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Preface

Like most of my peers, I have long been interested in space and most anything related to space

exploration and utilization. After being assigned to first Air Force Space Command and then United

States Space Command, I found that I enjoyed studying how objects travel through space and especially

how to track and predict their movements around the earth. So it was very satisfying to be able to work on

a project that has both theoretical and practical applications.

As an orbital analyst at the Space Surveillance Center in Cheyenne Mountain, I routinely tracked

objects and updated their predicted positions but I could not have explained how the mathematics worked.

Through the classes in Orbital Dynamics taught here at AFIT, I learned the theory of how orbits could be

estimated using observations. But it was the research for this thesis, the development of programs to

simulate the orbit of a satellite and to generate radar observations and the use of these observations to

estimate the state of the satellite, that fully developed the level of understanding that I desired. This

project has been both difficult and challenging, but few worthwhile endeavors are not.

I could not have completed this work without the help and encouragement of my teachers, friends

and family. I would like to thank Dr. Wiesel for his patience and understanding as well as for his insight

and direction when things got tough. I would also like to thank my fellow classmates, especially Captain

Tony Nash, for answering my many questions and for simply listening to my ideas. And last, but

certainly not least, my wife who suffered through the entire process with me.
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AFIT/GA/ENY/94M-

Abstract

This study investigated the use of a least squares differential corrector to compress the

information contained in a single radar track of a Near Earth satellite into a six element, Earth Centered

Inertial state vector and associated covariance matrix. Observations were generated using a truth model

program based on bwo-body, J2 geopotential, and atmospheric drag dynamics and consisted of simulated

range, azimuth and elevation. Random Gaussian noise was added to the data to simulate the random

errors seen in real world observations. The orbital dynamics used in the estimator consisted of two-body

and J2 geopotential effects which were approximated using a Taylor Series expansion in time. Analysis

was conducted using two circular, inclined low earth orbits. Estimator performance was evaluated as a

function of maximum pass elevation, track duration, data rate and the highest order of approximation of

the equations of state. The estimator successfully extracted all of the pertinent information from the data

with accuracy being dependent on the number of data points available. A correlation between the required

order of approximation and maximum expected track length was also noted.
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COMPRESSION OF A RADAR TRACK OF A NEAR EARTH SATELLITE INTO AN

EARTH CENTERED INERTIAL STATE VECTOR USING LEAST SQUARES

DIFFERENTIAL CORRECTION

I. Background and Statement of the Problem

1.1 introduction

The Space Surveillance Center (SSC), located in Cheyenne Mountain Air Force Base, Colorado, is

the world's premier space tracking organization. Through the use of a world wide network of ground

based radars and electro-optical cameras known as the Space Surveillance Network (SSN), the SSC tracks

and maintains orbital predictions for all man-made objects in orbit about the earth with a radar cross

section of at least ten square centimeters. Satellites with a period less than 225 minutes are defined as

Near Earth satellites. Almost all of the data used to track near earth satellites comes from ground based

space surveillance and ballistic missile early warning (BMEWS) radars.

When these radars track a satellite they produce data called observations which are sent to the SSC

over a telecommunication link. In their most basic form this data consists of the time, elevation, azimuth

and range of the satellite as observed from the site. A typical track for a near earth object might span

from five to twenty-five minutes. Since some of these radars can measure the position of a satellite as fast

as 100 times each second, this could result in 30,000 to 150,000 observations per track (7: 156).

Obviously, transmitting this much data to the SSC every time a satellite is tracked is not feasible. Instead,

the radar sends only a representative sampling of this data to the SSC. Typically, this consists of three

observations positioned at the beginning, middle and end of the track. For very low priority satellites

perhaps only one observation will be sent to the SSC.
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The SSC combines this new data along with observations from other sensors using batch and/or

sequential processing to update the satellite's orbital elements or elset. Every catalogued satellite still in

orbit has its own elset which is continuously maintained using the observations sent in by the SSN. These

elsets are then used to predict satellite positions in the near future using both general and special

perturbation methods. One important use for these updated elsets is to allow sensors to acquire and track

satellites. Maintaining an accurate and timely database is also important in avoiding satellite collisions

and providing warning of over flights of foreign intelligence satellites.

With over 7,000 objects in orbit and more than twenty six sensor sites in the SSN, the SSC typically

receives 50,000 to 80,000 observations per day. This is a large amount of data to be transmitted to and

processed by the SSC computer. As space continues to increase in importance for both military and

commercial purposes, the number of objects in earth orbit will increase. This will result in additional

work loads for both the sensors making up the SSN, for the SSC computer and personnel, and for the

communications links that tie them together.

If a way could be found to more efficiently use the information gathered by the sensors in the SSN it

might be possible to alleviate some of the heavy demands that can be expected. This would allow existing

resources to handle the job without expensive investments to upgrade facilities and equipment. One way

to do this would be to compress all of the data into a single state vector and associated covariance matrix.

This would allow all of the information contained in the track to be sent to the SSC instead of a very small

sample. Not only would this provide the SSC with better data which could reduce the frequency of

required updates or sensor tasking, but it distributes some of the processing load out to the sensor sites.

1.2 Problem Statement

In order to increase the capacity of the SSC and SSN to track and maintain elsets on the growing

population of near earth space objects, it is necessary to develop a method of compressing all of the

information contained in a sensor track into an easily transmitted and utilized form. The method must be

easily implemented and not require significant equipment upgrades. A possible solution is to have each
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sensor site convert all of its observations into a state vector and associated covariance matrix using a least

squares batch differential correction based on two-body dynamics and possibly J2 effects.

1.3 Research Objectives

The first objective is to develop a truth model to generate simulated ground sensor site observations.

The truth model should model satellite motion using two-body orbital dynamics, the J2 zonal harmonic,

and air drag since these are the three dominant factors in the orbital motion of near earth satellites.

Output from the truth model will consist of accurate time, range, azimuth, and elevation values to which

Gaussian random noise will be added to simulate real world observations.

The second objective is to create a differential corrector based on least squares estimation operating in

a batch mode. The dynamics model used in the estimator will be based on a Taylor Series expansion of

the equations of motion for an object in orbit about the earth. The state transition matrix used in the

estimator will be derived from these same Taylor Series equations.

The third objective is to investigate the effectiveness of the differential corrector in reducing the

simulated observations from the truth model into a single state vector and associated covariance matrix.

Specifically, it will be necessary to determine how many terms are needed in the Taylor Series

approximation of the equations of motion. Also it must be determined if the equations of motion must

include the J2 zonal harmonics or if the two-body dynamics alone are sufficient. And finally, the

correlation between pass time (or maximum elevation) and the effectiveness of the estimator will be

studied.

1.4 Research Questions

Least squares estimation is a commonly used method for performing differential correction on the

orbital elements or state of satellites. It is especially effective when used in a batch mode where sufficient

observations exist to span a significant portion of the object's orbit. In the case of a single track by a

ground based sensor site of a near earth satellite, only a small part of the orbit will be observed. Two

factors that will influence the number of observations will be the objects maximum elevation r•lative to

the site and its altitude.
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This leads to the following questions:

I. Does it matter how good the dynamics model used by the estimator is?

a. Are the effects of the J2 zonal harmonic or of atmospheric drag large enough to be significant?

b. How many terms must be included in the Taylor Series expansion of the equations of state?

2. What is the minimum number of observations required by the estimator to effectively compress the

data into a single state vector and covariance matrix?

3. Can this be related to the maximum elevation of the pass and/or the satellites altitude during the

pass? If so, what is this relationship?

1.5 Assumptions

Although there exist numerous perturbation sources, only those perturbations caused by the J 2 zonal

effect and atmospheric drag are considered in the truth model. This is based on the reasonable

assumption that the other perturbations are too small to be noticeable - especially during the short track

times for near earth objects.

Normally, several days worth of data are required to estimate the effect of drag on an orbit. The SSC

typically uses observations spaced over a period of 3-7 days to determine the drag experienced by a Near

Earth satellite. Because this study looks at reducing the data from a single track, insufficient data is

available for estimating the effect of drag. Therefore the estimator will use only two-body and J 2 effects.

The truth model generates accurate ephemeris information for the input satellite reference trajectory.

The data is assumed to be perfect and is made more realistic by applying Gaussian random noise to the

data.

There are errors associated with the dynamics, the state vector, and the observations. The estimation

routines developed during this study assume that the use of a Taylor Series expansion will result in a

dynamics model that is close enough to reality and that the major source of uncertainty comes from the

observations.
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1.6 Scope

The proposed study models the effectiveness in applying a two-body least squares batch estimator to a

short arc of observations to create a single state vector and associated covariance matrix. The main efforts

in this thesis are: (1) developing a truth model to generate simulated observations from ground based

sensor sites, (2) building a least squares differential corrector to generate an earth centered inertial (ECI)

state vector and covariance matrix, and (3) analyzing the effectiveness of this estimator in reducing or

compressing the data for near earth satellite passes.

1.7 Summary

As the number of objects in earth orbit continues to increase along with the growing importance of

space in general, the demands made on the SSC and SSN to track and predict the motion of these objects

will also increase. Instead of spending large sums of money to upgrade facilities and equipment it may be

possible to multiply the effectiveness of current capabilities of the SSC and SSN.

One possible solution is to compress all of the information from a single sensor track so that it can be

easily transmitted to and used by the SSC. This could be done by using a least squares batch differential

corrector to reduce the data obtained at the sensor site into a single state vector and associated confidence

(covariance) matrix. This would essentially extract more usable data from each sensor track. It is hoped

that this would allow for more accurate elsets to be maintained at the SSC. This in turn could reduce the

frequency with which elsets must be updated and would essentially preprocess the observations, thus

reducing the computational load on the SSC computer. Additionally, it might be possible to reduce the

number of tracks or the fraction of a track required on each satellite, thereby allowing the SSN to track

more objects with existing or reduced resources.
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II. Theoretical Background

2.1 Introduction

For almost as long as man has been on earth, he has looked up into the night sky and wondered about

the things he saw there. As far back as 3000 B.C., Babylonian priest-astrologers were observing and

recording the motions of the moon, sun and the five visible planets. As time passed, ancient man

attempted to devise explanations for how the planets moved but it was not until the early 1600's that

Kepler finally developed his three laws which correctly described the motion of these heavenly bodies.

However, Kepler's explanation merely stated how the planets (or any other object in space for that matter)

moved - it did not answer the more fundamental question of why. Although Galileo had a few ideas, it

was Isaac Newton who finally answered the question when he published his three laws of motion and the

law of unmiersal gravitation (1:757-758).

The first method for finding the orbit of an object from observations was published by Newton in the

Principia. This method required three observations (angles only since radars did not exist in 1705) and

consisted of a graphical approach using successive approximations. The first analytical method for

solving this same problem was presented by Euler in his Theory of the Motion of Planets and Comets in

1744. Euler also developed a relationship which related any two position vectors with the vector

connecting them and the time interval between the two vectors. Further refinements to Eulers work were

produced by Lambert and Lagrange but it was not until Laplace developed a new method in 1780 that it

was possible to process more than three observations at a time (2:51-53, 117-122). By 1802, Karl

Frederick Gauss had developed yet another method for using three observations to determine the orbital

elements of an object, the basic elements of which are still used today.

As important as all these developments were, an even more important contribution to the science of

orbit determination was Gauss' method of least squares. By using the method of least squares it was

possible to use more than three observations to determine the orbit of an object to far greater precision
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than before by producing orbital elements that agreed with all of the observations used rather than with

just two or three. As Gauss himself wrote:

Finally, as all our observations, on account of the imperfection of the instruments and of the
senses, are only approximations to the truth, an orbit based only on the six absolutely necessary
data may still be liable to considerable errors. In order to diminish these as much as possible,
and thus to reach the greatest precision attainable, no other method will be given except to
accumulate the greatest number of the most perfect observations, and to adjust the elements, not
so as to satisfy this or that set of observations with absolute exactness, but so as to agree with all
in the best possible manner. (3)

2.2 The Method of Least Squares

The fundamental elements of least squares are built on four basic assumptions: that the dynamics

contain no error, that the observations do contain errors, that the observational errors obey a Gaussian

distribution, and that the Principle ofMaximum Likelihood applies. The last item comes from Gauss'

groundbreaking work in the field of probability theory and states that the value of an estimate which

maximizes the probability of obtaining a particular set of data is the true value (4: 22). The third

assumption is supported by the Central Limit Theorem, also developed by Gauss, which states that the

errors in the observation data will follow a normal distribution (see Figure 1) as long as the total error is

the product of many small error sources (4: 11).

0.4

0.3-

P(x)01

0.1

0
-3 -2 -1 0 1 2 3

X

Figure 1. Gaussian Distribution
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The assumption that the errors associated with the observation data follow a normal or Gaussian

distribution is a key element in the development of estimation theory. Therefore the probability of an

error is governed by the Gaussian probability density function:

P(e)de = I exp/ -e 2/de (1)
aV-2t 2CF2-)

where P(e) is the probability that an error e will occur. This implies that the probability of an error is

defined by the area under the curve containing the error in question. Thus it is necessary to define a range

of errors, such as e and e+&e, in order to calculate the probability. Eq (1) and Figure I demonstrate

several important features of a Gaussian distribution: (1) The distribution is symmetric about the true

value of the measurement. (2) The width of the curve is determined by the standard deviation c. (3) The

total area under the curve is one because the function is normalized. This means that there will always be

some error in a measurement, although small errors are more likely than large ones. A large value of a

results in a broad curve, signifying low precision, while a small value of a results in a narrow curve,

signifying high precision.

The next step in the development of estimation theory involves the estimation operator:

E(-) f(-)f(x)dx (2)

where the open slot (-) contains the quantity to be estimated andf(x) is a probability density function. By

applying the estimation operator three special results are obtained: (1) The expected value of a

measurement is the true value: E(x) = xo . (2) The average error in the measurement is zero: E(e = x -

x.) = 0 . (3) The average squared error is a2 : E(e2) = a2 (4:19-20).

For the case where only a single value is to be estimated, such as the length of a rod, the probability of

obtaining a particular set of independent measurements is given by:

[1NI ] ( NN (x, -x°)) (3)

P(XI ,x 2 ,...XN) = ( 2 1-N/ 2 
1 1 1 ,1 Jexpy-l 20
I i= I



where oi is the standard deviation associated with each measurement, N is the total number of

measurements, x, is the value of each measurement, and xO is the true value. Since the true value can

never be known, it is necessary to apply the Principle of Maximum Likelihood which allows the

replacement of xO with its estimate Y (4:22). In order to maximize the probability of the data with

respect to the estimate, the argument of the exponential must be minimized:

d - = 0 (4)

j= 2ari

giving

S(x, -

It is from Eq (4) that this estimation method derives its name of least squares. The quantity (x, - Y) is

usually called the residual, r, , which can be thought of as an estimate of the true error. Solving for the

estimate x gives:

- = i'' (6)

E 1/o2

2.3 Multi-Dimensional Least Squares

The preceding section showed the development of least squares estimation theory for a one

dimensional or single variable case. However, most problems (such as orbit estimation) are multi-

dimensional in nature. Fortunately, the results from section 2.3 can be extended to support multi-

dimensional problems. To start, define the following notation:

xT = (x1•x 2 x3 ,..., xN) (7)

and
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S2 2 2a,1 012 . IN
j2 2 2

P C0 21 0 22 ... 0 , (8 )

LY 2 CY2 I .. Y2
1 2N 2 N?

where xT is the state or variables in the problem and P is the covariance matrix. The covariance matrix

contains information on the variance associated with each element in the state vector. The diagonal

entries are called variances while the off-diagonal entries are referred to as covariances. Using this

notation the Gaussian probability density function can be written as:

f (x) = (27c)-N 12 111- 1/2 exp(1 (X - X 0 ) T P ' (X - Xe) (9)

where the variable Y has been replaced by the estimated state 1, and the standard deviation squared, 02,

has been replaced by the covariance matrix P. As before, the argument of the exponential is the quantity

to be minimized, yielding:

(x - x 0 )r p-1 (x - Xo) - 0 (10)

which means the covariance matrix P must be a positive semi-definite matrix (4:27).

2.4 Linearizing the Problem

The problem of orbit determination is fundamentally a nonlinear one. Not only are the dynamics

highly nonlinear but so is the relationship between observations and the satellite's state. However, in

order to make any progress in estimating the state of a satellite it is necessary to linearize various aspects

of the problem.

To start, the dynamics must be specified, either as a set of differential equations

dx-=f(x,t) (11)

or as an explicit solution

10



x(t) = h(X(1 0 ),) (12)

which gives the state as a function of time and the initial conditions. Since the dynamics are

deterministic, these equations can be linearized as:

8x(t) = O(t'to)8x(to (13)

where 4(t, to) is the state transition matrix relating a change in the state at time t to a change in the initial

conditions at time to. If the dynamics are given explicitly as a function of time then the state transition

matrix is given by:

O(t'to) = V 1( 4)h(x(10),t) (14)

As was pointed out earlier, the true state xo will always be unknown and since the whole purpose of least

squares is to produce an estimate 1, a reference state xref must be specified about which the dynamics

can be linearized. The relationship between the reference state and the estimate is:

= x,,f + 8x (15)

where 8x is the correction needed to turn the reference state into the estimate. Hopefully the initial guess

of the state will be close enough to the true state to allow the linearized dynamics to be valid. By making

successive corrections to the reference state, it should be possible to converge to the correct estimate of the

true state.

The relationship between the observations and the system state can be written as

zQ (t) = G(x(t,),t1 ) + e, (16)

where zi is the observation vector, such as (range, azimuth, elevation), G is the function which converts

the state variables at time ti to the observation variables, and ei is the true error associated with the

observation. Since this relationship is also usually nonlinear it will be necessary to linearize it as well:
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e= z-z0

= G(x,t)-G(io,t)

- G(xo +8x,t) - G(xo,t) (17)

ax

where z is the actual observation vector, zo is the observation vector using perfect data, z is the observed

state, zo is the true state, and 8z is the difference between the true and observed states. Replacing x in Eqs

(16) and (17) with xref allows the definition:

i (IS)

which relates the error in the state to the error in the reference trajectory (4:69).

2.5 Correcting the Reference State

Just as before, the concept of finding the residual instead of the true error must be used

r, = z, - G(x,. (ti1 ), ti) (19)

where the residual vector r is formed from the observed location z minus the predicted location G(x). If

the reference state is close enough to the true state, then the residual vector will be linearly related to

changes in the reference state (4:70):

8r, • Hx(t, )= H10(t,to)Sx(to) (0
(20)

= Tj6x(to)

and

r, - r , +r r, r, - Tix(t0 ) (21)

where r' is the residual vector after the reference state is corrected to be the estimate, and ri is the residual

vector associated with the reference state. The matrix T is called the observation matrix and is defined as
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IT =H1  (; 1,t 0 ) (22)

Since least squares is normally used with multiple observations it will be convenient for notation

purposes to define three items. The first is the total residual vector

rT' [r[ r2 r] (23)

where each ri is itself a vector of residuals. The second is the observation matrix

T T2 ]E[24)(11I t° (24)

HN 4 (tl ,to)J

The third is the total instrumental covariance matrix in block-diagonal form

Q 0 01

--- (25)

where each Qi is itself a matrix of the instrumental covariance associated with each data vector zi. In the

form shown, each data vector is statistically independent and therefore the off-diagonal entries are zero.

In accordance with the Principle of Maximum Likelihood, the estimate 1 is the value of the state

which maximizes the probability P(r). Since the error statistics are assumed to be Gaussian

P(r) = (27c)-N 2 IQI-1/2 exP I - r Q- r (26)

where the residual vector r is the residual vector associated with the estimate I. Substituting Eq (21)

into Eq (26) leads to the minimization of

13



'[r- nz)" Q-1 (r - 751)] 0 (27)

where r is the total residual vector associated with the refere••ce state xref. From here it is possible to

solve for the correction, new estimate and associated covariance matrix as

6x(to ) = (TTQ-IT)-I TTQ-'r (28)

1(to ) = x,f (to) + 8X(to) (29)

Pa. E(r,.rT)
= ((30)

where T, Q, and r are the total matrices and vector defined earlier (4:60-63,70).

It is important to note that the estimate found in Eq (29) is the correct answer only if the reference

has converged to a solution. In general, the estimate becomes a new reference state and the whole process

is repeated until convergence is attained. One practical convergence standard is for successive values of

8x to be within the one a values provided by PS and for the residuals to also agree with their expected a

values (4: 77).

2.6 Implementing Least Squares on a Computer

When working with large amounts of data, the matrix and vector equations introduced above can

become large and unwieldy. For this reason, it is usual to process the data one observation at a time using

the following running sums:

A = TT Q-'TQ (31)

B = T Qj-r, (32)
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After all of the data is processed the correction to the state and the covanance matrix can be found from

P =A-'
8x(to) = PB

where Bx is the correction that turns the reference state into either the estimate or a better reference state

and P81 is the covariance matrix associated with the corrected state (4:64,72).

2.7 Summary

The method of least squares is a proven approach to estimating the state of a satellite from a large

number of observations. When used in a differential corrector it allows for the iterative correction of an

initial reference state to the correct estimate of the true state. It does this by adjusting the refemence state

to produce a trajectory that agrees best (i.e. minimizes the squared error) with all of the data instead of

agreeing perfectly with only two or three observations. Least squares also has the property that the

accuracy of the estimate increases as the number of data points increases although the relationship is not

linear. For example, if only one variable is involved it can be shown that:

o~i

where ax is the standard deviation of the estimate, N is the number of data points, and ri is the standard

deviation of each measurement (a constant in this case).
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IIW. Methodology

3.1 Introduction

The data used in this research was produced using a two-step procedure in which simulated

observation data was converted into a state vector and associated covanance matrix. The first step

involved the use of a truth model to generate simulated range, azimuth, and elevation observations for a

single track of a satellite as seen by a space surveillance radar located on the surface of the earth. In the

second step, this track of data was reduced to a state vector and covanance matrix using least squares

differential correction. Error statistics were also generated and the accuracy of the estimated state was

calculated by comparing it to the true state.

Analysis of the data concentrated on evaluating how good the estimator was in concentrativg all of

the data available in the track into the estimated state vector. The effects of different dynamics models,

data acquisition rate, and maximum elevation of the pass were investigated using the error statistics and

accuracy of each estimate.

3.2 The Truth Model

The truth model simulates the orbital motion of a satellite by using two-body dynamics plus J2 zonal

harmonic and atmospheric drag perturbations. Because this study concentrates on relatively short arcs (22

minutes or less) of near earth orbits, it was felt that other perturbations such as the higher order

geopotential terms and n-body effects were insignificant and could be ignored.

3.2. 1 Program Execution. Input to the truth model consists of an initial state containing position and

velocity (expressed in ECI coordinates), an epoch (or start) time, the end time for the arc in question, and

the time step between each data point. The program then numerically integrates the equations of motion

using a fourth order Hamming predictor-corrector routine. The predictor part is based on a fourth-order

Milne method predictor and the corrector method is derived from fourth-order Milne and Adams-Moulton

predictor-corrector methods (5:391). Since this method requires four previous values of the state in order
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to predict the next value, a Picard iteration is used to generate three future state values based on the initial

state (6:108-109).

Output generated by the program consists of ephemerides and observations which are written to two

separate files for later use by the estimator programs. After each ephemeris point is generated a

subroutine is called to convert the ECI position of the satellite into topocentric observations relative to an

imaginary sensor site located in the Indian Ocean (see Appendix A). If the elevation of this "observation"

is greater than zero then it is assumed that the sensor can see the satellite and so the ephemeride and its

associated observation are written to their respective data files. If the elevation is less than zero, then the

output data files are not modified and the next position calculated. This basic cycle is repeated until the

specified end time has been reached.

In order to better model the real world, the observations are modified by the addition of simulated

errors or noise. This is done using a Gaussian pseudo-random number generator and assumed values for

the one-sigma accuracy of the radar in range, azimuth, and elevation. For purposes of this study the

assumed values were: 100 meters in range, 0.025 degrees in azimuth, and 0.025 degrees in elevation.

Since a new seed value is used every time the number generator is called, each value output will be

different and the overall distribution will be very close to the normal distribution shown in Figure 1.

Multiplying the one-sigma values by the random numbers results in the simulated errors also following a

Gaussian distribution.

Several special options were built into the truth model program to facilitate the testing and research

objectives. The program allows for the time step to be changed from within the program. This meant that

the input file did not have to be edited for the single purpose of changing the time step. Also, the addition

of noise or drag perturbations could be turned off prior to starting the numerical integration. Turning off

the noise permits the generation of "perfect" data for testing purposes, while turning off the drag allows

for investigation of the significance of drag in affecting the estimate and covariance matrix.
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3.2.2 The Equations of Motion. The baseline for the equations of motion is the first order differential

equations from the solution of the two-body problem. In vector notation, the two-body equation of motion

is:

•+Lr= 0 (34)

where the vector r extends from the earth'.% ienter of mass to the satellite's center of mass, r is the

magnitude of this vector and g is the gravitational parameter of the earth and is defined as aGM ,

where G is the universal gravitational constant and M is the mass of the earth. In a rectangular coordinate

system (such as ECI), Eq (34) leads to six first order differential equations:

r= /x2 +y2 +z 2  (35)

i=u

-V (36)

W=w

u = -px/r
3

=-py/r 3  (37)
St=a-pz/r3

where x, y, z are the components of the position vector, and u, v, w are the components of the velocity

vector (reference Figure 2).
wz

)- v

x

Figure 2. Position and velocity components in ECI coordinates.
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The most significant of the various geopotential effects is found in the second zonal harmonic, usually

referred to as the J2 geopotential term or simply the J2 term, which is caused by the earth's oblateness

(6:59,80). This term is normally written in spherical coordinates as:

V20 = 2r3( 3 cos 0 - 1) (38)

where Re is the earth's equatorial radius, J2 is the coefficient for the second zonal harmonic, and 0 is the

angle between the Z coordinate axis and the satellites position vector (reference Figure 3) (6:59). In order

to convert this geopotential term to ECI coordinates it is necessary to rewrite the angle as cose = z/r. If

the constants on the right side of Eq (38) are collected as:

A = I(39)

then Eq (38) can be rewritten in cartesian coordinates as:

S= 3 (40)

Z
~r•

Y

Figure 3. Coordinates for Geopotential

The effect of the geopotential manifests itself as an additional acceleration of the satellite which is

related to the geopotential through the gradient operator:

a22 = -VV2 (x,y,z) (41)

19



where a20 is the additional acceleration due to the J2 aeootentiai term. Cakulating the gradient results

in an additional term for each of the velocity-dot equations:

2 =A I2bo + a&

S-A A3y/r 5 - 15Yz 2 r(42)

S9z/r3 -15z 3 /r 7

The basic equation for modeling the effect of atmospheric drag is:

ad I CDA V.t
2 m (43)

K. = I f *I{+dyJ'.- 6x, ill

where ad is the effect of air drag, CD is the satellite's coefficient of drag, Al/r is the satellites ratio of

cross sectional area to mass, p is the atmospheric density, t' is the satellite's velocity relative to the

atmosphere, and 0 is the rotational rate of the earth (atmosphere is assumed to rotate with the earth)

(2:423424). The quantity CDA/m is often lumped together and called B* . For the purposes of this

study, the satellite was assumed to havea CD= 2.0,A =7.5 m2 , andrm= 1000 kg.

The atmospheric density was modeled using the 1976 Standard Atmosphere in which the density, as a

function of height, is given by:

p(h)-= + . + .. ) - 9 + (h)3 =()2 +(A) - _5 ]

where p(h) is in kg-m"3 , h is the altitude in kilometers and

zI = 246482.873 z2 = 5377132.030 z3 = 1536228.60 z4 = 19174788.0 z5 = 105.381650

z6 = 4968.56120 z7 = 56060.0780 z8 = 160314.760 z9 = 344944.780

This model is valid for altitudes between 100-1000 km (8).
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3.2.3 Program Validation. Proper operation of the truth model was validated by incrementally

testing its accuracy using three models of the dynamics: (1) two-body only, (2) two-body plus J2, and (3)

two-body plus J2 plus drag. The two-body test was done using a circular reference orbit which allowed for

easy calculation of the satellites position as a function of time. To test the J2 part, two different reference

orbits were used (see Table 1).

Table 1. Reference Orbits for Truth Model Validation
Inclination Eccentricity Period Apogee Ht Perigee Ht Nodal Apsidal

(deg) (min) (km) (km) Regression Rotation
7.33 0.0166 91.19 444.4 221.6 8.3 deg/day 17.8 deg/day
63.4 0.05 103.43 1285.5 555.6 -2.8 deg/day a 0 de/day

Each orbit was propagated for four days in order to observe the changes in the right ascension of the

ascending node and the argument of perigee. Since the rates shown in Table I agreed very closely with

the predicted values it was felt that the J2 equations were validated (2:157-158).

3.3 The Estimator

The estimator is a least squares differential corrector using a dynamics model based on two-body and

J2 effects. By using a Taylor Series approximation, the equations of state and the state transition matrix

are expressed as explicit functions of time. Four different dynamics models are investigated by varying

the order of the approximations used for the two-boW aid the J2 parts of the equations. These variations

are detailed in Table 2.

Table 2. Hiest Order of ApVroximat'on in Equations of State
Two-body J2

Estimator Position / Velocity Position / Velocity
ets4 4th / 3rd None

ets4a 4th / 3rd 2nd / Ist
ets4b 4th / 3rd 2nd + 3rd / 1st + 2nd
ets5 5th / 4th 2nd + 3rd / 1st + 2nd

A different state transition matrix is derived from each set of state equations, except for 'ets5' which

uses the same state transition matrix as 'ets4b'.
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3.3. 1 Program Execution. The input to the estimator program consists of the observation and

ephemeris files generated by the truth program. Before the estimation process actually begins, all of the

observations are read into an array for later use. During this process the program determines how many

observations are in the file. By storing all of the observations in an array, the program does not need to

read the observation file more than once thus reducing program run time. This approach also allows for

the estimate to be epoched to the time of the middle observation which effectively doubles the time span

over which the Taylor Series approximations to the equations of state are effective. After determining

which observation is the epoch observation, the corresponding ephemeride can be cad thus providing the

true state at epoch.

A vety simple technique is used to determine the initial reference state at the beginning of the

estimation process. The position part of the reference state is immediately available from the epoch

observation by converting the topocentric values to ECI coordinates (see Appendix A). The velocity part

of the reference state is then found using two consecutive observations (epoch and epoch+ 1) by dividing

the change in each position component by the time between observations:

Xpowh+I -
tcpoch+I - epoch

y,• = (44)
tVf= !- t

tepoch+! -epoch

tepoch..! -- tpoh

The estimator uses an iterative approach to correct the initial reference state into an estimate of the

satellite's state at the epoch time. At the beginning of each iteration, the program calculates several

"constants" based on the reference state for use in the equations of state and state transition matrix

subroutines and initializes the running sum matrix and vector defined in Eq (31) and Eq (32).
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As each observation is processed, a predicted observation is obtained by evaluating the equations of

state using the difference between the observation time and the epoch time ( dt = tobservaton -tepoch)

and then converting from ECI to topocentric coordinates. The observation is then compared with the

predicted observation and the residual calculated. The residuals for range, azimuth, and elevation are also

used to update running sums for the mean and root mean squared (RMS) residuals:

sum = residua
i=! N (45)

sum2 = •,, (residua4 )2
i=i

The predicted state is next used to calculate the data linearization matrix H (see Appendix B) which

is then combined with the state transition matrix to produce the observation linearization matrix T = H!0.

After multiplying by the instrumental covariance matrix Q and the residual vector r, the results are added

to the running matrix and vector sums found in Eqs (31) and (32).

When all of the observations have been processed, a new estimate of the state and its covariance

matrix P is calculated using Eqs (29) and (33). Also the mean and RMS residuals are calculated for the

previous estimate:

sum
mean residual =

obcnt

RMS residual = SU- 2 
(46)

obcnt

where obcnt is the total number of observations, sum is the cumulative residuals for all observations, and

sum2 is the cumulative residuals squared for all observations.

If the change in each element of the state is smaller than one-percent of its corresponding diagonal

entry in the covariance matrix, then the estimator is considered to have converged. If not, then the

estimate becomes a new reference state and the program loops back to start another iteration.
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After convergence, the program calculates a new set of residual statistics by comparing each

observation to predictions based on the new estimated state. The accuracy of the estimate is also

calculated using the final estimated state and the true state to find the magnitude of the position and

velocity errors at epoch:

r = j/(x.. - x.) 2 + (y.. -y..)2 + (z. - z_)
(47)

V V(U,,,, -u.U)2 +(V,,,-V.)I +(-.)M(w _-w") 2

3.3.2 Development of the Taylor Series Approximations. As mentioned earlier, both the equations of

state and the state transition matrix are approximated using a Taylor Series expansion in time. The

primary advantage of taking this approach rather than numerically integrating the equations of motion

and equations of variation is that the state and state transition matrix can easily be calculated at any given

time. It was also felt that working with explicit functions of time would reduce the computational burden

placed on the computer - which is one of the caveats mentioned in Chapter 1.

To start with, the Taylor Series representation of the position and velocity of a satellite can be written:

1 21 Si 3 1 I 1r(t) = ro + v0 d+adt +l2&dt, +-4 iodt"S -2 dI +O(dt6 )

1 d21 + o& 1 4+ &1
v(t)= vo + adt+ 2id +- 6 i2 4 +O(dtd)

where r(t) is the satellite's position at some time t, v(t) is the satellite's velocity at some time t, r0 is the

satellite's position at t = 0, v0 is the satellite's velocity at t = 0 , and so is the satellite's acceleration at t =

0. The notation of using a subscript zero to indicate a condition at t = 0 will now be dropped and it will

be understood that all quantities are evaluated at t = 0. As was done in section 3.2.2, the acceleration of

the satellite can be broken into two parts, the two-body term and the J2 term:

a = a121dy +a2o (49)

Rewriting Eq (34) as
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a2b, r 3  (50)

produces the second order term for the two-body dynamics. Differentiating with respect to time gives

( u/r3 -3x(ux+vy+wz)/r 5

ilb =-p•v/r3 - 3y(ux + vy + wz)/r (51)
wit 3 - 3z(ux + vy + wz) I P)

which is the third order two-body term,

S a,/ r 3 -3x(V 2 +rda)/r5 - 6u(rdv)/r' + 15x(rdv)2 r7)

i= - / r 3 -3y(V 2 + rda) / r5 - 6v(rdv) / r5 + 15y(rdv)2 /r7  (52)

,az / r3 -3z(V 2 +rda)/r5 -6w(rdv)/r' +15z(rdv) 2 /r 7

which is the fourth order two-body term where

rdv a ux + vy + wz

rda- Mxa, +.yay + za,

V rU412 +"V2 -+W2

and finally

(-ilur' +4ju(rdv)2 + x(rdv)(V- 2 -/r)]r' - 9u(V2 - L./r))r5 + 1I Sx(rdv)Ir' - 105x(rd), 3 / "

a' = -jI - +v/r' *45[v(rdv) *y(rdv)(V2 - /r)]/r - 9v(V/ - p / r) / r + lpy(rdv) / r' - 105y(rd)'/ I,
-pwlr' +45[w(rdv)2 +z(rdv)(V2 - p /r)] /Ir - 9w(V 2 - I /r)/r 3 + 15pz(rdv) / ra - 105z(rdv)' /r

(53)

which is the fifth order two-body term where
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a. -Px/r 3

ay -ly/r 3  (54)

a, =-pzlr
3

Referring back to Eqs (3942), the pedrbative acceleration due to J2 effects can be written as:

( 3xlrS - 15xz 2 /r'

a2o = -A 3y / r' - 15yzT2 / r•7  (55)
9z/Ir 5 - 15?~ r 7 )

which is the first order J2 term for the Taylor Series.

Differentiatng with respect to time gives:

3u / r' - 15[2wxz + uz 2 + x(rdv)] r7 + 105x 2 (rdv) / r 9

in= -A 3v/r5 -15[2wyz +vz 2 +y(rdv)]/r7 +105yz)2 (rdv))/r 9  (56)

9w / r5 -45[wz 2 _ z(rdv)] / r7 + 105z 3 (rdv) /r 9

which is the second order Taylor Series term for the J2 effect.

Development of the state transition matrix equations follows directly from the equations of state as:

0Q(t, to) = V,(o)h(X(to)) (14)

where the function h is given by Eq (48) as an explicit function of time. A complete derivation of the

state transition matrix is given in Appendix C. It should be noted that the estimate is much more sensitive

to the order of the equations of state than it is to the order of the state transition matrix (9:161).

3.3.3 Program Validation. The estimator program was validated by using it to estimate the state for

orbital arcs taken from several test orbits. For these tests, the addition of noise and drag perturbations was

"turaed off" so that proper operation of the program could be verified. The orbital parameters for the six

test orbits used are given in Table 3.
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Table 3. Test Orbits for Estimator Validation
Orbit ID Inclination (deg) Eccentricitv Period (min) Apogee Ht (km) Perigee Ht (m)

A 35.26 0.3772 412.4 18895 5053
B 4.33 0.0010 89.45 254 241
C 93.06 0.0010 89.45 254 241
D 35.26 0.0819 98.06 1243 89
E 0.00 0.0000 88.93 222 222
F 7.33 0.0166 91.19 444 222

The major program modules that make up the program were also individually tested. This included the

equations of state, the state transition matrix, the time conversion routines, the data linearization matrix

H, and the routines to convert from topocentric to ECI and back.

SThe equations of state were tested by computing the state of a satellite at three second intervals using

the Taylor Series equations and then comparing with the numerically integrated state using the equations

of motion developed for the truth model. The state transition matrix was also tested by comparison to the

numerically integrated matrix but only at two times (dt = 3 sec and dt = 57 sec). The matrix was first

tested based only on two-body dynamics and once that was validated the J2 terms were added. In order to

test the J2 terms, the value of the J2 coefficient was temporarily changed to be the same as the earth's

gravitational parameter so that the effects could more easily be seen. In order to get good agreement

between the approximate and "exact" matrix it was necessary to use a third order expression for the J2

perturbation. Of course, this degree of accuracy was not really needed since the true value of the J2

coefficient is much smaller than the value for g±.

3.3.4 Determining the Order of the State Equations. Initially the two-body dynamics were modeled

using a third order and a fourth order set of equations to see if there was much difference between them.

The tests shown in Table 4 demonstrated that the fourth order equation was significantly better and so it

was used as the basis for the equations of state and state transition matrix. For this test, the Taylor Series

equations included only two-body effects while the truth data was generated using a numerical integrator

with two-body, J2 and drag effects. Errors were calculated by computing the vector magnitude of the

difference between the two states.
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Table 4. Position and Velocity Errors from 3rd and 4th Order Taylor Series
Test 3rd Order T.S. 3rd Order T.S. 4th Order T.S. 4th Order T.S.

# Position Error (km) Velocity Error (cm/sec) Position Error (kn) Velocity Error (cm/sec)
1 0.092 0.381 0.007 0.163
2 0.101 0.431 0.004 0.130
3 0.143 0.947 0.004 0.150
4 0.107 0.968 0.002 0.100
5 0.025 0.589 0.0001 0.017

a. Tests I and 2 were run using test orbit E from Table 3.
b. Tests 3-5 were run using test orbit F from Table 3.

After developing the first and second order equations for the J2 perturbation, a different test was run

to verify the equations and to provide some insight into their relative performance differences. For this

test, a reference orbit was propagated using the Hamming numerical integrator and a time step of three

seconds. This "true" value of the state was then compared to the predictions of three different equations of

state and the results output as the magnitudes of the position and velocity errors (Rmag and Vmag). The

three different equations of state were: (1) The fourth order two-body equations only ('eom4.for'). (2) The

fourth order two-body equations plus the first order J2 equations ('eom4a.for'). (3) The fourth order two-

body equations plus the first and second order J 2 equations ('eom4b.for'). When the truth model included

only the two-body dynamics 'eom4' performed the best. However, with the addition of J2 and drag effects,

it was quite obvious that the J2 equations would be needed in the estimator. Figure 4 shows the relative

performance of the three equations of state as a plot of their position error (Rmag) versus time (in

timesteps).
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Figure 4. Position Error vs. Timestep for eom4, eosn4a, and eoan4b.

The data for Figure 4 was generated using test orbit A from Table 3. As can be seen, the plots show

that a significant performance improvement occurs when J2 is taken into account. There is very little

difference between 'eom4a! and 'eom4b but 'eom4b` is slightly better. This is expected since 'eomWb uses

a higher order approximation for J2 effects.

However, for very low orbits, such as test orbits B through F in Tible 3, 'eom4a! actually performs

better than 'eom4b'. As can be seen in Figure 5 (generated from orbit C in Table 3), 'eomWb is initially

more accuirate than 'eom4a', but after about 100 seconds 'eom4a' actually has a smaller error. This sort of

behaviour is unexpected since it is normally expected that a higher order of approximation would give

more accurate results.
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Figure 5. Position Error vs. Timestep for eom4a and eom4b.

Using a figure of merit that the position error should be within one kilometer, the duration during

which each version of the state equation should be usable is given in Table 5.

Table 5. Effective Time Duration for State Equations

Orbit eom4 eom4a eom4b
E 5:33 6:12 6:00
A 9:18 9:21 9:24

5:48 6:36 6:24

As can be seen, for very low orbits, 'eom4a' is slightly better than 'eom4b' and both of them are

significantly better than 'eom4'. However, at higher altitudes the difference between the three versions is

very slight and the approximate equations of state are "good" for 50-70% longer.
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3.4 Orbital Parameters.

All of the orbits mentioned so far were used only for development and testing of the programs used in

this study. Analysis of the estimator performance was actually carried out using the orbits detailed in

Tables 6 and 7.

Table 6. Orbital Elements - Satellite 20003
ECI State Vector Classical Elements

Epoch Variable Period 95 rin
x pos 4961.174 km Eccentricity 0.0001
y o -4210.369 km Inclination 28.5 deg
z pos -2286.044 km Rt. Ascension 0 deg
x vel 5.280 km/sec Arg of Perigee 56 deg
y vel 4.806 km/sec True Anomaly 260 deg
z vel 2.610 km/sec Perigee Ht 517.9 km

Apogee Ht 519.3 km

Table 7. Orbital Elements - Satellite 20004
ECI State Vector Classical Elements

Epoch Variable Period 110 mrin
x ps 1968.306 km Eccentricity 0.0001
y pos -6455.632 km Inclination 28.5 deg
z pos -3505.122 km Rt. Ascension 0 deg
x vel 6.993 km/sec Arg of Perigee 25 deg
y vel 1.647 km/sec True Anomaly 260 deg
z vel 0.894 km/sec Perigee Ht 1225.9 km

Apogee Ht 1227.4 km

The very low eccentricity is typical for low earth satellites that have been in orbit for any significant

time and also eliminates the influence of apogee and perigee on the length of each pass. The inclination

was chosen because it is typical of U.S. shuttle orbits and because it was high enough to ensure a ninety

degree pass over the sensor site used in the study. The argument of perigee was chosen to put the perigee

in the northern hemisphere which is where the sensor site is located. By setting the true anomaly to 2600

the satellite is positioned for an ascending pass and will begin its trajectory outside the sensor's coverage.

This reduces the length of the orbit which must be integrated before the satellite enters sensor coverage.
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Satellite 20003 was used to evaluate the estimator performance on very low NE satellites. Track

duration varied from about 6.5 minutes at very low elevation to 12.4 minutes at very high elevation.

Satellite 20004 was chosen to evaluate estimator performance on relatively high NE satellites. Track

duration varied from 10.2 minutes to 21.5 minutes. The inclination and eccentricity were kept constant so

that the effects of altitude could be more clearly noted.

3.5 Parameters for Data Generation.

Three major parameters were used in structuring the data generation: (1) the duration of the pass, (2)

the data rate in observations per second, and (3) the dynamics used in the estimator. The maximum

elevation of a track is directly related to how long the satellite is visible to the site and therefore the

amount of data available for the estimator. This relationship is not linear but follows the pattern shown in

Figure 6.

15 1 , 1 ,
---- ---- - " - 0 -dP - 1 W - a - '12 .J

Pass 10

Time

(min) 5

a I I I

0 18 36 54 72 90
Max Elevation (deg)

Figure 6. Plot of Pass Duration vs. Max Elevation

For a given sensor site, the exact relationship between the length of pass and maximum elevation is

dependent on the satellite's orbit (shape and size) but will still have the basic shape exhibited in Figure 6.

In order to characterize the relationship between estimator performance and pass length, data was

collected using the schedule shown in Table 8. As shown in Figure 6, the duration of a pass changes more

quickly at low elevation than at high elevation and after about 30 degrees there is relatively very little
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change at all. Because of this, more passes were scheduled at the lower elevations than at the higher

elevations.

Table 8. Schedule of Passes for Data Collection

Orbit Panr A B C D E F G H I J

20003 Time 6.60 7.56 8.37 9.65 10.41 11.36 12.08 12.28 12.45 n/a
"El 3.45 4.84 6.35 9.90 13.16 20.47 35.38 48.03 89.44 n/a

20004 Time 10.2 12.85 15.05 16.3l 17.50 18.90 19.95 20.95 21.30 21.50
" TE 3.60 6.28 9.77 12.68 1 16.03 22.36 30.80 47.24 65.22 87 1.

a. Time refers to the duration of the scheduled pass in minutes.
b. El refers to the max elevation of the scheduled pass in degrees.

The rate at which a space surveillance radar generates observations is influenced by several factors:

the type of radar, the radar's operating frequency, and the range to the satellite. This makes it difficult to

specify a single data rate as being representative of all the radars in the SSN. However, it can be assumed

that a radar could easily be capable of generating at least two observations per second and perhaps as

many as 100 observations per second (7:156). It should be noted that the maximum data rate that sensors

are expected to transmit to the SSC is one observation every six seconds (10). Based on this information,

data for this study was generated at two rates - one observation every six seconds and two observations

per second.

3.6 Experimental Procedure.

The first step was to determine the proper epoch from which to start the satellite's trajectory in order

to obtain the desired maximum elevation during each pass. This was done using a program written

expressly for this purpose. The output from this program gives: (1) an epoch for the state vector in Table

5, (2) the associated rise, culmination, and set times and elevation angles, and (3) the satellite's state and

epoch one minute before entering sensor coverage.

Next, the resulting state vector and epoch was input into the truth model. By using the set time plus a

safety margin the end time for the truth model propagation could be efficiently specified. The time step
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was specified either in the input file or during program execution. The output from the truth model was

then input into the four different estimators for processing.

The data generated by the estimators was then plotted to allow analysis and comparison of each

estimator's performance.

3.7 Equipment.

The programs used in this study were written in Microsoft FORTRAN v5.1 and nan on a 486DX PC

running at 33 MHz. Some supplementary work and generation of graphs was done using Mathcad v3. 1.

Mathematica was used extensively in deriving the Taylor Series equations for the equations of state and

the state transition matrix.

3.8 Summary.

The effectiveness of using a least squares batch estimator to estimate the state of a satellite is

investigated using simulated observations from a single radar tracks. The observations are generated

using a truth model that uses a fourth order numerical integrator to propagate the satellite's orbit for a

small portion of the orbit. The estimator models the orbital dynamics using only two-body and J2 effects

using equations of state and state transition matrix that are expressed in explicit form using a Taylor

Series approximation.
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IV Results and Analysis

4. 1 Introduction

Four different versions of the estimator were compared using data from two different orbits, two

different time steps, and two different noise settings (on and ofM). The results were examined to determine

whether (1) the estimators were effectively compressing the data and (2) how accurate each estimator was.

Analysis of the residuals was done after convergence to determine if the mean error was approximately

zero and if the RMS error was close to the one sigma values for range, azimuth and elevation. Also of

importance was the accuracy of the estimate as measured by the position and velocity errors relative to the

true state.

While discussing the performance of the estimators it will be useful to refer to the first three

estimators (ets4', 'ets4a', and 'ets4b) as the fourth order estimators. This is because their behavior tends

to be quite similar and all three are based on the fourth order Taylor Series approximation of the two-body

equations of motion. Likewise the last estimator, 'ets5', will sometimes be referred to as the fifth order

estimator.

Because of the non-linear relationship between track length and maximum pass elevation, it is

necessary to look at the results from both perspectives. As an example, track lengths for the low orbit

used in this study range from 6.5-12.4 minutes. An estimator may give good results for tracks up to 11.3

minutes long - which would seem to cover a significant portion of the possible passes. However, in terms

of pass elevation this would translate to good performance only for passes with a maximum elevation of

20 degrees or less.

4.2 Estimator Performance Using Perfect Data.

Data rate proved to be unimportant when the estimators were provided with noiseless data. The RMS

and mean residual statistics along with the position and velocity errors were practically identical
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regardless of data rate and varied by only a few percent. Because of this, only information from the low

data rate will be presented and discussed for both the low and high orbits.

4.2.1 Low Orbit. Figures 7 and 8 show the RMS and mean error statistics of each estimator versus

track length for the low orbit (satellite 20003). Figures 9 and 10 present this same information plotted

against the maximum elevation of the pass. As can be seen from these figures, 'ets5' consistently

outperforms the other three estimators with RMS and mean residuals that are approximately zero for all

passes. Although the azimuth and elevation residuals for the fourth order estimators diverge significantly

away from zero, they are still relatively small. However, the range residuals indicate a definite weakness

in that parameter. All three of the fourth order estimators either exceed or approach RMS residuals of

100 meters for passes that last 12.2 minutes or more - which equates to elevations of 48 degrees or

greater.

The RMS and Mean residuals indicate that the interval of convergence of the fourth order estimators

is significantly less than most of the track durations looked at in the low orbit. Residuals for observations

that occur in a small time interval (the interval of convergence) centered around the estimate's epoch time

are rather small while residuals for observations outside this interval increase rapidly as At increases. As

the track length increasingly exceeds the interval of convergence, the percentage of the total residuals

outside the interval also increases as does their magnitude. Eventually these large residuals become

significant and cause the RMS and Mean residuals to diverge away from zero. The fifth order estimator

performs well because its interval of convergence is significantly larger. However, it should be noted that

even the fifth order estimator's residuals show a slight divergence away from zero. Even though the

interval of convergence is larger it is still finite.

Figures 11 and 12 show the position and velocity errors in the estimated state from each estimator

versus track length and maximum pass elevation respectively. Again, the fifth order estimator

significantly outperforms the other estimators. Interestingly, while the velocity error increases with track

length for 'ets4a' and 'ets4b', it decreases for 'ets4'. For tracks longer than 11 minutes (about 18 degrees

in elevation) 'ets4' actually produces smaller velocity errors than both 'ets4a' and 'ets4b'. The maximum
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error produced by 'etsS' is 1.8 meters in position and 2.2 cm/sec in velocity. A more quantitative analysis

of the information contained in the graphs is presented in Table 9. Because of the very different shape of

the curves depending on whether the errors are plotted against time or elevation, weighted averages were

calculated for each case. Table 9 shows that the average velocity error for 'ets4' is still worse than any of

the other estimators.

Table 9. Position and Velocity Errors from Perfect Data - Low Orbit
Position Error (m _ - VelociError

Avg vs Avg vs Avg vs Avg vs
Estimator Min Max Time Elevation Min Max Time Elevation

ets4 46.1 128.9 77.8 80.4 44.5 104 63.5 53.1
ets4a 0.7 60.2 18.2 26.6 6.7 64.3 26.4 33.3
ets4b 1.4 79.9 24.5 35.7 9.8 89.7 37.1 47.2
ets5 0.3 1.8 0.9 0.9 0.3 2.3 1.1 1

Normally, it is expected that as the track duration increases the accuracy of the estimated state will

also increase since more data is available for the estimator. However, as can be seen in Figure 11, this is

not true for the fourth order estimators. As was the case for the residuals, the interval of convergence for

these estimators is too small and so estimates of the state become worse as the track duration increases.

The unexpected trend in velocity errors for 'ets4' relative to 'ets4a' and 'ets4b` could possibly be related

to changes in the value for the J2 potential function. Recollect that the J2 potential function is given by

Eq (40). If the potential at the middle of the track is considered indicative of the potential over the entire

span of the track, then a comparison of the potentials associated with each pass will show that at 12

minutes (Pass #7) the J2 potential function is a minimum. This could possibly reduce the importance of

the J2 terms contained in 'ets4a' and 'ets4b'. Additionally, the J2 terms could have the effect of adding

numerical noise to the state predictions. The could be a factor in explaining why 'ets4' gives better

velocity estimates than the other fourth order estimators for passes longer than 10.5 minutes.

37



150 1 I I

RoS 1oo

Range
Error

Wm 50

6 7 8 9 10 II 12 13

0.004 1

0.003

RMS
Az

Eor 0.002Error ooo -

(deg)

0.001 ........

U!

6 7 8 9 10 11 12 13

0.01 I I I

RMS
El a
Error 0.005

(deg)

6 7 3 9 10 11 12 13

--w- ets4
Sets4a

ets4b
@ ets5 Track Length (min)

Figure 7. Converged RMS Residuals vs. Track Length - Low Orbit

38



0

Mean
Range
Error
(in)

-10

6 7 8 9 10 11 12 13

0

8*10-5

Mean 6*10-5

Az 4*0-5
Error 40

(d"1) 2-10-

-210-5
6 7 S 9 10 11 12 13

0.005 1

Mean
E l-- - ----

Error
(deg)

-0.005 II
6 7 1 9 10 1I 12 13

-X- ets4 Track Length (min)
' ets4a

ets4b
ets5

Figure 8. Converged Mean Residuals vs. Track Length - Low Orbit

39



ISO

RMS 100 Ra--,4

Error
CM) so

0 -- .--- A......... I .. ..... ....... .. .. .. ........

0 10 20 30 40 5o 60 70 t0 90

0.004 I I 1 1 1 1

0.003

RMS
Az
Error 0.002

(deg)
0.001-- m.

0 .. ....... t........ ........ LA ........ .... . . ... ..... .f ........ .. ... . . ...

0 to 20 30 40 50 60 70 to 90

0.01 1

RMS
El 0.006 ......

(deg).......

0 10 20 30 40 50 60 70 3o 90

-- Ct Max Elevation (dog)
dets4a
etswb

Figure 9. Converged RMS Residuals vs. Max Elevation - Low Orbit

40



0

Mean
Range
Error
(Mn)

-10 -..

0 10 20 30 40 so 60 70 s0 90

8.10-S

Mean 6-10-5

Az 41-3
Error 40

(dieg) 2*10-5

-2*105 1 1 1 1 1 1

0 10 20 30 40 50 60 70 so 90

M ean ........

Error
(deg)

-0.0051
0 10 20 30 40 50 60 70 so 90

- ets4 Max Elevation (deg)
' ets4a

A* ets4b
.,- tS5

Figure 10. Converged Mean Residuals vs. Max Elevation -- Low Orbit

41



Position Error

ISO

1oo

PO6
Error a
(M)

0IP
6 7 8 9 10 11 12 13

Velocity Error

150

100
Vel
Error

50

S...... .. .. . .. . .............

6 7 S 9 10 II 12 13

- ets4 Track Laegth (min)
Sets4a

ets4b
Sets5

Figure 11. Position and Velocity Errors vs. Track Length - Low Orbit

42



Position Error

Pos 
10

Error....A

0 10 20 30 40 50 60 70 s0 90

Velocity Error

100

Error ...
(cnils)

so

0 --I ------
0 10 20 30 40 50 60 70 s0 90

-9- ets4 Max Elevation (deg)
Sets4a

ets4b
0 ets5

Figure 12. Position and Velocity Errors vs. Max Elevation - Low Orbit

43



4.2.2 High Orbit. Figures 13 and 14 show the RMS and mean error statistics ofeach estimator

versus track length for the high orbit (satellite 20004). Figures 15 and 16 present this same information

plotted against the maximum elevation of the pass. As can be seen from these figures, 'ets' continues to

significantly outperform the other three estimators.

The fourth order estimators show a definite inability to handle the significantly longer track

durations. Elevation residuals, both RMS and mean, approach the one sigma value of 0.025 degrees at

elevations above 60 degrees (pass length of 21 minutes) and exceed 0.01 degrees for passes above 30

degrees (20 minutes). A tvath residuals are also very high, but exhibit some interesting behavior. The

RMS residuals for azimuth have a maximum for tracks lasting about 21 minutes (max elevation of 48

degrees) and approach the 'ets5' value at pass elevations close to 90 degrees. For passes between 15-80

degrees, 'ets4' actually has a lower RMS value for azimuth residuals than either 'ets4a' or 'ets4b'. The

mean residual values peak for tracks lasting about 17.5 minutes (16 degrees elevation) and pass through

zero for 20 minute (30 degree) passes before once again increasing. Range residuals, both RMS and

mean, show a steady growth with respect to time and elevation. The maximum RMS residuals go as high

as 900 meters and the one sigma value of 100 meters is exceeded for tracks lasting longer than 17.5

minutes (about 16 degrees elevation).

Figures 17 and 18 show the position and velocity errors in the estimated state from each

estimator versus track length and maximum pass elevation respectively. As expected, the fifth order

estimator significantly outperforms the other estimators. Again, 'ets4' had smaller velocity errors than

'ets4a' or 'ets4be after the track length had increased to a certain level. In this case, the crossover point

was at a track length of about 14 minutes (8 degrees in elevation). As was seen for the range residuals

earlier, the fourth order estimators show rapid growth in position and velocity errors to very high levels.

Position errors exceeded 100 meters for tracks of 14 minutes (about 10 degrees elevation) or more. The

information in Table 10 provides a quantitative look at this data for comparative purposes. Because of the

very different shape of the curves depending on whether the errors are plotted against time or elevation,

weighted averages were calculated for each case.
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Table 10. Position and Velocity Errors from Perfect Data - High Orbit
Position Error (m - Velocit Error (cm/sec•

Avg vs Avg vs Avg vs Avg vs
Estimator Min Max Time Elevation Mmi Max Time Elevation

ets4 29.3 755.4 251.7 348.2 89.1 380.7 174.8 215.9
ets4a 6.7 657.2 186.4 285.1 26.9 396.4 142.3 190.7
ets4b 7.2 722.9 205.3 314.2 29.4 4493 160.6 215.9
ets5 2 23.6 9.3 9.5 1.5 21.7 8.9 8

The same relationship between track length and order of approximation in the equations of state

that was seen for the low orbit is even more evident in the high orbit - both for residuals and for accuracy.

It should also be noted that 'ets5' and 'ets4b' both use the same state transition matrix but 'ets5' uses a

higher order approximation for the equations of state. Therefore, the dramatic improvement in

performance between the two estimators demonstrates that estimator performance is more sensitive to the

"accuracy" of the equations of state than to the state transition matrix.
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4.3 Estimator Performance Using Noisy Data

In order to ensure that the random number generator had not biased the data to give especially

good or poor results, several data runs were performed for each combination of orbit and data rate and the

results averaged together. Each data run used a different initial seed number for the random number

generator so that a totally different set of random numbers were generated during each data run. Twelve

data runs were done for both the high and low orbits using the fast data rate. Five runs were done for each

orbit using the slow data rate.

Testing of the estimators using noise-less data indicated that only the fifth order estimator was

suitable for use. Because of this the fourth order estimators were dropped from further analysis and only

the fifth order estimator was analyzed using noisy data.

It was observed that when the observations contained no noise, the data rate was not a factor in

estimator performance. However, when the observations do include noise, the higher data rate results in

better estimator performance.

4.3.) Residuals. A typical plot of the average mean and RMS residuals for range, azimuth and

elevation versus maximum pass elevation after convergence is shown in Figure 19. As can be seen, the

average mean residuals are all very close to zero and the RMS residuals are all very close to their expected

one sigma values. This behavior, with only minor differences, was exhibited in all cases regardless of

orbital height, data rate, maximum pass elevation or track duration.

Figure 20 shows a typical plot of the RMS residuals before and after differential correction.

Although, the final pass RMS residuals all seem to be zero, they are actually the same as in Figure 19.

The size of the pre-correction RMS residuals dominates the vertical scale thus causing the post-correction

values to appear to be zero.

Figures 21 and 22 shows the actual pre and post correction residuals in range, azimuth, and

elevation for single passes of satellite 20004 over the site. Figure 21 is a minimum elevation pass

(elevation = 3.6 deg) while Figure 22 is a maximum elevation pass (elevation = 87.7 deg). Both passes

were generated using the fast data rate. Again, these plots are typical of all the cases looked at. The
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"spike" in the first pass residuals seen in Figure 22 are caused by the rapid change in azimuth and

elevation as the satellite passes almost directly overhead of the site. As can be seen, in comparison to the

pre-correction residuals, the residuals after correction are very small and are approximately zero.

Figure 23 plots the low elevation pass post-correction residuals used in Figure 21 versos their

expected one sigma limits. Although outliers exist, the greater majority of residuals lie within the one

sigma limits. It should also be noted that the outliers all appear to be within three sigma of zero. This is

exactly what is expected since after correction the major source for the residuals should be the noise that

was in the observations.

All of the information presented in Figures 19-23 indicates that the fifth order estimator has

effectively extracted all of the pertinent information from the observation data.
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4.3.2 Accuracy of Estimate. The estimatores accuracy is evaluated by comparing the estimated

state for each pass to the true state and calculating the position and velocity error vector magnitudes.

Figure 24 plots the position and velocity errors versus maximum elevation for the low orbit (satellite

20003) for both the high and low data rates. As expected, the accuracy of the estimated state improves as

the maximum pass elevation increases and as the data rate increases. The improvement is most rapid at

the lower elevations and seems to level off at the higher elevations. This is because of the non-linear

relationship between maximum elevation and track duration. Breaking the plots in Figure 24 into three

zones: Zone I accounts for an average of 58% of the total change in error magnitude, Zone 2 accounts

for about 28% of the total change, and Zone 3 accounts for the remaining 14%.

Figure 25 plots the position and velocity errors versus maximum elevation for the high orbit

(satellite 20004) for both the high and low data rates. Again, the accuracy of the estimate improves with

increasing elevation and data rate and the improvement is still most rapid at low elevatiohs.

When using the low data rate, the plot of error magnitude versus elevation results in fairly

smooth curves. However, the higher data rate results in curves with very different behavior. Accuracy

improves rapidly until the elevation reaches about 10 degrees. The accuracy then decreases until the

elevation reaches 15-20 degrees after which it again improves. This behavior is most noticeable in the

velocity errors and is most pronounced for the high orbit. In general, the accuracy of the estimate is better

for the low orbit than for the high orbit. Position errors are consistently about 10-16 meters higher for the

high orbit. The velocity errors show a much larger degree of variability. At elevations less than 10

degrees, the velocity errors for the high orbit are actually less than for the low orbit. Between 16-35

degrees, the velocity errors for the high orbit are about 50% greater than for the low orbit. For elevations

above 50 degrees, the velocity errors for the high and low orbits vary by less than 10%. Figure 26

graphi-ally compares the errors for the high and low orbits.
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4.3.3 Covariance Matrix. The analysis in the previous section was possible only because the

true state was a known quantity from the truth model. In reality, the true state is usually not known and

so some other way of assessing the quality of the estimate is necessary. This can be found in the

covariance matrix which is generated during the estimation process.

Using the state covariance matrix it is possible to calculate the covariance associated with the

position and velocity errors (4:43). The first step is to write an expression relating the error to the state

vector. Next calculate the gradient of this expression with respect to the state vector. Now the gradient

and state transition matrix can be combined to find the variance in each error:
,2 = VRTpP(t 0 )VR (57)

where R is the scalar expression relating the position or velocity error magnitude to the state vector and

Pstate(to) is the state covariance matrix associated with the estimate.

Table I I compares the standard deviation in position and velocity (as predicted by the covariance

matrix) with the actual average errors for six different pass profiles. The estimator does a good job of

estimating the variance (which is merely the square of the standard deviation) for position but is very

optimistic when estimating the variance for velocity.

Table 11. Comparison of Predicted and Actual Estimator Accurac
Orbit Pass Elevation a, avgr~en avgr / a, ort avgye.e avg} o/,,
Low 3.5 35.979 38.933 1.082 4.479 35.989 8.035

"35.4 11.077 11.497 1.038 0.749 9.254 12.355
"89.4 4.682 4.983 1.064 0.547 7.916 14.472

High 3.65 47.305 50.449 1.067 5.887 27.411 4.656
"22.41 18.821 23.446 1.352 3.116 19.533 6.269
87.78 3.53 17.7 5.014 0.452 8.294 18.350

The estimator is slightly optimistic in calculating the variance in position for most passes, but as

the track durations become very long it seems to become more and more optimistic. This can be seen in

the last two rows of Table 11. This probably indicates that the track lengths are beginning to exceed the

span over which the approximate equations of state give a good fit with reality.
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Estimates of the variance for velocity are very optimistic and differ from the actual errors by an

order of magnitude on average. Both high and low orbits show increasingly optimistic estimates of the

variance as the track length increases. Interestingly, the estimator generally does a better job with the

higher orbit although the effect of track length mentioned before seems to be manifesting itself in the last

pass profile. The most likely reason for the overly optimistic estimate for the velocity variance is that the

velocity terms in the equations of state were only developed to the fourth order while the position terms

were developed to the fifth order.

4.4 Summary

The analysis was begun with four different estimators to test different orders of approximation in

the equations of state and state transition matrix. Measures of estimator performance were compiled

using noise-less or "perfect" observations. Based on these results, only one of the estimators was chosen

for further analysis. When given observation data that included gaussian noise, the fifth order estimator

effectively extracted all of the pertinent information from the data and provided accurate estimates of

position and velocity.
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V Conclusions and Recommendations

5.1 Introduction

The analysis of Chapter 4 shows that a differential corrector based on Taylor Series approximations of

the equations of state and state transition matrix can adequately estimate the state for near earth orbits.

The key element in the success of the estimator was the use of a sufficient number of terms in the

approximate equations.

5. 2 Conclusions

The number of terms in the Taylor Series equations of state required to properly model the orbital

dynamics is ultimately driven by the expected track duration. This is because the Taylor Series is an

expansion in time. As the time span over which the equations must operate increases (i.e. longer tracks),

additional terms must be added to the equations or they will fail to properly model the dynamics.

Although the fifth order estimator appears to perform well for the two orbits studied, it would probably

begin to perform poorly as the orbital altitude increases since altitude is a M- -,tor in track length.

As expected, the two body effect is the dominant term in the state and trt %. transition matrix

equations. However, although small, the effect of the J2 geopotential term is noticeable for these low

earth orbits and therefore the estimator dynamics needs to take this into account. This does not mean that

the estimator will not work without the J2 term in the dynamics - only that it will not work quite as well.

Estimator performance is much more sensitive to the order of the equations of state than to the order

of the state transition matrix. This is demonstrated by the difference in performance between 'ets5' and

'ets4b'. Both use the same state transition matrix equations but 'ets5' has equations of state one order

higher than those of 'ets4b' (see Table 2 and section 4.2).

As expected, the accuracy of the estimator was related to the number of available observations. The

higher data rate resulted in consistently more accurate estimates than the lower data rate. As the track

length increased due to increasing maximum pass elevation the accuracy of the estimate also increased.

65



Auracy was also affected by orbit altitude and tended to be better for the lower orbit. This was probably

due to reduced effectiveness of the approximate equations over the longer time spans generated by the

higher orbit.

Two effects can be seen to be working against each other. Longer track lengths mean more data is

available for the estimator and so the accuracy of the estimate is better. However, longer track lengths

also mean longer time spans. As noted before, the use of approximate equations for the dynamics means

that the effectiveness of the dynamics model decreases with increasing time span. So one effect works to

improve the estimate while the other works to degrade the estimate.

As developed in this study, the estimator's covariance matrix provides overly optimistic estimates of

the accuracy of the estimated velocity. The most likely explanation for this is that the state and state

transition matrix equations for velocity are one order lower than the equations for position.

5.3 Recommendations

It should be possible to improve the accuracy of the covariance matrix by improving the velocity

equations to be of the same order as the position equations. This should be done for both the equations of

state and the state transition matrix. Only additional terms for the two-body effect would need to be added

because of the relatively small effect of J2 .

The order of the Taylor Series approximations should probably be increased to sixth order or possibly

higher. This is because the performance of the fifth order estimator is expected to degrade when orbits

higher than those looked at in this study must be estimated. Note that the highest orbit in this study has a

period of 110 minutes while the definition of Near Earth includes satellites with periods up to 225

minutes.

Consider using a numerical integrator to propagate the state and state transition matrix instead of a

Taylor Series approximation. Not only would the calculation of the state and state transition matrix be

more exact, but the problem of an effective interval of convergence associated with using approximate

equations would be eliminated. Also, the major reason for using approximate equations was to reduce

processing time since numerical integrators are usually very computationally intensive. However, as the
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order of the approximate equations increases, the equations become quite complex and lose their time

saving advantage over numerical integration.

5.4 Potential Areas of Study

Additional testing on different orbits should be done. Higher altitude orbits should be looked at to

determine if additional terms are needed in the Taylor Series approximations for the equations of state and

state transition matrix. Other orbital aspects such as inclination and eccentricity should also be

investigated. Of special interest would be orbits with inclinations of 90 and 63.4 degrees since these orbits

minimize the J2 effect on rotation of the line-of-nodes and line-of-apsides respectively.

Further analysis on the effect of drag on the estimator's accuracy should also be done. This could be

done by repeating the same sequence of data runs done for this study but using truth data that does not

include drag effects. The results could then be compared and the drag effects determined.

Investigation of the "cup" seen in the velocity errors near the 10 degree maximum pass elevation

could be done to explain why this occurred. Also, additional passes could be analyzed to better

characterize the relationship between pass elevation and estimator performance.

The estimator could be rewritten to use a numerical integrator instead of the Taylor Series

approximations for the state and state transition matrix equations. Of primary interest would be whether

this would improve the accuracy of the estimate and its associated covariance matrix as well as

eliminating the interval of convergence problem.

One of the basic premises of this study is that the output from the estimator can be grouped with other

similar estimates to solve for other perturbations such as drag. Development of a batch or sequential

estimator to use this data to produce elsets similar to those currently produced by the SSC should be

undertaken. Analysis of this "master" estimator should probably focus on: (1) obtaining good estimates of

drag, (2) generating elsets compatible with and comparable to those produced by the SSC, (3) determining

if SSN performance would be improved by using this approach.
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Currently the SSC is not really set up to use a state vector and covariance matrix as input to their

estimator (known as 'SGP4'). Therefore it might be useful to see if the state vector could be convened to a

form more readily used by the SSC algorithms.

5.5 Summary

This study demonstrated that a least squares estimator using approximate equations for the state and

state transition matrix can effectively and accurately estimate the state of a Near Earth satellite using

observations from a ground based space surveillance radar. Some limitations of the estimator used in the

study and ways to correct or eliminate them were also identified. Further areas of study were suggested to

fill in gaps that could not be fully covered in this study. Of special note was the increasing complexity in

the approximate equations required to handle longer and longer sensor tracks and the potential of using a

numerical integrator to eliminate this problem.
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Appendix A. Coord~naie Frame Transformations

A.) Determining LUST and Site ECI Coordinates

At any given time the earth will have a certain orientation relative to the ECI coordinate axes. The

Greenwich mean sidereal time (GMST) specifies the angle along the celestial equator (measured

eastward) between the mean equinox and the Greenwich meridian. The GMST for any arbitrary time is

08 = 100.4606184 + 36000. 77004J + 0.000387933j 2 + 360.98564724-U (58)
24

where 0 9 is the GMST in degrees, J is the number of Julian centuries from Julian year 2000.0, and UT is

the universal time in hours (8: 21, 23). The Julian century can be calculated from

I-= J -2451545.0 (9

where JO is the value of the Julian date at Oh UT (8: 2 1). Once the GMST is known, the site's local mean

sidereal time (LMST) can be calculated as 0 = 0 g9 + A, where A is the site's east longitude. Figure 27

shows graphically the relationship between the mean equinox, GMST, and LMST.

* *
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The earth can be modeled as an oblate spheroid with an ellipsoidal cross section. The semi-major

axis lies along the earth's equatorial radius and the semi-minor axis is the earth's polar radius (2: 93).

Since the cross section through the equator is still circular the longitude of a sensor site is unchanged.

However, by using this model the determination of the latitude of a site on the earth's surface is more

complex and leads to the definitions of geocentric and geodetic latitudes. As can be seen in Figure 28,

geocentric (L) and geodetic (L) latitudes are quite different. When the latitude for a site is given, it is

usually the geodetic latitude that is meant (2: 94). The reference ellipsoid used in this model has the

following dimensions: Equatorial radius (a.) = 6378.145 kmi, Polar radius (be) = 6356.785 kin, and

Eccentricity (e) = 0.08182 (2:94).

-be

21.4 ha

Figure 28. Geocentric and geodetic latitude (2: 95)

If the equatorial axis is labeled "x" and the polar axis is labeled "z", then the rectangular coordinates

of a site will be

X = a, + h cosL
•f1 -I esin 2 L

a,(l e2) (60)

z = ++h sin L
!- e sin2 L
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where a. is the earth's equatorial radius, e is the earth's eccentricity. L is the geodetic latitude, and h is the

site's elevation above sea level (2: 98). When combined with the LMST, the site's location in ECI

coordinates is

A = xcosOi+xsinO +A( (61)

A.2 Earth Centered Inertial (ECI) to Topocentric Transformation

Once the site's inertial coordinates are known the satellite's position relative to the site is computed

as:

dr = r. - r. (62)

where dr is the satellite's relative position, rsat is the satellite's position in ECI coordinates, and rsite is

the site's location in ECI coordinates. The satellite's relative position is then converted to the SEZ frame

using:

p, = x sin ). cosO + y sin ). sin 0 - zcosk

p, =ycos0-xsinO (63)

p,= xcos cosO+ycosXsinO+zsinX

where ps, Pe' Pz are the components of the relative position vector in the SEZ frame, x, y, z are the

components of the relative position vector found in Eq (61), X is the site's latitude, and 0 is the LMST for

the site at the time of the observation. The SEZ vector is finally converted to the topocentric coordinates

by:

range = p x2 V + y +z 2

elevation = = asin(p, /p) (64)

azimuth = aco -P.
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A.3 Topocentric to ECI Transformation

Converting from topocentric coordinates to ECI coordinates is basically the reverse of going from ECI

to topocentric. The first step is still to find the site's inertial location. Once that is done the topocentric

coordinates are transformed into the SEZ frame:

p, = -pcosOcosa
p, = pcoso sin a (65)

p, = 'sinj

The nest step is to convert from SEZ coordinates to ECI coordinal. s using:

&r = p, sin X cosO - p, sine + p, cos XcosO

dy = p, sin X sin 0 + p, cosO + p: cos. sin 0 (66)

dz = p, cosX + p, sin X

where dr, dy, and dz are the components for the relative position vector between the site and the satellite

expressed in ECI coordinates. The final step then is to add the relative position vector and the site

location together:

r. = r.. + dr (67)
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Appendix B. The Data Linearization Matrix, H

The data linearization matrix is given by Eq (18) as:

G ( (18)

For a satellite orbiting the earth, the observation relation G is:

G = = 7- a tan(p./p. (68)

where p, az, el are the range, azimuth and elevation components of the topocentric observation vector and

Ps, Pe, Pz are the SEZ components of the topocentric observation vector. In the SEZ topocentric frame,

the satellites position is:
5SEZ = D(r - R)Ec, (69)

where r is the satellite's position in ECI coordinates, R is the site's position in ECI coordinates and D is

the rotation matrix from the ECI frame to the SEZ frame:

"sink cos0 sinksin -cosk

D = - sin s cs 0 (70)

coskcosO cosXsinO sinX

where X is the site's latitude and 0 is the site's LMST.

Since G is linearized with respect to the state vector, the site position can be ignored and so

6p5 z = D~r (71)

and

a•G' 0,
6z = 8ý,sz = HD6r (72)
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where z is the observation vector range, azimuth and elevation. Changes in the observation vector are

linearly related to changes in the satellites state as:

8z = Hbx (73)

and so Eq (72) can be rewritten and solved for H as:

H = HD (74)

since 8r/Sx = 1

After differentiating the equations in Eq (68) the result is:

P, P, P,
P P P

1P. -ps 0 (75)

pS + P" ,T4 7+ PP

-PIP, -P'P' +p7ýp2•• +p: P 2Jp +Pe2 P
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Appendix C. State Transition Matrix,

The state transition matrix, commonly denoted by 0, is found by taking the gradient of the equations

of state evaluated at the initial conditions. When the equations of state are available in explicit form this

relationship can be expressed as:

O)(t,to) = V-- 00 1(t 0 ),t) (14)

where x(to) is the state at the initial or reference conditions and h is the relationship that relates the state

at to to the state at any other time t.

In this study the equations of state are explicit expressions obtained from a Taylor Series expansion of

the equations of motion. As can be seen in Section 3.3.2, Eqs (48, 51-56), these equations are rather large

and complex, so the easiest way to derive the 0 matrix is to develop it term by term and then add all the

parts together. For notational purposes, each term in the development will be denoted as Osub , where the

subscript refers to the order of the term. The same notation is used when referencing a particular term in

the Taylor Series (such as b0 which would be the zero term in the series). Also, all quantities are

evaluated at the reference or initial conditions.

C. The Two-body Terms

The zero order term is:

(Do = V~h = (r)J= 1 (76)

where r, v are the initial position and velocity vectors and I is a 6x6 identity matrix.

The first order term is:

)t, = Vh = V( =[ 1]dt (77)
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where a is the initial acceleration vector (reference Eq (53)), 0 is a 3x3 null matrix, I is a 3x3 identity

matrix and A is the 3x3 matrix:

(3x'lr' - 11P) 3xylr' 3xzlrs

A=g 3xylr' (3y2/rl- W/r3) 3yz/r J (78)

3xz/rs 3yz/r' (3z'/r' - /r')

where g is the earth's gravitational parameter, x, y, z are the position coordinates of the state in the ECI

frame of reference, and r is the magnitude of the position vector.

The second order term is:

()2 = Vh2 = V'(2 212 [A Oc]d 2  (79)

where a-dot is the first time derivative of the acceleration vector (see Eq (51)), the 3x3 matrix B is:

1[5(r.v)x2/r' -3(r.v)- 6uxyr' [15(r.v)Xy/r2 -3 3--3uyyVr [15(r. v)xz/rl -3wx -3uztr'

B=/ [15(r.v)>xy/r1-3vx-3uybVr' [I5(r. v)y'/r2- 3(r-v)-6vyYlrs [5(r.v-yv7/r1-3hy-3vz]r' I
L [I5(r'v)xz/r' -3wx -3uzVr' [15(r'v)yz/r - 3wy -3vz r' [I5(r'v)z2/r' -3(r'v)-6wz]rY J

(80)

and the 3x3 matrix C is:

-(Ilr - 3x/lr') 3xylr' 3xz/r ]

C=P 3xy/r s  -(lIr3-3y2ir') 3yz/r (181)

3xzlrS 3yzlr' -01r5 -3z'lr')

The third order term is:

0 3 =Vh3 = V 3 [ (82)

where i is given by Eq (52) and the 3x3 matrix D is:
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D(1, 1) = -lO5(rdv)')x'/r 9 - 3pxz/rs +[15(rdv)2 +60(rdv)ux+ 15x 2 (veI 2 -p I/r)VYr7

-9~/r6 -[6u' +3(vel 2 -. l~r)j/r 5 +6p~x 2/1r4

D(1,2) = [3O(rdv.)(vx+umy) + lSxy(veI2 - R/r)]/r 7 - 6uv/r 5- 9 I/r' -1O5(rdv)')xy

D(1,3) = 130(rdv)(wx +uz) + 1xz (ve12 - p Ir)]/r 7 - 6UW/r - 9j xzr' - 1O5(rdv)') ja

D(2,1) = D(1,2)

D(2,2) = -105(rdV)l y 2 /1r9 - 3py 2 /IrI + [15(rdV) 2 + 60(rd,) VY + 15Y 1 (VeI 2 -. lr I)Vr7

D(2,3) = [3O(rdv)(wy + vz) + 15yz(vel2 - gL/ r)Vr " -6vw/r 5 - 9 RYz/r 8- 105(rdV) 2 y7

D(3,1)= D(1,3)

D(3,2) = D(2,3)

D(3,3) = -1OS(rdV) 2 z2 /r9 - 31.122 1r8 + [15(rdv)2 + 60(rdv) wz + 15z 2 (ve! 2 - IL Ir)Yr 7

-p.r 6 -[6W2 +3(vel 2 -p./r)]/r 5 +6pz 2/r 4

(83)

where vel = vI and rdv =(r -v).

The E matrix is given by:

f30(r -V)X2/r2 -6(r.v)-I2ux 30(r -v)xy/r' -6vx-6uy 30(r v)xz/r' -6wx -6uz1
E=- 3O(r.v)xy/r 2 -6vx -6uy 30(r -v)y2 /r' -6(r -v)- 12 W 30(r v)yz/r 2 -6wy -6v

r 30(r.v)xz/r 2 - 6wx -6uz 30(r.v)yz/r 2 - 6wy- 6vz 30(r.v)z'/r 2 - 6(r -v) -12 wz

(84)

The fourth order term (which was only calculated for position) is:

04 V4 V1 (' t4  Ir[D El 4  (5
04 ~ 2 0 244  0 0 -~o'(5

C.2 The J2 Terms

Following the same procedure used for the two-body elements of the 0 matrix, the first order term for

J2effects is:

4 ~F 0VOd=[ ] (86)
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where a20 is given by Eq (55) and the 303 matrix Fl is:

3/rS - I ýx 2 +Z 2 )/r' + 1O5x'z2/r' .-ISxy/r7 + 10533g 2 /Ir .-4Szz/r 7 +105xzz 3 /r'1

Fl =-A[ -15xy/r 7 + I03Xyz 2 Ir' 31r, - 15(y 2 +Z 2 )/r 7 +1 OSYYz2r' -45y,/r 7 +1O5yz 3/r'

[ -45.=/r 7 + 1OSxz'/r' -45yz/r 7 + I o5, 3/r' 9/r, -90:2l / 7 +105Z'/r'

(87)

The second order term is:

OJ2 =V ( ýtd 2 =[ Fl ]t (88)

where A is the quantity defined in Eq (39), 1 2 is given by Eq (56), and the 30x3 atrix F2 is:

F201,1) = [-30ux -2wz -(rdv)]/r 7 - 945XZ3 (rdv/r"

+105 uz 3 +2 WX2Z+UXZ2 + x2 (rdv)]/r 9
F2(1,2) = -15(vx +uy)/r" -945y7z3 (rdv)/ri"

+105s Vz +y(2wxz + Z + x(rdv) )]/r9

F2(1,3) = -45(uz +wx)/r 7 -945Z4 (rdV)/r i

105z Wz 2 +3z(rdv)+2w= + Z xrvlr
F 2(2,l1) = -lS(VX+uy)/rl _945XZ

3(rd~v/r"

+i5[z +y( 7+vz2 +y(rdv'))Vr9
F 2(2,2) = [-3Ovy -2wz -(rdv)]/r 7 -945.Wz3(rdv)/r 1

+1051 Y2+Vz 3 +2 y j zvy 2 + y 2(rdv) /r 9

F2(2,3)= -45(vz+v)/r 7 -945z'(rdv)/r"

105zlwz 2 +3z(rdv)+2w.K + VZ2 +y(rdv)yr 9

F 2(3, 1) = -45(uz +wx)/r 7 -945= 3 (rdv)/r"I

IOJfZ& +3x(%7' +z(rdv))Vrg

F2(3,2)= -45(vz-ewy)/r 7 _ 945.K3 (rdv)/r"

i05[VZ3 + 3y(wz 2 + z(rdv) )]/rl (89)
F203,3) = -[i80wz +45(rdv)Vr 7 - 945Z'4 (rdV)/r"1

210[2 *2 + 3Z2 (rdV)Vr9
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using the same notation as Eq (83). The 3x3 F3 matrix is:

3/r -15(x2 +z2)/r7 +105=XX/r, -I5xy/,' + 105y3 /r' -45xz/r' +105Z4 / 1
F3=-A -I5XY/r' + 105zz 3o'l 3/r1 - I5(y2 + Z)/r7 + Io5,Iy/r' -45y%/r7 + Io0z'/r'

-4Sx/r7 + 105xz'/r' -45yz/r' + 105yz'/r' 9/r 5 - 90z2 /r 7 + 105z 4/r'

(90)

The third order term is:

(D13 = V6 ý 0[AF2 F3]1•3 (91)

The final < matrix is then:

(dt)- = 40 +•0 1 + (D2 + 0 3 +4 4 "+ (bi + (1J2 +" (DJ3 (92)

As was done for the equations of state, the equations for position are essentially one order higher than

the velocity equations. Of special interest is the fact that as higher order terms are added to the matrix

their derivatives become very large and complex and increasingly difficult to derive.
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