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EXECUTIVE SUMMARY

An account is provided of the technical work carried out during the
period between delivery of the preliminary Solar Wind Transport
Magnetosheath Forecast Model (Phase I SWT model) in November 1991 and
the early termination of the contract in July 1993.

The technical work carried out during this period focused on
validation of the SWNT model and has involved two primary technical
tasks: (1) creation of the observational satellite data base against
which the model was to be validated, and (2) initial comparative testing
of the Phase I SWT model forecasts against these observations. Details
of the results obtained from these two technical tasks are discussed.

At the present stage of development, the SWT forecast model remains

unqualified for operational use. An outline is provided of the
technical tasks required to complete the qualification program.
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1. OVERVIEW OF SOLAR WIND TRANSPORT MAGNETOSHEATH FORECAST MODEL
1.1 Overall Objectives

The overal”™ objectives of the current contract effort is to develop
a Solar Wind ‘ransport Magnetosheath Forecast Model (SWT Model) for
operational use by the Air Weather Service (AWS) and the Space Forecast
Center (SFC). This model will be the first component in a sequential
predictive chain that will comprise an integrated space plasma weather
forecast system proceeding from Ly down to low Earth orbit.

The SHT model will proceed from a knowledge of:

. real-time solar wind properties at an upstream spacecraft
monitor located approximately at the Ly libration point

° terrestrial geomagnetic field and certain magnetospheric
indices

to forecast the time-dependent plasma and magnetic field properties

. from the upstream monitor to and through the terrestrial

bow shock
L throughout the 3-D volume of the magnetosheath region down

to and across the magnetopause boundary

* into the outer region of the magnetosphere

The operational domain of the Solar Hind Transport Magnetosheath
Forecast model 1s as shown in the sketch below.

\s oy
-\ - Operational Domain of

A Solar Wind Transport
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ITlustration of Operational Domatn of Solar Wind Transport
Magnetosheath Forecast Model




The specific output from the SWNT model will be:

. location of bow shock and magnetopause surfaces

. plasma and magnetic field properties throughout the

magnetosheath region, down to the magnetopause, and into
the outer magnetospheric region

L time histories of plasma and magnetic field properties
along specific spacecraft trajectories

L input data for Magnetospheric Specification Model and
Magnetopause Boundary Layer Model

L selected output displays to facilitate operational use

1.2 Operational Elements of SWT Model

The primary challenge in the development of the Solar Wind
Transport Magnetosheath Forecast Model is to develop an operational
forecasting capability to be approximately 100 times faster than the
actual events within the operational domain of the SKT model occur. This
will require SWT model operational times of less than a minute, and will
provide overall warning times from approximately 10 to 50 minutes
depending upon oncoming solar wind conditions.

The objective of the first 18 months of the planned five-year
contractual effort was to initially establish all of the essential
operational elements of Solar Wind Transport Magnetosheath Forecast
Model and to embody them into a preliminary SKT model. These elements
are:

1. Input Element

° measurement of solar wind properties by upstream monitor
located at the L; libration point

. determination of input parameters from monitor data for
solar wind transport forecast model

2. Solar Wind Transport Forecast Element

. determination of plasma and magnetic field properties
between upstream monitor and bow shock

. determinarion of forecast time for Magnetosheath and Bow
Shock Forecast Element

. determination of input parameters for Magnetosheath and
Bow Shock Forecast Element




3. Outer Magnetosphere and Magnetopause Forecast Element

L determination of magnetic field in outer magnetospheric
region
° prediction of location of approximate pressure-balanced

magnetopause surface

o determination of input parameters for Magnetosheath and
Bow Shock Forecast Element

4. Magnetosheath and Bow Shock Forecast Element

. prediction of location of bow shock

. prediction of plasma and magnetic field throughout
magnetosheath

. determination of input parameters for Forecast

Presentation OQutput Element

. input for MSM Model and other components of forecast
system

5. Forecast Presentation Output Element

° numerical values

° graphical displays

A1l of these elements were successfully embodied in a preliminary
SHT model that was developed for the purpose of providing utility in the
interim period before the final operational SNT model became available.
In particuiar, the preliminary SKT model was specifically constructed to
provide al1 the necessary information regarding model input and output
that would be required for real-time operational use with the final
ope;atio?a1 SHT model. The preliminary SWNT model is described in detail
in Ref. 1.

Because of the shortness of time from contract start to delivery of
the interim SHT model, an essential element that was not possible to be
carried out with the preliminary SNT model was the detailed evaluation
of SWNT model forecasts as well as the actual SWT model validation
employing actual satellite data. This task was planned to be the focus
of the next technical effort to be carried out on the contract, and was
conceived to consist of the following subtasks:




° establishment of a satellite data base that realistically

simulates real-time operational data and that would be
suitabi. for SKT model forecast testing

] SNT Model validation by detailed comparison of wodel
forecasts with this observational data base

° identification of elements in the solar wind transport
magnetosheath forecast system that require further
enhancement

° development and incorporation of all improvements
1d;n%1110d as necessary into the final operational SKT
mode

The work accomplished on these subtasks is described below.

2. SATELLITE DATA BASE FOR VALIDATION OF SWT FORECAST MODEL

A study was carried out to identify appropriate candidate archival
satellite data sets that would meet the requirements for use in the
validation program for the SWT model. These data sets would necessarily
be composed of simultaneous observations from at least two spacecraft
and provide concurrent observations of both oncoming solar wind plasma
and magnetic field conditions and corresponding conditions in the
terrestrial magnetosheath.

As a result of this investigation, it was found that the most
suitable and available data sets that meet these requirements are the
1978-80 ISEE 2 and 3 observations. A large library of archival results
from these ISEE spacecraft is currently available. However, the actual
assembly of the satellite data base sufficient for validation of the SHT
model, which would necessarily involve the correlation of a large number
(of the order of ~200) of simultaneous ISEE 2 and ISEE 3 data sets from
this library, represents a substantial effort. This is so since the
individual ISEE spacecraft data sets have to be searched separately to
ascertain data continuity, completeness and appropriateness, and then
these same ISEE data sets need to be correlated to insure simultaneous
coverage of both solar wind and magnetosheath. Furthermore, such an
effort is peripheral to the SNT model developments and improvements
needed in the validation effort. Consequently, in order to ameliorate
the impact on contract resources, we have established a joint
collaborative program with UCLA and Prof. C. T. Russell and Dr. G. Le of
the Geophysics Dept. Under this program, RMA and UCLA will jointly
identify the simultaneous ISEE data sets, UCLA will provide the actual
numerical ISEE data sets to RMA, and RMA will share the comparative
results with UCLA. The result of this collaborative program is that RMA
will acquire a sufficiently extensive satellite data base to validate
the SWT model at a minimum expense to the project.

We have now carried out the identification of 184 simultaneous ISEE
solar wind and magnetosheath data sets that are both appropriate and




sufficient for the SNT model validation program. These data sets
involve ISEE 2 observations of the magnetosheath with simultaneous ISEE
3 observations of the oncoming solar wind. Each of the ISEE 2 data sets
involves at least one magnetopause crossing and may contain in addition
one or more bow shock crossings. The time intervals spanned by the ISEE
2 magnetosheath traversals vary from about 4 to 42 hours and the
traversals are located in the dayside magnetosheath. For these
observations, ISEE 3 is nominally located in the solar wind near the Lj
libration point. Al1 the observational data for both ISEE 3 and ISEE 2
for both plasma and magnetic field are available at 1 min. intervals.

Table 1 provides an overview of the combined ISEE 3 and ISEE 2 data
sats. A summary is provided of conditions both in the solar wind and at
the Earth (Dst, dipole tilt) at the time of the initial ISEE 2
magnetopause crossing. The data sets are ordered by increasing
magnetosonic Mach number and span the range from 2.1 < M, < 8.2.

Figures 1 and 2 below provide illustrations of sampla simultaneous
data sets from this data base. Figure 2 displays data set #003 which
corresponds to ISEE 2 Orbit 314 inbound. Magnetosheath data from ISEE 2
are shown by the thin lines, while corresponding solar wind data from
ISEE 3 is superimposed and shown as thick lines. The ISEE 3 data for
this illustration has been uniformly time shifted forward by 50 minutes
to allow for the arrival time lag. The data illustrated in Figure 1 are
for moderately unsteady solar wind plasma conditions as evidenced by the
observed density variations, but for fairly steady IMF. These data are
for relatively low solar wind magnetosonic Mach number conditions, i.e.
Mps =~ 2. Figure 2 displays corresponding ISEE 3 and ISEE 2 data for

more typical solar wind magnetosonic Mach number conditions, i.e. My =~

6, witp conditions in the solar wind fairly steady for both the plasma
and IMF.

The current status of this ISEE 2 and ISEE 3 data base is that the
data base is currently archived in total at UCLA. Selected sets of the
data base which are described below have been transferred to RMA for
initial comparative testing of the SWNT forecast model. Final transfer
of the complete archival data base to RMA has not been carried out.

3. SKT MODEL VALIDATION PROGRAM
3.1 Previous Validation of Elements of the SHT model

The primary purpose of the SWT model validation program is to
assess and qualify the accuracy of the SWT model forecasts in situations
that simulate as closely as possible the real-time operational
environment that the model will be used in. Previous studies have
served to successfully verify a number of elements embodied in the
current SWT model. For example, validation of the methodology employed
in the development of the approximate pressure-balanced magnetopause
shape, as shown in Figure 3, which underlies the entire basis of the
gasdynamic convected field model employed in the SWT model to determine
the magnetosheath plasma and magnetic field, was made early on in Ref.
2. Similarly, validation of the accuracy of the Briggs-Spreiter
magnetopause model incorporated in the SNT model was successfully made
in Ref. 3 by comparison with other theoretical magnetopause model
results. These results are summarized in Figure 4. An important early
evaluation of the gasdynamic plasma flow model employed in the SWT mode)




was reported in Ref. 4 where a comparison of model-predicted with
laboratory-observed bow shock shape about a model magnetopause was made.
These results are shown in Figure 5. One of the initial evaluations of
detailed plasma properties in the magnetosheath as predicted by the
gasdynamic model was made by comparison with observations of Pioneer VI
plasma data (Ref. 4) as shown in Figure 6, and also with IMP-1 data
(Ref. 4) and is shown in Figure 7. Another initial validation of the
gasdynamic flow model but this time using magnetometer rather than
plasma observations of the bow shock by five IMP spacecraft from 1963-68
was made in Ref. 5 and is shown in Figure 8. A more recent validation
of the convected magnetic field model employed in the SKT model was
reported in Ref. 6 and is illustrated in Figure 9 where a comparison of
the predicted magnetic field along the Pioneer-Venus spacecraft
trajectory in the Venusian magnetosheath was made with PY0 magnetometer
observations. Another successful recent validation of the convected
magnetic field model is reported in Ref. 7 and illustrated in Figure 10,
where comparison of the predicted magnetic field along the Voyager 2
spacecraft trajectory was made with Voyager 2 magnetometer observations.
A recent summary of comparisons of various elements embodied in the SWT
model with observations from a variety of spacecraft and solar
wind/planetary interactions throughout the solar system are provided in
Refs. 7 and 8. A1l of these previous comparisons have served to provide
a firm basis for the preliminary successful valiidation of the accuracy
of a number of elements of the SWT model.

3.2 Current Validation Results of the SNT Model

The one important aspect that was not possible to investigate in
these previous studies due to the absence of an appropriate satellite
data base was the use of continuous oncoming solar wind plasma and
magnetic field information as input to the SKT model. Prior to the
current study, this was the gne crucial feature of the operational
forecasting problem that had never been previously tested against the
various elements embodied in the present SHT model. The key advantage of
the SKT model as employed in an operational mode, however, lies in this
very aspect. That is, the ability of the currentiy-configured SKT model
to employ short time-interval (of the order of 1 min.) solar wind input
data to rapidly predict (in a few CPU secs.) the global magnetosheath
plasma and field properties, including in particular the location of the
magnetopause and bow shock surfaces and conditions at specific
spacecraft orbital locations within the global magnetosheath, makes the
model uniquely valuable for real-time operational use.

The general plan for the SWT model validation program is to employ
the simultaneous ISEE 3 solar wind data as input to the SKT model and
then to make comparisons of the plasma and magnetic field properties
forecast by the model at the ISEE 2 spacecraft orbital locations in the
magnetosheath with the ISEE 2 observations of plasma and magnetic field.
In order to qualify the SWT model for operational use, it will be
necessary to employ approximately half of the 184 simultaneous ISEE 3
and ISEE 2 data sets contained in the aata base. It was planned that
the initial comparative testing would be made for selected data sets
corresponding to solar wind conditions believed favorable for good SWT
model forecasting. Subsequent comparisons would then be made for
selected data sets corresponding to solar wind conditions believed to be
increasing less favorable for good forecasting, i.e. low Mach number,
large IMF. very unsteady plasma and magnetic field, etc.




To date, we have now carried out detailed comparisons of the SWT
model forecasts with the ISEE observations for 6 of these simultaneous
data sets. These validation studies demonstrate that the Phase I SWT
model forecasting results are generally in good agreement with the ISEE
2 magnetosheath observations. They have also, however, disclosed a
number of deficiencies.

In particular, the global magnetic field forecast of the Phase I
SHT model in the vicinity of the magnetopause, particularly at low solar
wind Alfven Mach numbers, was found to display a consistent systematic
discrepancy with the ISEE observations. The source of a major part of
this discrepancy has been identified as due to a previously-known
spurious magnetic singularity at the magnetopause that is contained in
the basic gasdynamic convected magnetic field model. A provisional
procedure has been preliminarily developed to diminish the effects of
this singularity. This procedure is based on the known physical
constraint that the magnetosheath magnetic field at the magnetopause
cannot exceed the local confined magnetospheric magnetic field on the
interior surface of the magnetopause at that location. This procedure
has been initially tested against the ISEE 2 data, and the forecasts of
the magnetic field provided by this modification, as shown in Figures 12
to 23 below, provide & significant improvement over those provided by
the Phase I SWT model.

In addition, initial comparisons indicate that superior SWT model
forecasts are achieved at low solar wind Alfven Mach numbers by
employing the magnetosonic rather than sonic Mach number as input to the
SHT model. Additionally, it has been found that employing the
magnetosonic Mach number does not alter the agreement of the SWT modsl
forecasts for situations at high solar wind Alfven Mach numbers. In all
of the comparisons shown below in Figures 11-23, the magnetosonic Mach
ga¥bequf been employed as input to the gasdynamic calculation in the

model .

In Figures 11 and 12, we provide results of the first comparisons
of the SHNT model forecasts and ISEE 2 observations for ISEE 2 orbit 145
outbound. This data set (#178) was selected as one of the initial
candidates for the validation study as it corresponded to solar wind
conditions that were believed favorable for good SHT model forecasts;
that is, high magnetosonic Mach number (Mys ~7.1), Bz northward, steady

solar wind plasma conditions, fairly steady IMF, and single bow shock
and magnetopause crossings by ISEE 2. The plot on the left of Figure 11
provides a view of the ISEE 2 spacecraft orbit as seen in the solar wind
(X.R) coordinate system fixed to the magnetopause that is employed in
the global magnetosheath computations. Such a view of the spacecraft
trajectory is quite informative as it immediately exhibits the magnitude
of the effects caused by unsteadiness in the solar wind dynamic pressure
and solar wind direction. These are revealed, respectively, in this
view of the spacecraft trajectory by: (1) abrupt radial jumps in the
spacecraft trajectory corresponding to the sudden inflation or deflation
of the magnetopause obstacle size in response to solar wind dynamic
pressure changes, and (2) abrupt lateral excursions of the spacecraft
trajectory corresponding to sudden changes in the solar wind direction.
As is evident in the plot in Figure 11, for the time that the ISEE 2
spacecraft spent in the magnetosheath during this orbit, the direction
of the solar wind underwent several abrupt changes. The comparison of
the prediction from the SWNT model for the velocity component V¥x in GSE




coordinates with the ISEE 2 fast plasma analyzer displays very good
agreement for the location of both the bow shock and magnetopause
surfaces, and very good agreement for the magnitude of the velocity
component for most of the magnetosheath crossing. Some disagreement
does appear between SWT predictions and observations in the vicinity of
the magnetopause surface. We have no explanation for this. As will be
seen from the comparisons for the other five case studies, the
discrepancies of SNT model forecasts with the ISEE 2 fast plasma
analyzer observations for velocity exhibit no systematic trends. In
some cases, the agreement is essentially perfect, while for others some
discrepancies may appear. These discrepancies might in fact be
attributable primarily to the instrument since we have discovered what
appears to be a systematic error in the magnitude (underreported by
almost a factor 2) of the plasma density reported by the ISEE 2 fast
plasma analyzer for all of the case studies that have been undertaken.
Figure 12 provides corresponding comparison of the SWNT model forecast
and the ISEE 2 magnetometer for the magnetic field components in GSE
coordinates. As with the plasma velocity comparison, the magnetic field
comparisons are very good for most of the magnetosheath region, with
some disagreement in the vicinity of the magnetopause. These
comparisons confirm the good agreement of the locations of both the bow
shock and magnetopause surfaces already observed in the plasma velocity
comparisons in Figure 11. To provide some indication of the steadiness
of the solar wind parameters during the ISEE 2 magnetosheath crossing
for this orbit, we have prepared Figure 13 which provides the variation
of the solar wind sonic, Alfven and magnetosonic Mach numbers during the
ISEE 2 magnetosheath traversal. Also shown in Figure 13 is the
pressure-balanced magnetopause nose radius Rp, which provides an
indication of the inflation and deflation undergone by the magnetopause
during this time interval. As can be observed from Figure 13, while the
solar wind conditions are reasonably steady during this time interval,
they are by no means absolutely quiescent.

Figures 14 and 15 provide corrasponding comparisons of SWT model
forecasts and ISEE 2 observations for orbit 178 inbound. This data set
(#181) was selected as one of the candidates for the initial validation
study since although this orbit contains solar wind conditions that were
considered mostly favorable for good SKT model forecasts, it also
contains some solar wind conditions believed unfavorable that would
subsequently serve as a further test of the SKT model. For this case,
the solar wind conditions are: high magnetosonic Mach number (M, =~

8.0), B northward, moderately unsteady solar wind plasma conditions,
moderately unsteady IMF, and multiple bow shock crossings were observed
by ISEE 2. In Figure 14, we observe from the plot of the ISEE 2 orbit
in solar wind coordinates that due to inflation of the magnetopause the
spacecraft essentially loiters about the bow shock resulting in the
multiple bow shock crossings observed in the plasma velocity comparisons
shown in the plot on the right. The ISEE 3 data gap during the period
when the spacecraft initially crosses the bow shock undoubtedly causes
the discrepancy for the first predicted bow shock crossing. However,
the prediction of the later multiple bow crossings by the SWT model and
the magnitude of the velocity component throughout the magnetosheath is
in excellent agreement with the ISEE 2 fast plasma analyzer
observations. Figure 15 also confirms this high level of agreement for
the magnetic field components as well, and in addition shows that even a
difficult detail, such as the multiple bow shock crossing at about 14.0
hours UT, is remarkably captured by the SNT model magnetic field
forecasts. Both the level and variation of the all of the magnetic




field components are exceptionally well predicted for this case in which
there exists moderate unsteadiness in both the oncoming solar wind
plasma flow as well as the IMF.

Figures 16 and 17 display the analogous comparisons for ISEE 2
orbit 139 outbound. This data set (#145) was selected as one of the
candidates for this initial validation study as it corresponded to solar
wind conditions that were also believed favorable for good SWT model
forecasts: that is, high magnetosonic Mach number (Mp, ~ 5.6), B;

northward, steady solar wind plasma conditions, fairly steady IMF, and
single bow shock and magnetopause crossings by ISEE 2. In Figure 16, we
note from the plot of the ISEE 2 trajectory in solar wind coordinates
that a high number of directional changes in the oncoming solar wind
occur during the ISEE 2 magnetosheath traverse of this orbit.
Nevertheless, the comparison of the SWHT model forecast and ISEE 2
observed axial velocity component exhibits very good agreement for
location of both bow shock magnetopause crossings. In addition, the
trend of the variation of this velocity component is well predicted,
although the magnitude appears to be off by a constant factor throughout
the magnetosheath. As before, we have no exrlanation for this
discrepancy. In Figure 17, however, the three components of predicted
magnetic field display excellent agreement with the ISEE 2 observations
across the entire magnetosheath. This is a key reason why we suspect
errors in the ISEE 2 fast plasma analyzer data. Recall that in the SHT
model, the convected magnetic field is the last global quantity to be
calculated. This is so since the convected field model incorporated in
the SHT forecast model requires knowledge of both the velocity and
density fields throughout the magnetosheath before the computation of
the magnetic field can be initiated. Consequently, any error in the
flow field computation or any inadequacy in either the flow field or
magnetic field computation would be displayed most prominently in the
magnetic field comparisons. However, for this case, as well as others
studied here in which a discrepancy appears in the comparisons between
the SHT model predictions and ISEE 2 observations for the magnetosheath
velocity, this discrepancy in velocity is not carried over into the
magnetic field comparisons which almost uniformly display excellent
agreement. Ke note, furthermore, that the agreement between SWHT model
forecast and observation is also quite good in all cases studied for the
locations of both the bow shock and magnetopause surfaces. It is not
possible for the SHT model forecasts to be accurate in predicting the
locations of the bounding surfaces of the magnetosheath as well as to be
accurate in the predictions of the vector magnetic field throughout the
magnetosheath while simultaneously containing a significant error in the
magnetosheath vector velocity. Consequently, we believe that there
exist errors in the ISEE 2 plasma analyzer data for the vector velocity
as well as for the density. Further study of this aspect of the ISEE 2
observations is clearly needed.

In Figures 18 thru 23, analogous comparisons are made between the
SWT model forecasts and ISEE 2 magnetosheath observations for three
additional case studies all of which involve 1ow solar wind magnetosonic
Mach number, i.e. 2.2 < "ms < 3.0. These data sets (#009,#007 .#003)

were purposely selected as candidates for this initial va idation study
in order to provide a further challenge to the SHT model since the
assumptions under which the basic gasdynamic convected magnetic field
computational model used to determine the global magnetosheath plasma
and magnetic field properties in the SNT model is based become highly
strained at low magnetosonic Mach number. However, with the use of the




solar wind magnetosonic rather than sonic Mach number in the global
gasdynamic plasma calculation, the predicted results for both plasma and
magnetic field properties in the magnetosheath for all 3 of these case
studies are in very good agreement with the ISEE 2 observations. This
result was not anticipated, and warrants further study to evaluate the
reasons underlying this agreement. Figures 18 and 19, which correspond
to ISEE 2 orbit 319 outbound, display results for the longest “"FE 2
magnetosheath traversal interval studied in all of the case &N
undertaken, i.e. 41 hours. Figure 18 shows very good agreement . aen
the SHWT model forecast and ISEE 2 observation for the veiucity
component, and Figure 19 confirms that agreement for the vector magnetic
field. Note in particular the extreme variation in the B; component
displayed in the ISEE 2 data in Figure 19 and which is accurately
captured by the SKT model forecasts. Figures 20 and 21 display
analogous comparisons for ISEE 2 orbit 331 inbound. Figure 20 shows a
remarkable agreement between the SWHT model forecasts and ISEE ?
observations for the axial velocity component, with the only exception
being the SNT model forecast of a bow shock crossing at about 7:30 UT
which does not appear in the observations. Figure 21 which displays the
comparison of the vector magnetic field components exhibits the same
excellent agreement between model forecasts and observations. Figures
22 and 23 display the final comparisons, and correspond to solar wind
conditions for the Towest magnetosonic Mach numbers of all the case
studies undertaken. Again, the agreement between the SWT model
forecasts and the ISEE 2 observations for the axial velocity component
shown in Figure 22 is very good, as is that for the vector magnetic
field illustrated in Figure 23. The only feature of these three case
studies that displays any systematic discrepancy between model forecast
and observation at all is that the magnitude of the predicted
magnetosheath magnetic field at low magnetosonic Mach numbers is
somewhat underpredicted compared to the observations. A correction
parameterized by magnetosonic Mach number and based on an extended
series of cases studies should be developed in order to improve this.

4. CONCLUSIONS AND RECOMMENDATIONS
4.1 Status of SHT Validation Program

The observational data base required for the validation of the SHT
forecasting model has now been established. The data base is comprised
of a total of 184 ISEE 2 and simultaneous ISEE 3 data sets that involve
solar wind plasma and field measurements from the ISEE 3 spacecraft and
corresponding plasma and field magnetosheath measurements from the ISEE
2 spacecraft. Case studies to investigate the acc. acy of the SKT model
forecasts have been initiated by using selected sets from this data
base. Comparative results have currently been obtained for 6 of these
ISEE 2 and ISEE 3 data sets. These selected sets have involved solar
wind conditions anticipated to be both favorable and unfavorable for
good SWT forecasts. The preliminary results from these case studies
have in general been very favorable. Even from this small number of
cases studied so far, however, several important features in both the
plasma and magnetic field procedures employed in the interim Phase I SWNT
model have been identified that require improvement. Provisional
procedures have been developed as far as possible during this period to
improve these methods, but require both further development and study.
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4.2 Final Qualification of SWT Forecasting Model

At the present development stage, the SWT forecasting model remains
unqualified for operational use. The study to establish figures of merit
for the model that would provide estimates of the quality of the real-
time SWT forecasts in an operational environment has not been initiated.

The primary technical tasks remaining to complete the SWT model
validation program and qualify the model for operational use consists of
the following:

- completion of the SWT model comparative forecasts for a minimum
of half of the currently established ISEE 2 and ISEE 3
observational data base

- development and incorprration of all improvements identified as
necessary from the above comparative study for the plasma and
magnatic field computational models embodied in the Phase I SWT
model

- establishment of figures of merit for the SWT model forecasts as
a function of solar wind paramsters
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Data Se. #003: ISEE 3 Solar Wind + ISEE 2 Magnetosheath Data

ISEE 2 (Thin line) and ISEE 3 (Thick line), Delta Time = S0 min
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Figure 1. Illustration of Sample Simultaneous ISEEZ and ISEE 3 Data
Set For ISEE 2 Orbit 314 Inbound




Data Set #145: ISEE 3 Solar Wind + ISEE 2 Magnetosheath Data
ISEE 2 (Thin line) and ISEE 3 (Thick linc), Delta Time = 50 min
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Figure 2. Illustration of Sample Simultaneous ISEE2 and ISEE 3 Data
Set For ISEE 2 Orbit 139 Outbound
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x/D
Comparison of exact and approximate pressure distributions on magnetosphere boundary

Figure 3. Early Validation of Elements of SHWT Model: Evaluation of
Approximate Newtonian Pressure Formula by Comparison With
Gasdynamic Flow Computations
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Comparison of calculated and observed pasitions of bow wave of model magnetosphere
in flight at Mach number 4.65 through argon (y = 5/3). Equatorial plane
(SrrurTer and HvarT, 1963), po/pus = .1.

Figure 5. Early Validation of Elements of SWT Model: Evaluation of
Gasdynamic Flow Model by Comparison With Laboratory
Experiment
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THEORY
Vg * 300 km/sec
Ny =10 PROTONS/cm
Mg =8, y=5/3

j 4
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IMP-I plasma probe measurements of shock wave and magnetospbere boundary crossings

Figure 7. Early Validation of Elements of SKT Model: Evaluation of
Gasdynamic Flow Model by Comparison With Observations of
IMNP-1
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Position of the bow shock in the solar ecliptic plane as determined by messuse.

s on five Imp spacecraft, .063-1068. Cromses represent the average location on individual

:. and the solid line hyperbola represents the best-fit curve to the points. {Zes| < 7 Be
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Figure 8. (Early Validation of Elements of SNT Model: Evaluation of
Gasdynamic Flow Model by Comparison Hith Magnetometer
Observations of Bow Shock by Five IMP Spacecraft:;1963-1968
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Figure 10. More Recent Validation of Elements of SWT Model: Evaluation
of Convected Magnetic Field Model at Extreme Low Density
Flow Situation (n = 0.005/cm3) by Comparison With Voyager 2
Observations at Neptune
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Figure 18. Comparison of SHT Model Forecasts and ISEE 2 Observations
for Orbit 319 Outbound:ISEE 2 Orbit in Solar Wind
Coordinates and Comparison of GSE Velocity Component Vg

32




- EEEE 2 Ordit 319 Outvound
~o—s—oe  Phasel SWT Mode)

»e
+e++++ SEE2Dma

»e) -

l i
-

\ R

.- _:- 2l

' .
“Ix

H
s
head & o —ir oy L 23 L 23 N -e ~—dv Y —dr . 3 an ™

oy Twa
o=
®  Data Set 8009
L od 3
Purposely selected 10 invoive some solsr wind condisiens
-} believed unfavorable for good SWT mode! forecass
®  Longest traversal interval, = 41 bes.

-e

f < s Magnetosonic Mach number low, Mag_ = 3.0
hd ‘\~ . e Bzsouthward
1 L : +  Modermely dy solar wind pi di

i \ o Modersiely unsieady IMF conditons
-T. h o No BS cromsings
-} *  Entry and cait MP Crostings
- 2 2 T (1 .

Figure 19. Comparison of SWT Model Forecasts and ISEE 2 Observations
for Orbit 319 Outbound: GSE Magnetic Field Components

33




Deta Set #4007

ISEE 2 Orbit 331 Inbound as Viewed from Solar Wind
(X,R) Coordinate System Fixed to Magnetopause

Duss Sat 4007

Purpessly sslested o invelve come solar wind condisiom
Selioved unfovenhis for goed SWT medel anense

o Magneiosonic Mach member low, Mg, = 2.9
o Bz equatorial

o Modersiely vasseady soler wind plasens conditons
o Modummly casady (M4F eandieens

o Muhipls BS end singls MP samsings

Comparison of SWT Model and ISEE 2 Orbit 331 Inbound Data:

WeeZ2 GSE Velocity Component Vx
3.0 . -
.0
ISEE 2 Orbit 331 inbeund
Range of Predicted Bow oy - acemsme-s  Phasel SWT Model
SllockLoulionsFrom v+ ee+ ISEE2Dsa
4:20 UT t0 8:00 UT
ISEE 2 Orbit 331 Inbound .l B
Vs -; -E:O
.0 |
3000 g
- - —x.,
e .8 =T 44;—-1'1—'—5'1; I | Te
Figure 20. Comparison of SHT Model Forecasts and ISEE 2 Observations

for Orbit 331 Inbound:I1SEE 2 Orbit in Solar Wind Coordinates
and Comparison of GSE Velocity Component Vy

34




.| ISEE 2 Ordit 331 Inbeund - Y
one—e—o~e Phasel SWT Mode! -”‘.‘,

e} ++++¢+ ISEE2Data
el

. L = ]
-
-a L2 L] ";" e -y L] e ¥ —ir 'LJ'" —ty o .
-
“t

kY ®  Data Set 8007
Sa) Purposely sclected o invoive some solar wind exadisiens
believed wnfavorsble for good SWT mode! forecans
osl *  Magnetosonic Mach number low, Mg, = 29
s Bz equatorial
'“L b4
:’ ¢ Modersiely unsieady solar wind plasms condnons
- t. o Moderaiely wnsieady IMF condinons
v,
A o Makiple BS and single MP crossings
b v L 2 LA L 13 .
"e

Figure 21. Comparison of SKT Model Forecasts and ISEE 2 Observations

for Orbit 331 Inbound: GSE Magnetic Field Components
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Figure 22. Comparison of SWT Model Forecasts and ISEE 2 Observations
for Orbit 314 Inbound:ISEE 2 Orbit in Solar Wingd Coordinates
and Comparison of GSE Velocity Component Vy
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Figure 23. Comparison of SWT Model Forecasts and ISEE 2 Observations
for Orbit 314 Inbound: GSE Magnetic Field Components
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