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Abstract

Differential Inversion (DI) is a novel approach to the solution of the atmospheric
temperature sounding problem which was developed by Dr. J. I. F. King of the Air
Force's Phillips Laboratory. Before the present research, DI has been applied only to
infrared radiance data sets, such as from TOVS/HIRLS. In this report I describe the
progress made in the first year of a research program to apply DI to microwave radi-
ance data from the SSM/T sounder on the DMSP satellites. The ultimate objectives
of this research are to establish effective DI sounding algorithms for the microwave
spectral region and to extend DI in directions which increase its utility as a practical
sounding algorithm. DI has many attractive features in this application, including its
close coupling to the physical formulation of the temperature sounding problem, its
freedom from the necessity of using an a priori temperature profile, and its high level
of computational efficiency. At present, we have understood the practical difficulties
characteristic of temperature sounding in the microwave spectral region (as these ap-
ply to DI), and have produced software yielding temperature profiles of a convincing
meteorological character. Research currently planned for the second year will continue
with a detailed comparison with ground truth data. Theoretical advances in the past
years' work include (in part), proper incorporation of window channel information in
DI solutions for temperature profiles and the treatment of cross-track (nonzero nadir
angle) scans. These theoretical advances will be included in the DI software, during
the upcoming year, so as to further improve correspondence between DI temperature
profiles and meteorological data.
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1 Introduction

This document reports on the progress made in the first year of a research effort to apply

the Differential Inversion (DI) algorithm for atmospheric temperature sounding to DMSP

SSM/T-1 data. This algorithm was originally developed by Dr. Jean I. F. King of the
Air Force's Phillips Laboratory [8] and has thus far been applied to infrared data collected

with the TOVS/HIRS instrument [9]. The research carried out thus far has extended the

theory of Differential Inversion in several directions necessary for successful application to
microwave sounder data and the effort has progressed to the stage of initial applications of

DI to DMSP SSM/T-1 microwave sounder data. The path for future developments leading
to meteorologically useful temperature profiles from DI appears to be clear from the research

carried out in the first year of this project.

In §2 of this report theoretical work on DI is discussed. Since DI is still considered to
be a novel technique by the mathematical community addressing the treatment of inverse

problems, a detailed theoretical exposition of DI is contained in §2.1. This treatment utilizes

mathematical techniques derived from convolution algebras and recent work in hyperdis-
tributions, which illustrates many important features in the foundations of DI which were

difficult to understand in the original development from Laplace transform theory. A further

discussion of hyperdistributions and convolution algebras is contained in Appendix A. A

specific application of DI to the problem of atmospheric temperature sounding is contained

in §2.2. Since DI is a general approach for the treatment of inverse problems, an application
to problems in image restoration is included in §2.3. While not immediately relevant to

problems in atmospheric temperature sounding, this DI-based image restoration technique

may have applications for satellite remote sensing. We have found that it is important to

include the contribution of the radiance from the ground correctly in the application of DI

to microwave sounder data. In §2.4 the approach developed to include data from window

channels is discussed. Lastly, in §2.5 the approach for application of DI to scans with nonzero

nadir angle is discussed.

The work carried out thus far in applying DI to DMSP SSM/T-1 data is discussed in

§3. In §3.1 the acquisition of DMSP data and the data path into our software is discussed.

In §3.2 the DI software philosophy and implementation is described. It was considered

particularly important that the software developed here which implements the DI algorithm

be efficient for DMSP SSM/T-1 data, while being applicable in principle to a broad range of
possible instruments. The fundamental character of the DI algorithm makes this a reasonable

objective. DI requires differentiation of radiance data for its implementation via evaluation
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of the Eddington-King formula. Ordinarily, differentiation of experimental data is to be

avoided, due to the well-known difficulties which arise due to experimental noise. The specific

requirements of numerical estimators of radiance derivatives in DI as well as algorithms

which minizize the effects of experimental noise are treated in §3.3 and in Appendix C.

Preliminary results in obtaining atmospheric temperature profiles from DMSP SSM/T-1

data are contained in §3.4 and future directions for further research work are given in §3.5.

The conclusions that can be reached from the research work carried out at this time are

given in §4.
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2 Differential Inversion

2.1 General Theory of Differential Inversion

In this section we develop the mathematical formalism of Differential Inversion (DI) as a

general technique for the solution of convolution integral equations. As such DI has appli-

cability far beyond the temperature sounding problem, e.g. in difficult image restoration

problems and other classes of inverse problems. Our approach in this section is based upon

hyperdistributions and convolution algebras, which is actually a more intuitive approach

than the original derivations based on Laplace transforms. DI yields an expansion for the

solution of an integral equation, p(z), in successively higher derivatives of the known (ob-

served) function 0(z). The representation of p in terms of derivatives of 0 should not be

confused with a Taylor expansion of 0. This representation, as we show is in fact the "dual"

of the Taylor expansion and is in the form of a moment expansion analogous to Gauss' mul-

tipole expansion. In the following section we shall specialize our development of DI to the

specific example of the temperature sounding problem.

We write our integral equation as the convolution of a source function p with a kernel

function K, yielding an observed function 0,

=K~(1)

with the standard notation for the convolution product

f* =f f(z - Y)g(y) dy (2)

The differential inversion method gives the unknown function p as a series of derivatives of

the known function 4,

00 00

p(z) = ~(= 4(z) + F &kVko(Z) (3)
k=O k=1

Where &o = 1 is consequence of energy conservation, (i.e. normalization of the instrumental

response kernel)

Z+0 K(z) dc = 1. (4)
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We call equation (3) the differential inversion formula. This formula has been derived

previously using methods of Laplace transform theory in the inversion of the equation of

radiative transfer [81,[9] and also in a different context (astrometry) by Eddington [4]. Here

we show an alternate derivation of the differential inversion formula in terms of a class of

singular function, hyperdistributions, which are defined in appendix A. Any solution of a

convolution integral equation can be written as a differential inversion formula. This occurs

for example when Green's functions for homogeneous systems are used, as in Gauss' multipole

expansion or even for the Taylor series expansion.

We begin by substituting equation (3) into equation (1)

= K* CKA Vk .)

-K*(Cý=O kVk6*#

K * j kVkO ) (

Since 8 = 6* •,

K •: #kVkS = 6 (6)
k=O

which shows that the sum E'0 fPkVk6 is the "convolution inverse" of K. We denote this

expansion by Inv[K] and write

cc

Inv[K(m)] = ; •Vk6(z) (7)
k=O

We write K in the same form (in a hyperdistribution representation):

00

K(z) = E a,•",(z) (8)
n=O

Where we can determine the coefficients ot. from the moments of the kernel (see appendix

A).

a k = -ZI L -kK(z) dc (9)
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It is now possible to relate the coefficients ak and 16k by a "discrete convolution" product

or Bochner-Martin algebra[I). We begin by substituting the hyperdistribution representation

of K(z) into equation (6)

( • .V"6(Z)) ( kVkS(:)) = 6(Z) (10)

and observing that

V"6 * Vk6 = Vn+k6 (11)

We conclude that the algebra of sums of derivatives of 6 is closed under the convolution

product. Furthermore,

1 = aofo (12)

0 = a0,81 + alflo

0 = a00•2 + a1fi1 + a 2P0

that is, in general

E ak/.-k -- 0 (n > 0) (13)
k=o

The generic restrictions on the differential inversion solution are 1) the derivatives of •

must exist in the at the point of interest, as can be seen from equation (3), 2) the series in

equation (3) must converge, 3) the kernel must have finite moments as in equation (9). The

differential inversion representation of p(m) is a moment expansion, i.e. it involves a "global

description" of the convolution kernel. Differential inversion has the following advantages:

* The unknown function is evaluated at the same point as the known function; the

deconvolution can be performed on a data stream which 1) allows for real-time decon-

volution, 2) does not require that large data have to be artificially broken down, and

3) permits natural vector implementation.

* Exponential and Gaussian kernels are treated naturally by this method and are very

common in physical systems
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9 The differential inversion coefficients exist if the kernel has finite moments; no addi-

tional assumption is made about the shape of the kernel during the implementation of

the method.

Typically, convolution integral equat-ns are treated by Fourier methods. If we define

4(k) = .j4{()}, and k(k) = Y{K(z)}, then by the Fourier convolution theorem,

,p(m) = Y- 1{4Qc)/k(k)}

e dk (14)

Convergent Fourier integrals represent point functions; they cannot represent distributions or

hyperdistributions. Several difficulties can arise when implementing numerical Fourier trans-

form techniques that do not apply to differential inversion. These difficulties are discussed

in standard numerical analysis books [12] and we present them below:

* The procedure must take a portion of the signal of finite length and deconvolve that

segment, whereas data will sometimes need to be processed in a continuous stream in

time.

* Large data sets are often artificially broken up into sections and each section is de-

convolved separately, to accommodate memory and computational limits when imple-

mented.

e The implementation often takes the duration of the response to be the same as the

period of the data.

e The procedure can go wrong if the transform of the response function is zero at some

point, so that we can not divide by the transform of the response at that point.

e Numerical Fourier techniques assume that the input signal is periodic, whereas real

data is often not repetitive.

In particular, we note the usual observations made upon considering equation (14) that

difficulties, both formal and numerical, arise when k(k) approaches zero, or if the Fourier

integral is not convergent. In such instances, difficulties arise with the convergence and

uniqueness of the inverse Fourier transform. For example, if K(z) is a Gaussian function,
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K(z) = •-a, the transform is k(k) = e-/" and so the Fourier integral in equation (14) is

highly divergent.

P(W) = e- e-ek/4 4(k) dA (15)

The direct treatment of this kernel is often beyond the scope of Fourier transform tech-

niques. On the other hand, since convolution products are the multiplicative operation of a

dosed algebra in the space of hyperdistributions, deconvolutions (the "convolution inverse")

are uniquely defined in this approach as shown below.

We now show that the Taylor expansion is a differential inversion series (rather than the

DI series being a Taylor expansion). We write the familiar Taylor expansion as

00Ak
#(= + )= pkVk#(z), I•k= (16)

k=0O

we now identify the source density, p, by the formula

p(m) = e• #()= #( + 0 ) (17)

The Taylor series written in differential inversion form is

00

p(z) = E /3kVk#(z) (18)
k--O

and the corresponding integral equation and kernel function are

0 = K * p (19)

K- e S'6(W) (20)

note that z is in general an n-vector.

The familiar multipole expansion of Gauss is a form of differential inversion. In fact, the

multipole expansion can be written as

00

0(c)= X akVG() (21)
k=O

where
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Ok = fzekp(z) CP3 (22)

(here ® denotes tensor product or power) and G (the Green's function) is given by

1
G(z) = - 4 (23)

where r is the magnitude of the 3-vector z. Equation (21) is clearly of the form (3) with

coefficients equal to the (tensor) moments of the density p. Appendix B gives the details of

the connection between the multipole expansion and differential inversion.

2.2 Application to the Temperature Sounding Problem

In this section, we derive an exact solution for the equation of radiative transfer in an

infinite atmosphere. The exact solution is in the form of an explicit analytic formula for

the Planck function, which is a simple, known fuction of the atmospheric temperature, as

a linear combin- ation of the derivitives of the radiance emitted by the atmosphere, as it is

measured by a satellite equipped with infrared or microwave detectors. We don't elaborate

the advantages of an analytic formula beyond pointing out that the dependence of the

atmospheric temperature profile on the physical properties of the atmospheric constituents

through the weight functions in analytic form makes for considerable insight on the cause

of variations in the temperature profile in the variations of (the moments of) the weight

functions. The standard starting point of the analysis is an integral equation for the Planck

function, B, in terms of the upwelling radiance, R, expressed in terms of pressure as a

measure of height. This is the integral form of the monochromatic equation of radiative

transfer as it is usually written in problems of atmospheric radiative transfer.

00 dp 24
R()= B(p) W(p'p) P (24)

0

We now modify this equation by converting to logarithmic pressure (height-like) variables

by the transformation z = -Ip and z' = - Inp.

+00

R(z') = B(z)W(z' - z) dz (25)
-00
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We note that this puts the equation of radiative transfer in the form of a convolution integral,

and thus renders the problem amenable to DI and the convolution algebraic techniques

developed in the previous section. If w,- apply DI, we obtain the Eddington-King formula in

terms of the height-like variable z (we drop the prime at this point),

00 dkB(z) = AoR(z) + F', A -R(z) (26)

where the coefficients Ak are the moments of the convolution inverse of the weight function

W discussed below. Before iving the derivation of the Eddington-King formula it is worth

summarming in words its content. The unknown temperature profile is contained in the

Planck function in a simple way so that it is easy to calculate T(z) given B(z). The radiance

R is known as a function of its argument so it and its derivitives are considered known.

Finally, the coefficients Ak will be shown below to be simply determined from the moments

of the known weight W. Thus the Eddington-King formula very explicitly expresses the

desired atmospheric temperature profile in terms of the available information, namely the

upwelling radiance and atmospheric weight functions.

We now demonstrate that the solution of the integral equation (24) is given in the paper

by Hohlfd and collaborators [6]. The three proofs by Eddington, King, and Hohlfeld

differ in significant ways and it is worthwhile to briefly remark on these differences. The

Eddington proof is restricted to Gaussian weight functions (in fact it was given in very

different context). As a consequence the formula given by Eddington for the coefficients of

the radiance dexivative are subject to this restriction which is quite untenable for the work

we are carrying out. King used bilateral Laplace transforms to construct his coefficients and

achieved a great generalization of the weight function forms. Finally, Hohlfeld's proof relies

on the very general properties of convolution algebras and thus avoids difficulties with the

stability of bilateral laplace transforms. Also, Hohlfeld's construction of the coefficients is

given in terms of the Bochner-Martin algebra power series. This algebra can be implemented

very efficiently on digital computers.

The Hohlfeld construction of the solution of the integral equation starts with the convolu-

tion form of the equation of radiative transfer expressed in terms of the height-like variable,

R= W*B (27)

and constructs the solution by an appropriate construction of the convolution inverse of the

weight function defined by

10



(Inv[Wl * W)(z) = 6(m) (28)

where 6 denotes the Dirac delta function.

This approach seems the most direct possible. In the paper by Hohlfeld and co-workers

it is shown that singular functions (Thyperdistributions") of the form

E aGkVk 6(Z) (29)
k=0O

(here V denotes the derivative which can be multi-dimensional) are dosed under the oper-

ation of convolution, that is the convolution product of the two sums of the form (28), but

in general with the different coefficients is also a sum of the form (28). Specifically,

E~ GkVk6(Z)) * (r, bgV 16(Z)) = FCmVm6(Z) (30)
k=O 1=0

where the coefficients of the product hyperdistribution are given by the finite sum

U

Cm = Fa.-jb& (31)
k--O

Equation (30) defines the Bochner-Martin algebra. If the set of coefficients a and b are

known, then (30) determines the coefficients c. Vice-versa, if the coefficients a and c are

given, (30) determines the set of b's.

If the weight function of our equation (26) for the upwelling radiance is expanded into a

hyperdistribution then (30) determines the coefficients of Inv[W] which earlier enter in (27).

We can then convolve both sides of (26) with Inv4W]. The result is

Inv[,1* R = B (32)

If we now substitute the expression (28) for Inv[W] into (31), we obtain exactly the

Eddington-King formula (25).

The only step that remains to be completed is that of determining the coefficients in

formula (28). Suppose the weight function W is expanded as a hyperdistribution, that is we

consider the expansion

11



W(z) = E akVk6(z) (33)
k=O

Taking successive moments of equation (32), we find

= (-l) I7 W(z)zkdo (34)
-00

thus we have the simple result that, apart from the numerical coefficient, the coefficients of a

hyperdistribution expansion are the moments of the function itself. The Hohifeld derivation

is thus complete. In light of this derivation, the Eddington-King formula can be interpreted

as follows: The Planck function is the linear combination of the upwelling radiance derivatives
whose coefficients are precisely (-1)"/n! times the moments of the convolution inverse of the

atmospheric weight function. These moments are determined numerically by the efficient

Bochner-Martin algebra contained in eq(30).

It is interesting to observe that the Eddington derivation proceeds from a Taylor expan-
sion of the weight function and required considerable manipu- lation. The resulting formula

(25), the Eddington-King formula, is not a Taylor expansion. However, because the two

distinct functions B and R are involved rather then a single one as in the Taylor formula.

Interestingly, the converse is true. Every Taylor formula is a special case of an Eddington-

King formula. Applications of the Eddington-King formula are being developed in several

different contexts (including biomedical). In fact, the very general procedure provided by

the Hohlfeld derivation is applicable in the general context of inverse problems, an extremely

promising area of research.

2.3 Two-Dimensional Differential Inversion with Separable Ker-
nel for Image Restoration

In this section we apply DI to problems in image restoration. DI has already been applied

to image restoration in intravascular ultrasonography. In that application DI is attractive

because the point spread function of the instrument extends over many pixels and is poorly

defined, loeading to inadequate performance of conventional image restoration techniques.

We believe that this application of DI may be extended to other imaging problems, as in

satellite remote sensing, and to other classes of inverse problems formulated in terms of

convolution integral equations.

12



We write an observed image as the convolution of some (unknown) true image with an

instrumental filter function (alternatively denoted as a point spread function), i.e.

I=F*G (35)

with the defined quantities

I = I(X) =observed image (36)

F = F(X) = filter function (37)

G = G(X) = undegraded image (38)

and X = (m,y). Writing out the convolution integral explicitly,

1(X) = f G(X')F(X' - X) dx'. (39)

It is common in many problems arising in image restoration to assume that the filter

function is separable. This arises when the instrument in question generates a point spread

function which is a function of two independent coordinates in the output image. If we

assume the filter function is separable, i.e.

F(X' - X) = F.(z' - z)Fv(y' - y), (40)

then we can now define a "reduced" filter function,

S= f F,(y'-y)G(m',y') dy'. (41)

We note that this reduced filter function is still a function of both image coordinates, z

and y. Substituting the definition for H(z', y) in our original form of the two-diminsional

convolution integral yields

I(Z,Y) = f F.(:' - :)H(C',y) dz'. (42)

This is now a convolution integral soluble by DI. Let AO, A1, 2,... denote the inversion

coefficients for the kernel F,. The resulting DI series is:

H(M',IY) = (43)

+ z IA-- (44)
021(C, V)+• 2 = -, +" (45)

+ 8: "am 1).e + (46)

13



Substituting into the definition of H(z', y), we obtain

I dy,' F'(' - y)G(C',t ')= (47)

AoI(Z,Y)I,=., +A1  8: Y)l=20 (48)

821(:,y)
+A2  8:2 I=' +""* (49)

8~I(:,y)
"'" + An 80, I === + (50)

Now the l.h.s. of this equation is a convolution integral which is also soluble by DI in its

familiar one-dimensional formulation. Define po,/ 1,,P 2,... to be the inversion coefficients

generated by the kernel FP. We then obtain

(',y= (51)
=1& Ao oZ(sY)+-X, + A,22L+.. I=. (52)

8 + I21 (52)

8y (A Oz .Z )
+•,,2 oZ(z,,) + Al,0 +,A,•-/, + .. I=,(54)

8.2 (A 81 2

+--- (55)
+A8 - oI(MY) + l 81 + A2• _ (56)

+... (57)

This expression is now readily interpreted as a product of two operator series equations:

G(z',Y') = (58)

R [(CE m¢,(0(9)
--o j=O

RE [(>1 i)(E Aj8')]I(:,Y)IX=XP (60)
i_=O j=-O

The quantity in brackets may be viewed as a 2D DI operator acting on I(X). In effect, we

may interpret this as a deconvolution operator in 2D.

2.4 Inclusion of Window Channels in Differential Inversion

In its original formulation [8) [9] DI took no account of the presence of the ground as a

radiating source. The atmosphere was presumed to be optically thick and all weight functions

14
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Figure 1: DMSP SSM/T-1 weight functions as a function of altitude in kilometers. Note the
truncation at ground level of channels I through 4.

reached negligible values at altitudes well above the ground. We found that this limitation in
the theory was not unduly limiting in applying DI to infrared radiances, such as for TOVS.
In effect, the ground was treated as an infinitely deep, isothermal atmosphere grafted on

below the actual atmosphere.

This approach is fundamentally inappropriate for application of DI to DMSP SSM/T
radiances. In Figure 1, we show the SSM/T-1 weighting functions as a function of altitude.
It is apparent that channels 1 through 4 have measurable contributions at ground level, and
for channels 1 and 2, the area of the weight function extrapolated below ground level would
be comparable to the area of the weight function above ground level. It is apparent, then,

that we cannot treat the presence of the ground as an afterthought in applying DI in the

microwave waveband.
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We shall sketch a theoretical approach here which permits us to retain the desirable

features of DI, in particular treatment of the weight function in the theory only in terms of

its moments, while still dealing with this truncation of the weight function at ground level

in an explicit fashion. It suffices to understand this approach to consider a few schematic

sketches of the weight function in some limiting cases. We shall leave aside the problem of

including the emissivity of the ground surface in this discussion, since our principle concern

at this time is the truncation of the weight function. The essential features of this approach

depend on the assumption of thermodynamic equilibrium, and on the linearity of the problem

in terms of the weight function (see equations (24) and (25)).

If we were to imagine directing a radiometer towards a surface with no intervening atmo-

sphere ("temperature sounding on the moon"), we would measure a brightness temperature

corresponding to the physical temperature of the surface (emissivity presumed to be unity in

this discussion). We expect this result for a problem described by thermodynamic equilibrium

in which the surface emits a blackbody spectrum of radiation. In effect, the "atmospheric

weight function" in this limit is simply a Dirac delta function, 6(z). (See Figure 2.) This

form of the weight function is consistent with an application of DI, since the only nonzero

moment of 6(z) is the zeroth moment, and so we obtain Ao = 1 and all the other A's vanish.

The Eddington-King formula then reduces to

B(z = 0) = R(z = 0) (61)

as demanded by our original assumption of thermodynamic equilibrium.

We now return to our problem involving truncation of a realistic weight function at

gound level. Linearity of the equation of radiative transfer with respect to the atmospheric

weight function suggests that we include contributions both from the continuous piece of

the weight function below the ground level, and a delta function contribution at the ground.

The relative contributions of these two pieces should be computed on the basis that the total

weight function should have unit area (i.e. be energy-conserving).

W(z) = W.(z)H(z) + (1 - A)6(z) (62)

where

A = W.(z) dz (63)

with W.(z) the atmospheric contribution to the weight function, and H(z) the Heaviside

function. This choice of weight function is sketched in Figure 3.

A weight function of this form is easily accommodated within DI, since we may take

moments of the composite weight function shown in equation (62) and then proceed to
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Figure 2: Weight function in the Eimit of zero atmospheric contribution, i.e. a "pure" window
channel. The weight function tends to a Dirac delta function peaking at the ground.

W

Figure 3: Weight function composed of a sum of a continuous contribution from the atmo-
sphere and a singular (delta function) contribution at ground level.
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calculate the A's in the usual fashion. If we are constructing a moment expansion about an

altitude 1, the nth moment of the weight function becomes

1*0(z !)W.() z + +00(Z 1)(I- A)6(z) dz = o(Z-1n

(z ED 0~Wz d+ (z-(-)W(z) dz + (1 - A(-:4)"(64)

where the second term represents the contribution of the ground component to the weight

function to the moment of the weight function. In this approach, Ao = I identically and for

each A• for i > 1, there are contributions from the ground due to each of the first i moments

of the weight function. The effects of the ground are completely absorbed in the modification

of A values as a result of decomposition of the weight function into a contribution from the

atmosphere and a singular contribution from the ground.

In this approach we take the value of ! to be an altitude which is associated with each

channel. In the previous formulations of DI, this has often been taken to be the altitude of

the maximum value of the weight function, although a detailed theoretical justification for

that choice was never developed. We now see in the convolution algebra derivation of DI

that 1 is interpreted as the altitude about which we conduct the moment expansion of the

weight function. Thus the choice of S is in some sense arbitrary, though a choice of I close

to the mean value of the weight function yields a set of A's which go to zero as rapidly as

possible, which helps ensure rapid convergence of the Edddington-King formula.

This prescription for the selection of 2 is consistent with the decomposition of the weight

function into nonsingular atmospheric components and a delta function contribution at

ground level. The mean of the composite weight function is well defined (since the first

moment is well defined), and so I can be determined. As the singular contribution to the

weight function becomes more and more important (when the weight function becomes more

severely truncated), the value of I tends a limit to the altitude of the ground. This choice

of 1 is also consistent with the choice of locations for evaluation of the radiance derivatives.

Data from a window channel may easily be incorporated in a DI calculation if we model

the window channel as a delta function which is nonzero at ground level. The value of ! for

such a channel is simply the altitude of the ground (which is then used directly in calculation

of the radiance derivatives). The only nonzero inversion coefficient for the ground channel

is AO = 1. The measured radiance in that channel (corresponding to ground temperature in

thermal equilibrium) is used in the same fashion as the other radiance channels used in the

DI temperature profile calculation.

18



2.5 Temperature Profiles from Off-Nadir Scan Angles

The DMSP instrument is mounted on a scan platform which scans in the cross-track di-

rection. To date, we have restricted attention to scans in which the radiometer is oriented

directly downward, i.e. at a nadir scan angle.

The weight functions for these off-nadir scans are very asymmetric, with a shallow "shoul-

der" at high altitudes, a steep rise to a maximum value, and then a very steep drop to

negligible amplitude. DI permits us to process these weight functions in exactly the same

fashion as we have developed for the nadir scan angle radiances. Since DI depends only on

the moments of the weight function, and these off-nadir scan angle weight functions still have

well behaved moments, we can obtain inversion coefficients (A's) appropriate to these weight

functions and implement the Eddington-King formula as before. The weight functions will

be different for each distinct scan angle, and so a distinct set of inversion coefficients will be

required at each distinct scan angle.

We plan on working at Phillips Laboratory over the next several months computing a

set of weight functions for each of the distinct scan angles of the SSM/T instrument. We

will then derive the inversion coefficients and attempt to calculate atmospheric temperature

profiles at all the scan angles of the SSM/T instrument. Our existing software will then be

extended to process temperature profiles at each scan angle of the SSM/T instrument using

the appropriate inversion coefficients.
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3 Analysis of DMSP SSM/T Data by Differential In-

version

3.1 DMSP Data Acquisition and Data Path

The fundamental objective of this research effort is to demonstrate the feasibility of DI for

analysis of DMSP SSM/T data to obtain meteorologically useful atmospheric temperature

profiles. For these purposes a comparatively small number of scans is required to develop

and test the DI algorithm as applied in the microwave band. Later work (to be pursued in

the second half of this research effort) will be concerned with evaluating the performance

of DI in comparison with ground truth measurements and in comparison with competitive

sounding algorithms.

We obtain data from research workers at Phillips Laboratory who are engaged in other

research with the DMSP SSM/T sounder. Primarily data has been acquired through Atmo-

spheric and Environmental Research, Inc. (AER), which is working under contract with the

United States Air Force. AER has the responsibility of taking data from the ground station

at Phillips Laboratory (Hanscom AFB) and processing it in various ways. Researchers in

AER agreed to provide us data in a simple ASCII format on a daily basis (as needed) gen.

erated by the DMSP overpass of the United States East Coast. This data translation avoids

issues of our dealing with proprietary file formats and provides sufficient data for our needs

at this time.

Data are provided as brightness temperatures ordered as to time and nadir scan angle. At

present no status information is provided as to whether scans are valid, though most invalid

scans are reasonably self-evident as wildly discrepant values of brightness temperature. At

present we have been unable to obtain any information regarding error bars of the brightness

temperatures, which would be an extremely useful information (even if only approximate

error bars are available) in implementing DI on this data set. DI requires radiances rather

than brightness temperatures, and so we convert brightness temperatures for channels into

radiances using the Planck radiation formula.

Data files formatted for our use are provided on a SUN workstation at Phillips Laboratory

and are transferred to our computers at Boston University using ftp (file transfer protocol)

on Internet. We have determined that this procedure has a minimal impact on the work

going on at Phillips Laboratory.
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Throughout the period of time beginning in Spring of 1993, the ground station at Phillips

Laboratory has had hardware prob.cms which have invalidated most of the DMSP scans in

our data sets (more than 70%). We emphasize that these problems have not prevented us
from completing our own primary work of developing DI algorithms in application to DMSP

SSM/T data since the number of scans we require at this time is fairly modest.

3.2 Implementation of Differential Inversion Software

We have begun the development of a program to demonstrate the application of DI to de-
termination of atmospheric temperature profiles from DMSP SSM/T data. We have written

this software in C owing to its portability to a variety of computational platforms and its
universality in the academic environment. We feel that this is an appropriate choice at

this time, since the objective is to develop the algorithm, rather than the production of
operational code, per se. A future operational implementation can be produced in another

programming language (e.g. Ada) if necessary.

DI is notable as an inversion technique in that the instrumental characteristics enter the

theory in a particularly well-defined way, and thus we have an opportunity to develop a

general piece of software for solution of the inverse problem which will be applicable to a
wide variety of instruments. The properties of the instrument enter the DI calculation of

the atmospheric temperature profile only through the values of the channel frequencies and
through the values of the inversion coefficients (which also contain information about the

atmosphere as well as the instrument). We can provide the channel frequencies to our DI

program in a data file and either provide a file of pre-determined inversion coefficients or

provide the weight functions and compute the inversion coefficients from the moments of the

weight functions by the Bochner-Martin algebra.

It is worth noting here, in passing, that while DI has a significant computational "over-

head", the computation of the inversion coefficients, the implementation of the Eddington-

King formula is computationally straightforward and efficient. Therefore, DI is attractive

as an inversion algorithm in treating very large data sets as are generated by current and

planned generations of atmospheric temperature sounding instruments.

Since instrumental characteristics can be incorporated in the DI program in a straight-

forward way, we have elected to try to produce a general-purpose atmospheric temperature

sounding program which can be applied to a variety of instruments operating in the mi-

crowave and infrared. The program as presently implemented can be applied to TOVS/HIRS,
DMSP SSM/T, and EOS/AIRS (synthetic) radiance data. Instrumental dependencies are
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incorporated solely through the specification of channel frequencies and corresponding weight

functions. The operation and structure of the program is further discussed in Appendix D.

3.3 Differentiation of Radiance Data

DI involves the computation of the Planck function profile in the atmosphere using the logs,
rithmic pressure derivatives of the upwelling radiance, weighted by the inversion coefficients.

It is apparent that DI requires the determination of high quality radiance derivatives for its

effective implementation. Numerical differentiation of noisy experimental data is usually to

be avoided as a computationally difficult problem owing to the tendency for the noise to be

"amplified" by the process of differentiation.

The Eddington-King formula for DI places an additional requirement on the numerical

derivatives of the radiance data; all estimates of radiance derivatives must be of the same

order in truncation error expressed as a stepsize of the sampling interval in z. For example,

if we take the Eddington-King formula out to the fifth order, i.e. compute out to the

As dsR/dzs term, the conventional divided difference formula for d5R/dz5 will be O(h6),
with h the interval in z between radiance channels. However, if we combine this term

with the usual estimate of the dR/dx term given by a low order divided difference formula

(which is 0(h2 )), the truncation error will only be effectively of the order of the lowest order

radiance derivative estimate, i.e. O(h2). Therefore, it is apparent that estimates of radiance

derivatives must be calculated to a uniform, high order for all terms in the Eddington-King

formula. The order of the radiance derivative estimates must conventionally be of one order

higher than the order of terms retained in the Eddington-King formula.

An additional complication arises due to the fact that the z values of the channels of the

DMSP SSM/T radiometer (and, indeed, of any practical sounding instrument) are unevenly

spaced. Deriving high order divided difference formulae on unevenly spaced data by Taylor

series calculations is extremely tedious and prone to error. We have found a Vandermonde

matrix technique [7] to be highly effective in deriving such formulae (see Appendix C).

FAtimators of numerical derivatives obtained by such techniques are shown to be optimal.

Furthermore, the derivative estimators are continuous functions which allows us to represent

the DI temperature profiles as continuous curves rather than as discrete sets of points at

which divided difference formulae are evaluated. (Compare with our earlier work in [9].)

The Vandermonde matrix technique also illuminates the relationship between the problem

of derivative estimation and the problem of moments. As a consequence, it can be shown

that when we are treating a small set of data points which we are considering simultaneously
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(as is the case in our present treatment of DMSP SSM/T data) the estimation of numerical

derivatives by Vandermonde methods is equivalent to fitting the data set with a polynomic

curve and employing that curve to evaluate the radiance derivatives. This is the approach
we use on the DMSP SSM/T data at present. Application of DI to an instrument with a

larger number of channels (in which not all channels would be used to evaluate radiance

derivatives at all heights in the atmosphere) would benefit greatly from the full application

of the Vandermonde matrix techniques

3.4 Preliminary Results

We have succeeded in applying the DI algorithm to the calculation of atmospheric tempera-
ture profiles from DMSP SSM/T data. The results obtained thus far are encouraging, though

it is clear that, as the algorithm becomes progressively more developed, there is considerable

room for improvement of the algorithm in the direction of production of more meteorological

temperature profiles.

The first version of the DI program applied to DMSP SSM/T assumed the weight func-

tions were of generalized exponential form [9],

W(p/pi) = r 'm+1 (pfip) exp[-m(p/p)1 /"'] (65)
rtm +1) Cs

where m is a parameter (typically between 0.0 and 4.0), p is the pressure at which the weight

function achieves a maximum, and p is the pressure varying through the atmosphere. Weight
functions of this form had a great deal of utility in our earlier work obtaining atmospheric

temperature profiles from infrared data gathered by the TOVS/HIRS instrument.

As a first step towards a functioning program, we assumed that all SSM/T channels were

described by the same weight function (generalized exponential weight function with M =

1.0) and did not take into account any influence of the ground temperature or the truncation

of weight functions at ground level. This was a useful first step in the implementation process
since it essentially replicated our earlier results in the infrared, while showing the differences

in the problem intrinsic to operating in the microwave band.

Typical results from this first level of development are given in Figures 4 through 7. These

curves are very smooth, as may be expected from the simplistic level of the implementation

just described. The curves are generated as a result of a single polynomic fit to the radiance

through the atmosphere and no account is taken of the variation of weight function mor-

phology through the atmosphere or variation in frequency for the different SSM/T channels.
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Figure 4: Atmospheric temperature profile obtained from the first version of the DI algorithm
applied to DMSP SSM/T-1 data. The scale height is taken to be 8.45 kilometers. The curve
is very smooth owing to the simple initial implementation of the algorithm and the fact that
ground temperature information was not included. The general features of the temperature
profile were as expected for this implementation and gave confidence that the algorithm was
in an appropriate state of development for the next stages of development.

The profiles could (very loosely) be interpreted as having a tropopause at a plausible height,

though the variation in temperature through the atmosphere is extreme.

It was apparent from these initial results that we would need to begin to extend DI

from the version as implemented for the infrared band in our earlier work. We have already

noted that ihe frequency spread of the DMSP SSM/T-1 channels cannot be neglected. Since

the Eddington-King formula technically applies to monochromatic radiances and the Planck

function at a single frequency, it is appropriate to identify a frequency with a given height

in the atmosphere at which the Eddington-King formula is being evaluated. (Note that

this approach is consistent with our practice of evaluation of continuous radiance derivative

estimators by use of Vandermonde techniques.) Therefore, we use a continuous fit to the
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Figure 5: Typical atmospheric temperature profile obtained from the first version of the
DI algorithm applied to DMSP SSM/T-I data. For further information see the caption to
Figure 4.
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Figure 6: Typical atmospheric temperature profile obtained from the first version of the

DI algorithm applied to DMSP SSM/T-1 data. For further information see the caption to

Figure 4.
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Figure 7: Typical atmospheric temperature profile obtained from the first version of the
DI algorithm applied to DMSP SSM/T-1 data. For further information see the caption to

Figure 4.
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Figure 8: Fit to frequency versus altitude based on the frequency and i values of the DMSP
SSM/T-1 instrument. This fit is used in the implementation of DI in terms of a monochro-
matic formula applied at a continuous range of altitudes.

frequency as.. a function of altitude, based on the frequencies and i values of the DMSP

SSM/T-I weight functions. This fit is shown in Figure 8.

We have also noted that the King weight functions do not match the actual weight

functions of the DMSP SSM/T-I instrument very well. This is unlike our previous experience

in the infrared, where we found the King weight functions to be an acceptable fit to the weight

functions of the TOVS/HIRS instrument. We have therefore used the DMSP SSM/T-I

weight functions to directly calculate moments and evaluate the A coefficients. These A

coefficients are given out to A, in the table below.
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Chan. 1 2 3 I 1 6 7

0 0.99978 1.00015 1.00416 0.98433 0.95241 0.88932 0.96944
1 -0.06868 -0.39045 -0.21500 -0.07592 -0.47879 -0.83451 0.72259
2 -0.07954 -0.11438 -0.17211 -0.18652 0.00147 0.25109 0.14158
3 -0.02042 0.02224 0.01230 -0.00682 0.02531 0.00187 -0.04499
4 -0.00300 0.01265 0.01835 0.01756 -0.00055 -0.02306 -0.02944
5 0.00072 0.00290 0.00196 0.00308 -0.00019 0.01104 -0.00499
6 0.00073 -0.00023 -0.00096 -0.00065 -0.00008 -0.00418 0.00085
7 0.00029 -0.00041 -0.00035 -0.00031 0.00000 0.00118 0.00062
8 0.00006 -0.00016 -0.00003 -0.00004 0.00000 -0.00019 0.00013
9 0.00000 -0.00002 0.00001 0.00000 0.00000 -0.00004 0.00000

It can be noted from the table that the morphology of the weight functions changes

significantly between the weight functions with f low in the atmosphere, compared to the

weight functions with X at high altitudes. This strongly suggests that we should also allow

the A's to vary as a function of height to reflect this height-dependent change in weight

function morphology. As discussed in the previous section, a window channel has A0 = 1

and all other A's zero. This behavior is reasonable as a limit as I --+ 0 for the A coefficients

of the other channels. The behavior of Ao, A1, and A2 as a function of altitude is given in

Figures 9, 10, and 11 respectively. At present we indicate the \ values at the l values of

the corresponding channels and join these points with straight lines. We believe, however,

that it is appropriate to use a continuous fit to the shape of the A curves with altitude. In

effect, we would then be using a "virtual weight function", sampled in ! space by the DMSP

SSM/T-1 weight functions. As I is varied, this "virtual weight function" smoothly varies

between the shapes of the DMSP SSM/T-1 weight functions. This is also consistent with

the use of the Eddington-King formula as a monochromatic inversion formula.

We also incorporate in our implementation of DI at this point a "pure" window channel

with \o = 1 and all other A's zero, as discussed in §2.4. Such a window channel is included in

the representation of the values of the inversion coefficients as a function of channel height,

shown in Figures 9 through 11. The intention here is to use an independent determination of

temperature at ground level to compute a blackbody radiance along with the radiances mea-

sured by the DMSP SSM/T-1 instrument to obtain a temperature profile with an improved

match to the actual temperature profile, particularly at low altitudes. Such an independent

determination of the temperature at ground level could come either from a ground station or

from another instrument. We intend to investigate the suitability of the ground temperature
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Figure 9: Values of Ao as a function of I for the channels of the DMSP SSM/T-1 instrument.

The value of Ao = 1 at I = 0 corresponds to a pure window channel added to the usual set

of DMSP SSM/T-1 channels. Note that the Ao value of this window channel is consistent

with the run of Ao as a function of ! for the other DMSP SSM/T-1 channels.
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Figure 10: Values of Al as a function of , for the channels of the DMSP SSM/T-1 instrument.
The value of A1 = 2 at 1 = 0 corresponds to a pure window channel added to the usual set

of DMSP SSM/T-1 channels. Note that the A, value of this window channel is consistent

with the run of A1 as a function of ! for the other DMSP SSM/T-1 channels.
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Figure 11: Values of A2 as a function of ! for the channels of the DMSP SSM/T-I instrument.
The value of A2 = 1 at ! = 0 corresponds to a pure window channel added to the usual set
of DMSP SSM/T-1 channels. Note that the A2 value of this window channel is consistent
with the run of A2 as a function of Z for the other DMSP SSM/T-1 channels. The behavior
of the higher order inversion coefficients is also consistent with the behavior shown here for
Al and A2.
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obtained from the DMSP SSM/I instrument [10] to generate such temperature values. The

operational advantages of combining data from two instruments on the same satellite should

be considerable.

We have calculated DI temperature profiles incorporating frequency variation with height,

A coefficient variation with height, and a value of the ground temperature applied to a pure

window channel. We have assumed, for demonstration purposes only, a constant tempera-

ture of 285 OK for the ground. We expect future work will benefit from the use of an actual

determination of ground temperature either from ground station observations, or from obser-

vations from another instrument. Typical DI temperature profiles determined incorporating

these new extensions are show in Figures 12 through 15.

These improved temperature profiles exhibit more reasonable characteristics than those

shown in Figures 4 through 7. The sharp discontinuities in slope of the temperature profile

are doubtless due to our use of a piecewise linear fit to the behavior of the inversion coefficients

(A's) as a function of height, since the values of T(z) obtained depend in an important way

on the weight functions through the inversion coefficients. We expect continued algorithmic

development to continue to yield improvements in the determination of the atmospheric

temperature profile.

3.5 Plans for Future Work in DMSP SSM/T Data Analysis

On the basis of the progress made in this research effort to date, we can identify areas for

further research which will represent the largest opportunities for advances in the production

of meteorologically useful temperature profiles using DI applied to DMSP SSM/T-1 data.

These areas for further research are outlined briefly here:

s A fit to the inversion coefficients as a continuous function of height will be obtained.

This will replace the piecewise linear fits used in the present version of the DI software.

It is expected that this will eliminate the slope discontinuities which are the most

striking non-physical feature of the temperature profiles at present.

* It is important to calculate new weighting functions for the DMSP SSM/T-1 instru-

ment, or to obtain weight functions in a digitized form from previous computations.

The weight functions used presently were digitized from plots kindly provided by Mr.

Falcone of Phillips Laboratory. However, this source is not sufficiently accurate to
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Figure 12: Atmospheric temperature profile obtained from the present version of the DI
algorithm applied to DMSP SSM/T-1 data. The scale height is taken to be 8.45 kilometers.
The algorithm has been extended to include variation of channel frequency with height, vari-
ation of the shape of weight functions with height, and the radiation from the ground. Here,
for demonstration purposes, a ground temperature of 285 °K is chosen; in actual practice a
temperature from a ground station or measured with a separate instrument with a "pure"
window channel would be used. The character of the temperature profiles is considerably
improved compared to the first implementation of DI, as contained in Figures 4 through 7.
The slope discontinuities in these profiles arise from the piecewise-linear fit to the shape vari-
ations of the weight functions with height and are not expected to be present in temeperature
profiles generated by the next implementation of DI.
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Figure 13: Typical atmospheric temperature profile obtained from the present version of the
DI algorithm applied to DMSP SSM/T-1 data. For further information see the caption to
Figure 12.
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Figure 14: Typical atmospheric temperature profile obtained from the present version of the
DI algorithm applied to DMSP SSM/T-1 data. For further information see the caption to
Figure 12.
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calculate high moments of the atmospheric weight function, which are required for ob-

taining high order inversion coefficients. Computational tools are available at Phillips

Laboratory for computing atmospheric weight functions.

"* Weight functions need to be obtained for off-nadir scan angles. Such weight functions

can be calculated using the computational tools available at Phillips Laboratory. Inver-

sion coefficients for these off-nadir scan angles can then be computed and temperature

profiles obtained. It will then be possible to reduce the entire set of DMSP SSM/T-l

observations, not only those obtained as nadir scans.

"* Further research will be conducted on the incorporation of measurements of the ground

temperature in obtning improved temperature profiles. It is expected that the pri-

mary source of data for an operational system would be an instrument on the same

satellite which would obtain a measurement of the ground surface temperature through

a channel which has an atmospheric weight function with the maximum possible area at

ground level. We will investigate the suitability of DMSP SSM/I data for this purpose.

It should be noted that any practical window channel will be subject to significant

meteorological variability, for example due to ground level haze. Research will need to

be directed to assessing the importance of these variations in the weight function of

such a window channel for the determination of low altitude values of the atmospheric

temperature. When possible, we shall also investigate the effects of including ground

temperatures obtained from ground observations. (See following item.)

"* It is very important to obtain pound truth temperature profiles for comparison with

the DI temperature profiles computed for DMSP SSM/T-l data. Thus far, we have

no basis for comparison as to the accuracy of the temperature profiles obtained. We

intend to identify times when radiosonde observations are available which correspond

to overflights of the DMSP satellite. Such opportunities will provide the best possible

circumstances for assessing the performance of the DI algorithm. We expect this to

be the major element in the data analysis component of this research in the upcoming

year.

"* We would also like to compare the temperature profiles obtained by the DI algorithm
with the present generation of operational atmospheric temperature profiling algo-

rithm. We will investigate whether this may be carried out in the time frame of the

next year's research on this grant.
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4 Conclusions

During the first year of this research effort we have carried out the first implementation of the

Differential Inversion (DI) algorithm in the microwave band. This work has involved the use

of DMSP SSM/T-1 microwave radiances, which were reduced to atmospheric temperature

profiles.

These initial temperature profiles show some of the necessary features expected of a

meteorologically useful algorithm, but the necessary work to more closely approach that

goal seems to be cear and is currently underway in the second year of this research effort.

Several important issues relevant to successfully obtaining useful temperature profiles using

data from the microwave band have been identified.

1. The shape of the atmospheric weight functions in the microwave band is such that the

generalized exponential weight function developed by Dr. King is not as useful as it

was for work in the infrared band. As a result, it is necessary to work exclusively with

empirical weight functions and to calculate the inversion coefficients from the empirical

weight functions directly.

2. Inclusion of the radiation contribution from the ground is much more important in the

microwave region than it was in our earlier work in the infrared region. We have devel-

oped an extension to DI which allows the inclusion of independent determinations of

the ground temperature (either from other instruments or from observations at ground

stations). This extension is expected to lead to significantly improved atmospheric

temperature profiles low in the atmsophere.

3. The variation of weight function shape with altitude is very important for the deter-

mination of an accurate temperature profile. We have developed an approach which

accounts for a continuous variation of weight function shape through the atmosphere.

Based on this approach, it may be possible to develop a fully self-consistent multi-
spectral version of DI. (The original version of DI derives from the monochromatic

equation of radiative transfer.)

Work is also underway to extend our work to the case of nonzero nadir scan angle.

The weight functions for nonzero nadir scan angle are very asymmetric, but the formalism

of DI depends only on the moments of the weight functions, and thus should be able to

accommodate these weight functions in a natural fashion.
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We expect that our work will continue to improve the atmospheric temperature profiles

obtained with the DI algorithm. The most important issue in the research to be carried

out over the upcoming year will be the comparison of the DI temperature profiles with

ground truth data to objectively evaluate the performance of the DI algorithm in accurately

determining atmospheric temperatures. Towards this end, we plan to obtain atmospheric

temperature profiles measured by radiosonde when the DMSP satellite is making an over-

flight. Such comparisons will provide the best opportunity for evaluating the performance

of the DI algorithm and identifying area for improvement.
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A Hyperdistributions and Convolution Algebras

We introduce a general expansion method for functions whose integral properties are the fo-

cus of interest. Our expansion displays in configuration space the properties of the classical

moment generating expansion for the Fourier transform of the probability distribution. Our

expansion allows consideration of "functions" which are more singular than temperate (i.e.

Fourier-analyzable) distributions, but that can be represented by infinite series of distribu-

tions. We call these "functions" hyperdistributions. We show that hyperdistributions form

the appropriate framework for carrying out the process of deconvolution, in fact, we give a

straightforward algorithm, the "Bochner algebra"[1], to compute explicitly the convolution

inverse of any hyperdistribution.

The theory of hyperdistributions is built on ideas related to Dirac's delta function[3],

which is technically a "generalized function". The Dirac delta function, 6(z), has the nor-

malization

00 6(m) dz = 1 (66)

and the sifting property

f(c) = L 6(x - x')f(z') do' (67)

for any suitably smooth function, f(z). We term equation (67), " Dirac's identity".

The Dirac delta function is even, i.e. S(z - x') = 6(z' - x). Expansion for small x gives

,2
(6' - ,) = 6(Z') - Z6'(Z') + j•, 1'(Z') + ... (68)

Here 6'(x) = u6(x)/dx, 6s(m) = d2S(X)/dI2 , etc. This expansion is valid for test functions

that are not merly smooth (COO) but real analytic(C"). Equation (68) allows one to compute

a "local" approximation to f(z), since if we substitute this expansion into Dirac's identity,

we recover the usual Taylor expansion of f(c) about x = 0,

f(c) = M(o) + 4'(o) + r(o) + ... (69)
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This expansion is local in the sense that it requires derivatives of 1(z) at a single point,

z = 0, and in general has a limited radius of convergence. On the other hand, if we expand

S(z - x') in small a' we have

6(Z - X') = 6(m) - X'W'(z) + 2!6(,) + ... (70)

When this series is substituted into Dirac's identity (67), we obtain

M(2)
f(z) = M(0)8(x) - MMS6(z) + _.4Tjt 1 (2) + ... (71)

The coefficients M(W) are defined by

-W = ,-Xf(z) dz, (72)

The M(")s are the moments of the function 1(z). Therefore, equation (71) is an expansion

of f(z) involving global information about f(z), that is, the moments of the function.

This then may be taken as a motivation for our definition of a hyperdistribution as a

sinular function which may be written in the form,

A(z) = o.,,-V,6(z) (73)
n--O

The coefficients a. are given by

C,, = (-1)"• ."W(74)

Note that equation (73) is equivalent to the familiar moment generating expansion of prob-

ability theory. R.hodes[13] has shown that the sum in (73) can be extended to to range from

-oo to oo preserving the algebraic properties of hyperdistributions.

If we have two hyperdiatributions ft and 12, their linear combination Af1 + P12 is also

a hyperdistribution (where A and i are real coefficients). The pth derivative of a hyper-

distribution, d'f(z)/dz' = VWf(z), is a hyperdistribution. Also, the convolution of two

hyperdistributions f, *f2 is a hyperdistribution. These may all be thought of as the "closure

properties" of hyperdistributions.
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Hyperdistributions allow us to make an effective computation of the convolution inverse.

Given a hyperdistribution f, the desired convolution inverse Inv(JA satisfies

f * Inv[f = 6 (75)

Here 6 represents Dirac's delta function, which is the identity of the convolution operation.

We shall show by our construction that Inv[f] is a hyperdistribution. Writing the convolution

explicitly,

f * nv[f + = 00 dz'f(z') hv[f(z - z')] = 6(z) (76)

We write f(z) and its inverse, Inv[f()], as

f(z) = E CanV"6(z) (77)
n

Inv[f(z)] = y PV"-•() (78)
n

Substituting the hyperdistribution series for f and Invf we obtain into equation (75) we

obtain after some algebra the discrete convolution or Bochner algebra [1]

i = aoo (79)

0 = o +12,80
0 = ao•2 + aIPI + a2/o

and so forth. Thus, we can see that, ,o = 1/no,,#1 = -a/ao2,62 = aC12/ao3 - cf2/ ao2, etc.

When energy is conserved ao = 1 and Po =1. The coefficients are then determined by

#, =- ic_,i (i > o) (80)
j=1

This completes the computation of the terms of the convolution inverse.
Mikusihski[11] has considered the convolution algebra that arises from considering pairs

of functions subject to the rules of operation possessed by the rational numbers considered as
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pairs of integers. The pair construction, due to Dedekind, insures that the resulting algebra is

an algebraic field. The Mikusizski field contains distributions rather than hyperdistributions

and is adequate for its intended purpose, namely the rigorous use of the delta function in

Heavyside's operational calculus. Consequently, the MikusiAsli field is based on functions

defined on the half line as needed for the theory of the Laplace transform[5]. Mikusiziski does

not consider two, three or higher dimensions. More important MikusiiskI calculus is suitable

for solutions of differential equations and not for integral equations. In fact Mikusiiski does

not provide a representation for the convolution inverse which is the main purpose of the

hyperdistribution calculus. The algebraic field of hyperdistributions has been shown to arise

from the pair construction if the members of the pairs are continuous functions which taper

at -oo and oo, B. A. Rhodes[13].
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B Relation of the Multipole Expansion to Differential
Inversion

We start with the familiar Poisson equation of potential theory

V 246 =p. (81)

In this appendix, we show that, if we substitute p for its hyperdistribution expansion, then

the resulting potential is Gauss's multipole expansion for 0.

Poisson's equation is rewritten wiht the help of the (infinite domain) Green's function as

G(r) = -11 V2 G(z) = 6(z) (82)

We can then rewrite Poisson's equation as

S= G * P. (83)

Introduce Q with the property

Q*p=6 (84)

Convolving both sides of (??) with Q and using the commutative and associative prop-

erties of the * product, we find that

QO = Q*(G*p) (85)

= (Q*p)*G (86)

= G. (87)

Use the differential inversion solution (Eddington-King formula) to solve this equation

for 0 in terms of the given G

OWz) = E akVkG(z), (88)
k=O

which is Gauss's multipole series with coefficients

-ac k= - -I +00o Okp(M) Coz, (89)

where ® denotes tensor product and where z®* is the tensor power of the 3-vector z. Sub-

stituting this equation into (??), we find a familiar expression

o=o

which is a standard result in potential theory.
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C Numerical Differentiation by the Vandermonde Ma-
trix Technique

Application of the Differential Inversion (DI) algorithm depends sensitively on accurate eval-
uation of derivatives of the known function. In general, accurate evaluation of numerical
derivatives is well known to be a difficult problem, particularly for noisy data. We shall
develop here a technique which involves the determination of an optimal estimator of the
derivative in terms of weighting coefficients applied to samples of the function (or experimen-
tal measurements). These coefficients are determined as the solutions of a system of linear
equations of Vandermonde type. This method is also known as the "method of undetermined
coefficients" and a clear exposition of the method, on which this application is based, has
been published by Isaacson and Keller [7].

For appropriate special cases, the coefficients determined by this Vandermonde method

reduce to the coefficients of conventional divided difference formulae for estimation of nu-
merical derivatives. However, this method has several important advantages over divided
difference formulae: (1) This method provides the best estimator (in the sense of minimi ing
truncation error) of the numerical derivative at a given order. (2) This estimator applies
to the regions between data points as well as to the values at the data points themselves,
and so a formally correct continuous representation of the derivatives is obtained. (3) This
method is tolerant of unevenly spaced data, unlike divided difference formulae which be-
come unwieldy. (4) The method may readily be used to determine derivatives of high order.
(5) Error analysis may be readily carried out in terms of the numerical condition of the

Vandermonde matrix.

Begin by considering a general function of one variable, f(z). We want to compute the

kth derivative of f(c) at z = a, which we denote f(k)(a). The value of f(')(a) is approximated
as a linear combination of samples of the function, f(zi), i = 1,... ,IM. Say that f(z) has

n + 1 continuous derivatives, where n + 1 • m, and define h =_ vi - a. Using Taylor's
expansion to write

f(m,) = f(a + hi) (91)

= f(.) + lP)(W + Lf( 2)(4) +...

(92
•.. + hS f(")(a) + (-(+,) (a + ,Os) (92)n! (n + 1)!

where i = 1,2,..-,m and 0 95 ,i < I in the usual definition of the remainder term in the

Taylor series.
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Taking a linear combination of equations (92) with weights, aj, to be determined:

C A~fz,) = ~ ai) f(a) + (jE aik,)f(1)(G) + (~aihi&) 21"+
ii _. 2")(a) + !

"+i. (+ 1)! • a,1• "(a + 8A). (93)

We are free to choose the coefficients ai such that the linear combination of the values f(zi)

is the most accurate approximate approximation to f()(a), i.e. the best estimator of the

derivative. Therefore, we impose the set of m conditions on the m unknown coefficients aj,

Soah - u!6, (94)
s-1

where v = 0, 1,... ,m - 1, and 6A is the Kronecker delta function. Generally speaking, we

are interested in the cases when k Ž 1, since we shall demonstrate below that f(o)(a) merely

gives the value of an interpolating polynomial for f(M) evaluated at z = a.

It is instructive to write out these equations explicitly for several values of v. For v = 0,

Sa-0,° = 0  (95)

which gives us the condition -a 2l +- .. + +C4 = 0. For v = 1,

aIhI +a21C +'" + cmlm = 1! 61k. (96)

For v = 2,

aj 1
2 + a2 h 2

2 + + o+,1,, 2 = 2! 62.. (97)

and so forth until for v = m - 1,

a h&M-1 + a 2h,2m-l +... + auem- = (m - 1)! 6m-I,,. (98)

By examining the equations shown above, we note that the system of equations given by

equation (93) may be expressed in matrix form as:

(0)
1i h ... h

~2 0

hiem - 142 , .. ? .(9
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It is clear that this system of equations determining the coeffcients cl , ac,, has a unique

solution since the coefficient matrix is of Vandermonde type and hence nonsingular, pro-

vided the u's are all distinct. In practice, however, high order Vandermonde systems may

be numerically ill-conditioned and require specialized algorithms for their numerical solu-

tion. Leaving aside for the moment questions of numerical ill-conditionedness, a necessary

and sufficient condition for equation (99) to have a solution is for m > k, i.e. that the system

be nonhomogeneous. This condition corresponds to the well known requirement for deter-

mination of derivatives using finite differences that the determination of a kth derivative

requires more than k data points.

With the solution of equation (99) substituted in equation (94), we obtain for the estimate

ie kth derivative (recalling that n + 1 Ž_ m),

f(k) (-() (= 1 1)E aif(xs) - -(E aik-')f~)a

- -~~ cj~jmf(T)(a -+1)! ( t a.kin+1)f(n+,)(,2 + O,l&,0lOO)

This result is immediate if we note that in order for the ai's to solve equation (99),

Sai" = 0 (101)
i=-1

for all n 6 k.

Several advantages are obtained by this approach:

1. Equation (100) is by construction the most accurate approximation to f(k)(a) using

the available data.

2. The data are not required to be evenly spaced.

3. a may be chosen with the set of xi's as required and our formula automatically evaluates

a derivative estimate equivalent to the corresponding centered, forward, or backwards

divided difference as required.

4. a need not be a location of one of the measurements, xi. We can thus obtain a

continuous representation of the derivative of a function, not simply a set of derivative

estimates evaluated at the z,'s. The curve obtained has the character of a high-order

spline curve.
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We now specialize our discussion to the requirements of Differential Inversion (DI). We

consider a set of image intensities t(zj), with xi the location of the ith pixel. We shall have a

total of m pixels available, and we wish to obtain a kth derivative at a value C (corresponding

to a in the previous calculation). Note that k < m - 1. Now

i = zi - C (102)

and we can set up the Vandermonde system of equations for the weighting coefficients aj,

analogous to equation (99).

0)(1 1
(,'- -) Z (- ... ( -) 0

(zi-C) (2,- C) ... (2)' h! (103)

(z, - )-,(Z2 - C)-- . (2. ¢--
0

Note that when C lies on one of the zi values, say zj, the only consequence for the system is

that the jth column has all zero entries, except in the first row. (The first row must remain

all ones, as a result of the constraint of continuity on the behavior of the system.) The

coefficient matrix then looks like:

( (i-C) ... (z,._ -C) 0 (z,+ -C) (Z- -)
(XI ()2 ... ( -j_l C)2  0 (zj+, -C) 2  ... (Z,- C)2  (104)

"* " . . . "..
(,- C)'M- ... ('j-1- O)'- 0 (zj+ - C)'- 1  ... (' n-¢)M-

After solving equation (103) for the a1,...,oa values, we may then explicitly obtain the

estimate of the kth derivative of the image intensity at C,

•€)O = • )- ..L( , , ,)#(in)(C) -. 1)! ....hm+)#u1)C
d 1=1 1 =1 a h i n 9 O M 1

(1 o/")#(")C•) -(n + 1)! .= ,~~~Q'( .1i 15+ ... •, ./"+1 0("+')(C + Oih.) (105)

All terms except the first on the right hand side of equation (105) represent contributions

to the truncation error in the estimation of 0(k)(C). Note that inclusion of more data points

(arger m) raises the order of the truncation error, as one expects on the basis of the Taylor

series derivation of estimates of the radiance derivative.
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The radiance estimates from equation (105) are then substituted directly into the DI

formula for B(C):
B(C) = o4(C) + 1•A1#)(C) + 2 0(2)(C) +.... (106)

If a fixed set of data points is used for estimating the derivatives, the Vandermonde coefficient

matrix need be evaluated only once, at some given C value. Each successive intensity deriva-

tive is then obtained by multiplication of the inverted Vandermonde matrix against a column

vector of length mn. Since the evaluation of 00h)(C) [see eq. (105], given the al, ... 10: values,

also has the character of an inner product operation, evaluation of the radiance derivatives

required in equation (106) (at a given value of C) requires inversion of a single Vandermonde

matrix and two inner product operations. If a large data set is to be reduced, and each scan

will be represented at the same set of C values, storing the inverted Vandermonde matrices

corresponding to each C value will result in substantial improvements in execution time. It

should also be noted that this algorithm lends itself to implementation in massively parallel

computers.

An important additional advantage of the Vandermonde approach is that it is relatively

straightforward to obtain a set of intensity derivative estimates which all have the same order

of truncation error. This is important for DI since each term in equation (106) must have a

consistent order of truncation error in order that the determination of B(C) have as high an

order of truncation error as possible. This is comparatively difficult to arrange in practice

using finite difference formulae.

Lastly, as an illustrative example, we shall show how the Vandermonde approach may

be used to generate the standard divided difference formulae. Consider points z2, z2, Z3

with corresponding function values (measurements) f(ei), f(z2), f(z3). Say that we wish to

obtain estimates for f1(2), f(1)(z2), and f(2)(22). In this case, m = 3, and the corresponding

Vandermonde matrix is

(107)
1 01

The inverse of this matrix is: ( -1/2 1/2
1 0 -1 (108)
0 1/2 1/2)/

For the case k = 0 we then construct the matrix product,

1 0 -- (109)1/2 1/2/ 0 43 0(1) (0)
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i.e. our estimate for the seroth derivative is simply f(Z2), as expected. For k = 1, we expect

a nontrivial result. The ac's are again found by

0 -1/2 1/2 0 1/2
0 1 li1 a20(10

0 1/2 1/2 )~0 )1 k, a: 1/2) 10

which implies
P )(22) = (X3)- f(ZI) (111)

2
which is just the centered divided difference estimate for the first derivative. Finally, for

k =2,

( 0 -2/ = a, a = -2 (112)
0 1/2 1/2 2 a3  1

which implies wf()(Z2) = f(Z3) - 2f(22) + f(ZI) (113)
12

which is the centered divided difference formula for f(2)(z2).
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D Differential Inversion Software Package

D.1 System Design

The following section gives the file structures and the system flowchart for the application

of DI to the problem of remote temperature sensing.

The problem here is to design an algorithm at the system level to take radiances and

the weighting function as inputs, with some fixed parameters and compute an output tem-

perature profile. There are certain parameters we need to consider when we go about this

process.

The weighting function we have here can be either the empirical weighting function that is

obtained from the SSM/T microwave sounder or for example, the analytic weighting function

as given by King [8]. We have decided to take advantage of the intrinsic flexibility of DI,

owing to its formulation in terms of the moments of weight functions, to develop a general

software package which can be applied to a variety of instruments. The software must accept

specifications of the instrument in an appropriate form. The number of channels the system

with the peaking height for these channels must also be specified. Since we need to normalize

these peaking heights it is also necessary to specify the scale height of the atmosphere. All

the above mentioned parameters are provided to the system using a parameter file which

has all these values stored in it. The structure of the parameter file is as shown below:

Parameters File

UTFN < 0 or 1 > Specifies that weighting function is

"O"-upbirical \& "I"-Jean King

IIST <string> Type of instrument

SCLHT <value> The scale height

CHANNELS ntumber> The no. of channels in the system.

ZB <value> HZ <value> Z-bar and froq. value of channel 1.

ZB <value> HZ <value> Z-bar and freq. value of channel 2.
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ZB <value> HZ <value> Z-bar and freq. value of channel n.

The program would read this parameter file and get the necessary values for the compu-

tations. The string 'HZ' specifies the frequency is in Hertz. The other possible entries here

could be 'GHs' or 'INV.CM'.

The datafile would consist of the radiance values for the different channels for all the scans

that are done by the instrument. The format of the data file is as provided by the respective

instrument. We receive files from Atmospheric and Environmental Research, Inc., which is

operating at Phillips Laboratory under contract to the United States Air Force. Atmospheric

and Envirnomental Research, Inc. unbundles files of measured system temperatures (which

are stored in a proprietary file format) and provides them to us in a computer which we can

transfer to Boston University over Internet.

D.2 Program Operation

The command that would be typed at the system prompt (unix prompt) by the user is

% di -PNparameter file> -DUdata file> -S0# of scans>

The suffixes "-P,-D,-S" allows the system to interpret the information that is entered at

the prompt. If all the three inputs are not given to the system then the computation process

will be aborted.

The various steps that are executed in order as a part of the system run are summarised

below.

[1] Check if all the three parameters are entered at the command prompt.

[2) Read in parameter file and do necessary validations and also verify if all the necessary

inputs are provided. Do cross-validations to see to that the no. of channels entered tally

with the no. of I values given.

[3] Get the no. of scans from the prompt line.
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[41 Determine the weighting function is empirical or the Jean King function and accord-

ingly branch for the computations.

[5] Generate moments and lambdas for all channels. Store the values in a two dimensional

array of the form A (channel][no.]. Thus A(l][0] will correspond to the value of A0 for channel
1.

[6] Read in the values radiances for the one scan.

[71 Use the lambda values and the radiance values and compute B[z].

[8] Invert the function of B[s] to compute T[s].

[9] Repeat steps 6 thru 8 for all the scans.

On executing the above steps we will obtain a temperature profile for each scan that is

done by instrument.
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E Listing of Differential Inversion Software

The following pages are a listing of the C code currently used in the implementation of the

Differential Inversion algorithm as applied to DMSP SSM/T-1 data.
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/* ............................- *-

/* Program Name : DI.C *1
I* ..........- *-
1* Purpose : To provide a user interface for using the DI algorithm as
1* as applied to remote temperature sensing.
/* Files read : Parameter file, Data file, and Weight Function files */
/* ----------------------------------------------------------------------*
/* Functions called by DI.c :/
/* ----------------------------------------------------------------------*
/* Function Name Purpose

* ----------------------------------------------------------------------- *
/* param() Process the parameter file *1
/* read-chaninfo() Process parameter file and get channel */
1* information pertaining to freq, and */
/* peaking height. */
1* fit_freq() Fits a curve to freq vs. Zbar(peaking ht) */
/* ----------------------------------------------------------------------*
/* If the weight function is the Eddington-King function :*
/* ----------------------------------------------------------------------*
1* calc..mom2() Calculates the moments for the weight

function. */
/* genlambdas2() Calculates the lambdas using the moments */

obtained from calcjom2(). *
* ----------------------------------------------------------------------- *

/* If the weight functions used are the DMSP SSM/T-1 weight functions. */
/* ........................................................... */
I* gbcalc.mom() Calculates the moments using the SSM/T *I
/* weight functions, considering the ground */

boundary conditions. */
/* gen..lambdas() Calculates the lambdas using the moments */

obtained from gbcalc_.momo. */
/* ----------------------------------------------------------------------*
l/ calc_deriv() Fits a curve to the radiance intensity *l
/* and Zbar values and also computes the */
/' derivatives of R(z) at different heights. */
/* calcB() / calcB2() Computes the planck values for different */
/* heights using the derivative values and */

computed lambda values
/* B.T() Converts the planck values to temperature */
/* values. */
1* ------------------------------------------------------------------------ *

/*-- Include Files -- */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*--- Define Statements -- */

#define C 3e10
#define MAXZETA 200
#define COEFF 6
#define SCAN_TOVIEW 15
#define DERTO_USE 4

/* ----- Variable Definitions ---

char temp[20],templ[20],temp2[lO],temp3[10];
int i,jk,lennoscn,win,derv;



char pfnm([Sjdfnm(25],scan[SJ;
char filnm[201;
FILE *fptr,*fpl;
char FLAG;

int wtflag,chan,mnos;
double freq_mult_fact,sclht,mom,zbar[100].freq[100],rad[100].sigma[100];
double derivdata[MAXZETA][1001,zeta-datalMAXZETA],freqdata[MAXZETAJ;
double planck[MAXZETAI,temper(MAXZETA];
double nomentsC100].en~mom(100][100];
double lamb[100],em-lamb[100][1001.gblamb[MAX_ZETA][100];
char inst[10],outfile[40];

* ---------------------------------------------------------------------- *

I' Routine to read the channel information from the Parameter file */
/* .--------------------------------------------------------------------- *

read-chaninfo(cn)
int cn;
{

for(i=0;i<cn;i++)
{ fscanf(fptr,as %If %s %lf\n*,temp,&zbarfi],temp2,&freq[i]);

/*--- Reading the frequency and zbar values -- *I
if (strcmp(temp,"ZBO) != 0)
( printf(OPeaking ht. info. missing .. \no);

exit(O);

/*-- Converting the frequency value to units of Inverse Cm --- */

if (strcmp(temp2,8Hzf) != 0)
{ if (strcmp(temp2,"GHz*) 1= 0)

( if (strcmp(temp2, 1 InvCmm) != 0)
{ printf(*Invalid frequency info .. \no);

exit(0);
)

else freq.multfact = 1.0;
)

else freq_mult_fact = 1.0e+9/C;
)

else freq~mult..fact = 1/C;

freq[iJ *= freq_mult-fact;

printf(I %4d %12.21f %15.61f\nm,i.l,zbar[i],freq[i]);

printf(*\nO);

1* ----------------------------------------------------------------------- *
Routine to process parameter file

/* ----------------------------------------------------------------------- */

param(filnm)
char filnm[15];
(
fptr = fopen(filnm,"r");

if (fptr ==t NULL)



{ printf(OInvalid parameter filename .. \n\n*);
exit(O);

/*--- Verifying the Weight function type -- *I

fscanf(fptr,Os %do,temp,&wtflag);
if (strcmp(temp,mWTFNO) 1= 0)
{ printf(*Wrong entry in parameter file .. \n\nu);

exit(O);

if (wtflag =z 0)
{ printf(" --- \nw);

printf( I Empirical Weighting function I\no);
)

else if (wtflag == 1)
{ printf(*\n ............... \ns);

printf(a I Jean King Weighting function I\nm);
}

else {printf(*Error Cannot recognise weighting function type..\n\n=);
exit(O);

printf(" -------------------------------- \n\nN);

/*-- Getting other information from the Parameter file -- */

while(feof(fptr) == 0)
{ fscanf(fptros %sOtemptempl);

if (feof(fptr) 1= 0) break;

if (strcmp(temp,"ZBO) == 0)
{ printf(mNo. of channels missing .. W);

exit(0);

if (strcmp(temp,OINSTO) == 0)
{ strcpy(insttempl);

if (strcmp(inst,"NILO)==0)
{ printf(OInvalid Instrument name .\n");

exit(0);

printf(mInstrument : %s\nrinst);

if (strcmp(temp,"SCLHTO) == 0)
{ sclht = atof(templ);

printf(oScale Height : %lf\nu,sclht);

if (strcmp(temp,OCHANNELS") == 0)
{chan = atoi(templ);

if (chan==O)
{ printf(OInvalid no. of channels .. \n*);

exit(O);

printf(ONumber of Channels : %d \n\n",chan);
printf(" Channel Z.Bar Wave Number(l/cm)\n");
printf(" ....... W );
read_chaninfo(chan);



/0 ~Main Program 0

/* -- - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -

main (argc, argv)
mnt argc;
char **argv;

FILE *fp,*tptr;
double zb,tempo;
int chani, line,call,cal2;

/*-- Checking if program has 4 arguments -~

if (argc 1= 4)

printf(wSyntax Error . n)
printf(ODI -P<parameter file> -D<data file> -S<no. of scans>\n\nu);
exit(O);

strcpy(scanONILN);
strcpy(dfnmONIL*);
strcPy(pfnm,6NILO);
strcpy(instg UNILN);

/*-- Reading in the arguments w.r.t the flags PD and S -~

while(*argv != NULL)
{strcpy(temp, *argv++);
len = strlen(temp);
if (temp~l) == 'P')

{for (i=O;i<=len-2;i++) pfanmri] = temp~i+21;
pfnm(iJ = \;

if (temp(l] == 'D')
(for (i=O;i<=len-2;i++) dfrnmil x: temp~i+2];
dfrnm~i] = \;

if (temp(1] == 'S')
(for (i=O;i<=len-2;i++) scanfil = temp[i+21;
scantil so=\1

noscn =atoi(scan);

/*-- Checking if all arg. reqd. were given -~

if ( (strcmp(scan,*NILm) == 0) 1 (strcmp(dfnm,NILO) =0)

I(strcmp(pfnm,mNIL8) == 0) 1 (noscn == 0)

printf("Syntax Error . n)
printf(ODI -P<paraineter file> -D<data file> -Scno. of scans>\n\no);



exit (O)1

printf (O\n Parameter file name : %s\n Data file name %s\n No. of Scans td\n\nO0pfnm,df

/*-- Processing parameter file -- */

param (pfnm) ;

/*--- Convert to scale heights --- */

for (i=O;i<chan;++i)
zbar[iJ /= sclht;

printf(OPress <ENTER> to continue ... 8);
getcharo;

system(Iclear");

/* .------------------------------------------------------------------- *

printf("\nFIT A CURVE TO THE FREQUENCY VALUES ");
fitfreq(chanCOEFF, zbar, freq, freq_data, zeta_data);
printf(OCURVE FITTING SUCCESSFUL .. \n");

printf(D\n CALCULATING MOMENTS AND LAMBDA \nw);

if (wtflag == 1)
{ printf(m\nEnter value of m and no. of moments

scanf(*%lf %d*,&mom,&&m_nos);
printf(*\nPlease Wait ...... .);
calcjrmom2 (mom,moments);
genlambdas2 (rnosmoments, lamb);

else
( mnos = 10;

printf(OReading the weight files of the instrument %s ... \nm,inst);
gb.calcjnom(chan, zbar, sclht, enijom);
genlambdas (chan,mm_nos, em_..mor, emlamb);

printf(O\nLAMBDA CALCULATION COMPLETED ... \n");

I* .------------------------------------------------------------------ *

fp = fopen(dfnm,"ra);
if (fp == NULL)
( printf(*Invalid data filename .. \n\n-);

exit(O);

1' -------------------------------------------------------------------- *
I' Get radiances for all the channels in multiple scan mode */
/* ------------------------------------------------------------------- *



for (linezO; linecnoecn;-++line)
(FLAG-Os
printf(*\nScan no. : d \nline+l);
if (strcmp(ptnm.Opar-datG) == 0) chanluchan; else chanl=chan~l;

tor~i=l; icchan;+i+i)
{fscanf(fp,8%lf ",&rad~il);
if (rad~iJ =a 0.0) FLAG=l;
printf(6%lO.61f*,radji));

Printf(8\n*);
if (FLAG-mi) continue;

rad[OI a 0.006396; /* Using the this value of radiance for the '
/* ground channel - Computed for Brightness *

/* temperature of 285 kelvin *

tempo = rad(5J; /* Shifting the radiance values w.r.t the *
rad[51 = radt6J; 1* zbar values in the parameter file. '
rad(6] = rad[7I;
rad(71 z tempo;

/* -------------------------------------------------------------------- *

chani = chan;

fpl = fopen(osigma.dato,rs);
for (i=0; icchan; i++)

fscanf(fpl,*%lfw,&sigmarij);
fclose(fpi);

calc_deriv(chan, COEFF. zbar. rad, sigma, deriv_..ata, zeta-.data);

I. -------------------------------------------------------------------- *

if (wtflag==l)
calc_.B2 (DER...TOUSE. lamb, deriv-data, planck, zeta..data);

else
calc..B (chan, COEFF, ern~amb, deriv..data, planck, zeta..data, zbar);

1* -------------------------------------------------------------------- *

B...T(chan, freq..Aata. zbar, zeta..data,planck. temper);

/* -------------------------------------------------------------------- *

strcpy(outfile,dfnm);
outfiletatrlen(outfile)-4) a \=
strcat (outfile,O. scan3 );

if (line < 9)
{outfiletstrlen(outfile)) = line+49;
outfile[strlen(outfile) + 11 = \;

else



k Ii u trlen(outfil.);
callacal2oline+l;
call u(int)(call/1O);
cal2 -=call*lO;

outfilelk) = calle.48;
outfilelk + 11 = cal2.48;
outfilork + 21 x=\1

tptr a fopen(outtile,ow);
for (i=O~i<I4AXZETA;.+i)

tprintt(tptr. %lf %lf\n*,temper[il~zeta~datafij);

fclose(tptr);

for(i=O;i<c70;++i) printf(O-);

printf(a\n");

)/* For loop - scans '

1*---------------------------------------------------------------------*
1* ~End of Program *

/*---------------------------------------------------------------------*



I** -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -
I' Program Name :LFIT.c '
/** --------------------------------------
I' Purpose :This program has the functions lfito,calc...deriv() and '

1* ~~fit...freqO. The lfit() function calls gaussj() and covsrto. '
1' ~The functions lfito,gaussj() and covsrt() are used as given '
I' ~in the book Numerical Recipes in C. '

/* ------------------------------------------------------------------------ '

#include .cstdio.h>
#include -math.h>

#define I4A.XZETA 200

static double sqrarg;

#define SQR(a) (sqrarg=(a) .sqrarg'sqrarg)

double powo;

void lfit(x~y,sig~ndata,a~ma,lista,mfit,covar~chisq,funcs)
int ndata.ma~lista[l0J,mfit;
double xt1001,y(10O1bsig[100J,afl0l,**covar,*chisq;
void (*funcs)(); I' ANSI: void (*funcs) (double double *,int);'

int k,kk,j,ihit,i;
double ym~wt, sum, sig2i. "keta, 'afunc;
void gaussjo( *covsrt (),nrerror ), free~juatrix(), free~vectoro;
double **matrix(),*vector 0;

beta=matrix(1~ma, 1.1);
covar=matrix (l,ma, 1,ma);
afunc=vector(l,ma);
kk=mfit+l;

for (j=l;j<=ma;j++){
ihit=0;
for (k=l;k<=mfit;k++)

if (listalk) == j) ihit++;

if (ihit == 0)
listatkk++1=J;

else if (ihit > 1) nrerror(mBad LISTA permutation in LFIT-l0);

if (kk I= (ma+l)) nrerror(OBad LISTA permutation in LFIT-29);
for (J=l;j<=mfit;j.+) (

for (k=l;k<=mfit;k++) covar~jJ (kI=0.0;
betarlj (11=0.0;

for (i=l;i<c=ndata;i++)(
(*funca) (x~il ,afunc~ma);
ym=y [ i ;
if Wmit < ma)

for (J=(mfit+l) ;j<c=ra;j++)
yin -= ajlistaljjlJ~afuncjlista[jjl;

sig21=I.0/SQR(sig(il);
for (J=l;j<=mfit;j++){

wt=afunc(listafjlJ Jsig2i;
for (k=1;k<=j;k++)



covarfjj(kj += wttafuncjlista(kJl;
betafi) [1] += ym*wt;

if Wuit > 1)
for (J=2;j<umfit~j++)

for (k=l;k<=J-l;k++)
covar[k] fj1=covar[J] [ki;

gaussi (covar~mfit,beta, 1);
for (J=l;j<=mfit;j++) ajlista[j] ]=beta[jj (11;

*chisq=0.0;
for (inl;i~czndata;i++)(

(*funcs) (x~iJ ,afunc,ma);
for (surns0.0,J=l;j<=ma;j+.) sum += atjI*afunctjJ;
*chisq += SQR((yil-sum)/siglil);

covsrt(covar~ma, lista,uf it);
free..vector(afuric, laa);
free...matrix (beta. 1.na. 1.1);

#undef SQR

I. ------------------------------------------------------------------------ 1

funct (zb2, afunc21 len)
double zb2,afunc2 (1033
int ion;

imt 1,
double pow 0;

for (1=1; i~=len; i++)
(if (i >= 2) afunc2fi] = pow(zb2,(double){i-l));

else afunc2fij = 1.0;

I. ------------------------------------------------------------------------ 1
I' calc..deriv() - Called by DI.c to compute derivatives *
1* ------------------------------------------------------------------------ *

calc..deriv(chan,COEFF, zb, rad, sigma deyv, zeta)
int chan,COEFF;
double zb[l00I,rad[100],deriv[MAX...ZETA) fl0O,zeta[MAX...ZETA],sigina[100];

nt, i~j~k,maxi,list~lO];
double a[lOJ,chisqr[l0] ,cvr[ 10] [10];
double max~incr;
FILE *fptr,*fp;

for (i=1;i<=COEFF;i++) listli] = i

for (izchan-1;i,.=0;--i)
{zb[i+11 zb~iI;
radli+lJ radii];
sigma(i+1I = sigmali];



Ifit(zb~rad~sigma.chana.aCOEFF.listCOEFF.cvr~chisqr~funct);

/**-- Compute the zeta values by dividing into 200 points -~

max a zb(lI;
maxiul;
for (iul;ic-chan;4..i)
if (zb~iI > max)
(max = zb~i];
maxi a is

incr = (zbfmaxil - zb[0J)/(double)MAX-ZETA;

for (k=O;kIWLXZETA;eek)

zetalk] = (incr * (doubleMk + zb[l];

1~-Computing Derivatives -- **/
I~-Derivative matrix starts from 10,01 position */

a[COEFF+l1 = 0.0;

for (i=O; i<COEFF; i++)

for (k=l;k<=MAXLZETA;k+.)
(derivik-l] (ii =al)
for (J=l;j<c=COEFF;j++)
derivtk-lJ [ii += a[j+lJ * pow(zeta[k-l1,(double)j);

1*--------- Shift at] array --------- 0*

for(j=l;j<=COEFF;j+.)
alj]=(double)j * a~j+ll;

for (i=0;i<chan;i++)
Czb[i) =zb[i+11;
rad~ii) radli+lJ;
sigmatil = sigma(i+lJ;

/* -------------------------------------------------------------------------------------------------------- 0

I' fit..freq(): Called by DI.c to fit a curve to frequency and Zbar. 0

1*---------------------------------------------------------------------------------------/

fit...freq(chan,COEFF, zb, freq. ffreq, zeta)
mnt chan,COEFF;
double zb[l001,freq(l00J;
double ffreq [MAXLZETA1 ,zeta f AX..ZETA);

int i~j~k~maxi~list[lOJ;
double a(l0],chisqr(l01,cvr[l0](l01,sigma[lO0l;
double max,incr;
FILE *fptr;

for (i=1; i<=COEFF; i+e)
I listlil i=



for (iwchan-l;i>w0:--i)
Czb(i+lJ = zb(il;
freqti~l1 f req(ij;
siamali+l1 0.003333333;

lfit(zb,freq,sigiua~chan,aCOEFF~list,COEFF,cvr,chisqr,funct);

for (iml;i<uCOEFF;i++) printf(Oa(%d] = %e\nO~i~a[ij);
priritf(*\n\n6);
getcharo;

/**-- Compute the zeta values by dividing into 200 points -I

max = zb(lJ;
maxizul;
for (iml;i<=chan;++i)
if (zb[i] > max)
Imax =zbti);

maxi = i

incr = (zblmaxi) - zb[0])/(double)MAX&ZETA;

for (k=0;k<MAXLZETA; ++k)

zetalk) = (incr * (double)k) + zbrll];

for (k=l;k<=MAX...ZETA;k++)
Cffreqtk-l1 =al]

for (J=l;J<=COEFF;j++)
ffreq(k-11 += a~j+lI * pow(zeta(k-lJ.(double)j);

fptr = fopen(8freqfitm,Owm;
for (i=0; i<MAXZETA; i++)

fprintf(fptr,OWlf %lf\nwgzeta[ij,ffreqji]);
fprintf(fptr,O\n\n*);
for (i=l; i<=chan; i++)

fprintf(fptr,%tlf %lf\n8,zblij~freq[i));

felose(fptr);

for (i=0;icchan;i++)
I zbliJ = zbli+l1;

freqfij a freq~i.1J;

1'----------------------------------------------------------------------------------*



/* -- - - - - - - - -- - - - - - - - - -- - - - - - - - - -- - - - - - - - -

1' Program Name :GAUSSJ.c *
/* Purpose :Gauss-Jordan elimination technique - Called by LFIT.c *
1* ------------------------------------------------------------------------ *

#include -arath.h>

#define SWAP(a,b) (double temp=(a); (a)-(b); (b)wtemp;)

void gaussi (a,nr,b~m)
double **a,**b;
int n~zu;

int *indxc *indxr,*ipiv;
int i,icol~irow,j,k,1,1l,*ivectoro;
double big. dum, pivinv;
void nrerror ), free...ivectoro(;

indxc=ivector(l, n);
indxr=ivector (l,n);
ipiv=ivector(l~n);
for (j=1;j<c=n;j++) ipiv~j]=0;
for (i=l;i<c=n;i,.+)(

big=0.0;
for (J=l;j<=n;j++)

if (ipivtjl I= 1)
for (k=l;k.<=n;k++){

if (ipiv~kJ = 0){
if (fabs(a~jl[kl) >= big){

big=f abs (a [jI (kVJ)
irow=j;
icoluk;

Ielse if (ipiv[k] > 1) nrerror(OGAUSSJ: Singular I

++(ipivticoll);
if (irow != icol){

for (l=l;lc=n;l++) SWAP(a~irow][lI,a~icolJ[l])
for (l=l;l<=m;l++) SWAP(b[irowJ[l],bficoll(1J)

indxr (ii=irow;
indxcfil~icoi;
if (a~icollficol] == 0.0) nrerror(OGAUSSJ: Singular Matrix-20);
piviriv=l.O/a[icol] [icol);
ajicol] (icol]=1.0;
for (l=1;lc=n;l++) a[icolj [11 pivinv;
for (1=l;l1c=m;l++) blicol][lJ ] pivinv;
for (1l=1;1l<=n;ll++)

if (11 I= icol){
dum=a[Illt icoll;
atllJ (icolJ=0.0;
for (l=l;lc=n;l++) a[l1lJ[1= alicol)[1J*dum;
for (l=1;1<=m;l++) b(111111- b[icolJ(11*dum;

for (l=n;l>=1;l--){
if (indxr[l] != indxc[l1)

for (k=l;k<=n;k++)
SWAP(alkJ [indxr[lJ I alkI Iindxc~l] I);



fr.....ivectcr (ipiv. ,lri);
tre....ivector(iridxr. in);
fre....ivector(indxc. 1.n);

#undef SWAP



1*-- - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - -
1* Program Name :COVSRT.c *
1* Purpose :To do computation with the covariance matrix *
/* ------------------------------------------------------------------------ *

void covsrt (covar,ma, lista,mnfit)
double **covar;

irit i,j;
double swap;

for (j=l;j~cma;j++)
for (i=j~el;i<=ma;i++) covar(ilfjI=O.O;

for (i=l;i~cmfit;i++)
for (j=i+l;j<=mfit;j++){

if (lista(jJ > lista~iJ)
covar[lista(jlJ [lista~iJ]=covar[il [ji;

else
covar~listati]J [lista[j]J=covarli] [ji;

swap=covar[l)1 11
for (j=1;j<=ma;j++)(

covar[l1 (j]=covar[j] [ii;
covar[jJ Ij]=O.O;

covar~lista[l1]][Iista[l1J=swap;
for (j=2;j<=mfit;j++) covar~lista~jl][lista[jll=covar(1][jl;
for (j=2;j<=ma;j++)

for (i=l;i<=j-1;i++) covar[i~jlj=covar~j][i];



/ ---- *---
/* Program Name : FACTORIAL.c */

** ..--...........-

#Include <stdio.h>

int factorial(n)
int n;
(

int i, product = 1;

for (i=2;i<=n;++i)
product *= i;

return product;

)



I** -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

/*Program Name :POLINT.c
/*Purpose :Called by the Romberg integrator program

1* ------------------------------------------------------------------------ *

finclude <rnath.h>

void polint(xa,ya,n,x~y~dy)
double xafl,ya[],x,*y,*dy;
int n;

int i,m~ns=l;
double den, dif, dift, ho, hp, w;
double *c,*d,*dvectoro;
void nrerroro( *free...dvector 0;

dif=fabs(x-xa[1]);
c=dvector(l,n);
d=dvector(l~n);
for (i=l;i<=n;i++){

if ( (dift=fabs(x-xatil)) < dif){
ns=i;
dif=dift;

cji]=yatil;

d ( ii =ya Lii

for (m=l;m<n;m++){
for (i=l;i<=n-rn;i++)(

ho=xafiJ-x;
hp=xa[i+rn]-x;
w=c~i+l]-d~il;
if ( (den=ho-hp) ==0.0)
nrerror(OError in routine POLINTO);

den=w/den;
d~i]=hp*den;
cfi]=ho*den;

*y+= (*dy=(2*ns < (n-rn) ? clns+l] d[ns--]));

fredetoI~ ~ )
free~dvector(d, l,n);



/* Program Name : CALCMOM2.c *1
/ . .--- -- -- --- -- -- --- -- --

#include <stdio.h>

#include <math.h>

/* This appears reliable up to about a[B], or lambda[8] /

int n;
double m;
FILE *fp;

calcjmom2 (mvalmom_data)
double mval,mom.data[101;
{

int nfact;
int factorial();
double ab,c,d,nterm;
double mom, momentl,moment2,moment3,moment;
double W20;
double func2);
double trapzd2();
double midinf2f);
double midexp2();
double qromb2(0;
double qromo20;
void polint(),nrerror(;

m = mval;

a = -1.0e30;
b = -2.0;
c = 5.0;
d = 1.0e30;
for (n=O;n<=9;++n) {

nfact = factorial(n);
nterm = 1.0/((double) nfact);
momentl = qromo2(func2,a,b,midinf2);
moment2 = qromb2(func2,b,c);
moment3 = qromo2(func2,c,d,midexp2);
mom = momentl + moment2 + moment3;
moment = nterm * mom;
mom-data[n] = moment;
)

)



/* Program Name : QROMB2.c */
I* ........................- *-

#include <math.h>

#define EPS 1.0e-6
#define JMAX 20
Mdefine JMAXP JMAX+l
#define K 5

int n;
double m;

double qromb2(func2,a,b)
double a,b;
double (*func2)(};

double ssdss,trapzd2();
double s[JMAXP+1],h[JMAXP+÷I;
int j;
void polintonrerroro;

h(1]=1.0;
for (j=l;j<=JMAX;J++) {

stjl=trapzd2(func2,a,b,j),
if (j >= K) {

polint(&h[j-K],&stj-K],K,0.0,&ss,&dss);
if (fabs(dss) < EPS*fabs(ss)) return ss;

I
s[j+l1=s(11;

h[j+l]=0.25*hlj];

nrerror(OToo many steps in routine QROMB");

#undef EPS
#undef JMAX
#undef JMAXP
#under K



/* .....---
/* Program Name : TRAPZD2. c *
/. ....- */

#define FUNC2(x) ((*func2)(x))

int n;
double m;

double trapzd2 (func2,a,bN)
int N;
double ab;
double (*func2)(); /* ANSI: float (*func)(float); */
(

double fna, fnb, fnx;
double x, trm, sum, del;

static double s;
static int it;
int j;

if (N == 1) {
it=l;
fnb = FUNC2(b);
fna = FUNC2(a);
return (s=0.5*(b-a)*(fna+fnb));

) else (
tnm=it;
del= (b-a)/tnm;

x=a+0.5*del;
for (sum=O.Oj=l;j<=it;j++,x+=del) {

fnx = FUNC2(x);
sum += fnx;

)
it *= 2;
s=O.5*(s+(b-a)*sum/tnm);
return s;

)

tundef FUNC2 (x) ((*func2) (x))



/* Program Name : QROMO2. c*
I* ........---

#include <math.h>

#define EPS 1.0Oe-6
#define JMAX 14
#define JMAXP JMAX+I
#define K 5

int n;
double m;

double qromo2(func2,a,b, choose)
double ab;
double (*func2)();
double (*choose)(); /* ANSI: float choose(float(*)(float),float,float,int); *1
(

int j;
double ss,dss,h[JMAXP+l],s[JMAXP+1];
void polint(),nrerroro;

h[1]=1.0;
for (j=lsj<=JMAX;j++) (

s[j]=(*choose)(func2,a,b,j);
if (j >= K) {

polint(&htj-K],&s[j-K],K,0.0,&ss,&dss);
if (fabs(dss) < EPS*fabs(ss)) {

return ss;
I

}
s[j+l1=s[j];
h[j+lj=hhj]/9.0;

nrerror(*Too many steps in rc QROMO});

#undef EPS
#undef JMAX
#undef JMAXP
#undef K



/* Program Name : MIDEXP2.c */

#include <math.h>

#define FUNC2(x) ((*func2)(-log(x))/(x))

int n;
double M;

double midexp2(func2.aa.bb.N)
int N;
double aabb;
double (*func2)(); /* ANSI: float (*funk)(float); */
(

double x, tnm, sum, delddelb,a;
static double s;
static int it;
int J;

b=exp(-aa);
a=0.0;
if (N 1= 1) {

it=l;
s=(b-a)*FUNC2(0.5*(a+b));
return s;

else {
tnm=it;
del=(b-a)/(3.0*tnm);
ddel=del+del;
x=a+0.5*del;
sum=0.0;
for (j=l;j<=it;j++) {

sum += FUNC2[x);
x += ddel;
sum += FUNC2(x);
x += del;

I
it *= 3;
s= (s+ (b-a) *sum/tnm) /3.0;

return s;

#undef FUNC2



/* Program Name : MIDINF2.c *c
/* - --- - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -

#define FUNC2(x) ((*funk2)(l.0/(x))/((x)*(x)))

tnt n;
double m;

double midinf2(funk2,aa,bb,N)
tnt N;
double aa,bb;
double (*funk2)(); /* ANSI: float (*funk)(float); *
(

double x, tnm, sum,delddel,ba;
static double s;
static int it;
int j;

b=l.0/aa;
a=l.0/bb;
if (N == 1) {

it=l;
return (s=(b-a)*FUNC2(0.5*(a+b)));

) else {
tnm=it;
del=(b-a)/(3.0*tnm);
ddel=del+del;
x=a+O.5*del;
sum=0.0;
for (j=l;j<=it;j÷+) (

sum += FUNC2(x);
x += ddel;
sum += FUNC2(x);
x += del;

)

it *= 3;
return (s=(s+(b-a)*sum/tnm)/3.0);

#undef FUNC2



1' Program Name : FUNC2.c '/
/1 Purpose : Computes the value of the function for moment calculation

/* ------------------------------------------------------------------------ *

#include <stdio.h>

int n;
double m;

double runc2(z)
double z;
(

double powrwgt;
double powOW2();

if (n == 0) {
powr 1.0;

I

else {
powr = pow(z, (double) n);

}

wgt = W2(z);
powr *= wgt;

return powr;
}



/* Program Name : W2.c */
/* Purpose : Compute the Eddington-King Weight function for a particular */
/* value of z. *1
/* ---------------------------------------------------------------------- *

#include <stdio.h>
#include cmath.h>

int n;
double m;

double W2Cz)
double z;
{

double powo;
double expo;
double gammlno;
double mm, zm, ganma,gammahold, ezmmezm, expmz,weight;

Mm = pow(mm);
zm = Z/M;
ezm exp(-zm);
mezm = -1.0*m*ezm;
gammahold = gammln(m+l.0);
gamma = exp(gammahold);
expmz = exp(mezm-z);
weight = (mm/gamm)*expmz;

return weight;
I

double gammln(xx)
double xx;
{

double x, tmp, ser, gamxreturn;
static double cof[6]={76.180091730-86.50532033,24.01409822,

-1.231739516,0.120858003e-2,-0.536382e-5);
int j;

x=xx-1.0;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=l.0;
for (j=O;j<=5;j++) {

x += 1.0;
ser += coffjl/x;

gam_return = -tmp+log(2.50662827465*ser);

return gam_return;



/* Program Name : GENLAMBDAS2.c */

#include <stdio.h>
#include <math.h>

#define MAXSIZE 100
#define DEBUG 0

FILE *fp;

void genlambdas2(kALAMBDA)
int k; /* maximum size we work with */

double A(MAXSIZE],LAMBDA(MAXSIZE];
{

int i,j,l;
double sum;

LAMBDA(0] = 1.0/A[01;

for (i=l;i<=k;+÷i)
{

sum = 0.0;
for (j=l;j<=i;++j)

sum +z LAMBDA(i-j]*A[j];
LAMBDAi] = -sum/A[0];
}

printf(*\no);
for (1=0;1<k;++l)

{

printf("LAMBDA[%d = %13.101f\n*,lLAMBDA[1]);

getcharo;
}



/* -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - -

I * Program N1am. GB..CALCJ4OI. c

#include <stdio .h>
#include .cmath.h>

def in. Z?4AX 49
#def in. WZMAX 49

int n;
double z(ZMAXI~wz(WZMAXI;

FILE *ifp,*ofp;

void gb...calc...om(numu..channels, zbar. scalejhgt~moinents)
int numuchannels;
double zbartl00jgmomentstl00] (1001 ,scalejhgt;

int i~k,nfact,cnt;
int factorial();
double a. b~zb...sc. nterm, mom, moment;
double func 0;
double trapzdo;
double qrombo;
char infile[151 .outfile(151;
void polinto.nrerroro;
double A[3];

AMl = 0.404133;

A[21 = 0.828590;

ofp = fopen(umoments.dat*,w*);

for (kzl ;k<nunL~chanziels ;++k)

strcpy(infile,mchan*);
infile[41 = k+48;
infile[5] = \;
strcat(infile,m.datO);

ifp = fopen(infile,or);

for (i=0;i<ZMAX;++i){
z~ij= 0.0;
w'z[iJ 0.0;

for (i=Zl4AX-l;i>=0;--i)
cnt = fscanf(ifp,O%lf %lfw,&wz[i],&z[ij);

fclose(itp);

for (i=0;i<ZMAX;+.i){
zfij zliJ/scale...hgt;
wz[i] (wz~i]/l000.0)*scale..hgt;

a = z[01;



b a z(ZI4AX-lJ;
I*zb-sc a zbar~kl/scale...hgt; The Z_Bar values given by di.c '

z *s zbar[kl; I' are already scaled '

tprintf(ofp,oChannel no. td\n\ns,k+l);
for (n=O;n<cl0zi-en) (
nfact = factorial(n);
ntorm - 1.0/((double) nfact);
mom - qromb(func~a,b~zb...sc);
moment a nterm *mom;

I'Including the Ground - Boundary Conditions for Channels 1 &2
if (k <= 2)

moment += ((.0 - AMI) * pow((-1.O*(zb...sc)),(double)n));

moments~kJ (niamoment;
fprintf(otp,Omom(%dI = %lf\n*,n,moment);

fprintt(ofp,O\n\n\nsl;

fclose(ofp);
printt(*\ns);



/* -------------------- -----------------------

/* Program Name : QROMB.c/* --------------------------------"------------

#include <math.h>

#define EPS 1.0e-6
Mdefine 3MAX 20
#define JMAXP JMAX+l
#define K 5

int n;
double m;

double qromb(func,a,b, zbsc)
double a,b,zb.sc;
double (*func)();
£

double ss,dss,trapzdo;
double s[JMAXP+1],h(JMAXP+1];
int j;
void polinto,nrerroro;

h[1]=1.0;
for (j=l;j<=JMAX;j++) (

sfj]=trapzd(func,a,b,j,zb-sc);
if (J >= K) (

polint(&h[j-K],&sfj-K],K,0.0,&s%,&dss);
if (fabs(dss) < EPS*fabs(ss)) return ss;

)

s[j+lI=s[j];
h[j+lJ=0.25*h[jl;

) nrerror(*Too many steps in routine QROMBO);

#undef EPS
#undef JMAX
#undef JMAXP
#undef K



I* ........................................ */
/* Program Name : TRAPZD.c */
/* -- */

#define FUNC(x,zb.sc) ((*func)(x,zb-sc))

double trapzd(func.a.b.N, zb.sc)
int N;
double a,b,zb-sc;
double (*func)(); /* ANSI: float (*func)(float); '/

double fnx;
double x, tnm, sum, del;
static double s;
static int it;
int j;

if (N == 1) {
it=l;
return (s=0.5*(b-a)*(FUNC(a,zbsc)+FUNC(b,zbsc)));

) else {
thin=it;
del=(b-a)/tnm;
x=a+0.5*del;
for (sum=O.Oj=l;j<=it;j++,x+=del)

{

fnx = FUNC(x,zb..sc);
sum += fnx;

)

it *= 2;
s=0.5*(s+(b-a)*sum/tnm);
return s;

#undef FUNC(x,zb.sc) ((*func)(xzb.sc))



/* Program Name : FUNC.c '/
/* Purpose : Computes the value of the function for the moment calculation */
1* using the DMSP SSM/T-1 weight functions. '/

* ----------------------------------------------------------------------- *

#include <stdio.h>
#include <math.h>

#define ZMAX 49
#define WZMAX 49

int n;
double z[ZMAX],wz[WZMAX];

double func(zval,zb.sc)
double zval,zb.sc;
{

int i,stop;
double zn, znwz,wzval,num, den;
double fabso,powo;

/*

zn = pow(zval,(double) n);
return zn;
*/

stop = 0;
for (i=O;stop!=l;++i)
(

if (zval==z[i])
(

stop = 1;
if (n==O && zval-zbsc == 0.0) zn=0.0;

else zn = pow((zval-zbsc) (double) n);
zn_wz = zn * wz[i];
return zn-wz;

I
else if ((zvalt=z[i]) && (zval<z[i]))
(

stop = 1;
num = (wztiJ-wz[i-lJ) * (zval-z[i-1]);
den = zfi] - zli-1];
wzval = (num/den) + wz[i-1];
if (n==O && zval-zb.sc == 0.0) zn=0.0;

else zn = pow((zval-zbsc),(double) n);
znwz = zn wzval;
return znwz;



1* -- - - - - - - - -- - - - - - - - - -- - - - - - - - - -- - - - - - - - -

1* Program Name :GEK..LANBDAS c '
I** -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

#include <stdio.h>
#include <math.h>

#def in. MAXSIZE 100

FILE *ofp;

void gen..lambdas (numn..channels, nuinjnoments, ALAMBDA)
int num~jnoments~nuni..channels;
double A[MAXSIZE] [MAXSIZEI ,LAMBDA[MAXSIZEJ (MAXSIZE];

ixit i,j,k;
double sum;
char st(81;
FILE *fp;

LAMBDA[0] [0] = 1.0;
for (i1l;i<=num-.momnents;++i) LAAMBDA10[0 i] 0.0;

for (k=l;k<nun~charlnels; ++k)

LAMBDA(kJ [0] = 1.0/A~kJ (01;

for (i=l;i<c=num-moments;,+i)

sum = 0.0;
for (J=l;j<=i;++j)
sum += LAMBDA[kj~i-j]*Alklfj1;

LAMBDA~kJ (ii = -sum/A[k] (01;

for (i=0;icnumjraonents;++i)

printf(m\n\n\nLambda No. Sd\nO,i);
for (k=0;k<nurutcbannels;++k)
printf(OChannel(%dJ = %11.91f\n*,k,LAMBDA~k][i]);



1*/*l ----------
/* Program Name : B2.c */
/ . .--

#include <stdio.h>
#include <math.h>

Idefine MAX._ZETA 200
#defino SCLHT 8.4345

FILE *ifpl, *ifp2, *ofp;

calc_B2(maxder, lambda, R,B, zeta)
double lambda[100],R[MAXZETA][100],B[MAXLZETAJzeta[MAXZETA);
int max_der;
{
int z,i;

/* calculate B terms */

for (z=O;z<MAX_ZETA;++z) {
Blz] = 0.0;
for (i=0;i<max-der;++i)

B[z] += lambdafi] * Rlz][i];
I

I



I** -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -
I' Program Name :B.c *
"*---------- -----------------------------

#include <stdio.h>

#include <math.h>'

#define MAXZETA 200

FILE *ifpl, *ifp2, *ofp;

caic-lamb(ch, z, zbs. emim, b)
int ch;
double z,zbs[lOO3,lb[103,emlm[100] [1001;

int i,j;

for(i=0;zbs~iJ < z && i <7;+)

ror(J=0;j<9;j++)

lb[J] = ((z - zbs~i-11) * (emlm~il[jJ emlmti-1][jl))/(zbs[iJ zbs~i-1]);
lb~jJ += emlm[i-1J[ji;

caic_B(chan~max...der, lambda,R, B, zeta, zbars)
double lambda[l00]Tl00],R[MAX-LZETAJ1l00],B[MAX3ZETA],zeta[MAXLZETAJ,zbars[1O0J;
int chan,max~der;

int z~i;
int clos...chan;
double laxnb[10];

/* calculate B terms ~

for (z=0;z<MAXZETA;++z){
B(zI = 0.0;
calc~jlamb(chan, zeta[z , zbars, lambda, lamb);
for (i=0;i~max-.der;++i)

Biz] += lamb[i] * Rtzl[iJ;



/I --- /

/* Program Name : B_T.c */

/* ....-- /

#include <stdio.h>
#include <math.h>

#define Cl 1.19107e-05 /* 2hc**2 in erg cm**2 sec**-I ster**- */
#define C2 1.438858 /* hc/k in cm degK *I
#define C 3.0elO
#define MAXZETA 200
#define SCLHT 8.4345

FILE *ifpl, *ifp2, *ofp;

/* ---------------------------------------------------------------
1* Temperature calculation using frequencies from the fitted curve */
/* -------------------------------------------------------------- *

B__T(CHAN, NU, ZB, ZETA, B,T)
double NU[MAXZETA],ZB[100];
double ZETA[MAXZETA] .B[MAXZETA] ,T(MAXZETA];
int CHAN;
{

int i,j;
double logo,powo,expo;
double cv, v3,cv3_B, ln_cv3_B;

/* calculate temperatures */

for fi=O;i<MAXZETA;++i)
{
v3 = pow(NUMi],3.0);
cv = C2 * NUJ[i];
cv3_B = ((CI*v3)/B[i]) + 1.0;
ln.cv3_B = log(cv3_B);
T[i] = cv/ln_cv3_B;



/** -- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

/* Program Name :NRUTIL.c '
1* Purpose :Numerical Recipes Utilities file *
1* ---------------------------------------------------------------------- *

#include <malloc.h>
#include <stdio.h>

void nrerror (error-.text)
char error..text(J;

void exito;

fprintf(stderr,oNumerical Recipes run-time error... .\no);
fprintf(stderr. %s\no~error-text);
fprintf(stderr.* .. .now exiting to system... *\n);
exit(l);

double *vector (nl, nh)
int nl~nh;

double *v;

v=(double *)wlloc( (unsigned) (nh-nl+l) *sizeof (double));
if (Iv) nrerror(sallocation failure in vectorom);
return v-nl;

int *ivector(nl~nh)
int nl,nh;

mnt *v;

v=(int *)malloc((unsigned) (nh-nl+l)*sizeof(int));
if (Iv) nrerror(gallocation failure in ivectoro U);

return v-nl;

double **matrix (nrl, nrh, ncl *nch)
int. nrl,nrh,ncl~nch;

mnt i;
double **m;

mso(double **) malloc( (unsigned) (nrh-nrl+l) *sizeof(double*));
if (1m) nrerror(%allocation failure 1 in matrixoO);
m -= nrl;

for(i~nrl; i<=nrh;i++){
mfiJ=(double *)malloc( (unsigned) (nch-ncl+l)*sizeof(double));
if (Im~i)) nrerror(Oallocation failure 2 in matrixo");
m(iJ -v: ncl;

return m;

void free-vector(v,nl,nh)
double *v;



hit nl, nh;

free( (char*) (v+nl));

void fre...~ivector (v, ni *nh)
int *v~nl,nh;

free( (char*) (v+nl));

void free.jnatrix (in.nrl *nrh, ncl,nch)
double **m;
int nrl,rirh,ncl,nch;

hit 1;

for(i=nrh;i>=nrl;i--) free((char*) (m~iI+ncl));
free( (char*) (in+nrl));

double *dvector (ni ,nh)
hit nl,nh;

double *v

v=(double *)malloc( (unsigned) (nh-nl+l) *sizeof (double));
if (lv) nrerror(Oallocation failure in dvectoro*);
return v-ni;

void free~dvector (v, ni *nh)
double *v;
mnt nl,nh;

free( (char*) (v+nl));



#include .cialloc.h>
#include <stdio.h>

void nrerror(error-text)
char error..text[1j;

void exito;

fprintf(stderr,aNumerical Recipes run-time error ... n)
fprintf(stderr, %s\nO,error...text);
fprintt(stderr,. .. .now exiting to system... n)
exit(1);
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