
AD-A278 495

AFIT/GOR/ENS/94M-14

An Efficient Approach to Solving the Optimal Control of Arrivals Problem

THESIS DTIC
John Raymond Simeoni ELECTE

Captain, USAF APR 22 19940 J
AFIT/GOR/ENS/94M-14 G

94-12272

944 L

AFIT/GOR/ENS/94M- 14

An Efficient Approach to Solving the Optimal Control of Arrivals Problem

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research Accesion For

?411S CRA&J
DTIC TAB
Unannounced
Justification

John Raymond Simeoni, B.M., M.A., M.B.A. By
Dist; ibution I

Captain, USAFaAvailability
Codes

Avilan Io

Dist Special

March., 1994

THESIS APPROVAL

STUDENT: John R. Simeoni, Captain, USAF CLASS: GOR-94M

THESIS TITLE: An Efficient Approach to Solving the Optimal
Control of Arrivals Problem

DEFENSE DATE: 24 February 1994

COMMITTEE:

Name/Title/Department Signature

Advisor:
DENNIS C. DIETZ, LTC, USAF
Assistant Professor of Operations Research
Department of Operational Sciences

Reader:
PETER W. HOVEY, PHD
Assistant Professor of Statistics
Department of Mathematics and Statistics

ii

Acknowledgements

First, I must thank my wife Cynthia and son Michael for their support and under-

standing during the months spent writing this thesis. Additionally, I owe a great deal of

thanks to my advisor, Lt Col Dietz, for his insight and guidance without which this work

would not have been accomplished. I also wish to thank my reader, Dr Hovey for his advice

and help in completing this work.

John Raymond Simeoni

1i1

Table of Contents

Page

Acknowledgements iii

Abstract vi

I. Introduction 1

II. Literature Review 3

II. Theoretical Results ... 5

3.1 Overview 5

3.1.1 Assumptions 5

3.1.2 Notation 5

3.1.3 Definitions 6

3.1.4 Problem Description 7

3.2 Late-Start Scheduling 8

3.3 Clustering 9

IV. Foundation 10

V. Algorithm .. 14

5.1 Methodology 14

5.2 Stopping Criteria 15

5.3 Sample Problem 18

VI. Examples 20

6.1 k=15, N=40 20

6.2 k=20, N=16 21

6.3 k=32, N=25 21

iv

Page

6.4 Server Shuts Down, k=20, N=16 22

6.5 Continuous Case, k=7, N=5, I=l, C,=4 23

VII. Conclusions and Recommendations 24

Appendix A. Alternate Proofs 25

A.1 Alternate Proof of Theorem 1 25

A.2 Alternate Proof of Corollary 1 25

Appendix B. Computer Code 27

Bibliography 28

Vita 29

v

AFIT/GOR/ENS/94M-14

Abstract

The optimal control of arrivals problem is one which has many applications in both

defense and industry. Simply stated, the problem addresses how to schedule a finite number

of customers in a finite number of equal-length time slots, where each customer's service

time comes from a specified probability distribution. There are two cost components,

one based on total expected customer waiting time and the other based on the expected

amount of time the server stays open beyond its scheduled completion time. Currently,

solutions have been developed to the optimal control of arrivals problem but they are

computationally slow and only work for exponential distributions. This thesis presents

an algorithm for the optimal control of arrivals problem which is both computationally

efficient and works for r-Erlang distributions.

vi

An Efficient Approach to Solving the Optimal Control of Arrivals Problem

L. Introduction

This thesis presents a solution to the optimal control of arrivals problem, which en-

compasses the areas of planning, scheduling, and control of queues. The problem addresses

how we schedule a finite number (N) of appointments in a finite time horizon which is di-

vided into a finite number (k) of equal length time units. The objective is to determine

the schedule with the minimum expected cost, where cost is measured in two components:

waiting time cost and overtime cost. Waiting time cost is the amount of expected customer

waiting time multiplied by the waiting time cost per unit. Overtime cost is the expected

amount of time that the server works beyond the end of the time horizon multiplied by the

overtime cost per unit. We assume that all customers arrive exactly on time as scheduled,

and the server works on a first-in, first-out basis. We also assume that customer service

time follows an r-Erlang distribution. In all cases, we assume the service time parameter,

p, is defined as the service rate per time unit A, where A is the length of each of the k

time intervals. Wang (1) showed that the actual waiting cost and actual overtime cost

need not be considered, for only their ratio is important. That ratio is what we will refer

to as C5 , or the cost factor. Therefore in all calculations, we assume waiting time cost

is standardized to 1, while overtime cost equals expected overtime multiplied by the cost

factor.

The problem has many real-world applications. One such case is in the area of

shipping. Consider a shipping company which has leased several hours of dock access to

load/unload some of its ships. It costs money to have a ship waiting in the harbor before it

can dock. Also, there will usually be a high penalty for exceeding the lease period, because

the company that owns the dock wants to ensure the next lessee is able to start on time.

Therefore, assuming the shipping company has paid a fixed fee for use of the dock, the

only additional costs will be the cost for ships waiting in the harbor, and the cost for usage

time beyond the end of the lease period. A similar problem can arise in the context of

airfield operations when cargo handling resources are limited.

Much research has been done on the optimal control of arrivals problem, but the

solutions developed are computationally difficult. Furthermore, the solutions have been

approached primarily from a numerical standpoint. We will develop an iterative procedure

for determining the optimal schedule which will require the evaluation of only a small

subset of all feasible schedules. The algorithm is efficient and provides instant sensitivity

analysis on the optimal solution.

The algorithm works for r-Erlang service distributions, which are defined by the

probability density function:

f(t) = Ae-• * (At)- 1 /(r - 1)!,t > 0

Being able to solve problems using r-Erlang distributions allows one to match the first two

moments from data, hence the algorithm is both a valuable and practical tool to use for

real-world applications.

2

I. Literature Review

The optimal control of arrivals problem has received much attention since the work

of Naor (2) was published in 1969. In his article, he addressed the idea of limiting queue

length based on both individual benefit (the benefit of the arriving customer) and social

benefit (the benefit of the entire population). He presented solutions to both problems

for the M/M/1 queue. Knudsen (3) extended Naor's results to the MIMIk queue, and

Yechiali extended the results to first the G/M11 queue (4) and later the GIMIk queue

(5). Rue and Rosenshine developed optimal control policies for both the MI/M/1 (6) and

M/EkIl (7) queues serving multiple classes of customers, where each class has its own

cost-reward structure.

Pegden and Rosenshine originally posed the optimal control of arrivals problem.

The original problem considered the planning of N arrivals over an infinite continuous

time horizon, where cost consisted of two components: customer waiting time and server

completion time. The service time was assumed to be exponential. An analytic closed

form solution was presented for the specific case of 2 arrivals. In this case, the objective

function was shown to be convex. However, no closed-form solution could be found for

the case where N > 2, and moreover, the objective function for the general case has not

yet been proven to be convex. Numerical methods were employed to determine optimal

arrival times for the case of N > 2, but these optima were only guaranteed to be local

optima due to the uncertainty of the convexity of the objective function. Healy, Pegden,

and Rosenshine (8) exýended the results of the single, exponential service time system to

two parallel servers with exponential service time servers.

Because a closed-form solution to the original problem seemed intractable, the prob-

lem was redefined with a finite, discrete time-unit time horizon, divided up into k equal

length time slots. Instead of scheduling an appointment at any point in the time window,

it would now have to be scheduled at the beginning of one of the k time slots. Server cost

was measured as overtime, which is the expected amount of time that the server works

beyond the end of the finite time window times the cost per unit of overtime. As before, it

was assumed that all customers arrive exactly at the time of their scheduled appointment.

It is important to note that this revised version of the problem is actually more reflective

3

of the real world than the original, due to the use of the finite time window and finite

number of possible scheduled appointment times.

Two versions of the problem were posed. First, a myopic, or short-range version

where the schedule is evaluated at the beginning of each of the k time slots. This is a

dynamic approach, where suboptimizations are performed k times. The other problem is

the long-term approach. In this case, the entire schedule is set up before the first arrival,

and cannot be revised at any later point in time. This version better reflects real-world

scheduling, since one normally schedules a block of appointments at one time (e.g. one

day's worth) and seeks to optimize the expected cost for that period of time.

Liao (9) presented solutions to both the short-range and long-range versions of the

problem with exponentially distributed service time. The short range problem was solved

using dynamic programming, and then Lhe long range problem was solved using Branch

and Bound with the short range optimal solution taken as the initial lower bound. In the

same work, Liao extended the results to the following models:

"* One server with Erlang distributed service time.

"* Multiple parallel servers with exponentially distributed service time.

"* Two servers in sequence, each with exponentially distributed service time.

"* One server with exponentially distributed service time where the server shuts down

after the last appointment has completed service.

"* Several classes of customers in the system, each class having different waiting time

distributions and waiting cost structures.

Wang (1) has recently solved both the short range and long-range versions of the

original continuous problem using phase-time distributions. The number of appointments

(N) was given, but an infinite continuous time horizon was used. Cost was measured in

both waiting time and server completion time. Service time for his solution was assumed

to be exponential.

4

III. Theoretical Results

3. 1 Overview

Upon reviewing the previous research on the optimal control of arrivals problem, we

see that in general a closed form solution is intractable. Past methodology has employed

numeric methods to determine optimal schedules, and certain unproven yet intuitive as-

sumptions have been made in the algorithms. We shall take a more direct approach to the

solution of the problem. Before we begin our description of our model, we will introduce

the notation and definitions found throughout this work.

3.1.1 Assumptions.

Assumption 1 Each of the k time intervals are of equal length. When service time is

exponential, the service rate p is expressed in customer service completion per time interval.

Assumption 2 The service rate for each customer is p. When the service distribution is

r-Erlang, the service rate for each of the r stages of customer service is rp.

3.1.2 Notation.

k = the number of time intervals

N = the number of appointments to be scheduled

= the service rate

A = the length of each time slot

E = the length of the finite time horizon

S, S, = schedules

T, T, = subschedules

ti the ith time slot of a schedule

a, = the jth customer of a schedule

b- the i"h component of S = the number of appointments scheduled at t,

5

s= the scheduled time of the ilk customer

C. = cost per unit of waiting time

C, = cost per unit of overtime

C, = the cost factor = Co/C,.

W[S] = the expected total waiting time of S

W[T] = the expected total waiting time of T

O[S] = the expected overtime cost of S

O[T] = the expected overtime cost of T

r[S] = the total expected cost of S

W[aj] = expected waiting time of the i" appointment

0" = expected waiting of all appointments succeeding a particular appointment plus O[S]

m-cluster = m appointments scheduled in the same time unit, bi = m

3.1.3 Definitions.

Definition 1 A schedule S is a candidate if it has not been eliminated from consideration

as being the optimal schedule. Initially, all schedules are candidates.

Definition 2 The number of appointments scheduled in the ilk time slot of S, ti, is the

ith component of S.

Definition 3 T is a subschedude of S if T represents any consecutive sequence of compo-

nents of S.

Definition 4 T is an origin subschedule of S if T is a subschedule of S and the first time

slot of T represents the first time slot of S.

Definition 5 T is a terminating subschedule of S if T is a subschedule of S and the last

time slot of T represents the last time slot of S.

6

Definition 6 T, and T2 are relative if they have the same number of time slots and the

same number of appointments.

Definition 7 T, and T2 are perfectly relative if they are relative, the first appointment of

T, is scheduled at the same time as the first appointment of 72, and last appointment of

T, is scheduled at the same time as the last appointment of T2 .

Definition 8 T, precedes T2 if every appointment of T, is scheduled at the same time as

or before its corresponding appointment of T2, with at least one appointment of T, being

scheduled before its corresponding appointment of T2.

3.1.4 Problem Description. The simplest way to solve the optimal control of

arrivals problem would be to enumerate all possible solutions in order to find the best

one. However, for all but the smallest problems, complete enumeration is computationally

impractical. Given N appointments to schedule in k time units, the number of possible

schedules is given by:

(Nk-1)

This is the classic "N balls in k cells" partioning problem (10) which one studies in

any introductory probability class. For example, a problem where N = 5 and k = 7 has

462 possible schedules. A problem where N = 8 and k = 10, has 24,310 schedules. A larger

problem with 25 appointments and 32 time units has over 5.57 x 10"5 possible schedules,

so complete enumeration is not practical for large problems. We will show that we can

quickly eliminate groups of schedules which cannot be optimal, and thus will evaluate a

much smaller number of schedules prior to determining the optimal solution. We now

consider reasons why certain schedules can never be optimal. Throughout this paper, we

will refer to Ezample A as the case where N = 5, k = 7, p = 1, and C, = 4.

First of all, whether or not a schedule can be optimal is dependent on the value of

the service rate, p, and the cost factor, whi.ch is the ratio of overtime cost to waiting time

cost. For example, consider Example A. We will represent a typical schedule, such as one

with one appointment scheduled in each of the first five time intervals as follows:

7

[1111100]

Now consider the situation for Example A where p is arbitrary and customer waiting

cost is zero (the cost factor C, is infinite). In this case, the optimal schedule is the one

that minimizes expected overtime, which is obviously:

[5000000]

One may think of this as a model of a doctor's scheduling system. Doctors often schedule all

appointments at the beginning of a time period. Thus they are making the tacit assumption

that the ratio of the value of their time (or overtime) to the value of the patient's time is

infinite.

Conversely, if overtime has no cost associated with it, we would schedule the appoint-

ments so as to minimize expected waiting time. Intuitively we would expect the optimal

schedule to be one in which the appointments are fairly evenly spread out throught the

time window (although the actual optimal schedule will depend on the value of p). Imagine

a company clinic which is staffed by salaried nurses. Each worker that waits at the clinic

costs the company money since he/she is not working, and is not receiving treatment.

However, if the nurses work overtime, their is no additional cost to the company since the

nurses are on salary. In this case, there certainly will be a customer scheduled in the last

available time slot (assuming the nurses aren't the ones who do the scheduling).

The optimal schedule depends on the values of p and C,. Based on the values of these

two parameters, two criteria can be used to eliminate candidates: late-start scheduling and

clustering.

3.2 Late-Start Scheduling

It is intuitively obvious that there would be no advantage to scheduling the first

appointment any later than the first time unit. This proposition is formally proved in the

next chapter. This result eliminates over one half of all schedules from consideration as

8

being optimal. The number eliminated is given by:

The number remaining is:

3.3 Clustering

In almost any real-world situation, we would not expect to schedule many appoint-

ments at the exact same time if N < k. However, depending on the values of the parameters

p and C5 , we can get dusters of any size in the optimal solution. In general, an extremely

high value of the overtime cost factor can cause clustering in the early appointments. A

very small service rate combined with a relatively low overtime cost factor can cause clus-

tering in the late appointments. Since we are scheduling in a finite time window with

discrete appointment times, we cannot be sure that the optimal schedule will not have any

component valued at m (i.e., an m-cluster) schedulfd in some time slot. We usually can

eliminate many schedules which contain specific m-clusters from consideration as being

optimal. In order to do this we need an initial feasible solution, which can be a judicious

guess. Often a good guess is a schedule which has all of its appointments fairly evenly

spread out over the interval. For Example A, we use [1101011] as our initial guess and

get a total cost of 4.47. From this guess we can eliminate specific m-clusters.

Obviously, any schedule with an m-duster that contributes a total expected waiting

time cost of more than 4.47 cannot be optimal. A 5-cluster yields expected waiting time

of 10/p time units. This is true because the expected waiting time of the second customer

is 1/p, the expected waiting time of the third customer is 2/p, the expected waiting time

of the fourth customer is 3/p, etc.. Similarly, a 4-cluster yields expected waiting time

of 6 time units. Therefore, no optimal schedule could ever contain either a 4-cluster or

5-cluster.

9

IV. Foundation

The algorithm is an iterative method for determining the optimal solution. We start

by placing all of the appointments in the last time slot. We then move one appointment

earlier and check for improvement. If the total cost decreases, this becomes our incumbent

upper bound. We prove a theorem which shows that any schedule with appointments

scheduled later than the new schedule cannot yield any improvement. We continue the

iteration process until we cannot get improvement by moving any one appointment earlier,

and then stop the iteration process. Next, we duplicate the process except that we place all

appointments in the first time slot and move them later via the iteration process. Again,

at each iteration step we know that any schedule with appointments scheduled earlier than

the new schedule cannot yield any improvement. We end up with two schedules. No

optimal schedule can have an appointment which is scheduled later than its corresponding

appointment for the first schedule. Also, no optimal schedule can have an appointment

which is scheduled earlier than its corresponding appointment for the second schedule.

Clearly, if the two schedules formed by the iteration process are equal, we have the optimal

solution. If the two schedules are not equal, we need only consider the schedules "between"

the two as candidate schedules. We then enumerate the remaining candidate schedules.

The following proposition shows that every optimal schedule has at least one ap-

pointment scheduled in the first time slot:

Proposition 1 Any optimal schedule has at least one appointment scheduled at tl.

Proof:

Let S, be a schedule with its first appointment scheduled later than t1 . Without loss

of generality, assume it is scheduled at t2 . Now consider S2 , where each appointment of S2

is scheduled one unit earlier than the corresponding appointment of S1. Clearly, W[S1] =

WiS 2] and O[S1] > O[S2]. Hence S, cannot be optimal.

We introduce the following Lemma which is used in the proofs of the upcoming

theorems:

10

Lemma 1 Let T, and T2 be two relative subschedules of m appointments and assume T,

precedes T2. Define P1(i) and P2(i) as the probabilities that there are i customers in the

system for T, and T2 respectively. Then immediately after the mt" customer of T2 enters

the system, the following hold:

PI(m) • P2(m).

PI(m) + Px(m - 1)• P2(m) + P2(m - 1).

Pl(M) + PI(M - 1) +-. +/)1(1) _ P2(M) + P2(M - 1) +.- + P2(1).

At the time of the mth customer arrival s,, the probability that there are m customers

in the system is equal to the probability that the first customer is still in service. Similarly,

the probability that there are m - I customers in the system is equal to the probability

that the first I customers have been served and the (I + 1)" customer is still in service.

Define Q(i) as the probability that no more than i customers have been served.

For example, Q(3) is the probability that 0,1,2,or 3 customers have been served. Thus,

PI(m) = Q10O), Vx(m) + Pi(m - 1) = QM1) PI(m) + PI(m - 1) +...-+ PI(m - l) = QMl)

and Pi(m) + Pi(m - 1) + ... P,1(1) = Q(m - 1). Clearly, since every customer of T, is

scheduled no later than its corresponding customer of T2, the probability that i or fewer

customers of T1 have been served cannot be larger than the corresponding probability for

T2, for any i = 0, ... ,m- 1.

The following theorem and its corollaries compare the amount of increase/decrease

in expected time which results from moving an appointment one time slot later or earlier

(It is obvious via an inductive argument that the results hold when moving appointments

any integral number of time slots also). These theorems are the basis for the foundation of

the algorithm, since they guarantee that under certain conditions we can eliminate entire

classes of schedules from consideration as being optimal.

Theorem 1 Assume service time follows an r-Erlang distribution with customer service

rate p. Let T1 and T2 be two relative subschedules of m appointments and k time slots.

11

Assume the last appointment of T, is scheduled at the same time as the last appointment

of T2, and T, precedes T2. Form T3 by moving the last appointment of T, one time slot

later. Form T4 by moving the last appointment of T2 one time slot later. Then W[TI] -

W[T3] < W[T2] - W[T4)

Example:

T, = [2111101] and T2 = [2111011]

T3 = [21111001] and T4 = [21110101]

Proof:

Consider T, and T3. The expected waiting time of each appointment of T, is the

same as the expected waiting time of its corresponding appointment of T3 except for

a,,. Similarly, the expected waiting time of each appointment of T2 is the same as the

corresponding appointment of T4, except for the a,.. Hence, when we look at W[T71]-W[T3]

and W[T2] - W[T4] , we need only consider the differences in expected waiting time of the

mt7h appointments of each. To obtain these expected waiting times, we need consider

P1(i) and P2(i), the probability there are exactly i stages of customer work in the system

immediately prior to when customer m enters service.

Clearly, the conditions of Lemma 1 hold. Define q(i) as the probability there ae

exactly i stages of service in the time interval between the original scheduled time of

the mr% appointment and the newly scheduled time of the mr% appointment. Note these

probabilities are identical for T2 and T4. Furthermore, by the memoryless property of the

exponential distribution, these probabilities are independent of the number in the queue.

Since each customer has r exponentially distributed phases of service, the expected waiting

times of a•, become:

WI[a,.] = P1(rm - r) * (rm - r)/rp +... + P(1) * /rp

W3[a,.] = Pl(rm-r)*q(O)*(rm-r)/rp+. . .+Pi(1)*q(rm-r-.1)*1/ru+Pi(1)*q(O)*l/rp

W2[a,] = P2(rm - r) * (rm - r)/rjz+ + P2(1) * l/rp

12

W4[a.] = P 2(rvn-r)*q(O)*(rm-r)/rp+.-..+P 2(1)*q(rm-r-1)*l/r/ +P 2 (1)*q(O)*l/rp

From these equations, we calculate the difference (W[T 2] - W[T4]) - (W[TI] - W[T 31) =

(P 2(rm - r) - PI(rm - r)) * (1 - (q(O) +... + q(rm - r -1))) * 1/rp+

(P 2(rm-r)+P2(rm-r-1)-PI(rm-,)-PI(rm-r-1))*(1-(q(O)+. . .+q(rm-r- 2)))*l/rp

+(P 2(rm - r) + ... + P2 (1) - P 1(rm-r) -) ...-. PI(1)) * (1 - q(O)) * 1/rp

which must be a positive number. Therefore

(W[T2] - W[T4]) > (W[T1] - W[T3])

Corollary 1 Let T1 and T2 be two perfect relative subschedules of m appointments which

are origin subschedules of S, and S2 respectively. S, and S 2 are relative schedules of k

appointments and Sj=[T1IT],S 2=[T2 jT] for some T. Assume T1 precedes T2 . Form S3

by moving the last appointment of T, n time units later (but not passing the succeeding

appointment). Form 54 by moving the last appointment of T2 n time units later (but not

passing the succeeding appointment). Then 0[S3] - 0[Si] > 0*[94] - 0[S 2], where

o*[S] = W[a,]+. .+ W[a] + O[S].

Corollary 2 Let T, and T2 be two perfect relative subschedules of m appointments which

are terminating subschedules of S, and S2 respectively. S, and S2 are relative schedules

of k appointments and Si=[T[TI],S2=[TIT 2] for some T. Assume T, precedes T2. Form

53 by moving the last appointment of T (in S5) n time units later (but not passing the

succeeding appointment). Form 54 by moving the last appointment of T (in S2) n time

units later (but not passing the succeeding appointment). Then 0*[S3] - 0*[si > 0*[S]

- 0*[S 2], where 0*[5] = W[a,,,+1] + ... + W[a,] + O[S].

13

V. Algorithm

5.1 Methodology

For any problem we now have criteria which allows us to eliminate many candidate

schedules. Recall Example A and consider the one schedule which places each appointment

at its latest allowable scheduled time. We shall call this schedule the latest schedule and

represent it as LP. Initially, LP = [0000005]. The late start criteria would require L"

to become [1000004]. After an initial guess of [1101110] to get an upper bound on total

expected cost (as seen earlier), the clustering criteria would then imply P = [1000013].

We will use the initial L, to iteratively select a sequence of schedules Lj* each with the

property that no candidate schedule can have any appointment scheduled later that its

corresponding position of Li*.

Given the current Li*, consider moving one appointment, say aj, one unit earlier to

form L'. If the total expected cost of L' is less than the total expected cost of Li*, then

clearly Lj* is no longer a candidate. Furthermore, if any terminating subschedule which

begins with aj+j replaces the corresponding subschedule of L*, moving the it' appointment

will result in a schedule with higher total expected cost than that of L'. Remember, by

moving a, one unit earlier, the expected waiting time of a, will increase, and 0* will

decrease. This increase will be the same in both cases, but by Corollary 2, the decrease in

0* is less than between Li* and L'. Hence no candidate schedule can have any appointment

scheduled later than where it is scheduled in L'.

If we keep iterating the above process, we will get to a point where moving any

appointment one unit earlier will cause total expected cost to increase. Therefore, we

have determined the latest possible time at which any appointment can be scheduled.

Next, we repeat the process. We will use an initial L•* to iteratively select a sequence of

schedules Li** each with the property that no candidate schedule can have any appointment

scheduled earlier that its corresponding position of Li**.

Again, given the current Li**, consider moving one appointment, say a., one unit later

to form L'. If the total expected cost of L' is less than the total expected cost of Li**, then

clearly Li** is no longer a candidate. Furthermore, if any terminating subschedule which

14

ends with aj+1 replaces the corresponding subschedule of L**, moving the i'k appointment

will result in a schedule with higher total expected cost than that of L'. By moving a,-

one unit later, the expected waiting time of aj will decrease, and 0' will increase. This

decrease will be less for any preceding subschedule and by Corollary 2, the increase in

0* will be more when the the initial subschedule is a preceding subschedule. Hence no

candidate schedule can have any appointment scheduled earlier than where it is scheduled

in L'. We continue this procedure until we satisfy our stopping criteria.

5.2 Stopping Criteria

When the first iteration phase reaches the point where no improvement is achieved

by moving any appointment one time slot earlier, we then begin the second iteration phase.

If the same schedule is the solution to both iterations, then we clearly have the optimal

schedule since each appointment is scheduled at both its earliest and latest possible times.

If the two schedules are different, then we must evaluate all schedules which have appoint-

ments that lie between the latest possible and earliest possible scheduled times. In most

of the cases we have evaluated, the iteration processes lead to the optimal solution. In the

cases where they were not the same, the two schedules differed by at most 8 appointments

(for a problem with 25 appointments and 32 time slots). Moreover, for each problem we

have tested, one of the two iteration phase schedules has been the optimal one. In general,

if the two iteration phase schedules differ by m appointments, there will be no more than

21n remaining candidate schedules to consider. It is important to note that if a situation

requires an immediate solution, one iteration phase will most certainly give a schedule in

a timely manner which is close to the optimal one.

There are several approaches we can take in the iteration processes, since we can move

up to N - 1 appointments of the current incumbent bound (Li*). For ease in the coding of

the algorithm, we have decided to move each one and then form Li+,* by moving the one

which results in the best improvement. Another approach would be to move latest (earliest)

appointment and see if it yields improvement. If it does, use that schedule for Li+,*, if

not, move the next latest (earliest) appointment, etc... The former approach would result

in the evaluation of more schedules, but the latter approach would require more iterations

15

of checking whether or not you get improvement by moving one appointment. Since either

method only requires the evaluation of a small subset of the original candidate schedules,

we feel that the first method is efficient enough and also gives more sensitivity analysis if

the schedules from the last few iterations are observed.

Using our first method, we could have at most (N - 1) * (k - 1) iterations for each

phase, and in each iteration we will evaluate at most (k- 1) schedules. Hence, the maximum

number of schedules to calculate is 2*(k - 1)2*(N - 1). In practice, we will always calculate

many fewer. The only way one could achieve a number near this maximum would be if

the expected waiting cost is practically zero. Nevertheless, if for N = 25, and k = 32,

the number of feasible schedules is over 5.57*1015, while the algorithm could theoretically

require the calculation of at most 23,064 schedules for each phase. If the two phases are

solved simultaneously, we would start out with the same initial upper bound for each one.

If they are done in succession, we will have a very good starting point from the first phase

solution and hence can use it for the second phase. Generally, the phase where we move

appointments to the right converges much more rapidly than when move appointments to

the left. Thus, if these phases are done in succession, it would be better to get the earliest

possible appointments and use the total expected cost to get an initial guess for the phase

of the algorithm which determines the latest possible appointments.

If the two phases of the algorithm yield different solutions, then we must enumerate

the remaining schedules in order to determine if there is a better schedule than our best

so far. In all of the examples we investigated, we found at most eight apppointments that

were different between the two phases (in the cost measured as overtime case). Thus, com-

plete enumeration would require the calculation of at most 2s = 256 additional schedules.

However, it is reasonable to assume that an example could occur where the two solutions

differed by many more appointments. If the number of schedules remaining to be calcu-

lated is large, then we would have to use some branch and bound or implicit enumeration

technique to eliminate large numbers of candidate schedules quickly. We could use our best

solution as an initial lower bound for the branch and bound technique developed by Liao

(9). In fact, our initial lower bound may indeed be achieved more quickly than with the

16

dynamic programming/branch and bound techniques employed by Liao. Moreover, one of

his recommendations is for a better technique for establishing an initial lower bound.

An additional benefit of the algorithm is that it can be used to determine potential

gain by using a smaller time increment for the schedule. For example, if N = 5 and k = 7,

we might want to know if there is any advantage to doubling the number of time slots

but making each one half the length of the original ones. This reiteration of the algorithm

could require the calculation of at most (2k - 1)2 * (N - 1) schedules for each iteration

phase if run from the start. However, we can use information from the incumbent optimal

solution to establish a good upper bound, and the incumbent solution has been established

with the new time slots, we move each appointment two new units to the later (earlier).

Clearly, this schedule satisfies all requirements for LV in the algorithm. We note that it

will be necessary to determine the subdivision increments based on the prime factorization

of the time interval.

It is important to note that the maximum number of schedules required to calculate

at each step grows only linearly. In fact, at each step we need calculate no more than

2 * I * N schedules, where I =the number of subdivisions of the previous time slot. For this

reason, the algorithm is also an efficient method to get an approximation to the continuous

time versions of the problem. If we halve our interval at each iteration step, we will reach

machine zero at a relatively small number of iterations. Since the complexity of algorithm

only grows linearly, we can reach an approximation to the continuous-time solution with

the calculation of only a relatively small number of candidate schedules.

There are two numerical reasons why the algorithm only gives an approximate so-

lution to the continuous problem. First, as we shrink the size of the time slots, there is

a greater liklihood that the two iteration steps will yield solutions which differ by many

appointments, thus making enumeration impractical. Additionally, since we are exponen-

tiating extremely small numbers, the two iteration processes will have built up different

amounts of machine error, again causing the two solutions to differ by many time slots.

17

5.3 Sample Problem

Consider our Example A. For these values of the parameters, we have seen that

we can quickly eliminate 4 and 5-clusters from consideration. Therefore, we start out

with [1000013] as L*. We then check the value of the schedule formed by moving each

appointment one unit left. We will accept the schedule which results in the lowest total

cost. The following lists the sequence of schedules which were chosen:

[1000013] Total Expected Cost: 13.68

[1000103] Total Expected Cost: 12.10

[10001121 Total Expected Cost: 9.54

[1001012] Total Expected Cost: 8.38

[1001102] Total Expected Cost: 7.61

[1001111] Total Expected Cost: 6.34

[1010111] Total Expected Cost: 5.47

[1011011] Total Expected Cost: 5.02

[1101011] Total Expected Cost: 4.74

[1101101] Total Expected Cost: 4.42

[1110101] Total Expected Cost: 4.35

[1110110] Total Expected Cost: 4.10

Next, we perform the second iteration process.

The following are the phase two results:

18

[3110000] Total Expected Cost: 8.27

[3101000] Total Expected Cost: 7.53

[22010001 Total Expected Cost: 6.76

[2111000] Total Expected Cost: 5.96

[2101100] Total Expected Cost: 5.06

[2011100] Total Expected Cost: 4.79

[1111100] Total Expected Cost: 4.48

[1111010] Total Expected Cost: A.17

[1110110] Total Expected Cost: 4.10

Since the two iteration phases yield identical schedules, we have the optimal solution.

Out of the 462 possible schedules, we only calculated 66 in order to get the phase

one solution.

19

VI. Ezamples

We present some sample problems with a variety of parameters. These examples

illustrate how the algorithm performs with different distributions and various combinations

of numbers of appointments and numbers of time slots.

6.1 k=15, N=40

The following two examples represent problems where there are many more time

slots than appointments.

CASE I: i = 1, C = 3, r = 1

Both iteration processes yield the same schedule:

[1010010100100101001001010010010100100100]

This is the optimal solution. The objective function value is 1.69 . Out of the

8.65 * 10"2 possible schedules, 7686 schedules were evaluated.

CASEII:/&= 1,C=3, r=2

The latest candidate schedule is: [1010010100100101001001010010010100100100] The

objective function value is: .43659

The earliest candidate schedule is: [1010010010100100101001001010010010100100]

The objective function value is: .43646

The two schedules are identical except for the 4 th, 7 tk, 1 0 t", and 13" appointments.

Therefore, we only need to evaluate the schedules which result from moving combinations

of these appointments. Moreover, we don't need to check the schedules formed by moving

e-cactly one appointment, exactly three appointments or exactly four appointments. We

have already checked the ones formed by moving one appointment. Moving three appoint-

ments from one of the two candidates is equivalent to moving one on the other. Moving all

four would give the other candidate. Hence, we only need to evaluate all schedules formed

by moving exactly two appointments, and there are 6 of these schedules.

None of these schedules we enumerated had a lower total expected cost than either of

our schedules formed via the iteration processes. Thus, the optimal schedule is the earliest

20

candidate schedule above, and the objective function value is .43646. 8064 schedules were

evaluated in the iteration processes, plus 6 in the enumeration process for a total of 8070.

6.2 k=-20, N=16

The following two examples represent problems where there are about the same

number of time slots as appointments.

CASE I: 1 = 1, C = 0, r = 2

Both iteration processes yield the same schedule: [11101101101101110112] The ob-

jective function value is 7.11. This is the optimal solution. Out of the 4.06 * 10i possible

schedules, 4275 schedules were evaluated.

CASE II: s = 1, C = 50, r = 3

Both iteration processes yield the same schedule: [11111111101111011100] The ob-

jective function value is 15.07. This is the optimal solution. 4275 schedules were evaluated.

6.3 k=-32, N=25

The following two examples represent a larger scale problem with many appointments

and many time slots.

CASE I: p = 1, C = 25, r= 1

The latest candidate schedule is: [21111011110111101111011101110100] The objec-

tive function value is: 46.58

The earliest candidate schedule is: [21111101111011110111011101110100] The objec-

tive function value is: 46.60

These two schedules are identical except for the 6 th, 1 0 t', and 1 4 th appointments. We

already know the schedules formed by moving one appointment are not candidates, hence

the schedules formed by moving two appointments are not candidates either, since it is

identical to a schedule formed by moving one appointment in the other iteration. Clearly

moving all three produces the other iteration schedule. Thus, the optimal schedule is the

21

latest candidate schedule above, and the objective function value is 46.58. 23653 schedules

were evaluated.

CASEII:;-= 1,C= 100, r=2

Both iteration processes yield the same schedule: [21111011111101111011110111011000]

The objective function value is 32.73. This is the optimal solution. 24087 schedules were

evaluated.

6.4 Server Shuts Down, k=20, N=16

In this situation, server time is measured as the length of time from when the finite

time horizon starts until the expected time that the last customer departs service. Service

cost is measured as the cost per unit multiplied by the expected server time. Again, we

need only consider the ratio of customer waiting cost to server cost. We first check an

example with server cost is 0 in order to see we get the same result as when server cost is

measured as overtime, and server cost equals 0.

CASE I: p = 1, C = 0, r = 2

Both iteration processes yield the same schedule: [11101101101101110112] The ob-

jective function value is 7.11. This is the optimal solution. Out of the 4.06 * 109 possible

schedules, 4275 schedules were evaluated.

CASEII:p =1, C=5, r=2

As expected, our answer is different from the overtime cost example. The latest

candidate schedule is: [11111110111110111100]. The objective function value is 111.90

The earliest candidate schedule is: [11111111111111110000). The objective function

value is: 112.66

If we assume there will be no two cluster, there 50 additional schedules to calculate.

If not, there are 211 to consider. After enumerating all 211 schedules, we see that the latest

candidate schedule is the optimal one.

22

6.5 Continuous Case, k=7, N=5, p=l, C.=4

We use the algorithm to get an approximation to the continuous problem of our

Example A. The program halved the given time slots and solved with the smaller intervals

308 times.

The latest candidate schedule is :[0, .12236, .32081, .52981, .74116]

The earliest candidate schedule is :[0, .12234, .32079, .52972, .74104]

The objective function value for both is: 3.98251, and was identical for all 13 decimal

places of each answer. We assume machine error will be so varied between the two iteration

phases that getting a very precise approximation will be difficult. However, we have an

approximation correct to 3 decimal places. Also, we have a small neighborhood where we

know each appointment must be scheduled. Hence the algorithm is useful in approximating

the solution to the continuous problem. Each iteration phase stopped after there were over

101 subintervals created.

23

VII. Concluions and Recommendaotio

Our algorithm is a very efficent method for solving the optimal control of arrivals

problem. The algorithm solves the problem for the case where server cost is measured as

expected overtime cost, as well as the case where server time is measured as the difference

in time between when the server starts and when the server shuts down. The only difference

wiU be in the cost factor and how the server cost is measured.

The algorithm can likely be extended to the following cases:

e Multiple parallel servers with r-Erlang distributed service time.

* Multiple servers in sequence each with r-Erlang distributed service time.

* Several classes of customers in the system, each class having different k-Erlang wait-

ing time distributions and waiting cost structures.

e All of the above cases where service time follows a general distribution.

The theorems appear extendable to most nice distributions. Hence it seems likely

that the algorithm in the single server example would work with any unimodal distribu-

tion for service time. Also, the methodology appears to be fully extendable to to the cases

of multiple servers and classes of customers, although the computer record keeping may

slow down the efficiency, particularly when there are multiple classes of customers. Addi-

tionally, the algorithm appears to work for approximating continuous-time versions of the

aforementioned problems as well. Extensions of this research effort are needed to verify

the applicability of tbe -algorithm to the additional cases.

24

Appendiz A. Alternate Proofs

A.1 Alternate Proof of Theorem I

Theorem 1 Let T, and T2 be two relative subschedules of m appointments and k

time slots, and assume T, precedes T2. Form T7 by moving the last appointment of T, n

time units later. Form T4 by moving the last appointment of T2 n time units later. Then

W[T,1 - W[T3] < W[T2] - W[T4J

Proof: We know that WI[a,t,] < W2[a..]. The total time to complete service, zj, for

each customer already in the queue for T, is distributed according to a Gamma distribution

with parameters r, = Wt[a,,] and 0 = p. Similarly, the total time to complete service,

Z2, for each customer already in the queue for T2 is distributed according to a Gamma

distribution with parameters r2 = W2[a,.] and 0 = p. It is a fact that if two Gamma

distributions with cumulative distribution functions r, and r 2 have the same 0 parameter

and r, < r2, then r 2(t) > ri(t) for all t > 0 over any time interval. Therefore the difference

in the expected number of customers served by moving the last appointment of T, later is

always less than the difference in the expected number of customers served by moving the

last appointment of T2 later.

A.2 Alternate Proof of Corollary 1

Corollary 1 Let T, and T2 be two perfect relative subschedules of m appointments

which are origin subschedules of S, and S2 respectively. S, and S2 are relative schedules

of k appointments and S1 =[T7lT],S2=[T221T for some T. Assume T, precedes T2. Form S3

by moving the last appointment of T, n time units later (but not passing the proceeding

appointment). Form S4 by moving the last appointment of T2 n time units later (but not

passing the proceeding appointment). Then O*[S3] - O*[Sl] > 0*[S4] - 0*[S2] where

O*[S] = W[am+i] + .- - + W[ak] + O[S].

Proof: As seen in the proof of Theorem 1 the total time z1 to complete service for each

customer already in the queue for T, is distributed according to a Gamma distribution with

parameters rt = W, [a,] and 0 = p. Similarly, the total time Z2 to complete service for each

customer already in the queue for T2 is distributed according to a Gamma distribution with

25

parameters r, = W1 [a,.] and 9 = i, where r 2 (t) > r,(t) for all t _> 0. Hence E[zzJ > E[zlJ

over any time interval. Consider the cumulative distribution F1 of the number not served in

T, over any time interval (0, t), which will be the same as r,(t). Similarly, the distribution

F2 of the number not served in T2 over that same time interval, will be equal to r 2(t).

Clearly, F1 is always greater than or equal to F2, which implies the difference in expected

waiting time of the (m + I)" customer after moving the m"' customer of T, later is greater

then the difference in expected waiting time of the (m + 1)" customer after moving the m'A,

customer of T2 later. Since T, precedes T2, and W1[a,+i] < W2[an+i], i = 1, ... , k - m the

theorem will hold for every appointment succeeding a,., as well as for expected overtime.

26

Appendiz B. Computer Code

27

*THIS CODE FINDS EARLIEST CANDIDATE SCHEDULE--- SERVICE - r-ERLANG
"* SERVER COST MEASURED AS OVERTIME

P3KTL*8 X(200,200),Y(200,200),P(200,200),Q(200,200),W(200)
ppAL*8 U,SUM,SUM1,SUM2, GG
REAL*8 WAIT,STORE,C,OT,TEMP,FACT,BEST,VAL,OLDBEST,TOTAL,N
REAL*8 NAPT, NSLT, CHECK, CUSMU, STAGES, EWAIT, BOT
INTEGER I, A, J,D, L,K, M,Z, ARF
OPEN (UNIT-2, FILE-'algol.out')
BEST-10000000.
OLDBEST-1000000.
ARFO0

"* INPUT PAR.AMETERS
N-25.
NSLT-32.
C-0.
STAGES-2.
CUSMqU- 1.
WRITE(2,*) STAGES, '-Erlang' ,' U-', CUSMU, N, I CUSTOMERS'
WRITE(2,*) 'Cost Factor 1 , C,'server cost is overtime'
WRITE(2,*) '# of slots - ,NSLT

U-CUSMU* STAGES
TOTAL-N+l
NAPT=N* STAGES
DO 1 F=1,NAPT+1.

DO 2 G=1,F
P(F,G)=O.
Q(F,G)=0.

2 CONTINUE
1 CONTINUE

*INITIALIZE FIRST SCHEDULE
DO 3 G=1, TOTAL

DO 434 CC=i, NAPT-1.
X(G,CC)=0.

434 CONTINUE
X (G, NAPT) =NSLT

3 CONTINUE
130 DO 2000 A=1,N-1.

DO 11 B=1,NAPT
Y (A, B) =X(A, B)*

11 CONTINUE
Z-0

* next calculate the P probabilities
Do 201 I=1,NAPT

z=z+1
SUM=0.
FACT=1.

DO 101 J=1,I
P (I, J) =EXP (-Y (A, Z)) *((Y (A, Z) **(J-1))/FACT)
SUM=SUM+P (I, J)
FACT=FACT* (J)

101 CONTINUE
P (I, I+1) =1 .-sum

201 CONTINUE

* calculate the Q probabilities
Q (1, 2) -P(1, 1)
Q (1, 1) =1-Q (1, 2)
DO 10 K=2,NAPT

SUM1=O.
DO 12 L=1,K

SUM2=0.
TEMP-0.
D=l
DO 14 M=L, K

TEMP=P (K, D) *Q (K-1,M)

SU?42-SUM2+TEMP
D-D+i

14 CONTINUE
Q(K, L+i) -SUM2
SUMi-SUMi+SUM2

12 CONTINUE
Q(K,i)-i.-SUMi

10 CONTINUE
DO 7 R-i,NAPT

W(R)-O.
7 CONTINUE

DO 33 E-i,NAPT
STORE-0.
DO 44 F-2,E+i

STORE-Q (E, F) *(F-i) /U
W (E) -W (E) +STORE

44 CONTINUE
33 CONTINUE

WAIT-0.
OT-0.
CHECK-i.
DO 55 G-i,NAPT-i

DO 555 GG-i..,NAPT
IF ((CHECK/STAGES) .EQ. GG) WAIT=W(G)+WAIT

555 CONTINUE
CHECK-CHECK+i.

55 CONTINUE
OT-W (NAPT) *C
VAL-WAI T+OT
IF ((VAL.GE.BEST) .OR. (VAL.EQ.0)) GOTO 2000
BEST-VAL
BWAIT-WAIT
BOT-OT
DO 241 MM=i,NAPT

X (N+i1,?MM) -X (A, MM)
241 CONTINUE
2000 CONTINUE

IF (BEST.GE.OLDBEST) PRINT*, 'hailelula'
IF (BEST.GE.OLDBEST) GOTO 131
DO 30 GG=i, N

X (GG, 1.)=X(N+i., 1.)
DO 40 HH=2,NAPT-i

X(GG,HH)=X(N+i.,HH)
40 CONTINUE

X (GG, NAPT) =X (N+i. ,NAPT)
30 CONTINUE

DO 1747 PP=i,N-i.
DO 888 JJ=1,N-i.
IF (X(PP,PP*STAGES+JJ*STAGES) .EQ. 0.) GOTO 888

IF (X(PP, PP*STAGES+JJ*STAGES) .EQ. 1) ARF=3+ARF
IF ((PP*STAGES+JJ*STAGES) .EQ. NAPT) ARF=3+AP.F
IF (ARF .EQ. 6) GOTO 2468

X (PP, PP*STAGES+JJ*STAGES) =X (PP, PP*STAGES+JJ*STAGES) -1.
X(P, PP*STAGES) =X(PPPP*STAGES) +1.

2468 GOTO 1746
888 CONTINUE
1746 ARF=0
1747 CONTINUE

PRINT*, 'dabestis', BEST
WRITE(2,*) 'dabeast', BEST
OLDBEST=BEST
GOTO 130

131 PRINT*, 'youreatheend'
PRINT*, 'verybestis', BEST
PRINT*, (X(N+1,TT) ,TT=i,NAPT)

WRITE(2,*) (X(N+1,RR),RR-1,NAPT)
WRITE(2,*) BEST, I- theverybest', 'WAIT-', BWAIT, 'OT-', BOT

789 FORMAT(F5.1)
STOP
END

DO 14 M-L, K
TEMP-P(K, D) *Q(K-1,M)
SUM2-SUM2 +TEMP
D-D+1

14 CONTINUE
Q(K,L+1)-SUM2
SUMl-SUM1+SUM2

12 CONTINUE
Q(K,1)-1.-SUM1

10 CONTINUE
DO 7 R-1,NAPT

W(R)-O.
7 CONTINUE

DO 33 E-1,NAPT
STORE-'0.
DO 44 F-2,E+l

STORE-Q(E,F) *(F-i) /U
W (E) -W(E) +STORE

44 CONTINUE
33 CONTINUE

WAIT-0.
OT-0.
CHECKimi.
DO 55 G-1,NAPT-1

DO 555 GG=1.,NAPT
IF ((CHECK/STAGES) .EQ. GG) WAIT-W(G)+WAIT

555 CONTINUE
CHECK-CHECK+1.

55 CONTINUE
OT=W (NAPT) *C
VAL-WAIT+OT
IF ((VAL.GE.BEST) .OR. (VAL.EQ.0)) GOTO 2000
BEST-VAL
BWAIT-WAIT
BOT-OT
DO 241 MM=1,NAPT

X (N+1, MM)=X(A, MM)
241 CONTINUE
2000 CONTINUE

* IF (BEST.GE.OLDBEST) PRINT*, 'hallelula'
IF (BEST.GE.OLDBEST) GOTO 131

*INITIALIZE ALL SCHEDULES TO CURRPENT BEST
DO 30 GG=1, N

X (GG, 1.) =X (N+1., 1.)
DO 40 HH=2,NAPT-1

X (GG, HH) =X (N+1., HH)
40 CONTINUE

X (GG, NAPT) =X (N+1. ,NAPT)
30 CONTINUE

DO 747 PP=1,N-1.
*MOVE THE APPOINMEMNT

IF (X(N+1.,STAGES*PP) .EQ. 0.) GOTO 747
K (PP. PP*STAGES) =X (PP, PP* STAGES) -1.
X (PP, PP*STAGES+STAGES) =X (PP, PP*STAGES+STAGES) +1.

747 CONTINUE
* PRINT*, 'bestis', BEST
WRITE(2,) 'best', BEST

OLDBEST=BEST
GOTO 130

131 PRINT*, 'youreatheend'
PRINT*, 'verybestis', BEST
PRINT*, (X(N+1,TT) ,TT=1,NAPT)
WRITE(2,*) (X(N+1,RR),RR=1,NAPT)
WRITE(2,*) BEST, '= theverybest', 'WAIT=', BWAIT, 'OT=', BOT

789 FORMAT(F5.1)

"* THIS PROGRAM FINDS THE LATEST CANDIDATE SCHEDULE FOR r-ERLANG
"* DISTRIBUTIONS -- SERVER COST MEASURED AS OVERTIME

REAL*8 X(200,200),Y(200,200),P(200,200),Q(200,200),W(200)
REAL*8 U, SUM, SUMi, SUM2
REAL*8 WAIT,STORE,C,OT,TEMP,FACT,BEST,VAL,OLDBEST,TOTAL,N
REAL*8 NAPT,NSLT,CHECK,CUSMU, STAGES,BWAIT,BOT
INTEGER I, A, J,D,L, K,M, Z
OPEN (UNIT-2, FILE='algo.out')
BESTrn10000000.
OLDBEST-10000000.

* INPUT PARAMETERS
N-25.
NSLT-32.
C-0.
STAGES-2.
CUSMU- 1.
WRITE(2,*) STAGES, '-Erlang' ,' U-', CUSMU, N, I CUSTOMERS'
WRITE(2,*) 'Cost Factor - , C,'server cost is overtime'
WRITE(2,*) 1# of slots - ,NSLT

U=CUSMU* STAGES
TOTAL=N+ 1
NAPT-N* STAGES
DO 1 F=1,NAPT+1.

DO 2 G=1,F
P(F,G)=0.
Q(F,G)=O.

2 CONTINUE
1 CONTINUE

* INITIALIZE THE FIRST SCHEDULE
DO 3 G-1, TOTAL

DO 434 CC-i, STAGES-i.
X(G,CC)-O.

434 CONTINUE
X (G, STAGES) =NSLT-1.
Do 4 H=STAGES+l.,NAPT-1.
X(G,H)=0.

4 CONTINUE
X (G, NAPT) =1.

3 CONTINUE
130 DO 2000 A=1,N-1.

DO 11 B=1,NAPT
Y (A, B) =X(A, B) *U

11 CONTINUE
Z0O

* calculate the P probabilities for each schedule
DO 201 I=1,NAPT

z=Z+1
SUM0O.
FACT=1.

DO 101 J=1,I
P (I, J) =EXP (-Y (A, Z)) * ((Y (A, Z) **(J-1))/FACT)
SUM=SUM+P (I, J)
FACT=FACT* (J)

101 CONTINUE
P (II I+1)=1. .- sum

201 CONTINUE

* calculate the Q probabilities=P(i services)
Q (1, 2) =P (1, 1)
Q (1, 1) =1-Q (1, 2)
DO 10 K=2,NAPT

SUM1=0.
DO 12 L=1,K

SUM2=0.
TEMP=0.

STOP
END

*.THIS CODE FINDS EARLIEST CANDIDATE SCHEDULE--- SERVICE -r-ERLANG

*SERVER COST MEASURED AS TIME UNTIL SERVER SHUTS DOWN
REALJ*8 X(200,200),Y(200,200),P(200,200),Q(200,200),W(

2 0 0)
REAL*8 U, SUM, SUMi, SUM2, GG
REAL*8 WAIT,STORE,C,OT,TEMP,FACT,BEST,VAL,OLDBEST,TOTAL,N
REAL*8 NAPT, NSLT, CHECK, CUSMU,STAGES, BWAIT, BOT
INTEGER I,A,J,D,L,K,M,Z,ARF,PLACE
OPEN (UNIT-2, FILE-'parml.out')
BEST-10000000.
OLDBEST-1000000.
PLACEO0
ARFO0
N-16.
NSLT-2O.
C-5.
STAGES-2.
CUSMU- 1.
WRITE(2,*) STAGES, '-Erlang' ,' U-', CUSMU, N, ICUSTOMERS'

WRITE(2,*) 'Cost Factor - , C,'server cost is overtime'
WRITE(2,*) '# of slots = ,NSLT

U=CUSMU* STAGES
TOTAL-N+ 1
NAPT-N* STAGES
DO 1 F=1,NAPT+1.

DO 2 G=1,F
P(F,G)=O.
Q(F,G)0O.

2 CONTINUE
1 CONTINUE

DO 3 G-1, TOTAL
DO 434 CC-i, NAPT-1.

X(G,CCh-O.
434 CONTINUE

X (G, NAPT) =NSLT
3 CONTINUE
130 Do 2000 A=l,N-1.

DO 11 B=1,NAPT
Y (A, B) =X(A, B)*

11 CONTINUE
* PRINT*, 'i initialized everything'

z=0
* next calculate the P probabilities

DO 201 I=1,NAPT
Z-Z+l
SUM=0.
FACT-i.

DO 101 J=1,I
P (I, J)=EXP (-Y (A, Z)) *((Y (A, Z) **(J-1))/FACT)
SUM=SUM+P (IJ)
FACT=FACT* (J)

101 CONTINUE
P (1,1+1)-i.-SUM

201 CONTINUE

* calculate the Q probabilities
o (1, 2) =P (1, 1)
Q (1, 1) =1-Q (1, 2)
DO 10 K=2,NAPT

SUM1-0.
DO 12 L=1,K

SUM2=0.
TEMP=0.
D~l
DO 14 M=L, K

TEMP=P (K, D) *Q(K- 1, M)

SUM2-SUM2+TENP
D-D+i

14 CONTINUE
Q(K,L+i)m'SUM2
SUMi -SUMi +SUM2

12 CONTINUE
Q (K,1) -1. -SUMi

10 CONTINUE
DO 7 R-i,NAPT

W(R)-0.
7 CONTINUE

DO 33 E-i,NAPT
STORE-0.
DO 44 F-2,E+i

STORE-Q(E,F) *(F-i) /U
W (E) -W(E) +STORE

44 CONTINUE
33 CONTINUE

WAIT-0.
OT-0.
CHECK-i.
DO 55 G=iNAPT-i

DO 555 GG-1.,NAPT
IF ((CHECK/STAGES) .EQ. GG) WAIT-W(G)+WAIT

555 CONTINUE
CHECK=CHECK+i.

55 CONTINUE

IF (X(A,NAPT).EQ. 0.) PLACE-NSLT
DO 929 SS-i, NSLT

IF (X(A,NAPT) .EQ.SS) PLACE= NSLT-X(A,NAPT)+i.
929 CONTINUE
930 OT- (W (NAPT-i.)+PLACE+i /U) *C

VAL-WAIT+OT
IF ((VAL.GE.BEST) .OR. (VAL.EQ.0)) GOTO 2000
BPLACE-PLACE
BEST=VAL
BWAIT-WAIT
BOT=OT
DO 24i MM=i,NAPT

X (N+1, MM) =X (A, M)
241 CONTINUE
2000 CONTINUE

IF (BEST.GE.OLDBEST) PRINT*, 'hallelula'
IF (BEST.GE.OLDBEST) GOTO 131
Do 30 GG=1, N

X(GG, 1.)=X(N+i.,1.)
DO 40 HH=2,NAPT-i

X (GG, HH)=X (N+ 1. , HH)
40 CONTINUE

X (GG, NAPT) =X (N+1., ,NAPT)
30 CONTINUE

DO i747 PP=i,N-i.
DO 888 JJ=1,N-i.
IF (X(PP,PP*STAGES+JJ*STAGES) .EQ. 0.) GOTO 888

IF (X(PP, PP*STAGES+JJ*STAGES) .EQ. 1) ARF=3+ARF
IF ((PP*STAGES+JJ*STAGES) .EQ. NAPT) ARF=3+ARF
IF (ARF .EQ. 6) GOTO 2468

X (PPPP*STAGES+JJ*STAGES) =X (PP, PP*STAGES+JJ*STAGES) -1.
X(PP,PP*STAGES)=X(PP,PP*STAGES)+i.

2468 GOTO i746
888 CONTINUE
1746 ARF-0
1747 CONTINUE

PRINT*, 'beatis', BEST
WRITE(2,*) 'beast', BEST
OLDBEST-BEST
GOTO 130

131 PRINT*, 'youreatheend'
PRINT*, 'verybestis', BEST
PRINT*, (X(N+1,TT) ,TT-1,NAPT)
WRITE(2,*) (X(N+1,RR),RR-1,NAPT)
WRITE(2,*) BEST, I- theverybest', 'WAIT-', EWAIT, 'OT-', BOT

789 FORMAT(F5.1)
STOP
END

*THIS CODE FINDS LATEST CANDIDATE SCHEDULE--- SERVICE - r-ERLANG
*SERVER COST MEASURED AS TIME UNTIL SERVER SHUTS DOWN

REAL*8 X(200,200),Y(200,200),P(200,200),Q(200,200),W(200)
RKAL*8 U, SUM, SUMi, SUM2, PLACE, CUSMU, STAGES, GG
RPA*8 WAIT,STORE,C,OT,TEMP,FACT,BEST,VAL,OLDBEST,TOTAL,N
REAL*8 NAPT, NSLT, BWAIT, BOT, SS, BPLACE
INTEGER I, A, J,D, L,K, M, Z
OPEN (UNIT-2, FILE-' 3exp2532srv.out')
BEST-100000000.
OLDBEST-100000000.
PLACE-O.
N-5.
NSLT-7.
STAGES-i.
CUSMU-i.
U-CUSMU* STAGES
C-4.
WRITE(2,*) STAGES, '-Erlang' ,' U=', CUSMU, N, ' CUSTOMERS'
WRITE(2,*) 'Cost Factor 1 , C,'server costI
WRITE(2,*) 1# of slots - ,NSLT

* HERE's where i'd go back
TOTAL-N+ 1
NAP T=N* STAGES
DO 1 F=i,N*STAGES+i.

DO 2 G=1,F
P(F,G)=0.
Q(F,G)=0.

2 CONTINUE
1 CONTINUE

DO 3 G=i, TOTAL
DO 434 CC-i, STAGES-i.

X(G,CC)=0.
434 CONTINUE

X (G, STAGES) =NSLT-i.
DO 4 H=STAGES+i.,NAPT-i.
X(G,H)=0.

* PRINT*, 'X(G,H)', X(G,H)
4 CONTINUE

X (G, NAPT) =1.
* PRINT*,'X(G,NAPT)=' , X(G,NAPT)

3 CONTINUE
130 DO 2000 A=i,N-i

DO 11 B-i,NAPT
Y (A, B) =X (A, B) *U

11 CONTINUE
* PRINT*, 'i initiaiized everything'

z=o
* PRINT*, 'calculate p'

* next calculate the P probabilities
DO 201 I=1,NAPT

z=z+1
SUM=0.
FACT=i.

DO 101 J=1,I
P(I, J)=EXP (-Y (A, Z)) * ((Y (A, Z) **(J-i))/FACT)
SUM=SUM+P (I, J)
FACT=FACT* (J)

101 CONTINUE
P(I,I+i)=i.-sum

201 CONTINUE

* PRINT*, 'igot to q'
* calculate the Q probabilities

Q (1, 2) =P Ci,)
Q (1, 1) =1-Q (1,2)

DO 10 K-2,NAPT
SUMi-O.
DO 12 L-1,K

SUM2-O.
TEMP-0.
D-l
DO 14 M-L, K

TEMP-P (K,D) *Q(K...iM)
SUM2 -SUM2 +TEMP
D-D+1

14 CONTINUE
Q (K, L+1) -SUM2
SUMi -SUMi +SUM2

12 CONTINUE
Q(K,1)-i.-SUMi

10 CONTINUE
DO 7 R-1,NAPT

W (R)-O0.
7 CONTINUE

DO 33 E-i,NAPT
STOREO0.
DO 44 F-2,E+i

STORE=Q (E, F) *(F-i) /U
W (E) -W (E) +STOPRE

44 CONTINUE
33 CONTINUE

WAIT-0.
OT-0.
CHECK-i.
DO 55 G-1,NAPT-i

DO 555 GG-1,NAPT
IF ((CHECK/STAGES) .EQ. GG) WAIT-W(G)+WAIT

555 CONTINUE
CHECK-CHECK+l.

55 CONTINUE
* PRINT*,'OVERTIME IS',W(N)
* WRITE(2,*) 'OVERTIME IS', W(NAPT)
* IF (X(A,NAPT).EQ. 0.) PLACE-NSLT
* IF (X(A,NAPT).EQ. 0.) GOTO 930

DO 929 SS=i, NSLT
IF (X(A,NAPT) .EQ.SS) PLACE= NSLT-X(A,NAPT)+i.

929 CONTINUE
* PRINT*, 'PLACE~= ',PLACE

930 OT=(W(NAPT-1.)+PLACE+1./U) *C
* PRINT*,'WAITING TIME IS', WAIT, NAPT,PLACE,U
* PRINT*, 'OT COST IS', OT,A

VAL=WAI T+OT
* PRINT*, 'thebestisfirsttime', VAL
* PRINT*, 'thebestis', VAL

IF ((VAL.GE.BEST).OR. (VAL.EQ.0)) GOTO 2000
BPLACE=PLACE
BEST=VAIJ
BWAIT=WAI T
BOT=OT

* PRINT*, 'thebestis', VA.L
Do 241 MM=1,NAPT

X (N+1, MM) =X (A, MM)
241 CONTINUE

* PRINT*, 'iswitched'
* IF (VAL.LT.BEST) NUM=A
* ~IF (VAIJ.LT.BEST) BEST=VAL
* WRITE(2,*) 'WAITING TIME IS', WAIT

* WRITE(2,*) 'OVERTIME COST IS', OT
* ~WRITE(2,*) 'TOTAL COST FOR SCHEDULE', A, ' ,WAIT+OT

* ~PRINT*, 'TOTAL COST FOR SCHEDULE', A, ' ,WAIT+OT

* ~WRITE(2,*)''

* WRITE(2,*) NUM, BEST
* PRINT*, liendedupat2000'

2000 CONTINUE
* IF (BEST.GE.OLDBEST) PRINT*, 'hallelula'

IF (BEST.GE.OLjDBEST) GOTO 131
* PRINT*, 'almost made it'
* ~PRINT*, 'II', X(9,1) ,X(9,2) ,X(9,3) ,X(9,4) ,X(9, -))
* PRINT*, X(9,6),X(9,7),X(9,8)

DO 30 GG-1, N
X(GG,1)-X(N+1.,l.)

* PRINT*, 'X(GG,1.)-', X(GG,1.)
DO 40 HH-2,NAPT-1

X (GG, HH)-X (N+1 .,HH)
* PRINT*, 'X(GG,HH)-', X(GG,HH)

40 CONTINUE
X (GG, NAPT) -X(N+1 .,NAPT)

* PRINT*, 'X(GG,NAPT)-', X(GG,NAPT)
30 CONTINUE

* PRINT*, 'i gotta best solution'
* WRITE(2,*) X(9,1),X(9,2),X(9,3),X(9,4),X(9,5)

* ~WRITE(2,*) X(9,6) ,X(9,7) ,x(9,8)
* ~PRINT*, X(9,1) ,X(9,2),X(9,3),X(9,4),X(9,5) ,X(9,6),X(9,7) ,X(9,8)

DO 747 PP=1,N-1.
IF (X(N+1,STAGES*PP) .EQ. 0.) GOTO 747

X (PP, PP*STAGES) -X (PP, PP*STAGES) -1.
X (PP, PP*STAGES+STAGES) =X (PP, PP*STAGES+STAGES) +1.

* ~PRINT*, X (PP,PP*STAGES), X(PP,PP*STAGES+STAGES) ,PP
747 CONTINUE
129 PRINT,'OLDBEST-', OLDEEST, 'BEST-', BEST

* PRINT*, (X(N+1,LL),LL=1,NAPT)
WRITE(2,*) 'dabest: ',, BEST, 'place- '., BPLACE
PRINT*, 'dabest:', BEST, 'Place- ', BPLACE
PRINT*, 'X(A,NAPT)', X(A,NAPT)

* ~WRITE(2,*) (X(N+1,BB) ,BB=1,NAPT)
OLDEEST=BEST

* EWAIT-WAIT
* BOT=OT

GOTO 130
131 PRINT*, 'youreatheend'

PRINT*, 'daverybestis', BEST
WRITE(2,*) (X(N+1,RR),RR-1,NAPT)
WRITE(2,*) BEST, 'theverybest', 'WAIT=', BWAIT, 'OT-', BOT
PRINT*, (X(N+1,TT) ,TT=1,NAPT)

789 FORMAT(F5.1)
STOP
END

**THIS PROGRAM APPROXIMATES THE EARLIEST CANDIDATE
**SCHEDULE FOR THE CONTINUOS CASE

REAL*8 X (200, 200) ,Y (200,200), P(200, 200)
REAL*8 0(200,200),W(200)
REAL*8 U,SUM,SUl41,SUM2, GG
REAL*8 WAIT,STORE,C,OT,TEMP,FACT,BEST,VAL,OLDBEST,TOTAL,N
RPAL*8 NAPT, NSLT, CHECK, CUSMU,STAGES, TRIAL, BWAIT, BOT
INTEGER I,A,J,D,L,K,M,Z,COUNT
OPEN (UNIT-2, FILE-'realcont.out')
BEST-100000.
OLDBEST-10 0000.
COUNT-i
TRIAL-1.
N-5.
NSLT-7.
C-4.
STAGES-i.
CUSMU-1.
WRITE(2,*) STAGES, '-Erlang' ,' U-', CUSMU, N, I CUSTOMERS'
WRITE(2,*) 'Cost Factor - ,C,'server cost is overtime'
WRITE(2,*) '# of slots - ,NSLT

WRITE(2,*)
WRITE(2,*)'************************
WRITE(2,*) I

GOTO 787
767 NSLT-NSLT*2.

TRIAL=TRIA.L*2.
COUNT-COUNT+ 1
CUSMU=CUSMU/2.
BEST=100000 .*RA
OLDBEST=100000.*RA

787 U=CUSMU*STAGES
TOTAL-N+ 1
NAPT-N* STAGES
DO 1 F=1,NAPT+1.

DO 2 G=1,F
P (F,G)=0.
Q(F,G)=0.

2 CONTINUE
1 CONTINUE

IF(TRIAL.GT.l.) GOTO 420
Do 3 G=l, TOTAL

DO 434 CC=1, STAGES-i.
X (G, CC) =0.

434 CONTINUE
X (G, STAGES) =NSLT-1.
DO 4 H=STAGES+1.,NAPT-1.
X(G,H)=0.

4 CONTINUE
X (G, NAPT) =1.

3 CONTINUE
GOTO 130

420 DO 421 DD=1,TOTAL
X (DD,1.)=X (DD, 1.)*2 .+2
DO 422 EE=2,N-l.

X (DD, EE) =2 . *X((DD, EE)
422 CONTINUE

IF (X(DD,N).EQ.1) X(DD,N)=X(DD,N)*2.
IF (X(DD,N).GT.1) X(DD,N)=X(DD,N)*2.-2.

421 CONTINUE
130 DO 2000 A-1,N-1.

DO 11 B=1,NAPT
Y (A, B) =X(A, B) *U

11 CONTINUE
* PRINT*, 1i initialized everything'

Z=0

* next calculate the P probabilities
DO 201 I-1,NAPT

z-z+1
SUMO0.
FACT-i.

DO 101 J=1,I
P (I, J) -EXP (-Y (A, Z)) *((Y (A, Z) **(J-1))/FACT)
SUM-SUM+P (I, J)
FACT-FACT* (J)

101 CONTINUE
P (I, 1+1)-1. .-sum

201 CONTINUE

* calculate the Q probabilities

Q (1, 2) -P- (1, 1)

DO 10 K=2,NAPT
SUM1-0.
DO 12 L-1,K

SUM2-0.
TEMP-0.
D=l
DO 14 M=L, K

TEMP =P (K, D) *Q(K- 1,M)
SUM2=SUM2 +TEMP
D=D+1

14 CONTINUE
Q (K, L+1) =SUM2
SUM1=SUM1 +SUM2

12 CONTINUE
Q(K,1)=1.-SUM1

10 CONTINUE
Do 7 R=1,NAPT

W(R)=0.
7 CONTINUE

Do 33 E=1,NAPT
STORE=O.
DO 44 F=2,E+1

STORE-Q(E,F) *(F-i) /U
W (E) =(W (E) +STORE)

44 CONTINUE
33 CONTINUE

WAIT=0.
OT=0.
CHECK=i.
DO 55 G=i,NAPT-1

DO 555 GG=1.,NAPT
IF ((CHECK/STAGES) .EQ. GG) WAIT=W(G)+WAIT

555 CONTINUE
CHECK=CHECK+i.

55 CONTINUE
OT=W(NAPT) *C
VAL=WAI T+OT
IF ((VAL.GE.BEST) .OR. (VAL.EQ.0)) GOTO 2000
BEST-VAL
BWAI T=WAI T
BOT=OT
DO 241 MMQ=1,NAPT

X (N+1, MM) =X (A, MM)
241 CONTINUE
2000 CONTINUE

IF (BEST.GE.OLDBEST) GOTO 131
DO 30 GG=1, N

X(GG,i.)=X(N+i.,i.)
DO 40 HH=2,NAPT-1

*X -(GG, HH) -X (N+1., HH)
40 CONTINUE

X (GG, NAPT) -X (1+1. INAPT)
30 CONTINUE

DO 747 PP-1,N-1.
IF (X(N+1.,STAGES*PP) .EQ. 0.) GOTO 747

X (PPPP*STAGES) -X (PP, PP*STAGES) -1.
X (PP, PP*STAGES+STAGES) -X(PP, PP*STAGES+STAGES) +1.

747 CONTINUE
PRINT*J, , bestis', BEST/TRIAL
OLDBEST-BEST
GOTO 130

131 PRINT*, 'youreatheend'
PRINT*, 'verybestis', BEST/TRIAL
PRINT*l BWAIT/TRIAL, BOT/TRIAL
PRINT*, (X(N+1,TT) ,TT-1,NAPT)
PRINT*, 'count- , COUNT
WRITE(2,*) (X(N+1,RR),RR-1,NAPT)
WRITE(2,*) 'verybest- ', BEST/TRIAL,' COUNT-= ' COUNT
WRITE (2, *) 'WAIT=' ,BWAIT/TRIAL, 'OT=' IBOT/TRIAL
WRITE(2,*) II

IF(1/NSLT.GT.0) GOTO 767
IF(NSLT.LT.1000000000) GOTO 767

789 FOR.MAT (F5. 1)
STOP
END

**THIS PROGRAM APPROXIMATES THE LATEST CANDIDATE SCHEDULE
**FOR THE CONTINUOUS PROBLEM

REA~L*8 X(200,200),Y(200,200),P(200,200)
REAL*8 Q(200,200),W(200)
REAL*8 U,SUM,SUM1,SUM2, GG,TP
REAL*8 WAIT,STORE,C,OT,TEMP,FACT,BEST,VAL,OLDBEST,TOTAL,N
REAL*8 NAPT, NSLT, CHECK, CUSMU, STAGES, TRIAL, BWAIT, BOT
INTEGER I,A,J,D,L,K,M,Z,COUNT
OPEN (UNIT-2, FILE-'lrealcont.out')
BEST-100000.
OLDBEST-100 000.
COUNT-i
TRIAL-i.
N-5.
NSLT-7.
C-4.
STAGES-i.
CUSMU-i.
WRITE(2,*) STAGES, '-Erlang' ,' U-', CUSMU, N, ICUSTOME~RS'
WRITE(2,*) 'Cost Factor = ,C,'server cost is overtime'
WRITE(2,*) '# of slots - ,NSLT

WRITE(2,*)
WRITE(2,*)'************************
WRITE(2,*)
GOTO 787

767 NSLT=NSLT*2.
TRIAL=TRIA.L*2.
COUNT=COUNT+ i
CUSMU-CUSMU/2.
BEST=iOOOOO. *TRIAL
OLDBEST=iOOOOO .*TI

787 U=CUSMU* STAGES
TOTAL=N+ 1
NAPT-N* STAGES
DO 1 F=i,NAPT+l.

DO 2 G=i,F
P(F,G)=0.
Q (F, G) =0.

2 CONTINUE
1 CONTINUE

IF(TRIAL.GT.1.) GOTO 445
DO 3 G=i, TOTAL

DO 434 CC-i, NAPT-i.
X(G,CC)=0.

434 CONTINUE
X (G, NAPT) =NSLT

3 CONTINUE
GOTO 130

445 TP=0.
TP=TP+i.
IF(X(N+i.,TP).EQ. 0.) GOTO 445

420 DO 421 DD=1.,TOTAL
X(DD,TP)=X(DD,TP)*2.- 2.
DO 422 EE=TP+l.,N-l.

X (DD, EE) = X (DD, EE) * 2.
422 CONTINUE

X (DD, N) =2 . *X (DD, N) +2.
421 CONTINUE
130 Do 2000 A=i,N-l.

DO 11 B=i,NAPT
Y (A, B) =X(A, B) *U

11 CONTINUE
z=0

* next calculate the P probabilities
Do 201 I=1,NAPT

z=z+i

SUM-0.
FACT-i.

DO 101 J-1, I
P (I, J) -EXP (-Y (A, Z)) *((Y (A, Z) **(J-1))/FACT)
SUM-SUM+P (IJ)
FACT-FACT* (J)

101 CONTINUE
P(II+1)-1.-SUM

201 CONTINUE

* calculate the Q probabilities

Q (1, 2) -P- (1, 1)
DO 10 K-2,NAPT

SUM1-O.
DO 12 L-1,K

SUM2-0.
TEMP-0.
D-1
DO 14 14-L, K

TEMP-P (K,D) *Q(K-.1,M)
SUM2 -SU42 +TEMP
D=D+1

14 CONTINUE
Q (K, L+1) =SUM2
SUM1=SUMi +SU?42

12 CONTINUE
Q(K,1)=1.-SuM1

10 CONTINUE
DO 7 R=1,NAPT
W(R)-0.

7 CONTINUE
DO 33 E=1,NAPT

STORE-0.
DO 44 F=2,E+l

STORE=Q(E,F) *(F-i) /U
W (E) =(W (E) +STORE)

44 CONTINUE
33 CONTINUE

WAIT=0.
OT-0.
CHECK-i.
Do 55 G=1,NAPT-1

DO 555 GG-1.,NAPT
IF ((CHECK/STAGES) .EQ. GG) WAIT-W(G)+WAIT

555 CONTINUE
CHECK=CHECK+1.

55 CONTINUE
OT=W(NAPT) *C
VAL=WAI T+OT
IF ((VAL.GE.BEST) .OR. (VAL.EQ.0)) GOTO 2000
BEST-VAL
BWAI T-WAI T
BOT-OT
DO 241 MM=41,NAPT

X (N+ 1,MMv) =X (A, MM)
241 CONTINUE
2000 CONTINUE

* IF (BEST.GE.OLDBEST) PRINT*, 'hallelula'
IF (BEST.GE.OLDBEST) GOTO 131
DO 30 GG=1, N

X (GG,1) =x (N+1. , .)

DO 40 HH=2,NAPT-1

X(GG,HH)-X(N+1.,HH)
40 CONTINUE

X(GG,NAPT)-X(N+1.,NAPT)
30 CONTINUE

DO 1747 PP=1,N-1.
DO 888 JJ-1,N-1.
IF (X(PP,PP*STAGES+JJ*STAGES) .EQ. 0.) GOTO 888
X (PP, PP*STAGES+JJ*STAGES) =X (PP, PP*STAGES+JJ*STAGES) -1.

X (PP, PP*STAGES)-=X (PP, PP*STAGES) +1.
GOTO 1747

888 CONTINUE
1747 CONTINUE

PRIN4T*, 'bestis', BEST/TRIAL
* WRITE(2,*) 'best',BEST/TRIAL

OLDBEST-BEST
GOTO 130

131 PRINT*, 'youreatheend'
PRINT*, 'verybestis', BEST/TRIAL
PRINT*, BWAIT/TRIAL, BOT/TRIAL
PRINT*, (X(N+1,TT) ,TT=1,NAPT)
PRINT*, 'count- ' COUNT
WRITE(2,*) (X(N+1,RR),RR=1,NAPT)
WRITE(2,*) 'verybest= ', BEST/TRIAL,' COUNT- ' COUNT
WRITE(2, *) 'WAIT=' ,BWAIT/TRIAL, 'OT=' ,BOT/TRIAL
WRITE(2,*) I'
IF(1/NSLT.GT.0) GOTO 767

* IF(NSLT.LT.100) GOTO 767
789 FORNAT(F5.1)

STOP
END

Bibliography

1. Wang, P., "Static and Dynamic Scheduling of Customer Arrivals to a Single-Server
System," Naval Logistics Research Quarterly, Vol 40, 1993, pp345-360.

2. Naor, P., "On the Regulation of Queue Size by Levying Tolls,"Econometrica, Vol.37,
1969, pp15-24.

3. Knudsen, N.C., "Individual and Social Optimization in a Multiserver Queue with a
General Cost-Benefit Structure," Econometrica, Vol. 40, 1972, pp515-528.

4. Yechiali, U., "On Optimal Balking Rules and Toll Charges in a GI/M/1 Queueing
Process," Operations Research, Vol. 19, 1979, np349-370.

5. Yechiali, U., "Customers Optimal Joining Rules for the GI/MI& Queue,"
Management Science, Vol. 18, 1972, pp434-443.

6. Rue, R.C., and M. Rosenshine, "Optimal Control for Entry of Many Classes of Cus-
tomers to an M/M/1 Queue," Naval Logistics Research Quarterly, Vol. 28, 1981,
pp489-495.

7. Rue, R.C., and M. Rosenshine, "Optimal Control of Entry Classes to an M/Et/1
Queue Serving Several Classes of Customers," Naval Logistics Research Quarterly,
Vol. 30, 1983, pp217-226.

8. Healy, K. J., C. D. Pegden, and M. Rosenshine, "Scheduling Arrivals to Multiple
Server Queues," Working Paper No. 82-128, Department of Industrial and Manage-
ment Systems Engineering, The Pennsylvania State University, October 1982.

9. Liao, C.- J.,"Planning Timely Arrivals to Stochastic Production or Service Systems,"
PhD Thesis, Department of Industrial and Management Systems Engineering, The
Pennsylvania State University, August 1988.

10. Ross, S., A First Course in Probability Theory, MacMillan, New York, New York,
1988, pp 13 -16 .

28

Vita

John Simeoni was born in Chicago, Illinois in 1959. He received a Bachelor of Music

degree from Northwestern University in 1981. After several years as a professional musician

and educator, he returned to school and received a Master of Mathematics degree from

California State University Sacramento in 1988. He joined the Air Force in 1989, and

worked as a Contract Business Manager for the Consolidated Space Operations Center

Program Office at Los Angeles Air Force Base (LAAFB), California prior to coming to

AFIT. While at LAAFB, he received a Master of Business Administration degree from

" -.pman University (1992).

Permanent address: P.O. Box 33845
Dayton, Ohio 45433

29

iform Approved

REPORT DOCUMENTATION PAGE OMBNo. Ap04-1oed

PD, • r, . I)n `11* '.t , 1 -s • 'S t : .erAoo ' .,ur •- -eso rse inrvtarg tne time -Or rC ,e- q nstructions wear(crng eC.st-rig lata oWurces
gathe" Z3rCt 11-Mt I, i, g , -P 0 : d needea Anr :CM'Diet'r ' 4ra e0 . t". : ee ,.r 0, in ra Seno Cn)mmentS rearoing this Durdef est iate O 0 n otner d&,pec of this

collectloll 11 n -41111 `1 1. gst ,Is tr rer ,, , o.rir . .1K dj. ,n3ton (aOo.a rter% SerKes, Crecnord!e 2o" 'nf arm:Orl ODeratlons ana Re~ers IS j eteron

Zw %HgP-a.a u,te 12,4 ;.ringt- ?Z. 22024-302 an Dt -te a' -a,,en• a do udu e! P3peFr4orr. RedUCct[ro PrsDe(W(0704-0188). Washington DC 20503

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE EPORT TYPE AND DATES COVERED

March 1994- 7 Master s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Efficient Approach to Solving the Optimal
Control of Arrivals Problem

6. AUTHOR(S)

John R. Simeoni, Captain, USAF

7. PERFORMIN .- IZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
WPAFB, OH 45433-6503 AFIT/GOR/ENS/94-14

g. SPONSORI? (' ' 4dIORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGYMONITORING
AGENCY REPORT NUMBER

"11. SUPPLEMENTARY -OTES

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (tMa i'urn 200 words)

The optimal control of arrivals problem is one which has many applications in
both defense and industry. Simply stated, the problem addresses how to schedule
a finite number of custcmers in a finite number of equal-length time slots, where
each customer's service time ccmes from a specified probability distribution.
There are two cost components, one based on total expected custaoer waiting time
and the other based on the expected amount of time the server stays open beyond
its scheduled completion time. Currently, solutions have been developed to the
optimal control of arrivals problem, but they are comrputationally slow and only
work tor exponential distributions. This thesis presents an algorithm for the
optimal control of arrivals problem which is both comrputationally efficient and
works for r-Erlang distributions.

14. SUBJECT TERMS 15. NUMBER OF PAGES

54
Optimal control of arrivals, planning arrivals, scheduling 16. PRICE CODE
theory, queueing theory, control of queues _

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-0'-280-5500 Standard Form 298 (Rev 2-89)
.',nc rD-Do bD ANS, Std Z39-'S

2146-102

