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PREFACE

This report documents research performed by The Analytic Sciences Corporation (TASC)
for the Armstrong Laboratory, Human Resources Directorate, Logistics Research Division
(AL/HRG) under contract number F33615-90-C-0007. The TASC effort, entitled "Integrated
Model Development Environment (IMDE)," was designed to support the Productivity
Improvements in Simulation Modeling (PRISM) project. The objective of PRISM is to enhance
the Air Force’s ability to perform simulation-based logistics capability assessment.

The background of PRISM is well documented. The first task, conducted as an in-house
research project, investigated the limitations of current Air Force logistics modeling capabilities.
This initial effort was entitled "Analysis of Air Force Logistics Capability Assessment Models"
and is documented in AFHRL-TP-88-56. In general, the results of the study support the
conclusion that current logistics modeling tools are hard to use, difficult to modify, and require
an inordinate amount of data preparation.

The next PRISM research task investigated fledgling object-oriented simulation
technology. This project was carried out by RAND Corporation. The final report is entitled
"PSE: A CLOS-Based Persistent Simulation Environment With Prefetching Capabilities" and is
documented in WD-4507-1-DARPA. Specifically, the research focused on how to provide
persistent object-oriented modeling capabilities.

Although the in-house and RAND studies are considered successful stand-alone research
projects, their underlying purpose was to lay the groundwork for IMDE. The objective of the
IMDE research is to demonstrate how an object-oriented modeling approach along with state-of-
the-art user interface technology could make large-scale logistics models less complicated,
cheaper/easier to maintain, and more widely available. The approach taken to meet this objective
was twofold. First, TASC developed a generic advanced modeling tool (i.e., the IMDE). Then,
using the IMDE, they developed a small model of airbase logistics processes in order to test and
demonstrate the IMDE concept.

Although recent demonstrations of the IMDE were successful, a compichensive
comparison of the modeling processes supported by the IMDE-based model relative to the
processes supported by current models has not been conducted. The ongoing IMDE research is
rectifying this situation by allowing United States Air Force (USAF) logistics analysts to
thoroughly beta test and comment on the IMDE demonstration software. As part of this effort,
AL/HRG is developing a large, complex model! of F-16 airbase logistics operations to provide
a basis for comparison.

In summary, this report documents the initial effort to develop the IMDE software, the
reasoning behind it, and Fiscal Year 1994-95 (FY 94/95) research plans. In addition to this
report, the demonstration IMDE software and its associated user and programmer manuals are
available. (Requests for these products should be made through AL/HRG, Wright Patterson AFB,
OH.) Pending the completion of the FY 94/95 effort in Dec 1994, these products, along with




results from the comparison between current and IMDE modeling processes, will be available o
the general public through the Defense Technical Information Center.

The authors of this report wish to thank Mr Dick Cronk (ASC/XRE), Capt Pat Vincent
(ASC/ALLH), Mr Herb Morgan (AFOTEC/SAL), and LtCol Terry Holtz (AFMEA/MEI) for their
feedback and support throughout the IMDE project. Their contributions were essential to this
successful research and development project.

The authors would also like to acknowledge the following former and current IMDE
research team members: Dr Doug Popken (University of Dayton), Mr Kerris Renken (TASC),
Mr Nick Stute (TASC), Ms Lynn Foreman (TASC), Mr Jeff Honious (TASC), and Mr Paul
Barlow (TASC).
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THE INTEGRATED MODEL DEVELOPMENT ENVIRONMENT

SUMMARY

The Integrated Miodel Development Enviionment (IMDE) is a set of software tools
developed to address the shortcomings of Air Force capability assessment models such as the
Logistics Composite Model (LCOM) and the Theater Simulation of Airbase Resources (TSAR).
The shortcomings of these models were identified in an Armstrong Laboratory, Human Resources
Directorate, Logistics Research Division (AL/HRG) study entitled "Analysis of Air Force
Logistics Capability Assessment Models" and is documented in AFHRL-TP-88-56.

There were two phases in the IMDE effort. In the first phase, The Analytic Sciences
Corporation (TASC) developed a state-of-the-art modeling tool (i.e., the IMDE) which utilizes
advanced software technologies, including object-oriented programming, object-oriented data
management, and extensive graphical user interfaces. In the second phase, TASC developed a
small model of airbase logistics processes that support sortie production using the IMDE to
demonstrate the IMDE’s utility for Air Force logistics modeling studies. Although a small model
was developed, the major focus of this effort was to develop the IMDE modeling software.

This paper identifies current United States Air Force (USAF) logistics modeling
techniques and their associated limitations, describes the evolution of IMDE "state-of-the-art"
modeling technologies, and discusses how the IMDE architecture (an integration of these
technologies) addresses the current limitations. In addition, plans for future USAF logistics
simulation research along with other potential areas for research are also discussed.

INTRODUCTION

USAF acquisition, test and evaluation, wing, and Major Command organizations, as well
as contractors, use computer-based models of airbase logistics processes to study sortie
production capability as a function of manpower resources, spare part availability, aircraft
reliability, and numerous other factors. These models can be categorized as either stochastic or
non-stochastic. One of the better known non-stochastic models is Dynametric, which is used by
wing and Major Command supply analysts to investigate how spares’ availability affects sortie
production capability (Blazer & Zimmerman, 1991). One of the better known stochastic models
is TSAR. A more powerful tool, TSAR aliows a capability assessment analyst to study the full
spectrum of variables affecting sortie production in a wartime environment (Emerson & Wegner,
1990).

Today, probably the most utilized and well-known stochastic model is LCOM. LCOM,
like many of the other assessment models, was initially developed by Rand Corporation in the
early 1970s (Boyle, 1990). Although it is a very powerful decision support tool, LCOM is
limited by the fact that it utilizes software technology based on what was available in the early
1970s. On the basis of software technology, LCOM is very similar to other capability assessment
models in that it is hard to use, difficult to modify, and requires an inordinate amount of data
preparation (Popken et al., 1989).
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Throughout the 1970s and early 1980s, these models (i.e., LCOM, TSAR, and
Dynametric) represented the state of the art in Air Force iogistics modeling and simulation
analysis. However, in recent years, new vastly improved simulation technologies based on the
object-oriented paradigm and extensive graphical modeling techriques have created an
cpportunity to revolutionize Air Force logistics modeling processes.

Within this setting, the objective of the IMDE project was to demonstrate how integrating
object-oriented programming, object-oriented database managerment, and graphical user interface
technologies could make USAF logistics models less complex and easier/cheaper to maiuntain and
modify. This objective is being met by (1) developing a generic advanced modeling tool (i.e.,
the IMDE) and (2) developing a iibrary of standard airbase logistics objects to demonstrate the
IMDE's utility for airbase logistics modeling applications.

In the last three years, significant progress towards this objective has been made. A
functional IMDE was first demonstrated at the IMDE Technical Status Review held in Maich
1993. In June 1993, a prototype of the airbase logistics model was demonstrated to LCOM
analysts and laboratory researchers.

The purpose of this paper is to document the initial effort made under contract F33615-C-
90-0007 to develop and test the IMDE. f3eneral information on curreat capability assessment
techniques, their associated limitations. and advanced simulation technologies (utilized by the
IMDE demonstration software) are provided to give the uninitiated reader background material.
A detailed discussion of the IMDE modeling tool is also presented, followed by current plans for
future research and potential high payoff research topics.

BACKGROUND
History of Logistics Modeling

Since the early 1970s, the Air Force has developed and utilized numerous discrete-event
simulation (i.e., stochastic) modeling tools to help decision-makers (1) assess the capability of
combat units, (2) determine and justify spare part and manpower requirements, and (3) test new
systems. The most well-known tools are TSAK and LCOM. Both tools, developed in the late
1960s and early 1970s by RAND Corporation, model airbase logistics processes.

TSAR was developed to help decision-makers evaluate the impact of logistics process
improvements on theater sortie production capability (Emerson & Wegner, 1990). It has
traditionally beer: used by the Air Staff to perform special studies and to evaluate unit capability
in the Air Force Capability Assessment Program (Dymond et al., 1987).

Although LCOM and TSAR both simulate airbase logistics processes in great detail,
L.COM differs from TSAR in that it has primarily been used by the manpower community to
perform manpower requirements studies. (Air Combat Command [ACC], Air Mobility Command
[AMC], and Air Force Special Operations Command [AFSOC] are currently using LCOM to help
determine and justify maintenance manpower tequirements.) It has also been used extensively




for Logistics Support Analysis (LSA) and operational test and evaluation (OT&E) by the
acquisition and test communities. respectively (Popken et al., 1989).

Limitations of Current Models

As stated previously, TSAR and LCOM, although very powerful, are complex and
difficult to use. In part, this difficulty is caused by the complexity of the processes being
modeled. Modeling al! the maintenance functions at an airbase will, for the foresesable future,
be data intensive and complex; however, part of the complexity is also due to the software
technologies these models utilize.

One feature current Air Force logistics modeling tools do not provide is the capability to
graphically depict model logic and data. For example, redefining time sequences and
relationships among simulation activitics in TSAR, LCOM, and Dynametric requires "labor-
intensive programming and data preparation” (Popken et al., 1989). Providing the capability to
graphicaily depict and edit model logic and data would improve the simulation process by
reducing the effort required to develop and verify data sets and their associated models.

Since Popken’s study, some improvements have been made in this area. For example,
manpower analysts at ACC, AMC, and AFSOC can graphically depict LCOM maintenance task
networks. Unfortunately, changing these networks still requires editing column-sensitive LCOM
ASCII input files. This situation is common to all Air Force logistics models. Although
improvements have becn made, most models still require extensive manipulation of input and
output data.

In addition to being difficult to use, the models are also ditficult io adapt to prohlems for
which they wers not originally intended. This fact is, in part, responsible for the proliferation
of airbase logistics models over the last twenty years. Currently, the Air Force owns five
different computer-based models that can be used to estimate sortie production capability as a
function of airbase jogistics constraints: All Mobile Tactical Air Forces (AMTAF), Wezpon
System Management Information System Supportability Assessment Model (WSMIS/SAM),
[ntegrated Simulation Assessment of Airbase Capability (ISAAC), TSAR, and LCOM.

Even with the models currently available, Air Force logistics analysts still cannot
investigate many complex relationships between sortie production and logistics constraints. Two
examples of these limitations are listed below (Popken et al., 1989).

1.

Current models cannot be used to evaluate how complex theater logistics support
plans affect sortie production. For example, issues associated with theater cornmand
and control and lateral part supply cannot be studied.

Current models do not adequately address aircraft battle damage repair because they
assume damaged aircraft equal attritzd aircraft. This assumption causes estimated
wartime maintenance manpower and spare parts requirements to be underestimated.



If current models were more flexible and easier to modify, many of these limitations could be
overcome by modifying existing models, as opposed to developing new models.

State-of-the-Art Simulation Technologies

As previously stated, the purpose of the IMDE project is to demonstrate how advanced
software technology can make USAF logistics models less complex and easier/cheaper to
maintain and modify. The primary technologies exploited to date are object-oriented modeling
(via ModSim), object-oriented database management (via the Versant™ Object-Oriented Database
Management System), and extensive graphical programming capabilities. This section introduces
these technologies along with their associated benefits so that their integration into the IMDE
modeling tool can be better appreciated.

Object-Oriented Modeling

Object-oriented languages have been available for many years. Simula (Dahl & Nygaard,
1966), developed in the 1960s, is most frequently credited with being one of the first object-
oriented simulation languages. Unfortunately, Simula, along with other early object-oriented
languages (e.g., Smalltalk), never gained prominence within the Department of Defense (DoD)
simulation community because of their poor run-time performance relative to other approaches.
As a result, through the early 1980s, most DoD models were developed using generic
programming languages like FORTRAN or FORTRAN-based simulation languages like
Simscript.

Beginning in the mid-1980s, object-oriented simulation reemerged as a viable approach
to discrete-event simulation. During this time, CACI Inc., under sponsorship from the U.S. Army
Models Management Office, developed a new object-oriented simulation language called ModSim
(Wallace & Herring, undated). Initially, ModSim was used by the U.S. Army Construction
Engineering Research Laboratory (USACERL) to develop a large force structure tradeoff model
(Herring et al.,, 1993). Since then, CACI evolved the ModSim used to support USACERL.
research into a commerciaily viable simulation language entitled, "Modsim 1I™."

Although developing an object-oriented simulation model can be complex, the basic
concepis of object-oriented programming are simple. From a top-level perspective, any language
that provides a data structure that encapsulates an entity’s state and behaviors can be classified
as "cbject-oriented." In object-oriented terminology, this type of data structure is called a class.
Specific instances of a class are called objects. Each class and object have:

I. attributes which define the state of an object, and
2. methods which describe the object’s behavior.

The distinction between classes, objects, attributes, and methods is illustrated by the
following example. As shown in Figure 1, an airbase simulation may include three aircraft
operating during a simulation run. Eack. aircraft is called an object. All three aircraft instances
will have the same attributes and methods, which were derived from the generic aircraft class.
The definition of the aircruft class could include attributes such as mean_time_to_fail and




aircraft_status. The definition of the aircraft class will also include the methods which define
an aircraft’s behavior. For example, the aircraft class could have a determine_repair_status
method.
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Figure 1
Message Sending Between Objects

Objects interact by sending messages to each other. Using the previous example, an
aircraft object’s determine_repair_status could be invoked by a maintenance_manager object.
In ModSim, the command below would implement this type of message:

TELL aircraft] TO determine_aircraft_status

This message might be sent by the service_aircraft method of maintenance_managerl to
ascertain the type of service to provide.

As aresult of the inhercnt modularity of this approach, the main benefit of object-oriented
models is that they are easier to maintain, modify, and develop. Of course, the advantages of
object-oriented programuuing do not come without a cost. Models based on traditional
programming languages like FORTRAN and Simscript are more efficient. A common estimate
of the run-time penalty associated with using an object-oriented approach is 10 to 15 percent;
however, as computer hardware technology improves, run-time performance considerations will
become less important relative to software modularity.




Object-Oriented Databases

Throughout the 1970s and 1980s, the relational catabase approach was the model for data-
processing applications; however, relational databases never gained widespread application for
engineering design applications (Elderstein, 1991). Beginning in the late 1980s, companies
marketing fledgling object-oriented database management system software like Versant™ began
to make inroads into the engineering design application market, primarily because object-oriented
databases provide a richer environment for modeling data, providing interactivity, and supplying
versioning and configuration control (Atwood, 1991).

At about the same time, the simulation research community began investigating the utility
of object-oriented databases for simulation and modeling engineering applications. Early studies
focused on providing persistence at simulation run-time. Many of these efforts (e.g., Cammarata
& Burdoff, 1989; Herring et al., 1993; and Yu, 1992) have been successful. The purported
benefit of run-time persistence for simulation is that larger and more complex simulations can
be run more efficiently (Whitehurst & Herring, draft).

In addition to investigating how object-oriented databases can improve run-time execution
of large models, many researchers have focused on how object-oriented databases can be used
to support the overall simulation process. Object-oriented database support throughout the
modeling process can significantly improve model maintenance, versioning, interconnectivity, and
configuration control processes (Yu, 1992).

Graphicai Modeling

The concept of graphical programming is not new to simulation. Event-based languages
like SLAM™ and domain-specific modeling tools like COMNET I1.5™ have offered graphical
modeling capabilities for many years; however, recent advances in computer hardware and
software technology have pushed graphical programming into the mainstream. It is generally
accepted that these tools (with respect to simulation):

1. reduce the amount of time and effort required to develop models,
2. reduce the difficulty in verifying and valida:ing a model, and
3. ease the model documentation task (Nickel, 1938).

Because of these benefits, it is not surprising that evolving object-oriented programming
tools, like traditional modeling languages and tools, are also beginning to capitalize on the
benefits of graphical programming.

INTEGRATED MODEL DEVELOPMENT ENVIRONMENT

As previously stated, the purpose of the IMDE project is to demonstrate how integrating
object-oriented programming, object-oriented database management, and graphical user interface
technologies can make USAF logistics models less complex and easier/cheaper to maintain and
modify. This objective is being met by (1) developing an advanced modeling tool (i.e., the




IMDE) and (2) developing a library of standard airbase logistics objects to demonstrate the
IMDE's utility for airbase logistics modeling applications. As of June 1993, the effort to develop
the IMDE modeling tool is complete. Throughout this section, USAF airbase logistics examples
are used to help explain IMDE functions; however, it is important to undeistand that IMDE is
a generic modeling teool. It is just as applicable to manufacturing and communications network
modeling as it is to USAF airbase logistics modeling.

Although the demonstration software developed under this contract is Government-owned,
users must also have the commercial off-the-shelf software listed below in order to develop and
run models using IMDE:

1. Modsim II™, version 1.9.2 or later; and
2. Versant™ OODBMS, version 2.1.3 or later.

Choices about what commercial software options to incorporate into IMDE were limited
by the IMDE contract. For example, the contract stated that an object-oriented database
management system must be utilized. As a result, three object-oriented database management
systems were evaluated early in the contract: ONTOS™, Gemstone™, and Versant™. Although
each product had merit, Versant™ was eveatually chosen, primarily because it outperformed the
two other databases in customized test queries that were performed early in 1990.

The IMDE contract also mandated that the modeling tool must support object-oriented
model development. This fact drove the decision to use Modsim II™, Although, other object-
oriented languages like C++ and Smalltalk were considered, Modsim was chosen because, unlike
C++, it was specifically designed to support development of object-oriented simulation models.
It was chosen over Smalltalk which. like Modsim, has direct support for object-oriented model
development, because Modsim’s run-time performance is superior to Smalltalk’s.

Additionally, running the IMDE software currently requires a Sun Sparc workstation with
the following minimum characteristics:

Sparc IPC™, Sparc IPX™, Sparc 2™, or a Sparc 10™,;
450 MB of disk space;

X11R4 or X11R5 Window Manager;

Sun OS™ 4.1.3; and

Sparcstation compatible color monitor.

S e

Architecture

IMDE is a Computer-Aided Software Engineering (CASE) tool designed for use in the
development, execution, and analysis of discrete-event simulation models. The IMDE
architecture, depicted in Figure 2, was designed to address traditional problems associated with
building, maintaining, and analyzing these types of models. The Model-Setup portion of the
architecture supports the development of model parts (i.e., classes), the creation of models, and
the specification of experiments. The Simulator supports the actual execution of an experiment
and the Data Analysis portion supports analysis of raw data generated during an experiment.
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Figure 2
IMDE Architecture :

Also important to the IMDE architecture are two object-oriented databases. The first
database is called the "Premodel" database. The Premodel database stores and catalogues model
parts (i.e., classes). The second database, the Project database, stores complete models and their
associated input records, output records, and documentation. The following subsections describe
the functions of the three different portions of the IMDE architecture and detail how they interact
with these two databases.

Model Setup

Construction of models within IMDE is based on building up parts of models representing
cntities in a given simulation, then "hooking them together" to form a complete simulation model.
These mode! parts will, in many cases, parallel the real-world items being modeled. In an airbase
logistics simuiation, aircraft, shops, test sets, runways, personnel, and spare parts might all be
modeled. In IMDE terminology, these model parts are called objects, and templates for the
design of these objects are called classes.

In IMDE, classes are defined in the Premodel Preprocessor which is in the Model Setup
portion of the architecture. Users can define classes by writing Modsim II™ or, preferably, by
using the Premodel Class Editor (see Fig. 3) to define the attributes and the Network Editor to
define the methods. Users simply list the attributes of a class, then specify the attribute type
from a list of available types.
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Figure 3
Premedel Class Editor

In addition to specifying an attribute’s type, users may also indicate whether the attribute
can be variable when included in a complete model, whether statistics can be collected on it, and
whether it can be expanded as a list. These three options are associated with each attribute and
will become important later when the Project Editor is discussed. For now, simply realize that
once a class is defined it will have a list of attributes that can be parameterized, and a list of
attributes for which statistics will be collected. In IMDE terminology, a list of inputs associated
with a class is called a class input template (CIT), and a list of statistics is called a statistics set.

Each class may have zero, one, or more than one of each type of list. For example, the
AircraftObj class shown in Figure 3 could have two different CITs and two different statistics
sets associated with it, each with different combinations of the class’ attributes contained in them.
(Figures 4 and 5 display examples of a CIT and statistics set, respectively, for the AircrafiObj
class. Other CITs may have differing default values or minimum and maximum values. Other
statistics sets may have more or fewer variables collected, and they may be collected in different

ways (sampled, monitored, etc.).
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Class Input Template

(. Class Statistics K
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Figure §
Statistics Set

Of course, to fully define a class, a user must also define its behaviors (which are
described by methods). DoTask, Download, and FlyMission in Figure 3 are behaviors carried
out by AircraftObj objects. The Network Editor (Figures 6 and 7) is used to graphically define
behavior contained within each method.
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Network Editor

Although other simulation development tools allow process flow to be defined
graphically, IMDE is unique in that the processes (represented by graphical networks) are part
of the definition of a class. For example, AircraftObj may have several networks defining its
associated behaviors including takeoff, flying a mission, landing, taxiing, and undergoing
maintenance. These networks would be "bundled” within its description. In object-oriented
terminology, the term for bundled is "encapsulated." Encapsulation is one of the primary object-
oriented programming concepts which contributes to the main advantages of object-oriented
programming, i.e., code reuse and maintainability.
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Specifically, the Network Editor allows a modeler to chronologically define the sequence
of actions an object takes for each different behavior. This flow chart description is constructed
by "dropping" nodes representing simulation constructs onto a canvas and connecting them in
the desired order. Each node type has a distinct attribute window that can be used to set
appropriate parameters. For example, the time delay node requires the choice of distribution
and of delay values. (The window corresponding to the time delay node is shown in Figure 8.)
Other nodes are the allocate, de-allocate, call, wait for, clement, assign, subnet, branch, merge,
loop, and interrupt. Together this set of nodes represents all the basic structures necessary to
construct complex simulation logic. )

" Time Delay

Node Name: FlyMission

Distribution: ©] Log Normal

Stream: 1 5]
Mean; 2.5

Std Deviation: 0.5

Edit OK network )  Edit INT network)

Set Attributes ) Reset )

Figure 8
Time Delay Node

Once classes have been defined (using the Premodel Class Editor and the Network
Editor), they are stored in the Premodel database for later use in a complete simulation model.
To create a model, a class must be specified as the top-level object which will act as the "circuit
board" of how the simulation will be filled in with classes stored in the Premodel database. In
IMDE, these objects are called frameworks. In an airbase logistics simulation, the top-level
object might be called airbase (for a single airbase simulation) or scenario (for multiple
airbases).

Once the appropriate classes, including a framework, have been stored in the Premodel
database, modelers use the Project Editor to specify all the objects that will populate the given
simulation model. Figure 9 shows a portion of an airbase operations model (albeit a very simple
one). Each box dropped on the construction canvas represents one or more simulation objects
that will be part of the simulation. (Recall that "objects" are instances of classes.) In the model
shown in Figure 9, there are some analogs of real-world objects such as airbases, aircraft, parts,
and organizational units. There are also objects that are more abstract, like the Scenario object
and the MissionGenerator object, which are used to provide a set of driving conditions for the
simulation.
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Figure 9
Project Editor

Project construction starts by selecting a simulation framework, which in Figure 9 is the
Scenario class. (A class like Scenario is "turned into" a framework by selecting the IMDE
standard "framework" class as a parent class using the parent function in Figure 3.) A
framework class represents the top-level object in a simulation; it schedules the first events and
the termination conditions of the simulation. Once a framework has been selected to start
construction of an actual model, the Project Editor initially looks like Figure 10. This figure
represents the basic structure associated with a Scenario object and can be "built-out" in a
variety of ways to form complex models from a set of preconstructed classes.
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A Project Framework

There are four functions available for "building out" a framework. The first function,
list expansion, is used to add objects to another object’s list. In the example shown in Figure
10, it is used to add airbases to Theater’s List of AirbaseObj. Specifying that a class has a list
of objects (like theater has a list of airbases) involves checking the "List" box in the Premodel
Class Editor (Figure 3). Expandable lists are indicated by irregular hexagons in the project
diagram; all other objects are represented by rectangles. To arrive at the project shown in
Figure 9, two other lists have been expanded (that we can see from the portion of the project
shown in the diagram), including the Supply object’s PartList and the Wing object’s AircraftList.
(Selecting a hexagon brings up a window that allows the user to easily add to or delete elements
from a list.)

Using list expansion also allows a user to represent many of the same object types using
one node. Figure 9 shows that the number of aircraft under the leftmost airbase is 30, consisting
of 12 "generic" AircraftObj instauces, and 18 more specific F22 instances. (If a node does not
have a number below it, like the AirbaseObj which is "List Item 1" on Scenario’s list, then only
one object is created at run time.) This facility is advantageous when objects read the same
inputs and collect the same statistics. Without this facility, in the case of an 18-aircraft
squadron, the user would have to drop 18 AircraftObj nodes on the Project Editor canvas.

Additional modification to the Scenario framework to develop the Project in Figure 9
involves a very powerful feature of Project construction called substitution. Substitution allows
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a modeler constructing a project to snap in different classes than were originally specified.
IMDE implements this capability by allowing any class in the inheritance tree of the original
object to be substituted into the project. For example, Figure 9 shows Wing as having a list of
generic AircraftObjs; however, using substitution, the user can substitute any class derived from
the AircraftObj class. In this example, the F22 class was derived from the AircraftObj class and
then substituted in for a group of 18 aircraft belonging to the Wing. This is a very powerful
feature because it allows modular evolution of projects. To look at the effectiveness of using
a different type of aircraft, the modeler can simply derive a new class having the new
characteristics and behavior, and snap it in place without having to change other objects that are
unconcerned with the special behavior.

This approach to developing models represents a major advance in the construction of
simulation models. In addition to list expansion and substitution, the major features facilitating
this approach are combination and input/statistics attachment.

Combination allows different objects in the simulation to share access to other objects at
run time. For example, an aircraft class may have shelter as an attribute. When two aircraft
objects are dropped on the Project Editor canvas, each will have a shelter object attached below
it. If a shelter can be used by two aircraft (determined by who defined the shelter class), the
user can combine the two shelter objects into one. This combination will result in only one
shelter being created at run time, and it will be used by both aircraft for whatever functions have
been defined for aircraft-shelter interaction. Combination is useful in many simulation domains.
Some examples are machines sharing the same conveyor, computers sharing the same bus, or
workstations sharing the same test sets (combination is not illustrated in Figure 9).

Input/statistics attachment refers to the capability to provide different users with tailored
lists of inputs that are available for variation and statistics that can be collected. As previously
discussed, each class may also have several available CITs and statistics sets defined. For each
object dropped on the canvas shown in Figure 9, users have the option of attaching one CIT and
one statistics set from the object’s available lists. If a CIT is attached, the attributes contained
in the template will be available for variation in experiments carried out on the model. If a
statistics set is attached, statistics will be coilected on the attributes contained in the set when
an experiment is carried out. The primary benefit of this facility is that different types of users
can have input sets and output sets specifically tailored for their interests.

Once a complete model has been developed by defining classes using the Premodel Class
Editor and the Network Editor, and linked together with the Project Editor using the facilities
described above, users can define experiments. In IMDE, each Project eventually includes an
executable MODSIM II™ simulation program, which can be used to run many experiments.
This relationship is depicted in Figure 11. The experiment is composed of two parts: an Input
Parameter Record (IPR) and an Experiment Control Record (ECR). The IPR is the set of
parameters and Project structure information needed to run a single simulation iteration. The
ECR is essentially the "outer loop" which determines how many iterations of the simulation will

be run.
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Project-Experiment Relationship

ECRs come in three types: simple treatment, hypothesis test, and sensitivity analysis.
The simple treatment ECR specifies the number of runs for a given set of inputs. An example
of the IMDE window used to define a simple treatment ECR is shown in Figure 12. The
hypothesis test ECR allows the user to define a matrix of parameterizations to be run at one time
(ie., a full factorial experiment). A sensitivity analysis ECR allows a user to specify an
independent variable to be incremented and decremented until a selected output parameter (i.e.,
dependent variable) exceeds a predetermined value. For example, mean time between failure for
a part could be varied, at a user-defined increment, until aircraft availability reaches a specified
level.

J_F—-—_———_—_—__—_—'_—————_—'———_
-~ S 1

imple Treatment

ECR name: ecr1.

Number of replications: 2 /|¥]

Initial seed (optional): 0 /1]

Figure 12
Experiment Control Record

Simulator & Data Analysis
The simulator portion of the IMDE architecture lets the user run an experiment by

specifying the project and the specific experiment associated with that project. The raw data
from the experiment is then stored in the Project database and tied to the relevant project and
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input record. The cutput data can either be analyzed within IMDE using the integrated data
analysis module or exported for use with other analysis packages.

The IMDE data analysis portion of the architecture provides calculation of mean, median,
standard deviation, kurtosis, skew, minimum, and maximum values. It also supports creation
of different graphs from run data, including time series, histograms, and scatterplots. Graphs
can also be printed, stored, o1 exported in different formats for incorporation in presentation

graphics packages. Run time graphics are also available through CACI Inc.’s Simgraphics
I1.5™,

User Levels

Anotker important aspect of the IMDE architecture is the concept of different user levels.
When logging into IMDE, users are assigned specific user levels based on their simulation needs
and expertise. As the IMDE main menu shows (Figure 13), four user levels are available: End
User, Analyst, Developer, and Utility. The Utility level is equivalent to a system manager; a
user at this level is responsible for assigning user levels and maintaining the IMDE software.

e ve—

r_"J IMDE Maln Menu
Model Setup v) Simulator ) Data Analysis )
System Administration « ) Help ) utorial

User Level:
User I Analyst ’ Deve'oner I uthlity

e et e e ——

Figure 13
Integrated Model Development Environment Main Menu

The three other user levels correspond to varying degrees of programming, simulation
theory, and domain knowledge. A uvser that is designated as 2 "Developer” can construct models
from scraich by defining classes (i.e., model parts). As a result, to access the functions in the
IMDE Premodel Preprocessor, a user must be a Developer. For example, the Developer is the
only user level who can develop or modify classes using the Premodel Class Editor and Network
Editor. Because they are developing simulation models, "Developers" must have in-depth
knowledge of a simulation programiming !anguage. (Currently, the language must be Modsim
™)

Conversely, "Analysts" do not require in-depth knowledge of a programming language.
Instead, they must have a working knowledge of simulation theory and an in-depth knowledge
of the domain area they are investigating. At the Analyst level, a user can "hook
together"objects that were developed by Developer-level users to form new simulation projects
within a specific domain area (e.g., airbase logistics).
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As opposed to Analysts, "End Users" can only define experiments on models previously
defined by Analysts. They arc not allowed to hook together classes to form new models.
Although End User access privileges seem limited, in practice they have the same capability that
most Air Force logistics analysts have with current models; they can vary inputs with a
previously defined model and analyze results.

Figure 14 shows how the three user levels interact in the simulation process. In general,
Developers define classes which are stored in the Premodel database; Analysts hook classes
together to form functional simulation models; and End Users run parameterizations on
previously defined models. In practice, a simulation study may be performed by one person
acting as a Developer, Analyst, and End User. Consequently, Developers have access to all the
functions available to the Analyst and End User, and Analysts have access to the functions
available to End Users.

Figure 14
Integrated Model Development Environment Databases and User Levels

Advantages
USAF logistics modeling has been found to be difficult in the areas of network

development, documentation, focusing capability, preprocessors and postprocessors, and
configuration control (Popken et al., 1989). IMDE provides improvements in each of these areas.

Network Development

Network development refers to the capability to define the functionality of entities within
models. In current USAF logistics models, redefining networks requires labor-intensive
programming and data preparation (Popken et al., 1989). IMDE directly addresses the perceived
difficulty in modifying networks by providing the Network Editor as a specific tool dedicated to

18




the interactive, graphical, and point-and-click description of the functicnality of simulation
entities. Networks developed using the Network Editor have the added benefit of providing
standardized model documentation that non-programmers can look at to gain insight into the
model.

Documentation

Poorly written documentation is also a common criticism associated with current USAF
logistics modeling techniques. As a result, it is generally accepted that new users must be trained
directly by the original model developer or one of the developer’s disciples (Popken et al., 1989).
In IMDE, modeling is done in a controlled development environment. Like a CASE tool, it
provides for automated generation of functional flows (networks), structure diagrams (model
diagrams), specifications, attached graphics, user annotation, and object-criented source code.
Although IMDE does not relieve a model developer of the entire documentation task, it does
significantly reduce the effort required to produce quality documentation. It has the added benefit
of enforcing a standardized method for developing and documenting source cede (through the
Premodel Class Editor, Network Editor, and Project Editor).

Focusing Capability

Focusing refers to the ability to allow users to track special areas of interest throughout
the simulation without being deluged with tedious input formats, large input databases, and large,
mostly unnecessary output files. According to Popken et al. (1989), current USAF logistics
models do not have this capability. IMDE addresses this problem in several respects. First, CITs
and Statistics Sets can be easily tailored by a modeler to meet the needs of a specific type of
user. (Doing this with current USAF logistics models requires source code modification.)
Secondly, development can be done hierarchically. Using the subnet node of the Network Editor,
a modeler can show a simplistic block diagram at a high level, while describing the details of
the process at a lower level. Figure 15 shows this concept. Finally, by virtue of IMDE’s object-
oriented approach, users can more easily focus on specific parts of model structure.

Network Editor
Method Type: Show ervors? Edit ¥} Functions v) Paletts) Class Name: Alrcraft Help )
o Teu | ves Netwark Name: AlrcraftSortis
-
LJ
»|
m\@lm F!Eglulon {ﬁlleh(
-
| IS |
]
Figure 1§

Use of Subnets for Hierarchical Modeling
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Preprocessors and Postprocessors

In "modeling” lingo, "preprocessing” usually refers to actions taken to manipulate data
to get it into the format required by a model. "Postprocessing” refers to actions taken to
manipulate raw data generated from experiments performed using a model. According to
Popken et al. (1989), current USAF logistics models have extensive preprocessing and
postprocessing requirements. IMDE improves both of these phases of modeling. In the model
setup phase, IMDE allows almost total graphical construction of a model from development of
detailed algorithms to simple non-column sensitive parameter entry. This construction is done
using the functions available in the Premodel Class Editor, the Network Editor, and the Project
Editor. In terms of data analysis, since IMDE was constructed as an integrated tool set, the
results of simulations are generated in a suitable format to be automatically loaded into the
database. There they can be manipulated through a point-and-click interface to generate reduced
statistics, charts and graphs, and formatted raw data for export to other statistical packages.
Figure 16 shows a statistics summary window for a selected variable. Figure 17 shows a graph
of run-time data for a selected variable.

—
~ statistic Summary

Statistic: - {mpleted[CombatAirPatrol(6))

Project: ScenarioPROJECT2

Experiment: exp) ——
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Runs: ALl 1-2

Numberof RunMeans 2
Mean 158.2

Standard Deviation 8.852

Median 158.2
Maximum 16€.8
Minimum 149.7

Skew 5.163e-15

Kurtosis =2

Print Window )

Figure 16
Statistics Summary Window
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Time Trace of Run Data

Configuration Control

Maintaining configuration control of model versions, input sets, and output sets can often
be a time-consuming and difficult task. Although Popken et al. (1989) identified configuration
control as a deficiency of current USAF logistics models, the cited deficiency mostly focused
on the need for a single Air Force Office of Primary Responsibility (OPR) that would maintain
configuration control over an "official" version of each model referenced in the study. This
deficiency is still a common problem. For example, there are currently two "accepted” versions
of LCOM being circulated. Neither IMDE nor any other modeling tool will solve this problem.

Nonetheless, IMDE does have significant advantages over current modeling techniques
in the area of configuration control. Often, in studies that last many months to many years, a
tremendous effort is made to generate a large number of results. If these results cannot be
duplicated, then the effort devoted to generating them will be wasted. To ensure that this
situation does not occur, analysts frequently rely on significant off-line bookkeeping methods or
complex on-line file-naming schemes. In IMDE, the analyst is freed from this cumbersome
task. IMDE accomplishes this task by using the features of the object-oriented database
management system (OODBMS) to build in configuration control. Each model’s source code,
object code, diagrams, documentation, input records, output records, and graphics are managed
by the Project database. Additionally, each input record is linked to the model version it
corresponds to as well as to its corresponding output record. These features allow Analysts to
concentrate on defining and running experiments and Developers to concentrate on developing
and modifying classes as opposed to worrying about the tedious bookkeeping tasks associated
with their respective duties.

From a model developer’s perspective, IMDE is also unique in that it provides a multi-
user, multi-workgroup capability. This capability is very advantageous in the development and
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use of large models. It is also necessary to achieve the object-oriented programming goals of
reusability and maintainability.

PROGRESS AND PLANS

In general, two distinct groups who have expressed interest in the IMDE demonstration
software: Air Force logistics analysts and simulation analysts from numercus other DoD and
non-DoD domain areas. Initial evaluation of IMDE by both groups has becn favorable;
however, exposure to IMDE has been limited to one-hour demonstrations and half-day training
sessions. The primary reason for the group’s limited exposure to IMDE is that prior to June
1993, the IMDE demonstration software was not fully functional.

The planned Fiscal Year 1994-95 (FY 94/95) technical effort (carried out as a task under
Air Force Materiel Command’s [AFMC’s] Supportability Investment Decision Analysis Center
contract) will rectify this situation by allowing Air Force LCOM analysts to thoroughly test the
IMDE demonstration software. In order to facilitate testing, a detailed airbase logistics model
is being developed using LCOM F-16 input data as thc basis for development. Using the model,
LCOM analysts will gain an appreciation for and provide feedback on the utility of the IMDE
approach to large-scale logistics modeling. (Recall that LCOM was one of the large-scale USAF
logistics models studied in the initial review of USAF logistics models conducted by Popken,
et al., 1989.)

Although full-scale testing is planned to begin in January 1994, some areas for enhancing
IMDE were identified in demonstrations and iraining conducted during the technical effort
documented in this report. One comment that LCOM analysts consistently made is that
networks developed using the Network Editor were too complex, even for seemingly simple
processes. One reason for this complexity is that modeling a task that requires more than one
resource takes many nodes to represent. For example, a task that requires two different types
of maintenance technicians, a piece of support equipment, and a line replaceable unit (LRU)
currently requires twetve nodes to specify: four allocate nodes (to allocate each resource to the
task), four time- delay nodes (to keep the resources allocated while the task is being carried out),
and four de-allocate nodes (to de-allocate the resources once the task is finished).

The FY 94 technical effort will address this problem. One solution alrecady being worked
is to identify and incorporate additional Network Editor nodes that will allow higher-level
simulation of object behavior. For example, a "task" node is currently being incorporated into
the IMDE demonstration software. This new node will aillow the modeler to specify a complete
task description in a single node to include multiple resource requirements, selection of task
duration, and subnetworks to be executed in the event the task is interrupted before it is
completed. (In the example given in the previous paragraph, one task node will replace the
twelve nodes currently required to define the task.)
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Another feature users expressed a desire for throughout the IMDE effort was that IMDE
be compatible with emerging Distributed Interactive Simulation (DIS) standards.! This was not
surprising given the DoD simulation community’s rising interest in DIS technology. Although
there are no current plans to demonstrate a "DIS capability" within IMDE, doing so would not
be difficult. To insert the capability into IMDE, a set of "DIS" classes would be created to
communicate the state of the objects being simulated over the DIS network. (These classes
would be transparent at the Analyst and End User levels. From the perspective of a Developer,
the classes would serve as "parents” of all the objects in the simulation that need to communicate
their state on the DIS network.) It would also be necessary to modify IMDE to run models in
real time, as opposed to the current "fast-as-possible" analytic mode.

Potential users also commented that the IMDE demonstration software needs a top-down
model design capability. (The current approach supported by IMDE is more of a bottom-up
approach; that is, classes are first developed within the Premodel Preprocessor and then linked
together to form a model.) A top-down design capability would allow a modeler to specify a
model’s objects and their associated attributes in the Project Editor. These oujects would then
be defined further in the Premodel Preprocessor. There are no plans to incorporate this facility
into IMDE; however, incorporating the facility would make IMDE more in line with current
thinking on object-oriented design (Booch, 1991), which suggests decomposing the modeling
process into three steps: (1) identify the objects in the system being modeled, (2) define the
interfaces between the objects in the system being modeled, and (3) implement the details of
each object. Because of the modular design of IMDE, this capability would be easy to integrate
into the current Project Editor.

Several groups visited during the course of the contract also expressed a strong interest
in the potential of generating Ada or C+ + simulation source code instead of Modsim II™,
Reasons varied from wanting to comply with the requirement to use Ada to preferring one
language over another. Although modifying the IMDE demonstration software to generate Ada
or C+ -- as opposed to Modsim are not part of the current development plans, modifying IMDE
to generate either C+ + or Ada "9X would not be difficult.

CONCLUSIONS

Throughout the IMDE development contract, numerous Air Force and DoD study
organizations were given demonstrations of the IMDE software and were intervicwed about their
modeling capabilities and requirements. Although most organizations have significantly
improved their modeling capabilities since the original laboratory-sponsored study of USAF
logistics models, the underlying software technology used in their models has not changeil.
Unfortunately, the simulation technology demonstrated in the IMDE software will do little to

IpIs standards are emerging standards for wide-area networked warfighting simuiations. As the defense budget is downsized, DIS
technology is expected to play a large role in operational training and effectiveness evaluations for concept definition, system acquisition,
and operational test of new weapon systems. Simulators in this environment will range from high fidelity tank, fixed wing aircraft, and
helicopter simulators to Semi-Automated Forces (SAFORs). SAFORs will be computerized sintulations of forces (e.g., an entire tank
battalion or fighter squadron) on a singie workstation. Sirnulations developed and managed within IMDE would better meet the changing
demands of DIS exercises. IMDE models are rapidly reconfigurable, well-documented, and under tight configuration control.
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improve current models; however, these same technologies will significantly improve the
usability and maintainability of future models.

With this in mind, future laboratory efforts in this area will focus on new Air Force
applications of IMDE technology. In FY 94/95, a large airbase logistics simulation will be
developed to facilitate a detailed compar:son of the IMDE modeling approach to the current
USAF manpower modeling process. Detailed testing will begin in January 1994 and continue
through December 1994. Completing this comparison will satisfy the original goal of the IMDE
research: demonstrating how object-oriented programming, object-oriented databases, and
graphical user interfaces can enhance the productivity of USAF logistics analysts and formally
mark. the end of the IMDE exploratory development research.

24




REFERENCES

Atwood, T.M. (1991, February). The case for object-oriented databases. IEEE Spectrum,
44-47.

Booch, G. (1991).  Object-oriented design with applications. Redwood City, CA:
Benjamin/Cummings.

Blazer, D. & Zimmerman, D.L. (1991, Winter). The Air Force logistics assessment
Architecture. Air Force Journal of Logistics, 12-16.

Boyle, E. (1990, July). LCOM Explained (AFHRL-TP-90-58, AD-A224497). Wright-
Patterson AFB, OH: Logistics and Human Factors Division, Air Force Human
Resources Laboratory.

Cammarata, S., & Burdorf, C. (1989, November). User’s Guide to the Persistent Simulation
Environment (WD-4684-DARPA). Santa Monica, CA: The Rand Corporation for the
Defense Advanced Research Projects Agency.

Dahl, O., & Nygaard, K. (1966, September). SIMULA: An ALGOL-based simulation
language. Communications of the ACM, 671-678.

Dymond, L.H., Hinds, B., Hopple, G., Gunkel, R., Schadle, W. & Bergeron, P. (1987).
Integrated and Enhanced War and Mobilization Planning System to Support AFIRMS
Requirements for Sortie Tasking Data: Analysis of LCOM Capabilities (final report).
Synergy Incorporated for HQ USAF/XOOIM.

Elderstein, H. (1991, November). Relational vs. object-oriented. DBMS, 68-79.

Emerson, D.E., & Wegner, L.H. (1990, September). TSAR User’s Manual - A Program
Jfor Assessing the Effects of Conventional and Chemical Attacks on Sortie Generation:
Vol. I, Program Features, Logic, and Interactions (N-3011-AF). Santa Monica, CA:
The Rand Corporation for the Long Range Planning and Doctrine Division, Directorate
of Plans, HQ USAF.

Herring, C., Kalathil, B., & Teo, J. (1993, January). Research in Persistent Simulation:
Development of the Persistent ModSim Object-Oriented Programming Language (Draft
USACERL Interim Report F-93/XX). Champaign, IL: Construction Engineering
Research Laboratory, U.S. Army Corps of Engineers.

Nickel, R.H. (1988, October). Report of the analysis working group. In W.B. LaBerge
(Ed.), MORS Workshop on Simulation Technology 1997 (SIMTECH 1997).

25




Popken, B.A., Cooke, G., & Dickinson, C. (1989). Analysis of Air Force Logistics Capability
Assessment Models (AFHRL-TP-88-56). Wright-Patterson AFB, OH: Logistics and
Human Factors Division, Air Force Human Resources Laboratory.

Wallace, J., & Herring, C. (undated). Introduction to Frameworks and Programming in the
ModSim/Modlog Object-Oriented Simulation Language (draft). Champaign, IL:
Construction Engineering Research Laboratory, U.S. Army Corps of Engineers.

Whitehurst, R., & Herring, C. Adding Persistence to an Object-Oriented Simulation Language
(draft). Champaign, [L: Construction Engineering Research Laboratory, U.S. Army
Corps of Engineers.

Yu, Matthew K., (1992, March). System modeling via advanced reasoning techniques.

(unpublished paper). St Louis, MO: McDonnel Aircraft Company, Department of
Logistics Technology Development.

26




ACC
AFMC
AFSOC
AL/HRG
AMC
AMTAF

CASE
CIT

DIS
DoD

ECR

FY
IMDE
IPR
ISAAC
LCOM
LRU
LSA
OODBMS
OPR
OT&E
PRISM
SAFORs

TASC
TSAR

USACERL
USAF

WSMIS/SAM

ACRONYMS

Air Combat Command

Air Force Material Command

Air Force Special Operations Command

Armstrong Laboratory, Logistics Research Division
Air Mobility Command

All Mobile Tactical Air Forces

Computer-Aided Software Engineering
Class Input Template

Distributed Interactive Simulation
Department of Defense

Experiment Control Record

Fiscal Year

Integrated Model Development Environment

Input Parameter Record

Integrated Simulation Assessment of Airbase Capability
Logistics Composite Model

Line Replaceable Unit

Logistics Support Analysis

Object-Oriented Database Management System
Office of Primary Responsibility

Operational Test and Evaluation

Productivity Improvements in Simulation Modeling

Semi-Automated Forces

The Analytic Sciences Corporation
Theater Simulation of Airbase Resources

United States Army Construction Engineering Research Laboratory
United States Air Force

Weapon System Management Information System Supportability
Assesssment Model

27

U.5.G.P.O.:1094-850-057/81066




