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1. BACKGROUND

Accurate solids modeling plays an important role in the design and
analysis of spin and fin stabilized projectiles. In particular, accurate
knowledge of a projectile's mass, center of gravity, and its axial and
transverse moments of inertia are important for stability and trajectory
calculations. Historically, solids modeling has been performed in two
manners: 1) constructing the projectile thickness profile with basic
axisymmetric components such as cones, cylinders, frustrums, and radii
(or ogives), then having their individual mass properties calculated and
summed for the entire structure; and 2) constructing a two dimensional
finite element model of the structure, and then summing the mass
properties ot the individual quadrilateral or triangular elements of
revolution. In practice, however, error sources exist with these methods
with respect to the determination of the mass properties of radii, which
until now could not be calculated with a closed-form solution.

Both of the above techniques rely on finite difference or finite
element approaches to the determination of the mass properties of radii.
Finite difference solids modeling of radii or ogives using projectile
profile construction have traditionally broken the curved outline into
many uniform finite segments, typically 100, which are then treated as
individual frustrums, for which a closed-form solution does exist. This is
the technique used in solids modeling subroutines in projectile design
packages such as PRODAS' and CPPAC.2 Finite element modeling is
effectively the same technique, since the outline of the structure is a
finite number of straight lines.

In the past, no closed-form integral existed for the transverse
moment of inertia for an ogive, other than for a simple hemisphere. In
addition, those definite integrals which do exist for the radius element

1 J. Burnett, W. Hathaway, and R. Whyte, Projectile Design and Analysis System
(PRODAS), AFATL-TR-81-43, Armament and Electrical Systems Department, General Electric
Company, Burlington, VT. April 1981.

2 Computerized Projectile Performance Analysis code (CPPAC), Ballistic Research
Laboratoiy, Aberdeen Proving Ground, Maryland. 1986.
1




mass and axial moment of inertia are restrictive, complicated and seldom
employed. Therefore, when using existing solids modeling techniques, the
designer has no knowledge of the magnitude of the error with respect to
the true closed-form value. In addition, no mathematical error analysis
has been developed to show that by increasing the number of finite
elements or discrete segments in the model construction the value
converges to the closed form solution.

To address this issue, the generalized closed-form solution for the
mass, axial, and transverse moments of inertia, and center of gravity for
an external and internal radius or ogive segment of a projectile is
developed. In addition, these simplified equations are incorporated into a
generalized computer program to determine the mass properties of
complex projectile shapes. This report only presents the unique
development of solids modeling solutions for internal and external radii,
since solutions for cones, cylinders, and frustrums are well known and
published in many standard mathematical handbooks.
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2. DEVELOPMENT OF THE INTEGRAL

Figure 2.1 shows the geometric construction of the axisymmetric
integral for a generic internal radius or ogive.

Figure 2.1
Geometric Construction of the Integral

D1

AXIS OF SYMMETRY

In Figure 2.1 the center of the radius of curvature is located a
distance H to the left of the left face of the radius element and a
distance K below the axis of symmetry for this element. At the left
diameter D1, the radius intersects at a secant point. In addition, since the
radius center is below the axis of symmetry, the right diameter D2 also
intersects at a secant point. The cross-hatched area represents a finite
mass of material defined by:3

R = x4y MASS, =p1r(\/(R2 -x") = K)Ax (1)

y=(R*-x’)

3 R. Hudson, The Engineers’ Manual. John Witey and Sons, Inc., New York. Equations
(1), (2), and (3) are developed from this reference.




This finite mass of material has a moment of inertia about the
symmetrical axis of:

12z =%1‘mss,(1/(1e2 —xz)—K)z (2)

In addition, its transverse moment of inertia about the left face of
the radius element is:

IXX, = -I%MASS,.[3( (R - x*)- 1{)2 + (Ax)2]+ MASS,(x, - H)’ (3)

In order to eventually determine the center of gravity of this radius
element, and to transform the transverse moment of inertia from the left
face to the center of gravity, the first moment of this finite mass also

needs to be determined:

MOM, = x MASS, (4)
Following this, the center of gravity for the element becomes:
MOM,
— z ! (5)

8= Mass,




3. GENERAL MASS PROPERTY INTEGRALS

Based on the geometric construction, the following integrals may be

written to define the total mass properties of the radius element in
question.

MASS = T/mr(w/(ze2 - ¥)- K)zdx

122 = J%pir(m - K)4dx

MOM = Tpn’(w/(Rz —x) - K)z(x - H)dx

MOM

CG=—""—
MASS

(6)

(7)

(8)

(9)

(10)




4. THE DEFINITE INTEGRALS

The above integrals were solved, given the following geometric
conditions:

R = radius of curvature

H = axial offset of the radius center from the element left face
K = radial offset of the radius center from the axis of symmetry
xi{=H

Xo=H + L

A. The Definite Integral for the Radius Element Mass

MASS = pre(MASS(x,) ~ MASS(x,))

where:

RP-x*) g
MASS(x)= sz_x%—ZK[x—(—E———)—+£2~sin"(%)]+ K*x (11)




The Definite Integral for the Radius Element Axial Moment of Inertia

122 = p%(lZZ(xz)— 1ZZ(x,))

3
122(x)=R‘x-%R2x’+ S +K‘x+6K2(R2x—£3-)

_4K3[x_LR_2__x_2)+_Ri_z_sin-l(i]]_‘tl([i(Rz_x2)|s+3Rx (R -X )] (12)
2 R 4

2 8
—41((2 R*sin™ (i))
8 R

The Definite Integral for the Radius Element Transverse Moment
of Inertia

IXX = pr(IXX(x,) - IXX(x,))

IXX(x)= (-215121<—1<3)(2 (R?-x +——sm '(%))

_K[%(Rz—xz)"5+%R2 (RP-x*)+= R‘sm '(%]

(13)
_ X (p2 _  2\!3 2 X 2 _ .2 _-—li
21&*[4 (R*-x*)"+R 8,/(12 )+ 2-sin (R)}

“2HK(R - x) - 2 x® + Lt
207 2

R K
+x(—-4—+ R*(1.5K* + H’)+T+ K’Hz)




The Definite Integral for the Radius Element First Moment

2
MOM(x) = 2R = 22 L -'(1))
(x) 2KH(2 (R*-x*)+ 5sin”| &
2 4

-

2 2_ 2\ Xy X
+3K(R x?) +2(R+K) "
3

+Hf3—+xH(—R2 -K?)

and:

X = pr(MOM(x,)— MOM(x,))
o MASS

(14)

(15)




5. GENERAL SOLUTIONS FOR ALL FORMS OF INTERNAL AND
EXTERNAL RADII

Figure 5.1 shows that four distinct forms of internal and external
radii exist, including the one used to develop the closed-form solution
(Form 1). As it turns out, the above definite integrals are valid for ali
four cases, provided the geometric inputs are defined accordingly, as
shown in Figure 5.1. The rules for determining the mass properties of all
of these forms follows.

Figure 5.1
Generalized Input Parameters for all Radii
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Form

Form

Form

Form

1

The value of H is always positive.

The value of K is positive only when the center of the radius
of curvature is below the axis of symmetry. Enter K as

negative if the radius center is above the axis of symmetry.

2

The value of H is always positive, and is now the distance to
the right face of the element.

The value of K is positive only when the center of the radius
of curvature is below the axis of symmetry. Enter K as
negative if the radius center is above the axis of symmetry.
Since this form is the mirror image of Form 1, the center of
gravity for this element from its left face is determined by
subtracting the calculated center of gravity using the abhove
integral from the element length L.

3

H is always positive.

K is always positive and is always above the axis of
symmetry.

4

The value of H is always positive, and is now the distance to
the right face of the element.

K is always positive and is above the axis of symmetry.

This form is the mirror image of Form 3, subtract the
calculated center of gravity from the element length.

10




6. SOME EXAMPLE CALCULATIONS

Figure 6.1 shows the cross-section of eight axisymmetric radius or
ogive elements drawn with the software developed under this project.
Table 6.1 shows the geometric inputs for each element according to the
rules defined above. At the bottom of this table are the calculated
closed-form mass properties for these eight elements, as well as the
cumulative properties if all of these elements were connected.

Figure 6.1
Cross-Sections of Example Radii




Table 6.1
Geometric Inputs and Mass Properties of Example Radii

ELEM D1 D2 L Rho  FORM R N K
1 1.0000 .0000 .5000 10.0000 41 .5000 .0000 .0000
2 .0000 1.0000 .5000 10.0000 42 .5000 .0000 .0000
3 1.0000 .0000 .5000 10.0000 44 .5000 .0000 .5000
4 .0000 1.0000 .5000 10.0000 43 .5000 .0000 .5000
5 1.0000 .5000 .2500 10.0000 41 .2500 .0000 -.2500
6 .5000 1.0000 .2500 10.0000 42 .2500 .0000 -.2500
7 1.0000 .5000 .2500 10.0000 44 .2500 .0000 .5000
8 .5000 1.0000 .2500 10.0000 43 .2500 .0000 .5000
ELEM MASS (lb) lzz (axi) (lb-in"2) Ixx (trans) Cg

1 2.6180 2618 1698 1875

2 2.6180 2618 1698 3125

3 3765 0174 0102 0654

4 .3765 0174 .0102 4346

5 1.5892 .1692 .0920 . 1094

6 1.5892 1692 .0920 1406

7 7486 12 .0246 0997

8 7486 0412 .0246 1503

TOTAL MASS 1zz,9 (axi) Ixx,? (trans) Cg (from Left)

10.6646 9794 0.6164 1.4080

Figure 6.2 shows the cross-section of a complex axisymmetric
projectile component, developed with this software. This component
contains nine discrete elements, one of which is an internal radius. The
mass properties of each of these elements and those of the combined
structure are presented in Table 6.2

12




Figure 6.2

Cross-Section of Example Projectile Component
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Table 6.2

Geometric Inputs and Mass Properties of Example Component

AFT CAVITY
5.000

S
.2810
ELEM D1
2.0000
2.5000

VRNV WN—
.
é

ELEM MASS (lb)

1.9633
1.2931

VBNV NN
.

-5273
TOTAL MASS
7421

D2 L Rho FORM

2.5000 1.7500 2810 3 .0000 0000
2.5000 9375 2810 2 0000 0000
3.0000 .6250 2810 2 0000 .0000
2.8438 .5000 .2810 3 0000 0000
.5000 3750 -.2810 2 .0000 0000
1.6163 4927 -.2810 42 .5625 .0698
2.0000 2.0000 -.2810 3 .0000 .0000
2.0000 5625 -.2810 2 0000 .0000
2.5000 .3823 -.2810 2 0000 .0000
1zz (axi) (lb-in"2) Ixx (trans) (of]

1.2679 1.1285 .9395

1.0103 .5998 .4688

1.3966 7387 .3125

1.0068 5230 . 2455

-.0006 -.0006 . 1875

-.0534 -.0301 .2912

-.6031 -.7786 1.0705

-.2483 -.1372 .2813

-.4120 -.2124 L1911
lzz,g (axi) Ixx,g (trans) Cg (from left)

3642 5.1451 1.9582

13




7. SUMMARY AND CONCLUSIONS

Although solving the definite integrals for the closed-form mass
properties of radii is a laborious process, the results appear to be useful.
The geometric construction for each internal and external radius is
standardized and simple, requiring only the two extra inputs, H and K, to
locate the radius center. One may also have observed that in these
calculations, the left diameter D7 and the right diameter D2 were never
used. As it turns out, these values are largely redundant given knowledge
of H and K and the element length L, since only two possible radii
elements can exists for each combination of these three numbers. To
distinguish between the differences between the external radii, Forms 3
and 4, from the internal radii, Forms 1 and 2, simply adopt the convention
that a negative R is an external radius, and proceed to calculate H and K
internal to the software routine. Therefore, if one wishes to avoid
entering H and K, they may be calculated in a straight-forward manner
using the standard inputs of D71, D2, L and +-A. In addition, one set of
equations has been shown to be valid for all four radii geometries. This
further simplifies incorporation of these equations into a generic solids
modeling routine. The mathematical approach developed here is also
applicable to more complex axisymmetric shapes such as parabolic and
hyperbolic curves. One only needs to substitute these equations for the
circular cross-section used in these integrals to develop those closed-
form solutions. One would expect the resulting equations to be equally
standardized and simple to incorporate into a solids modeling package.
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