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PREFACE

The objective of this research project is to understand phenomena of seismic wave generation

and propagation that affect regional and teleseismic seismograms used for nuclear test mon-

itoring. This annual technical report includes two studies. The first is a theoretical study

of the seismic radiation from explosions detonated in non-spherical cavities, i.e., cylindrical

tunnels of finite length embedded in a homogeneous, isotropic, elastic medium. A frequency

domain boundary element/discrete wavenumber algorithm is applied to compute seismic

wavefields from nuclear and non-nuclear explosions located at various positions along a tun-

nel axis. The computed radiation patterns display strong shear wave generation and show

significant differences between the two types of explosions. In the second study, we experi-

mentally and numerically investigate the scattering of an acoustic P wave incident on a highly

irregular, random acoustic-elastic interface to determine whether enhanced backscattering

occurs. The experiments involve ultrasonic waves reflected from a glass surfaced etched to

produce a highly irregular 3-D surface. We find that 2-D numerical simulations predict the

3-D experimental results well at small incident angles. Both numerical and experimental

results strongly support the presence of enhanced backscattering. The report on this latter

study is a preprint of a paper submitted to the Journal of the Acoustical Society of America.
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WAVEFIELDS FROM AN EXPLOSION ALONG THE AXIS

OF A FINITE TUNNEL

Summary

This study examines the source radiation from explosions detonated in a cylindrical cavity

of finite length (tunnel) embedded in an infinite homogeneous elastic isotropic background

medium. The radiated wavefields are modeled using a frequency domain boundary ele-

ment/discrete wavenumber algorithm. The algorithm employs the indirect formulation of

boundary integral equations for fluid and elastic media. For axially symmetric problems, the

explosion source is modeled as fictitious surface sources distributed on the cavity boundary.

Upon discretizing the cavity boundary into elements of uniform source distribution, and then

imposing boundary conditions at each element, a system of equations is obtained with the

fictitious source distribution on each element as the unknowns. Elements of the resulting

coefficient matrix are integrals of displacement and stress Green's functions over boundary

elements. Once the equivalent boundary sources are determined, wavefields inside and out-

side the cavity are easily calculated. We apply the algorithm to study two specific cases of

explosion sources: nuclear and non-nuclear. A nuclear explosion is specified by assigning a

very high compressional velocity of 10 km/sec inside the cavity, representing loading of the

cavity wall by a shock wave. An ordinary pressure wave traveling in air (330 m/sec) is used

for a non-nuclear explosion. The results show different source radiation patterns between
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the two types of explosions, especially when the explosion is located off-center in which case

the non-nuclear explosion radiation displays strong directivity effects. In contrast, radiation

from a nuclear explosion does not depend on the source position inside the tunnel. Both

types of explosions radiate significant shear wave energy outside the cavity.

Introduction

Seismic radiation from a nuclear explosion is generally more complicated than that of a

simple isotropic point source. This has been shown by various observations (e.g., Day et

al., 1983; Wallace et al., 1983, 1985; Priestley et al., 1990). The observations from nuclear

explosions may be explained by one or more of the following physical mechanisms: (1) the

nuclear explosion itself; (2) tectonic release; (3) spall; (4) anisotropic and heterogeneous

media near the source; and (5) asymmetry of the source. So far no single one of these

mechanisms has proven sufficient to explain all of the observed data (Mass6, 1981; Gupta

and Blandford, 1983; Johnson, 1988).

The purpose of this study is to investigate the seismic radiation from an explosive source

placed in a non-spherical cavity. The effects of spherical cavities on seismic explosions was

studied in the early sixties (e.g., Latter et al., 1961). Glenn et al. (1985) and Rial and Moran

(1986) studied the coupling mechanism and the radiation pattern from an explosion in an

ellipsoidal cavity in an unbounded medium. HeImberger et al. (1991) showed that correct

modeling of near-field seismograms observed after nuclear explosions requires distinct source
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characteristics as well as the local, rustal structure. They modeled the source characteristics

by using asymmetric sources inside ellipsoidal cavities. Lately, Zhao and Harkrider (1992)

showed in their theoretical investigation that asymmetry of the source region has a more

significant effect on shorter period radiation than longer period radiation. In this study, we

have investigated the generation of compressional and shear waves from explosions placed

along the axis of cylindrical tunnels of various diameters.

Modeling far-field radiation from sources placed in a cavity poses difficulties for the finite

difference method (FDM) and the finite element method (FEM), because of large scale

differences between the cavity surface and formation extent. The ability to calculate the

far-field wavefields is severely restricted by the computer memory space needed by these

methods. The accuracy of these methods is also hampered by grid dispersion and inaccurate

handling of the fluid/formation interface. For a finite cavity, the commonly used discrete

wavenumber method based on the vertical wavenumber representation is no longer applicable.

To overcome these difficulties, an indirect boundary element method (BEM) combined with

a discrete wavenumber method based on the Sommerfeld integral representation is used.

The BEM was first established through the direct formulation by Jawson (1963) and

Symm (1963) for potential theory, Rizzo (1967) for elastostatics, and Cruse (1968) for elas-

todynamics. Applications of the indirect BEM in elastodynamics only appeared recently for

seismic wave scattering by surface topographies (e.g., Wong, 1982; Kawase, 1988; S.nchez-

Sesma and Campillo, 1991). Along a similar line, work based on boundary integral equation
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and discrete vertical wavenumber formulations (Campillo and Bouchon, 1985; Boachon et

al., 1989) have emerged. Bouchon and Schmitt (1989) applied this method in studying full

waveform acoustic logging in an infinite irregular borehole. However, the formulation of

this method was limited to an infinite borehole in an infinite homogeneous medium. More

recently, Bouchon (1993) and Dong (1993) developed a BEM algorithm to model downhole

seismic sources in layered isotropic and transversely isotropic media. Dong (1993) also used

BEM to model sources in semi-infinite boreholes.

In this study, we extend the BEM method for sources in semi-infinite boreholes to model

wave radiation from an explosion source in a finite cavity embedded in a homogeneous

medium.

Method

Indirect Integral Formulation

If a volume point source is placed inside a cavity, the total displacement potential in the

cavity fluid is the sum of a direct potential due to the source and a reflected potential due to

the boundary. In the case of steady state radiation (or in the frequency domain) the reflected

field can be expressed as an integral of a fictitious source distribution over the cavity surface,

with a Green's function being the integrand. Therefore, the displacement potential in the

fluid is

61(x) = 6i + fB dS'gl(x,x') 0b(x') for x E Vb+B , (1)
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where the volume of cavity fluid and the cavity surface are denoted by Vb and B, respectively.

Subscript 1 stands for the fluid region and €i is the incident potential. The fictitious source

distribution over the cavity surface is denoted by 4(x'). The integral kernel, g9, is the scalar

Green's function in an infinite homogeneous medium which is of the well-known form

gi(x,x') = e4ikfIx-x'[1 (2)

4irlx - x'I'

where kf = w/c is the wavenumber for the fluid.

The above representation is not only physically intuitive but also mathematically rig-

orous. In fact, this representation can be obtained from the mathematical formulation of

Huygen's principle with assistance of the uniqueness and equivalence principles. That is, the

influence of the elastic medium on the wavefield inside the cavity is equivalent to impress-

ing a sheet of fictitious sources on the boundary between the fluid and the elastic medium.

Fictitious source distribution density is the unknown function to be determined.

For the source-free elastic medium outside the cavity, the displacement field can be ex-

pressed as

U 2(x) = lB dS'G(x,x') . %F(x') for x E V, + B, (3)

where T(x') is a vector fictitious source distribution on the boundary. G(x, x') is the dyadic

Green's function for displacement and has the following form

G(x, x') = ý {k'Ig (x, x') + VV [go (x,x') - go(x,x')]}. (4)

Here, ya and go are scalar Green's functions of the same form as in (2) except that kf is
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changed to k,, for the dilatational wave and to k, for the shear wave. Equation (3) says that

the displacement in the region outside the cavity, (Vy), results from vector fictitious sources

distributed along the boundary. For axially symmetrical problems in cylindrical coordinates,

the vector fictitious source can be decomposed into source distributions in radial and vertical

directions. Therefore, we have two unknown distribution functions to determine in order

to calculate the displacement field in the elastic medium. Uniqueness of the calculated

displacement is guaranteed by the equivalence principle and more fundamentally by the

uniqueness theorem.

Implementation of the Indirect BEM

The essence of the indirect BEM implementation is to discretize the boundary between

cavity fluid and surrounding formation into a set of small-sized surfaces called elements.

Each element is a ring-shaped surface with height dz and cavity radius r0 . Density of the

fictitious source is assumed to be constant on each element. From our previous boundary

integral formulation, it is seen that a fictitious volume source for the fluid and a fictitious

source vector for the elastic medium are needed in order to uniquely describe the cavity

source radiation. The fictitious source vector in an axially symmetrical system consists

only of the vertical and radial components. Therefore, we have on each element i three

unknowns to determine the following: a fictitious fluid volume source, Vif; a vertical source

for elastic medium, FP7; and a radial source for elastic medium, F[. Our goal is to obtain
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these sources on each element so that displacement fields in the elastic x.iedium or the fluid

can be calculated.

The number of elements is restricted by the computing power of current computers and

the accuracy specified. In practice, three elements per shortest wavelength are used, and

the number of elements depends on the time window and the fastest wave speed. Thus, the

element height dz satisfies

dz < min(c, 3, a)3f < (5)

3f

and the number of elements, N, is given by

tmax x max(c, 3, a) _ 3f x tm,,,= x max(c, /3, a)
dz min(c, 0,, ()

In the above, the frequency and maximum time to be calculated for are denoted, respec-

tively, by f and tax. At each element, the usual fluid/elastic boundary conditions have

to be satisfied: i.e., continuity of normal displacements and continuity of normal stress and

vanishing tangential stress of the solid,

ulrr=,+ - = 0

0 0 70'rrIr=rg - o,,I=ro- = o (7)

Or 2 r=r+ = 0.

These boundary conditions are satisfied at the center of each element. Displacements and

stresses (or pressure) at the center of each element result from contributions from fictitious

sources of all the elements. To calculate the displacement at the j-th element due to the



source at the i-th element, we use the indirect formulations (1) and (3). At the 1-th element,

the boundary conditions become

Ne Ne IAre
SAý,Vjf+ AýiFy' + AriFT = Dý'

Ne Ne NeZBAV-/+ZA BvF + BA;,FT = D•" (8)
2=1 i=1 1

NN NN
ZCu ,F," + Cr.F, = Di

i=1 i=1

In the above, A{., A'. and Ar1 represent displacements at the j-th element due to the cylin-

drical volume, and the vertical and radial ring sources of unit strength at the i-th element,

respectively. They are integrals of the Green's functions with respect to the surfaces of cavity

(bottom + wall). The B's and C's are the radial and tangential stresses at the j-th element

due to sources at the i-th element. They the integrals of the stress Green's function. The

D's are exciting fields indicated by their superscripts at the j-th element. With J ranging

from 1 to NI, we obtain 3 x N, equations that can be easily solved for the 3 x Ne unknowns.

With these fictitious source densities determined, fields inside and outside of the cavity can

be easily obtained using equations (1) and (3).

Integration of the Green's functions is done in two steps. First, using the Sommerfeld

integral representation for function eikR/R, we transform the Green's functions into integrals

with respect to horizontal wavenumber. The use of Sommerfeld integral representation allows

us to incorporate vertical layering in a later study. The rod• part of surface integration

greatly simplifies the integrand of the wavenumber integral due to axial symmetry. Then the
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dz part (for wall elements) and the dr0 part (for bottom elements) of the surface integral can

be analytically evaluated. The integration of the Green's function is reduced to a horizontal

wavenumber integral. Second, this wavenumber integral is evaluated using the discrete

wavenumber method (Bouchon, 1981) by summation over the horizontal wavenumber.

The coefficient matrix of the equation system (8) is a fully populated complex matrix

and is non-symmetrical. This is often regarded as the disadvantage of BEM as compared to

FEM or FDM. In the latter two methods, tridiagonal matrices are obtained and a special

faster algorithm exists for this kind of matrix. Nevertheless, this matrix can still be easily

manipulated as the number of elements is not exceedingly high and the system of equations

is only solved once for each frequency.

Results

The situation of a seismic source in a finite cavity/borehole arises in nuclear explosions in

tunnels, or in a borehole seismic experiment near the bottom of a borehole. Most likely, in

the first case the tunnel is filled by air (or empty), and in the second the borehole is filled

by water. In either case, the finiteness of the borehole/cavity will play a role in the far field

radiation pattern of the seismic waves. The BEM technique outlined above can be used to

study the wave radiation from this special source geometry. Some steps involved in the BEM

modeling are illustrated. The influence of a finite borehole on P and S wave radiation is

demonstrated.
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For a finite tunnel, the wall of the tunnel as well as both its ends have to be discretized

into elements (See Figure 1). On each of these elements, we need to determine the fictitious

sources on the solid side and on the fluid side of the interface. The requirement of the

three boundary conditions leads to a system of equations, and these sources can thus be

determined. In a homogeneous medium, this BEM technique is very fast due to the following

considerations:

"* Let N,, be the number of wall elements. Wall-to-wall element interactions need not

be calculated for each of the Nwe radiating elements and each of the Ne receiving

elements, which would involve Ne, x N,,,, evaluation of a wavenumber integral. Instead,

calculating the interaction of one receiving element with all Nwe radiating elements,

which incurs only N,,e evaluation of integrals, is sufficient. This is because of the

permutation and symmetry properties of the displacement and stress integrals when

radiating and receiving elements are shifted and interchanged.

"* If we call one end of the tunnel the bottom, and the other the top, the interactions

between each top element and each bottom element and their self-interactions can be

computed as efficiently as those of the wall elements.

"* No symmetry property can be used for computing wall-to-top element interaction. But,

once this is done, the wall-to-bottom interaction can be copied from the wall-to-top

calculations.
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These considerations yield a tremendous saving of computation time.

To demonstrate the effect of the finite cavity on wave radiation from an explosion source,

two situations that are applicable to nuclear and non-nuclear explosions in an isotropic ho-

mogeneous space are considered. For a nuclear explosion, we consider that the compressional

velocity inside the cavity is the shock wave velocity. The shock wave velocity is taken as 10

km/sec (Lamb et al., 1992). For a non-nuclear (i.e., chemical) explosion, the compressional

velocity inside the cavity is 330 m/sec (sound speed in air). We choose an isotropic medium

with a P velocity of 4.0 km/s, a S velocity of 2.2 km/s, and a density of 2.2 g/cm3 as

a homogeneous background model. Four tunnels are considered: 40 meters long with a 5

meter radius, 40 m long with a 10 m radius, 80 m long with a 5 m radius, and 80 m long

with a 10 m radius. The receivers are circularly and evenly distributed around the source

at a distance of 5 kilometers from the center of the tunnel (see Figure 1). For comparison

with the radiation patterns of sources in finite cavity, Figure 2 provides the P and S wave

radiation patterns for an explosion source in an air-filled infinite cylindrical cavity.

Figures 3 and 4 show the radial and tangential components for the explosion source placed

at 1 and 18 meters, respectively, from one end of the tunnel with a 5 meter radius and 40

meter length. In this case, the compressional velocity inside the tunnel is chosen as air. The

center frequency is 1 Hz. These figures display the seismograms and the radiation pattern

of the waves simultaneously. The radial seismograms show the radial particle motion and

hence the P wave radiation. The tangential seismograms show the transverse motion, i.e.,
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the shear wave radiation. Figure 5 shows the seismograms from a nuclear explosion (shock

wave velocity inside cavity) located 18 meters from one end of the tunnel. The maximum

displacement of the P and S wave at the receivers for two center frequencies (1 and 2 Hz) is

plotted in Figures 6 through 13 for nuclear and non-nuclear explosions at various positions

along the tunnel axis.

Figures 3 through 13 show that, when an explosion source is at the center of a finite

cylindrical tunnel, its S wave radiation pattern is basically the same as that of an explosion

source in an infinite borehole (Heelan, 1953; Lee and Balch, 1982; Meredith, 1990). The

P wave radiation pattern, on the other hand, is close to that of a force along the cavity

axis. Slightly away from the center of the cylindrical cavity, the S radiation pattern of a

non-nuclear explosion (air velocity) changes drastically. Near the end of the tunnel, S and P

wave radiation patterns from a non-nuclear explosion are essentially those of a single force

along the tunnel axis, and the radiated waves have their maximum amplitude when the

source is close to the tunnel end. In contrast, the nuclear explosion (shock wave velocity

inside the cavity) produces similar radiation patterns for different source positions along

the axis of the cylinder. Shear waves are generated at each position, with the shear wave

amplitude varying slightly with the position of the source especially at the end of the cavity.

The dipole source pattern of shear wave radiation is very consistent for all the examples.

Both ends of the tunnel are responsible for these peculiar radiation patterns. Energy

from an explosion is mostly trapped as tube waves. The impact of the direct wave and

12



the tube wave on both ends of the cavity is much stronger than on the cavity wall. When

the explosion source is at the center, both ends experience the same pressure at the same

time, and in the far field they act like a single force couple. This results in an S wave

radiation pattern similar to that of an infinite borehole. The P wave pattern results from

the fact that receivers close to one end of the cavity detect more P wave energy from this

end than from the other. As the source moves away from the center, one end of the tunnel

dominates, resulting in the kinds of radiation patterns observed especially for a non-nuclear

explosion. For nuclear explosions, the high-speed propagation velocity inside the cavity could

not produce the asymmetric results seen in the case of non-nuclear sources. In this case, the

entire tunnel surface radiates energy at the same time as a volume source.

Conclusions

A general numerical algorithm based on the boundary element method has been used to

model seismic waves radiated from explosion sources inside finite, cylindrical tunnels. This

method has the capability to calculate both near-field and far-field radiation and the scale

difference is properly dealt with. We computed source radiation patterns for two different

explosion source types placed along the axis of a finite tunnel. The radiation patterns from

non-nuclear sources depend strongly on the position of the source along the axis. Sources

near the tunnel wall produce the highest amplitudes and behave like a simple point force.

Radiation patterns from nuclear sources do not vary significantly with source position owing

13



to the very high compressional velocity inside the tunnel. All the sources and source positions

considered produced significant shear waves, showing that a finite cylindrical cavity provides

a mechanism for shear wave generation from explosions.
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FINITE TUNNEL

x = 4 km/sec R
= 2.2 km/sec

Figure 1: Schematic diagram of the element of the tunnel and the source and receivers
configurations.
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Figure 2: Analytical P (solid line) and SV (dashed line) wave radiation pattern for an
explosion source at the center in an infinite air-filled cylindrical cavity.
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RailRadius = 5. meter Tangential

Length = 40. meter
Zs = 1. meter
Rr = 5000. meter
fc = 1. Hz
A_max = 0.15207713E-09

Figure 3: Radial and tangential seismograms at a distance of 5 km from a finite tunnel with
a length of 40 meters and a 5 meter radius. The center frequency is 1 Hz. The source is
placed 1 meter from one end of the tunnel. The compressional velocity inside the tunnel
is 330 m/sec (air).
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Radial TnetaRadius = 5. meter Tangential

Length = 40. meter
Zs = 18. meter

Rr = 5000. meter

f c = 1. Hz
A_max = 0.26047033E-10

Figure 4: Same as described in Figure 3 but the source is 18 meters from one end of the
tunnel.
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Radial Tneta
Radius = 5. meter Tangential

Length = 40. meter
Zs = 1. meter
Rr = 5000. meter

_c = 1. Hz
A_max = 0.14442876E-11

Figure 5: Same as described in Figure 3 but the compressional velocity inside the tunnel is
10 km/sec as shock wave (nuclear explosion).
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Radius = 5 Radius-= 10

Source _ /

•6 10 X2

~'2O 18

2020 * X4

Cavity length 40 meter (air, 1Hz)

Figure 6: Radiation pattern of P and S waves from a finite tunnel of length 40 meters for
different source positions along the tunnel with cornpressional velocity 330 rn/sec (non-
nuclear source). The center frequency of the waveforms is 1 Hz. The left column shows
the results for the tunnel with a 5 meter radius and the right column is for a 10 meter
radius. The source position from one end of the tunnel is also shown in the middle
column. The amplitudes are plotted on the same scale, but the multiplication factor
(e.g., x3 for radius 5 and source position 1 meter from the end of the tunnel) is also
shown where required.
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Radius = 5 Radius = 10
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- X60 0 ., .X20

Cavity length =80 meter (air, 1Hz)

Figure 7: Same as described in Figure 6 from an 80 meter long finite tunnel.
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Radius = 5 Radius =10

Source
4i

X 3

- 4 - -. °°1 0

X20 29

.. X 02 0 -X .5

Cavity length 40 meter (air, 2Hz)

Figure 8: Same as described in Figure 6. The center frequency is 2 Hz.
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Radius = 5 Radius = 10
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Cavity length =80 meter (air, 2Hz)

Figure 9: Same as described in Figure 7. The center frequency is 2 Hz.
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Radius = 5 Radius = 10

' , .., .,:
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X.4
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. -• ,, ,4 18.•,•

Cavity length =40 meter (Shock wave, 2 Hz)

Figure 12: Same as described in Figu~re 10. The center frequency is 2 Hz.
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Radius = 5 Radius = 10
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Cavity length =80 meter (Shock wave, 4 Hz)

Figure 13: Same as described in Figure 11. The center frequeniy is 2 Hz.
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EXPERIMENTAL STUDY OF SCATTERING FROM A

HIGHLY IRREGULAR, ACOUSTIC-ELASTIC INTERFACE

Summary

In this study, we experimentally and numerically investigate the scattering of an acoustic P

wave incident on a highly irregular, random acoustic-elastic interface to determine whether

enhanced backscattering, already identified numerically for SH and P-SV waves, occurs. Nu-

merically, the problem is solved by coupling the Somigliana identity for an elastic medium

with Green's second integral theorem for pressure in a fluid. Exact integral expressions for

the scattered pressure in the acoustic medium are then obtained. Experimentally, a glass

etching process using photoresist templates with Gaussian statistics allowed for the genera-

tion of a characterized random interface. This 3-D interface has approximately a Gaussian

correlation function and a Gaussian height distribution. A method was also developed by

which identical interface geometries with differing material contrasts can be physically cre-

ated. This approach involved using the glass surface as an epoxy mold. Experiments were

carried out on the glass surface in M.I.T.'s Earth Resources Laboratory's ultrasonic labora-

tory. Two-dimensional numerical results predict the 3-D experimental results well at small

incident angles. Both numerical and experimental results strongly support the presence of

"enhanced backscattering." However, more experiments are required to fully constrain the

properties of the retroreflective peak. Finally, fundamental differences between 2-D and 3-D
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scattering mechanisms appear to form at larger incident angles.

Introduction

In laboratory experimentation a lack of control over the statistical parameters of a given

random model can easily make experimental results ambiguous. In the case of irregular

interfaces, the height probability distribution and the correlation lengths of the interface

may not be well constrained, the interface may not be stationary in space, and the interface

may contain a wide variety of length scales. Each of these experimental uncertainties makes

comparisons with numerical models difficult, if not impossible. It is the goal of this project

to physically fabricate a random interface which is stationary in space with both a simple

height probability distribution and a simple transverse correlation function so that these

experimental results can be easily compared with the corresponding numerical results.

Experimentally, the accurate generation of a Gaussian surface is very important since

Gaussian interfaces are mathematically convenient and widely used in scattering studies.

Many theoretical formulations in the literature apply the simple properties of a Gaussian

correlation function to random surfaces. Examples can be found in Prange and Toksoz

(1990), Knopoff and Hudson (1964, 1967), Haddon (1978), and Kuperman and Schmidt

(1989). Exponential correlation functions have also been used extensively (e.g, Wu and Aki,

1985; Frankel and Clayton, 1986) and in many instances give a good description of field

observations.
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In this study, we choose to fabricate and model an interface with a Gaussian correla-

tion function. The statistical parameters of the interface are chosen so that the incident

wavelength has the same length scale as the correlation length of the irregularities. In ad-

dition, the average slope of the interface is large and the approximate techniques such as

the Kirchoff, Born, and the geometrical ray approach, break down into multiple scattering

mechanisms such as "enhanced backscattering" and "shadowing," and play strong roles in

wave scattering.

What is enhanced backscattering from an acoustic-elastic halfspace? By definition, en-

hanced backscattering or 'retroreflectance' is the enhancement of energy scattered back in the

direction of the source. O'Donnell and Mendez (1987) were the first to propose the hypoth-

esis that time-reversed paths were responsible for enhanced backscattering. This hypothesis

was further strengthened by Maradudin et al. (1991) who showed that retroreflectance for

energy double scattered from the interface. More support came from Schultz and Toks6z

(1993b), who showed that full elastic seismic scattering is consistent with this hypothesis

since enhancement is observed on P-to-P and S-to-S scattering and not on P-to-S and S-to-P

scattering. The extension of time-reversed paths is easily extended to the acoustic-elastic

case. Take for instance the peak-valley sequence shown in Figure 1. If an incident P-wave,

shown by the solid line, diffracts from point 1, it will propagate as a P-wave to point 2

and then diffract at some angle into the upper medium again as a, -.ave. For most waves

travelling away from the interface, enhancement will not occur. However, if the diffracted
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wave travels directly back towards the source, an incident P-wave can be found travelling

exactly in the reverse path-propagating from point 2 to point 1 and again travelling back

towards the source as shown by the dashed line. In this case, the tirre-reversed path in-

terferes constructively with the forward path and contributes additional cnergy towards the

source, resulting in enhanced backscattering. Using a simple phase argument, some proper-

ties of enhanced backscattering can be derived. The peak width can be written as AO, -=-,

where AG, is the angular width of the peak, A is the incident wavelength, and 1 is the mean

free path of the interface or, in other words, the average distance a wave propagates between

points 1 and 2 along the interface.

Using this phase approach other path geometries may also contribute to enhanced backscat-

tering. For example, if a wave encounters the interface and multiply scatters three times as a

P-wave to send energy back in the direction of the source, then a time-reversed path may be

found that also sends energy back towards the source. In the same manner, many multiply

scattered paths sending energy back towards the source can be found in the acoustic-elastic

case. However, as a result of energy loss with each diffraction from the interface due to both

transmission through the interface and additional spreading, it seems reasonable that the

double-scattered path contributes the majority of retroreflective energy.

In this paper, we first briefly summarize the numerical formulation used to model scatter-

ing from a randomly irregular acoustic-elastic interface. This Somigliana identity approach

is based on the work of Schultz and Toks6z (1993a,b). Next, the construction of the ran-
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dom glass surface is discussed and the ultrasonic apparatus for measuring the scattering

properties of the interface is then described. The third section compares the experimental

scattering results obtained in our in-house ultrasonic water tank with the numerical mod-

els. The scattering properties are discussed in detail along with a discussion of probable

scattering mechanisms. Finally, we discuss the differences between the 2-D synthetic results

and the 3-D experimental data. We then propose possible differences between 2-D and 3-D

scattering mechanisms.

Theory

The numerical approach described in this section and the notation used, follows that of

Schultz and Toks6z (1993a,b). Since the approach here is very similar to the SH and P-SV

cases, we give only a brief outline of the theoretical approach. We first express the total

scattered displacement at any point within two volumes of elastic material exactly with the

Somigliana representation theorem (e.g.. Aki and Richards, 1980). Simplifying this theorem

to a 2-D case gives a set of four integral equations

H[1]u(')(x) = f1)-(r)G")(x; J)dV(7J)

-G(')•(x;x') ()(u(')(x'),3

35



where gradients are zero in the x 2-direction. Following the notation of Schultz and Toks6z

(1993b), T(')(x) is the traction vector along the interface in the fluid (1 = f) and the solid

(I = s), and we have assumed all surfaces are far enough away that only the surface, S(x),

separating the two volumes, contributes to the final displacement. G,,(x; x') is a Green's

function giving the n-component of displacement at x resulting from a point force in the

p-direction at x', cijpq is the elasticity tensor, and H[i] is a function that takes a value of

0 or I depending on whether the point x lies outside or inside the volume of interest, i,

respectively. Ne assume that the media are homogeneous and isotropic, so the constitutive

relation can be written with the aid of the elasticity tensor as

where O(Y) = Uk.k(._) is the dilatational parameter and A and it are Lam6 parameters for

the medium.

In this work the upper medium is acoustic, supporting propagation of only dilatational

waves while the lower rnedium is taken as elastic. The boundary separating these two media

is shown in Figure 2. The boundary conditions for the resulting acoustic-elastic boundary,

can be written in the general form

n. u(f(_). =: , = n. u(')(x_) 3=((X,),

S= T~)')~(l,(11)

, 0.
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where the surface profile function is taken to be x 3 = ((xi) and the unit normal vector along

the interface can be expressed as

h = - '(x ) )[I + ('(,( ,)),]- . (12)

The first boundary condition represents the continuity of normal displacement and the latter

two conditions together represent the continuity of normal stress. Referring to the require-

ment for continuity of normal displacement one can expand the first term of the volume

integral (9) as

nic(f) ()(13)

which follows from the lack of rigidity in the acoustic medium, y(i) = 0. The last two

boundary conditions in (11) infer the continuity of fluid pressure at the interface. Upon

combining these two boundary conditions with the constitutive relation, (10), the traction

in the solid can be expressed at the interface as

T(s)(x) = S •f(x)ný = W)0(f)n, (14)

where S'(f)(.x) is the fluid pressure in the fluid. Finally, referring to eq. (13) and comparing it

with a similar expansion in the elastic medium it is clear that the equality u4')(x) = Ui(x) -

ILA)(x) implies that the normal displacement is continuous, or nku(s)(x) = nku(f)() =

nkll'k(X).

Taking our volume of interest to be the upper acoustic medium, placing the incident wave

in tim acoustic inediulm, alil substituting the final form of the boundary conditions (11), the
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integral equation in the lower elastic medium can be written as

Sjo• ,x',[U(x" .G(Oa) (x_; x')
0 = J [U :()c)jqn p 0 x') -G(_)(x; x')S()')npj, (15)

where the unknowns are the fluid pressure, S(f)(x_), and the displacement, U(x), along the

interface. S(f)(x) should not be confused with the surface function referred to previously.

In the acoustic medium, the surface integral can be greatly simplified. Since shear waves

can not propagate in the acoustic medium, one of the two integral equations (9) in the

upper medium is redundant and can be combined into one equation. We note that the fluid

pressure in the acoustic medium, S(')(x), satisfies the basic wave equation

V2S(u)(_x) + (k{)2SU)(x) = 0, (16)

assuming no sources are present in the medium. The Helmholtz potential for the displace-

ment, ¢(')(x), also satisfies a similar wave equation. Transforming to the frequency domain

and differentiating we find that 6(f)(x) is directly related to the P wave pressure,

o(LO) = - (p(MW 2)-IS(f)(x_), (17)

Using this relation, the normal displacement at the interface can be expressed as

asu)(;)_ MW 2 (nku/)(x)) = -Ak_ •f) 2 (n0uf(x)) (18)0 nr - k_

and using the Green's function for the pressure, G(f)(x; N'), the integral equation in the

acoustic medium can be expressed with the aid of Green's second integral theorem as

-(() = 5(f)(S)tacid (19)
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-+0-0O + \-) f) -o+x L [WXA)SW(f)N:) k( A krfG~f(N; N')nkU N/x)],

where we have utilized (18). EquaLions (15) and (19) together consist of three integral

equations with three unknown functions. These integral equations now express the total

scattered field in both media. Letting x3 ---* +(xl), the final set of coupled integral equations

can be written as,

S(x) = S("(_),.cd (20)

+ J1+00 dx'j[S(x-')T()(x-I-') -

in the acoustic medium, and

0 = -f-+ dx"[U(x-')Tn(a)(x--) - - (21)

in the elastic medium. We have defined

Tf)(xjN1) W an AX)=O(G() (22)

D})_lx)= -A(f)k('f)2G{'f)(_x; x)nI r3 =c{xl), (23)

Tin(S(ILO = Tin')(xlIx)13=c(-),

D•'(slx')=- (s)Q$')(x.~ _x)nplI: 3=(,,).

in the respective media. Now the unknown source strength functions, which we eventually

solve for. can be expressed as a function of x, alone

S(XI) - o(f )xWl3=•=0(,), (24)

D, (xi) =-)lX=((X,),
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where we have normalized the pressure term with respect to AM) to ensure that the final

numerical conditions are well conditioned.

The scattered field in the acoustic medium can now be expressed completely in terms of

the unknown source functions, (24). The cartesian coordinate form of the Green's function

in the fluid can be written as

f~o eik(x1-•4)+ikVj)lx3-•I

O +00 dk 3 (25)G(I(.; .')-A 4 fYt oo W

where

k-•)= ((kW)) - k )2, Im(k( )) > 0,

which corresponds to a pressure source, P(s) = -AtU)-'b(x 1 - x')(x3 - x') applied at x,

in the fluid. Substituting (25) into the surface integral (19) the scattered field at any point

X3 > ((xi),.. in the fluid can be decomposed into a summation of plane waves

t = + R f ( kw) )e~i + ikx (26)
J dkS(._X),ca, +.o 2irk~~ Rj ) eizkx,26

where the amplitude coefficient takes the form

Rf(kw) = + _ dx'[iS(x')(k('(x') - k() (27)
f2 J-l,-k~)'('

-k .t2(('(x')D,(x;') - D3 (x'))]e ik 3 -k 1/)'(x)

To reduce the computational demand of this approach, the incident wave is expressed as

a narrow Gaussian beam source following Maradudin (1990). This allows for a reduction
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in the length of integration along the acoustic boundary, since only a small portion of the

interface is excited by the incident beam. The pressure of a Gaussian beam incident at an

angle, 0o, in the acoustic medium can be written as

)( .) = e ik VJ)( x in o -3c °s °)(1+ w ( x-)1e -((x 'c°Oa O +X3s in0O )/w )2, (28)

where

1 2
x) t 2-[-(xcos~o + x 3 sin~o) - 1], (29)

which is an approximation to the wave equation, (16), and is valid so long as >> 1,

where w is the half-width of the Gaussian beam. We also express w = h cos 00, where h is

the half-width of the incident beam as seen on the plane X3 = 0.

An approximation to the Fourier reflection coefficient can now be written in terms of

the amplitude coefficient, (27). Normalizing this amplitude coefficient by the amplitude of

the incident plane wave having a wave vector corresponding to the angle of incidence, the

reflection coefficient can be expressed as

R(kw) - 2VPkO-w (30)S2 7k(f)w

where

rp(os) = M I - cosO ) (31)

- x e-ik(c)(sinO'x +Cos Os'(x'))
--kTD)((,(x))DI(xl) - ]3e1)J

which is comparable ini amplitude to the Fourier reflection coefficient calculated for a single
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incident plane wave, and we let k = kW) sin 0, and k =k() cos 0.. Note that this normaliza-

tion is different from the Differential Reflection Coefficient of Schultz and Toks6z (1993a,b).

Appendix A describes how these integral equations can be solved numerically following

the approach of Schultz and Toks6z (1993a,b). We show that the solution to this acoustic-

elastic case can be expressed completely as a combination of the Green's functions for the

P-SV and SH case, where the shear velocity of the SH wave is changed to the P-wave

velocity of the acoustic medium, so as to reflect the acoustic Green's function. The final

coupled integral equations are then transformed to a coupled set of matrix equations and

solved using LU decomposition.

Numerical Analysis

In this paper two types of interfaces are modeled numerically. Both interfaces have a Gaus-

sian distribution about the mean, where 62 _= (( 2(xi)) is the mean-square departure of the

surface from flatness. The first interface studied has a correlation function

WV(Ix, - x1I) = 6-2 (((xi)((x1)), (32)

described by a Gaussian correlation function, W(IxiI) = exp(-xl/a2 ). The correlation

length for a Gaussian interface is approximately equal to the average distance between ad-

jacent peaks and valleys along the interface. The interface can also be described in terms

of the rms slope of surface, 0, which we will refer to often. This rms slope can be written

as o = tan- (•'-). The second surface studied has an exponential correlation function,
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IV(IxlI) = exp(-xi/a).

Averaging over an ensemble of realizations of these surfaces, we display the final scattered

pressure as a statistical average that follows the approach of Schultz and Toks6z (1993a,b).

The statistical characteristics of the scattered pressure can then be analyzed for possible

,ttering mechanisms. Although the coherent and incoherent properties of the scattered

,, were computed for seismic analysis, only the total mean squared contribution to the

Reflection Coefficient (RC) is presented in the following sections. The total mean squared

contribution to the RC can be written as

'- s)tot 4- k( 2w2 (Irp(Os)12). (33)

This gives the average squared pressure reflected into the upper medium as a function of the

scattering angle, 0,, given one incident beam angle, 00. The square root of this RC is used

for comparison with experimentally recorded amplitudes.

Experimental Procedure

The experimental procedure involved submerging a solid elastic model, in this case a glass

block, into an experimental water tank, essentially creating an acoustic-elastic interface

at the boundary between the block and the surrounding water. The first portion of the

experiment entailed generating a characterized random surface that, if successful, would

have predetermined Gaussian statistics. The second portion involved constructing a motor

driven measurement device that could accurately (to within a fraction of a degree) measure
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various realizations of the fluid-glass boundary.

Random Interface Generation

Fabricating the randomly irregular scattering surface was the most challenging part of this

project. Numerous irregular surfaces were designed. Models ranged from irregular distri-

butions of glass beads to roughened cement surfaces. In addition, random distributions of

gravel held together by epoxy were tested along with naturally rough granite and sandstone

surfaces. Unfortunately, these models either did not give proper control over statistical pa-

rameters or were extremely heterogeneous at the ultrasonic level, making comparisons with

numerical models very difficult. After much experimentation the most promising approach

became the fabrication of a random glass surface using an etching procedure.

The irregular glass surface was designed using a solid glass block and a standard etching

process. First the cylindrical glass block shown in Figure 3 was cast using a graphite mold.

After one week of annealing the block had a final diameter of 19.5 cm and a height of 7.5 cm.

The upper surface, that was exposed to air, contracted slightly due to the high expansion

coefficient of Na glass and resulted in a slightly concave surface. Therefore, the lower plane

surface of the block was etched.

The general theory behind etching a specific surface is shown in Figure 4. Take, for

instance, the fabrication of the valley shown in the upper left portion of the figure. In this

case, the valley is divided into a number of discrete depth intervals. Photoresist templates
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are designed to match the geometry of the valley at each discrete depth. The first template

is glued to the smooth glass surface that, in the case of a valley, contains only a small gap.

The surface is then exposed to a constant pressure of high velocity particles which chip any

portion of the surface not covered by photoresist. After a set time which depends on the

compressed air pressure and the sand/air mixture ratio, the exposed glass is etched to a

target depth. The first layer of photoresist is then removed, and the next layer is attached

exposing a larger portion of the surface to the incoming sand particles. The glass surface is

exposed again to sand particles for the same amount of time. The valley is now broader and

twice as deep. Adding each template in a similar manner, the desired valley is etched into

the glass surface.

To achieve the desired random interface, the Gaussian surface described in the previous

section was first numerically generated. Both the transverse correlation length, a, and the

standard deviation of the height, 6, of the interface were specified as 1 mm and .71 mm,

respectively, giving an rrns slope of 45'. After generation, the Gaussian surface was dis-

cretized into six individual depth levels, with each level's thickness equal to one standard

deviation of the surface. The templates shown in Figure 5 were successively glued to the

surface and each template was exposed to high velocity sand particles normally incident on

the surface for approximately 360 s. A simple lateral sweeping motion of the sand blaster

was used to cover the whole template. The blaster operated at a pressure of 125 kPa (;

IS psi) with the glass surface 0.3 m from the nozzle of the sand blaster. In general, the
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correlation length of the surface was controlled by the template design, and the standard

deviation of the interface was controlled by the time that each template was exposed to the

sand blast.

As the etching proceeded, we found that the standard deviation and correlation length

were difficult to control precisely. We observed during the sand blasting process that particles

impacting the surface tended to scatter many times within valleys, generally broadening the

valley width. In addition, small narrow peaks tended to chip away far faster once completely

exposed to the sand blast. removing the linearity assumed in the design of the surface. As

we show below, this results in a longer correlation length then expected. In this study, the

target 'rms' slope of the interface was 45' and the desired correlation length was 1 mm.

The Scattering Instrumentation

Once the irregular glass surface was created, an automated scattering apparatus was used

to measure the scattering properties of the interface. The two different flat-bottomed trans-

ducers used to create a beam source were a Panametrics 12.7 mm diameter transducer (1.5

MHz, A = 1.0 mm in water) and a Panametrics 25.4 mm diameter transducer (0.5 MHz,

A = 3.0 mm in water). The detectors, which were also Panametrics flat-bottomed trans-

ducers, consisted of a 6.4 mm diameter transducer (1.5 MHz, A = 1.0 mm in water) and a

12.7 mm diameter transducer (0.5 MHz, A = 3.0 mm in water), respectively. The detectors

were chosen such that they were sensitive only to waves approaching nearly perpendicular
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to the surface of the transducer, limiting the energy recorded to waves which approach in

line with the transducer axis. Given the source parameters, the resulting source radiation

pattern was a beam of energy with the majority of the source energy travelling in the forward

direction. As shown in Figure 6 the source radiation patterns show some spreading of the

beam although further tests showed that this slight spreading did not significantly affect the

results.

Experimental data was recorded in our in-house water tank, described in Appendix B.

The experimental geometry used to measure the surface scattering is shown in Figure 7.

The glass block was located at the center of the experiment and the source and detector were

then stepped in a semicircle about an axis of rotation running parallel to the general trend

of the irregular fluid-glass interface. In each experiment the source was placed at a constant

incident angle, O9, and a constant .35 m distance from the axis of rotation. The recording

angle was then controlled by mounting the detector on a motor-driven, rotating arm that

held the detector .30 m from the given axis of rotation. The arm was then rotated in 0.9*

steps about this axis of rotation. Therefore, the recorded energy represents scattering in the

plane of incidence. As a result, it is important to note that the detector occludes the source

when it is near the backscattering position. This results in a loss of 30 to 6' of scattering

amplitudes centered about the source position. These data points are not plotted.

The final desired measurement is the mean scattered pressure as a function of scattering

angle, given a fixed angle of incidence. Since the scattering mechanisms working at the
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interface are strongly a function of frequency, we are interested in measuring the scattered

field at specific frequencies. Two different approaches to this problem can be taken. One is to

record the scattered energy given a broad band incident wavelet and then to decompose the

recorded energy as function of frequency. However, since it is unclear exactly what numerical

effects may be introduced with the narrow oand filtering we take the second approach which

involves no filtering and gives cleaner results. \Ve introduce directly via the transducer source

a monochromatic wave of given frequency. The continuous sinusoidal wave is approximated

well by a finite sinusoid ranging from 35 to 100 cycles. The final constant amplitude of the

scattered pressure is then recorded.

A single realization of scattering from the irregular interface results in large fluctuations

in scattered pressure as a function of the scattering angle. It is necessary, therefore, to

average experimentally as we averaged numerically, so as to obtain a final mean reflection

coefficient. In optical theory, averaging is accomplished by illuminating a field lens that

is much larger than these fluctuations. The fluctuations, referred to as speckle in optical

terminology (O'Donnell and Mendez, 1987), are integrated over a specified solid angle giving

the average intensity scattered at that angle. In seismic experiments it is very difficult to use

an integrating lens. This difficulty arises mainly from the limited size and frequency range

of ultrasonic experimentation. As a result, we chose to follow the numerical approach and

to create different independent realizations of the interface. The pressure of waves scattered

from an ensemble of interface realizations was averaged to determine the final mean scattered
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pressure at each scattering angle. The computer-controlled arm allowed for rapid acquisition

of data with the reproducibility required for this averaging scheme. A typical measurement

consisted of measuring the scattered pressure from an independent statistical realization of

the interface. Each independent realization was acquired by rotating and shifting the sample

in the sequence shown in Figure S. Since rotating the surface with respect to the incident

be .,. ormed another scattering geometry, many different realizations of the interface were

obtained. In general. the sample was rotated by 600 staggered steps, followed by 1.25 cm

shifts of the block, which placed the axis of rotation for the source and receiver on concentric

circles about the center of the glass cylinder. This movement sequence can easily give more

than 150 different realizations of the interface.

Due to interest in the enhancement of energy travelling directly back :owards the source,

it. was desirable to create a source-receiver design that retrieved energy in the occluded zone

near the source. This was achieved by constructing a four-layered piezo-film detector. The

gener:,i idea behind the piezo-film receiver is straightforward. A single layer of film has an

impedance very similar to water, and, as a result, when the piezo-film is placed directly in

front of the source, the source energy transmits almost completely through the detector,

allowing most of the energy to travel towards the interface. The incident wave is then

diffracted from the interface, and the scattered energy travelling directly back towards the

source is recorded as it transmits a second time through the piezo-film receiver. A four-

layer piezo-fihn receiver was constructed using conducting glue and in-parallel connections,
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significantly increasing the signal to noise ratio. The construction of this receiver is discussed

in detail in Appendix B. It is important to note that the piezo-film receiver is sensitive to

energy arriving both from in front and from behind the receiver. As a result, extreme care

was taken to choose a time window of analysis that did not contain multiple scattering from

the source and the tank wall. In addition, as we will show, piezo-film of this thickness does

have a substantial reflection coefficient, therefore, a resonance between source and receiver

had to be avoided, too.

We stress that the data discussed in the next section represents the mean diffusely scat-

tered signal, as a function of angle, for a fixed solid angle of data acquisition. No artificial

angular factors are introduced to the data even though the apparent vertical wavelength,

acting at the surface in this experiment, varies inversely with the cosine of the scattering

angle. \Ve do not place any' absolute vertical scales on the data, although for comparison

the data are normalized to the numerical RC calculated at normal incidence.

Surface Scattering Measurements

In this section we present the average reflection coefficient measurements obtained using the

roughest glass surface fabricated. This surface was chosen because many scattering mecha-

rilsms will play their strongest role. Figure 9a shows the target surface height distribution,

independent of lateral position, and Figure 9b shows the histogramn of the surface height,

based on surface profilometer measurements of the actual surface. The histogram shows
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that the data nicely matches a Gaussian probability distribution with a standard deviation

of approximately 0.6 mm. This is close to the target value, 6 = 0.71. Figure 10a gives the

target Gaussian autocorrelation function, and Figure 10b shows the actual autocorrelation

function calculated from profilometer measurements. As previously predicted, the correla-

tion length of 1.4 mm is greater than the target value of 1 mm. Also plotted are Gaussian

and exponential autocorrelation functions with the same correlation length as the data. The

autocorrelation function is very close to a Gaussian correlation function at the more impor-

tant. smaller lags. At larger lag distances. the surface lies directly in between a Gaussian

and an exponential correlation function.

Figure 1 la gives a 3-D grayscale plot of the irregular surface based on the surface pro-

filometer measurements. Figure llb plots the surface height for a profile taken across the

surface, while Figure 1 Ic shows a numerically generated Gaussian and exponential surface

given the same standard deviation and correlation length. It is clear that the Gaussian

surface matches the experimental interface well, both in the observed slopes and the lateral

scale of the irregularities. Since the frequency domain representation of the surface goes

as the square root of its correlation function, the exponential surface should contain larger

amounts of energy at both low and high frequencies. This is seen clearly since the exponen-

tial surface contains lower amplitude short wavelength irregularities that were not observed

oii the experimental surface. Although the Gaussian gives a good fit to the experimental

data. out of interest, we shall still plot the results for an exponential surface.

51



Based on the measurements above, the final glass interface slopes steeply at approxi-

mately 30° rms, and the impedance contrast at the fluid-glass interface is large as the glass

interface has properties very similar to an igneous material (see Figure 3). As a result,

multiple-scattering and shadowing effects can play a significant role at both small and large

incident angles, and approximate linear theories, such as the Kirchhoff and Born approaches,

break down. Therefore, the mean scattered pressure measured experimentally is compared

with the reflection coefficients calculated with the Boundary Integral technique, formulated

earlier. This technique includes all multiple scattering and wave conversions at the interface.

Case: A= 0.71a

Figure 12 shows one realization of the interface given an incident pulse with a center frequency

of 1.5 MHz and a half-power width of 0.25MHz. This realization corresponds to a beam

impinging on the surface with an incident angle of 200. The source pulse is shown. This

pulse is ala shown reflected from a plane interface, in which case energy arrives only in

the specular direction. Referring to the polar seismogram, it is clear that the large scale

surface roughness scatters energy over most forward and back scattering angles. The energy

is spread over a large time interval and amplitudes vary rapidly as a function of scattering

angle. In general, it is difficult, given this single model, to determine quantitatively which

scattering mechanisms are working at the surface.

Our first continuous wvave analysis is carried out at 1.5 MHz, the center frequency of
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the seismogram above, so that A = .71a = 1.00 mm. Figure 19 shows one experimental

realization of the fluid-glass surface at each of four incident beam angles: 00, 200, 300, and

60'. Clearly the amplitudes in each realization vary strongly as a function of scattering

angle, 0s. As discussed earlier, these fluctuations can be removed by averaging over a finite

number of realizations and obtaining a mean reflection coefficient. The total mean reflection

coefficients for both a Gaussian and an exponential surface are given in Figures 14-17 and

Figures 20-23. At the bottom of these figures, the experimental mean reflection coefficients

are given along with the SD of the finite average, showing the deviation of these reflection

coefficients from the final mean reflection coefficient corresponding to a full ensemble of

realizations. Negative scattering angles (0, < 0) correspond to backscattering in all plots.

We also stress that given the incident wavelength, the surface is extremely irregular and the

specular reflection is largely disrupted.

Figure 14 shows the total mean scattered pressure as a function of scattering angle given

a normally incident acoustic beam. Upon comparing the numerical and experimental data it

is clear that the 2-D numerical results for a Gaussian interface match the 3-D scattered data

extremely well. The fluctuations in the data are mostly within one standard deviation of the

finite average. There are a number of interesting aspects in the curves. The experimental

data shows a strong peak amplitude propagating back towards the source at 0, = 00; this

is predicted well by the nimerical reflection coefficient. The width of this peak is approxi-

mately 350. Notice that there is considerable scattering at al'. angles, dropping off linearly
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with increasing scattering angle. The exponential surface also predicts the general form of

scattering well, but the higher frequency component appears to destroy the enhancement of

energy scattered back towards the source.

A similar form of scattering is exhibited in Figures 15 and 16, which show the mean

scattered pressure for an incident angle of 200 and 300, respectively. Both the numerical

results for the Gaussian interface and the experimental data match very well. There are also

two remarkable aspects to these curves. First, on both reflection coefficients two peaks can be

identified by eye. One is a broad peak occurring in the forward scattered direction. The other

is much narrower and occurs in the retroreflective direction 0, = -00. This "retroreflective"

peak loses amplitude as the incident angle is increased, sinking further into the surrounding

reflection coefficient curve. This retioreflectance is clearly supported by the ultrasonic data.

Second, both curves become strongly asymmetric. However, upon comparing the curves, the

2-D numerical model shows more backscattering and less forward scattering than the 3-D

ultrasonic data. This trend becomes more prominent as the incident angle is increased. The

exponential curve also follows the experimental reflection coefficient closely, showing again

a less distinct retroreflective peak.

Figure 17 gives the mean scattered pressure for a beam incident at 60'. In this case there

are no distinct signs of enhanced backscattering in either the numerical or the experimental

data. Itowever. energy is scattered uniformly over most backscattering angles. This energy

does not drop off until the retroreflective angle is exceeded in the backscattering region.
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Most dramatic is the continuation of the trend observed at the smaller incident angles above.

Specifically, the numerical data clearly shows more backscattering and less forward scattering

than the experimental data.

Case: A = 2.14a

Figure 18 shows one realization of the interface given an incident pulse with a center frequency

of 0.5 MHz and a half-power width of 250 kHz. This realization corresponds to a beam

impinging on the surface at a 200 incident angle. The pulse reflected from a plane interface

is shown, with the energy again arriving only in the specular direction. Referring to the

scattered seismogram, it is clear that, even at this lower frequency, energy is scattered over

most forward and backscattered angles. Given this one deterministic case, it is difficult to

determine quantitatively the scattering mechanisms operating at this frequency, or to define

how they might differ from those in the higher frequency case.

This sccond continuous wave analysis was carried out at 0.5 MHz, the center frequency

of the seismogram above, so that A = 2.14a = 3.0 mm. Figure 13 shows one experimental

realization of the fluid-glass surface at each of the four incident beam angles. Once again

the amplitudes for each realization vary strongly as a function of scattering angle, although

not as strongly as the A = .71a case. Figure 20 shows the comparison between the averaged

numerical and experimental reflection coefficients given a normally incident beam. The 2-D

numerical results for a Gaussian interface predict the experimental observations well. All of
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the experimental data sits within the standard deviation of the finite-average. Comparing

these curves to the curves for A = 0.71a, a number of distinct differences are apparent.

Most noticeable is the widening of the retroreflective peak width from about 35* to greater

than 60'. This widening is apparent in both the experimental and the numerical data. The

reflection coefficient for an exponential interface again shows much lower retroreflectance

than for the Gaussian interface.

Figures 21 and 22 both show that the numerical results over a Gaussian interface predict

the asymmetric trends in the experimental data very well for incident angles of 200 and

300, respectively. However, distinct differences do occur between the two curves. First, as

the incident angle increases, the 2-D numerical results again show more backscattering and

less forward scattering than the 3-D ultrasonic data. A broad retroreflective peak is both

predicted and observed at 200 and 30° incidence, supporting the existence of retroreflectance.

Unfortunately, the height of these peaks are of the same order as the standard deviation of the

experimental average, not allowing for a direct verification of retroreflectance. Numerically,

the exponential interface does give rise to a retroreflective peak; this peak is smaller than

the peak predicted by the Gaussian surface.

Figure 23 shows the mean reflection coefficient for an incident angle of 60'. In this case

enhanced backscattering is not predicted numerically or observed experimentally. At this

lower frequency, the 2-D numerical model predicts more backscattering and less forward

scattering than the 3-D ultrasonic data. In addition, the numerical model predicts a much
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smaller specular peak than is observed experimentally. Although the amplitudes are different,

the numerical curves do predict well the uniform scattering of energy into the fluid above as

shown in the data.

Retroreflectance is clearly supported by the ultrasonic data above. However, the retrore-

flective peak height is still on the same order as the standard deviation of the finite-average

in each case. This makes it difficult to verify the existence of "enhanced backscattering." For

this reason. data was recorded near the retroreflective direction using the partially transpar-

ent piezo-film receiver. The experimental procedure is described in Appendix B, the steps

obtaining the final reflection coefficient are summarized in Figure 24, and the final average

RC observed with the piezo-film receiver is superposed on Figure 21. The data has been

scaled to the amplitudes received with the flat-bottomed transducers. The scattered pres-

sure was measured between the backscattering angles of 40" and 5V (-400 < 0, < -50),

and 65 surface realizations were averaged. In this case, the size of the retroreflective peak is

larger than the corresponding SD of the average. The 2-D numerical model predicts the 3-D

experimental data very well, to within the standard deviation of the finite average. A dis-

tinct peak is observed in the retroreflective direction with a slightly narrower form than the

numerically generated peak. This result strongly supports the enhancement of backscattered

energy due to multiple scattering from the glass interface.
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General Discussion

Generally, the numerically derived mean reflection coefficients calculated over an acoustic-

elastic interface show retroreflective trends similar to those observed for the SH and P-SV

cases. First, the width that the retroreflective peak appears to be is consistent with the

multiple scattered constructive phase argument summarized in the introduction. In this

case, when the wavelength is increased by a factor of three, both the numerically derived

curve and the experimental data show a factor of three increase in peak width, from 350 at

A = .71a to greater than 600 at A = 2.14a. Second, as the incident angle is increased, the

retroreflective peak amplitude tends to decrease relative to the remaining portion of the DRC.

The retroreflective peak in both the experimentally and numerically derived curves seems to

disappear around an incident angle equal to the 300 rms slope of the interface. Although

not studied directly here it seems likely, based on the work of Schultz (1993a), that the

retroreflective peak height will tend to decrease as the impedance contrast is lowered and

more energy is allowed to penetrate the interface. Along the same lines, the retroreflective

peak amplitude is likely to diminish as the rms slope of the interface is decreased, since not

as many time-reversed paths can be obtained with lower slopes.

Interestingly, as the incident angle was increased, the numerical results above consistently

predicted "more backscattering and less forward scattering" than observed in the 3-D exper-

imental results. \Ve stress that the amplitudes for the 2-D and 3-D are normalized to each

other at normal incidence. so that the absolute amplitude of backscattering is not given. The
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above statement, "more backscattering and less forward scattering," means that backscatter-

ing decreases and forward scattered amplitudes increase more slowly in the 2-D case than in

the 3-D case as the incident angle is increased. Two explanations may clarify this deviation.

First, the glass interface used in the experiment may not follow Gaussian statistics exactly.

Therefore, the observed differences may be a direct result of differences in the statistics of

the model. However, the interface statistics were well-constrained using surface profilometer

measurements. A second possible explanation, is that there may be distinct differences in

the scattering due to an inherent difference between 2-D and 3-D scattering mechanisms. In

the case of 2-D scattering, a peak along the interface is actually an infinite ridge extending

in the x 2-direction. A wave incident on the side of this ridge has only three probable routes

of getting to the receiver located on the opposite side of the ridge. The wave can either

multiply scatter within the valley, transmit through Lhe ridge, or diffract over the very peak

of the ridge. Each of these paths exists, but a wave loses a large amount of energy along any

of these paths. In the 3-D case, the surface has one more degree of freedom so that a peak

along the interface can vary in all directions. Therefore, at normal incidence, out of plane

scattering allows energy to arrive randomly from all directions and may increase the amount

of observed backscattering. As the incident angle is increased, energy travels also out of the

incident plane. However, unlike the 2-D interface, the 3-D nature of the interface may allow

energy to pass around obstructing peaks, reducing the amount of backscattered energy in

the measure that the incident angle is increased. For instance, energy may diffract from the
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flank of a nearby peak and propagate in the forward direction back into the receiver plane.

In this case, out-of-plane scattering would work to reduce the amount of backscattering, and

additional energy may be allowed to propagate as forward scattered energy, explaining the

difference between the 2-D and 3-D trends.

Conclusions

In this study, we were able to generate within reasonable accuracy a 3-D characterized ran-

doin interface with Gaussian statistics. An interface with approximately a Gaussian surface

height distribution and Gaussian correlation function was generated using a glass etching

procedure and photoresist templates. The resulting surface distribution was confirmed using

surface profilometer measurements. Scattered pressures were then acquired over this surface

and compared directly to numerical results calculated over a 2-D interface with the same

statistical parameters.

Specifically, we have shown that 2-D numerical models of an acoustic-elastic interface

with Gaussian statistics predict the 3-D scattering that is observed experimentally very

well, when the incident wave is near normal incidence. Numerical results predict the large

amount of observed incoherent backscattering and forward scattering. Numerical results

also predict the elimination of the specular reflection at many incident angles. Most striking

is the prediction of a "'retroreflective" amplitude peak. The numerical results predict that

the peak amplitude decreases as the incident angle increases and the peak's width is directly
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proportional to the ratio of the incident wavelength and the correlation length of the interface.

Experimentally, enhanced backscattering is strongly supported by observations at normal

incidence and at 20°-incidence. The peak's amplitude appears to decrease dramatically when

the incident angle becomes greater than the rms slope of the interface. Numerical modeling

of an exponential surface with the same correlation length and standard deviation as the

glass interface gives results very similar to the results of the Gaussian surface although the

results show more general backscattering. Retroreflectance from the exponential interface

was difficult to identify in almost all cases studied.

The 2-D numerical curves deviate from the experimental curves at incident angles greater

than 300. Specifically, as the incident angle is increased, the 2-D models predict more

backscattering and less forward scattering than observed in the experimental data. This

trend becomes much stronger as the incident angle approaches grazing angles. As the surface

in this experiment is well characterized, this appears to result from a distinct difference

between 2-D and 3-D scattering mechanisms. In this case the peaks and valleys of 3-D

surfaces appear to backscatter less energy into the plane of incidence than the ridges along

2-D interfaces when the incident angle is increased. In addition, they allow more energy to

scatter forward into the plane of incidence. Even though the amplitudes did not match at

larger incident angles, the trends of the reflections coefficients did match. Both numerical

aud experimental results showed energy scattered uniformly over most scattering angles as

a 600 incident angle was approached. This results in negative phase velocities, large phase
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velocities, and a large amount of interference in seismic data recorded in the fluid above the

interface.

Although tests were not carried out on epoxy surfaces in this study, an epoxy surface

was generated for the purpose of profilometer measurements. Essentially, the irregular glass

surface was used as a mold. After adding a separating solution, an epoxy model was generated

and separated from the glass mold. We have concluded that the glass surface can be used to

make models out of different substances, each with different material properties. Future work

will therefore include studies to determine how the material properties affect scattering from

surfaces with identical height distributions. Although in this paper we chose to fabricate a

Gaussian surface, the etching process used here can also be used to create an interace with

exponential statistics.
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Appendix A: Numerical Formulation-Acoustic-Elastic Case

We numerically solve the integral equations (20) and (21) by first integrating them over a

finite interval, L, then converting them to a set of 3N linear equations. Separating each of

the integrals into a sum of N integrals, each integrated over an increment Ax, centered at

the interface points we can express (21), which represents the scattered displacement in the

lower medium, as a sum over integrals centered at the points

1
.x, = -L/2 + (n - A)Ax, n = 1,2,3...., N. (A.1)

Evaluating the total displacement at the center of each element, xm, the integral approxi-

mations can be written as

T,no(.)(,rn1Xn) = xn i"z- (Xl/ T ,,(X,,IXl),' (A.2)

2

Dn" (XmIXn) = dx'iDP'(') ),
InJ =

which we solve for kAx very small.

In the acoustic medium the integrals which we must approximate analytically can, as-

suming that the source amplitude functions 24 are slowly varying along the interface, be

written as

T (.(xfIxf) = dx•;T(mXnxj), (A.3)

D ( f ) ( x n 2 d ,x 1 ,

1:0 (Xm Xn) = ..3.•)6
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and it can be easily shown by letting x3 = C(xl) + c and integrating all terms corresponding

to first order in krf)Ax in the limit as c - 0+ that the boundary integral formulation in

the fluid can be represented as a simple combination of both the elastic approximation and

the SH approximation (Schultz and Toks6z, 1993a). In the acoustic medium the Green's

function terms are written as

DV)(xILx') = A(f)k 2OfG( )(x_; x')n, (A.4)

T T(SH)(xjx')[y --+ A]

where the traction term is identical to the SH traction term with AM1 ) in the fluid is substituted

for it in the SH case. In the elastic medium these terms can be written as

D(')(xcx') = IL(S)G(3)(x" x')np (A.5)

n -r 'npk- (L;-'n

Tin(s)() = T

where the traction term is just that of the P-SV case. The displacement term is a function of

the elastic Green's function developed in the P-SV formulations. In the case of integrating

over singularities, expressing the integrands as a combination of Taylor and asymptotic series

expansions, keeping terms up to order kWT')Ax, and integrating over Ax gives a solution which

reduces to a simple combination of the SH and P-SV solutions. This includes the first term

in A.5 which multiplies an additional normal function. A direct substitution from Schultz

and Toksdz (1993a) ard Schultz an' 'oks6z (1993b) gives the final linear system of equations

which is then solved.
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Appendix B: Ultrasonic Design

All experiments were done in our in-house ultrasonic water tank laboratory. Ultrasonic

water tank modelling is a powerful tool as real field situations can be scaled down by four to

five orders of magnitude and studied in a well controlled laboratory environment. The first

section of this appendix describes the ultrasonic configuration. The second section describes

in detail the construction of a four laver piezo-film receiver.

Ultrasonic Water Tank Design

A diagram of the experimental setup is shown in Figure B.1. A solid elastic model is

submerged in a water tank measuring 1.0 m by 0.5 m by 0.5 m in height. An ultrasonic wave

is generated at a given source transducer with an input voltage from a Hewlett Packard

3048A function generator. For voltage output above +/ - 5 V a Hewlett Packard 467A

Power Amplifier was utilized to obtain a +/- 10 V of output. The source function generator

was used to create a finite length sine wave with a specific frequency and a finite number

of cycles. The input wave, received with a corresponding piezoelectric material, is amplified

from 40 to 60 db with a Panametrics 5660B preamplifier.

In the case of the finite pulse seismograms, a Krohn-Hite 3202R high-low cutoff filter was

applied to the input signal. In the continuous wave study the input voltage was increased and

tlie filter bypassed to remove any distortion it may cause. Signal to noise ratios were improved

by stacking recorded signals (usually 8 stacked shots). The final signal was then digitized by
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a Data Precision DATA 6000 digital oscilloscope with 12-bit amplitude resolution. Although

the system can simulate a full 3-D seismic study using six automated step motors, this study

was carried out with only one motor. The receiver was connected rigidly to a rotating arm

and then rotated in a semicircle about a rotation axis in .9* steps. The digitizer and the step

motor controller are interfaced with an IBM PC-AT computer through an IEEE-488 interface

bus. The final digitized data is stored in the IBM PC-AT and following the experiment, is

transferred to a Digital DECstation 5000/25 machine. The total time required to record and

transfer the pressure recorded for a single realization of an interface was on the order of one

hour.

Piezo-Film Receiver

In designing an experiment which can study the energy scattered at and near retroreflective

angles (energy travelling back towards the source), one must be able to place a receiver very

close to the source. There are a number of approaches which allow recording directly in this

region. One approach is to make the source as small as possible so that when the receiver

gets near the source i! does not interfere with the incident beam. The smaller the source

and receiver the more the information recorded at retroreflective angles. A second approach

is to use a focusing beam which has its focus at the receiver. In this case the beam is its

narrowist at the receiver allowing recording very near the source angle. A third approach is

to use an acoustic beam splitter, which reflects incident energy, coming from the side of the
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experiment, towards the interface and then allows energy to pass back through the splitter

on its second pass to the receiver. The fourth approach is to create a receiver which is

transparent to acoustic energy giving one free reign to record about the source transducer.

Unfortunately, the first two approaches are not applicable to this study. The first option is

not practical since the size of the source transducer is required to be larger than a certain

limit to propagate a narrow acoustic beam. The second option is also difficult to implement

because of the water tank dimensions. If the beam is focused on a receiver located only a

short distance away the beam spreading becomes too large.

We therefore chose the fourth approach. We describe a piezo-film transducer that is

essentially transparent to acoustic energy. Figure B.2(a,c) shows a detailed view of the

piezo-film receiver configuration. In the case of a single piezo-film layer, the film is placed

between two silver conducting layers. Since the signal received comes only from areas covered

by conducting metal. it is advantageous to apply the metal coating as a liquid glue which

allows for full control over the receivers shape and its sensitivity. In this study the conducting

element was given the same circular shape as the flat-bottomed transducers described earlier.

Due to the low sensitivity of une laver of piezo-film, it is desirable to stack multiple layers.

However, there is a balance between the thickness of the receiver and its impedance contrast.

As more piezo-film layers are stacked the impedance of the stack increases quickly. For this

study, a four layer stack shown in Figure B.2(c) using 110p film was optinl. The final

thickness of the piezo film is approximately 5501L thick with a transmis. efficient at
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normal incidence of approximately 0.78. This leaves the piezo-film with a .22 reflection

coefficient. As a result, reflected energy does reverberate between the source and receiver

retaining a very high amplitude. A recording window was chosen such that it did not include

any of this reverberative energy.

The final sheet, measuring .25 m by .12 m, was supported around the edges using a thin

frame (Figure B.3). In addition to supporting the film, the frame was used to bend the

.•heet so it followed the curvature of the semicircle about which the receiver is stepped. This

guaranteed that the source beam was normally incident on the film during receiver rotation,

therefore reducing any source beam distortion created by oblique incidence.

As this is a new transducer design, the receiver properties were studied. Figure B.4

shows thie receiver sensitivity pattern as a function of incident wave angle, with an incident

frequency of 500 kHz. The stacked piezo-film recei, ',as a very directed sensitivity pattern

which is similar in nature to the flat-bottomed i acers with the same diameter. The

piezo-film also appears to have a broad frequency response making it a very powerful tool. In

addition, this element may be used successfully in rock physics to record on curved surfaces

by gluing the film directly to the rock surface. This avoids the problem of transducer coupling

encountered with a flat-bottomed transducer.
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P-wave P-wave

Figure 1: Peak-val!ey sequence along an interface showing an example of the time-reversed
paths which lead to enhanced backscattering. The solid line shows a forward scattered
path. while the clashed line shows the corresponding time-reversed path. These two paths
constructively interfere to give an increase in amplitude diffracted back in the direction
of the source.
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Pq~:2 PK 2A Pqp2

Figure 2: The geometry used to formulate the numerical model of scattering from a highly
irregular interface. The upper acoustic volume is separated from the lower elastic medium
by a highly irregular aicoustic-elastic interface represented by the surface. S(xl).
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water

irregular surface

719.5 cm

Figure 3: The cylindrical glass block model utilized in this study. The upper circular surface
of this glass block was etched to give a randomly irregular geometry and then this block
was submerged in water to create an irregular acoustic-elastic interface. Measurements
show this block to have a P wave and S wave velocity of 5600 m/s and 3200 m/s,
respectively. The detnsitv of the block is approximately 2.65.
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GENERATING THE

INTERFACE

photoresist layer

Sand3
Blaster 4

High velocity 56

sand particles

... iiiii ii ii ii ,, i i iiiiii~ ii 'iii ......... .._ . ..

Figure 4: The general approach used to etch a specific surface geometry given a smooth

glass surface. The vallev shown above is etched in discrete levels using high velocity

sand particles and a photoresist layer which shields the glass covered by photoresist from

chipping. Therefore the the v'alley is slowly deepened and broadened at each level until

the desired valley is achieved.
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-PP-4

L

*7z
W -7 - g

Figure 5: The six templates used to generate the random surface used in these experiments.
Each circle has a 19.5 cm diameter to match the glass surface. Each template corresponds
to one standard deviation of depth and each template was exposed to high velocity
particles for the same amount of time. The numbering shows the order in which the
templates were applied.
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(a) Source Radiation Pattern
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(b) Source Radiation Pattern
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Figure 6: Source radiation pattern for the two flat-bottomed panametrics transducers used
in this stud,. Shown are the radiation pattern (a) for a 12.7 mm (1/2 in) source operating
at 1.5 MHz (A = 1.0 mm) in water and the radiaion pattern (b) for a 25.4 mm (1 in)
source operating at 0.5 Mtlz (A = 3.0 mam) in water.
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AIOFROTATION

TOPN VIEW

/ °7~.o..c ....c..
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•'AXIS OF SAMPLE
ROTATION

TOP VIEW

Axis of SampleRotation

SOUT) I rECTOR

Fýigure 7: The geometry used to experimentally measure the scattering properties of a given

rand(om surface. The source is held stationary at one incident angle while the detector

is stepped in a semi-circle about the random surface. This then gives one realization of

that Surface.
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Shift block horizontally by 1.25 cm.

3oo° 60°

00

00

240° 120°

plane of receiver 180
array (stationary)

Shift block vertically by 1.25 cm.

]iutur:eI : The rotation schene used to generate many realizations of the interface. The
slample is shifted left auid right by 1.2.5 cm steps and the block is rotated by staggered
(00' steps to give 6 independ•eIt realizations of the surface where the axes of rotation for

lhe realization sit along concentric circles on the surface. This gives a total of 72 surface
realizations. An additional 72 realizations can Also be sampled by shifting the block up
ill dlowni hY 1.25 cin tvp.
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a) ____ ___target function
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b) observed function
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Figure 9: Hlistogranm plotting surface height data. The target surface height distribution
a)is ( aissian With Iit stimdard dleviation 1 mm. The surface height distribution (b)

b~ased oil profilometer Initcsuremnents (squares) of the glass surface is show i along with a
best fitting GJaussian curve (solid line) which has a standard deviation of 0.6 mm. This
llitlJ~rfl1mi wa-s plot ted i 'i41ng -10000 surfatce !)rofilot-eter rneasurt flents.
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a) ___ target function
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b) observed function
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FigIIIe1 10:'FThe initerf ace aiitocorrelation function. The target autocorrelation function (a)

is a Gaussian function with a correlation length e- of 1.0 mm. The actual autocor-
relation functioni of Ole glass b~lock (b) as calculated from profilometer measurements
hias a correlation lenlgth of 1.4 mmi. The surface profilometer measurements (solid line)
are compared with Gaussian (crosses) and Exponential (circles) functions with the same
(Ul11elat loll I4Ilgt lis of I. 1 1111n.
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(a)

SI I I
220.00 240.00 260.00 280.00

time is)
(b) (c)

source wavelet reflected wavelet

0. 5 . ............. 0.5- .
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• -1  t I .1. +
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time (PS) time (PS)

Figure 12: Experimental seismogram recorded o the glass model. (a) shows the seismic
data recorded as a function of angle over the . _,gular glass surface with A = .71a given
an acoustic beam incident at 20'. The arrow shows the retroreflective direction. The
source wavelet (b) and the specular reflection (c) recorded over a plane interface are also
shown. In the plane laYer case the onlY" observable energy is in the specular direction.
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Figure 1:5: "file amplitude recorded experimentally for one continuous wave realization of
the tluid-glass interface given an acoustic beam incident at 0°, 20°, 30°, 60°, respectively.
The incident wavelength corresponds to A = .71a and 0, is the angle of forward (positive)
and back (negative) scatterine.
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a) .2 numerical 0=00
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S0 .1

S0.25- ,

-90 -45 0 45 9
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., 0.15-0

- 0 . 2 -................... ...; : ... - ..... .......................

0 . . ......... ............. ! ... ............• ....- ..... ............L.... ...
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Figure 14l: The 2-D mean reflection coefficient (a) calculated numerically over the Gaussian
(solid line ai 1(1 exponential (dlashed line) surfaces given a normally incident source beam
with A = .71ti. Tlhe :3-1) reflection coefficient (b) recorded over the experimental interface
(circles) and the standard deviat~ion of the finite average (plus) are also shown. The
ebxperimental results orrspoid to :30 surface realizations.
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i. 20 realizations.
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Figure 16: Similar to Figure 1-1 except the incident angle is now 30' and results correspond
to I0 rcalizations.
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Figure 17: Similar to Figure 1-4 except the incident angle is now 60° and results correspond
to IM) r'eaiclt iolls.
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Figure 18: Similar to FiiUoire 12. except A 2.14a and results correspond to 10 realizations.
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Figure 19: The amplitude recorded experimentally for one continuous wave realization of
the fluid-glass interface given an acoustic beam incident at 0 ', 200, 300, 600, respectively.
The incident wavelength corresponds to A = 2.14a and 0, is again the angle of forward
(positive) and back I 1e,2,atiive) scattering.
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a) numerical 0 =00
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Figure 20: The 2-D reflection coefficient (a) calculated numerically over the Gaussian (solid
line) and exponential (dashed line) surfaces given a normally incident source beam with
A = 2.1.1a. 0, is the angle of forward (positive) and back (negative) scattering. The
3-D reflection coefficient (b) recorded over the experimental interface (circles) and the
standard deviation of the finite average (plus) are also shown. The experimental results
correspond to 30 surface rellizations.
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Figure 21: Similar to Figure 20 except the incident angle is now 200 and results correspond
to 20) rid attiOllS.
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Figure 22: Similar to Figure 20 except the incident angle is now 300 and results correspond
to 10 real Izatlolls.
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Figure 23: Similar to Figure 20 except the incident angle is now 600 and results correspond
to 10 realizations.
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ulsing a piezo-film receiver. Shown are (a) the incident source amplitude recorded with
the piezo-film, (d) the average reflection coefficient for 65 surface realizations where (b)
the raw data recorded has been corrected using (c) the transmission coefficient of the
piezo-film receiver. The final reflection coefficient can be compared to (e) the numerically
dlerived reflection coefficient for a 2-D interface.
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Figure B.A: The ultrasonic water tank configuration. The finite pulse measurements utilized
the band-pass filter while the continuous wave measurements bypassed the filter, but
used1 a power amplifier to increase the signal to noise ratio.
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(a) (b) + plane view

conducting glue
(2 0g. thick)

piezo-film -
(11 Op thick) 1/2 in.

(C)

~E±IL

Figure B.2: The piezo-film receiver with 4 layers of piezo-film stacked together with thin
epoxy layers. (a) The piezo-film sandwiched between two thinner layers of conducting
glue which carry current from the film. (b) The plane-view geometry of the receiver
which has a circular geometry with a 1.25 cm diameter. (c) The parallel connection of
these piezo-elements which resu'lts in a four time increase in current output.
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ItI

four layerpiezo-film • similar

impedance
contrast

12 cm

25 cm

Figure B.3: Geometry of the piezo-film sheet. The piezo-film element is inserted into of a
larger sheet of stacked plastic layers to reduce diffractions from the edge of the receiver
element. The sheet of plastic layers was created by stacking 110L thick layers until the
impedance contrast matched that of the piezo-film.
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Figure B.4: The sensitivity pattern of the four layer piezo-film receiver at 500 kHz.
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