condition table are marked after test execution, according to

the test results. The condition nodes of the array graph are shaded when they are

satisfied during test execution. The number of the satisfied rows in the condition

table denotes the progress of the testing. The backtracking along a causality path

from a specific condition to the respective input variables in the array graph is

facilitated. This reduces the labor of'finding the test input values. Each path can

be traversed only if the conjunction of all conditions on the path is satisfied. If any

of the condition or the conjunction of the conditions is unsatisfiable, the path is not

feasible. The human tester can view interim values of the variables and also refer to a

specific iteration. This is possible because every element of array variables is defined

and the interim values are recorded during test execution. This further reduces the

labor of evaluating test results.

The verification employs equational reasoning. There is no need to trace program

states during the program verification because of the single assignment rule and the

referential transparency. Note that program verification systems for the procedu-

ral programming are complicated because the systems trace transitions in program

states. The basic deduction rules of the equational reasoning system are Reflex-

ivity, Symmetry, Transitivity, Replacement and Substitutivity. The user deduces

equations and applies general algebraic laws using deduction rules.

There is a great deal of valuable expertise in old legacy programs. They can be

automatically translated to equations that are essentially rules in rule-based expert

systems. The environment allows users to extract such expertise from old legacy

programs and accumulate it as rules in knowledge bases. This is based on language

translations from a procedural language to MODEL and from MODEL to a rule-

based language. The tools of automatic language translation reduce human labor in

collecting expertise for a rule-based expert system.
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8.2 Future Research

The environment can be further extended in many ways. The followings are exam-

ples:

(1) Empirical study of comparing the adequacy criteria

The strictness of the testing is determined by its adequacy criterion. The

stronger the criterion is, the more errors can be found. But the stronger cri-

terion requires more tests. An empirical study can be made to compare the

equational adequacy criteria in terms of the required number of tests and the

number of errors found. The result will be helpful for the tester in his planning

the testing.

(2) Symbolic manipulation for input data selection

Finding test input values which satisfy a certain condition is an oracle oper-

ation. We can find symbolic relations between expressions that impose con-

straints of input variables. This is facilitated by backtracking along c.Iisa4 ity

paths in the array graph. A symbolic manipulator and simplifier would reduce

the labor of finding test input values.
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App endix A

MODEL Grammar

<equation> :: <cond-.eqn>

I <simple-.eqn>

(Cond-.eqn> :=<mvar> = <coad-exp>

<simple..eqn : <mvayr> - <bool..exp>

<bool-.exp> <cond..exp>

I<bool-.term-.s>

<bool-.term~s> <bool-.term>

I<bool-.term-s> OR <bool..term>

<cond..exp> IF <bool-term..s> THEN <bool-exp>

IIF <bool-.term-s> THEN <bool..exp> ELSE <bool-exp>

<bool-exp-.s> ::= <bool-.exp>

I<bool-exp-.s> , <bool-.exp>
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<bool-.term> ::- <bool-.f actor>

I <boo1.-term> AND <bool..factor>

<bool-.factor> :: <arith-.exp>

I<bool.f actor> GE <arith-exp>

I<bool..factor> LE <arith..exp>

I<bool-.factor> NE <arith-.exp>

I<bool-factor> NG <arith-.exp>

I<bool-.factor> NL <arith-.exp>

I<bool..factor> GT <arith-.exp>

I<bool-factor> LT <arith-.exp>

I<bool-.factor> = <arith-.exp>

<arith..exp> :: <term>

I<arith-.exp> + <term>

I<arith-.exp> - <term>

<term> :=<factor>

I<term> *<factor>

I<term> /<factor>

<factor> :: <primary>

I-<primary>

I<primary>

I<factor> EXPO <primary>

<primary> :: <const>

I<sub-.var>

IC<bool-exp>)
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<coflut> : U

ICHAR

<Ilvar> ::<sub..var>

<sub-.va~r> :: <varbie>

I <varbie> ( <bool-.exp-.s>)

<varbie> :=VAR
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Appendix B

Array Graph Grammar

<array graph> ::< source list> (equations> <target list>;

{if ($1.fields != $2.in-flds 11

$2.out-flds != $3.fields) then PARSING-ERROR }

<source list> <source list> <source list>

{$O.fields = UNION ($1.fields, $2.fields) }

< (source list> )

{ $O.fields = $2.fields

I <file sym> ( <in rec list> )

{ $O.fields = $3.fields }

I NULL

{ $O.fields = NULL }

<in rec list> <in rec list> <in rec list>

( $O.fields = UNION ($1.fields, $2.fields) }

I <h conn> <rec sym> ( <in grp list> )

{ $O.fields = $4.fields I

I <h conn> <rec sym> ( <in fld list> )

{ SO.fields = $4.fields }

<in grp list> ::= <in grp list> <in grp list>
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S O-fields = UNION (*1.fields, *2.fields)}

< h conn> <grp syrn> ( <in rec list>)

{ $O.fields - $4.fields I

I<h conn) <grp sym> ( <in grp list>)

( $O.fields -$4.fields )

< h conn> (grp syrn> ( <in fid list>)

{ $O.fields = $4.fields I

<in fid list> :<in fld list> <in fld list>

{ $O.fields = UNION C$1.fields, $2.fields)}

< h corm> (fld syrn>

{ $O.fields = UNION (NULL, E$2.name,$2.data-type])}

<target list> ::<target list> <target list>

{$O.fields a UNION ($1.fields, $2.fields)}

IC<target list> )

{$O.fields = $2.fields}

< out rec list> ) <file sym>

{$O.fields = $2.fields I

<out rec list> <out rec list> <out rec list>

{$O.fields z UNION ($1.fields, $2.fields)}

IC<out grp list> ) (rec sym> <h conn>

{$O.fields a $2.fields I

IC<out fld list> ) <rec sym> <h conn>

{$O.fields a $2.fields I

<out grp list> <: out grp list> (out grp list>

{$O.fields = UNION ($1.fields, $2.fields)}

< out rec list> ) <grp syrn> <h conn>

{ O.fields = $2.fields I

I(<out grp list> ) <grp sym> <h conn>

{$O.fields = $2.fields}
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< out fid list> ) (grp sym> <h conn)

{$O-fields a $2.fields I

(Out fid list> :: <out fid list> (out fid list>

( $O.fields = UNION ($1.fields, $2.fields)}

I~fld sym> <h conn>

f $O-fields = UNION (NULL, ES1.name,$l.data-type]) I

<equations> <= equations> <equations>

{$O.in-flds =UNION ($1.in-.flds,

$2.in-flds - $1.out-.flds)

$O.out-.flds =UNION ($1.out-.flds -$2.in..flds,

$2.out-flds)}

I <equations>

{$O.in-flds =$2.in-.flds

$O.out..flds =$2.out-.flds}

I <eq input list> ) (eq sym> (eq output>

{$O.in..flds = 2.in-.flds

$O.out-.flds =UNION (NULL, [$S.name,$5.data-type]) I

(eq input list> (eq input list> (eq input list>

{ $O.in-.flds - UNION ($1.in-flds, $2.in-.flds)}

I fid sym> <d conn>

f $O.in..flds c UNION (NULL, [$1.name,$1.dat~a-typej) I

(eq output> (: d conn> (fid sym>

{$O.out-.flds = UNION (NULL, E$2.name,$2.data-type]) I
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Appendix C

MODEL Syntax Error Messages

Message Id. Message

1 BIT STRING CONTAINS CHARACTER OTHER THAN 0 OR 1

2 COLON MISSING AFTER THE WORD "BLOCK"

3 BADLY FORMED BOOLEAN EXPRESSION AFTER IF IN-STATEMENT

4 MISSING OR INVALID NUMERIC CONSTANT IN ITERATIVE

COUNT SPEC

5 MISSING OR INVALID NUMERIC CONSTANT IN RELATIVE

ERROR SPEC

7 ORGANIZATION TYPE MISSING OR ILLEGAL IN DISK STATEMENT

9 TYPE DISK MISSING OR ILLEGAL IN DISK STATEMENT

12 MISSING ELSE IN CONDITIONAL EXPRESSION

14 ASSERTION MISSING AFTER THE KEYWORD "THEN"

18 NO BOOLEAN EXPRESSION AFTER THE KEYWORD "IF"

22 NO EXPRESSION AFTER LEFT PARENTHESIS

23 KEYWORD "=" IS MISSING

24 RIGHT PARENTHESIS MISSING

26 STRING MISSING AFTER QUOTE

33 ERROR IN RECOGNITION OF RIGHT HAND SIDE OF AN ASSERTION
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Message Id. Message

38 KEYWORD "THEN" IS MISSING

39 RECORD OR GROUP KEYWORD EXPECTED

42 RECORD NAME MISSING OR ILLEGAL IN FILE OR REPORT

STATEMENT

44 MEDIUM NAME MISSING OR ILLEGAL IN FILE OR REPORT

45 KEYNAME MISSING IN FILE OR REPORT STATEMENT

46 MAXIMUM LENGTH MISSING OR ILLEGAL IN VARIABLE LENGTH

IN FIELD STATEMENT

47 INVALID OR MISSING FIELD TYPE IN FIELD/INTERIM

STATEMENT

48 MISSING OR INVALID LENGTH IN 1IELD/INTERIM STATEMENT

49 MISSING RIGHT PARENTHESIS AFTER FIELD-TYPE

IN FIELD/INTERIM

50 MINUS SIGN IS NOT FOLLOWED BY AN INTEGER

51 MISSING/INVALID MAX NUMBER OF OCCURRENCES OF ITEMS.

52 NAME MISSING OR ILLEGAL IN ITEM LIST

53 MISSING LEFT PARENTHESIS IN LINE SPEC

54 MISSING INTEGER IN LINE SPEC

55 MISSING RIGHT PARENTHESIS IN LINE SPEC

56 MISSING/INVALID FILE NAME AFTER KEYWORD FILE

57 FORMAT MISSING/MISSPELLED AFTER RECORD IN STORAGE

STATEMENT

58 MISSING/INVALID TAPE LABEL

59 KEYWORD "RECORDSIZE" MISSING OR MISSPELLED

AFTER "MAX"

60 MISSING/INVALID VOLUME NAME (EXTERNAL OR INTERNAL)

61 MISSING/INVALID DEVICE TYPE

62 MISSING/INVALID ITERATIVE SOLUTION METHOD

63 COLON MISSING AFTER KEYWORD "MODULE"
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Message Id. Message

64 NAME MISSING OR ILLEGAL IN MODULE STATEMENT

65 ERROR IN ASSEMBLY OF A NUMBER CONSTANT

66 TAPE SPEC PARAMETER MISSING OR ILLEGAL

67 ERROR IN PICTURE SPEC

68 QUALIFIED NAME ILLEGAL

69 RECORD FORMAT MISSING OR ILLEGAL

70 KEYWORD "BLOCKSIZE" MISSING IN RECORD FORMAT SPEC

71 BLOCKSIZE VALUE MISSING/ILLEGAL IN

RECORD FORMAT SPEC

72 RECORD SIZE VALUE MISSING/ILLEGAL IN

RECORD FORMAT SPEC

74 SEMICOLON MISSING AT END OF STATEMENT

75 COLON MISSING AFTER KEYWORD "SOURCE"

76 NAME MISSING/ILLEGAL IN SOURCE FILE LIST

77 COLON MISSING AFTER KEYWORD "TARGET"

78 NAME MISSING/ILLEGAL IN TARGET FILE LIST

79 MISSING "THEN" IN CONDITIONAL EXPRESSION

80 UNRECOGNIZABLE STATEMENT

81 BADLY FORMED ARITHMETIC EXPRESSION

82 BADLY FORMED BOOLEAN EXPRESSION

83 BADLY FORMED BOOLEAN TERM

84 BADLY FORMED CONCATENATION OF EXPRESSIONS

85 BADLY FORMED FACTOR

86 BADLY FORMED PRIMARY

87 BADLY FORMED TERM
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Message Id. Message

90 LEFT PARENTHESIS MISSING IN COLUMN SPEC

91 INTEGER MISSING IN COLUMN SPEC

92 RIGHT PARENTHESIS MISSING IN COLUMN SPEC

101 LENGTH OF PICTURE SPECIFICATION IS TOO SMALL

102 SPECIFIED LENGTH IS INAPPROPRIATE FOR

SPECIFIED TYPE OF DATA

104 SPECIFIED MAXIMUM LENGTH IS INAPPROPRIATE

OR TOO SMALL

105 FRACTION POINT OFFSET IS OUTSIDE OF BOUNDS

-128 < P < 127

106 BAD REPETITION SPECIFICATION

107 ILLEGAL CHARACTER IN PICTURE SPECIFICATION

108 EXPECTING A LEVEL NUMBER IN A STRUCTURED DATA

DESCRIPTION STATEMENT

109 LENGTH OF PICTURE SPECIFICATION IS TOO BIG

110 ILLEGAL BIT STRING IN "ONCERR" CLAUSE

111 INCONSISTENT USE OF "ONCERR" CLAUSE AND

THE ATTRIBUTE OF THE FIELD

112 INVALID SPECIFICATION IN "ONCERR" CLAUSE

113 ILLEGAL B2 CONSTANT

114 ILLEGAL B3 CONSTANT

115 ILLEGAL B4 CONSTANT

120 MORE THEN ONE SOURCE FILE IN FUNCTION SPECIFICATION

121 MORE THEN ONE TARGET FILE IN FUNCTION SPECIFICATION

122 MORE THEN ONE RECORD IN FUNCTION FILE DEFINITION

123 GROUPS ARE NOT ALLOWED IN FUNCTION FILE DEFINITIONS

154



Message Id. Message

150 SUBLINEAR FUNCTION TAKES TWO PARAMETERS, BOTH

CONDITIONAL EXPRESSIONS

151 SUBLINEAR FUNCTION ONLY TAKES TWO PARAMETERS.

BOTH CONDITIONAL EXPRESSIONS

153 SUBLINEAR FUNCTION TAKES TWO PARAMETERS,

BOTH CONDITIONAL EXPRESSIONS

160 MISSING COLON AFTER KEYWORD "PROCEDURE"

161 MISSING/INVALID SPECIFICATION NAME

162 MISSING/INVALID PARAMETER NAME

163 MISSING/INVALID EXTERNAL NAME

164 MISSING/INVALID I/O MODE SPECIFICATION

(MUST BE "IN", "OUT", OR "INOUT")

165 MISSING "." AFTER PACKAGE NAME

166 MISSING/INVALID PACKAGE NAME

168 MISSING/INVALID TYPE NAME

169 MISSING/INVALID PACKAGE NAME AFTER RENAME

170 MISSING/INVALID NAME FOR RENAMING
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