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Preface

This study examines artificial neural networks. In particular, I attempted
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literature.
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Abstract

The goal of this study was to decide when to terminate training of an artificial
neural network (ANN). In pursuit of this goal, several characteristics of the ANN
were monitored throughout ANN training: classification error rate (of the training
set, testing set, or a weighted average of the two); moving average classification er-
ror rate; measurements of the difference between ANN output and desired output
(error sum of squares, total absolute error, or largest absolute error); or ANN weight
changes (absolute weight change, squared weight change, or relative weight change).
Throughout this research, the learning rate was held constant at 0.35. The momen-
turn was not used because the primary interest of this study was evaluating when
to terminate training as opposed to the speed of reaching a decision. The ANN
structure was held constant with two input features, two output classes, and one
hidden layer. Finally, the practice of training after processing each exemplar was
followed. Results indicated three conclusions. First, multiple runs are required for
ANN analysis because ANNs are not guaranteed to converge to the same solution.
Second, the classification error rate, a moving average of the classification error rate,
and the total absolute error (all computed on the testing set) provided a similar
final classification. Third, once the stopping criteria functions cease to decrease,
select a set of ANN final weights at random. On average, they yielded as low as or
lower classification error rate and variance of the classification error rate than other

possible choices.




AN ANALYSIS OF STOPPING CRITERIA
IN ARTIFICIAL NEURAL NETWORKS

L. Introduction
1.1 Background

The idea of a computer or machine controlling our lives has been around for
a long time. Until recently, machines could only do what they were told (which,
due to some programming errors, may not have been what we wanted them to do).
Now, however, through artificial intelligence and artificial neural networks, we are
attempting to perform much more complicated tasks with computers. This paper will
explore a method to improve an artificial neural network, or ANN. In particular, the
study attempts to find a better way to determine the appropriate time to terminate

ANN training.

Artificial neural networks are a relatively new area of research. In general
terms, an ANN is a mathematical function which ‘learns’, thereby mimicking the
work of the human brain. By analyzing training data, where the output is known,
the ANN assigns weights to functions to ‘learn’ from its past experience. Following
this iterative scheme, the network learns from training data, continually improving
in its ability to predict the answer to a ‘yes-no’ question. Next, the ANN moves to
a separate set of testing data to determine if the weights are correct. The goal of
this continued improvement is the ability to predict a result based upon independent

input factors.
Artificial intelligence and artificial neural networks are different. Guyon de-

scribes this difference as follows: “The main differences between the classical ap-

proach of Artificial Intelligence (AI) and Neuron Networks (NN) is that AI requires




considerable detailed programming whereas NN rely heavily on learning” (Guyon,

1991: 243).

1.2 Problem Statement

An ANN currently has the capability to improve in its ability to predict an
output based upon inputs. However, it is extremely difficult to determine when this
improvement ceases to occur and an overlearning of the training data begins. This
study measured the classification error rate of a separate validation set to search for

a criterion which best predicted the point at which to terminate ANN training.

1.3 Scope

The goal of this study was to perform artificial neural network (ANN) analy-
sis. The ANN algorithm used was the back propagation algorithm. The study used
classification error rate of the validation set as a measurement standard to evaluate
several proposed stopping criteria. Each proposed stopping criterion had a resulting
output function which changed during ANN training. The study compared these
stopping criteria functions with the classification error rate of an independent vali-
dation set which was assumed to be the best representation of the true population.
The stopping criterion which had the lowest error classification rate was judged to
be best. Then, this best stopping criterion was compared to more commonly used
stopping criteria measures involving the classification error rate. The goal was to
find a more automated and less arbitrary method of selecting the optimum or near

optimum point at which to terminate ANN training.

As part of the research, decisions were made regarding methods and variables
within the ANN. As Nelson notes, the tasking of an artificial neural net programmer
is different from that of a normal computer programmer. The ANN programmer’s
task is to “specify transfer functions (equations to determine thresholds), training

laws (rules that set initial weights and equations that modify weights), and the struc-




ture of the network (number of nodes, layers, and interconnections)”. Additionally,
the programmer must decide “if and how often the processing elements would update
(continuously or periodically)” (Nelson, 1991: 55). Within this context, the study

involved programming to search for an optimal stopping criterion or criteria.

1.4 Overview

This paper begins with a review of the literature found in Chapter 2, in which
ANNs and eleven potential stopping criteria are discussed. The study continues
with an explanation of the methodology which was used (Chapter 3). Additionally,
Chapter 3 details the Exclusive OR (XOR) problem and the meshed data set problem
which were used for this study. Chapter 4 gives the results of ANN experiments on
the XOR and the meshed data set problems. Finally, Chapter 5 outlines the general

procedure developed and refined in this study and lists areas of future research.




II. Laiterature Review

This chapter provides a literature review of artificial neural networks (ANN),
with particular emphasis on the area of this study. Specifically, it will cover general
information, building blocks of the back propagation algorithm, the back propagation
algorithm itself, and close by covering the area of this study, criteria for determining

when to stop training the artificial neural network.

2.1 General Information

To begin, the reader needs a general picture of the artificial neural network.
An ANN is a family of algorithms used in learning which are based upon concepts
developed from observing how the human brain works (Miiller, 1990: 12). They
use parallel processing to look at the entire picture instead of the processing each
input individually. Nelson provides an example of this parallel processing which is

reproduced in Figure 1. If each input is individually processed as in the traditional
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Figure 1. Missing Letter Example

computer, that is, one letter or information bit at a time, the saying would be ex-
tremely difficult to read. For example, it would be virtually impossible to even know
that the figure contained three separate sayings if the information were processed in

this piecemeal manner. By stepping back and processing more than one input at a




time, however, the true picture becomes clear. The reader can see that the vowels
are missing and quickly fill in the missing letters to come up with the three sayings
(Nelson, 1991: 15 - 16). The ANN tries to do the same thing; it takes more than one

input and puts those inputs together to learn and provide correct classifications.

Artificial neural networks go by many names, such as the following: neural net-
works, parallel distributed processing models, connectivist or connectionism models,
adaptive systems, self-organizing systems, neurocomputing, or neuromorphic sys-
tems (Nelson, 1991: 19). Each name may mean something slightly different. This

paper will use the term artificial neural network or ANN.

In his overview, Lippmann presents a taxonomy of six types of ANNs. Lipp-

mann’s diagram is reproduced in Figure 2. This taxonomy is divided based upon

NEURAL NET CLASSIFIERS FOR FIXED PATTERNS

BINARY INPUT CONTINUOUS VALUED INPUT
SUPERVISED UNSUPERVISED SUPERVISED UNSUPERVISED
HOPFIELD NET HAMMING NET PERCEPTRON MULTILAYER KOHONEN
GROSSBE(G PERCEPTRON SELF-ORGANIZING
CLASSIFIER FEATURE MAPS
OPTIMUM LEADER GAUSSIAN K-NEAREST K-MEANS
CLASSIFIER CLUSTERING CLASSIFIER NEIGHBOR CLUSTERING
ALGORITHM MIXTURE ALGORITHM

Figure 2. Types of Artificial Neural Networks




the method used by the neural network. The first division is based upon whether
the input data is binary or continuous. The continuous algorithms can also be used
with binary input data. The second dividing test is based upon whether or not
the training is supervised. Finally, the supervised training is again split (Lippmann,
1987: 6-7). This research will use continuous input, supervised training, and multiple

layers.

Before going further into neural networks, it is best to define the terms which

follow:

e Epoch: A cycle of presenting all training cases one time (Weiss, 1991: 85).

e Exemplars: Example data points for which the output class is known. The

network is trained using these data points (Tou, 1974).

e Multilayer perceptrons: “[Feedforward] nets with one or more layers of nodes
between the input and output nodes.” The additional layers are where the

hidden layers reside (Lippmann, 1991: 15).

e Feature: An input attribute of the output to be measured which contains useful
information for distinguishing an item between the various classes. A feature

is similar to an independent variable (Tou, 1974).

e Feedforward network: This type of network exists when no “processing element
output can be an input for a node on the same layer or a preceding layer”
(Nelson, 1991: 50-51). A feedforward network is the usual type of artificial

neural network found in the literature.

e Hidden Units: Neurons which are neither input or output units. They are
located between the input and output units in a multilayer neural network

(Guyon, 1991: 224).

¢ Training Procedure: The way a neural network ‘learns’. This will be covered

in greater detail later.




2.2 Artificial Neural Network Building Blocks

Before covering the specific steps to be taken in the back propagation algorithm,
it is first necessary to understand some of the building blocks that the algorithm will

use. These building blocks are covered in this section.

2.2.1 Single Layer Perceptron.  The simplest form of artificial neural net-
work is the single layer perceptron. It is characterized by weights and features

(independent input variables) (Weiss, 1991: 84).

A single layer perceptron can be represented as the weighting scheme or eval-
uation criterion which allows one to draw a dividing line in a two-dimensional space
which segregates two types of outputs into separate, distinct regions. For an exam-

ple, see Figure 3 which is reproduced from Lippmann. In Figure 3, there are two
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Figure 3. Single Layer Perceptron

classes of outputs (A and B). These outputs can be separated by the line in the
figure. After this line is drawn, one need only know on which side of the line a point
is to determine whether it is type A or type B. Using a learning scheme, a line can

be drawn to separate A and B based upon the input features, which would be the




values of z¢ and r, here. In multidimensional space, a hyperplane divides the region

(Lippmann, 1987: 13).

The previous example (Figure 3) is linearly separable, meaning a line can be
drawn between the two classes. “When the two classes are linearly separable, the
perceptron training procedure will be guaranteed to converge to an answer” (Weiss,
1991: 85). (The perceptron training procedure uses the back propagation algorithm
which will be explained in Section 2-3.) However, if the classes are not linearly
separable, “the procedure will not converge and will keep on cycling through the
data forever” (Weiss, 1991: 87). Linear separability is the exception rather than the
rule. Minsky and Papert illustrated this weakness of the perceptron. They pointed
out that if the individual classes investigated under the single perceptron algorithm
method can not be separated by a hyperplane, then the single perceptron algorithm

is not appropriate (Lippmann, 1987: 15).

Training or adjustment of the weights occurs in the single layer perceptron only
when an error (misclassification) occurs. “When a false positive error occurs, i.e., the
true answer is 0 and the perceptron says 1, each weight is adjusted by subtracting
the corresponding value in the input pattern, and 1 is subtracted from the threshold.
For false negatives, each weight is adjusted by adding the corresponding value in the
input pattern, and 1 is added to the threshold. The hope is that each adjustment
will move the weights closer to the true weights” (Weiss, 1991: 85).

2.2.2 Multilayer Perceptron.  Multilayer perceptrons are more flexible than
the single layer perceptrons. Single layer perceptrons are only capable of dividing a
space with one hyperplane. Multilayer perceptrons, on the other hand, can “form
any, possibly unbounded, convex region in the space spanned by the inputs.” The
convex regions formed in the multilayer perceptron can have at most the number of

sides as there are nodes in the first layer of the network (Lippmann, 1987: 16).




Weiss deals with either one or two hidden layers in the multilayer network.
With one hidden layer, he notes that the multilayer network can “implement most
decision surfaces, and can closely approximate any decision surface (Weiss, 1991:
94). Regarding the three layer network which includes two hidden layers, Weiss
lists its attributes as being able to “implement any separating decision surface when
sufficient hidden units are represented in the two layers” (Weiss, 1991: 94). While
Weiss compliments the more capable network with more than one hidden layer, he
concludes that one hidden layer is sufficient and that “additional layers do not add
any representational power to the discrimination” (Weiss, 1991: 94). This paper

concentrates on the case where one hidden layer is used.

2.2.83 The Training Process.  Applications of neural networks involve four
levels of learning: No learning (fixed weights), supervised learning, semi-supervised
learning, and unsupervised learning (Guyon, 1991: 233). Supervised learning in-
volves minimizing some cost function £ which accumulates the errors as measured
by the difference between the actual outputs and the desired outputs (Guyon, 224).
(The function E is an error function tracking the difference between the ANN output
and the desired output. The actual form of F varies. It may be represented by the
absolute value of the error, the squared error, or some other form. Forms of the
function E to be investigated will be explained later. For the mathematical formu-
lation of the various functions E, please see Appendix B.) The goal is to minimize
this function E. Guyon lists two techniques for this minimization: Monte Carlo
techniques and gradient descent. Guyon prefers gradient descent because, although
it usually leads to a suboptimal solution (or a local maximum or minimum), it is
computationally less intensive than the Monte Carlo techniques (such as simulated
annealing) (Guyon, 1991: 224). Supervised learning and gradient descent techniques
were used in this study. Additionally, procedures exist to compensate for the gra-
dient descent’s propensity to find suboptimal solutions. These procedures will be

covered later.




Generally, there are three versions of algorithms used to train a neural network:
Hebb’s rule, the perceptron algorithm, and the Widrow-Hoff algorithm. These latter
two algorithms are basically the same; the difference being that, under the percep-
tron, training is only done if the network gives the wrong answer. Under the Widrow-
Hoff algorithm, training is done as long as the answer is not perfect (Guyon, 1991:
220 - 221). This study exclusively used the Widrow-Hoff algorithm. The mathemat-

ical rules for this algorithm will be covered later in the back propagation section.

To conduct the training process, the data is split into two groups. The first
group is called the training set. The training set is used “to design the classifier”
(Weiss, 1991: 26). This means that the training data is given to the artificial neural
network and weights are adjusted, rewarding correct responses and penalizing incor-
rect responses. The second group of data is called the testing set. The testing set is
not given to the ANN until the training set has reached a classifying decision. After
this decision is reached, the testing set is given to the ANN and an error rate (or
some other measure such as error sum of squares or total absolute error) is deter-
mined. This error rate of the artificial neural network on the testing set is known
as the test sample error rate (Weiss, 1991: 28). Additionally, data can be divided a
third time into a set called the validation set which can be used after training and

testing are complete (Wiggins, 1991: 28).

Essentially, the learning or training rules specify an “initial set of weights and
indicate how the weights should be adapted during use to improve performance”
(Lippmann, 1987: 4). The key to this learning process is the adjustment of the
weights. To begin with, the artificial neural network is given the training data.
Weights which lead to the ANN correctly identifying the response are strengthened
and weights which lead to incorrect responses are weakened. The key here is getting
the response trained to fall on the correct side of the threshold level (Nelson, 1991:
48).

10




Weiss addresses the concept of sufficiency of data. He states a “widely used
heuristic” that “a network should average at least ten samples per weight in the
network” (Weiss, 1991: 104). Additionally, Weiss concludes that larger sample sizes
(of 1000, 5000, or higher) yield very accurate results. On the other hand, he notes
that the lack of data is more often the limiting factor. Given this potential dearth
of data, Weiss recommends splitting the data in the following proportions: % for the

training set and 1 for the testing set (Weiss, 1991: 28 - 30).

2.2.4 FError Rate. In the absence of linear separability, errors will occur in
the artificial neural network learning process. Throughout the process, then, Weiss
notes that the goal could also be stated as “finding the best fit to the sample data

without overspecializing the learning system” (Weiss, 1991: 37).

When developing a learning system, the apparent error rate of the system
developed from a sample (the classification error rate of the training set) is the
‘obvious’ place to begin. However, Weiss notes that the apparent error rate is “a
poor estimator of futu.2 performance.” Weiss continues “In general, apparent error
rates tend to be biased optimistically. The true error rate is almost invariably higher
than the apparent error rate. This happens when the classifier has been overfitted (or
overspecialized) to the particular characteristics of the sample data” (Weiss, 1991:
24). The best way to correct for this is to ensure a random sample of data has been
obtained. This maximizes the opportunity for finding the true error rate. Regarding
this quest, Weiss noted that “humans have difficulty doing things randomly” (Weiss,
1991: 26). Therefore, using a machine or computer to decide upon the random

sample is recommended (Weiss, 1991: 26).

Weiss notes that resampling methods can provide an even better estimate
of the true error rate, especially when the data set is small. A simple form of
resampling technique is called the leaving-one-out technique. In it, the entire sample

is treated as part of the training set except for one data point which is treated as

11




the testing set. Each data point is iteratively rotated into the status of the testing
set. Because of the extensive number of iterations required under this technique
(one iteration for each exeniplar), Weiss recommends using it only on smaller sample
sizes. With the continuing evolution and improvement of computer design and speed,
however, the extensive number of iterations required is less of a problem than it
once was. The leaving-one-out technique is also noteworthy because it is unbiased
and accurate. However, it has a weakness of a relatively high variance, especially
in smaller samples (Weiss, 1991: 30 - 33). As an alternative, Weiss mentions the
bootstrapping technique (Weiss, 1991: 33 - 36).

Resampling methods such as the leaving-one-out technique or bootstrapping
can be used for other statistical parameters besides estimating error rate. Weiss
mentions that they can be used for evaluating how many variables to put in the
model and evaluating how many nodes to put in the decision trees (Weiss, 1991:
37).

Since the particular resampling technique depends upon the sample size, Weiss
offers guidance. Use cross-validation if the sample size is greater than 100. Use
leaving-one-out if the sample size is less than 100. Weiss further states that, in
the situation of ‘very small samples’ (which he defines as fewer than 50 cases),

bootstrapping techniques “may be computed” (Weiss, 1991: 38).

Weiss points out that adding additional features, unlike in regression, may
actually yield worse results. He lists two possible reasons. First, the predictive ability
of some classifiers may decrease with poor or noisy data. Second, some methods
may overweigh redundant features which essentially measure the same thing. The
effect here is that of counting something twice. Since actual data is often noisy or
redundant, the impact of adding weak features to the data set may be to degrade
performance. To limit this impact, feature selection is used to minimize the effect

of noise and redundancy. The effect of feature selection is to throw out or eliminate
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features which do not have positive impact upon the predictive capability of the

classification scheme (Weiss, 1991: 40).

The true error curve is a function of the complexity of the model. As com-
plexity increases, the true error rate initially decreases before leveling off. After this
flattening, it wanders around for a period before increasing. Using this fact, Weiss
concludes that, if the error rates are close, one should select the simpler model. He
expands this to explain the one-standard error heuristic, which “selects the simplest
solution that falls within one standard error of the minimum error rate solution”

(Weiss, 1991: 45 - 46).

2.2.5 The Sigmoid Function. The sigmoid function is another tool used in
neural networks which must be understood before discussing the actual processing
algorithm. It is used as a ‘limiter,” or something that distinguishes between the
images or desired responses. There are three types of limiters: hard limiters, thresh-
old logic elements, and sigmoidal nonlinearities (Lippmann, 1987: 4). See Figure 4,

reproduced from Lippmann.

Recently, the sigmoid unit, a modified version of the McCulloch-Pitts neuron,
has increased in popularity. The sigmoid unit uses the smoother hyperbolic tan-
gent function which has the advantage of being a differentiable function, making it
possible to use gradient search techniques for training the multilayer neural network
(Guyon, 1991: 223). Nelson stresses the advantage of the sigmoid function by saying

that “both the function and its derivatives are continuous” (Nelson, 1991: 48).

Nelson lists two sigmoid transfer functions. In both cases below, y is the output
of the sigmoid function and z, the input, is any real number. First, if the transfer

function uses outputs of 0 and 1, the transfer sigmoid is defined as follows:

_ 1
- l1+e=

y

13




1 N-1
INPUT 'uf( zw'g|-0)
isQ
LR
o f (o
f, (o) b “ o bl
0 a- 6 a— o a-
-1
HARD LIMITER THRESHOLD LOGIC SIGMOID

Figure 4. Types of Limiters

On the other hand, if the transfer function uses outputs of -1 and +1, the

transfer sigmoid is defined as follows:

1
142

y=1-

for £ > 0 and
1

1—-2z

y=-1+

for < 0 (Nelson, 1991: 47-48).

Regarding Nelson’s two choices, Guyon states that a 0 is used instead of -1 in

scaling for ‘convenience’ (Guyon, 1991: 220).

Regardless of the sigmoid function used, the objective is to allow the artificial
neural network to emulate the brain. Within the brain, each nerve cell can respond
to as many as 200,000 inputs, although 1,000 to 10,000 inputs are more typical. The

inputs are either ‘fire’ or ‘do not fire,” similar to a 0-1 variable (Nelson, 1991: 40).
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These sigmoid functions provide the mathematical background for either firing or

not firing.

2.2.6 Least Mean Square.  The least mean square learning system (or LMS)
is an alternative similar to the perceptron and serves as an introduction to the back
propagation algorithm. In LMS, the output is now the real number which results
from the equations as opposed to the adjusted integer used under the perceptron

technique. Therefore, its output O is given as follows:
0= z: w;l; +0

where w; is the ith weight, I; is the ith input, and 6 is a constant or bias term.

Notice that the LMS technique consists of one outpnt and one layer.

Under the LMS procedure, the true output, denoted as T, is an integer. The
actual output, O, is real. The goal of LMS is to minimize the average square of the
difference between these two values (Weiss, 1991: 87 - 88).

The training procedure under the perceptron procedure and LMS is the same
for the most part. A key difference, however, is the adjustments. Since both T' and
O are limited to integers under the perceptron procedure, there is a chance for an
exact match which would result in no adjustment. Under the LMS, on the other
land, exact matches are rare because O is a real number. Therefore, adjustments

are more frequent under LMS (Weiss, 1991: 89).

LMS offers another advantage. Since LMS seeks to minimize the difference in
terms of the minimum error distance, it tends to perform well even if the classes are

not linearly separable (Weiss, 1991: 89).

LMS seeks to converge to a solution using the technique known as gradient
descent. Gradient descent techniques have two weaknesses. First, they may oscillate

and not converge. Second, if they do converge, they are not guaranteed to converge to
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the correct answer (Weiss, 1991: 89). To improve performance in spite of this picking
of the local minima, Lippmann recommends the following alternatives: “allowing
extra hidden units, lowering the gain term used to adapt weights, and making many
training runs starting with different sets of random weights” (Lippmann, 1987: 18).
To test for lack of convergence, Weiss recommends repeating the training sessions
several times on the complete sample. If these different sessions, each starting from
different initial weights selected at random, result in different final weights, a likely
conclusion is that a local minima has been found. To correct for this local minima,
Weiss recommends either decreasing the learning rate or increasing the momentum
(Weiss, 1991: 106). The concept of learning rate and momentum arise in the back

propagation algorithm, which will be covered next.

2.8 Back Propagation

The previous information (the multilayer perceptron, the training process, the
sigmoid unit, and the least mean squares technique) come together in the back
propagation algorithm. This back propagation algorithm is the key to this study of

artificial neural networks.

Guyon praises the error back propagation algorithm as an “easy and elegant
way of performing on-line (or stochastic) gradient descent to train neural networks”
(Guyon, 1991: 226). The basic concept of this procedure is that outputs are first
computed during the forward pass through a network of perceptrons. The output
is next compared to the desired output. In the same manner, the discrepancy of
the hidden unit outputs from the desired output level are computed during the back
propagation pass and weights are adjusted accordingly. Finally, a least mean squares

stopping criterion is used (Guyon, 1991: 227).

2.3.1 Back Propagation Algorithm. This section covers the actual back

propagation algorithm. It is based primarily on the algorithms as presented by
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Lippmann (Lippmann, 1987: 17) and Rogers (Rogers et al., 1990: 56). In general,
it is a iterative sequence based upon minimizing the mean square error “between
the actual output of a multilayer feed-forward perceptron and the desired output”
(Lippmann, 1987: 17). For distinguishing between results, the back propagation

algorithm uses the sigmoid function. The algorithm is a five step process.

Step One: Initialize the weights. Lippmann recommends initializing the weights
to “small” random values (Lippmann, 1987: 17). Rogers states that the weights are
normally from a uniform distribution between -.5 and .5 (Rogers et al., 1992: 56).
Weiss recommends setting the initial weights randomly to numbers between 0 and 1
(Weiss, 1991: 85). The values chosen simply must not all be the same; if they are,
the training will fail (Wiggins, 1991: 19).

Step Two: Feed data to the neural network to conduct the training process.
The data contains the input values as well as the desired output. In a typical
application such as pattern recognition, the desired pattern would be assigned an
output of 1; all other outputs would be assigned a value of 0. Lippmann presents two
alternatives for treating the training data set. First, all of the training data may be
presented continuously. Second, the user may break up the training data into smaller
sets, then use the different training data sets in a cyclical fashion. Repeat either of
these two techniques until the weights stabilize. Lippmann does not recommend one
technique over the other. This study will treat the training data as one complete

set.

Step Three: Use the sigmoid nonlinearity to calculate the values of the outputs,

a vector of ys.

Step Four: Adjust the weights as appropriate. This is where the back propa-
gation algorithm gets its name because the algorithm starts at the output nodes and

works backwards. Weights are adjusted according to the following equation:

wij(t + 1) = wi;(t) + néjz;
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where w;; is the weight from node : (which may either be an input or a hidden node)
to node j at time ¢; z; is either the output of node ¢ or is an input; 5 is a gain term

or learning rate; and §; is an error term for node j.

The actual computation of §; depends upon where j is located in the artificial

neural network. First, if 7 is an output node, then

6; = y;i(1 — y;)(d; — ;)

where d; is the desired output of node j and y; is the actual output.

On the other hand, if j is an internal hidden node, then §; is determined as

follows:

6; = zj(1 — z;) Z&kwjk
k
where k is over all nodes in the layers above node j.

Lippmann concludes step four by noting “convergence is sometimes faster if
a momentum term is added and weight changes are smoothed by” the following

equations:

wij(t + 1) = wi;() + néjz: + a(wi;(t) — wi;(t — 1))

where 0 < a < 1.

Step Five: Return to step two and repeat until either the maximum number

of iterations is reached or the error is within tolerance.

2.3.2 Comments on Lippmann’s Back Propagation Algorithm.  Others have
provided relevant inputs to the back propagation algorithm. Some of those comments

will be covered next.

As with any gradient search technique, an important factor is knowing when to
quit. Weiss recommends two possible stopping criteria which may be used in such a

way that a stop is initiated as soon as either of the criteria is met. In addition to the
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previous technique of stopping after a predetermined number of epochs have been
conducted, ANN training can stop after progress toward improving the minimization
of the error distance is no longer being achieved. Care here must be taken to ensure a
sufficient number of epochs occur between measurements since improvement on each
individual epoch is not guaranteed under the back propagation procedure (Weiss,

1991: 101).

Under the Lippmann algorithm, a learning rate n and a momentum term a
must be decided upon. Weiss recommends a learning rate of .5 and a momentum
term of .9 (Weiss, 1991: 101). Rogers lists an example of using a learning rate of .3
and a momentum rate of .7 (Rogers et al., 1990: 56). According to Weiss, ideally,
“one would like to use the largest learning rate that still converges to the minimum
solution” (Weiss, 1991: 100). The goal of incorporating a momentum term is to
speed the rate of convergence and avoid local minima (Weiss, 1991: 101). Finally,

Wiggins recommends a learning rate of approximately .001 (Wiggins, 1991: 14).

Backward propagation is data hungry. Lippmann notes that “in many cases
the number of presentations of training data required for convergence has been large
(more than 100 passes through all the training data). Although a number of more
complex adaptation algorithms have been proposed to speed convergence, it seems
unlikely that the complex decision regions formed by multilayer perceptrons can be

generated in few trials wi:en class regions are disconnected” (Lippmann, 1987: 18).

Perhaps the most extensive comments on back propagation come from Weiss.
He offers a similar algorithm for back propagation and notes that the back propa-
gation algorithm possesses some strong points and some weak points. For example,
even the slightest change in net structure may yield vastly different results. Weiss
offers some alternatives for improvement. In the algorithm, the programmer has
the option of altering the weights after going through the entire training set (after
each epoch) or revising after each exemplar. Weiss recommends revising weights

after each exemplar, “although revision by epoch may have the stronger theoret-
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ical foundation” (Weiss, 1991: 99). Hart concurs with this because it speeds up
training, “especially in the early stages” (Hart, 1992: 218). Other suggestions for
improvement include the following: presenting the training cases in random order;
using biases randomly selected between -.5 and .5; normalizing inputs to numbers be-
tween 0 and 1; and repeating training sessions several times with different randomly

selected initial weighis (Weiss, 1991: 99 - 100).

Another potential weak point of the back propagation technique is the fact
that, if enough hidden units are added to a network, one can eventually lower the
error distance down to zero. However, the < anger here is that of overfitting to the
training data. Weiss gives the example that, with the addition of sufficient hidden
units, one can get the error distance down to zero even if the sample data has an

inherent Bayes error rate of 30% (Weiss, 1991: 103).

Weiss lists several potential problems with the back propagation procedures.
He calls it a ‘user’s nightmare.” Those potential problems include the following:
choosing the appropriate learning rate and momentum term, choosing to train by
epoch or by pattern (case), finding an effective initial random starting state, and
deciding when to stop. Changing any of these parameters may have a ‘major’ impact

upon the results (Weiss, 1991: 108).

Weiss mentions a variation on the standard back propagation procedure which
uses ordinary differential equations (ODE) and often yields superior results. This
technique eliminates the need to adjust parameters and treats the differential equa-
tions as black boxes that can be called on without a detailed understanding of the

mathematics occurring inside them (Weiss, 1991: 108).

2.4 Stopping Criteria

An important, yet relatively unexplored area of ANNs is determining when to

stop ANN training. The goal of a stopping criteria should be to stop the learning
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process of an ANN before the ANN starts overfitting the exemplars (Ramamoorthy,
1989: 136).

Ramamoorthy and Shehkar discuss one method of determining a stopping
point. They call for monitoring the classification error rate of a test set in addi-
tion to monitoring the classification error on the training set. Inherent in this is
the assumption of the training and test sets being independent. As training occurs,
the classification error should initially decrease for both sets. Ramamoorthy recom-
mends watching the error of the test set as it decreases. When a general increase
in the error classification curve of the test set occurs, it indicates that the train-
ing data set is being overfit and that training should cease. The error function has
been minimized and this is the stopping point for the learning algorithm. This is
referred to as a “transition from [an] underfitted model to overfitting of [the] model”

(Ramamoorthy, 1989, 140).

Another criterion which may be monitored during ANN training is the error
sum of squares. Using this criteria, the error is computed between the desired output
and the ANN output. A key point to remember in using the back propagation
algorithm is that the sigmoid function is not capable of providing perfect matches
between the desired output and the ANN output. For example, regardless of the

value of the input z, the output function

_ 1
T 1l4ec

y

can not possibly give an output of 0 or 1, which is the desired response (Choie,
1991: 723). Therefore, when seeking to minimize the sum of squares for error, ESS,

defined as
ESS = %E(y,- - d,-)2

(where y; is the computed output and d; is the desired output), the sum can never

reach 0.
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When using ESS, the establishment of the critical value of ESS at which ANN
training should stop is important. For example, assume the goal of ANN training
is to train the network until the ESS is 0.04. In this case, every exemplar in the
training set must be off by less than 0.2 from the desired response for training to
terminate. Otherwise, any individual exemplar which is off by a value of 0.2 or
higher unilaterally pushes the sum of function ESS to greater than 0.04 (because
0.22 = 0.04) regardless of the error in all other exemplars. Therefore, a single
exemplar may keep the algorithm from stopping if the stopping criteria is the function

ESS (Choie, 1991: 724).

Because of these complications caused by one potential exemplar, Choie and
others recommend a test which seeks the maximum error for each exemplar of some
constant, say .5 (Choie, 1991: 724). They further point out that this stopping
criteria, like the rest, has potential problems and should not be used universally.
On the other hand, some note that squaring the error seems to lead to overlearning
the training set and therefore recommend using the absolute error instead (Hergert,

1992: 980).

Another stopping criteria is proposed by Pan and Chen. They point out that
a measure of completeness is the amount by which the weights are changing during

each epoch. Therefore, they propose monitoring the following function:
E =} [wi(t+1) — we(t)]®
k=1

where m is the total number of weights and wy is the weight of neuron k for the ¢th
epoch (Pan and Chen, 1992: 360). Pan and Chen do not give a standard for how

much weights can change before the optima is reached.

An extension of the Pan and Chen stopping criterion involves observing the

average absolute relative weight change WC defined over n exemplars as follows:
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Using a third set of data, or a validation set, is another procedure. The vali-

WC =n

dation data set is treated similar to the testing data set in that training ceases when
the classification error rate on the validation set increases. Using a validation set in
this way was recommended for the case where the training and test data sets con-
tained noise (Hergert, 1992: 980). This thesis study will use the XOR problem and
a mesh problem with known data; therefore the validation set will not contain noise.
However, the principle of a third data set appears relevant even without considering

the addition of noise.

In summary, the literature provides the following different suggestions on func-
tions of the artificial neural network to track when deciding when to terminate ANN

training.

e Total absolute error.

e The error sum of squares.

e The largest absolute error.

o Classification error rate for the training set or the testing set.
o Size of the change in weights between epochs.

Additionally, the following stopping criteria will be evaluated.

e A combination of the classification error rate for the training set, the testing

set, and the validation set.

A technique where each potential stopping criterion is a switch, stopping when

a suflicient number of switches are turned ‘on’.
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IIT. Methodology

This chapter covers the decisions and techniques to be used in this evaluation.
Specifically, it covers the following areas: introductory decisions, the problem to be
solved, the FORTRAN program, potential stopping criteria to be considered, and

evaluation criteria.

3.1 Introductory Decisions

8.1.1 Strategic Decisions. In beginning the project development, some
strategic decisions were made regarding performing back propagation using multi-

layer artificial neural networks. Those decisions are detailed below.

o Selecting the data. Choices here included using actual or computer generated
data. Since it was desired to know whether ANN learning had been successful,
a great deal of data was needed. Therefore, the study used random, computer

generated data.

¢ Selecting a data philosophy. Generally, there were two ways to treat the train-
ing versus the testing data. First, they could both have been in a larger data
set from which the training and testing exemplars were drawn. Alternatively,
the study could have used distinct training and testing sets. This study ex-
amined both approaches, keeping the training and testing exemplars separate
in one part of the initial experiment and randomly assigning exemplars to the
training and testing sets during the second part of the initial experiment in an
attempt to prevent overlearning or overfitting the data in another part of the
initial experiment.

¢ Evaluation philosophy. In the end, a technique must exist to decide which ANN
solution was the ‘best.’ Alternatives already presented include the classification

error rates on various data sets, the largest absolute error, the sum of squared
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errors, and the speed of reaching a solution. The study used the classification
error rate on a separate validation set. The validation set used was larger than

the training and testing sets and is considered to represent the true population.

o Selecting the problems to solve. The study used two problems which are com-
mon in the study of ANNs: the Exclusive OR (XOR) problem and a meshed
data set problem. These problems were chosen because of their relative sim-

plicity and the large availability of data points.

3.1.2 Tactical Decisions. In addition to the strategic decisions, running

the ANN requires some tactical decisions.

e Number of nodes and hidden layers. Both of these factors can affect the training
time and the ability of the artificial neural network (ANN). For the purposes
of deciding when to stop training, however, the number of nodes and hidden
layers must be held constant as a controlled variable. Therefore, the general
practice in the literature of having one hidden layer was used. The decision of
how many nodes to place on the hidden layer is more arbitrary. As an initial
experimental set up, three nodes in the hidden layer were used. For the meshed
data set problem, the number of hidden nodes was varied from four to twenty

(inclusive for even numbers only).

e Number of training vectors to use. Foley recommended using three times as
many training vectors per class as there are features. Additionally, he noted
that if the total number of training vectors for a two-class problem is less than
twice the number of features, the error rate on the training set will be very
close to zero (Rogers et al., 1990: 61). Since the beginning experiment called
for two features with one hidden layer, a training set containing 100 exemplars

was used. This number safely exceeded Foley’s recommendation.

o Setting the learning rate and momentum rates. The current literature does

not provide a consensus for these attributes of the ANN. Therefore, a learning

25




3.2

rate of 0.35 as used by those with experience in ANNs such as Rogers (Rogers,
et al., 1990: 56) will be implemented. Momentum, on the other hand, was
treated differently. Although it offers some advantages in an ANN, its primary
attribute is that it allows training to be sped up. Since this study was primarily
interested in deciding when to stop training as opposed to how fast the ANN
can get to that stopping point, momentum was omitted from the ANN algo-
rithm. Remember additionally that the back propagation algorithm is based
upon a form of the steepest descent, which is widely known to converge slowly.
Therefore, the back propagation algorithm was expected to be slow and the

study was not primarily concerned with the speed of convergence.

Normalizing the input features. The general consensus in the literature on this
question leans toward normalizing the input features to values between -1 and
1. This philosophy was followed. Using the XOR problem, all input features
took on values between -1 and 1. If different inputs are used later, they must

be normalized outside of the program before input.

Updating weights after each exemplar or each epoch. Here again, the literature
allows either decision to be correct. This study used the technique of updating

weights after each exemplar.

Randomizing the data. ANN training used the technique where the order of the
exemplars were randomized in the training set before ANN training. Although
the effect of not doing so is unknown, the effect can not be deleterious in any

case.

Problem Selection

This study examines two problem data sets which will be descr*hed next.
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3.2.1 The Exclusive OR Problen.. An investigation of stopping critcria
required an abundance of data where the correct output is known. Therefore, the

Exclusive OR (XOR) problem was used for the pilot study.

The XOR problem is popular because of its relative simplicity and the ability to
generate an abundance of data. It is a more complex region than can be handled by
the single perceptron and the two regions can not be separated by a single hyperplane.

Essentially, the data are divided as shown in Figure 5. The individual data points

A

Feature 2
0' 8o
=
Feature 1
fo 6

Figure 5. The XOR Problem

are divided based upon the quadrant in which they reside. For example, points in the
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area 0y are assigned a response of 0 and points in areas #, are assigned a response of
1. Since any point within any of the regions can be used as an exemplar, an infinite

number of data points exist for this problem (Rogers et al., 1990: 53).

Since the study used a hypothetical problem for research purposes, ensuring
that the proper features were selected was not a concern. The possibility of deleting a
relevant feature did not exist unless a random noise variable was added. Likewise, the
goal of the thesis was to measure the relative attributes of different stopping criteria
and not to find a response surface methodology of the various factors which may
affect the learning rate. Therefore, the number of hidden nodes was held constant

at three and the learning rate held constant at 0.35.

3.2.2 The Mesh Problem.  The second problem examined will be referred
to as a mesh problem because it contains a meshed data set. The mesh problem
is more complicated than the XOR problem because it involves two regions which
can not be separated by two lines. The solution space for each of the outputs for
the mesh problem is more complicated and can best be described by a picture. See
Figure 6 for a diagram of the two response spaces. Response 1 is the shaded area

and the remainder of the space is assigned response 0.

3.3 The FORTRAN Program

The FORTRAN program begins by taking the XOR data and reading each
exemplar into the appropriate array for the three individual data sets: the training
set, the testing set, or the validation set. Each of these sets is used differently for
training and evaluation purposes. The training set is used in training the ANN.
The testing set is used primarily for gathering data for the stopping criteria. The
validation set is used to represent the population when evaluating the goodness of

the proposed solution.
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Figure 6. The Mesh Problem

After the data is assigned to the various sets, the ANN begins the learning
process. After each epoch, each potential stopping criterion is queried to determine
its current level and a new random order of training exemplars is assigned. The
process continues for each set of beginning random weights until all stopping criteria
have been tracked through the maximum number of epochs. Finally, the program
checked to see if a sufficient number of replications of beginning weights have been

used. At each replication, new initial random weights are assigned.

When enough replications of the program have been run, the output of each
potential stopping criterion is compared to the classification error rate for the vali-
dation set as a representation of the output of the ANN on the population. An ideal

predictor of when to stop ANN training should cross some threshold or exhibit some
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telltale characteristic at the point at which the classification error rate of the valida-
tion set is at a minimum. For a flow chart description of the FORTRAN program,

see Figure 7.

BEGIN

ASSIGN EACH EXEMPLAR TO AN ARRAY

ASSIGN RANDOM WEIGHTS

TRAIN ANN USING NEXT EXEMPLAR

ARE ALL EXEMPLARS IN TRAINING SET PRESENTED? — NO
ARE A SUFFICIENT NUMBER OF EPOCHS COMPLETED? ———— NO
ARE A SUFFICIENT NUMBER OF REPLICATIONS COMPLETED? ———— NO
END

Figure 7. FORTRAN Program Flow Chart

3.4 Stopping Criteria

The essential goal here was to stop training at the optimum point such that the

ANN avoided overlearning and reached an acceptable error rate as soon as possible.
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Therefore, the study must answer the question of how many times the training data

should be presented.

Through reviewing the literature and by considering additional potential areas
of study, the following potential stopping criteria were considered as part of this

study:

e Total absolute error on the testing set.

¢ The error sum of squares on the testing set.

e The largest absolute error on the testing set.

e Classification error rate for the training set or the testing set.

e Size of the change in weights between epochs measured specifically in the fol-
lowing four ways: absolute weight change, squared weight change, relative

weight change, and mean weight change.

e A combination of the classification error rate for the training set and the testing

set as measured by the weighted average error rate.

e A measure where each potential stopping criteria is a switch, stopping when a

sufficient number of switches are turned ‘on’.

For the mathematical representation of these stopping criteria, please see Ap-

pendix B.

3.5 FEvaluation Criteria

Should the FORTRAN program indicate potential stopping criteria, a method
must exist to determine which stopping criterion is best. On this point, the literature

was limited. Therefore, the following strategy was decided upon.

1. Choose the method which resulted in the lowest classification error rate on the

validation set.
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2. Choose the fastest convergence to a final set of weights. In other words, if all

other things were equal, faster was better.
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IV. Results
4.1 Introduction

This chapter covers experiments conducted using the artificial neural network
(ANN) described in Chapter III. Chapter IV uses a chronological sequence of the
experiments to lead the reader to the conclusion that the classification error rate,
the moving average of the classification error rate, and the total absolute error (all
computed using the testing set) are the best indicators of the proper time to termi-
nate ANN training. However, the initial ANN settings must first be enumerated to

put the results in the proper context.

4.2 Initial Settings

The initial version of the ANN was trained on the Exclusive OR (XOR) problem
using the parameters which follow. It was trained using both the case where the
training and testing exemplars were kept separate throughout the experiment and
the case where each exemplar was randomly redesignated as belonging to either the
training set or the testing set at the beginning of each epoch. Parameters were set

as follows:

1. Maximum number of iterations: 1500.

2. Weighted Average Ratio of (training set to testing set): < or 1 to 1.
3. Learning rate (n or eta): fixed at 0.35

4. Moving average interval: 5 most recent observations.

5. Size of the training set: 100 exemplars.

6. Size of the testing set: 100 exemplars.

7. Size of the validation set: 600 exemplars.
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4.8 Initial Ezperiment

The goal of the pilot study was to monitor the status of the potential stop-
ping criteria to determine whether any of them change in a manner similar to the
classification error rate of the validation set, which was used to represent the true
population. Due to data limitations occurring in the real world, the actual classifica-
tion error rate on the validation set (the population) would be unknown to the ANN
programmer. The classification error rate for the validation set recorded during one

replication is given in Figure 8. If a potential stopping criterion reaches a threshold

58565666688
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Figure 8. Classification Error Rate on Validation Set

or exhibits a measurable change at the point at which the validation set classification
error rate is at a minimum, then it seems reasonable to believe that this stopping

criterion may represent an indicator of the proper time to terminate ANN training.
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In the initial experiment, the following items were tracked as potential stopping

criteria. Mathematical formulations of these criteria are given in Appendix B.

1. Classification error rate on the training set.
2. Classification error rate on the testing set.
3. Classification error rate on a weighted average of the training and testing sets.
4. Moving average classification error rate on the testing set.
5. Total absolute error on the testing set.
6. Error sum of squares on the testing set.
7. Largest absolute error on the testing set.
8. Absolute weight change.
9. Relative weight change.
10. Squared weight change.

11. Mean weight change.

4.3.1 Failed Criteria. Based upon initial runs of the program using the
XOR problem, the criteria which follow were judged as relatively weak indicators of
the proper time to terminate ANN training and were not selected for further study

consideration.

4.3.1.1 FError Sum of Squares. The error sum of squares (on the
testing set) of the difference between the ANN output and the desired response
yielded decreasing values throughout ANN training. Figure 9 shows the relationship
of the error sum of squares value to the epoch in which it was received. However,
the resulting differences in error sum of squares values were difficult to evaluate.
The difficulty arose from the fact that all of the differences between the desired
outputs and the ANN outputs were less than one. Squaring this difference yielded
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Figure 9. Error Sum of Squares

an even smaller value. While summing these values provided insight as to the status
of training, it used smaller (and therefore harder to discriminate) values than the
total absolute error stopping criterion which will be discussed later. The error sum
of squares was not studied any further because the total absolute error stopping
criterion yielded similar, more easily distinguishable results using essentially the

same information.

4.3.1.2 Largest Absolute Error.  Upon selecting the largest absolute
error on the testing set as a potential stopping criterion, it was believed that, as
ANN training occurred, the largest absolute error would decrease. While a largest
absolute error of less than 0.5 would indicate a 0.0% classification error rate and
therefore was an unrealistic standard, expecting the largest absolute error to decrease

seemed logical. If the largest absolute error was selected as an indicator for stopping
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ANN training, training would be terminated when the largest absolute error got
sufficiently small. However, the experiment revealed that, as training occurred and
the classification error rate decreased, the largest absolute error increased to values

approaching 0.9 as seen in Figure 10. Off line, a slight program modification was

Figure 10. Largest Absolute Error

made to investigate why this occurred. In the modification, the exemplar which
yielded the largest absolute error was recorded for each epoch. In nine cases out of
ten, the same exemplar (z; = —0.0515647, z; = 0.239364) resulted in the largest
absolute error from at least epoch 155 until the end. On average, this occurred
sooner than epoch 155. In the tenth case, exemplar z; = —0.883986, z, = 0.0143936
caused the largest absolute error from epoch 44 until the maximum of 1500 epochs
was reached. In summary, the ANN appeared to have picked out one exemplar close

to an axis (the classification border) and gravitated toward that exemplar as far as
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the largest absolute error was concerned. Waiting for one exemplar to be sufficiently
incorrect did not seem like a logical reason to terminate a training program which
was designed to find the correct answer. Therefore, the largest absolute error was

eliminated as a potential stopping criterion.

4.8.1.8 Weighted Average Error Rate. The weighted average error
rate was designed in an attempt to compensate for the tendency of some ANNs to
overlearn. Overlearning can be detected when the classification error rate on the
testing set begins to increase while the classification error rate of the training set
continues to decrease. By using part of the training set and part of the testing set,
it was expected that an optimal stopping point would occur somewhere around the
point at which the increase in the classification error rate of the testing set occurred.
However, this expected increase in the classification error rate for the testing set
never occurred. Refer to Figure 11. Therefore, for the particular XOR problem
used here, using a weighted average error rate provided no additional benefit for this

problem and was eliminated as a potential stopping criterion.

4.3.1.4 Absolute Weight Change.  The weight change between epochs
was monitored because a large weight change would seem to indicate large changes
in the ANN function and absence of a local optima. Conversely, a small weight
change would seem to indicate a relatively stable function in the current location.
However, the resulting absolute weight change between epochs yielded results too
inconsistent to be used for determining when to stop training. It was expected the
absolute weight change would decrease to a lower level around the ANN optima.
However, the absolute weight change varied throughout training in what appeared
to be a manner independent of the error classification rate of the validation set.
Refer to Figure 12. Therefore, absolute weight change was eliminated as a potential

stopping criterion.
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Figure 11. Weighted Average Classification Error Rate

4.3.1.5 Squared Weight Change and Mean Weight Change. The
squared weight change and mean weight change were essentially different ways of
computing the absolute weight change. Likewise, they yielded inconsistent results

and were eliminated as a potential stopping criteria.

4.3.2 Remaining Criteria.  After the above potential stopping criteria were
eliminated, two criteria remained: the total absolute error on the testing set and the

relative weight change.

4.3.2.1 Total Absolute Error. The total absolute error on the testing
set as measured by the sum of the absolute value of the difference between the desired
response and the ANN output indicated a potential reason for determining when to

stop ANN training. The total absolute error (see Figure 13) decreased rapidly early
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Figure 12. Absolute Weight Change

in training and leveled off at approximately the same epoch as the classification error
rate of the validation set leveled off. This mirroring of the classification error rate on
the validation set indicated that the total absolute error might be a good indicator

of the proper time to terminate training.

4.3.2.2 Relative Weight Change. The relative weight change re-
mained a valid criterion to be tracked, although it was assumed at the time that it
showed potential only as an eliminating factor. If the relative weights were changing
rapidly, it would seem to indicate that the ANN was not near a local optima, that
the function was relatively unstable and changing rapidly, and that ANN training
should continue regardless of the levels of the other potential stopping criteria. If,
on the other hand, the relative weight change was sufficiently small, ANN training

would be allowed to terminate should other factors indicate that a local optima was
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Figure 13. Total Absolute Error

near. Figure 14 shows relative weight change throughout training. Changes or spikes
much larger than those indicated here were not uncommon in other cycles of ANN
training. Given the high frequency of low relative weight changes early in ANN
training, the usefulness of relative weight change as a single indicator of the proper
time to terminate ANN training appeared unlikely. However, relative weight change
was still tracked due to insufficient evidence to eliminate it completely as a potential

stopping criterion at this point.

4.3.2.3 Previously Used Criteria.  Training and testing set classifica-
tion error rates remained valid indicators of the progress when training an artificial
neural network. However, classification error rate on the training and testing sets
had been previously evaluated as a method of determining when to terminate ANN

training. The goal of this study was to investigate new, different reasons to stop
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Figure 14. Relative Weight Change

training. Therefore, the study primarily looked at other measures for determining

when to stop ANN training.

The moving average error rate is basically a smoother version of the classifi-
cation error rate of the set (either training or testing) against which it is measured.
Therefore, the same logic was applied to the moving average error rate as was ap-
plied to the training and testing sets; that is, they have been previously evaluated.
All of these previously evaluated criteria remained as something which were tracked,

however.

4.3.83 Initial Ezperiment Summation. Therefore, the following stopping
criteria remained valid for continued consideration in the search for new criteria for

determining the proper epoch at which to terminate ANN training.
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1. Total absolute error.
2. Relative weight change.

In summing up the initial experiment, two additional areas must be covered.
First, recall that the maximum epoch setting for the initial experiment was 1500
epochs. By observing the classification error rate of the validation set over ten cycles
of 1500 epochs each, it was observed that no significant improvement occurred after
600 epochs (see Figuré 8). Therefore, a maximum of 600 epochs was used for future
experiments given the current values of 5 (or learning rate) and the current number

of ANN hidden nodes and layers.

Finally, recall that the initial experiment included an evaluation of the dif-
ferences between using separate training and testing sets and randomly assigning
an exemplar to either the training or testing set at the beginning of each epoch.
This paper will discuss this issue by using the total absolute error results, which
were typical of the output received in all of the other potential stopping criteria

categories.

When deciding when to stop ANN training, a consistent output from a poten-
tial stopping criterion is needed for that criterion to yield a consistent point at which
it indicated a time to stop training. The random assignment of exemplars failed to
meet this requirement. Qutputs from the measured characteristics varied widely
using random exemplar assignment. For example, while a total absolute error of
between fifteen and twenty appeared to coincide with the occurrence of a minimum
classification error rate for the validation set in every case when the training and
testing sets were kept separate, the total absolute error never reached this threshold
in some of the cases where the exemplars were randomly assigned at the beginning
of each epoch. If a standard were set using the random assignment case, it would not
be reached consistently. Similar results were received for other pctential stopping
criteria. Therefore, random exemplar assignment was eliminated and future experi-

ments included only the case where the training and testing sets were kept separate
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throughout training. Recall, however, that this was expected. The random exemplar

assignment technique was designed in an attempt to compensate for overlearning.
Since overlearning was not observed and the above inconsistent function outputs did
occur, it was decided to discontinue the practice of random exemplar assignment.
The practice of random exemplar assignment may still be useful should overlearning

OCcCur.

4.4 Second Ezperiment

Using the output from the first experiment and comparing the classification
error rate of the validation set with the total absolute error and the relative weight
change, certain tendencies of ANN stopping criteria were noted. First, the classi-
fication error rate on the validation set appeared to reach a minimum around the
time that the total absolute error was approximately 20. A total absolute error of
20 in this case equates to an average absolute error of 0.2 because 100 exemplars
were used in the training set. The second tendency noted was that relative weight
changes in excess of five percent appeared significant. Here, significant meant that
the ANN function did not appear to be stable in areas where the relative weight
change exceeded five percent. Therefore, an experiment was designed around these
points to test differing levels of these two potential stopping criteria on the ANN
responses. Specifically, an experiment was designed to record the classification er-
ror rate on the validation set and the speed of reaching a solution (as measured by
the epoch at which a simulated solution was selected) at varied levels of the two

remaining potential stopping criteria. Results of this experiment follow in two parts.

4.4.1 Single Stopping Criterion.  For the first half of the second experiment,
each of the two remaining potential stopping criterion were treated individually.
That is, when the level of either reached a given threshold for that potential stopping
criteria, it would serve as a signal to terminate ANN training for that criterion and

threshold level only. At this termination point, the classification error rate on the
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validation set and the current epoch were recorded. Using three levels for each

potential stopping criterion, nine total results would be explored.

4.4.1.1 Total Absolute Error. Under the single stopping criterion
portion of the experiment, ANN training was terminated when the total absolute
error reached the threshold levels of 15, 20, and 25. Total absolute error was defined
as the sum of absolute values of the difference between the ANN output and the
desired output. Results can be found in Figure 15, Figure 16, and Table 1. Both the
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Figure 15. Second Experiment: Classification Error Rate Versus Total Absolute
Error

classification error rate on the validation set and the total absolute error decreased
as training occurred. These results were expected and they appeared consistent with

Figure 8 and Figure 13.
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Figure 16. Second Experiment: Completion Epoch Versus Total Absolute Error

These results indicated that as the number of epochs increased, total absolute
error on the testing set decreased and the classification error rate on the validation
set decreased. This appeared to be consistent with the theory that the total absolute
error might be an indicator of when to terminate ANN training. A key remaining
question was whether total absolute error was an indicator of classification error rate,
and therefore a reason to terminate training, or whether the two characteristics just
happened to move together. The possibility that they may have just moved together
may be seen in Figure 13, where the total absolute error continued to decrease
slightly even after epoch 600, while Figure 8 showed that no significant change in

the classification error rate occurred after epoch 600.

4.4.1.2 Relative Weight Change. In this section of the experiment,

ANN training was terminated when the relative weight change reached the threshold
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Threshold { Number Mean Epoch Mean Error
of Epoch | Standard | Error Rate

Occurrences | - Deviation | Rate | Standard

Deviation
15.0 6 542 30 0.0886 0.002
20.0 9 170 14 0.1033 0.003
25.0 9 109 11 0.1230 0.007

Table 1. Second Experiment: Total Absolute Error

levels of 0.01, 0.05, and 0.09. Results can be found in Figure 17, Figure 18, and

Table 2.
Threshold [ Number Mean | Epoch Mean Error
of Epoch | Standard | Error Rate
Occurrences Deviation | Rate | Standard
Deviation
0.01 10 105 10 0.1780 0.110
0.05 10 12 14 0.4123 0.057
0.09 10 7 6 0.4340 0.028

Table 2. Second Experiment: Relative Weight Change

These results indicated that, as the relative weight change threshold decreased,
the number of epochs required to reach a solution increased and the classification
error rate decreased. Overall, this seemed to indicate that the relative weight change
should remain valid as an indicator of when to terminate ANN training. Relative
weight change at the lowest level (less than 0.01) has a classification error rate of
nearly 18%, but the chance of an outlier was relatively large, with two appearing
in this case. Also note that the occurrence of the outliers caused the variance to

increase as the mean classification error rate decreased.

Due to the relatively high classification error rate (when compared to that
achieved by the total absolute error on the testing set criterion) and the relatively

high variance of the classification error rate caused by the occurrence of outlier cases,
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Figure 17. Second Experiment: Classification Error Rate Versus Relative Weight
Change

a decision was made to continue to track the relative weight change, but only as an
eliminating factor. By looking at the raw data, using the relative weight change as
a primary determinant of stopping ANN training appeared unacceptable. Levels of
relative weight change of less than one percent were rare and appeared to be mainly a
hit or miss proposition which was searching for extremely small differences. Relative
weight changes of less than one percent did occur, but they occurred randomly
and were too inconsistent to indicate a proper epoch at which to terminate ANN
training. Therefore, relative weight change remained under consideration only as an

eliminating criterion.

4.4.2 Two Phase Stopping Criterion. To further determine the impacts

of the relative weight change and the total absolute error as measurements of stop-
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Figure 18. Second Experiment: Completion Epoch Versus Relative Weight Change

ping criteria, a two step stopping point criterion was implemented. Here, the total
absolute error stopping criterion was varied from 15 to 25 in five uniform steps of
2.5 each and the relative weight change stopping criteria was varied from 0.01 to
0.09 in five uniform steps of 0.02 each. Both criteria had to be met before the ANN
would recognize a requirement to terminate training. To evaluate these potential
stopping criteria over the ten replications, the program measured a response of the
mean classification error rate (see Figure 19) and the time to reach a recommended
solution as determined by the mean current epoch at the time both thresholds were
met (see Figure 20). The levels of total absolute error and relative weight change
used here were selected heuristically from those lower levels occurring during ANN
training. When comparing Figure 19 and Figure 20, note that both the axis for

total absolute error and the axis for relative weight change were inverted between
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Figure 19. Second Experiment: Classification Error Rate Using Two Criteria

the two figures. This was done for presentation purposes to show bars which would

otherwise be hidden in the rear of the figure.

Figure 19 and Figure 20 indicate the relative unimportance of the relative
weight change criterion. As the relative weight change was varied in this experi-
ment, the mean classification crror rate and the mean completion epoch remained
relatively stable. The main determinant of the classification error rate and the epoch
of completion in this double stopping criteria experiment was the threshold level of

the total absolute error.

4.5 Third Experiment

The second experiment showed that total absolute error was the only remain-

ing factor which could be used as a determinant for stopping ANN training in this
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Figure 20. Second Experiment: Completion Epoch Using Two Criteria

particular network design. However, the limits of how low total absolute error would
go within the 600 epoch limit established here were not yet known. The second ex-
periment only tested total absolute error at five levels between 15 and 25. Therefore,
a third experiment was designed to provide a closer examination of total absolute
error. In particular, a program modification was made to find the resulting classifi-
cation error rate and epoch of completion when the levels of stopping ANN training

for the total absolute error were set at whole number increments of 0 to 20.

4.5.1 The Total Absolute Error Function.  The results of this experiment
indicated that, through chance, the level of fifteen which was selected for the second
experiment was indeed the lower limit for total absolute error in this particular
network design. The curve was decreasing, asymptotically approaching values just

less than 15 (see Figure 21 and Figure 22). In fact, the total absolute error decreased
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Figure 21. Third Experiment: Classification Error Rate Versus Total Absolute
Error

to the level of 15 in only six of the ten test cases in this experiment. No observations

occurred at the experimental levels of 14 or lower.

4.5.2 The Total Absolute Error Conclusions.  Within the 600 epoch limita-
tion resulting from the observation that the classification error rate for the population
(the validation set in this case) did not decrease beyond that epoch, the lowest that
total absolute error went for this particular experiment was 15. Table 3 shows the
details of the total absolute function at the various levels throughout training. As
the total absolute error decreased, the classification error rate and the variance of
that classification error rate also both decreased. Therefore, a higher probability

of selecting an ANN which had both a smaller true classification error rate and a
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Figure 22. Third Experiment: Completion Epoch Versus Total Absolute Error

smaller variance of the classification error rate was achieved by selecting a random

set of ANN weights based upon the lowest total absolute error of the testing set.

Perhaps as significant as noting the behavior of the total absolute error function
when the threshold levels in Figure 21 were reached was noting how the total absolute
error function reacted when the threshold levels were not reached. Notice in Table 3
that the threshold level was reached in nine out of ten replications. In the replication
in which no threshold levels were reached, the total absolute error function remained
greater than 33 throughout 600 epochs of training and the final classification error
rate for the validation set was approximately 30%. The results indicated that the
classification error rate on the validation set was not at the lowest levels if the total
absolute error function was not at the lowest level. Figure 13 showed the total

absolute error function for a replication which met the threshold level of 15. For
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Threshold Number Mean Epoch Mean Error
of Epoch | Standard | Error Rate
Occurrences Deviation | Rate | Standard
Deviation
15 6 542 30 0.0886 0.002
16 9 400 45 0.0935 0.004
17 9 311 19 0.0937 0.003
18 9 238 22 0.0991 0.003
19 9 205 19 0.1004 0.003
20 9 170 14 0.1033 0.003

Table 3. Third Experiment: Total Absolute Error

an examination of the total absolute error functions which did not meet all of the

threshold levels of Table 3, see Appendix C.

4.6 Mesh Problem Ezperiment

4.6.1 Mesh Problem Set Up. A sequence of steps to this point had led
to a solution for the XOR problem, but the question remained whether these same
steps could assist in solving a different problem. As noted earlier, the mesh problem
involved a more complicated space for the two classes. Therefore, the ANN was
allowed to train for a greater number of epochs. After inconclusive results were
reached using a network with a maximum number of epochs set at 1500, the ANN
was allowed to train for 3000 epochs. An example of the classification error rate
received during one replication is given in Figure 23. The classification error rate in
Figure 23 is formed from an evenly weighted average of the classification error rate of
the training and testing sets for one of the ten replications. A weighted average was
used because, when attempting to use an artificial neural network to classify data,
the classification of the population would be unknown. Therefore, the ANN was
only given as much data as was considered known in the problem. The validation

set data was treated as an unknown population.
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Figure 23. Mesh Problem Classification Error Rate

Figure 23 resulted in the assumption that no further learning occurs after epoch
2000. However, the ANN was allowed to train up through epoch 3000 for evaluation

purposes.

4.6.2 Mesh Problem Results.  Mesh problem results are given in a format
similar to that used for the XOR problem. A comparison of the epochs required to
obtain a solution and the classification error rate are given in Figure 24 and Figure 25

respectively. Table 4 contains the average data results.

Figure 24 and Table 4 illustrate a key finding regarding the total absolute error
on the testing set function. When the lowest total absolute error occurred (at a value
of approximately thirty). the average classification error rate on the validation set
was greater than the average classification error rate recorded at a total absolute

error value of approximately thirty-one. This demonstrated that simply terminating
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Figure 24. Mesh Problem: Classification Error Rate Versus Total Absolute Error

ANN training at the lowest recorded value of the total absolute error on the testing
set did not guarantee that the ANN would yield the lowest classification error rate

on the validation set.

Using the total absolute error technique of deciding upon the point at which
to stop ANN training resulted in a higher classification rate for the mesh problem
than for the XOR problem. Given the more complicated class divisions of the mesh
problem, this was not unexpected. Figure 26 gives the solution space of the ANN
output to visually quantify the mesh output results. The classification error rate of
this particular network design never decreased below 20%. In fact, in only three of
the ten replications did the classification error rate on the validation set decrease
below 30%. The classification error rate of the ANN design seen in Figure 26 was

22.83% and was achieved after 50,000 epochs.
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Figure 25. Mesh Problem: Completion Epoch Versus Total Absolute Error

Since the other replications yielded similar solution spaces, it appeared that an
ANN with three hidden nodes was insufficient to map the many corners found in this
particular mesh design. Neither the total absolute error nor the classic techniques
(such as stopping training at the lowest level of the testing set classification error
rate) mapped the solution closely. All stopping criteria techniques failed to detect
the corners of the meshed data set. The ANN proposed solution seemed to encircle
the largest mass as opposed to attempting to search out the corners of the solution
space.

Therefore, it was decided to test the ANN with a different number of hidden
nodes to see if more hidden nodes would allow the ANN to ‘get around the corners’
of the mesh problem. An ANN with eight hidden nodes was trained for up to 15,000

epochs. A graph of the ANN output resulting from this experiment is given in
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Threshold | Number Mean Epoch Mean Error
of Epoch | Standard | Error Rate
Occurrences Deviation | Rate | Standard
Deviation

30.0 1 2535 N/A 0.2767 N/A
31.0 5 1891 96 0.2290 0.029
32.0 5 1232 115 0.2337 0.027
33.0 5 964 121 0.2360 0.031
34.0 5 826 107 0.2383 0.031
35.0 5 715 108 0.2367 0.032
36.0 5 650 88 0.2387 0.029
37.0 5 590 84 0.2437 0.027
38.0 5 554 74 0.2500 0.025
39.0 5 511 59 0.2567 0.024
40.0 5 466 59 0.2673 0.023
41.0 5 415 57 0.2813 0.022
42.0 5 376 62 0.2927 0.018
43.0 5 334 45 0.3227 0.010
44.0 10 861 611 0.3410 0.006
45.0 10 390 294 0.3572 0.010

Table 4. Mesh Problem: Total Absolute Error

Figure 27. This solution space more closely maps the true solution space given earlier
in Figure 6. Under this revised network, the classification error rate on the validation
set was able to decrease to less than 30% in all ten replications and obtained levels
of less than 20% in seven of the ten replications. The mesh solution space graph

given in Figure 27 resulted in a classification error rate of 9% for the validation set.

4.6.8 Varying the Number of Hidden Nodes.  The next logical step was to
vary the number of hidden nodes in the ANN design. As the number of hidden nodes
was varied, a comparison was made of the classification error rate of the solution
occurring at the lowest level of the total absolute error to the classification error rate
at the solution occurring at the lowest levels of the previously evaluated stopping
criteria (such as the classification error rate of the testing set). A closure in the form

of a recommended method by which to determine the proper time to terminate ANN
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Figure 26. Mesh Solution Space: Three Hidden Nodes 50,000 Epochs

training would result if one stopping criterion proved itself superior by consistently
recommending the lowest classification error rate of the validation set. A relatively
small variance of the classification error rate for any stopping criterion selected at

this step would further support its selection as an optimal stopping criterion.

The number of hidden nodes was varied at levels of all even numbers between
four and twenty for 15,000 epochs. Potential stopping criteria measures compared to
the minimum total absolute error included the following: classification error rate on
the training set, classification error rate on the testing set, a evenly weighted average
of the classification error rate of the training and testing sets, and a moving average
of the classification error rate on the testing set over the most recent five epochs.
Full results of the experime: . for the ten replications at each selected number of

hidden nodes can be found in Appendix D.
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Figure 27. Mesh Solution Space: Eight Hidden Nodes at 9,000 Epochs

A detailed review of Appendix D reveals a complication in the results. A
simple average was not a fair comparison. For example, if the classification error
rate on the training set for a given replication were to remain much higher than that
for the other replications, common sense indicated that that particular set of ending
ANN weights should not be selected. Therefore, fairness dictated that these weights
not be counted when computing averages. Additionally, a comparison across the
different metrics revealed that some sets of starting weights led to a relatively low
classification error rate on the validation set regardless of the stopping criterion used
and some starting weights led to a relatively high classification error rate across all
of the potential stopping criteria. This seemed to indicate an advantage of looking
at more than one criterion when attempting to determine when to terminate ANN

training.
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Therefore, the ‘obvious’ outliers (indicating weights not moving toward the
global optima) had to be eliminated. This section of the experiment set up a heuristic
for distinguishing between those points ‘good’ enough to be considered and those

points so ‘poor’ that they should be eliminated. The following heuristic was used.

1. Select the ‘best’ level within each potential stopping criterion. The best level
was defined as the lowest total absolute error or the lowest classification error
rate for the training set, testing set, and weighted average and moving average
criteria. Select at least two potential points because of the weakness of selecting
only one point as indicated in Figure 21 where the lowest total absolute error

did not indicate the lowest classification error rate on the validation set.

2. Select approximately a 2% to 4% rate window from the ‘best’ classification
error rate (2 to 4 in absolute value with respect to total absolute error). Actual
selection depended upon the grouping of the output. The goal was to obtain
a set of points which contained the best classification error rate which would

be obtained if a given stopping criterion was used.

3. Using the selected replications, compute the mean and standard deviation of

the classification error rate on the validation set.

4.6.4 Results: Varying the Number of Hidden Nodes. Using the above
rules, the resulting classification error rates at each of the various hidden nodes

tested are summarized in Table 5.
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Table 5;: Mesh Problem: Selected Solutions

Stopping Criterion

Average Classification Error

Standard Deviation

of Classification Error

Four Hidden Nodes

Training Set 0.2294 0.0142
Testing Set 0.2217 0.0236
Weighted Average 0.2204 0.0025
Moving Average 0.2255 0.0187
Total Absolute Error 0.2230 0.0263
Six Hidden Nodes
Training Set 0.1588 0.0270
Testing Set 0.1570 0.0367
Weighted Average 0.1508 0.0351
Moving Average 0.1458 0.0339
Total Absolute Error 0.1479 0.0320
Eight Hidden Nodes
Training Set 0.1267 0.0390
Testing Set 0.0967 0.0118
Weighted Average 0.0992 0.0082
Moving Average 0.1000 0.0094
Total Absolute Error 0.1000 0.0071
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Table 5: Mesh Problem: Selected Solutions (continued)

Stopping Criterion

Average Classification Error

Standard Deviation

of Classification Error

Ten Hidden Nodes

Training Set 0.0894 0.0386
Testing Set 0.0861 0.0067
Weighted Average 0.0917 0.0058
Moving Average 0.0900 0.0033
Total Absolute Error 0.0883 0.0000
Twelve Hidden Nodes
Training Set 0.1253 0.0322
Testing Set 0.0933 0.0101
Weighted Average 0.0944 0.0035
Moving Average 0.1025 0.0059
Total Absolute Error 0.0817 0.0044
Fourteen Hidden Nodes
Training Set 0.10u4 0.0195
Testing Set 0.1333 0.0284
Weighted Average 0.1278 0.0231
Moving Average 0.1194 0.0210
Total Absolute Error 0.1183 0.0176
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Table 5: Mesh Problem: Selected Solutions (continued)

Stopping Criterion

Average Classification Error

Standard Deviation

of Classification Error

Sixteen Hidden Nodes

Training Set 0.1381 0.0288
Testing Set 0.1133 0.0145
Weighted Average 0.1120 0.0239
Moving Average 0.0971 0.0103
Total Absolute Error 0.1100 0.0218
Eighteen Hidden Nodes
Training Set 0.1254 0.0146
Testing Set 0.0950 0.0180
Weighted Average 0.0977 0.0163
Moving Average 0.0937 0.0122
Total Absolute Error 0.0900 0.0115
Twenty Hidden Nodes
Training Set 0.1117 0.0234
Testing Set 0.0850 0.0153
Weighted Average 0.0906 0.0154
Moving Average 0.0872 0.0186
Total Absolute Error 0.0833 0.0203
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The actual impact of each of the examined potential stopping criteria can best
be seen in a graph of the two standard deviation dispersion area of the classification
error rate which would have been obtained if the lowest level of each stopping criteria
were used. What follows is a graph for each ANN design as the number of hidden
nodes was varied at even numbers from four to twenty (inclusive). The rationale
for this decision was that the user must first make a design decision, then train
the network to the lowest level for the selected stopping criterion. Next, a different
design could be chosen before conducting training again. Only after the designs had
been trained to an optimal level would a decision be made as to the appropriate ANN
design. Therefore, the only appropriate comparison between the examined potential
stopping criteria occurred when the number of hidden nodes was held constant. See
Figure 28 through Figure 36 for a graphical comparison of the stopping criteria for

each respective level of hidden nodes.

Given this constraint of looking at each figure separately, to goal was to de-
termine whether any of the remaining stopping criteria consistently gave the lowest
classification error rate across all of the ANN designs. The expected range over
which this classification error rate would vary was also considered important. A
lower variance of the classification error rate of any selected stopping criterion would
further support its selection as an optimal stopping criterion. Specifically, given the
earlier promise of the total absolute error stopping criterion as exhibited during the
examination of the XOR problem, the question was whether or not the total abso-
lute error would again lead to the lowest classification error rate with the minimum

variance.

Comparing the diagrams, total absolute error compared favorably with the
previously used criteria. In other words, it does not do any worse than the previ-
ously used criteria. However, total absolute error did not dominate those criteria
such that choosing among the weights corresponding to the lowest total absolute er-

ror guaranteed the lowest classification error rate. By using the total absolute error
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to select a point to terminate ANN training, the resulting error classification rate
was essentially the same as that obtained by using the classification error rate on the
testing set, the weighted average classification error rate, or the moving average clas-
sification error rate (on the testing set) stopping criteria to terminate ANN training.
However, note that the weighted average classification error rate consisted partially
of the classification error rate on the testing set, which tended to drift higher as the

number of hidden nodes increased.

A final point to remember regarding Figure 28 through Figure 36 is that the
actual classification error rate of the population (the validation set for purposes of
this study) would not be known for the general case. In this study, perfect knowledge
was available and, using that perfect knowledge, an ANN design of either eight,
ten, or twelve hidden nodes appeared optimal. This was based upon two facts:
the classification error rate and the variance of that classification error rate were
lower. Using the total absolute error as the means of selecting the point at which to
terminate ANN training in these three situations would have resulted in the lowest
classification error rate and variance of the classification error rate in two of the three

cases.

For a different comparison of the output of the mesh problem as the number
of hidden nodes was varied, see Figure 37 through Figure 41. These figures show
the change in the classification error rate for each potential stopping criterion as the
number of hidden nodes in varied at even numbers between four and twenty (inclu-
sive). Recall that the mesh problem could ideally be separated by eight bounding

hyperplanes. From these results, the following were noted:

e Observing across the figures, all functions demonstrated to an ‘S’ shaped curve
of the classification error rate on the validation set. The classification error rate
decreased as the number of number of hidden nodes was increased from four
to eight. Next, the classification error rate remained at its lowest level for

when eight, ten, or twelve hidden nodes were used. From fourteen to twenty
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hidden nodes, the classification error rate increased and then decreased. Using
the results of these figures, an ANN consisting of eight, ten, or twelve hidden

nodes would be selected.

At the preferred design of eight, ten, or twelve hidden nodes, a lower variance

of the resulting classification error rate on the validation set was observed.

The bottom line was that the ideal ANN had a logical interpretation: using
approximately eight to twelve hidden nodes resulted in the lowest mean error
classification error rate on the validation set. Additionally, this ANN termina-
tion point also exhibited the lowest variance of the resulting classification error

rate on the validation set.
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Figure 28. Mesh Classification Error Rate: Four Hidden Nodes
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Figure 29. Mesh Classification Error Rate: Six Hidden Nodes
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Figure 30. Mesh Classification Error Rate: Eight Hidden Nodes
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Figure 31. Mesh Classification Error Rate: Ten Hidden Nodes
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Figure 32. Mesh Classification Error Rate: Twelve Hidden Nodes
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Figure 33. Mesh Classification Error Rate: Fourteen Hidden Nodes
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Figure 34. Mesh Classification Error Rate: Sixteen Hidden Nodes
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Figure 35. Mesh Classification Error Rate: Eighteen Hidden Nodes
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Figure 36. Mesh Classification Error Rate: Twenty Hidden Nodes
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Figure 37. Mesh Problem: Training Set as Stopping Criterion
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Figure 38. Mesh Problem: Testing Set as Stopping Criterion
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Figure 39. Mesh Problem: Weighted Average as Stopping Criterion
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Figure 40. Mesh Problem: Moving Average as Stopping Criterion
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Figure 41. Mesh Problem: Total Absolute Error as Stopping Criterion
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V. Results and Conclusions

5.1 A Successful Procedure

This study evaluated eleven characteristics of an artificial neural network (ANN)

throughout training to determine the proper epoch at which to terminate ANN train-
ing. Based upon these characteristics, the following procedure resulted in selecting
a final network which yielded a low classification error rate and also yielded a low

classification error rate variance.

1. Perform at least ten replications of artificial neural network training using

different random initial weights. Use the output of this sequence of experiments

to determine when improvement or learning no longer occurs.

. Perform artificial neural network training again using repeated cycles of an

ANN with different random initial weights. Perform training only until the
epoch at which learning no longer occurs as previously determined. Track
the following functions as they occur in the testing set during this step: total
absolute error, testing set classification error rate, and moving average of the

testing set classification error rate.

. Heuristically select those weights which perform well under the above three

functions. Select a general grouping of the best of these, choosing at least two
sets of weights for each stopping criterion. An acceptable ANN replication
does well under all three categories. Generally, the area of the epoch and the
initial weights will be acceptable across all three stopping criteria if the weights

indicate the lowest level of classification error rate.

. A random set of weights can then be selected from those weights designated

as acceptable. Generally, this set of -+ ghts proved to yield a low classification

error rate and a low variance of classification error rate. However, using this
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procedure did not guarantee the lowest classification error rate on the validation

set.

5.2 Potential Future Research

As with almost any area of research, progress leads toward more questions.

The following extensions of this study are possible.

e Changing variables in the network to determine the impact. This study fixed
a number of ANN attributes. If these were changed, the impact upon the
conclusion is unknown. For example, the following could be changed: 7 (eta)
or learning rate; the number of hidden layers; or values for the momentum
term. Additionally, the interaction of these variables would seem to be of

interest.

¢ Adding a momentum value. Since this study did not emphasize the speed at
which a final ANN was determined, momentum was not in the ANN equation.

The impact of adding it to the ANN equation is therefore unknown.

e Changing the maximum number of epochs. Early in the experiment process
of this study, an assumption was made that ANN learning did not occur after
epoch 600 for the particular network design of the XOR problem. However,
the total absolute error on the testing set appeared to decrease slightly even
after epoch 600. The impact of allowing the learning process to continue until
the true minimum total absolute error is unknown. Particularly interesting

would be the classification error rate at this final minimum.

e Using a variable momentum value. A variable momentum value is currently

being researched and its impact upon the total absolute error is unknown.

e A more detailed study of overlearning. Two ANN techniques, the weighted
average classification error rate and random exemplar assignment to either the

training or the testing set, were designed to counteract the impact of the ten-
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dency of ANN to overlearn. Since overlearning was not observed in this study,
the usefulness of these tools is unknown. An examination of the techniques

when overlearning occurs would be interesting.

5.2.1 Conclusion.  This paper presented a technique which added insight
for selecting the final ANN weights. It showed how looking at more than one function
to analyze an ANN provided increased confidence that a given set of starting weights
approached an optimal solution. Additionally, since a uniformly low classification
error rate did not occur across all replications during ANN training, the study re-
vealed the importance of using different initial weights and repeated replications of
ANN training. In the final experiment, the number of hidden nodes was varied. This
resulted in an example indicating that the ideal ANN structure (from eight to twelve
hidden nodes for the mesh problem) exhibited a low classification error rate on the
validation set and exhibited a low variance of that classification error rate. These
respective low levels occurred for all three of the final stopping criteria judged best:
classification error rate of the testing set, a moving average of the classification error
rate on the testing set, and the total absolute error on the testing set. Finally, fu-
ture extensions of the research for an improvement of this procedure were presented

which show much room for future effort in the area of artificial neural networks.
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Appendiz A. FORTRAN Program

ERERESERBRREBEERRRREEEREEEERR PR RN R SRR R R SR E RS S RSN E XSRS RS RREE RSB R R R %S

*
* AS OF: 14 Feb 94
L

* The following program is a modified version of a program written
* by Lt Col Kenneth W. Bauer in April 1993. It uses the back

* propagation algorithm as documented by Lippmann and Rogers.

*

L2 DI P R PR e R ST PR TR FEERERERERERBRBRRERERE 22 I

Variables in this program have the following meanings:

a: temporary storage for sigmoid function value

abserrst: level to stop training for total absolute error criterion

arrbig: array of combined training and testing set

arrtng: array of training set exemplars

arrtst: array of testing set exemplars

arrval: array of validation set exemplars

awcstop: level to stop training for the absolute weight change
criterion

ep: epsilon, or the error. Lippmann’s (d(j) - y(j)) term

errlrg: level to stop training for the largest absolute error
criterion

essstopl: 1level to stop training for the error sum of squares
criterion

exrrstop2: level to stop training for the weighted average criterion
errsttng: level to stop training for training set criteriom
errsttst: level to stop training for testing set criterion
errstval: level to stop training for validation set criteriom

eta: gain term or step size

iaberr: switch to have the program test for absolute error

icontli: number of continuous epochs in which a characteristic
must occur to trip a stopping criterion threshold

icount: item number of the examplar currently under evaluation

iepoch: number of epochs conducted

intervl: 1length of interval for moving average computations

istop: maximum number of iterations or epochs

itest: switch to have the program test the test set

itrain: switch to have the program test the training set

ival: switch to have the program test the validation set

m: number of inputs or features

mastop: level to stop training for moving average criterion

mwcstop: level to stop training for the mean absolute relative
weight change criterion

LA L B B B 25 R B B R R R I N R IR Y T N N RSN NN R R P T SO
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n:
ncstop:
ncycle:

no:
ntngpt:
ntstpt:
nvalpt:
o:

toterr:
wl:
w2:
Xo0:
x1:
xXx:
zzZ:

L K N B N BN 2R 2R BN B BE R BN R N B R IR S BN R I

rwcstop:

swcstop:

number of hidden units

number of ncycle before termination

number of times the complete program has run

(with new weights for each iteration)

number of output units

number of data points in the training set (examplars)
number of data points in the testing set

number of data points in the validation set

number of output units = no

level to stop training for the absolute relative weight
change criterion

Lippmann’s delta(j) term for updating internal hidden mode
weights

level to stop training for the squared weight change
criterion

total error for one examplar and one epoch

layer 1 weights, i to j. i = m+l1 for the bias term
layer 2 weights, i to j. i = n+l for the bias term
input variables, to include bias term (1) and desired output
hidden layer outputs

array value used for mapping fort.10

computed value of hidden nodes.

BERRREEERERR AR REBERRERE L LR L AR BB ERRRE SRR B E LR RERR R RpR R pRRRERRE LR KKK R R K

program ProgFini

* Set neural net parameters and the size of the exemplar files

parameter (m=2,n=3,no0=1, istop=500)
parameter(intervli=5)
parameter(iconti=2)
parameter(ncatop=2)

parameter (ntngpt=100)
parameter(ntstpt=100)
parameter(nvalpt=600)

*x#2+ if ioption
=+kk% if ioption

= 0, then I am keeping the training and test sets separate
1, then I mix the training and test sets between epochs

parameter(ioption=0)

*x#2% Parameters required for Shell-Mezgar sort routine

PARAMETER(ALN2I=1.0/0.69314718,TINY=1.0E~5)

* Initialize variables

real x0(m+3),x1(n+1),2z(no),ep(no)
real wi(m+1,n),w2(n+1,no0)
real witemp(m+i,n), w2temp(n+1,no)
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real arrbig(m+3, 2*(ntngpt+ntstpt))

real arrtng(m+3,ntngpt), arrtst(m+2,ntstpt), arrval(a+2, nvalpt)
real mwcstop, mastop

integer xx(11,11)

integer o

real movavg(intervl), avg(intervl), rate(intervl)

ss+++ Variables required for Shell-Mezgar sort routine

real rndm(ntngpt)
real rndm2(ntngpt+ntstpt)

# istXXX stands for i stop for reason XXX.

*

*

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

igrafXX is

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

Set up the

isttst(ncstop),
istcyc(ncstop),
isttae(ncstop),
istess(ncstop),
istlae(ncstop),
istawc(ncstop),
istmwc(ncstop),
itempa(ncstop),
itempd(ncstop),
itempg(ncsatop)

isttrn(ncstop), istval(ncstop)
istwa(ncstop)

isttaeb(ncstop), itempi(ncstop)
istessb(ncstop), itemp2(ncstop)
istlaeb(ncstop), itemp3(ncstop)
istswc(ncstop), istrwc(ncstop)
istma(ncstop), isttrnb(ncatop)
itempb(ncstop), itempc(ncstop)
itempe(ncatop), itempf(ncstop)

isttstb(ncstop), istwab(ncstop), istrwcb(ncstop)

isttemp(ncstop)
for graph switch

igraf0i(ncstop),
igrato4(ncstop),
igrat07(ncstop),
igraf10(ncstop),
igraf13(ncstop),
igrat16(ncstop),
igraf19(ncstop),
igrat22(ncstop),
igraf25(ncstop)

igraf31i(ncstop),
igrat34(ncstop),
igraf37(ncstop),

weighted average

number XX

igraf02(ncstop),
igrat06(ncstop),
igrat08(ncstop),
igrafii(ncstop),
igrafi4(ncstop),
igrat17(ncstop),
igrat20(ncstop),
igrat23(ncstop),

igrat32(ncstop),
igrat36(ncstop),
igrat38(ncstop),

percentages

igraf03(ncstop)
igrat06(ncstop)
igraf09(ncstop)
igrati2(ncstop)
igrati5(ncstop)
igraf18(ncstop)
igraf21(ncstop)
igraf24(ncstop)

igrat33(ncstop)
igraf36(ncstop)
igrat39(ncstop)

data pertrn/.50/
data pertst/.50/
data perval/0.0/

* Set gain term or step size in eta and the percent stopping criteria

data eta/.35/
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s Set the parameters
# threshold levels

data errsttng/1
data errsttst/1
data errstval/i
data errstop2/1

to force a stop of training at the following

.0/
.0/
.0/
.0/

data abserrst/4.0/
data esastopt/1.0/
data errlrg/.5/
data awcstop/.04/
data swcstop/.0003/
data rwcstop/.001/
data mwcstop/.v04/
data mastop/.01/

#+++s Constants required for Shell-Mezgar sort routine

LOGNB2=INT(ALOG(FLOAT(ntngpt) )*ALN2I+TINY)
LOGXB3=IRT(ALOG(FLOAT(ntngpt+ntstpt))+ALE2I+TINY)

o=no
* iprint always = 1
iprint=1

* Switches for determining which set of data to test against

itest = 1
itrain = 1
ival = 1

iaberr = 1

* Initialize switches for determining reason program terminated

do 509 iii = 1, ncstop

istcyc(iii) = 0
isttst(iii) = 0
isttrn(iii) = 0
istval(iii) = 0

istwa(iii) = 1

istwab(iii) = 1

isttae(iii) = 0
isttaeb(iii) = 0
itemp1(iii) =
istess(iii) = 1
istessb(iii) = 1
itemp2(iii) = 0
istlae(iii) = 0

)
(=]
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istlaeb(iii) =
itemp3(iii)
istawc(iii)
istswc(iii)
istruc(iii)
istrwcb(iii) =
istawc(iii) = 1
istma(iii) = 0
isttranb(iii) =
isttatb(iii) =
itempa(iii)
itempb(iii) =
itempc(iii) =
itempd(iii)
itempe(iii)
itempf(iii)
itempg(iii)
igraf01(iii)
igraf02(iii)
igraf03(iii)
i)
)

[ TR 1]
O = O

1]
OO0 0000 O

ton

v ou o

igraf04(ii
igrafo6(iii
igraf06(iii) =
igraf07(iii)
igraf08(iii)
igraf09(iii)
igraf10(iii)
igraf11(iii)
igraf12(iii)
igraf13(iii)
igraf14(iii)
igrar16(iii)
igraf16(iii)
igraf17(iii)
igraf18(iii)
igraf19(iii)
igraf20(iii)
igrar21(iii)
igraf22(iii)
igraf23(iii)
igrar24(iii)
igraf26(iii)
igraf31(iii)
igrat32(iii)
igraf33(iii)
igraf34(iii)
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isttemp(iii) = 0
509 continue

* read the exemplars into arrays

* THIS SECTION HAS TO CHANGE IF THERE ARE OTHER THAN FOUR COLUMNS.
* fort.22 contains the original training vectors

* fort.7 contains the original testing vectors

* fort.9 contains the original validation vectors

do 21 iii = 1, ntngpt
read(22,#*) arrtng(1, iii), arrtng(2, iii),
* arrtng(3, iii), arrtng(4, iii)
21 continue

do 22 iii = 1, ntstpt
read(7,*) arrtst(1l, iii), arrtst(2, iii),
* arrtst(3, iii), arrtst(4, iii)
22 continue

do 23 iii = 1, nvalpt
read(9,*) arrval(l, iii), arrval(2, iii),
* arrval(3, iii), arrval(4, iii)
23 continue

* read in the training and testing exemplars into one big array.

rewind 22
rewind 7

do 24 iii = 1, ntngpt
read(22,+) arrbig(1, iii), arrbig(2, iii),

* arrbig(3, iii), arrbig(4, iii)
read(7,*) arrbig(l, ntngpt+iii), arrbig(2, ntngpt+iii),
* arrbig(3, ntngpt+iii), arrbig(4, ntngpt+iii)
24 continue

* Set ibdg = 1 to get a file of the audit trail of the program.
idbg=0

write (*,*)’# inputs, # hidden units, # output units’
write (*,#)m,n,no
write (*,*)’# exemplars, # epochs’
write (#,*)ntngpt,istop
write (*,*)’step size’
write (*,%)eta
if (idbg.eq.1) then
vrite (#,#) ’'Debug writes in fort.2’
endif
write (*,*) ’Final weights and net predictions in fort.2’
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write (*,#) ’Activation Map in fort.10’

write (*,*) ’Class Rate on Train Set in fort.11’

write (*,*) ’Class Rate on Test Set in fort.12’

write (*,#) ’Class Rate on Val Set in fort.i3’

write (*,¢) ’Tot Absclute Err on Test Set in fort.14’
write (*,#) ’Tot Err Sum of Squar on Test Set in fort.15’
write (#,%) ’'Largest Absolute Error on Test Set in fort.16’
write (»,+) ’VWeighted Average Error Rate in fort.17’
write (»,#) ’Moving average caiculations in fort.18’
write (*,s) ’Absolute Weight Change in fort.41’

write (#,#) ’Squared Weight Change in fort.42’

write (*,*) ’Relative Weight Change in fort.43’

vwrite (*,%) ’Mean Weight Change in fort.44’

write (*,+) ’Summary writes in fort.50’

write (*,*) ’'Stopping points write in fort.60 and on’

write (2,*)’(x0(k),k=1,m),x0(m+2),2z2(1)’

write (50,*) 'SUMMARY FILE’

write (50,*) 'EPOCH, ERR RATE ON VAL SET, REASON’
write (50,*) * ?

write (50,#%) ’STARTING CYCLE NUMBER ’, ncycle + 1
write (50,2) ’

* Initialize the randum number generator seed to any negative number

idum = (-1)
idum2 = (-2)
idum0 = (-3)

* Initialize the criteria for number of cycles to run
ncycle = 1
* Continue if there is not enough cycles to stop.
501 write (2,#) ’
write (2,*%) *
write (2,*) ’WEIGHTS FOR CYCLE NUMBER °’, ncycle
continue
randomly initialize the weights to include weights for the nodes and
weights for the bias term. Bias term is the reason for m+1 and

n+1 instead of m and n respectively.
Use numwts to count the number of weights.

* # #* #

numwts = 0
do 100 i=1,m+1

2 100 j=1,n
wi(i,j)=rano(idum)
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100

101

witemp(i,j) = wi(i,j)
numvts = numwts + 1
continue
do 101 i=1,n+1
do 101 j=1,0
w2(i,j)=rano(idum)
w2temp(i,j) = w2(i,j)
numwts = numwts + 1
continue

iepoch=0
icount=0

* BEGIN LOOP TO RANDOMLY REORDER THE TRAINIKG EXEMPLARS

LR 2L £
Hkkkk
L i 22 L
sk kk
*kkk

1912

1917

1920

1913
1916

Randomly sort training vectors for input to network. RNDM is used to
hold random numbers. These random numbers are then paired with the
training vectors. A Shell-Mezgar sort is then performed using RNDM as
the sort key. This yields a random ordering of the training vectors.
THIS ROUTINE WAS CODED BY GREG REINHART.

if (ioption.eq.1) then
go to 9001

else
continue

endif

DC 1912 I=1,ntngpt
RNDM(I)=RANO(RANDOM)
CONTINUE
Mgreg=ntngpt
DO 1915 NN=1,LOGNB2
Mgreg=Mgreg/2
K=ntngpt-Mgreg
DO 1913 J=1,K
I=3
L=I+Mgreg
IF(RNDM(L).LT.RNDM(I)) THEN
temp9=RNDM(I)
RNDM(I)=RNDM(L)
RNDM(L)=temp9
DO 1920 MM=1,m+2
temp9=arrtng(I,MM)
arrtng(I,MM)=arrtng(L,MM)
arrtng(L,MM)=temp9
CONTINUE
I=I-Mgreg
IF(I.GE.1) GOTO 1917
ENDIF
CONTINUE
CONTINUE
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9001 continue

if (ioption.eq.0) then
go to 9002

else
continue

endif

DO 9912 I=1,ntngpt + ntstpt
RNDM2(I)=RANO(RANDOM)
9912 CONTINUE
Mgreg=ntngpt+ntstpt
DO 9915 NN=1,LOGNB3
Mgreg=Mgreg/2
K=ntngpt+ntstpt-Mgreg
DO 9913 J=1,K
I=J
9917 L=I+Mgreg
IF(RNDM(L) .LT.RNDM(I)) THEN
temp9=RNDM(I)
RNDM(I)=RNDM(L)
RNDM(L)=temp9
DO 9920 MM=1,m+2
temp9=arrbig(I,MM)
arrbig(I,MM)=arrbig(L,MM)
arrbig(L,MM)=temp9

9820 CONTINUE
I=I-Mgreg
IF(I.GE.1) GOTO 9917
ENDIF
9913 CONTINUE
9915 CONTINUE

9002 continue

* END LOOP TO REORDER TRAINING EXEMPLARS
iepoch=iepoch+1

* igwitch tells if a stopping criterion has been met this epoch
iswitch = 0

2 icount=icount+i

* debug loop
if(idbg.eq.1)then

write(2,*)’input data --- icount --- iepoch’
write(2,*)(x0(i),i=1,m+2),icount,iepoch
endif
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if (ioption.eq.1) then
go to 9003

olse
continue

endif

* FEEDFORWARD: for each input node, compute an output on the first
* layer x1(ii) and an input to the hidden layer.
* use m+l to include the bias term

do 10 ii=i,n
a=0.
do 20 11=1,m+1
20 a=a+w1(ll,ii)*arrtng(ll,icount)
10 x1(ii)=£(a)

* debug loop
if(idbg.eq.1)then
write(2,*)’Hidden Layer Outputs’
write(2,*)x1
endif

* get up bias term for hidden layer
x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)

do 30 jj=1,0

a=0.

do 40 ii=1,n+1
40 a=a+w2(ii,jj)*x1(ii)
30 zz(jj)=t(a)

* debug loop
if(idbg.eq.1)then
write(2,*)’Output Layer Outputs’
write(2,*)zz
endif

* COMPUTE ERROR. x0(m+2) is the input desired answer.

do B0 jj=1,0
80 ep(jj)=arrtng(m+2,icount)-zz(jj)

* debug loop
if(idbg.eq.1)then
write(2,*) ’LAYER 1 WEIGHTS ---- BEFORE UPDATES’
do 300 i=1,m+1
300 write(2,131) (wi(i,j),j=1,n)
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write(2,*) ’LAYER 2 WEIGHTS ---- BEFORE UPDATES’
do 301 i=1i,n+1

301 write(2,131)(H2(i,j),j=1,o)
endif
131 format(1x,818.3)

* QUTPUT LAYER WEIGHT UPDATE.
* the term ep(jj)*(1.-2z(jj))*z2(jj) is Lippmann’s delta(j) term

x1(n+1)=1.0
do 60 ii=1,n+1
do 60 jj=1,0
60 w2(ii,jj)=vw2(ii,jj)+ep(jj)*(1.-z2(jj))*zz(jj)*x1(ii)*eta

HIDDEN LAYER WEIGHT UPDATE.

the term ep(jj)*(1.-zz(jj))*zz(jj)*w2(ii,jj) is Lippmann’s term delta(k),
with the sum part used to make a summation.

x0(11) is Lippmann’s term x~prime(i).

the term sum#(1.-x1(ii))*x1(ii) is Lippmann’s term delta(j).

* % # *

do 80 ii=1i,n
do 80 11=1,m+1
sum=0.
do 90 jj=1,0
90 sum=sum+ep(jj)*(1.-2zz(jj)) *zz(jj)*w2(ii,jj)
80 wi(11l,ii)=w1(11,ii)+(1.-x1(ii))*x1(ii)*arrtng(1ll, icount)*sum*eta

9003 continue

if (ioption.eq.0) then
go to 9004

else
continue

endif

* FEEDFORWARD: for each input node, compute an output on the first
* layer x1(ii) and an input to the hidden layer.
* use m+l to include the bias term

do 9010 ii=1,n

a=0.

do 9020 11=1,m+1
9020 a=a+w1(1l,ii)*arrbig(ll,icount)
9010 x1(ii)=£(a)

* debug loop
if(idbg.eq.1)then
write(2,*)’Hidden Layer Outputs’
write(2,*)x1
endif
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* gset up bias term for hidden layer
x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)

do 9030 jj=1,0

a=0.

do 9040 ii=1,n+1
9040 =a+w2(ii, jj)*x1(ii)
9030 2z(jj)=1(a)

* debug loop
if(idbg.eq.1)then
write(2,#*)’Output Layer Outputs’
write(2,%)zz
endif

*+ COMPUTE ERROR. x0(m+2) is the input desired answer.

do 9050 jj=1,0
9050 ep(jj)=arrbig(m+2,icount)-2z(jj)

* debug loop
if(idbg.eq.1)then
write(2,*) ’LAYER 1 WEIGHTS ---- BEFORE UPDATES’
do 9300 i=1,m+1
9300 wvrite(2,131) (wi(4i,j),j=1,n)
write(2,#)’LAYER 2 WEIGHTS ---- BEFORE UPDATES’
do 9301 i=1,n+1
9301 write(2,131)(w2(i,j),j=1,0)
endif

* OUTPUT LAYER WEIGHT UPDATE.
* the term ep(jj)*(1.-2z(jj))#22(jj) is Lippmann’s delta(j) term

x1(n+1)=1.0
do 9060 ii=1,n+1
do 9080 jj=1,0
9060 w2(ii,jj)=w2(ii,jj)+ep(jj)*(1.-zz(jj))*2z(jj)*x1(ii)*eta

HIDDEN LAYER WEIGHT UPDATE.

the term ep(jj)*(1.-zz(jj))*zz(jj)*w2(ii,jj) is Lippmann’s term delta(k),
with the sum part used to make a summation.

x0(11) is Lippmann’s term x"prime(i).

the term sum+*(1.-x1(ii))#*x1(ii) is Lippmann’s term delta(j).

*® % # ¥ »

do 9080 ii=1,n
do 9080 11=1,m+1
sum=0.
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do 9090 jj=1,0

8090 sum=sum+ep(jj)*(1.-2z(jj))*zz(jj)*v2(ii, jj)
9080 w1(11,ii)=w1(11,ii)+(1.-x1(ii))*x1(ii)*arrbig(1l, icount)*sumseta

9004 continue

* debug loop

it(idbg.eq.1)then
write(2,*) ’LAYER 1 WEIGHTS ---- AFTER UPDATES’
do 400 i=1,m+1

400 write(2,131) (wi(i,j),j=1,n)

401

*

write(2,+) ’LAYER 2 WEIGHTS ~--- AFTER UPDATES’
do 401 i=1,n+l
write(2,131)(w2(4,j),j=1,0)
endif

If all of the exemplars have been checked, continue and compute error.

* (Otherwise, take the else path and return to 2

* the else block is toward the end of the program.
if(ntngpt.eq.icount)then

* If all examplars have been checked, begin checking for stopping

* criteria.

PP P kAR Rk TR R P A S REREERERREE

*

*

*+ BEGIN STOPPING CRITERIA CALCULATIONS

*

*

kg kk Rk % * ekl kkkkkik *

ok
###%  FIND CLASSIFICATION ERROR RATE FOR TRAINING SET
hRk

*
*

if (ioption.eq.1) then
go to 8005

else
continue

endif

if (itrain.eq.1) then
nclas9 = 0
do 1502 i1 = 1, ntngpt

FEEDFORWARD: for each input node, compute an output on the first
layer x1(ii) and an input to the hidden layer.

*+ use m+l to include the bias term
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do 1510 ii=1i,n

b=0.
do 1520 11=1,m+1
1520 b=b+w1(11,ii)*arrtng(11,i1)
1610 x1(ii)=£(b)

* debug loop
it(idbg.eq.1)then
write(2,*) ’Hidden Layer Outputs’
write(2,#*)x1
endif

* get up bias term for hidden layer
x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)

do 1530 jj=1,0
b=0.
do 1540 ii=1,n+1
1540 =b+w2(ii, jj)*x1(ii)
zz(jj)=t(b)

* discretize the classification

if (2z(jj).1t.(.5)) then
iclass = 0

else
iclass = 1

endif

1530 continue
* compare to desired result
it (iclass.eq.nint(arrtng(m+2,i1))) then
nclas9 = nclas9 + 1
else
continue
endif
1502 continue
clasratl = (real(nclas9))/(real(ntngpt))
write(11,*) iepoch, 1.0 - clasrati
else

continue
endif
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9006 continue

it (ioption.eq.0) then
go to 80C

else
continue

endif

it (itrain.eq.1) then
nclas® = 0
do 9502 il = 1, ntngpt

* FEEDFORWARD: for each input node, compute an output on the first
# layer x1(ii) and an input to the hidden layer.

* use m+l to include the bias term

do 9510 ii=1,n

b=0.
do 9520 11=1,m+1
9520 b=b+w1(11,ii)*arrbig(ll,i1)
9510 x1(ii)=£(b)

* debug loop
i?(idbg.eq.1)then
write(2,*) ’Ridden Layer Qutputs’
write(2,*)x1
endif

* get up bias term for hidden layer
x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)
do 9530 jj=1,0
b=0.
do 9540 ii=1,n+1
9540 b=b+w2(ii,jj)*x1(ii)
zz(jj)=£(b)
* discretize the classification
if (2z(jj).1t.(.5)) then
iclass = 0
else
iclass = 1
endif

95630 continue

* compare to desired result
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it (iclass.eq.nint(arrbig(m+2,i1))) then
nclas9 = nclas9 + 1

else
continue

endif

9502 continue
clasratl = (real(nclas9))/(real(ntngpt))

write(11,*) iepoch, 1.0 - clasratl
else

continue
endif

9006 continue

*kk
*%%*x END: FIND CLASSIFICATION ERROR RATE FOR TRAINING SET
wRRx

hkk
#x%+ FIND CLASSIFICATION ERROR RATE FOR TESTING SET
hkk

if (ioption.eq.1) then
go to 9007

else
continue

endif

if (itest.eq.1) then
nclas3 = 0

do 1503 i1 = 1, ntstpt
* FEEDFORWARD: for each input node, compute an output on the first
* layer x1(ii) and an input to the hidden layer.

* use m+l to include the bias term

do 1511 ii=1,n

b=0.

do 1521 1l=1,m+1
1521 b=b+w1(1l1,ii)*arrtst(1l1,il1)
1511 x1(ii)=1(b)

* debug loop
if(idbg.eq.1)then
write(2,#+)’Hidden Layer Outputs’
write(2,*)x1
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endif
* get up bias term for hidden layer
x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)

do 1531 jj=1,0
b=0.
do 1541 ii=1,n+1
1541 b=b+w2(ii,jj)*x1(ii)
zz(jj)=1(b)

# discretize the classification

if (zz(jj).1t.(.8)) then
iclass = 0

else
iclass = 1

endif

1631 continue
* compare to desired result

if (iclass.eq.nint(arrtst(m+2,i1))) then
nclas3 = nclas3 + 1

else
continue

endif

1503 continue
clasxat2 = (real(nclas3))/(real(ntstpt))

write(12,*) iepoch, 1.0 - clasrat2
else

continue
endif

8007 continue

if (ioption.eq.0) then
go to 9008

else
continue

endif

it (itest.eq.1) then
nclas3 = 0
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do 95603 1! = ntngpt+l, ntngpt+ntstpt
# FEEDFORWARD: {for each input node, compute an output on the first
* layer x1(ii) and an input to the hidden layer.

% use m+l to include the bias term

do 9511 ii=1i,n

b=0.

do 9621 11=1,m+1
9521 b=b+w1(ll,ii)*arrbig(11,i1)
9511 x1(ii)=t(b)

* debug loop
if(idbg.eq.1)then
write(2,#*) ’Hidden Layer Outputs’
write(2,*)x1
endif

* gset up bias term for hidden layer

x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)

do 9531 jj=i1,0

=0.
do 9641 ii=1,n+1
9541 b=b+w2(ii,jj)*x1(ii)
2zz(jj)=1(b)

* discretize the classification

if (2z(jj).1t.(.5)) then

iclass = 0
else
iclass = 1
endif
9531 continue

* compare to desired result

it (iclass.eq.nint(arrbig(m+2,i1))) then
nclas3 = nclas3 + 1

else
continue

endif

9503 continue
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clasrat2 = (real(nclas3))/(real(ntstpt))

write(12,#) iepoch, 1.0 - clasrat2
else

continue
endit

9008 continue
»*s% BEGIN UPDATE OF MOVING AVERAGE OF LAST intervl OBSERVATIONS

if (iepoch.le.intervl) then
avg(iepoch) = 1.0 - clasrat2
temps = 0.0
do 701 ij = 1, iepoch
temps = temp5 + avg(ij)
701 continue
movavg(iepoch) = temp5/(real(iepoch))
rate(iepoch) = 1.0 - clasrat2
else
continue
endif

it (iepoch.gt.intervl) then
temp6 = rate(1)
* update the rate block
do 703 ij = 1, intervl
rate(ij) = rate(ij + 1)
703 continue
do 706 ij = 1, intervl
movavg(ij) = movavg(ij + 1)
708 continue
rate(intervl) = 1.0 - clasrat2
movavg(intervl) = movavg(intervl - 1) + ((rate(intervl)
* - tempB8)/(real(intervl)))
write (18,%) iepoch, movavg(intervl)
else
continue
endif

#+%+* END UPDATE OF MOVING AVERAGE OF LAST intervl OBSERVATIONS

AR
#*x#x END: FIND CLASSIFICATION ERROR RATE FCR TESTING SET
L LT

L)
#%%%x  FIND CLASSIFICATION ERROR RATE FOR VALIDATION SET
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kg

it (ival.eq.1) then
nclas2 = 0

do 1504 il = 1, nvalpt
* FEEDFORWARD: for each input node, compute an output on the first
* layer x1(ii) and an input to the hidden layer.

* use m+1 to include the bias term

do 1512 ii=1,n

b=0.

do 1622 11=1,m+1
1622 b=b+w1(1l,ii)*arrval(ll,il)
1512 x1(ii)=1(b)

* debug loop
if(idbg.eq.1)then
write(2,+)’Hidden Layer Outputs’
write(2,*)x1
endif

* get up bias term for hidden layer
x1(n+1)=1.0
* continuation of feedforward loop. compute an output term zz(jj)

do 1532 jj=1,0
b=0.
do 1842 ii=1,n+1
1542 b=b+w2(ii,jj)*x1(ii)
zz(jj)=1(b)

* discretize the classification

it (2z(jj).1t.(.5)) then
iclass = 0

else
iclass = 1

endif

1532 continue
* compare to desired result
if (iclass.eq.nint(arrval(m+2,i1))) then
nclas2 = nclas2 + 1

else
continue
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endif
1504 continue
clasratb = (real(nclas2))/(real(nvalpt))

write(13,#) iepoch, 1.0 - clasrath
else

continue
endif

*RkE
#*#* END: FIND CLASSIFICATION ERROR RATE FOR VALIDATION SET
Rk

*kdk

#*%*  BEGIN COMPUTING TOTAL ABSOLUTE ERROR ON TESTING SET
#+*+ THIS LOOP ALSO COMPUTES ERROR SUM OF SQUARES

#xx* THIS LOOP ALSO COMPUTES LARGEST ABSOLUTE ERROR

*hkk

if (iaberr.eq.1) then

templ = 0.0
temp2 = 0.0
temp3 = 0.0

do 1505 i1 = 1, ntstpt
*+ FEEDFORWARD: for each input node, compute an output on the first
* layer x1(ii) and an input to the hidden layer.
* use m+1 to include the bias term

do 1613 ii=1,n

b=0.

do 1523 11=1,m+1
1623 b=b+wi1(1l,ii)*arrtst(1l,i1)
1513 x1(ii)=1(b)

* debug loop
if(idbg.eq.1)then
write(2,*) ’Hidden Layer Outputs’
write(2,*)x1
endif
* get up bias term for hidden layer
x1(n+1)=1.0

* continuation of feedforward loop. compute an output term zz(jj)

do 1633 jj=1,0
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b=0.
do 1543 ii=1,n+1
1643 b=b+w2(ii,jj)ex1(ii)
zz(jj)=1(b)
templ = tempi + (abs(zz(jj) - nint(arrtst(m+2,i1))))
temp2 = temp2 + (2z(jj) - nint(arrtst(m+2,i1)))**2
it ((abs(zz(jj) - nint(arrtst(m+2,i1)))).gt.temp3) then
temp3 = abs(zz(jj) - nint(arrtst(m+2,i1)))

* temp3a and temp3b track the coordinates of the exemplar
* causing the largest absolute error

temp3a = arrtst(1,i1)
temp3b = arrtst(2,ii1)
else
continue
endif
1633 continue

1606 continue

write (14,*) iepoch, templ

write (15,*) iepoch, temp2

vrite (16,*) iepoch, temp3, temp3a, temp3b
else

continue
endif

Rk

#*%+ END COMPUTING TOTAL ABSOLUTE ERROR ON TESTING SET
#*#* THIS LOOP ALSO COMPUTES ERROR SUM OF SQUARES
#*+* THIS LOOP ALSO COMPUTES LARGEST ABSOLUTE ERROR

.
-
*kkk BEGIN WEIGHT CHANGE CALCULATIONS
Ak
templ10 = 0.0
templi = 0.0
templ2 = 0.0
do 1100 i =1, m + 1
do 1101 j = 1, n
temp10 = templ0 + abs(witemp(i,j) - wi(i,j))
tempil = tempil + (witemp(i,j) - wi(i,j))#=*2
templ2 = temp12 + abs((witemp(i,j) - wi(i,j))/wi(i,j))
witemp(i,j) = wi(i,j)
1101 continue
1100 continue

do 1102 i =1, n + 1
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1103
1102

do 1103 j
tempil
templi
templ2
w2temp(i,

continue

continue

0non

1, 0

temp10 + abs(w2temp(i,j) - w2(i,j))

tempil + (w2temp(i,j) - w2(i,j))»+2

temp12 + abs((w2temp(i,j) - w2(i,j))/wi(i,j))
i) = v2(i,j)

write (41,*) iepoch, templO
write (42,*) iepoch, tempii
temp13 = templ2/numwts

write (43,*) iepoch, tempi3

avgwts

tenp10/numwts

write (44,*) iepoch, avgwts

END WEIGHT CHANGE CALCULATIONS

REEEEEE

FERER ¥ Ex EXEEEXRT

END STOPPING CRITERIA CALCULATIONS

BEGIN CHECKING IF STOPPING CRITERIA HAVE BEEN MET

*

check for stopping criteria for limit on number of cycles reached

if (istcyc(ncycle).eq.0) then
if(iepoch.ge.istop) then

write (2,%*)
write (2,*)
write (2,%)
write (2,*)

)

REASON FOR STOP IS NUMBER OF EPOCHS’
’IT IS EPOCH NUMBER ', iepoch
ERROR RATE ON VAL SET IS ’, 1.0 - clasrath

write (10,*) ’*REASON FOR STOP IS NUMBER OF EPOCHS’

write (10,*) ’IT IS EPOCH NUMBER

', iepoch

write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath

write

(50,#*) iepoch, 1.-clasrath, ’

MAX NUM EPOCHS’

istcyc(ncycle) = istcyc(ncycle) + 1
igwitch = iswitch + 1

else
continue
endif
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else
continue
endif

* check for stopping criteria for low enough error rate on training set

it (isttrn(ncycle).eq.0) then
if(clasrati.ge.errsttng) then
write (2,#) ’ !
write (2,#) ’REASON FOR STOP IS ERROR RATE ON TRAINING SET’
write (2,*) ’IT IS EPOCE NUMBER °’, iepoch
write (2,+) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,#) ’REASON FOR STOP IS ERROR RATE ON TRAINING SET’
write (10,*) ’IT IS EPOCH NUMBER ’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrat$s
write (50,*) iepoch, 1.-clasrat5, > ERR RATE ON TNG SET’
isttrn(ncycle) = isttrn(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for low enough error rate on training set
* occurring icontl times in a row

it (isttrnb(ncycle).eq.0) then

if(clasratl.ge.errsttng) then
itempa(ncycle) = itempa(ncycle) + 1
else
itempa(ncycle) = 0
endif

if (itempa(ncycle).ge.icontl) then
write (2,%) * ?
write (2,*) ’REASON FOR STOP IS RPTD ERR RAT ON TNG SET’
write (2,#) ’IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS RPTD ERR RAT ON TNG SET’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, > RPTD ER RAT TNG SET’
isttrnb(ncycle) = isttrnb(ncycle) + 1
iswitch = iswitch + 1

else
continue

endif

else
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continue
endif

* check for stopping criteria for low enough error rate on testing set

it (isttst(ncycle).eq.0) then
if(clasrat2.ge.errsttst) then
write (2,%) ? ?
write (2,*) ’REASON FOR STOP IS ERROR RATE ON TESTING SET’
write (2,%) ’IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET 1S ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS ZRROR RATE ON TESTING SET’
write (10,%) ’IT IS EPOCH NUMBER ’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, ’ ERR RATE ON TST SET’
isttst(ncycle) = isttst(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for low enough error rate om testing set
* occurring iconti times in a row

if (isttstb(ncycle).eq.0) then

if(clasrat2.ge.errsttst) then
itempb(ncycle) = itempb(ncycle) + 1
else
itempb(ncycle) = 0
endif

if (itempb(ncycle).ge.iconti) then
write (2,*) * ?
write (2,*) ’REASON FOR STOP IS RPTD ERR RAT ON TST SET’
write (2,#*) *IT IS EPOCH NUMBER °’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,+) ’REASON FOR STOP IS RPTD ERR RAT ON TST SET’
write (10,*) ’IT IS EPOCH NUMBER ’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrats
write (50,%) iepoch, 1.-clasrat56, ’ RPTD ER RAT TST SET’
isttstb(ncycle) = isttstb(ncycle) + 1
iswitch = iswitch + 1

else
continue

endif

else
continue

102




endif

* check for stopping criteria for low enough error rate on val set

it (istval(ncycle)
if(clasratb.ge.
write (2,%*)
write (2,%*)
write (2,%)
write (2,#*)
write(10,*)
write (10,#)
write (10,%)
write (50,%)

.eq.0) then

errstval) then

»

REASON FOR STOP IS ERROR RATE ON VAL SET’
’IT IS EPOCH NUMBER ’, iepoch

ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
’REASON FOR STOP IS ERROR RATE ON VAL SET’
’IT IS EPOCH NUMBER ’, iepoch

ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
iepoch, 1.-clasratb, ’° ERR RATE ON VAL SET’

istval(ncycle) = istval(ncycle) + 1
iswitch = iswitch + 1

else
continue
endif
else
continue
endift

* check for stopping criteria for low weighted average error rate

wtavg = pertrn*clasrati + pertst#clasrat2 + perval*clasratd
write(17,*) iepoch, 1.0 - wtavg

it (istwa(ncycle).

eq.C) then

if(wtavg.ge.errstop2) then

write (2,%)
write (2,%)
write (2,%)
write (2,%*)
write(10,%*)

»

’REASON FOR STOP IS WEIGHT AVE ERROR RATE’
’IT IS EPOCH NUMBER ’, iepoch

ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
’REASON FOR STOP IS WEIGHT AVE ERROR RATE’

write (10,*) ’IT IS EPOCH NUMBER ’, iepoch

write (10,%)
write (50,%)

ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
iepoch, 1.-clasratb, ’> WT AVG ERR RATE °’

istwa(ncycle) = istwa(ncycle) + 1
iswitch = iswitch + 1

else
continue
endif
else
continue
endif

* check for stopping criteria for low weighted average error rate
* occurring iconti times in a row

it (istwab(ncycle).eq.0) then
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if(wtavg.ge.errstop2) then
itempc(ncycle) = itempc(ncycle) + 1
else
itempc(ncycle) = 0
endif

it (itempc(ncycle).ge.icontl) then
write (2,*) ? ?
write (2,#) ’REASON FOR STOP IS RPTD WTD AVG ERROR RATE’
write (2,+) ’IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’*REASON FOR STOP IS RPTD WTD AVG ERROR RATE’
write (10,*) °IT IS EPOCH NUMBER °’, iepoch
write (10,%) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, > RPTD WT AVG ERR RAT’
istwab(ncycle) = istwab(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endit

* check for stopping criteria for total absolute error

it (isttae(ncycle).eq.0) then
if(tempi.le.abserrst) then
write (2,*) ’ °*
write (2,%*) ’REASON FOR STOP IS TOTAL ABSOLUTE ERROR’
write (2,*) ’IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS TOTAL ABSOLUTE ERROR’
write (10,#) ’IT IS EPOCH NUMBER °’, iepoch
write (10,+) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasraths, ’ TOT ABSOLUTE ERROR’
isttae(ncycle) = isttae(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

*+ check for stopping criteria for total absolute error
* occurring icontl times in a row

it (isttaeb(ncycle).eq.0) then
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if(templ.le.abserrst) then
itempi(ncycle) = itempi(ncycle) + 1
else
itempi{(ncycle) = 0
endif

if (itempi(ncycle).ge.icont1) then
write (2,*) ’ ?
write (2,*) ’REASON FOR STOP IS REPEATED TOT ABS ERR’
write (2,*) ’IT IS EPOCH NUMBER °’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS REPEATED TOT ABS ERR’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasratf, ’° RPTD TOT ABS ERROR’
isttaeb(ncycle) = isttaeb(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for error sum of squares

if (istess(ncycle).eq.0) then
if(temp2.le.essstopl) then
write (2,%) ? ?
write (2,*) ’REASON FOR STOP IS ERROR SUM OF SQUARES’
write (2,*) ’IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,#*) ’REASON FOR STOP IS ERROR SUM OF SQUARES’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrath, ’® ERR SUM OF SQUARES’
istess(ncycle) = istess(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for error sum of squares
* occurring iconti times in a row

if (istessb(ncycle).eq.0) then
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if(temp2.le.esastopl) then
itemp2(ncycle) = itemp2(ncycle) + 1

else

itemp2(ncycle) = 0

endif

it (itemp2(ncycle).ge.icont1) then

write (2,%)
write (2,%)
write (2,+*)
write (2,¥%)
write(10,%*)

y 2

’REASON FOR STOP IS REPEATED ERR SUM SQ°
’IT IS EPOCH NUMBER ’, iepoch

ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
’REASON FOR STOP IS REPEATED ERR SUM SQ°

write (10,*) ’IT IS EPOCH NUMBER ’, iepoch

write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasratf, ° RPTD ERR SUM OF SQRS’
istessb(ncycle) = istessb(ncycle) + 1

iswitch = iswitch + 1

else
continue
endif
else
continue
endif

* check for stopping criteria for largest absolute error

if (istlae(ncycle).eq.0) then
if (temp3.le.errlrg) then

write (2,#*)
write (2,*)
write (2,%)
write (2,%*)
write(10,*)

.

’REASON FOR STOP IS LARGEST ABSOLT ERROR’
’IT IS EPOCH NUMBER ’, iepoch

’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
’REASON FOR STOP IS LARGEST ABSOLT ERROR’

write (10,*) ’IT IS EPOCH NUMBER ’, iepoch

write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, ’ LARGEST ABS ERROR’
istlae(ncycle) = istlae(ncycle) + 1

iswitch = iswitch + 1

else
continue
endif
else
continue
endif

* check for stopping criteria for largest absolute error
*# occurring icontl times in a row

if (istlaeb(ncycle).eq.0) then

if(temp3.le.errlrg) then
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itemp3(ncycle) = itemp3(ncycle) + 1
else

itemp3(ncycle) = 0
endift

if (itemp3(ncycle).ge.icontl) then
write (2,#*) * @
write (2,*) ’REASON FOR STOP IS RPEATED LRG ABS ERR’
write (2,#) 'IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS RPEATED LRG ABS ERR’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
vrite (50,*) iepoch, 1.-clasratb, ’° RPTD LARGE ABS ERROR’
istlaeb(ncycle) = istlaeb(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for abasolute weight change

if (istawc(ncycle).eq.0) then
if(temp10.le.awcstop) then
write (2,%) ? @
write (2,*) ’REASON FOR STOP IS ABSOLUTE WEIGHT CHANGE’
write (2,#) ’IT IS EPGCH NUMBER °’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasratb
write(10,*) ’REASON FOR STOP IS ABSOLUTE WEIGHT CHANGE’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, ’ ABSOLUTE WEIGHT CHG’
istawc(ncycle) = istawc(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continuse
endif

* check for stopping criteria for squared weight change

if (istawc(ncycle).eq.0) then
if(temp1l.le.swcstop) then
write (2,%) ’
write (2,*) 'REASON FOR STOP IS SQUARED WEIGHT CHANGE’
write (2,*) ’IT IS EPOCH NUMBER ’, iepoch
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write (2,*) ’ERROR RATE OF VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS SQUARED WEIGHT CHANGE’
write (10,*) ’IT IS EPOCH NUMBER ’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,%) iepoch, 1.-clasrath, ’ SQUARED WEIGHT CHG’
istawc(ncycle) = istswc(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

#* check for stopping criteria for absolute relative weight change

it (istrwc(ncycle).eq.0) then
if(temp13.le.rwcstop) then
write (2,%) *?
write (2,*) *REASON FOR STOP IS RELATIVE WEIGHT CHANGE'’
write (2,*) ’IT IS EPOCH NUMBER °’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS RELATIVE WEIGHT CHANGE’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,+) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasratb
write (50,*) iepoch, 1.-clasratb, * RELATIVE WEIGHT CHG’
istrwc(ncycle) = istrwc(ncycle) + 1
igwitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for absolute relative weight change
* occurring icontl times in a row

if (istrwcb(ncycle).eq.0) then

if(temp13.le.rwcstop) then
itempf(ncycle) = itempf(ncycle) + 1
else
itempf(ncycle) = 0
endif

if (itempf(ncycle).ge.icont1) then
write (2,%) * ?
write (2,*) ’REASON FOR STOP IS REPEATED REL WT CHG’
write (2,*) ’IT IS EPOCH NUMBER ’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
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write(10,%) ’REASON FOR STOP IS REPEATED REL WT CHG’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasratb, * RPTD REL WT CHG’
istrwcb(ncycle) = istrwcb(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for absolute mean weight change

it (istmwc(ncycle).eq.0) then
if(avguts.le.mwcstop) then
write (2,%) *
write (2,*) ’REASON FOR STOP IS MEAN WEIGHT CHANGE’
write (2,+) ’IT IS EPOCH NUMBER ’, iepoch
write (2,%) ’ERROR RATE UN VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS MEAN WEIGHT CHANGE’
write (10,*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’*ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, ’ MEAN WEIGHT CHG’
istmwc(ncycle) = istmwc(ncycle) + 1
iswitch = iswitch + 1
else
continue
endif
else
continue
endif

* check for stopping criteria for moving average error
* need more than five epochs

if (iepoch.gt.5) then

if (istma(ncycle).eq.0) then
if(movavg(intervl).le.mastop) then

write (2,*) * ?
write (2,*) ’REASON FOR STOP IS MOVING AVERAGE ERROR’
write (2,*) ’IT IS EPOCH NUMBER °’, iepoch
write (2,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write(10,*) ’REASON FOR STOP IS MOVING AVERAGE ERROR’
write (10,*) ’IT IS EPOCH NUMBER ’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrath, ’ MOVING AVG ERROR’
istma(ncycle) = istma(ncycle) + 1
iswitch = iswitch + 1
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else
continue
endif
else
continue
endif

else
continue
endif

* BEGIN A MAP FOR EACH 50 EPOCHS

it ( (iepoch.eq.50).or.(iepoch.eq.100).or. (iepoch.eq.150)

* .or.
*  (iepoch.eq.200).or.(iepoch.eq.250).0r.(iepoch.eq.300)
* .or.
*  (iepoch.eq.350).or.(iepoch.eq.400).or.(iepoch.eq.450)
* .or. (iepoch.eq.500) ) then
write (2,%) *?
vrite (2,*) ’PERIODIC EPOCH REPORT’
write (2,*) ’IT IS EPOCH NUMBER °’, iepoch
write (2,*) ’ERROR RATE ON VAL SE:i IS ’, 1.0 - clasrath
write(10,*) *PERIODIC EPOCH REPORT’
write (10,#*) ’IT IS EPOCH NUMBER °’, iepoch
write (10,*) ’ERROR RATE ON VAL SET IS ’, 1.0 - clasrath
write (50,*) iepoch, 1.-clasrat5, ’ PERIOD EPOCH REPORT’
iswitch = iswitch + 1
else
continue
endif
* RRRRRKERERE *RRRE * FRRRERERBKRERRERERRREEERXRREEE
*
*
* BEGIN TEST FOR GRAPH DATA FOR TOTAL ABSOLUTE ERROR
* This section runs at the end of each epoch to determine if a
* threshold has been crossed. Initialize igrafXX at the
* beginning of the program and write to file fort.XX
* the first time the threshold is met
* Use igrafXX(ncycle) as a switch to see if this threshold
* has been met before
* Write to files number 61 and higher
* templ is the total absolute error value
*
*
eI R P R Ry e T R s T e ERRRRRRRR P FEREREERRE

if (igrafoi(ncycle).eq.0) then
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if (tempi.le.(1.0)) then
write(61,*) ncycle, iepoch, 1.0 - clasrath
igrat01(ncycle) = igrafOi(ncycle) + 1

else
continue

endif
else

continue
endif

if (igraf02(ncycle).eq.0) then
if (templ.le.(2.0)) then
write(62,*) ncycle, iepoch, 1.0 - clasrath
igraf02(ncycle) = igraf02(ncycle) + 1
else
continue
endif
else
continue
endif

*
*
* END TEST FOR GRAPH DATA FOR TOTAL ABSOLUTE ERROR
*
*

* iswitch is greater than 0 if a tolerance threshold had been met.

if (iswitch.gt.0) then

go to 3
else
continue
endif
*
*
* END CHECKING IF STOPPING CRITERIA HAVE BEEN MET
*
*
kg ok Rk ok ok Ak ook ok ok ok ek o ok ok ok Ao o s ek ke ok ok o ko Rk

* Take the go to 1 loop ii program doesn’t go to 3 above
go to 1

* take else route if the entire training set isn’t complete this epoch.
* This goes far back into the program to label 99.
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else
go to 2
endif

* When an iswitch value indicates that ore of the potential stopping
criterion has indicated a stopping point or a periodic activation
* map is desired, enter here to print out resalts to fort.2 and fort.10

*

3 if(iprint.eq.1)then
rewind 30
x0(3) = 1.0

do 5000 i=11,1,-1
do 5000 j=1,11

read(30,*) x0(1), x0(2)
C FEEDFORWARD

do 210 ii=1,n

a=0.
do 220 11=1,m+1
220 =a+wi(11,ii)*x0(11)
210 x1(ii)=£(a)
x1(n+1)=1.0
do 230 jj=1,0
a=0.
do 240 ii=1,n+1
240 a=a+w2(ii, jj)*x1(ii)
230 2z(jj)=1(a)

xx(i,j)=ifix(100.*zz(1))
6000 continue

* Write to the activation map in fort.10

write (10,%) * *
write (10,%*) ’ACTIVATION MAP FOR CYCLE NUMBER °’, ncycle
write (10,%) ?* ?

do 5001 i=11,1,-1
write(10,1111)(xx(i,j),j=1,11)
1111 format(11(1x,i3))
6001 continue

write (10,%) * °
write (10,%) ’ °
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* Write final weights to file fort.2

write(2,*) ’FINAL LAYER 1 WEIGHTS °’
do 410 i=1 ,m+1

410 vrite(2,131) (wi(i,j),j=1,n)
write(2,+) ’FINAL LAYER 2 WRIGHTS’
do 411 i=1 ,n+1

411 write(2,131)(w2(i,j),j=1,0)

endif

e e 2l o e e ol sde e e ol 2l o 2 2 2 e e e

* Determine if all of the possible stopping criteria have indicated
* that it is time to quit this cycle.

dee kR ok ok ok kR R L Lk b2 b 2 k% Ekkkkkkknhkkkkkkhkkkgikk

if ((istcyc(ncycle).eq.1).and.(isttrn(ncycle).eq.1)
.and. (isttst(ncycle).eq.1).and. (istval(ncycle).eq.1)
.and. (istwa(ncycle).eq.1).and. (isttae(ncycle).eq.1)
.and. (isttaeb(ncycle).eq.1).and. (istess(ncycle).eq.1)
.and. (istessb(ncycle).eq.1).and. (istlae(ncycle).eq.1)
.and. (istlaeb(ncycle).eq.1)) then
goto 507
else
it (istcyc(ncycle).eq.1) then
if (isttrn(ncycle).eq.0) then
write (2,*) ° ?
write (2,*) *TRAIN SET NOT MEET ERR CRIT IN EPOCHS’
write (10,*) ’ ?
write (10,*) ’TRAIN SET NOT MEET ERR CRIT IN EPOCHS’
else
continue
endif
endif

LR I R

if (istcyc(ncycle).eq.1) then
it (isttrnb(ncycle).eq.0) then
write (2,%) * ?
write (2,*) 'RPTD TRN SET NOT MEET ERR CRIT IN EPOCHS'’
write (10,%) ° ?
write (10,*) ’RPTD TRN SET NOT MEET ERR CRIT IN EPCHS’
else
continue
endif
endif

if (istcyc(ncycle).eq.t) then

if (isttst(ncycle).eq.0) then
write (2,*) * ?
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write (2,+) 'TEST SET NOT MEET ERR CRIT IN EPOCHS’
write (10,*) *
write (10,*) *TEST SET MOT MEET ERR CRIT IN EPOCHS'’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (isttstb(ncycle).eq.0) then
write (2,*) ? °
write (2,#) *RPTD TST SET NOT MEET ERR CRIT IN EPOCHS’
write (10,%) ’ *
write (10,*) ’RPTD TST SET NOT MEET ERR CRIT IN EPCHS’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (istval(ncycle).eq.0) then
write (2,s) * °
write (2,#) ’VAL SET NOT MEET ERR CRIT IN EPOCHS’
write (10,*) *
write (10,*) °VAL SET NOT MEET ERR CRIT IN EPOCHS’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (istwa(ncycle).eq.0) then
write (2,#%) * ?
write (2,*) ’WEIGHT AVE NOT MEET ERR CRIT IN EPOCHS’
write (10,%) *
write (10,*) ’WEIGHT AVE NOT MEET ERR CRIT IN EPOCHS’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (istwab(ncycle).eq.0) then
write (2,#) ’ ?
write (2,%) ’RPTD WT AVG NOT MEET ERR CRIT IN EPOCHS’
write (10,%) ’ ?
write (10,*) ’RPT WT AVG NOT MEET ERR CRIT IN EPOCHS’
else
continue
endif
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endif

it (istcyc(ncycle).eq.1i) then
it (isttae(ncycle).eq.0) then
write (2,%) *
write (2,*) ’TOT ABS ERR NOT MEET ERR CRIT IN EPOCHS’
write (10,%) * ?
write (10,*) *TOT ABS ERR NOT MEET ERR CRIT IN EPCHS’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
it (isttaeb(ncycle).eq.0) then
write (2,%) ?* ?
write (2,*) ’RPTED TOT ABS ERR NOT MET ER CRT IN EP’
write (10,%) * ?
write (10,#*)’RPTED TOT ABS ERR NOT MET ER CRT IN EP’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (istess(ncycle).eq.0) then
write (2,*) * ?
write (2,*) ’ERR SUM SQ NOT MEET ERR CRIT IN EPOCHS’
write (10,%) ?*
write (10,*) ’ERR SUM SQ NOT MEET ERR CRIT IN EPCHS’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (istessb(ncycle).eq.0) then
write (2,*) ’ ?
write (2,#) ’RPTED ERR SUM SQ NOT MET ER CRT IN EP’
write (10,*) * ?
write (10,*)’RPTED ERR SUM SQ NOT MET ER CRT IN EP’
else
continue
endif
endif

if (istcyc(ncycle).eq.1) then
if (istlae(ncycle).eq.0) then
write (2,%) ’ @
write (2,*) ’LRG ABS ER NOT MEET ERR CRIT IN EPOCHS’
write (10,%*) *
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write (10,*) ’LRG ABS ER NOT MEET ERR CRIT IN EPCHS’
else

continue
endif
endif

it (istcyc(ncycle).eq.1) then
it (istlaeb(ncycle).eq.0) then
write (2,*) *
write (2,*) ’RPTED LRG ABS ER NOT MET ER CRT IN EP’
write (10,*) ’ °
write (10,#*)’RPTED LRG ABS ER NOT MET ER CRT IN EP’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
it (istawc(ncycle).eq.0) then
write (2,*) * ?
write (2,*) ’ABS WGHT CHAKGE NOT MET ER CRT IN EP’
write (10,%) * °
write (10,*)’ABS WGHT CHANGE NOT MET ER CRT IN EP’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
if (istswc(ncycle).eq.0) then
write (2,*) * ?
write (2,*) ’SQR WGHT CHANGE NOT MET ER CRT IN EP’
write (10,*) ’ °
write (10,*)'SQR WGHT CHANGE NOT MET ER CRT IN EP’
else
continue
endif
endif

if (istcyc(ncycle).eq.1) then
if (istrwc(ncycle).eq.0) then
write (2,%) * ?
write (2,*) ’REL WGHT CHANGE NOT MET ER CRT IN EP’
write (10,*) ’ °
write (10,*)’REL WGHT CHANGE NOT MET ER CRT IN EP’
else
continue
endif
endif

it (istcyc(ncycle).eq.1) then
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it (istrucb(ncycle).eq.0) then
write (2,%) *
write (2,*) ’RPTD REL WT CHG XOT MET ER CRT IN EP’
write (10,%) *
write (10,*)’RPTD REL WT CHG NOT MET ER CRT IN EP’
else
continue
endif
endif

if (istcyc(ncycle).eq.1) then
if (istmwc(ncycle).eq.0) then
write (2,%) > °?
write (2,#) ’MEAN WGHT CHANGE NOT MET ER CRT IN EP’
write (10,*) * ?
write (10,*) ’MEAN WGHT CHANGE NOT MET ER CRT IN EP’
else
continue
endif
endif

if (istcyc(ncycle).eq.1) then
it (istma(ncycle).eq.0) then
write (2,*) *
write (2,*) ’MOVING AVG ERROR NOT MET ER CRT IN EP’
write (10,%) * *
write (10,*) ’MOVING AVG ERROR NOT MET ER CRT IN EP’
else
continue
endif
endif

if (istcyc(ncycle).eq.1) then
goto 507

else
continue

endif

goto 1
endif

* Update the number of cycles

507 ncycle = ncycle + 1
write (50,*) ’
write (50,*) >STARTING CYCLE NUMBER ’, ncycle
write (50,*) ’ °

* Determine if there are a sufficient number of cycles.

if (ncycle.le.ncstop) then
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goto 501
else

continue
endif

stop
end

real function f(x)
£=1./(1.+exp(-1.%x))
return

end

T AP ATATAPAY *% EERRERRREE TR T PR AR s
RANDOM NUMBER GENERATOR

Returns a uniform random deviate between 0.0 and 1.0 using a system
Set IDUN to any negative value to initialize or reinitialize the sequence.

Reference: KNumerical Recipes, p. 196

L K IEE SR EE R

FUNCTION RAN1(IDUM)

DIMENSION R(97)
PARAMETER (M1=269200,IA1=7141,I1C1=564773,RM1=1./M1)
PARAMETER (M2=134456,IA2=8121,1C2=28411,RM2=1./M2)
PARAMETER (M3=243000,IA3=4561,IC3=51349)
DATA IFF /0/
IF (IDUM.LT.O.OR.IFF.EQ.0) THEN
IFF=1
IX1=MOD(IC1-IDUM, MN1)
IX1=MOD(IA1+IX1+IC1,M1)
IX2=MOD(IX1,M2)
IX1=MOD(IA1*IX1+IC1,M1)
IX3=MOD(IX1,M3)
DO 11 J=1,97
IX1=MOD(IA1+#IX1+IC1,M1)
IX2=MOD(IA2+IX2+1C2,M2)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)+RM1
11 CONTINUE
IDUM=1
ENDIF
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IA2*IX2+1C2,M2)
IX3=MOD(IA3*IX3+IC3,M3)
J=1+(97+1X3) /M3
IF(J.GT.97.0R.J.LT.1)PAUSE
RAN1=2(J)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)+RM1
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RETURE
END

RERRR RS ERERRRIREERAERR LR AR R RR SRS RS FEBRABRS R AR RRERRRRARRAR SRR ERRRR RS SRS
RANDOM NUMBER GENERATOR

Returns a uniform random deviate between 0.0 and 1.0 using a system
Set IDUM2 to any negative value to initialize or reinitialize the sequence.

Reference: Numerical Recipes, p. 196

* % # # £ * #
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FUNCTION RAN2(IDUM2)

DIMENSION R(97)
PARAMETER (M1=259200,IA1=7141,IC1=54773,RM1=1./M1)
PARAMETER (M2=134456,TA2=8121,1C2=28411,RM2=1./M2)
PARAMETER (M3=243000,IA3=4561,IC3=51349)
DATA IFF /0/
IF (IDUM2.LT.O0.OR.IFF.EQ.0) TEEN
IFF=1
IX1=MOD(IC1-IDUM2,M1)
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IX1,M2)
IX1=MOD(IA1*IX1+IC1,M1)
IX3=MOD(IX1,M3)
DO 11 J=1,97
IX1=MOD(IA1*IX1+IC1,M1)
IX2=MOD(IA2+IX2+1C2,M2)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RNM1
11 CONTINUE
IDUM2=1
ENDIF
IX1=MOD(IA1*IX1+IC1,6M1)
IX2=MOD(IA2+IX2+IC2,M2)
IX3=MOD(IA3*IX3+IC3,M3)
J=1+(97*1X3) /M3
IF(J.GT.97.0R.J.LT.1)PAUSE
RAN2=R(J)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)#*RM1
RETURN
END

Returns a uniform random deviate between 0.0 and 1.0 using a system

*
*

* Written by Lisa Belue.

*

*®

* sgupplied routine RAR(ISEED). Set IDUM to any negative value to
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* initialize or reinitialize the sequence.
*
BERSRESEERRARBASRRRERPRE SR AR S E RS RBER AR EEX AR ERERERRFRER SRR SFERSERR S 43

FUNCTION RANO(IDUMO)

DIMENSION V(97)
DATA IFF /0/
IF (IDUM.LT.0.OR.IFF.EQ.0) THEN
IFF=1
ISEED=ABS (IDUK)
IDUM=1
DO 11 J=1,97
DUM=RAN(ISEED)
11 CONTINUE
DO 12 J=1,97
V(J)=RAN(ISEED)
12 CONTINUE
Y=RAN (ISEED)
ENDIF
J=1+INT(97.*Y)
IF(J.GT.97.0R.J.LT.1) then
PAUSE
else
continue
endif
Y=v(J)
RANO=Y
V{(J3)=RAN(ISEED)
RETURN
END
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Appendiz B. Stopping Criteria Formulations

This section lists the mathematical formulation of the stopping criteria evalu-

ated in the artificial neural network (ANN).

e Classification Error Rate

The classification error rate is evaluated for the training and testing sets and

is defined as follows:

R =

Sle

where c is the number of exemplars classified correctly by the ANN and n is

the total number of exemplars classified.

e Weighted Average Error Rate

Weighted average error rate is evaluated using both the training set and the
testing set classification error rates as determined above. It is defined as follows:
WtAvg = Ptrain ¥ Rtrain + Dtest * Rteat

where R;,.in is the classification error rate for the training set, Ry is the clas-
sification error rate for the testing set, prqin is the percentage weight assigned
to the training set, and pi., is the percentage weight assigned to the testing

set such that

Pirain + Dtest = 1

121




e Moving Average Error Rate

Moving average error rate is evaluated using the testing set over the last Int

epochs and is defined as follows:

Int R,

where R; is the classification error rate for the testing set.

o Total Absolute Error

Total absolute error is evaluated on the testing set and is defined as follows:
E=3lyi—di

where y; is the ANN output for exemplar ¢, d; is the known, desired output for

exemplar ¢, and n is the number of testing exemplars.

e Error Sum of Squares

Error sum of squares is evaluated on the testing set and is defined as follows:
ESS =Y (yi — di)’

where y; is the ANN output for exemplar 7, d; is the known, desired output for

exemplar ¢, and n is the number of testing exemplars.

e Largest Absolute Error

Largest absolute error is evaluated on the testing set and is defined as follows:

LAE = mazly; — d;|

where y; is the ANN output for exemplar i, d; is the known, desired output for

exemplar 7, and n is the number of testing exemplars.
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e Absolute Weight Change

Absolute weight change is defined as follows:

AWC = Z lwk(t + 1) — wk(t)l
k=1
where m is the total number of weights and w; is the weight of neuron k for
the tth epoch.

e Squared Weight Change

Squared weight change is defined as follows:

SWC =Y [wi(t + 1) — wi(t))?
k=1
where m is the total number of weights and w; is the weight of neuron k for
the tth epoch.

e Relative Weight Change

Relative weight change is defined as follows:

_ b Iwk(t + 1) - w;,(t)|
AWE = 2 = 0

where m is the total number of weights and w; is the weight of neuron k for

the tth epoch.

e Mean Weight Change

Mzan weight change is defined as follows:

izt [wa(t +1) — wi(t)]
m

MwWC =

where m is the total number of weights and wy is the weight of neuron & for

the tth epoch.
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Appendiz C. Total Absolute Error Function in the XOR Problem

This appendix shows the function of total absolute error for the four cases
which did not meet the thresholds of the third experiment. They are listed by the

replication number (out of ten replications) in which they occurred.

Figure 42. Replication One Total Absolute Error

124




Figure 43. Replication Four Total Absolute Error

Figure 44. Replication Eight Total Absolute Error
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Figure 45. Replication Nine Total Absolute Error
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Appendiz D. Mesh Problem: An Output Comparison

This chapter contains the raw data for the mesh problem. The artificial neural
network was trained for up to 15,000 epochs. The number of hidden nodes was set at
all even numbers from four to twenty (inclusive). At each level of hidden nodes, ten

replications of the training were conducted. In the Tables which follow, the asterisks

(*) indicate those values selected by the heuristic rules given in Chapter 4.

Table 6: Four Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set

1* 0.1200 2901 0.1200 0.2183 0.2617 0.2294
2* 0.1100 13920 0.1100 0.2200

3 0.1600 12727 0.1600 0.2633 0.0466 0.0142
4 0.2000 9462 0.2000 0.3250
5* 0.1200 13633 0.1200 0.2200
6 0.1900 14328 0.1900 0.3300
™ 0.1100 12431 0.1100 0.2450
8* 0.1200 11577 0.1200 0.2233
9 0.1800 6552 0.1800 0.3217
10* 0.1200 9652 0.1200 0.2500

Testing Set

1* 0.2300 3047 0.2300 0.2050 0.2532 0.2217
2* 0.2300 1091 0.2300 0.2067

3* 0.2500 4632 0.2500 0.2667 0.0543 0.0236
4 0.3700 10121 0.3700 0.3233
5* 0.2300 2697 0.2300 0.2000
6 0.3700 10951 0.3700 0.3250
™ 0.2400 995 0.2400 0.2317
8* 0.2400 669 0.2400 0.2100
9 0.3700 2614 0.3700 0.3317
10* 0.2400 933 0.2400 0.2317

127




Table 6: Four Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Weighted Average
1* 0.1850 2901 0.1850 0.2183 0.2568 0.2204
2* 0.1850 1906 0.1850 0.2183
0.2100 12727 0.2100 0.2633 0.0497 0.0025
0.2900 9462 0.2900 0.3250
0.2050 6341 0.2050 0.2050
6 0.2850 14536 0.2850 0.3283
™ 0.1950 1188 0.1950 0.2217
8* 0.1900 11577 0.1900 0.2233
9 0.2850 6552 0.2850 0.3217
10 0.2000 14949 0.2000 0.2433
Moving Average
1* 0.2400 3139 0.2400 0.2167 0.2553 0.2255
2* 0.2360 1101 0.2360 0.2100
3* 0.2520 6132 0.2520 0.2633 0.0505 0.0187
4 0.3760 11693 0.3760 0.3200
5* 0.2540 2700 0.2540 0.2083
6 0.3740 13176 0.3740 0.3233
7* 0.2500 1038 0.2500 0.2250
8* 0.2400 13109 0.2400 0.2233
9 0.3780 2614 0.3780 0.3317
10* 0.2500 924 0.2500 0.2317
Total Absolute Error
1* 28.9528 6125 28.9528 0.2067 0.2578 0.2230
2% 29.4051 5349 29.4051 0.2087
3* 28.2199 14052 28.2199 0.2683 0.0512 0.0263
4 42.8098 10456 42.8098 0.3250
5* 29.3826 6335 29.3826 | 0.2100
42.9163 12987 42.9163 0.3250
30.7562 12501 30.7562 0.2417
8* 26.6532 14685 26.6532 0.2233
9 42.5929 14058 42.5929 0.3300
10 30.7660 11150 30.7660 0.2417
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Table 7: Six Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set

1 0.1100 4268 0.1100 0.2167 0.1873 0.1588
2 0.1000 14096 0.1000 0.1983

3 0.1000 12515 0.1000 0.1933 0.0301 0.0270
4* 0.0800 5381 0.0800 0.1733
5 0.1000 14756 0.1000 0.2033
6* 0.0700 10709 0.0700 0.1717
7 0.1000 11960 0.1000 0.2067
8* 0.0700 5688 0.0700 0.1183
9 0.1200 2317 0.1200 0.2200
10* 0.0800 6254 0.0800 0.1717

Testing Set

1 0.2100 10493 0.2100 0.1967 0.1760 0.1570
2 0.2100 6931 0.2100 0.1917

3 0.2000 4302 0.2000 0.1933 0.0317 0.0367
4* 0.1900 1680 0.1900 0.1783
5 0.2000 5321 0.2000 0.1917
6* 0.1800 1606 0.1800 0.1600
7 0.2400 3144 0.2400 0.2017
8* 0.1000 2787 0.1000 0.0933
9* 0.1800 12483 0.1800 0.1833
10* 0.1800 3620 0.1900 0.1700

Weighted Average

1 0.1750 14450 0.1750 0.1900 0.1763 0.1508
2 0.1750 7333 0.1750 0.1933

3 0.1650 12515 0.1650 0.1933 0.0304 0.0351
4* 0.1500 3520 0.1500 0.1667
5 0.1750 13151 0.1750 0.1933
6* 0.1450 10709 0.1450 0.1717
7 0.1950 11960 0.1950 0.2067
8* 0.1100 2744 0.1100 0.0983
9 0.1900 12546 0.1900 0.1833
10* 0.1400 12376 0.1400 0.1667
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Table 7: Six Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average

1 0.2220 13846 0.2220 0.1917 0.1778 0.1458
2 0.2280 9527 0.2280 0.1950

3 0.2200 12501 0.2200 0.1933 0.0361 0.0339
4* 0.1920 9268 0.1920 0.1633
5 0.2140 5325 0.2140 0.1883
6* 0.1840 1756 0.1840 0.1633
7 0.2520 1503 0.2520 0.2333
8* 0.1100 2791 0.1100 0.0950
9 0.2220 12486 0.2220 0.1933
10* 0.1900 9089 0.1900 0.1617

Total Absolute Error

1 27.0278 13998 27.0278 0.1917 0.1743 0.1479
2 27.2391 11172 27.2391 0.1933

3 27.0533 12920 27.0533 0.1883 0.0298 0.0320
4* 21.0477 9262 21.0477 0.1633
5 26.8933 14383 26.8933 0.1950
6* 21.5338 6861 21.5338 0.1633
7 28.7017 4507 28.7017 0.2033
8* 15.9658 4120 15.9658 0.1000
9 25.1477 12547 25.1477 0.1800
10* 21.2537 10817 21.2537 0.1650
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Table 8: Eight Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set
1 0.0700 10623 0.0700 0.1367 0.1655 0.1267
2 0.1200 1560 0.1200 0.2117
3* 0.0400 8544 0.0400 0.1050 0.0464 0.0390
4 0.0800 7283 0.0800 0.1683
0.0700 7996 0.0700 0.1317
6 0.1000 13383 0.1000 0.2283
™ 0.0400 5114 0.0400 0.1033
8 0.1100 12596 0.1100 0.2267
9 0.0800 4876 0.0800 0.1717
10* 0.0500 13401 0.0500 0.1717
Testing Set
1 0.1800 5600 0.1800 0.1267 0.1592 0.0967
2 0.2300 6459 0.2300 0.2117
3* 0.1400 8028 0.1400 0.1050 0.0458 0.0118
4 0.1800 2530 0.1800 0.1650
0.1900 2983 0.1900 0.1383
6 0.2300 1635 0.2300 0.2150
™ 0.0800 9827 0.0800 0.0883
0.2300 6780 0.2300 0.2183
0.1900 4199 0.1900 0.1667
10 0.1800 1980 0.1800 0.1567
Weighted Average
1 0.1450 4977 0.1450 0.1333 0.1600 0.0992
2 0.1850 1560 0.1850 0.2117
3* 0.0950 8544 0.0950 0.1050 0.0456 0.0082
4 0.1450 13710 0.1450 0.1583
0.1400 7996 0.1400 0.1317
6 0.1800 8609 0.1800 0.2217
™ 0.0800 12393 0.0800 0.0933
0.1900 2252 0.1900 0.2167
0.1400 14239 0.1400 0.1617
10 0.1400 11736 0.1400 0.1667
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Table 8: Eight Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average
1 0.1920 10122 0.1920 0.1333 0.1598 0.1000
2 0.2400 8494 0.2400 0.2250
3* 0.1400 8416 0.1400 0.1067 0.0476 0.0094
4 0.1880 14258 0.1880 0.1533
5 0.1960 5704 0.1960 0.1300
6 0.2400 8828 0.2400 0.2250
™ 0.0900 2142 0.0900 0.0933
0.2360 7113 0.2360 0.2150
0.1900 6265 0.1900 0.1600
10 0.1860 1984 0.1860 0.1567
Total Absolute Error
1 20.1558 7109 20.1558 0.1267 0.1592 0.1000
2 25.3412 | 10949 | 25.3412 | 0.1967
3* 15.3280 13261 15.3280 0.1050 0.0465 0.0071
4 20.6984 14981 20.6984 0.1517
20.7916 7965 20.7916 0.1283
6 27.2794 | 14380 | 27.2794 | 0.2200
™ 12.9566 12416 12.9566 0.0950
27.7513 | 13800 | 27.7513 | 0.2300
21.2363 12660 21.2363 0.1683
10 22.2873 | 14104 | 22.2873 | 0.1700
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Table 9: Ten Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set
1* 0.0400 14314 0.0400 0.0883 0.1477 0.0894
2 0.1100 14956 0.1100 0.1750
3* 0.0400 14646 0.0400 0.0817 0.0457 0.0386
4 0.0900 13296 0.0900 0.1733
0.0700 10135 0.0700 0.1550
6 0.1100 12183 0.1100 0.2100
0.0700 7521 0.0700 0.1517
8* 0.0400 9619 0.0400 0.0983
9 0.0600 5310 0.0600 0.1400
10 0.0800 6088 0.0800 0.2033
Testing Set
1* 0.0900 10849 0.0900 0.0800 0.1437 0.0861
2 0.2200 11701 0.2200 0.1717
3* 0.0800 6059 0.0800 0.0933 0.0446 0.0087
4 0.2000 4383 0.2000 0.1850
0.1800 5358 0.1800 0.1283
0.2200 2868 0.2200 0.2017
0.1900 2844 0.1900 0.1533
8* 0.0900 12581 0.0900 0.0850
9 0.1700 1779 0.1700 0.1550
10 0.2200 3164 0.2200 0.1833
Weighted Average
1* 0.0800 12577 0.0800 0.0950 0.1448 0.0917
2 0.1750 14956 0.1750 0.1750
3* 0.0850 6272 0.0850 0.0850 0.0424 0.0058
4 0.1600 5758 0.1600 0.1833
0.1400 6329 0.1400 0.1350
6 0.1800 14428 0.1800 0.2050
0.1400 10518 0.1400 0.1517
8* 0.0850 14394 0.0850 0.0950
9 0.1300 5310 0.1300 0.1400
10 0.1800 3392 0.1800 0.1833

133




Table 9: Ten Hidden Node Output (continued)

Val Set | Ave Errvor Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average
1* 0.1000 13057 0.1000 0.0900 0.1455 0.0900
2 0.2340 12268 0.2340 0.1783
3* 0.0920 6068 0.0920 0.0867 0.0441 0.0033
4 0.2100 4386 0.2100 0.1800
0.1960 6333 0.1960 0.1383
6 0.2320 2869 0.2320 0.2087
0.1960 14940 0.1960 0.1383
8* 0.0960 12585 0.0960 0.0933
9 0.1700 1978 0.1700 0.1517
10 0.2200 3337 0.2200 0.1817
Total Absolute Error
1* 13.4608 13345 13.4608 0.0883 0.1450 0.0883
2 27.3778 12622 27.3778 0.1767
3* 13.0426 9083 13.0426 0.0883 0.0477 0.0000
4 24.3949 14578 24.3949 0.1767
21.0033 7629 21.0033 0.1317
27.1659 | 14722 27.1659 | 0.2017
21.3834 14936 21.3834 0.1350
8* 13.3277 | 14892 13.3277 | 0.0883
9 20.2756 12328 20.2756 0.1450
10 28.3567 12965 28.3567 0.2183
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Table 10: Twelve Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat

Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set
1* 0.040 5120 0.040 0.0983 0.1517 0.1253
2% 0.050 4331 0.050 0.1600
3* 0.060 8676 0.060 0.1417 0.0438 0.0322
4 0.080 10609 0.080 0.2150
5* 0.050 11658 0.050 0.1600
6 0.110 10718 0.110 0.1850
0.090 4073 0.090 0.2033
8* 0.050 13766 0.050 0.1000
9* 0.040 3997 0.040 0.0817
10 0.070 4663 0.070 0.1617
Testing Set
1* 0.080 2344 0.080 0.0983 0.1433 0.0933
2 0.190 1386 0.190 0.1767
3 0.150 2411 0.150 0.1383 0.0404 0.0101
4 0.200 2071 0.200 0.1817
5 0.200 3565 0.200 0.1517
6 0.230 5501 0.230 0.1850
7 0.220 2501 0.220 0.1917
8* 0.090 14588 0.090 0.0817
9* 0.060 3033 0.060 0.1000
10 0.180 8372 0.180 0.1283
Weighted Average
1* 0.080 5120 0.080 0.0983 0.1437 0.0944
2 0.135 1953 0.135 0.1517
3 0.130 2222 0.130 0.1500 0.0379 0.0035
4 0.170 2370 0.170 0.1833
5 0.145 3584 0.145 0.1617
6 0.180 12804 0.180 0.1717
7 0.190 2536 0.190 0.1967
8* 0.090 14733 0.090 0.0933
9* 0.070 3997 0.070 0.0917
10 0.140 9873 0.140 0.1383
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Table 10: Twelve Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average

1* 0.086 3180 0.086 0.0983 0.1433 0.1025
2 0.190 1702 0.190 0.1600

3 0.164 2484 0.164 0.1350 0.0371 0.0059
4 0.200 2371 0.200 0.1767
5 0.204 3568 0.204 0.1567
6 0.246 10999 0.246 0.1767
7 0.230 2509 0.230 0.1983
8 0.108 14592 0.108 0.0867
9* 0.074 2429 0.074 0.1067
10 0.194 13562 0.194 0.1383

Total Absolute Error

1* 11.4825 13797 11.4825 0.0867 0.1385 0.0817
2 22.4609 4793 22.4609 0.1517

3 17.8558 7120 17.8558 0.1367 0.0442 0.0044
4 27.6511 2908 27.6511 0.1883
5 24.0679 3856 24.0679 0.1533
6 27.8478 12823 27.8478 0.1900
7 28.2915 5535 28.2915 0.1867
8* 14.6244 14642 14.6244 0.0783
9* 12.1035 6003 12.1035 0.0800
10 20.1519 12839 20.1519 0.1333
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Table 11: Fourteen Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat

Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set
1 0.070 14252 0.070 0.2133 0.1593 0.1504
2* 0.060 12640 0.060 01717
3* 0.050 10388 0.050 0.1583 0.0269 0.0195
4* 0.060 12171 0.060 0.1300
5 0.090 9264 0.090 0.1767
6* 0.060 9614 0.060 0.1550
™ 0.060 9878 0.060 0.1450
8* 0.060 3681 0.060 0.1683
9* 0.050 6284 0.050 0.1150
10* 0.060 7325 0.060 0.1600
Testing Set
1 0.230 2775 0.230 0.2050 0.1487 0.1333
2 0.200 3142 0.200 0.1600
3* 0.160 2266 0.160 0.1400 0.0312 0.0284
4* 0.160 14069 0.160 0.1167
5* 0.170 7255 0.170 0.1633
6 0.200 9747 0.200 0.1500

0.180 4944 0.180 0.1300

0.180 1579 0.180 0.1750

9* 0.110 6161 0.110 0.0933
10* 0.160 2726 0.160 0.1533
Weighted Average
1 0.180 13910 0.180 0.1900 0.1518 0.1278
2 0.145 3131 0.145 0.1667
3* 0.125 5354 0.125 0.1533 0.0247 0.0231
4* 0.125 13771 0.125 0.1217
0.140 10468 0.140 0.1600
6 0.140 14571 0.140 0.1483
0.145 4971 0.145 0.1333
8 0.150 1720 0.150 0.1733
9* 0.090 12326 0.090 0.1083
10 0.145 2839 0.145 0.1633
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Table 11: Fourteen Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average 1
1 0.244 2964 0.244 0.2067 0.1517 0.1194
2 0.208 3145 0.208 0.1633
3* 0.170 2270 0.170 0.1417 0.0309 0.0210
4* 0.166 14989 0.166 0.1167
0.182 7282 0.182 0.1667
6 0.214 9083 0.214 0.1500
0.188 4947 0.188 0.1317
8 0.188 1581 0.188 0.1783
9* 0.116 8997 0.116 0.1000
10 0.186 2730 0.186 0.1617
Total Absolute Error
1 27.8979 13187 27.8979 0.2017 0.1493 0.1183
2 24.0182 12284 24.0182 0.1650
3* 17.9408 4484 17.9408 0.1350 0.0288 0.0176
4* 18.7044 14986 18.7044 0.1200
20.4197 7674 20.4197 0.1633
6 23.0643 6470 23.0643 0.1650
20.2532 | 13232 | 20.2532 | 0.1300
8 22.2750 6451 22.2750 0.1617
9* 12.2425 9226 12.2425 0.1000
10 22.1440 2792 22.1440 | 0.1517
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Table 12: Sixteen Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set

1* 0.0600 9797 0.0600 0.1567 0.1415 0.1381
2* 0.0500 10465 0.0500 0.1100

3* 0.0600 6068 0.0600 0.1617 0.0291 0.0288
4* 0.0500 7361 0.0500 0.1733
5* 0.0500 12989 0.0500 0.1500
6* 0.0600 10537 0.0600 0.1600
7™ 0.0500 4389 0.0500 0.1017
8* 0.0400 8959 0.0400 0.1333
9 0.0800 13681 0.0800 0.1717
10* 0.0500 7032 0.0500 0.0967

Testing Set

1 0.1700 3268 0.1700 0.1433 0.1293 0.1133
2* 0.1300 12350 0.1300 0.1050

0.1900 14776 0.1900 0.1450 0.0314 0.0145
0.2100 3584 0.2100 0.1650
5% 0.1500 9371 0.1500 0.1350
6 0.1700 2910 0.1700 0.1400
™ 0.1200 6386 0.1200 0.1050
8* 0.1400 10793 0.1400 0.1083
9 0.2100 1620 0.2100 0.1750
10 0.0700 14970 0.0700 0.0717

Weighted Average

1 0.1300 3354 0.1300 0.1383 0.1343 0.1120
2* 0.1050 11985 0.1050 0.1133

3 0.1400 14520 0.1400 0.1467 0.0299 0.0239
4 0.1450 7361 0.1450 0.1733
5* 0.1150 12999 0.1150 0.1500
6 0.1350 2173 0.1350 0.1617
7* 0.1000 4389 0.1000 0.1017
8* 0.1150 10870 0.1150 0.1100
9 0.1600 8522 0.1600 0.1633
10* 0.0750 14701 0.0750 0.0850
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Table 12: Sixteen Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average

1 0.1700 3334 0.1700 0.1383 0.1298 0.0971
2* 0.1360 13962 0.1360 0.0950

3 0.2040 14725 0.2040 0.1417 0.0305 0.0103
0.2100 3926 0.2100 0.1700
0.1640 10265 0.1640 0.1400
6 0.1800 2133 0.1800 0.1600
™ 0.1280 6386 0.1280 0.1050
8* 0.1480 10797 0.1480 0.1050
9 0.2120 1982 0.2120 0.1600
10* 0.0880 2743 0.0880 0.0833

Total Absolute Error

1 19.3845 3480 19.3845 0.1400 0.1325 0.1100
2* 14.8096 14372 14.8096 0.1017

22.3533 14609 22.3533 0.1500 0.0292 0.0218
23.0003 8420 23.0003 0.1683
5* 16.9740 12140 16.9740 0.1367
6 21.8437 2557 21.8437 0.1467
™ 15.0910 10962 15.0910 0.1033
8* 17.0449 3778 17.0449 0.1267
9 23.8317 1978 23.8317 0.1700
10* 12.9401 14971 12.9401 0.0817
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Table 13: Eighteen Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set

1* 0.0600 3510 0.0600 0.1500 0.1293 0.1254
2* 0.0500 6250 0.0500 0.1233

3 0.0800 9273 0.0800 0.1650 0.0186 0.0146
4* 0.0500 8789 0.0500 0.1250
5* 0.0500 13017 0.0500 0.1200
6* 0.0500 7727 0.0500 0.1367
™ 0.0400 8655 0.0400 0.1067
8* 0.0500 4960 0.0500 0.1133
9* 0.0500 4288 0.0500 0.1417
10* 0.0400 5383 0.0400 0.1117

Testing Set

1 0.1600 2418 0.1600 0.1483 0.1172 0.0850
2* 0.0900 13602 0.0900 0.0833

3 0.1700 10942 0.1700 0.1500 0.0281 0.0180
4* 0.1000 11700 0.1000 0.0850
0.1400 11198 0.1400 0.1067
6 0.1600 3722 0.1600 0.1300
™ 0.1000 10932 0.1000 0.0900
8* 0.1000 2206 0.1000 0.1217
9 0.1600 2426 0.1600 0.1567
10 0.1200 11988 0.1200 0.1000

Weighted Average

1 0.1250 5392 0.1250 0.1333 0.1147 0.0977
2* 0.0900 12769 0.0800 0.0933

3 0.1350 11610 0.1350 0.1550 0.0231 0.0163
4* 0.0850 14917 0.0850 0.0717
0.1100 12743 0.1100 0.1150
6 0.1250 3737 0.1250 0.1283
™ 0.0850 9390 0.0850 0.1017
8* 0.0950 2548 0.0950 0.1100
9 0.1200 13327 0.1200 0.1267
10* 0.1000 5383 0.1000 0.1117
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Table 13: Eighteen Hidden Node Qutput (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic | Rate Std Dev or St Dev
Moving Average

1 0.1620 5394 0.1620 0.1300 0.1143 0.0937
2* 0.1100 13605 0.1100 0.0883

3 0.1780 10946 0.1780 0.1533 0.0252 0.0122
4* 0.1060 14123 0.1060 0.0750
0.1480 13188 0.1480 0.1183
6 0.1600 3741 0.1600 0.1267
™ 0.1120 14267 0.1120 0.0983
8* 0.1060 2565 0.1060 0.1050
9 0.1600 2757 0.1600 0.1467
10* 0.1200 14146 0.1200 0.1017

Total Absolute Error

1 16.9836 5399 16.9836 0.1350 0.1123 0.0900
2* 12.0965 13602 12.0965 0.0833

3 19.3853 10958 19.3853 0.1567 0.0271 0.0115
4* 12.1219 | 13297 | 12.1219 | 0.0733
17.2198 11205 17.2198 0.1133
6 19.1026 3743 19.1026 0.1250
7* 12.5790 14263 12.5790 0.0933
8* 13.9738 13069 13.9738 0.1000
9 17.9447 3920 17.9447 0.1433
10* 13.6861 11988 13.6861 0.1000




Table 14: Twenty Hidden Node Output

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Training Set -
1 0.0600 3113 0.0600 0.1533 0.1298 0.1117
2* 0.0400 14840 0.0400 0.1100
3* 0.0400 4677 0.0400 0.1167 0.0233 0.0234
4 0.0600 3629 0.0600 0.1417
0.0500 7143 0.0500 0.1633
0.0500 3610 0.0500 0.1267
0.0500 6887 0.0500 0.1267
8* 0.0300 7928 0.0300 0.1383
9 0.0500 8589 0.0500 0.1400
10* 0.0200 9921 0.0200 0.0817
Testing Set
1 0.1600 1803 0.1600 0.1600 0.1270 0.0850
2% 0.1100 13293 0.1100 0.0983
3* 0.1100 8932 0.1100 0.0683 0.0350 0.0153
4 0.1400 2264 0.1400 0.1433
5 0.2000 2316 0.2000 0.1867
6 0.1300 2077 0.1300 0.1317
7 0.1400 10195 0.1400 0.1183
8 0.1500 7693 0.1500 0.1333
9 0.1700 5058 0.1700 0.1417
10* 0.0700 2638 0.0700 0.0883
Weighted Average
1 0.1300 3113 0.1300 0.1533 0.1233 0.0906
2% 0.0800 12944 0.0900 0.1083
3* 0.0850 8922 0.0850 0.0817 0.0284 0.0154
4 0.1250 2264 0.1250 0.1433
5 0.1400 7143 0.1400 0.1633
6 0.1100 2229 0.1100 0.1250
7 0.1050 13571 0.1050 0.1050
8 0.1100 7928 0.1100 0.1383
9 0.1250 7411 0.1250 0.1333
10* 0.0600 9921 0.0600 0.0817
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Table 14: Twenty Hidden Node Output (continued)

Val Set | Ave Error Select
Error Rate or Ave Er Rat
Cycle Statistic | Epoch | Statistic Rate Std Dev or St Dev
Moving Average
1 0.1680 2222 0.1680 0.1500 0.1255 0.0872
2* 0.1180 13297 0.1180 0.1083
3* 0.1120 8936 0.1120 0.0733 0.0336 0.0186
4 0.1560 2264 0.1560 0.1433
5 0.2000 2370 0.2000 0.1867
6 0.1380 2077 0.1380 0.1317
7 0.1420 12431 0.1420 0.1117
8 0.1580 7693 0.1580 0.1333
9 0.1780 5060 0.1780 0.1367
10* 0.0840 9292 0.0840 0.0800
Total Absolute Error
1 19.1617 3763 19.1617 0.1350 0.1197 0.0833
2+ 15.5814 13294 15.5814 0.1067
3* 12.2777 8934 12.2777 | 0.0700 0.0306 0.0203
4 17.8040 4848 17.8040 0.1383
5 23.5986 9261 23.5986 0.1650
6 16.6230 2711 16.6230 0.1183
7 15.0833 13539 15.0833 0.1100
8 18.5888 9806 18.5888 0.1467
9 18.4043 6421 18.4043 0.1333
10* 11.6428 14751 11.6428 0.0733
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