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Abstract

This study investigated a method of storing, managing and rendering terrain data,

while addressing conflicting goals of. rendering speed, display detail and memory usage.

A data structure is presented to store terrain data, with an object oriented system to

manage the data stored in the structure. The structure stores terrain data in a compact

form which is converted into rendering structures in real time. The structure uses levels of

detail to maintain display detail. The structure is compared against an existing format for

storing terrain data, MultiGen Flight. The system managing the structure is shown to

decrease memory usage and increase frame rate, while maintaining display detail. The

structure offers features not attainable from Flight format, including: interpolating vertices

to prevent cracking, defining levels of detail by altitude or speed, and betweening. The

structure allows storing and rendering larger databases than previously manageable with

Flight format.

xi



A FORMAT FOR STORING AND MANAGING
MULTIPLE LEVEL OF DETAIL TERRAIN

FOR SIMULATED ENVIRONMENTS

I. Introduction

Terrain is an important part of simulated environments. However, large areas of

highly detailed terrain require massive databases, and rendering terrain substantially affects

a simulation's frame rate. Level of detail strategies can improve frame rate, but increase

database storage needs. Large databases also have the problem of paging needs, having

data in main memory when it is needed.

This thesis presents a format for storing and managing terrain data. The format

stores terrain at an abstract level of cells, with each cell representing a small area of

terrain. The cell format compacts the data to reduce redundancy, while making the data

available for multiple levels of detail. A system to manage terrain rendering may build

rendering structures for many cells at various levels of detail.

The strategy behind the cell format: as we get larger databases, the first response

is, "Throw hardware at it." This hardware might be in the form of main memory or disk

packs. Terrain data can amount to Gigabytes of information. Storing all data in main

memory becomes expensive. Without enough main memory, paging terrain data into

memory may slow down frame updates. What if the data may be compacted, reducing

paging needs, but requiring more CPU time to convert from the compact format into a

rendering format? Memory and paging needs are reduced, and the terrain may be built in

more flexible methods than in a fixed rendering format.
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1.1. Background

Training is essential to an effective military force. Training prepares military

troops to fight, giving them the experience and confidence to fight effectively. During

training, troops can make mistakes and learn from those mistakes. They can experiment

with new tactics.

In a nation of rapidly declining defense spending, we must search for cost effective

methods of training. Specifically, we are turning to simulated training environments.

To be effective, simulated training environments must be realistic enough to be

credible to those being trained. Hence, we want to make our simulations as real as

possible. In simulated training, realism results from two characteristics: action and

appearance. Action is the heart of a simulation, determining such things as enemy

reactions and weapon system response. Appearance is the interface to the simulation,

getting information to and from the participants.

One might assume the action is the most important portion of a simulation.

However, the action and appearance are extremely interdependent. The appearance is the

ambassador for the simulation. It gives the first impression, which can make or break the

simulation's credibility. A good simulation cannot overcome a bad interface. A

participant must be able to get the essential information from a simulation to make

effective use of the simulated training.

One part of a simulation's interface is the graphical interface. A graphical interface

provides participants with information through pictures, as opposed to a text based

interface that provides information through words. In simulated training, the graphical

interface supplies participants with a view of the field of battle.

To provide realism, a graphical interface needs certain external characteristics (the

appearance of the graphics): detail and rapid update. Detail includes the representation of

objects, how a participant sees the objects on the field of battle. The detail of an object

may vary, depending on how "close" the object is to a participant's location on the field of
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battle. The update rate determines how often the picture can change. A rapid update rate

provides a smooth flowing, moving picture.

For flexibility, a graphical interface needs certain internal characteristics (the

structure of the software): understandability and maintainability. Understandability

determines how easily a new programmer can determine how the software operates.

Maintainability determines how easily the software can be modified.

Unfortunately, these characteristics (external and internal) are often mutually

elusive (but not necessarily mutually exclusive); to gain in the area of one characteristic

might mean giving up gains in another characteristic. The most elusive characteristic is

rapid update. Gains in each of the other characteristics adversely affect the rate of update.

This thesis effort will address the balancing of these characteristics for rendering a

simulation's view of terrain. Simulations are often performed in open areas, usually

coveting great expanses of terrain. For realistic training, we need terrain that reflects the

real world[ 15].

Real world terrain models require massive databases, with little opportunity to

reuse (instante) pieces of the terrain. Terrain covers large areas of a simulated view; some

of the terrain is close, while most of the terrain is at a distance. Levels of detail in terrain

requires breaking the terrain into sections, creating levels of detail, then combining the

sections into a solid piece of terrain.

1.2. Problem

We need a method of rendering terrain that manages the conflicting goals of:

rendering speed, display detail and memory usage. This method must be adaptable,

allowing for future modifications.

1.3. Summary of Current Knowledge

Students at the Air Force Institute of Technology (AFIT) have been researching

the area of simulated training for several years. Recent simulations include prototypes of a
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Virtual Cockpit[34][27][ 19][ 10][12] and Synthetic BattleBridge[ 14][32][36]. These

simulations provide participants with a real time battlefield view through graphical

displays.

Terrain for these simulations is provided in Software Systems' MultiGen Flight

format. [31] The Flight format files are either constructed by hand (without levels of

detail) or built using automated tools. The simulations use Silicon Graphics' Performer

system to render the terrain (and other objects in the simulations' view). The terrain data

is stored in Flight format and converted to Performer format for rendering.

1.4. Scope

This thesis is limited to rendering terrain in levels of detail, aimed at the view from

a low flying aircraft. The characteristics of the terrain are limited to flat shading, Gouraud

shading and texturing.

1.5. Approach

This thesis deals with some of the conflicting goals of rendering terrain: rendering

speed, display detail and memory usage. It employs a data structure to store terrain data

and a system to manipulate the data. The terrain data is stored in sections with a common

structure.

First, I approached this thesis by creating a data structure to store the terrain

information in small sections, called cells. The data structure views terrain as a single

layer of skin. To reduce the redundancy of the data, a cell stores several levels of detail in

one data set. The vertices that make up a cell have a standard connectivity, allowing

connectivity information to be inferred from the structure. Additionally, the standard

connectivity guarantees the terrain will form triangle meshes.

Second, I created a system to manipulate the terrain data. The terrain is divided

into lattices of cells. Each cell can be represented at an appropriate level of detail or
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ignored, depending on its distance from the viewpoint. Rings of declining level of detail

cells are built around a viewpoint.

The system views the data as being stored in an intermediate structure from which

to fill the rendering data structures. The data in the rendering structure can be

manipulated to interpolate between levels of detail ("betweening"), without affecting the

base data.

1.6. Stwaards

The software created for this thesis was measured against several criteria. Since

the software will be modified, the software was measured against selected maintainability

metrics. The execution characteristics of the software were measured for memory usage,

paging needs, conversion processing, and rendering speed.

1. 7. Materials and Equipment

The Virtual Cockpit and Synthetic Battle Bridge produce their graphical displays

on Silicon Graphics IRIS 4D/440VGXT and ONYX Reality Engine2 workstations, using

C++ and the Performer system provided by Silicon Grap'ics.

The IRIS 4D workstations are general purpose machines of relatively low cost (in

the realm of graphical workstations). The ONYX workstations are more powerfil (and

more expensive) machines. The system should run on both machines, because cost is a

factor; a simulation may require many workstations for many participants.

The C++ programming language was chosen because it was the only object

oriented language available at the outset of this thesis.

1.8. Other Support

This thesis was built on top of Capt Mark Snyder's ObjectSim software.[30]

ObjectSim uses Silicon Graphics' Performer to provide an object oriented management
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system for entities in a synthetic environment. Object orientation is a software engineering

technique whereby software is divided into units suggested by real world boundaries.

1.9. Thesis Overview

The following chapter presents an overview of graphics issues and software

engineering issues applied to the system developed for this thesis. Chapter 3 offers a

detailed look at the cell data structure, while Chapter 4 outlines the system structure.

Chapter 5 presents an analysis of the system, and the final chapter submits results and

discusses recommendations for further study.

1-6



Il. Background

2.1. Overview

This thesis approaches terrain processing and rendering from two interrelated

perspectives: graphics and software engineering. Graphics is concerned with levels of

detail (LODs), database storage and memory usage. Software engineering looks at these

issues from the perspective of understandability and maintainability, as well as efficiency of

the software.

This thesis builds from past theses and fits into current projects at AFIT. Past

thesis efforts include: design and application of an object oriented Graphical Database

Management System[ I]; statistical estimation techniques applied to terrain modeling[9];

and synthetic environments such as the Virtual Cockpit[34][27][19] and the Synthetic

BattleBridge[14]. Current projects at AFIT involve building on the existing synthetic

environments[IO][12][32][36]. These projects are using new tools such as Performer and

MultiGen. Most recently developed is a graphics interface system, ObjectSim[30], using

Performer.

2.2. Graphics Issues

Terrain is generally modeled using adjacent polygons, creating a terrain "skin."

Usually, the vertices of each triangle represent an elevation on the terrain, and the triangles

interpolate the surface between elevations.

2.2.1 Levels of Detail

As mentioned in Chapter 1, rendering terrain has conflicting goals. LODs address

the conflict between rendering speed and display detail. However, it also may add to the

problem of memory usage.
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Because terrain covers a large area, part of the terrain may be viewed up close,

while other parts are viewed at a distance. Using the same number of polygons per unit

area for the close and distant parts may overload the rendering system.

If we are to provide a visually acceptable representation of the terrain
within a computationally acceptable polygon load, we must employ a
multiple level of detail (LOD) terrain strategy, where the distant portions of
the terrain scene are built from progressively larger polygons.... The
terrain will thus appear uniformly complex from near to far, and changes in
the terrain appearance due to LOD transitions will be uniform in effect
from near to far. [6]

Generally, terrain LODs are organized in circles or squares, creating rings around

the viewpoint. Each ring is filled with a single LOD of the terrain.

2.2.1.1. Model Switching. In his paper, "Level-of-Detail Control

Considerations for CIG Systems," Robert Rife presents an early LOD strategy. The

strategy works with three LODs per object; for each object, the strategy uses three models

of varying detail, switching between the models based on the object's distance from the

view point. The strategy deals with 2-D and 3-D models. To implement the strategy, Rife

defines formulas for calculating the distances for switching between each object's LOD

models.

For 3-D models, the formula takes into consideration: the model's size, the

tangent of the angle subtended by one raster element (pixel viewed by the user), and the

minimum number of raster elements a model must subtend (or extend over) to be

displayed at an LOD. For 2-D models, the formula additionally considers the user's

altitude above the model.

The strategy also defines two squares (100 and 36 miles) around the viewpoint, to

implement a basic culling scheme. The strategy only considers drawing large models

within the large square and small models in the small square. (The small square is

contained within the large square, so large models will be drawn in the small square.)[24]
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2.2.1.2. Many Levels of Detail. Although Michael Cosman's paper, "A

System Approach for Marrying Features to Terrain," discusses placement of features on

terrain surface, it contains a more basic concept I wish to discuss: many LODs.

The paper presents formulas for determining the number of LODs necessary to

display terrain to a specified distance from a viewpoint. The formulas use factors such as

the size of polygons at the highest LOD (closest to the viewpoint) and the ratio of polygon

edges between LODs.

The formulas demonstrate that the lower the ratio of polygon edges between

LODs, the fewer total polygons needed for the display. As the ratio of polygon edges

decreases, each new LOD can begin closer to the viewpoint. With larger ratios, each size

LOD must be displayed to a further distance before switching to the new polygon size.

The paper also addresses the issues of memory and paging. A higher number of

LODs means more information must be stored and quickly available. As a viewer moves

through an area, the viewed terrain will change more quickly than with fewer terrain

LODs, so paging is a bigger problem. [6]

2.2.1.3. Betweening Levels of Detail. Charles Clark and Michael

Cosman's paper, "Terrain Independent Feature Modeling," also discusses placement of

features on terrain surface, but again I wish to discuss its more basic concept:

"betweening" LODs.

A switch between LODs may be noticeable by a viewer. One way to minimize

LOD switch noticeability is to reduce LOD transition ranges by adding more LODs

(discussed in [6] and [2]). The next step is "betweening," interpolating between LODs.

With betweening, "each vertex [or elevation point] can be defined as having an

initial and final position." An LOD switch can take place over a period of time, where

vertices are interpolated between (hence the name) the two positions. "This process is in

general, powerful, and results in greatly reduced noticeability for LOD changes."[2]
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2.2.1.4. Di"'ussion of Levels Of Detail. Levels of detail address the

conflict between rendering speed and display detail. By using LODs, a system can lower

the polygon load while retaining detail in close areas.

At low altitudes (close to the surface), terrain is viewed as a 3-D entity, and Rife's

3-D formula can be used to determine the visual discrepancy between LODs. At higher

altitudes, terrain is viewed as a 2-D entity, and Rife's 2-D formula applies. The visual

discrepancy can be interpreted as the number of pixels a vertex might move during a LOD

transition.

For rendering speed, the lowest number of polygons seems best. Using many

LODs allows the lowest number of polygons to be rendered at any time. However, many

LODs require additional overhead for processing and paging the LODs. A rendering

system must address these issues to ensure managing the LODs does not slow down the

system. Also, memory needs may increase to store the many representations of the

terrain. A strategy to minimize memory use would also reduce paging.

2. 2.2. Triangle Minimizations

In its simplest form, triangle minimization reduces the number of triangles in an

object by removing vertex points. Triangle minimization strategies attempt to reduce the

number of polygons in an object with minimal effects on the detail of the rendered objects;

it is an effort to address the conflict between display detail and memory usage.

2.2.2.1. Re-Tiling Polygonal Surfaces. In his paper "Re-Tiling Polygonal

Surfaces," Greg Turk "[p]resents an automatic method of creating surface models of

several levels of detail from an original polygonal description."

Turk's method places new (candidate) vertices on the surface of an object and

distributes them using a Point Repulsion algorithm. The vertices are moved, repelling

each other, until they are uniformly distributed across the surface. Subsequently, the

method connects the candidate vertices by creating a "mutual tessellation" of the original

and candidate vertices, then removing the original vertices.
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Uniformly distributed vertices may not capture detail in highly curved areas of a

surface. Turk addressed curvature approximation by varying the Point Repulsion for

vertices based on the curvature of the surface around the vertices. This strategy allows a

denser concentration of vertices in higher curvature areas.

Turk's method may be used to create LODs. First, the method creates a low LOD

model. Then, a new LOD model can be created by fixing the points in the low LOD

model and adding new points. This process may be repeated for each new LOD model.

To interpolate between LOD models, Turk presents a method for fragmenting

triangles between the models. Then, the fragments can be interpolated into the new LOD

model.[35]

2.2.2.2. Decimation of Triangle Meshes. In their paper "Decimation of

Triangle Meshes," William Schroeder, and others, present "an algorithm that significantly

reduces the number of triangles required to model a physical or abstract object. The

algorithm makes multiple passes over an existing triangle mesh, using local geometry and

topology to remove vertices that pass a distance or angle criterion. The holes left by the

vertex removal are patched using a local triangulation process."

The paper compares its algorithm to filter-based techniques such as subsampling

and averaging, two "naive" approaches. Subsampling uses even spacing ("every nth

point"). Averaging resamples the data, using neighboring points. Filter-based techniques

apply uniformly to the entire data set, so they fail to capture detail in high curvature areas.

Terrain modeled with this algorithm compares quite favorably over terrain

modeled with filtering methods. This algorithm automatically keeps points in high

curvature areas and discards points in flat areas. However, the algorithm may propagate

some errors, because each iteration is compared to the previous iteration's model, not the

original model. [26]

2.2.2.3. Mesh Optimization. In their paper "Mesh Optimization," Hugues

Hoppe, and others, present another method of reducing vertices by minimizing "an energy
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function that captures the competing desires of tight geometric fit and compact

representation." During optimization, the function varies "the number of vertices, their

positions, and their connectivity."

The method finds a new triangulation of lower complexity that is as close as

possible to the original triangulation. This method "automatically retains more vertices in

areas of high curvature, and leads to faces that are elongated along directions of low

curvature."[16]

2.2.2.4. SGI Documentation Suggestions. SGI documentation suggests

placing triangles into a triangle mesh. This mesh differs from what is described above as

meshes. The triangle mesh contains a defined connectivity, such that the triangles can be

placed in strips; adjacent triangles in a strip have two vertices in common. As a strip is

rendered, the first triangle's vertices are processed. Then, the last two vertices processed

are the first two vertices for the next triangle; each subsequent triangle needs only one

more vertex to be processed. (Note: in a triangle strip, each vertex, except the first two

and last two vertices, is shared by exactly three triangles.)

If a strip of triangles shares vertices, but their vertices cannot be ordered as above,

the triangles still might be put into a triangle mesh with vertex swapping. For vertex

swapping, the last two vertices processed are swapped, so the last vertex is only used by

two triangles. The other swapped vertex may be. used by four or more triangles.

SGI documentation discusses the hardware pipeline, which processes polygons and

pixels in different steps. If the polygon count is low enough, the pixel processing is the

bottle neck process. Therefore, polygon minimization is not always the highest priority.

We might actually get more detail and complexity with no loss in rendering speed.[29][28]

2.2.2.5. Discussion of Triangle Minimization. With virtual flight

environments, these absolute polygon minimizations are not the best option, because they

may produce triangles of unconstrained size. Levels of detail require the polygons be
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organized in such a way as to vary polygon size based on the distance from the view point.

Unconstrained polygons do not fit well into LOD strategies.

Virtual flight environments need a guaranteed update rate. High frequency areas

may need to be cut back to keep the frame rate; however, low frequency areas may be left

with more information than needed, because they will not harm the guaranteed frame rate

(established for the high frequency areas).

These triangle minimization techniques are good for minimizing triangles, but not

necessarily minimizing the amount of memory needed to store the objects. Because

connectivity is not consistent, information on connectivity must be maintained with the

vertices. If connectivity of vertices is inherent in the organization of the data, the

connectivity information does not need to be stored in metaory.

Turk's method provides LODs. However, the intermediate model requires

breaking the triangles into "fragments" to interpolate between levels, creating two

problems: the fragments require additional overhead for a system to manage them, and

the fragments create additional polygons to render.

Triangle meshing (with strips) allows more detail without sacrificing rendering

speed. By creating a method that minimizes triangles while maintaining a defined

connectivity, we would be able to increase rendering speeds.

The Turk or Hoppe methods could be modified to minimize polygons while

maintaining a consistent connectivity of the vertices. This strategy will produce more

polygons (than without consistent connectivity) but would also reduce memory needs and

increase rendering speed.

2.3. Software Engineering Issues

2.3.1. Characteristics

A goal of applying software engineering to this effort is to create software which

has favorable internal and external characteristics. The internal characteristics, as seen
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through the eyes of the programmer, are understandability and maintainability. Internal

characteristics "are considered to be the key to improving software quality."[ 11 ] The

external characteristics, as seen through the eyes of the user (pilot or battlefield

commander) are detail and update rate. "Quality is perceived in terms of those external

[characteristics] which are relevant for particular types of users."[I 1]

Two general programming concepts that lead to favorable internal characteristics

are abstraction and encapsulation (also known as information hiding).

Abstraction is:

The principle of ignoring those aspects of a subject that are not relevant to
the current purpose in order to concentrate more filly on those that are.[4]

There are two aspects of abstraction. First, abstraction aids handling complexity

by breaking a system into smaller pieces. Second, it aids handling complexity by ignoring

details where it is not necessary to consider them.

Breaking a system into smaller pieces enhances understandability and

maintainability, when the pieces (represented as modules) reflect real-world objects or

concepts. The system is broken along intuitive boundaries; each module has an intuitive,

real-world function.

Once the system is abstracted into real-world pieces, those pieces fit in at different

detail levels. Such a structure makes it possible to change the detail level of a piece as

applicable.

Encapsulation might be better known as "tight cohesion" and "loose coupling."

Encapsulation is:

A principle, used when developing an overall program structure, that each
component of a program should encapsulate or hide a single design
decision [i.e., tight cohesion].... The interface to each module is defined in
such a way as to reveal as little as possible about its inner workings[i.e.,
loose coupling]. [4]
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Encapsulation is really an extension of abstraction. Abstraction breaks the system

into pieces, and encapsulation isolates each piece. "Encapsulation prevents a program

from becoming so interdependent that a small change has massive ripple effects."[25]

Encapsulation is useful to isolate parts of a system which may change. The system

is more maintainable, because when part of the system changes, the software affected by

the change is isolated. Encapsulation is also useful to isolate system dependent parts of a

system. The system is more reusable, because the non-system dependent software can be

moved easily without concern for the system dependencies; the system dependent software

affected by the move is isolated.

The external characteristics reflect the desired performance of the system.

Although we attempt to maximize performance, we begin by addressing the internal

characteristics. The internal characteristics can be more readily addressed during system

design than the external characteristics. After an initial system implementation, we can

measure its performance and attempt to improve its performance.

Certain aspects of external characteristics should be addressed during design. For

example, the choice of data structures has a substantial impact on performance.

2.3.2. Metrics

Given the desirable characteristics of a system, we need a method to determine

how well we have attained them. Metrics give us a means to measure the desirable

characteristics.

2.3.2.1. Internal Characteristics. The internal characteristics considered

for this project are complexity, coupling and cohesion. The metrics used to measure these

characteristics are discussed in more detail in Section 5.1, Software Engineering Metrics.

Complexity. "Complexity is commonly used as a term to capture

the totality of all internal [characteristics]."[ 1I] Thomas McCabe proposed a complexity

measure on a control flow representation of a program.[ 17] McCabe's cyclomatic

complexity provides a quantitative measure of a program's logical complexity.
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Coupling. "Coupling is a measure of interconnection among

modules in a program structure."[23] Measuring coupling indicates the complexity of the

interfaces between modules. Coupling should be considered at two levels: between

classes and between the functions within a class.

Cohesion. "Cohesion is the measure of the strength of functional

relatedness of elements within a module."[22] Measuring cohesion indicates how well a

module hides a single concept. Cohesion should be considered at two levels: by class and

by function within classes.

2.3.2. 2. External Characteristics. The external characteristics considered

for this project are frame rate, memory use, paging needs, and conversion processing time.

Frame rate is the main issue in graphics rendering. However, a consistent frame rate

depends on other issues; the frame rate may be slowed by paging and conversion

processing. The amount of paging needed depends on the amount of main memory

available and disk storage space needed to store the terrain.

The measurements considered below compare converting and rendering terrain

from the new system against rendering terrain already converted into Performer.

Conversion of another format such as MultiGen Flight into Performer is not considered,

because this conversion generally occurs before the rendering process begins. The

following measurements are considered:

Memory Usage. Compare the memory used to store terrain

information for the new system against a similar terrain set built in MultiGen (discussed

below). Compare the memory used to manage the terrain information for the new system

against the equivalent terrain set already converted into Performer.

Paging Needs. Compare the paging and pre-paging needs for

managing the terrain information for the new system against the equivalent terrain set

already converted into Performer.
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Conversion Processing Time. Measure the processing time

required to convert the terrain information for the new system into the equivalent terrain in

Performer. Compare the paging and conversion processing needs for terrain information

for the new system against the paging needs for the equivalent terrain set already

converted into Performer.

Frame Rate. Compare the frame rate for terrain converted from

the new system against similar terrain converted from MultiGen. (Each storage format

converts into a Performer database for rendering.).

2.4. Past Thesis Efforts

In 1991, Capt John Brunderman designed and implemented and object oriented

Graphical Database Management System (GDMS) to support research sponsored by

Rome Laboratories. The GDMS provided "data structures, file formats and algorithms to

manage and render hierarchical, three-dimensional, polygonal models." To demonstrate

the functionality of GDMS, he also developed the DataBase Generation System (DBGen)

which allowed users "to orient, scale, move, delete and add multi-resolution objects to

synthetic environments interactively."[ 1]

At the same time, Capt Donald Duckett investigated "methods of generating

accurate and realistic polygonal terrain models by reducing sampled terrain elevation data

such as DMA DTED." He compared kriging, a geostatistical estimation technique, to

filtering methods of data reduction. His goal was to create an estimation method that

could "build polygonal terrain models at any resolution."[9]

In 1991, the Defense Advanced Research Project Agency (DARPA) sponsored

AFIT to investigate the possibility of a low cost virtual cockpit. The Virtual Cockpit was

developed in three functional components: flight dynamics, tracking vehicle status of

other simulators, and display of the out-the-window imagery. The components were

implemented by Capts John Switzer, Steven Sheasby, and Dean McCarty, respectively.
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The out-the-window display used the rendering software developed by Capt Brunderman

for DBGen.[34][27][19]

As production progressed on the virtual cockpit, Capt Rex Haddix developed the

Synthetic BattleBridge (SBB), "designed to provide the user with a synthetic three-

dimensional view of moving and stationary vehicles dispersed over a hundred thousand

cubic mile volume." The SBB also used the rendering software developed by Capt

Brunderman for DBGen.[14]

2.5. Current Work

Current work on the Virtual Cockpit and Synthetic BattleBridge involve

Performer, ObjectSim, and MultiGen Flight format. ObjectSim, with Performer, replaces

the previously used rendering software. Tools developed for Flight format provide

database generation and maintenance to replace GDMS and DBGen.

Performer is an application development environment developed by Silicon

Graphics. Performer provides a software tool kit for creating visual simulation

applications. Silicon Graphics developed Performer to aid graphics programmers in using

their IRIS workstations, to effectively use the workstations' rendering capabilities.

Performer creates its own run-time data base which it manages for high-performance

rendering. [29]

Capt Mark Snyder developed ObjectSim, an object oriented architecture that uses

Performer to render graphics. ObjectSim provides an interface between players and

terrain.[30]

Currently, we use software tools such as makeTerrain 12[1 8] to create Flight

format files. We use Performer to convert the entire Flight format database and manage

the data real time. That is, Performer handles database culling steps, paging and

displaying in its own format.
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2. 6. Sumnmay

Many graphics and software engineering issues are involved with rendering terrain.

The graphics issues consider level of detail and memory minimization techniques.

Software engineering looks at these issues from the perspective of understandability and

maintainability, as well as efficiency of the software.

In this thesis, I attempt to address these issues by creating a terrain management

system which maximizes rendering speed while minimizing memory usage.
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III. The Data Structure

Researchers at AFIT have experienced problems in creating, managing and

rendering terrain data stored in Flight format. Flight format and our tools to create terrain

in Flight format do not handle large data sets well. Creation of large Flight format terrain

files is processing and memory intensive. Conversion of large Flight files to Performer is

processing and memory intensive.

Flight format is an organizational format aimed at easy manipulation of the data,

but not at fast rendering. It is used as a storage format to store data on disk. Performer

format is aimed at fast rendering. Performer maintains its own format of the data for

rendering from main memory. Conversion from Flight to Performer is slow. Both formats

waste memory storage space by replicating data for easier management. For small data

sets, it is reasonable to convert the entire data set into Performer before the run-time

rendering occurs. For large data sets, this conversion takes too much up front time and

memory, especially if only a small portion of the data set may be needed. When the

environment does not know what section(s) of the data set will be used, up front

conversion might not be a reasonable option.

What if we can store terrain data in a more compact form, converting to Performer

only what is necessary for the current view? An ideal format would be one that minimizes

main memory and disk storage needs, minimizes paging, supports levels of detail, supports

triangle meshing, and can be quickly converted into Performer format. Effectively, the

new format would trade high memory usage and paging for higher computational needs.

This chapter presents a data structure to store terrain information. Many factors

play into a choice of data structure. The factors affect the amount of memory needed to

store the terrain information, the time needed to access the data, the time needed to

convert the data into a rendering format, and the speed with which the data may be
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rendered. First, these factors are discussed. Then, a data structure is presented. Finally,

issues concerning the data structure are discussed.

3.1. Set Up

The goal of this chapter is to define a data structure for storing terrain information

which allows the fastest update rate with the most amount of detail. The data structure

considers only the polygon representation of the terrain. It does not consider the storage

of cultural features and texture maps for the terrain. These items should be minimized by

replication. However, the terrain polygon description varies so much across the globe,

that it cannot be simply represented by replications. The goal is to store and access the

terrain data in such a way that it does not hinder (although it might help...) the rendering

process.

"[T]he most important property of a real-time system should be predictability; that

is, its function and timing behavior should be as deterministic as necessary to satisfy

system specifications."[33] In a real-time graphics system, the desired predictable

behavior is a consistent update rate. Basically, an application has a stated minimum

acceptable update rate. Then, detail is added until the load jeopardizes the update

rate.[24] Hence, this problem was approached from the point of view of increasing detail

while maintaining the minimum update rate; we always want to do more than we can, so

where do we compromise?

In creating the terrain data structure, several factors were considered (from

Section 2.2, Graphics Issues):

Update rate:

- Level of Detail (LOD) strategies

- Triangle Meshing
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Access to Data:

- Prepagng

- Caching

The basis of the terrain data structure is storing terrain data in a format which

allows for quick access (paging and caching) while allowing levels of detail and triangle

meshing. The strategy should also allow for betweening. However, betweening is an

aesthetic feature which may harm the update rate. Yet, if betweening can be accomplished

without adversely affecting the update rate, the data structure should support betweening.

The terrain data used for this thesis were taken from storage formats (as opposed

to rendering formats) which store elevation points across a terrain area. The elevation

points are spread across the terrain in a relatively evenly spaced grid. The earth is viewed

as a smooth sphere or flat plane whose surface can be perturbed by adding altitude

information. That is, imagine the sphere or plane as having an elastic surface. By picking

specific points and assigning altitudes to them, the points may be moved away from the

original surface to approximate the variations in altitude on the earth. The elastic

interpolates the surface between the elevation points.

In graphics rendering, the interpolation of the surface between elevation points

must be approximated by breaking the surface into distinct polygons, with the vertices of

these polygons defined by the elevation points. If the elevation points are evenly spaced,

then each point may be connected to its closest neighboring points, forming a grid of

squares. However, the four points in each square may not be coplanar, so they need to be

further broken into triangles by connecting two opposing vertices. The choice of which

vertices to connect may be arbitrary and may not give the most accurate representation of

the earth.

For example, consider nine points, as in Figure 3.1. The points might be

connected as shown in Figure 3.2.
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* 0

Figure 3.1. Evenly Spaced Grid of Nine Points

(a) (b)
Figure 3.2. Connectivity Examples of Evenly Spaced Grid

Now, imagine the points defining posts on a surface, where the post goes from the

surface to an elevation above (or below) the surface, as in Figure 3.3. Suppose the actual

terrain represented by these elevations is a valley, running from the near right comer to the

far left comer. Following the point connections as in Figure 3.2(a), Figure 3.4(a)

accurately represents the valley. However, following the point connections as in Figure

3.2(b), Figure 3.4(b) does not accurately represent the valley. Specifically, the diagonal

edges of the cross shaded triangles cut across the valley, and the terrain represents a crater

more than a valley.

3-4



Figure 3.3. Evenly Spaced Grid Points Shown as Elevations

(a) (b)
Figure 3.4. Connectivity Examples of Evenly Spaced Elevations

Because the points can be connected, based on their locations relative to each

other, the points can be easily stored without explicit edge (i.e., vertex connection)

information. That is, the connections can be inferred from the storage structure.

As mentioned earlier, most terrain storage formats store elevation points across a

terrain area, with these elevation points spread across the terrain in a relatively evenly

spaced grid. (Spacing between points might be measured evenly in meters or relatively in

degrees and minutes.) The data can be stored in a compact manner as just a list of

elevations, along with a few values to indicate where a comer of the data lies in real world

coordinates and what the spacing is between elevations.

The ordering of the points is standardized, so their placement on the earth's surface

can be computed. This storage format resembles a two dimensional array stored in
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linearly addressed memory. Each column or row is stored contiguously in the linear

memory. In this manner, the points can be numbered with array indices, as in Figure 3.5.

The points can be connected as in Figure 3.2(a) by defining two triangles for each (i, j) as:

(i, j), (i, j+ 1), (i+ 1, j+ 1); and (i, j), (i+ 1, j), (i+ 1, j+l).

(11)(1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Figure 3.5. Array Indices for Points in a Grid

(1,2) 0
O(1,1) 

(1,3)

0
(2,3)

(2,2)
(2,1)

0(3,2)

(3,1) (3,3)

(a) (b)
Figure 3.6. Array Indices and Connectivity Example of Unevenly Spaced Grid

If the elevation points are not evenly spaced, connecting them falls into two

categories. (1) The points might be organizable into an array equivalent structure, such as

Figure 3.6(a). In this case, each point's placement on the earth must also be stored, but
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connection of the points can still be inferred from the data structure, as in Figure 3.6(b).

(2) Or, the points might be sporadically placed, such that their connection cannot be

inferred from the data structure. In this case, the connection of the points must be stored

in the data structure or computed. For example, the data might be derived from an evenly

spaced data set, with some points removed, as in Figure 3.7. Two possible connections of

points are shown in Figure 3.8.

*0 0

Figure 3.7. Sporadically Placed Points

(a) (b)

Figure 3.8. Connectivity Examples of Sporadically Placed Points

Sporadically placed points usually are obtained through Triangle Minimization

strategies, as discussed in chapter 2. Although methods for traingulating sporadically
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placed points exist, such as the Delaunay method[8], such methods are not practical for

real-time rendering. Additionally, such triangulations may not conform to the original

terrain surface. For example, suppose the points in Figure 3.7 were taken from the data

set represented by Figure 3.3. Recall that Figure 3.3 represents a valley running from the

near right comer to the far left comer.

The connection of points from Figure 3.8(a) is applied to Figure 3.9(a), which

accurately represents the valley. The connection of points from Figure 3.8(b) is applied to

Figure 3.9(b), which does not accurately represent the valley. Specifically, the far edge of

the cross shaded triangle cuts across the valley, creating a ridge rather than a valley.

(a) (b)

Figure 3.9. Connectivity Examples of Sporadically Placed Elevations

With all of this in mind, what is the best way to store and retrieve terrain

descriptions for real time rendering of terrain? The storage strategy should consider

access to the data as well as the update rate obtainable with the data. The data should be

as compact as possible, allowing for fast paging. The data should be organized to

minimize caching. The storage strategy should consider the advantages of levels of detail

and triangle meshing.

Consider the current terrain rendering of the Virtual Cockpit and Synthetic Battle-

Bridge applications, discussed in Chapter 2. The terrain data is stored in the MultiGen

Flight format. When either application runs, it uses Performer to convert the Flight format
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data into Performer's internal (real time) format. Once converted, the data is managed

(paged and culled) by Performer. This strategy works well for small terrain databases.

However, Performer's conversion and management may not be the best solution for large

databases.

A large database must be converted to the Performer format either at the beginning

of the application's execution (up front) or during the application's execution (real time),

as needed. Up front conversion might take an unreasonable amount of time, especially if

only a small portion of the terrain is actually used. Also, up front conversion requires

duplicating the Flight foinat data into Performer format, taking more memory. Real time

conversion requires additional real time computing, which may affect the update rate.

For example, consider an area defined by 129 by 129 posts in Flight format with-

out levels of detail. To allocate memory for the Performer structures and convert the

Flight format data into Performer format requires at least 15 seconds on an ONYX Reality

Engine2, and at least 30 seconds on an IRIS 4D/440VGXT. If a one degree cell of DMA

DTED data were stored in sections of this size, the entire area would require over 20

minutes to load on an ONYX, and over 40 minutes to load on an IRIS 4D. (These statis-

tics account for allocating memory for the Performer structures and converting Flight data

into Performer. They do not consider time required for paging if data needs exceed main

memory.)

Additionally, both the Flight and Performer formats contain redundant information

in their storage of LODs. In both formats, each LOD is stored separately, repeating

information from lower LODs. Each time a new LOD is paged in, the entire LOD must be

paged in. Given the expense of paging versus computing, there might be a better scheme.

Also, within LODs, each format contains redundant information, if it stores each vertex's

information more than once. The format might store each vertex's information only once,

using an integer to index into a "pool" of vertices, thus decreasing the size the data
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storage. However, storing each vertex's information only once may slow rendering due to

increased caching, because each vertex may need to be cached individually. [28]

A reasonable strategy might be to store the terrain data in a format which is

quickly paged, minimizes caching, and is quickly convertible into the Performer format. If

the area of the database currently converted into Performer fits in main memory, then

paging during rendering is not a concern. Moreover, the Performer format should not use

indexing. The waste of space for storing vertices multiple times is traded for rendering

speed.

The main goal is to have the necessary information in memory when it is needed, in

such a format as to give the fastest rendering. If paging is slow, the first solution is to pre-

page what might be needed in the near future. That is, if the viewer is approaching an

area, page in the data for that area before it is needed. When a viewer moves through the

terrain in non-deterministic manner, the next areas needed cannot always be accurately

predicted. A pre-paging algorithm would need to page in much more data than is actually

needed.

I considered storing terrain data that had been processed by triangle minimization

techniques. However, storing this data has three problems associated with it. First,

triangle minimized data does not support levels of detail. The unbounded triangle size of

triangle minimized data means a triangle could span more than one level of detail area.

Second, triangle minimization does not support triangle meshing. For triangle meshing,

the triangles must be organized in strips of triangles with shared vertices. Third, triangle

minimized data does not support texture mapping of the terrain surface. Points within a

texture map must be mapped to vertices of a polygon. The unbounded triangle size of

triangle minimized data means a texture may be spread over a large area. Thus, detail in

texture mapping may require more polygons than would otherwise be needed to

accurately represent the earth's surface.
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3.2. The Strategy of the Structure

So, what format might decrease paging and caching in exchange for increased

computational needs? This section defines a format, starting with points which are either

evenly spaced, or sporadically spaced but organizable in an array structure. The strategy

is to store the terrain data in a format which is quickly paged, minimizes caching, and is

quickly convertible into the Performer format. The data are organized into units of

bounded size. Units are pieced together to form a representation of the terrain being

modeled. Each unit may be represented in its own level of detail, depending on its

distance from the viewer.

Consider a unit of 81 points, as in Figure 3.10(a), organized such that they

represent 64 quadrilaterals, as in Figure 3.10(b).

* 0 0 0 0 0 0 0 0

(a) (b)
Figure 3. 10. Grid of 81 Points Representing 64 Quadrilaterals

The point information may be stored in one array, with each row of points stored

together. Thus, nine rows of points will define eight rows of'quadrilaterals. The eight

rows of' quadrilaterals can be described in Performer format as eight triangle meshes. The

triangle meshes can easily be created by stepping through two rows of points and storing
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them as a triangle mesh in Performer. The triangulation of the unit shown in Figure

3.11 (a) can be made into triangle strips as shown in Figure 3.11 (b).

zzzzzzzz
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(a) (b)

Figure 3.11. Example Connectivity of 81 Grid Points and Triangle Strips

As discussed in Chapter 2, [6] advocates a low ratio of the polygon edge lengths

between LODs. A ratio of ,2I between polygon edges in the first and second LODs can

be obtained by removing every other point, as shown in Figure 3.12(a). These points

might be connected as shown in Figure 3.12(b). The triangulation of the unit shown in

Figure 3.12 can be made into triangle strips as shown in Figure 3.13.
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(a) (b)

Figure 3.13. Example Triangle Strips of 41 Grid Points

Again, a third LOD with an edge length ratio of T2 (between the second and

third LODs) can be obtained by removing every other point, as shown in Figure 3.14(a).

(In this case, which points represent the "every other point" is not as obvious as in the
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previous example. "Every other point" refers to the order of the points as they appear in a

triangle strip of the higher LOD.) These points might be connected as shown in Figure

3.14(b). The triangulation of the unit shown in Figure 3.14 can be made into triangle

strips as shown in Figure 3.15.

* 00 00 /Z//

(a) (b)
Figure 3.14. Grid of 25 Points, with Example Connectivity

HA__

Figure 3.15. Example Triangle Strips of 25 Grid Points
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As a final example, a fourth LOD with an edge length ratio of A2 (between the

third and fourth LODs) can be obtained by removing every other point, as shown in Figure

3.16(a). These points might be connected as shown in Figure 3.16(b). The triangulation

of the unit shown in Figure 3.16 can be made into triangle strips as shown in Figure 3.17.

> •

Figure 3.16. Grid of 13 Points, with Example Connectivity

(a) (b)
Figure 3.17. Example Triangle Strips of 13 Grid Points
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Of course, if all 81 points were stored as one unit, then each LOD of a unit would

require the entire unit be in memory. Having the entire unit in memory requires more

paging than is necessary. Also, since the each LOD other than the first would only need

every other point or every fourth point in a row (it might skip some rows entirely), an

additional caching penalty would be incurred. The algorithm should have available only

the data that is needed for the current LOD.

3.3. Defining the Data Structure

Consider the unit LOD shown in Figures 3.14 & 3.15. If its 25 points were stored

in one structure (such as an array), then the next LOD as in Figures 3.12 & 3.13 could be

created by adding an "every other points" array of 16 points. To build this LOD's

Performer structure, an algorithm would need to step through each array's points concur-

rently. Then, the LOD in Figures 3.10 & 3.11 could be created by adding an "every other

points" array of 40 points (or two arrays of 20 points each). To build this LOD's

Performer structure, an algorithm would again need to step through each array's points

concurrently.

Stepping through multiple arrays concurrently should not increase caching needs, if

the cache has multiple caching locations. However, there is a substantial decrease in

paging needs. For each of the three LODs discussed, the algorithm only needs to page in

the data it will use, nothing more.

The data structure is defined as an array of points in sections. In the example

above, three sections are used. The first section defines the points in the third LOD

representation of the unit. The first and second sections together define the second LOD.

All three sections together represent the first LOD. This is a single data structure, with

many possible interpretations to connect the points into triangles.

This data structure is extensible in three ways. First, the structure may be

extended for additional LODs; the first array might be broken into smaller sections. Again
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with the example above, the array of 25 points could be broken into two arrays of 13 and

12 points each. The 13 point array represents a fourth LOD, as in Figures 3.16 & 3.17.

Second, the structure may be extended by using more points. For example, a 16

by 16 grid of quadrilaterals is represented by 289 points for the first LOD. The second

LOD uses 145 points, and the third LOD uses 81 points.

Third, the structure may be applied in levels. If more LODs are needed than can

be obtained from a unit, larger units may be used. For example, a fifth LOD may be repre-

, I by the first LOD of a unit which uses every fourth point (of every fourth row) from

ti, ... ginal grid.

3.4. Another Interpretation of the Structure

The triangulations shown in Figures 3.11 through 3.17 show many interpretations

of the data structure defined in the previous section. Each of those triangulations was

aimed at triangle meshing without vertex swapping.

Here is another way of interpreting the structure. The 64 quadrilaterals of Figure

3.10(b) might be divided into triangles as shown in Figure 3.18(a). The triangulation of

the unit shown in Figure 3.18(a) can be made into triangle strips as shown in Figure

3.18(b).
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(a) (b)
Figure 3. 18. Connectivity of 81 Grid Points and Triangle Strips with Vertex Swapping

The main difference with this interpretation is the direction of the diagonals in the

triangulation of the unit. The diagonals are no longer parallel, but they cross. In terms of

rendering, this difference means the rendering process must "swap" vertices between

triangles in the mesh. The swapping process may have an impact on rendering speed. [28]

However, this triangulation has two distinct advantages: it maintains edge lines between

levels of detail, and it maintains edges in four directions (vertical, horizontal, and two

diagonal).

Consider the next level of detail in Figure 3.19(a), and its triangle strips shown in

Figure 3.19(b). The diference between Figure 3. 18 and Figure 3.19 is half the vertical

and horizontal edges have been removed.
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(a) (b)

Figure 3.19. Connectivity of 41 Grid Points and Triangle Strips with Vertex Swapping

The advantages mentioned above (maintaining edges between LODs and

maintaining edges in four directions) allow for better rendering in two areas: lower

discrepancy between LODs and lines to follow the terrain's contour in more directions.

Organizing the triangles in this manner allows less discrepancy between LODs. In

the LODs presented in the previous section, some edges disappear and new edges appear

between each LOD. In the LODs presented in this section, some edges disappear, but no

new edges appear going from a higher LOD to a lower LOD. It is as if a single point

changes elevation, rather than a set of points and edges. This difference allows for

effective betweening of the LODs, as mentioned in Chapter 2. If changing LODs changes

the edges, then betweening cannot smoothly interpolate between LODs without

introducing more points or more polygons.

Organizing the triangles in this manner allows lines in four directions to follow the

terrain's contours. The points in each unit do not need to be evenly spaced. The points

may be moved to conform to the terrain, aligning edges along ridges and valleys.
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3.5. Discussion

This data structure introduces many advantages over storage formats such as the

Flight format. It minimizes memory needs. It offers a standard format for conversion into

a rendering format. It can directly address cracking between adjacent units of differing

level of detail. Switches between LODs can be based on a viewer's speed and altitude.

Culling can be based on the viewer's altitude. The data structure also introduces some

disadvantages, such as additional real time computational requirements and unit level of

abstraction for terrain areas.

3.5.1. Memory Minimization

Memory minimization leads to quick paging. Quick paging not only means less

time spent paging each unit, but also paging fewer units, overall. The slower paging is,

the more data that needs to be prepaged to make sure it is available when it is needed. (Of

course, there must be some upper limit, where pre-paging cannot keep up with a view.)

The data structure minimizes memory use in two areas. First, memory use is

minimized by only storing a vertex's information once, and inferring the connections of

points from the data's structure. Second, memory use is minimized by adding information

to successive LODs, rather than repeating information in each LOD.

3.5.2. Standard Format

The data structure presented offers a standard data format with standard

connectivity between the points in each unit. Standard connectivity means quick

conversion into a rendering format, because the conversion algorithm does not need to

make decisions on how to handle exceptions in the data. The standard connectivity also

allows consistent triangle meshing for fast rendering.

3.5.3. Cracking

Storage structures such as the Flight format maintain static LODs. When adjacent

units of terrain are rendered at differing LODs, cracks may exist between the units where

the LODs do not match up. Dean McCarty used the solution of adding "skirts" of extra
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polygons descending down from each unit of terrain.[ 18] This solution has two problems.

First, it introduces extra polygons that must be stored, paged, and rendered. Second, it

assumes that the points in each edge of a unit are coplanar to a vertical plane. If the points

in an edge are not coplanar, then there will be cracking between the skirts.

The data structure presented can directly address cracking between adjacent units

of differing level of detail. When two adjacent units of differing LODs exist in a view, the

lower LOD unit has every other point removed from the edge matching the higher LOD

unit. The extra points in the higher LOD unit's edge can easily be interpolated to match

the lower LOD unit's edge.

(Also note: with the data structure presented, some LOD changes only remove

points from within a unit, so cracking is only a problem between every other LOD

change.)

3.5.4. Switching Levels of Detail

In Performer LOD, switching is based on the viewer's absolute distance from each

unit. With the data structure presented, switches between LODs can be based on a

viewer's speed and altitude.

If a viewer is traveling at a high rate of speed, detail may not be as important as at

low speeds. The LOD strategy may be changed to lower detail at high speeds.

At high altitudes, Performer may still render high detail terrain under the viewer, if

the viewer is still within the switching distance of the high LOD. With the data structure

presented, the LOD strategy may be changed to lower detail at high altitudes.

3.5.5. Culling

In Performer, culling is based on an absolute distance plane, the far clipping plane.

(The far clipping plane can be set, but not dynamically changed.) With the data structure

presented, culling can be based on the viewer's altitude. That is, the closer the viewer is to

the earths surface, the less distance the viewer needs to see. The data conversion
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algorithm might perform culling by only converting data to a specific distance,

independent of Performer's far clipping plane.

3.5.6. Paging versus Computation

Although the proposed data structure reduces paging needs, it requires real time

computation to transfer its data into Performer's rendering format. The decrease in paging

needs must be weighed against the additional computational requirements.

3.5.7. Level ofAbstraction

The data structure manages each unit of terrain area as a whole. It minimizes

memory use by storing each polygon as a part of the unit, but does not deal with individual

polygons. That is, it abstracts terrain down to the unit level, not the polygon level. Thus,

all polygons within a unit share the same attributes such as material and texture.

Within Performer, storing polygons in the same group with similar attributes will

speed rendering. Any storage method should take advantage of similarities in terrain areas

by storing and rendering like polygons in the same group. However, the data structure

presented represents a fixed number of polygons. If the boundaries of a unit are shifted, it

still must contain the standard number of points with the standard connectivity.

3.6. Summary

This chapter presented a data structure to store units of terrain information.

Discussed were the factors around which the data structure was designed, along with the

advantages and disadvantages of the structure. For the data structure to be useful, a

system must be built to manage the units of terrain. Such a system is presented in the next

chapter.
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IV. System Design

This chapter outlines the system supporting the data structure of Chapter 3. The

system design is Object Oriented. The main goal of the Object Oriented structure is

abstraction of the system into classes which encapsulate the functional areas of the system.

The system's object model is shown in Figure 4.2. (Some of the attributes and methods

are left out of the diagram, for simplicity and brevity.) Toward abstraction, each class is

designed to provide a complete function, minimizing communication among classes.

Tow,•: e.-ncapsulation, each class is designed to hide its structure from the other classes.

Access to a class's structure is solely through its methods.

The Object Model is drawn using Rumbaugh's[25] notation. A brief key to the

notation is shown in Figure 4.1. Each class has a name, a set of attributes, and a set of

operations. The attributes are the variables owned by the class. The operations are the

functions implemented in the class. In Rumbaugh's terminology, an implementation of an

operation is a method. In the inheritance structures shown in Figure 4.2, operations

shown in a subclass override its superclass's operations. If an operation is not overridden,

it is inherited.

Class: Aggregation:

Cla Namne Assembly Class

OpraIon I PMr Clas

Multipficity of Associations:
Inheritance:•tClssIExawtly one 

W=

F~~] Many (z=r or more)

--C F ] Optonal (zero or one) FSubýcl-ass Subclas

Figure 4.1. Key to Object Model Notation

4-1



ILk

SI!iJ*I ii 81
11d111

• --

Ii iiA ,i ,



The system is divided into two areas: management of the terrain data and

management of the rendering structures. The classes in each area are encapsulated. The

classes which manage the terrain data, such as CellClass and TerrainDataBase, hide the

data's organization from the classes which manage the rendering structures. (The

CellClass and TerrainDataBase hide their data organization from each other.) The classes

which manage the rendering structures, such as MemoryClass and DisplayAttrs, hide the

machine dependent structures from the classes which manage the terrain data. Where the

terrain data needs to be stored in a machine dependent structure, a separate class is used,

such as the TextureClass contained in the TextureCell (a subclass of CellClass).

To pull it all together, the TerrainManager class controls the classes in both areas.

The TerrainManager provides the interface for an application using this system.

4.1. Design Overview

The TerrainManager comprises the CellClass and MemoryClass. Each CellClass

object stores sections of the terrain in the data structure discussed in Chapter 3. The

MemoryClass manages the rendering structures. Actions of the TerrainManager are

broken into two areas: building of the CellClass objects and MemoryClass object

(initialization), and building of the MemoryClass's rendering structures from the

CellClasses' data (execution).

During initialization, the TerrainManager creates a TerrainDataBase. It populates

the CellClass by passing the TerrainDataBase and location information to the CellClass.

Then, it allocates the rendering structures by passing level of detail strategy information to

the MemoryClass.

During execution, the TerrainManager (based on information received from the

application program) decides how to build the terrain view from the CellClass objects. It

calls each needed CellClass object, directing the object to build itself into the rendering

structures at a specified level of detail.
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The CellClass contains the data necessary to build an area of the total terrain.

Each CellClass object owns a MemoryClass object. (A MemoryClass object may be

owned by more than one CellClass object.) During initialization, the TerrainManager

creates CellClass objects to cover the entire terrain area. Each CellClass object queries

the TerrainDataBase. To pass vector values, the TerrainDataBase fills a tdbVec3 object,

which the CellClass reads. During execution, the CellClass gets a DisplayAttrs object

from the MemoryClass. The CellClass builds the rendering structures contained in the

DisplayAttrs.

The CellClass is an abstract class, providing only the attributes and methods to

build the cell's coordinates into the rendering structures. It provides the basis for

subclasses rendered with Gouraud shading, flat shading, single color flat shading and

texture mapping; represented by GouraudCell, FlatCell, PlainCell and TextureCell,

respectively.

A TextureCeli object contains a TextureClass object that encapsulates Performer's

structure for loaded textures. One TextureClass object may be associated with many

TextureCell objects, so a given texture does not need to be loaded more than once.

The MemoryClass manages the rendering structures. During initialization, it

creates the rendering structures in DisplayAttrs objects. Each DisplayAttrs object contains

enough memory for rendering a cell at a specific level of detail. The MemoryClass keeps

the DisplayAttrs in order by level of detail. During rendering, MemoryClass gives the

DisplayAttrs objects to the CellClass objects in order.

The MemoryClass is a base class, managing the rendering structures for Gouraud

shading. The MemoryFlat subclass manages the rendering structures for flat shading. The

MemoryTexture subclass manages rendering structures (flat shading) for texture mapping.

The MemoryClass is a base class, as opposed to an abstract class like CellClass. It

was implemented as a base class, because Performer uses the same amount of memory for

Gouraud and flat shaded triangle strips. A flat shaded triangle strip needs two fewer
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colors and normals than a Gouraud shaded triangle strip. In flat shading, Performer

ignores the first two colors and normals in each triangle strip. The only difference

between MemoryClass and MemoryFlat is the draw mode.

4.2. Classes

The subsections below discuss the classes as implemented for this thesis. (The Cell

Definitions section is not a class, but holds global constants.) Each subsection title shows

the class name, along with the file names containing the class. Each file with a '.h' suffix

defines a header file, containing information which is visible to'other classes. Each file

with a 'cc' suffm defines a program body, containing operation implementations which are

hidden from other classes.

4.2.1. Cell Definitions (celldef.h)

This section defines constants used in defining cells. The values defining cell size

are set here, so the cell size may be changed without changing the CellClass. Currently,

the cell size is set to 17 by 17 vertices.

4.2.2. CellClass (cellclass.h, cellclass.cc)

This section defines a basic cell, which is derived from the data structure discussed

in Chapter 3. The CellClass is an abstract class, containing several pure virtual functions.

The intention is to have a base class, which the main program thinks it is manipulating.

That is, the main program declares pointers to the base class type (but it cannot create

objects of the base class, because it is an abstract class), yet it allocates objects derived

from the base class. Then, when the main program operates on the objects, it uses the

functions provided by the derived class(es).

The CellClass contains an array of coordinates and the methods (functions) to

build the coordinates (representing polygon vertices) into the rendering structure.

However, it will use the methods provided by derived classes for building normals, colors

and texture indices into the rendering structures. The building of the normals, colors and
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texture indices in the derived classes must be tightly coupled to the building of the

coordinates; the order of the coordinates in the triangle strips dictates the required order

of the normals, colors and texture indices.

The coordinate building routines really should be virtual functions, as well, so the

coordinates can be connected using various strategies. Specifically, a connectivity

strategy could use triangle meshing with vertex swapping, aimed at the betweening

strategy discussed in Chapter 3. Unfortunately, Performer does not support vertex

swapping, so only one connectivity strategy is implemented.

The implemented system has two types of build methods for cells. First, it builds

the storage structure (coordinate array) from the terrain data base. The BuildCellCoords

method builds the storage structure for the cell's coordinates. Then, as needed, it builds

the rendering structure from the storage structure. Each cell may be represented in the

rendering structures at one of several LODs. Hence, there are several

BuildRenderingCoords methods, each of which builds the rendering structure for the cell

at a single level of detail.

The implemented system uses four levels of detail for each cell. Each cell has three

sets of coordinates, where each set builds on the previous set(s). The three sets are placed

in a single array of coordinates in four sections. The sections are labeled A, B, C and D.

The A section represents the third LOD, as discussed in Chapter 3, Section 3. Adding the

B section represents the second LOD. Adding the C and D sections represent the first

LOD. The fourth LOD can be extracted from the A section, using only a subset of the

coordinates from the A section.

Extracting the fourth LOD from the A section is obviously inconsistent with the

strategy outlined in Chapter 3. I had originally intended to have three LODs per cell.

When I came to defining lattices (levels of cells) for the TerrainManager (Section 4.2.7.), I

found that with an odd number of LODs, the LODs between lattices overlap. With only

three LODs per cell, only two LODs are usable for each lattice above the first. Rather
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than rewrite the CellClass methods for the first three LODs, I added a fourth LOD to

extract its information from the A section. The CellClass methods could be rewritten

giving the fourth LOD its own section without affecting the other classes.

Each point is shown in Figure 4.3 labeled with its section and the index in that

section. The coordinates are stored in row-major order, with the lower left hand corner of

the cell as the first element in the array. (Note: The actual implementation uses cells of

17 x 17 coordinates. However, for simpler illustration, 9 x 9 cells are used in the figures.

Of course, either cell size is valid, and the current implementation was written with great

care to accommodate cell size changes.)

* 0 0 0 0 0 0 0 0
A[20] C[16] A[21] C[17] A[22] C[18] A[23] C[19] A[24]

* 0 0 0 0 0 0 0 0
D[15] B[12] D[16] B[13] D[17] B[14] D[18] B[15] D[19]

* 0 0 0 0 0 0 & 0
A[15] C[12] A[16] C[13] A[17] C[14] A[18] C[15] A[19]

0 0 0 0 0 0 0 0 0
D[1O] B[8] D[11] B[9] D[12] B[10] D[13] B[ill] D[14]

A[10] C[8] A[ll] C[9] A[12] C[IO] A[l3] C[Il] A[14]

D[5] B[4] D[6] B[5] D[7] B[6] D[8] B[7] D[9]

A[5] C[4] A[6] C[5] A[7] C[6] A[8] C[7] A[9]

D[O] B[O] D[l] B[1] D[2] B[2] D[3] B[3] D[4]

* 0 0 0 0 0 0 0 0
A[0] C[O] A[l] C[l] A[2] C[2] A[3] C[3] A[4]

Figure 4.3. Grid of 81 Points with Array Section and Index Labels

The BuildRenderingCoords methods build the cell's storage structure into triangle

strips in the rendering structure. The most efficient way to step through arrays is

contiguously. Thus, the BuildRenderingCoords methods build the triangle strips in the
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order which best supports stepping through the array of coordinates in a contiguous

mnannr.

The method BuildRenderingCoordsl builds the first LOD using all sections in the

array of coordinates, building triangle strips as shown in Figure 3.1 (b).

BuildRenderingCoordsl creates two sets of triangle strips, so it can step through the four

sections of the array in a contiguous manner. First, it creates the odd triangle strips (I st,

3rd, etc.). Then, it creates the even triangle strips (2nd, 4th, etc.). (Most of the

coordinates in a cell are used in two triangle strips. So, building the rendering structure

requires two passes through the cell's array of coordinates. After building the first triangle

strip, the indices into the array sections are already in position for building the third

triangle strip.) The order of coordinates in the triangle strips is shown in Figure 4.4.

Figure 4.4. Triangle Strip Order of Vertices for First Level of Detail

The method BuildRenderingCoords2 builds the second LOD using the A and B

sections in the array of coordinates, building triangle strips as shown in Figure 3.13(a).

BuildRenderingCoords2 creates two sets of triangle strips, so it can step through the two

sections of the array in a contiguous manner. First, it creates the odd triangle strips (1 st,

3rd, etc.). Then, it creates the even triangle strips in reverse order (16th, 14th, etc.). The

order of coordinates in the odd triangle strips is shown in Figure 4.5(a); the even triangle

strips, in Figure 4.5(b).

(a) (b)
Figure 4.5. Triangle Strip Order of Vertices for Second Level of Detail
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The method BuildRenderingCoords3 builds the third LOD using the A section in

the array of coordinates, building triangle strips as shown in Figure 3.15.

BuildRenderingCoords3 creates one set of triangle strips in order (1 st, 2nd, etc.), using

two indices into the A section. (After building the first triangle strip, the indices into the

array sections are already in position for building the second triangle strip.) The order of

coordinates in the triangle strips is shown in Figure 4.6.

Figure 4.6. Triangle Strip Order of Vertices for Third Level of Detail

The method BuildRenderingCoords4 builds the second LOD using the A section

in the array of coordinates, building triangle strips as shown in Figure 3.17(a).

BuildRenderingCoords4 creates two sets of triangle strips, so it can step through the two

sections of the array in a contiguous manner. First, it creates the odd triangle strips (I st,

3rd, etc.). Then, it creates the even triangle strips in reverse order (8th, 6th, etc.). The

order of coordinates in the odd triangle strips is shown in Figure 4.7(a); the even triangle

strips, in Figure 4.7(b).

(a) (b)
Figure 4.7. Triangle Strip Order of Vertices for Fourth Level of Detail

The BuildRenderingCoordsl and BuildRenderingCoords3 methods accept a

parameter telling if the cell being built will be adjacent to any less detailed cells. That is, if

the cell shares edges with cells of less detail, then certain coordinates within the shared
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edges must be interpolated to avoid cracking between the cells. The even numbered

BuildRenderingCoords do not have such a parameter, because no cracking can occur

around an even numbered LOD. The difference between an even numbered LOD and the

next less detailed odd numbered LOD are interior points, only. The shared edges between

these two LODs have the same coordinates.

4.2.3. GouraudCell (gouraudh, gouraud cc)

The GouraudCeUl is a derived class, inheriting the structure of the CellClass. The

GouraudCell adds an array of colors and an array of normals, along with the methods to

build the colors and normals into the rendering structure.

This section defines a cell colored with Gouraud shading. In Gouraud shading,

colors and normals are associated with the vertices of each polygon. The colors and

normals are interpolated across the polygon to determine the color and shading at each

pixel, creating a smooth coloring and shading effect. Because the colors and normals are

associated with vertices, they can be stored and processed (to build geoset representations

of the cells) in relatively the same manner as the coordinates in the CellClass.

4.2.4. FlatCell (flatcellh, flatcell.cc)

The FlatCell is a derived class, inheriting the structure of the CellClass. The

FlatCell adds an array of colors and an array of normals, along with the methods to build

the colors and normals into the rendering structure.

This section defines a cell colored with flat shading. In flat shading, colors and

normals are associated with the face of each polygon. The colors and normals are applied

once to each polygon, so all pixels in the polygon have the same color and shading.

Because the colors and normals are associated with faces, the storing and

processing scheme used for the coordinates does not apply. From the coordinates' point

of view, LOD switching involves adding or deleting polygon vertices. From the colors'

and normals' point of view for flat shading, LOD switching involves changing polygon

faces. It might be possible to share face colors and normals in a scheme similar to sharing
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coordinates. However, for this implementation, separate colors and normals arrays are

maintained for each LOD.

4.2.5. PlainCell (plainceliA, plaincell.cc)

The PlainCell is a derived class, inheriting the structure of the FlatCell. The

PlainCell replaces the array of colors with a single color to assign to all polygons in the

cell, along with the methods to build the color into the rendering structure.

The PlainCell is intended for use with texture mapping. Specifically, if the color

will not show through the texture (applied as a decal), or if the texture needs a single base

color, then the cell should not waste memory storing the same color several times.

Ideally, if the texture is applied as a decal, then the color should not be built into

the rendering structure every time the terrain is rebuilt. Either the color should be stored

in the rendering structure during initialization, or the rendering structure could remain

uninitialized.

4.2.6. TextureCell (texcell.h, texcell cc)

The TextureCell is a derived class, inheriting the structure of the PlainCell. The

TextureCell adds an array of texture indices, along with the methods to build the texture

indices into the rendering structure.

This section defines a texture mapped cell. In texture mapping, indices into a

texture are associated with the vertices of each polygon. The texture is interpolated

across the polygon to determine the coloring at each pixel. Because the texture indices

are associated with vertices, they can be stored and processed (to build geoset

representations of the cells) in relatively the same manner as the coordinates in the

CellClass.

4.2.7. Terrainfanager (terrainmgr.h, terrainmgr.cc)

The TerrainManager manages the cells defining an area of terrain, along with their

associated levels of detail. A cell by itself merely describes a small area of terrain. It is the

TerrainManager which pieces cells together, at varying levels of detail, into a specific view
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of the terrain. With a hierarchical view of the system, the TerrainManager is the top

component which interfaces with an application system.

The TerrainManager contains a MemoryClass object and many CellClass objects.

The MemoryClass object maintains and manages the rendering structures. The CellClass

objects are organized in a hierarchy of sets, referred to as "lattices." Each lattice contains

a set of cells at a specific size. In this implementation, the first lattice contains the cells

representing the terrain with the shortest post spacing; the second lattice, with posts

spaced at four times the shortest post spacing.

Figure 4.8 shows a terrain area, bounded by a thick line, covered by cells in two

lattices. The cells of the highest detail lattice are bounded by dotted lines. The cells of the

lowest detail lattice are bounded by narrow lines. The edges of each lattice may extend

beyond the edge of the terrain, to maintain the standard number of points in each cell. In

this system, the "out of bounds" points drop to a zero altitude below the edge of the

terrain, creating a cliff.

.i.i..f -+ • .. !..........-....... ..- - - -.H.. .. •:... .... ... .......

S........... .. ....... . . .. .. .. . . . . .. . .
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Figure 4.8. Lattice Structure Applied to a Terrain Area

Lattices of cells add more levels of detail than are available from a single set of

cells. The basis for lattices is three-fold. First, it is difficult to manage the elements of a

cell for all the levels of detail it may represent. For example, the implemented system

represents a cell with three sets of coordinates, for three explicit levels of detail. To

represent more levels of detail, the entire lowest set of coordinates must be in memory.

Much main memory and paging would be wasted to manage lower levels of detail.
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Second, if a cell were to represent all possible levels of detail, the advantages of triangle

meshing would be lost at the lowest detail (due to the very short strips built), and many

small rendering sets would be built. Third, the terrain cannot be managed above the level

of abstraction of a cell size. (If a view required polygons larger than the cell size, the

polygons might be extracted from several cells.)

A lattice is similar to a general level of detail, as discussed in Chapter 2. A lattice

may be viewed as a level of levels of detail, where each lattice represents a subset of the

total levels of detail. In the implemented system, the first four levels of detail are built

from the first lattice; the next four levels of detail, from the second lattice.

An application may control the TerrainManager through three methods:

InitTerrain, InitLocation, and SetLocation. InitTerrain initializes and returns a pointer to

the rendering structures. InitLocation sets the initial location of the viewer and builds the

rendering structures for the initial view. (As discussed below, SetLocation only rebuilds

the rendering structure if the viewer moves far enough to induce a change in LOD. So,

InitLocation must build the initial view, or there may be nothing to view until the viewer

moves far enough.)

SetLocation accepts locations from the application as the viewer moves through

the terrain area. As the viewer moves, the TerrainManager rebuilds the terrain's rendering

structures to maintain level of detail rings around the viewer. The TerrainManager must

decide how many rings of each level of detail to build around the viewer. The decision

may be based on the viewer's location (including altitude), speed, and any other factor

deemed useful.

The implemented system reads a file named "Command" to determine the type of

cells (Gouraud, flat, plain or textured), where to get the terrain data, and what level of

detail strategy to use. The system allows two level of detail strategies, broken by altitude.

The Command file format is shown in Appendix A.
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To create a view combining cells from more than one lattice, the TerrainManager

must ensure that the edges of cells in one lattice match the edges of the cells in the next

lattice. Because the cells of differing lattices are of different sizes, the area drawn in one

lattice must be bounded in an area that matches the edges of the cells in the next lattice (if

more than one lattice is used in a view).

For example, the implemented system uses four LODs from each lattice. The next

(fifth) LOD is taken from the next lattice. An example of these rings is shown in Figure

4.9. The rings from the first lattice are outlined in dotted lines, with the cells of the fourth

LOD shown explicitly.. (Note that there are four rings of cells in the fourth LOD.) The

cells of the fifth LOD (represented by the first LOD from the second lattice) are outlined

by solid lines.

......1213 4

..;- ...-.; . ....; .... - -. - .-.

• .- ... . . . ----.
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Figure 4.9. Level of Detail Rings Applied to a Terrain Area

If the viewer moves to a location where the rings from the first lattice are not

aligned with the second lattice, some areas of terrain may overlap while other areas are not

rendered. This unaligned situation is shown in Figure 4. 10.
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Figure 4.10. Unaligned Level of Detail Rings Applied to a Terrain Area

As a solution to this problem, the BuildOffsetLOD method adjusts the rings in the

fourth LOD up to two cells, so the cells used in the fourth LOD align to the larger cells

used in the fifth LOD. (If the viewer moves more than two cells in any direction, then the

second lattice rings would be shifted, also.) This aligned situation is shown in Figure 4.11.

.I ..........
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"t't"+. . .. ......... .'"F "
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Figure 4.11. Offset Level of Detail Rings Applied to a Terrain Area

On the top edge of Figure 4.11, there are two cells in the fourth LOD between the

third and fifth LODs; on the bottom edge, six cells. Four rings are used in the fourth LOD

so that, when the fourth LOD is offset, there will be at least two cells between the third

and fifth LODs in any given direction. If only two rings are used, then in some views an

edge (or two) of the third LOD will meet the fifth LOD. Thus, the implemented system

requires at least four rings in the fourth LOD to maintain a minimum of two cells in each

direction.
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The solution presented above for matching cells built from different lattices is only

one of many possible solutions. For example, the offset could be done in the fifth LOD, if

the system allowed building partial cells. This situation is shown in Figure 4.12.

I 4 3

Figure 4.12. Level of Detail Rings with Partial Cells

4.2.8. TerrainDataBase (:db.h, td.cc)

The TerrainDataBase hides the terrain format, providing a standard interface to the

CellClass (and its derived classes). It provides methods to set the coordinates, colors,

normals and texture file names in a CellClass. The TerrainDataBase returns these values

for vertices, only. The CellClass contains information about the connectivity of the

vertices (to connect vertices into polygons), which should not be known by the

TerrainDataBase. Therefore, the CellClass must derive the colors and normals for

polygon faces from the vertex values.

The implemented TerrainDataBase does not contain methods to set texture

indices. It would need to contain such methods if the indices are applied unevenly to a

cell, based on the texture and the world location of the cell.

The TerrainDataBase is not an integral part of this thesis effort, other than

providing data to the CellClass objects. As such, many of the color values are hard coded

to specific geographic areas. Currently, the terrain elevation data is taken from '.pts'

files. [] The TerrainDataBase class may be written to use data from any terrain format

without affecting the other classes.

4-16



4.2.9. t&bVec3 (tdb.h)

The TerrainDataBase object may return vector values for coordinates or normals.

Of course, the TerrainDataBase and CellClass may have differing views on how to store a

vector value, and neither should care how the other deals with vectors. The tdbVec3 class

provides an interface structure between TerrainDataBase and CellClass, with methods to

load and extract the vector values.

4. 2.10. MemoryCl=s5 (memcl=ss.h, memclasskcc)

The MemoryClass manages the rendering structures used by the application

program to render the terrain. It hides the Performer rendering structures from the

TerrainManager and the CellClass. The MemoryClass contains portions of the rendering

structure (specifically the pfteodes) in DisplayAttrs objects (discussed below). The

organization of Performer rendering structures is shown in Figure 4.13.

pif roup

pfSwitch

pf~eoSet . . . pf~eoSet feet ... peot

Figure 4.13. Organization of Performer Rendering Structures used by MemoryClass

The pointer to the top pt•roup Performer object is returned to the application

program. The pfGroup objects below the pfSwitch are identical in structure; one
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represents the current terrain view for rendering, while the other is for rebuilding the next

terrain view. The pfSwitch is controlled by the TerrainManager through a MemoryClass

method (EndResetAttributes). Each pfteode and pffleoSet combination represent the

rendering structures built from CellClass.

Aside from encapsulating the rendering structures, the MemoryClass speeds terrain

building by pre-allocating the rendering structures. Memory allocation is a slow process.

Pre-allocation ensures the memory is available when the system needs it, without holding

up the terrain building process.

The MemoryClass contains methods for the TerrainManager to set the level of

detail strategy (number of LOD rings in each LOD set), to initialize and return a pointer to

the rendering structures, and to manage the rendering structures. (The portion of the

rendering structures built by the CellClass are kept in the DisplayAttrs class. Hence,

DisplayAttrs contains the methods for CellClass to build the rendering structures.)

The MemoryClass allocates enough memory (for the rendering structures) to

accommodate the level of detail strategy employed by the TerrainManager. It can accept

more than one strategy, allocating the maximum amount of memory needed. The

TerrainManager could create a MemoryClass object for each level of detail strategy; then,

the TerrainManager would need to pass the proper MemoryClass object to each CellClass

object during terrain rebuilding. (Currently, each CellClass contains a pointer to a single

MemoryClass.)

4.2.11. MemoryFlat (memflat.h, memflat.cc)

The MemoryFlat class is a derived class, inheriting the structure of the

MemoryClass. This is the simplest class of all. The only difference between Gouraud and

flat shading, from Performer's point of view, is the draw mode. MemoryFlat contains one

method with one line, to change the dra,,, mode to flat shading.

Performer leaves memory unused with flat shading on triangle strips. In a

Gouraud shaded triangle strip, a color and normal are associated with each vertex. In a
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flat shaded triangle strip, a color and normal are associated with each face, which is two

less than the vertices in the strip. However, Performer maintains the memory for a color

and normal for each vertex but ignores the first two colors and normals in the strip.

4.2.12. MemoryTexture (memtex.h, memtex.cc)

The MemoryTexture class is a derived class, inheriting the structure of the

MemoryFlat. MemoryTexture overrides the InitMemory, GetLengths and SetGSetAttrs

methods to include the allocation of texture mapping rendering structures.

The entire InitMemory method should not need to be overridden, since much of it

remains unchanged. Overriding InitMemory could be avoided by providing more methods

which InitMemory may call for special processing, such as GetLengths and SetGSetAttrs.

For example, GetLengths calls MemoryClass::GetLengths to get the coordinates, colors

and normals array lengths, then adds the extra code needed to get the texture indices array

length.

MemoryTexture adds a pfGeoState to the rendering structures built by CellClass,

as shown in Figure 4.14. The pfGeoState describes the texturing attributes and contains

the texture file reference (set by CellClass).

pfi~eode

pffieoSet

pft~eoState

Figure 4.14. pfGeoState added to Performer Rendering Structures used by MemoryClass

4.2.13. DisplayAttrs (dispattr.h, dispattr.cc)

The DisplayAttrs class encapsulates the rendering structures built by the CellClass.

DisplayAttrs' methods allow allocation of the rendering structures by MemoryClass, then
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filling of the rendering structures by CellClass. The allocated structures include the

pfGeode, p/GeoSet and pf•eoState, along with the arrays belonging to the pffeoSet:

coords, colors, norms, tindices and lengths. The detail of the rendering structures is

shown in Figure 4.15. (The structure shown details what is used by this system. For more

detail, see the IRIS Performer Programming Guide.)

pfteode

bounding box

pfNodeBBox

pfGeoSet

coords array
colors array
normals array
tindices array
lengths array
number of primitives
bounding box

pfGSetNumPrims
pfGSetBBox

pftfeoState

texture
texture mode

pfGStateAttr

Figure 4.15. Object Model of Performer Rendering Structures used by DisplayAttrs

The MemoryClass actually allocates the rendering structure, then passes each

structure's pointer to the DisplayAttrs object. A CellClass object can fill the rendering

structure's arrays from the cell's data. For each array, DisplayAttrs accepts the array's

values in order. That is, the array's method (such as SetColor) accepts the value and

increments the array's index.
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After filling the rendering structures, the CellClass needs the ability to interpolate

certain values to prevent cracking. This interpolation takes two vertices, interpolates their

midpoint, and places the midpoint values into one or two other vertices, as shown in

Figure 4.16. Of course, DisplayAttrs should know nothing of the organization of the cell's

vertices, and CellClass should know nothing of how to interpolate values stored in

Performer structures. So, DisplayAttrs' Interpolate methods accept indices into the

rendering structures which describe the vertices to be used in the interpolation. (The

CellClass should know the order it filled the rendering structures.) Currently, this

interpolation is only provided for coordinates.

computed midpoint value,
to store at midpoint index value at

right index
value at
left index,

original value at

midpoint index

Figure 4.16. Interpolation of Edge Coordinates to Prevent Cracking

Additional (unused) methods provide for interpolation used in "betweening." This

interpolation takes three vertices: one from a higher level of detail and two from a lower

level of detail. First, it interpolates the midpoint between the two lower LOD vertices.

Then, it interpolates a "betweening" value, between the midpoint and the higher level of

detail vertex, based on an offset factor. This interpolation, shown in Figure 4.17, is

provided for coordinates, colors and normals.
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Figure 4.17. Interpolation of Coordinates for Betweening

4.2.14. TextureClass (texclass.h)

The TextureClass hides the Performer texture structure from the CeUlClass. A

textured cell needs access to its loaded texture, so the cell can pass its texture to the

rendering structure. However, a texture file is loaded into a Performer pfIexture object.

So, TextureClass holds the loaded textures.

The TextureClass holds the additional advantage of saving memory, by only

loading each texture once. A single TextureClass object is used for all CellClass objects.

TextureClass keeps a list of all loaded textures. When a cell needs to load a texture, it

calls LoadTexture with the texture's file name. If the texture has been loaded, then

LoadTexture returns the index of the already loadeO -ture. Otherwise, it loads the

texture and returns the index of the newly loaded

4.3. Summmay

This chapter presented a system to manage cells of terrain. The system is Object

Oriented, encapsulating each major area of the system in a class. The next chapter

presents an analysis of the system, comparing it to terrain data stored in MultiGen Flight

format which is managed and rendered by Performer.

4-22



V. Analys

This chapter presents an analysis of the system discussed in Chapter 4. The

analysis is in two parts, measuring the internal and external characteristics of the system.

First, the system was measured against selected maintainability metrics: cyclomatic

complexity, coupling, and cohesion. Second, the functionality of the system was

compared against terrain data stored in MultiGen Flight format which is managed and

rendered by Performer.

5.1. Software Engineering Metrics

The metrics presented in this section indicate the maintainability of the system,

McCabe's cyclomatic complexity assigns an integral measure to each function, indicating

the understandability of the function. Coupling indicates the complexity of the interfaces

between classes and the functions within a class. Cohesion indicates how well a class or

function implements a single service.

5.1.1. McCabe's Cyclomatic Complexity

McCabe's cyclomatic complexity metric assigns an integral measure to each

function. Beginning at one, a higher value indicates higher complexity. The value is based

on a control flow representation of a program.[ 17] The value is not an absolute

measurement of complexity, but it does indicate the areas of a program which are likely to

be overly complex. The metric was applied to the system twice. After the first

application, I broke some functions into smaller functions when the metric highlighted

them as potential problem areas. In a few cases (discussed below), I reviewed the

function but did not break it into smaller functions.

The results of McCabe's cyclomatic complexity metric applied the second time to

each function in each class are shown in Table 5.1. The first two functions in each class

are the classs constructor and destructor.
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cbm a fungi= _MRMf

CeliClass
CellClass1
-CellClass
BuildCdilCoords 4
BuildRenderingCoordsl 6
FiilCoordlsl 9
BufldRenderingCoords2 5
BuildRenderingCoords3 4
FiliCo~ords3 9
BuildRenderingCoord&4 5
ClearRenderingStiucture I

GouraudCeli
GouraudCell1
-GouraudCefl
BuildCell
WriteCeli
ReadlCell
BuildCeliColors 4
BuildCellNormals 4
BuildRenderingStnicturelI
BuildRenderingStructure2 I
BuildRenderingstructue3 I
BuildRenderingStnicture4 1
BuildRenderingColorsl 5
BuildRenderingColors2 5
BuildRenderingColors3 3
BuildRenderingColors,4 5
BuildRenderingNormalsI 5
BuildRendefreiongnals2 5
BuildRenderingNormals3 3

1 BuildRenderingNonnals4 5

Table 5. 1. Class Functions' Cyclomatic Complexity
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ClMas & Fnctos =
FlatCeil

FlatCelI
'-FlatCdli
BuildCeU
WriteCoil
ReadCil 1
BuildCeilColorsl 5
BuildCeilColors2 5
BuildCeilColors3 3
BuildCeilColors4 5
BuildCeflNormalsI 5
BuildCeilNormals2 5
BuildCeilNormals3 3
BufldCeflNormals4 5
BuildRenderingStructurel I
BuildRenderingStructure2 1
BuildRenderingStnicture3 1
BuildRenderingStructure4 1
BuildRenderingColorsl 3
BuildRenderingColors2 3
BuildRenderingColors3 3
BuildRenderingColors4 3
BuildRenderingNormalsl 3
BuildRenderingNormals2 3
BuildRendetingNormuls3 3
BuddRenderingNormuls4 3

PlainCelI
PlainCeII I
-PlainCell I
WriteCeil I
ReadCefl I
BuildCellColors 1
BuildRenderingColors 1 3
BuildRenderingColors2 3
BuildRenderingColors3 3
BuildRenderingColors4 3

Table 5.1. Class Functions' Cyclomnatic Complexity (continued)
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Class & Function
TextureCeil

TextureCell 2
-TextureCellI
BuildCeUl 1
WriteCell I
ReadCell 1
BuildCeliTexturelndices 4
BuildRenderingStructurel 1
BuildRenderingStructure2 I
BuildRenderingStructure3 I
BuildRenderingStructure4 1
BufldRenderingTexture~lnicesl 5
BuildRendenngTexturelndices2 5
BuldRendeningTexturelndices3 3
BuildRenderinATex~turelndices,4 5

TerranManager
TerrainManager 18
-TerrainManager 5
InitTerrain 1
InitLocation 2
SetLocation 10
BuildTerrain I
BuildTefrainSet 6
WriteTerrain 5
ReadTerrain 2
ReadTefrainSet 6
BuildLOD 14
BuildOffsetLOD 7
CalculateFillEdge 8

tdbVec3
tdbVec3 I
-tdbVec3 I
SetX 1
SetYI
SetZ 1
GetXI
GetYI
GetZ _ _

Table 5. 1. Class Functions' Cyclomatic Complexity (continued)
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Cnge* & ucins
TerrainDataBase

TerrainDataBase 9
-TerrainDataBase, 3
DREdgeX I
DBEdgeY 1
DBSize 1
Coordinate 2,1,3*
Normal 6,2,1,1,3*
Color 2,1
Tex~ture 2
OutOfBoundsCoordinate 11
NonNeg 2
CrossProduct I
NornializeVector 2
ComputeNormal 1

MemoryClass
MemoryClass; 4
-MemoryClass I
IntMemory 5
BeginResetAttributes I
NextAttribute 1
EndkesetAttributes I
GetLengths 5
SetGSetAttrs 1
SetGSetDrawMode I
AllocateAttrs 2
MinLOD 4
RingsInLOD I
MaxCells 1
CellsInLODSet I
SetRingslnLOD I
SetSizeOfLOD I
SetLODinLattice I

MemoryFlat
MemoryFlat I
-MemoryFlat I
SetGSetDrawMode 1

Table 5. 1. Class Functions' Cyclomatic Complexity (continued)

5-5



£1afunctiig Cmpxt
MemoryTexture,

MemoryTexture
-MemnoryTexture
InitMemory 5
GetLengths1
SetGSetAttrsI

DisplayAttrs;
DisplayAttrs 2
-DisplayAttrs 1
AllocateColors 1
AllocateNorms 1
AllocateCoords I
AllocateTextureIndices 1
AllocateLengths I
AliocateGeode 1
AllocateGSet I
AllocateGState 1
Initialize I
SetCoord 11
SetNormal1,
SetColor1,
SetTextureIndex 1
Set~ength
SetNumberOfStripsI
SetBoundingBoxI
ClearI
InterpolateCoord11
SetTextureI

TextureClass
TextureClass 2
-TextureClass I
LoadTexture 4
GetTexturePtrI

I GetTextureNameI

Table 5. 1. Class Functions' Cyclomatic Complexity (continued)

*Where a function has more than one implementation, based on parameters, the
cyclomatic complexity for each implementation is shown.
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Analysis of McCabe's metric has shown 10 to be a practical upper limit for a

function's complexity.[23] Few functions in this system exceed the limit:

TerrainManager's constructor has a cyclomatic complexity of 18; TerrainManager's

BuildLOD, 14; and TerrainDataBase's OutOfBoundsCoordinate, 11.

The TerrainManager constructor contains initialization statements. Most of these

statements are enclosed in if-else-if or switch constructs, which rapidly increase a

function's complexity. The segments of this function with high cyclomatic complexity

could be broken into more twictions. However, the constructor has a straight flow with

few loops. Only one loop contains an if-el- --if construct for reading the input file.

Breaking the constructor into smaller functions would likely break its flow and diminish

understandability.

The TerrainManager's BuildLOD function contains many nested loops with switch

and if-else statements at the center of the loops. It is an overly complex function. The

main switch statement could be put into another function. Unfortunately, the statements

within the switch use many of the loop counters; passing so many parameters to a

function would be unwieldy. A better solution would be the use of function pointers. The

main switch statement calls a BuildRenderingStructure function for the proper level of

detail. The BuildRenderingStructure function pointers may be stored in an array. A call

made to one of the functions, based on a calculation of an index into the array, could

replace the switclh statement.

The TerrainDataBase's OutOfBoundsCoordinate contains if-else-if statements

nested two deep. If a cell needs a coordinate for a vertex out of the terrain area, this

function determines the region of the vertex and calculates a coordinate neighboring the

terrain area. The entire complexity measure results from determining the region of the

vertex. Breaking the function into smaller functions would likely break its flow and

diminish understandability.
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5.1.2. Coupling

Coupling indicates interconnection between classes and functions. Coupling may

be represented as a spectrum from low to high coupling. From low to high, the spectrum

includes no direct coupling, data coupling, stamp coupling, control coupling, external

coupling, common coupling, and content coupling.

In software design, we strive for the lowest possible coupling. Simple
connectivity among modules results in software that is easier to understand
and less prone to a "ripple effect" caused when errors occur at one location
and propagate through the system. [23]

5.1.2.1. Between Classes. Coupling between most classes (through each

class's methods) is limited to no direct coupling or data coupling. Data coupling is the

lowest form of coupling between two modules which communicate. Stamp coupling

exists where a class object is passed between classes. No complex data structures are

passed between classes unless the structure is encapsulated in a class.

In one case, control coupling exists between two classes. The TerrainManager

may call CellClass's BuildRenderingStructure functions with a parameter directing whether

or not to interpolate any of the edges to control cracking between cells. On the surface,

this case of control coupling does not appear to be a problem; the TerrainManager built

the cells, so it knows what edges of a cell should be interpolated in a particular terrain

rendering. However, this results in "tramp data,"[22] where a variable is passed through

BuildRenderingStructure and other functions until it reaches FillCoords. A better solution

would be to have the TerrainManager call FillCoords directly (or something more

appropriately named, such as InterpolateEdge).
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5.1.2.2. Within Classes. Coupling between functions within classes ranges

high, to external and common coupling. There is also a more subtle form of coupling

between functions which do not even communicate, which I term logical coupling.

External coupling within certain classes (MemoryClass, DisplayAttrs and

TextureClass) refers to Performer's rendering structures. These classes are designed to

hide the Performer structures from other classes, so their external coupling is appropriate.

Common coupling within classes is inherent in Object Oriented Programming. A

class defines a data structure (attributes) and the functions (methods) to manipulate the

data structure. Basically, a class's data structure is visible to the functions in the class;

each object accesses its attributes as global data. Common coupling within classes is

appropriate.

The most dangerous form of coupling in this system is between some functions

which do not communicate. I term it logical coupling. For xample, The CellClass

defines methods to build the cell's terrain data into polygons in Performer's rendering

structures. The CellClass's subclasses define various ways to apply colors to the polygons.

The logic used to build the polygons must be equivalent to the logic used to apply the

colors. If the methods to build the polygons change, then the methods to apply the colors

must also change.

5.1.3. Cohesion

Cohesion indicates how well a class or function hides a single concept. Cohesion

may be represented as a spectrum from low to high coupling. From low to high, the

spectrum includes coincidental cohesion, logical cohesion, temporal cohesion, procedural

cohesion, communicational cohesion, sequential cohesion, and functional cohesion.

We always strive for high cohesion, although the mid-range of the
spectrum is often acceptable. The scale for cohesion is non-linear. That is,
the low-end cohesiveness is much "worse" than middle-range, which is
nearly as "good" as high-end cohesion.[23]
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5.1.3.1. By Class. The cohesion of each class is functional. Object

Oriented Analysis and Design creates classes which encapsulate a single function. The

function of each class can be simply stated:

CellClass (and its subclasses): Manage terrain data at the cell level of abstraction.

TerrainManager: Manage the terrain rendered from cells.

MemoryClass (and its subclasses): Manage Performer's rendering structures.

DisplayAttrs: Encapsulate Performer's rendering structures.

TextureClass: Encapsulate Performer's loaded texture file structure.

TerrainDataBase: Encapsulate external terrain data formats.

5.1.3.2. By Function Within Classes. "In practice a designer need not be

concerned with categorizing cohesion in a specific module. Rather, the overall concept

should be understood and low levels of cohesion should be avoided when modules are

designed. "[23]

The functions within each class generally perform a single service. The methods

(functions callable from other classes) of each class were designed to perform one service

from the perspective of the calling class. Within a class, the cohesion of its methods may

appear lower than seen by the calling class. For example, the TerrainManager calls the

CellClass's BuildRenderingStructure methods to perform the single service of building the

cells rendering structures for a specific level of detail. Within the CellClass, the

BuildRenderingStructures methods may be viewed as temporally cohesive, because they

call (at least) three other functions to build the cells coordinates, normals and colors.

5.2. Measurements & Comparisons

Comparisons are difficult between this system and the current method of building

terrain, using MultiGen to build Flight format. This thesis came about because of the

limitations of building terrain within Flight format. Building terrain within Flight format is

extremely time and memory intensive. When I tried to build areas as small as 64
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kilometers square with 125 meter post spacing and five levels of detail, our machines ran

out of swap space. Our machine with the largest main memory, 160 Megabytes, has a

swap space of 40624 Kilobytes. I was able to build 16 kilometer square areas with 125

meter post spacing, which is equivalent to 64 kilometer square areas with 500 meter post

spacing. With the system developed for this thesis, I was able to load and fly through a

data base of 115 by 274 kilometers, at 250 meter post spacing.

The comparisons given here between Flight format terrain and the new Cell format

terrain are based on 64 kilometer square areas with 500 meter post spacing. For terrain

rendered from Flight files, four levels of detail are used, with the post spacing increasing

by a factor of two between LODs. Each LOD area (equivalent to a cell) is eight

kilometers square. The first LOD switch-in distance is 16 kilometers; the second, 48

kilometers; and the third, 112 kilometers. The fourth LOD encompasses the entire 64

kilometer square area, switching in at 240 kilometers. (The switching distances are from

the viewer to the center of a terrain area.)

For terrain represented with the Cell format, eight levels of detail are used, with

the post spacing increasing by a factor of T2 between LODs. Because of the different

ratios in post spacing, one LOD in the Flight format covers the same area as two LODs in

the Cell format. The first LOD is carried to a distance of eight kilometers from the

viewer; the second, 16 kilometers; the third, 32 kilometers; the fourth, a minimum of 48

kilometers; the fifth, 80 kilometers; the sixth, 112 kilometers; the seventh, 176 kilometers;

the eighth, 240 kilometers.

5.2.1. Memory Usage

The memory usage comparison is shown in Table 5.2, shown graphically in Figure

5.1. The comparison is based on necessary polygon information. Where texture mapping

is used, only the texture indices are considered, without the memory needed for the actual

texture. The comparison assumes Flight rendering (in Performer) uses triangle and

quadrilateral meshing. (Without meshing, the Performer format uses more memory.)

5-11



Flight Storage Flight Rendering Cells
Shading Total Bytes Per Total Bytes Per Total Bytes Per
Type Bytes Polygon Bytes Polygon Bytes Polygon

Flat 4661352 88.0697 2620800 49.5163 1802544 27.6125
Plain 4661352 88.0697 2620800 49.5163 1020000 15.6250
Textured 5180680 97.8817 3144960 59.4196 1177216 18.0333

Table 5.2. Memory Usage by Format in Bytes

100- [Flat
90- NINE ýýN Textured (Flat)

8o

70

Bytes 60
per 50

Polygon 40

30

20-
10
0g - -

Flight Performer Cell

Figure 5.1. Memory Usage by Format in Bytes

The memory usages for Flight storage are taken from the Flight format files. The

memory usages for Flight rendering (in Performer format) are calculated, based on the

arrays needed to store the coordinates, colors, normals and texture indices. The memory

usages are the same for Flat and Plain polygons, because Performer stores all polygon

colors separately.

(Note: In Performer, the colors for Plain polygons could be indexed, saving

almost 75% of the memory needed for storing colors ', -" However, if one item is

indexed, Performer requires all items to be indexed. For terrain, all coordinates, normals
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and texture indices are likely to be unique. Indexing the coordinates, normals and texture

indices would increase their respective memory needs by 33%, 33% and 50%. Moreover,

indexing would likely slow the frame rate.)

The memory usages for the Cell format are calculated, based on the memory

needed to store the coordinates, colors, normals and texture indices. The memory usage

figures shown here for Flight rendering are low, because they do not include the overhead

for storing management information, such as switching distances. The Cell format does

not have this additional overhead, because the TerrainManager decides how to piece the

cells together.

Table 5.3 shows the memory comparison in the percent of memory the Cell format

uses compared to the other formats.

Shading Type Flight Storage Flight Rendering

Flat 31.55% 55.76%
Plain 17.74% 31.56%
Textured 18.42% 30.35%

Table 5.3. Cell Format Percent Memory Usage by Bytes per Polygon

It is obvious the Cell format requires less memory overall, as well as less memory

per polygon. It is not so obvious that the Cell format represents more polygons than the

Flight format. The Cell format has twice the LODs as the Flight format files. If we had

the tools to build a Flight format file with as many LODs as the Cell format, the Flight

format memory needs would increase by approximately 500/6 (and the per polygon need

would increase slightly).

5.2.2. Paging & Conversion Processing

5.2.2. 1. Paging for the Entire View. The memory usage comparison

shows only part of the advantage of the Cell format. Within a lattice, the Cell format can

increase the level of detail of a cell by paging in the additional needed information; half the

5-13



information is already in memory for the current LOD rendering of the cell. Also within a

cell, the Cell format can decrease the level of detail of a cell without any paging necessary.

In contrast, a Performer managed LOD strategy would require paging in the entire new

area.

In the worst case paging situation, a viewer is traveling in such a manner as to

always encounter new terrain. Table 5.4 shows the worst case paging needed when a

viewer travels one cell's width, requiring an update to the view's LODs. (A cell's width is

based on the post spacing and the number of posts in the cell. In this case, a cell has 17

posts on an edge, with a post spacing of 500 meters, for a cell width of eight kilometers.

If post spacing were 125 meters, a cell's width would be two kilometers.) The data in

Table 5.4 is limited to three levels of detail for Flight format and six levels of detail for

Cell format.

Flight Rendering Cell Rendering
Shading Demand Pre- Demand Pre-
Type Paging Paging Paging Paging

Flat 520960 670080 545760 760824
Plain 520960 670080 325656 455184
Textured 625152 804096 394584 552800

Table 5.4. Pre-Paging Needs by Format in Bytes

The differences between paging Flight format and Cell format shown in Table 5.4

are not very significant. In fact, Flat Cell rendering appears to require more paging than

Flight format rendering. There are three reasons for the high worse case paging for Cell

format. First, the fourth LOD is overly large, to maintain a minimum distance for the

LOD. Second, the fourth LOD pages twice what it needs, because it is extracted from the

cell's section representing the third LOD. These two reasons account for much of the Cell

format paging. Third, and most importantly, the paging for the Cell format's fourth, fifth

and sixth LODs is only needed when the viewer travels four cell widths. If a pre-paging
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strategy is used, the paging for these last three LODs can be averaged over four cells.

Table 5.5 compares the pre-paging needs, with the averaged values for Cell format.

Flight Rendering Cell Rendering
Shading Type Pre-Paging Pre-Paging

Flat 670080 263358
Plain 670080 154782
Textured 804096 184946

Table 5.5. Pre-Paging Needs by Format in Bytes, Averaged for Cell Rendering

Table 5.5 shows Cell format pre-paging needs are, at worst, less than half the

Flight format pre-paging needs. Of course, the Cell format's pre-paging needs are only the

beginning. The Cell format must be converted into Performer data structures for

rendering. The conversion process must be fast enough to maintain the view at the

desired level of detail.

5.2.2.2. Conversion Processing for the Entire View. The conversion

process builds each cell in the view to the proper level of detail. The first four levels of

detail are taken from the first lattice. The remaining levels of detail are taken from the

second lattice, using the same processing. The data in the following tables show the

processing times required to build the viewable terrain area at appropriate LODs into

Performer format. Table 5.6 shows the processing times required to build the LODs on an

IRIS 4D/440VGXT. Table 5.7 shows the processing times required to build the LODs on

an ONYX Reality Engine2.
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Cell Rendering
Flat Plain Textured

0.22 0.21 0.25

Table 5.6. Cell Conversion Time for Terrain View in Seconds, IRIS 4D/440VGXT

Cell Rendering

Flat Plain Textured

0.11 0.11 0.14

Table 5.7. Cell Conversion Time for Terrain View in Seconds, ONYX Reality Engine2

These processing times should be added to the pre-paging times for Cell format

and compared to the pre-paging times for Flight format. The maximum disk access rate is

ten megabytes per second (which is a pretty generous figure that does not consider seek

times).[21 ] The comparison of pre-paging and conversion times are shown in Tables 5.8

and 5.9, and graphically in Figure 5.2.

Flight Rendering Cell Rendering
Shading Type Pre-Paging Pre-Paging & Conversion

Flat 0.06701 0.24633
Plain 0.06701 0.22548
Textured 0.08041 0.26849

Table 5.8. Pre-Paging & Conversion Times in Seconds, IRIS 4D/440VGXT

Flight Rendering Cell Rendering
Shading Type Pre-Paging Pre-Paging & Conversion

Flat 0.06701 0.13633
Plain 0.06701 0.12548
Textured 0.08041 0.15849

Tables 5.9. Pre-Paging & Conversion Times in Seconds, ONYX Reality Engine2
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Figure 5.2. Pre-Paging & Conversion Times in Seconds

Tables 5.8 and 5.9, and Figure 5.2, show the Cell format processing far exceeds

the paging needs of the Flight format. Table 5.10 shows pre-paging and conversion times

for the Cell format as a percentage of the pre-paging time for rendering Flight format.

Shading Type IRIS 4D/440VGXT ONYX Reality Engine2

Flat 367% 203%
Plain 336% 187%
Textured 334% 197%

Table 5.10. Cell Format Processing Time as Percentage of Flight Pre-Paging Time

After studying these statistics, I realized the conversion time comparisons are

stacked against the Cell format. While only part of the terrain area is paged for each view,

the system presented by this thesis rebuilds the rendering structures for the every cell in

the viewed area each time the view changes. Many of the cells should not be rebuilt,

saving some time. However, many cells must be rebuilt even though their LOD

representation does not change; many cells must be rebuilt, because their adjacencies

change, requiring new edge interpolation to prevent cracking.
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A fairer comparison would require the Flight format to store several

representations of each area in an LOD, one for each possible adjacency. Unfortunately,

Performer can not manage such a data set, since it can only switch terrain areas based on

distance from the viewer, not LOD adjacencies. So, I present a comparison based on a by

area basis.

5.2.2.3. Paging for a Terrain Area. For the comparison of terrain areas,

equivalent areas are Cell format LOD I and 3 compared against Flight format LOD 1 and

2 without skirts to prevent cracking. The comparisons in Tables 5.11 and 5.12 show two

values for the Cell format: for paging the entire cell, and for paging part of a cell if the

lower LOD is already in memory.

Flight Rendering Cell Rendering
LOD I LOD I

Shading Type Whole Cell Partial Cell

Flat 2.0752 1.5026 1.3367
Plain 2.0752 0.9178 0.7507
Textured 2.4902 1.1383 0.8606

Table 5.11. Paging by Terrain Area in Milliseconds, First

Flight Rendering Cell Rendering
LOD 2 LOD 3

Shading Type Whole Cell Partial Cell

Flat 0.5493 0.3857 0.3387
Plain 0.5493 0.2403 0.1923
Textured 0.6592 0.3021 0.2228

Table 5.12. Paging by Terrain Area in Milliseconds, Second

Tables 5.11 and 5.12 show the Cell format paging needs per terrain area are much

less than for Flight format. A comparison which adds the processing time for Cell format

follows.
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5.2.2.4. Conversionfor a Terrain Area. Tables 5.13 and 5.14 show the

conversion time for each type of cell.

Cell C eU di
Shading Type LOD 1 LOD 3

Flat 2.22 0.59
Plain 2.20 0.59
Textured 2.61 0.70

Table 5.13. Conversion by Terrain Area in Milliseconds, IRIS 4D/440VGXT

Cell Rendering
Shading Type LOD I LOD 3

Flat 1.26 0.30
Plain 1.23 0.29
Textured 1.53 0.39

Table 5.14. Conversion by Terrain Area in Milliseconds, ONYX Reality Engine2

Combining the times for paging and conversion in Tables 5.15 through 5.18 show

that the Cell and Flight formats are more comparable on a by area basis, especially on the

ONYX Reality Engine2. This comparison is show graphically in Figures 5.3 and 5.4.

Tables 5.19 and 5.20 show the pre-paging and conversion times by area for the Cell

format as a percentage of the pre-paging time for rendering Flight format.
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Flight Renderng Cel Rendering
LOD I LOD I

Shading Type Whole Cell Partial Cell

Flat 2.0752 3.7226 3.5567
Plain 2.0752 3.1178 2.9507
Textured 2.4902 3.7483 3.4707

Table 5.15. Processing by Terrain Area in Nfiliseconds, IRIS 4D/440VGXT, First

Flight Rendering Cell Rendering
LOD 2 LOD 3

Shading Type Whole Cell Partial Cell

Flat 0.5493 0.9757 0.9087
Plain 0.5493 0.8303 0.7823
Textured 0.6592 1.0021 0.9228

Table 5.16. Processing by Terrain Area in Mfilliseconds, IRIS 4D/440VGXT, Second

Flight Rendering Cell Rendering
LOD I LOD I

Shading Type Whole Cell Partial Cell

Flat 2.0752 2.7626 2.5967
Plain 2.0752 2.1478 1.9807
Textured 2.4902 2.6683 2.3906

Table 5.17. Processing by Terrain Area in Milliseconds, ONYX Reality Engine2, First

Flight Rendering Cell Rendering
LOD 2 LOD 3

Shading Type Whole Cell Partial Cell

Flat 0.5493 0.6857 0.6387
Plain 0.5493 0.5303 0.4823
Textured 0.6592 0.6921 0.6128

Table 5.18. Processing by Terrain Area in Milliseconds, ONYX Reality Engine2, Second
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First Flight LOD versus First Cell LOD
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Figure 5.3. Paging & Conversion by Terrain Area in Milliseconds, First

Second Flight LOD versus Third Cell LOD
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Figure 5.4. Paging & Conversion by Terrain Area in Milliseconds, Second
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LODI LOD3
Shading Type Whole Cell Partial Cell Whole Cell Partial Cell

Flat 179% 171% 178% 165%
Plain 150% 142% 151% 142%
Textured 150% 1390/9 152% 140%

Table 5.19. Cell Format Processing Time Percentage by Area, IRIS 4D/440VGXT

LOD I LOD 3
Shading Type Whole Cell Partial Cell Whole Cell Partial Cell

Flat 133% 125% 124% 116%
Plain 103% 95% 96% 88%
Textured 107% 96% 105% 93%

Table 5.20. Cell Format Processing Time Percentage by Area, ONYX Reality Engine2

5.2.3. Frame Rate

Finally, the frame rate is the most important factor of a rendering system. The

frame rate comparison was made using a 64 kilometer square area of terrain data from

North West Iraq. The view was taken from one comer, moving diagonally to the far

corner, to put the highest number of polygons in the view. The frame rate comparisons

are shown in Tables 5.21 and 5.22, and graphically in Figure 5.5.

Shading Type Flight Rendering Cell Rendering

Flat 7.5 Hz 12 Hz
Plain 8.6 Hz 12 Hz
Textured 4.3 Hz 5 Hz

Table 5.21. Frame Rates, IRIS 4D/440VGXT

Shading Type Flight Rendering Cell Rendering

Flat 20 Hz 30 Hz
Plain 20 Hz 30 Hz
Textured 20 Hz 30 Hz

Table 5.22. Frame Rates, ONYX Reality Engine2
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Figure 5.5. Frame Rates

Rendering in Cell format has an obvious advantage over rendering terrain built

with our current tools in Flight format. The main reason for faster rendering from the Cell

format is more levels of detail which allow fewer polygons. The Cell format also has no

added polygons to prevent cracking. Finally, the Cell format does not require Performer

to check level of detail switching distances; the TerrainManager makes those decisions

when it builds the rendering structures.

5.3. Summary

The analysis in this chapter has shown the system developed for this thesis to be a

well designed, maintainable system. The system provides advantages over Flight format in

memory usage, paging, and rendering speed. Still, the real time conversion from the Cell

format into performer is slow. The next chapter discusses the analysis of this chapter,

along with the additional capabilities available with the Cell format.
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VI. Conclusion and Recommendations

6.1. Conclusion

The Cell format data structure and its "on the fly" management have been shown

to be a potentially viable system. It is able to reduce memory needs and increase frame

rate, two key terrain rendering desires. It sets up easier pre-paging, although the

conversion from storage to rendering format is slow.

The Cell format also allows many features not attainable from Flight format.

These features include: interpolating vertices to prevent cracking, levels of detail by

altitude or speed, and betweening.

Interpolating vertices to prevent cracking has several advantages over a fixed

format such as the Flight format. First, the interpolation strategy uses fewer polygons.

Our current tools to build Flight format terrain use extra polygons to fill in between terrain

sections. Second, it does not require the vertices on an edge of a cell to be coplanar.

Again, our tools to build Flight format terrain assume the vertices between LODs are all in

the same plane, to ensure the added (cracking protection) polygons meet the neighboring

terrain section. Third, the interpolation strategy allows less disruption of the terrain

surface. The vertical surfaces inserted to prevent cracking not only disrupt the terrain's

surface, but they also disrupt the continuity of texture mapping; with the added polygons,

the edges of a texture map cannot meet at LOD boundaries, creating an artificial line

between LODs.

The comparisons in Chapter 5 were made at a low level of flight. The Cell format

has an additional advantage at higher altitudes which cannot be demonstrated by Flight

format: it allows the LOD strategy to change based on the viewer's altitude. At higher

altitudes, the viewer is likely looking forward, not down. Even if the viewer is looking

down, a high level of detail is likely not necessary. A system managing the Cell format can
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build the terrain below the viewer based on altitude. The Flight format translated into

Performer has limited capabilities of lowering the detail directly below the viewer, because

the level of detail is based on the viewer's distance from the area of terrain. If Flight stores

the highest detail terrain in sections even as small as one kilometer squares, then the

switching distance must be at least 1.707 kilometers, to ensure the area comes to its

highest level of detail when the viewer is less than one kilometer from an edge of the area.

(The greatest distance from the center of a square area to an edge, i.e., a comer, is half its

width times the square root of two.) A viewer traveling at 1500 meters (almost 5000 feet)

will sweep a path 1630 meters wide within range of the highest LOD, as shown in Figure

6.1. Flying at this altitude, the viewer will still have the highest level of detail area

rendered below. With larger terrain sections, the problem is worse.

\ 1707 miets

ý1630 amet

Figure 6.1. Area Below a Viewer at 1500 Meters

The sections of the system presented in this thesis have been encapsulated, making

changes and extensions easier. That is, the data structures in each section can only be

accessed by another section through encapsulating functions. The terrain data source is

independent from the rest of the system. The rendering structures are hidden from the

TerrainManager and CellClass. The TerrainManager can change LOD strategies without

affecting the Cell structure. New CellClass subclasses can be added by only adding their

initialization into the TerrainManager.
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6. 2. Recommendations

To make this a usable system, several areas need continuing research.

6.2.1. Optimization

The system needs a thorough review to optimize the Cell format to Performer

conversion process. The speed of this conversion process is the key to the Cell format's

usefulness.

6.2.2. Pre-Paging

A pre-paging system is necessary to speed LOD changes. A pre-paging system

would need to determine what terrain areas the viewer may need soon, making those

terrain areas available in memory.

6.2.3. Compressing Data

The implemented system was aimed at reducing memory needs by eliminating

redundancy, only. It did not look at compressing the data such as: storing colors as a

single integer; storing colors by indexing; computing normals from polygon information;

computing x and y coordinates of evenly spaced vertices; or storing low values for

coordinate information with an overall (cell level) offset. These methods could further

reduce data by increasing processing time.

Although this system is aimed at reducing redundancy, it does not eliminate

redundancy. Cells share vertices on their edges. In 16 by 16 cells, redundancy is almost

11.5%. Combining cells completely would break each cell into pieces in memory.

Combining cells at their top and bottom edges (making the cells into strips) would reduce

redundancy to under 6%. However, this would separate the sections of a cell, making

paging more difficult.

6.2.4. Non-Uniform Grids

This system was originally aimed at managing terrain constructed from unevenly

spaced vertices. Hence, values such as the x and y coordinates are stored with every
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vertex, rather than being computed. Non-uniform grid management would require a more

sophisticated method of determining the viewer's current cell location.

6.2.5. Aligning Cells to Terrain Features

The intent of using a non-uniform grid would be to align the vertices (and polygon

edges) to major features in the terrain, such as ridges and valleys. A system to align

vertices in such a manner, while retaining the connectivity required by a cell, would greatly

increase the value of the Cell format data structure.

For example, consider the break necessary between land and sea. Strategies might

include: aligning cells to the coast, so different cells are used for the land and sea; using

textures which include land and sea, adjusting the texture indices so the texture matches

the coast; or using special cells which build more than one geoset, so the land and sea

polygons have different attributes (however, this strategy would pose additional problems

for the MemoryClass).

6.2.6. Data Minimization

Data minimization could be accomplished by analyzing terrain and storing it only

down to the level of detail necessary. If a terrain area is not represented in the highest

level of detail lattice, then a lower detail cell must be used. This strategy would require

methods to represent part of a cell, to fill around the cells from a higher detail lattice.

6. 2.7. Round Earth

The only areas requiring change for rendering round earth terrain coordinates

should be the TerrainDataBase (independent of the TerrainManager and CellClass) and

the method for determining the viewer's current cell location.

6.2.8. Adjusting the Origin

The Virtual Cockpit employs a terrain strategy that adjusts the rendering system's

origin to be under (or very near) the viewer, preventing jitter due to the large values of

terrain coordinates. Such an adjustment should become parameters to the CellClass's

BuildRenderingStructure methods. The items to be adjusted are the coordinates and
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normals. Perhaps, instead of storing and adjusting normals, the normals could be

calculated directly from the adjusted coordinate values.

6.2.9. Storing the Whole Earth

The sections of terrain make up quadrilateral areas of the earth's surface. The

earth's surface can be divided into six quadrilaterals (like the surface of a volleyball), as the

mapping of a cube to the surface of a sphere.[20] Each quadrilateral would be

represented by a set of lattices.

6.2.10. Betweening

The Cell data structure is set up for betweening; it separates the vertices which

remain unchanged from the vertices which will be changed. Betweening strategies

generally break up the polygons from two levels of detail, involving more polygons than

either level of detail. The Cell data structure establishes lines of change for betweening, so

no extra polygons need to be introduced for betweening.

The Cell's betweening strategy requires vertex swapping within triangle meshes,

but Performer does not allow vertex swapping. A simple change to Performer's handling

of vertex pointers during rendering should make vertex swapping possible.

6.2.11. Texture Mapping

The cell is the lowest level of abstraction for terrain in this system. A cell can only

have one texture applied (because a whole cell is stored in a geoset, and a geoset can only

have one texture), although differing LODs could have different textures. However, using

more than one texture for a cell within an LOD would have additional memory

implications: (1) it increases the number of texture maps used, and (2) it means the same

texture indices could not be used for all LODs in the cell. If only one texture map is used

for the entire lattice of a cell, with the triangulation process used in the current

implementation, texture mapping is best done with one texture map covering the entire

cell. This means each lattice needs new texture maps, so the detail remains consistent.
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(The texture needs to cover the entire cell, because the 2nd and 4th LODs do not form

squares with the cell.)

The strategy outlined f r betweening could be used to apply the texture multiple

times across a cell, because the cell is always broken into squares. A single application of

the texture must be large enough to cover the fourth LOD (the largest squares formed).

With betweening and uneven vertex spacing, the texture can be distorted for visual effects,

such as approximating a coastline.

6. 2.12. Cultural Features

Cultural features and associated processing need to be added to this system,

including the data required for placement and orientation. The orientation information

may be stored for each LOD, or calculated based on the terrain orientation.

6.2.13. Integrate with an Application Program

This system needs to be analyzed with a real application program. This system

was developed on top of ObjectSim, the same object management system used by the

Virtual Cockpit and Synthetic Battle Bridge applications. Integration with these

applications should be easy to set up. Yet, the most recent developments on these

applications did not involve terrain with LOD capabilities. It is possible that the portions

of these applications which interact directly with the terrain will not operate properly with

LOD terrain.

Because this system would run as part of an application program, the possibility of

competition for processing time between this system and an application program is high.

It would be possible to limit terrain updates during high processing activity by the

application.

6.3. Final Word

Terrain managed from the Cell format presented in this thesis has distinct

advantages over terrain stored in Flight format which is managed by Performer. The
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terrain data in Cell format saves memory, decreases paging, and speeds rendering.

However, the Cell format requires real time conversion into Performer structures, which

slows switching of LODs.

The Cell format offers many additional advantages not available from Flight

format. These advantages include interpolating vertices to prevent cracking, levels of

detail by altitude or speed, and betweening.

Finally, the Cell format allows management of terrain data bases larger than

manageable with Flight format. The Cell format's lower memory usage and real time

conversion allow an application to use large terrain data bases without the up front

conversion from Flight format into Performer.
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Appendix A. Command File Fomnat

The Command file (named "Command" in the current directory) tells the system

what type of cells to create, where to get the terrain data, and what level of detail strategy

to use. The format is as follows:

cell type
terrain build, read, and write command
first level of detail strategy
switching altitude
second level of detail strategy

The first word in the Command file must be the cell type. The cell type determines

whether the system creates Gouraud shaded, flat shaded, plain flat shaded, or textured

cells. The cell type commands are gourau, flat, plain, and texture.

Next, the Command file contains directions on where to get terrain data, and

whether to store the terrain data in Cell format. The commands are build rea;4 and write.

The build command tells the system to obtain its terrain data from the TerrainDataBase.

(The TerrainDataBase does its own file handling. Currently, it reads from a file named

"terrain.pts" in the current directory.) The read command directs the system to read a

Cell format file. The input Cell format file name must follow the read command. The

write command directs the system to write a built terrain set to a Cell format file. The

output Cell format file name must follow the write command.

The first level of detail strategy tells the system how to build LOD rings when the

viewer is below the switching altitude. Each level of detail command begins with lod,

followed by an LOD number and the number of rings for the LOD. The LODs are

numbered I through 4 for the first lattice and 5 through 8 for the second lattice.

The switching altitude determines the altitude at which the system will switch

between the level of detail strategies. The switching altitude begins with alt, followed by a

switching altitude in meters.
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The second level of detail strategy tells the system how to build LOD rings when

the viewer is above the switching altitude. The format for the second level of detail

strategy is the same as the first.

Note: all commands are lower case. A command line may be easily commented

out by capitalizing its first character.

An example Command file:

texture
build
write cel.fint
lodl I
lod 2 1
lod 3 2
lod 44
lod 5 1
lod 6 1
alt 1000
lod 44
lod 5 1
lod 6 1
lod 72
lod 8 2
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Appendix B. List of Acronyms

AFIT Air Force Institute of Technology

ARPA Advanced Research Project Agency

DARPA Defense Advanced Research Project Agency

DBGen DataBase Generation System

DFAD Digital Feature Analysis Data

DMA Defense Mapping Agency

DTED Digital Terrain Elevation Data

GDMS Graphical Database Management System

LOD Level of Detail

SBB Synthetic Battle Bridge

VC Virtual Cockpit
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Appendix C. Glossary of Terms

cell An subset of a terrain area, managed as a single unit by the
system developed for this thesis.

color The color associated with a polygon vertex or polygon face.

coordinate The location of a polygon vertex in 3-D space.

culling The act performed by a rendering system to determine what
portions of a database might be in view. Any portion
determined not to be in view is not processed for rendering.

lattice A set of cells covering an entire terrain area, representing certain
levels of detail.

model A polygon representation of a real world object for rendering.

normal A vector representing the direction of a polygon vertex or
polygon face is oriented in 3-D space. When associated with a
vertex, the normal refers to the faces around it.

paging The act of moving data from disk to main memory.

texture index The point in a texture map (usually a unit square) associated
with the vertex of a polygon.

triangle mesh The term triangle mesh is used two ways. It is referred to by
triangle minimization articles as the resulting triangulation of a
minimized polygon set. It is referred to by Silicon Graphics as a
polygon set stored in triangle strips. Its usage should be
discernible by context.

triangle strip A set of triangles with shared vertices, stored as a list of vertices
such that the last two vertices in a triangle are the first two
vertices of the next triangle.

vertex Usually vertex refers to the placement of polygon vertices
(comers). With regard to the system developed for this thesis,
the term vertex refers to all information which must be
associated with a polygon comer: coordinates (location),
normal, color and texture index.
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