
ADEM A278 463

A F"ORTRAN 13ASED LEARNING SYSTEM USING

MULTILAYER BACK- PROPAGATION

NEURAL NETWORK TECHNIQUES

THlES IS
Gregory L. Reinhart

C~aptain, USAF D I
AFIT/GOR/ENS/94M-11 ELECT

APR 2 21994

DEPARTMENT OF THE AIR FORCE DTICQUALITYflSMPC'rED
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



V

•" ~Accesion For''

NTIS CRA&|

AFIT/GOR/ENS/94M-11 DTIC TAB
Unannounced F'
Ju6tif ication

By
Distribution I

Availability Codes4 Avail and I or
Dist Special

A FORTRAN BASED LEARNING SYSTEM Ur 'NG

MULTILAYER BACK-PROPAGATION

NEURAL NETWORK TECHNIQUES

THESIS
Gregory L. Reinhart

Captain, USAF

AFIT/GOR/ENS/94M-1 i

STIC
94-12270 APR 22'rEflI III1 I l IIII iiia ll ii in IIIl .-•.: ̂  o,• ,

Approved for public release; distribution unlimited

94 4 21 ki51



AFIT/GOR/ENS/94M-11

A FORTRAN BASED LEARNING SYSTEM USING

MULTILAYER BACK-PROPAGATION

NEURAL NETWORK TECHNIQUES

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Gregory L. Reinhart, B.S.

Captain, USAF

March, 1994

Approved for public release; distribution unlimited



THESIS APPROVAL

STUDENT: Captain Gregory L. Reinhart CLASS: GOR 94-M

THESIS TITLE: A FORTRAN Based Learning System Using Multilayer Back-Propagation

Neural Network Techniques

DEFENSE DATE: 3 MARCH 1994

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Ltc Kenneth W. Bauer/ENS . . .

Reader Prof. Daniel E. Reynolds/ENC .



Preface

The purpose of this research effort was to develop an interactive computer system

which would allow the researcher to build an "optimal" neural network structure as quickly

as possible, given a specific problem. The objective was to develop software to assist

the researcher in building an appropriate back-propagation neural network. The software

enables the researcher to quickly define a neural network structure, run the neural network,

interrupt training at any point to analyze the status of the current network, re-start training

at the interrupted point if desired, and analyze the final network using two-dimensional

graphs, three-dimensional graphs and confusion matrices.

Two, classical, classification problems are used to verify and validate the system:

1. The XOR problem

2. The four class MESH problem

The analysis conducted on these two problems involved finding the "optimal" network

architecture for a multilayer perceptron. This optimal architecture was found by varying

network parameters such as number of middle nodes, learning rates, and momentum rates.

Two and three-dimensional graphs, automatically produced by the system, were analyzed

at various stages to see how the activation and saliency surfaces were changing as network

parameters changed.

By validating this system using the XOR and MESH problems, the hope is that

other practitioners will use this interactive system to build "optimal" network structures

for real-world problems.

While performing the analysis, developing the computer code, and writing the thesis,

I had a great deal of help from several individuals. First, I am very greatful to Ltc K.W.

Bauer, my faculty advisor, for allowing me to develop the computer code first and the

thesis narrative second. This sequence of events gave me a thorough understanding of

the problem, and ultimately produced a superior final product. His insights and pointed

suggestions kept me on track. I am also indebted to Professor D.E. Reynolds for his sound

advice of keeping my eye on the big picture, and not allowing me to get buried by the
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details. Finally, special thanks goes to my wife Kathy, and my sons Justin and Adam.

This project could not have been completed without their sacrifice and faith in me.

Gregory L. Reinhart
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Abstract

An interactive computer system which allows the researcher to build an "optimal"

neural network structure quickly, is developed and validated. This system assumes a

single hidden layer perceptron structure and uses the back-propagation training technique.

The software enables the researcher to quickly define a neural network structure, train the

neural network, interrupt training at any point to analyze the status of the current network,

re-start training at the interrupted point if desired, and analyze the final network using two-

dimensional graphs, three-dimensional graphs, confusion matrices and saliency metrics. A

technique for training, testing, and validating various network structures and parameters,

using the interactive computer system, is demonstrated. Outputs automatically produced

by the system are analyzed in an iterative fashion, resulting in an "optimal" neural network

structure tailored for the specific problem. To validate the system, the technique is applied

to two, classic, classification problems. The first is the two-class XOR problem. The second

is the four-class MESH problem. Noise variables are introduced to determine if weight

monitoring graphs, saliency metrics and saliency grids can detect them. Three dimensional

class activation grids and saliency grids are analyzed to determine class borders of the two

problems. Results of the validation process showed that this interactive computer system

is a valuable tool in determining an optimal network structure, given a specific problem.
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A FORTRAN BASED LEARNING SYSTEM USING

MULTILAYER BACK-PROPAGATION

NEURAL NETWORK TECHNIQUES

I. Introduction

The multilayer back-propagation training procedure for neural networks holds great

potential. However, in practice, this training procedure can be a researcher's nightmare.

In contrast to most other training procedures, there are many parameters that may be

adjusted and may have a major effect on the results. This myriad of parameters provides

the motivation to develop an interactive tool which will allow the researcher to develop

and fine-tune a customized neural network, given a specific problem. The purpose of this

thesis is to build and test such an interactive tool.

1.1 Background

The back-propagation neural network is the latest contender for "champion" learning

system. Sometimes simplistically compared to human biological systems, neural networks

were long thought by many to be an impractical representation for learning. However,

recent developments have proven this view incorrect, and the back-propagation learning

system has created much excitement because of strong theoretical and applied results.

In 1969, Minsky and Papert wrote a book titled Perceptrons which had a significant

influence in discouraging research on neural networks [12:249-252]. At that time, no proce-

dure had been developed for learning with multilayer neural networks. The great potential

for classification and prediction by multilayer neural networks had been discussed since

the first generation of perceptrons made their appearance in the late '50s and early '60s.

However, it is only in the mid-'80s that a practical multilayer neural network training

procedure, known as back-propagation, has emerged. We now know the strong theoreti-

cal potential of the multilayer neural network for learning. According to Hornik, a single



hidden layer with sufficient hidden units is capable of approximating any response surface

[8:360].

A neural network is a computer program that makes decisions based on the accumu-

lated experience contained in successfully solved cases. It extracts decision criteria from

samples of solved cases stored in a computer. In many professional fields expertise is

scarce, and the codification of knowledge can be quite limited in practice. Expertise in

the form of records of solved cases, may be the sole source of knowledge. The argument

in favor of neural networks is that they have the potential to exceed the performance of

experts and the potential to discover new relationships among concepts and hypotheses

by examining the record of succesfully solved cases. In this thesis we examine one of the

most prominent techniques for training a neural network: the Multilayer Back-Propagation

technique. We will confine our attention to the most prominent and basic learning task,

that of classification.

For classification problems, a neural network can be viewed as a higher-level system

that helps build the decision-making system itself, called the classifier. The simplest way

of representing a classifier is as a black box which produces a decision for every admissible

pattern of data that is presented to it. Figure 1 illustrates the simple structure of a

classification system. It accepts a pattern of data as input, and produces a decision as

output.

Case to Be
Classified: Decision on Class

............ •Assignment
Pattern of Case ........... of Case

Data

Figure 1. Classification System

The neural network has available to it a finite set of samples of solved cases. The data

for each case consists of a pattern of features and the corresponding correct classification.

Features also go by a host of other names, including attributes and independent variables.

The goal of a neural network is two-fold. The first goal is to extract decision rules from

sample data. Samples are organized as cases, with each case consisting of measurements or

2
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feature values, and a simple indicator of the correct class. The second goal is prediction on

new cases, not discrimination between the existing sample cases. It is usually quite easy to

find rules to discriminate, or separate, the sample cases from each other. It is much harder

to develop decision criteria that hold up on new cases. Thus, the learning task becomes

one of finding some solution that identifies essential patterns in the samples that are not

overly specific to the sample data.

A final but significant point is made by Weiss and Kulikowski. The multilayer back-

propagation neural network technique falls into the class of nonparametric methods. That

is, it makes no assumptions about the functional form of the underlying population density

distribution, such as that of a normal (bell-shaped) curve [20:12].

1.2 Research Objectives

The primary motivation for this research can be found in Figure 2. This flowchart,

developed by Belue, shows the general process a researcher must go through to develop

an "optimally" trained neural network [1:44]. The task is to start with a standard set of

network parameters and analyze your way to an "optimally structured" neural network

classifier.

The purpose of this research effort was to develop an interactive computer system

which would allow the researcher to move from the box labeled, "Set Parameters to Stan-

dards" to the box labeled, "Optimal Structure Obtained", as quickly and painlessly as

possible. To achieve this goal, three objectives were defined. The first objective was

to revise and extend the capabilites of existing FORTRAN software for analyzing multi-

layer back-propagation neural networks. Where possible, more efficient algorithms were

incorporated into the current software. The second objective was to interface the revised

FORTRAN software with an interactive 2D and 3D graphics package. The graphics pack-

age chosen for this interface was MATLAB 4.1. The final objective was to validate the

software using the classical "exclusive or" and "mesh" problems.

It was envisioned that the enhanced computer system would attain the following

research objectives:

3
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a Ability to monitor change in weights between network nodes while the network was

training. The specific weights to monitor would be user defined and would be reported

after each epoch.

* Ability to interrupt network training to see the "status" of the neural network.

* After analyzing the "status" of the network, decide whether to continue training the

network or to quit training and report on final results.

* After network is trained, produce 2D graphs of historical output errors, classification

errors, and user requested weights. Also produce 3D graphs of network activations

and saliencies as specified by the user. All 3D graphs will have the ability to rotate

to any view in an interactive mode and then be printed.

"* Reduce the number of random numbers required to run the network.

"* Increase computer storage efficiency in order to handle larger networks and data sets.

"* Interface a sort algorithm into the current FORTRAN program to improve the effi-

ciency of reshuffling the training and test sets after each epoch.

1.3 Scope

FORTRAN software developed by Belue for her thesis titled An Investigation of

Multilayer Perceptrons for Classification provided an excellent program shell from which

to begin the revisions and extensions [1]. In addition, subroutines developed by Steppe for

her dissertation titled Feature Selection in Feedforward Neural Networks were incorporated

into the main body of the software [18].

In order to revise and incorporate new procedures into the existing software, a thor-

ough study of the underlying concepts of multilayer back-propagation and feature saliency

was required. In addition, the logic and program flow of the existing software had to be

analyzed and thoroughly understood. The next step was to develop an interface between

FORTRAN and MATLAB that would allow the user to "jump" between the two languages

as often and whenever the user desired, while still maintaining network training integrity.

All throughout this process, a constant eye was kept on ways to improve computational

efficiency and ways to shrink data storage requirements. Finally, graphs, output reports,

5



and raw data files had to be designed to display the volumes of data produced by the

program.
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II. Literature Review

This chapter provides a review of the literature concerning multilayer back-prop-

agation neural networks, the saliency metric, and sort algorithms. Specifically, it will

define terms peculiar to the neural network field, describe the multilayer back-propagation

algorithm, define the concept of saliency and its calculation, describe high-order inputs

and their relation to correlation matrices, and finish with a discussion on the Shell-Mezgar

sort algorithm. The intent is to give the reader a feel for why things were calculated the

way they were in the FORTRAN code and why the parameter file is designed the way it

is. See Appendix A for an example of the parameter file.

2.1 Terms Defined

As in many other fields of science, neural networks have their own brand of termi-

nology. Several basic terms related to this field are defined below.

"* Back-propagation A learning algorithm for updating weights in a multilayer, feed-

forward, mapping neural network that minimizes mean squared mapping error [4].

"* Classifier The decision making system built by the neural network. In a sense, the

final set of weights.

"* Epoch A complete presentation of the data set being used to train the niultilayer

perceptron, also called a training cycle.

"* Exemplar The input data to a neural network is a finite set of solved cases. Each

case is known as an exemplar or input vector.

"• Feature The individual measurements found in exemplars which contain information

useful for distinguishing the various classes. In other fields, features are known as

attributes or independent variables.

"* Feedforward Characterized by multilayer neural networks whose connections ex-

clusively feed inputs from lower to higher layers; in contrast to a feedback network,

a feedforward network operates only until its inputs propagate to its output layer.

An example of a feedforward neural network is the multilayer perceptron [4].

7



"* Hidden Units Those processing elements in multilayer neural network architectures

which are neither the input layer nor the output layer, but are located in between

these and allow the network to undertake more complex problem solving [4].

"* Learning Algoithms In neural networks, the equations which modify some of the

weights of processing elements in response to input and output values [4].

"* Multilayer Perceptron A multilayer feedforward network that is fully connected

and which is typically trained by the back-propagation learning algorithm [4].

"* Neural Network An information processing system which operates on inputs to

extract information and produces outputs corresponding to the extracted information

[4].

"* Single-layer Perceptron A type of neural network algorithm used in pattern clas-

sification problems and trained with supervision. Connection weights and thresholds

in a perceptron can be fixed or adapted using a number of different algorithms [4].

"* Supervised Training A means of training adaptive neural networks which requires

labeled training data and an external teacher. The teacher knows the correct response

and provides an error signal when an error is made by the network [4].

"* Weight A processing element (or neuron or unit) need not treat all inputs uni-

formly. Processing elements receive inputs by means of interconnects (also called

'connections' or 'links'); each of these connections has an associated weight which

signifies its strength. The weights are combined to calculate the activations [4].

2.2 Error Rates

The overall objective of building a classifier is to learn from samples and to generalize

to new, as yet unseen cases. Performance is most easily and directly measured in terms

of the error rate, which is the ratio of the number of errors to the number of samples or

cases.
number of errorserror rate =(1
number of cases

8



NETWORK CLASS

Class 1 Class 2 Class 3 Total

T Class 1 166 8 8 182
R
U
E Class 2 3 180 3 186

C
L Class 3 4 3 147 154
AS

S Total 173 191 158 522

Figure 3. Confusion Matrix for Three Classes

Weiss states that the true error rate is statistically defined as the error rate of the classifier

on an asymptotically large number of new cases that converge in the limit to the actual

population distribution [20:171. The requirement for estimating the true error rate is that

the sample data are a random sample.

An error is simply a misclassification: the classifier is presented a case, and it classifies

the case incorrectly. If all errors are of equal importance, a single error rate, as calculated

in Equation 1, summarizes the overall performance of a classifier. However, for many

applications, distinctions among different types of errors turn out to be important. For

example, the error committed in tentatively diagnosing someone as healthy when one has

a life-threatening illness (known as a false negative) is usually considered far more serious

than the opposite type of error of diagnosing someone as ill when one is in fact healthy

(known as a false positive).

If distinguishing among error types is important, then a confusion matrix can be used

to lay out the different errors. Figure 3 is an example of such a matrix for three classes.

The confusion matrix lists the correct classification against the predicted classification for

each class. The number of correct predictions for each class falls along the diagonal of the

matrix. All other numbers are the number of errors for a particular type of misclassification

error.

9



The apparent error rate of a classifier is the error rate of the classifier on the sample

cases that were used to design or build the classifier. Since we are trying to extrapolate

performance from a finite sample of cases, the apparent error rate is the obvious starting

point in estimating the performance of a classifier on new cases. For most types of classi-

fiers, the apparent error rate is a poor estimator of future performance. Lippmann believes

that in general, apparent error rates tend to be biased optimistically. The true error rate

is almost invariably higher than the apparent error rate. This happens when the classifier

has been overfitted (or overspecialized) to the particular characteristics of the sample data

[10].

It is useless to design a classifier that does well on the design sample data, but

does poorly on new cases. And unfortunately, using solely the apparent error to estimate

future performance can often lead to disastrous results on new data. Many a learning

system designer has been lulled into a false sense of security by the mirage of favorably

low apparent error rates [20:25].

2.3 Training vs Test vs Validation Set

Instead of using all the cases to estimate the true error rate, the cases can be parti-

tioned into three sets [7:115-117]. The first set is used to design the classifier, the second

to test the classifier, and the third to validate the classifier.

" The Training Set: This set is used to design or train the weights in the multilayer

perceptron. Foley's Rule [5] provides some guidelines as to the minimum number

of training vectors required for accurate classification as a function of the number

of input features. Foley showed empirically that the number of training samples per

class should be greater than three times the number of features.

" The Test Set: This set is used to test the accuracy of training while training is

ongoing. After each epoch, the test set acts as a barometer for determining when

the accuracy of the perceptron is at an acceptable level.

10



* The Validation Set: After the multilayer perceptron is considered optimally trained,

the validation set is presented to the classifier. It verifies the performance of the clas-

sifier since its exemplars are never seen by the classifier during its development.

2.4 Multilayer Perceptrons

This section will use a building block approach to define the algorithm used in multi-

layer back-propagation. It starts out with the idea of a linear discriminant, then graduates

to the concepts of single output perceptron, learning rate, multilayer perceptron, back-

propagation, and finally, the concept of momentum.

2.4.1 Linear Discriminants. Linear discriminants are the most common form of

classifier, and are quite simple in structure. The name linear discriminant simply indicates

that a linear combination of the evidence will be used to separate or discriminate among

the classes and to select the class assignment for a new case. For a problem involving n

features, this means geometrically that the separating surface between the samples will

be an (n - 1) dimensional hyperplane [10]. In most situations, classes can overlap and

therefore cannot be completely separated by a plane (or line in two dimensions). The

classic example of this is the logical "exclusive or (XOR)" problem.

Equation 2 gives the general form for any linear discriminant,

wIX1 + w2X2 +...-- + wXn - WO (2)

where (x 1 , X2,... , x,) are the usual list or vector of n features, and wi are constants that

must be estimated. A linear discriminant simply implements a weighted sum of the values

of the observations. Intuitively, we can think of the linear discriminant as a scoring function

that adds to or subtracts from each observation, weighing some observations more than

others and yielding a final total score. The class selected, Ci, is the one with the highest

score.

2.4.2 Single-Output Perceptron. The simplest neural net device is the single-

output perceptron. More complex neural networks can be described as combinations of

11



many single-output perceptrons in a network. The simplest perceptron is a device that

decides whether an input pattern belongs to one of two classes. The perceptron is strictly

the equivalent of a linear discriminant. Recall from Equation 2 that a linear discriniinant is

simply a weighted scoring function. The weights, w,, can assume real values, both positive

and negative, so we can rewrite Equation 2 as:

jw x, + 0 (:)

where the evidence (features or independent variables) are described as inputs, xj, and 0 is

the constant or bias. Geometrically speaking, in two dimensions, the constant 0 indicates

(the intercept) where the line crosses the y-axis [20:821.

Figure 4 illustrates the general form of a single-output perceptron, also known as an

adaline. Data feeds into the perceptron's input nodes numbered x, to x,, and the wi on

each branch of the perceptron weights the inputs. The bias, or threshold is an additional

node whose input is one. The procedure sums across the weighted inputs, adds a bias

term, and transforms the sum so that the activation z of the perceptron is:

Nz = f EWix) + 0] (4)
i=1

The single-output perceptron produces an output indicating membership in class 1

or class 0 as indicated by Equation 5. The constant 0 is referred to as the threshold or

bias, because Equation 5 can be read to indicate that the sum of the weighted products

must exceed -0.

= f1 if Ewix:+0>0f[] (5)

0 otherwise

The weights of the perceptron are constants, and the variables are the inputs. As

with other linear discriminants, the main task is to learn the weights. The perceptron is

trained on sample cases found in the training set, and uses a sequential learning procedure

to determine the weights. Sample cases are presented sequentially, and errors are corrected
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Figure 4. Single-Output Perceptron

by adjusting the weights after each erroneous output. If the perceptron output matches

the desired or true output, the weights are not adjusted.

Equation 6 describes the general form of an iterative procedure that adjusts the

weights. A sample is presented to the perceptron. Each new weight is computed by adding

a correction to the old weight. We describe the current weight as wi(t), the weight at time

t. The new weight is wi(t + 1), which will be the current weight at time t + 1. The new

weight wi(t-+ 1) is computed by adding an adjustment factor, Awi(t) to the current weight

wi(t). The threshold 0(t) is also revised.

wi(t + 1) = wi(t) + Awi(t) (6)

0(t + 1) = 0(t) + AO(t)

The task of the training procedure is to find Awi, the adjustment to any weight wi.

The training procedure for perceptrons is given in Equation 7, where d is the desired or

true answer, f[-] is the perceptron output, and xi is the perceptron input.

Awi(t) = (d-f[-])xi (7)

AO(t) = (d-f[.])

13



When a case is presented to the perceptron and the output is correct, no change is

made to any of the weights. If the output is incorrect, each weight is adjusted by adding or

subtracting the corresponding value in the input pattern. The hope is that each adjustment

will move the weights closer to the true weights.

2.4.3 The Learning Rate. While the perceptron convergence theorem, proved by

Rosenblatt, states that for linearly separable data the perceptron will eventually converge,

the speed with which the training will be completed is not known [15]. One may have to

wait a very long time for an answer. The perceptron will not necessarily get closer and

closer to the answer after each epoch. However, there are a number of modifications to

the data and the training procedures that may speed up learning and convergence. Two

of the most important are:

1. Normalize the data: Performance is often improved by normalizing the data between
0 and 1, or by using Gaussian normalization.

2. Make the learning rate adjustable by introducing a learning rate parameter, q in the
perceptron weight updating procedure. Instead of using Awi as the correction factor,
we use i7Awi, where q1 is usually chnsen between 0 and 1.

Weiss states that, while these measures can improve the rate of convergence, there is

no way of knowing in advance the value of the learning rate that will speed up convergence

the most for a specific data set. He adds that, if the learning rate is too large, training

may not converge and just oscillate between wrong answers. Or, it may converge to a local

minimum [20:86-90]. Equation 7, when modified to incorporate a learning rat'- term, 77,

becomes Equation 8. As we shall see later in this chapter, Equation 8 will be used in the

training procedures for more complicated neural nets.

Awi(t) = 77(d- f[.])x, (8)

AO(t) = 7j(d- f[-])

The perceptron cannot train correctly when the classes are not linearly separable. In

addition, very few real-world applications are truly linearly separable. Hence, relying on

the predictive potential of linear solutions has troubled many researchers because it is easy

to come up with counter-examples of simple data sets that cannot be separated by lines.

14



The most commonly cited example comes from applying the "exclusive or" XOR, logical

operator on two binary features. A very similar learning system that fits a line, but is less

dependent on linear separability for good results, is discussed in the next section.

2.4.4 Least Mean Square Learning System. The least mean square learning

system, known simply as LMS, is another system that finds linear solutions. The only

functional difference is in the way the output, f[.1, is computed. The LMS system uses

the actual net output without any further mapping into 0 or 1. For a given input, the

output of the LMS device is simply the product of the inputs and weights summed with

the threshold.

f[.] = wjx, + 0 (9)

For the LMS learning system, the correct answers are still expressed as 0 or 1, but the

output is now a real number.

The goal of the LMS training procedure is to minimize the average squared distance

from the true answer to the net output. This is equivalent to finding a set of weights and

a threshold that minimize:

-(d, fj[.]) 2  (10)

Where j ranges over the number of samples in the training set.

It should be noted that the LMS training procedure does not directly reduce the

classification error rate. Rather, it reduces the distance between the output and the true

answer. Weiss states that reducing this distance is usually strongly related to reducing

classification error rates. However, it is quite possible that the classification error rate can

be relatively high even with a relatively small error distance. The error distances for the

correct answers may be quite small, while the erroneous answers may barely be on the

other side of the boundary [20:89].

2.4.5 Multilayer Perceptrons. The single-output perceptron and LMS learning

systems of the previous sections can be naturally extended to more complicated neural

networks. For example, the outputs of several perceptrons could be used as input to
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other perceptrons. These devices could then be chained together ill many different ways.

Figure 5 illustrates the general structure of a multilayer network structure.

The perceptron can be described as a single-layer neural network, where a layer

represents a set of output devices. The network of Figure 5 is a two-layer network. Input

nodes are not counted as a layer. The inputs are connected to the first layer of outputs.

These outputs serve as inputs to the second layer of outputs. This is a fully connected

network; since every node serves as input to nodes in the next layer above.

The multilayer neural network has multiple outputs and multiple layers of outputs.

The final layer of outputs contains the decision results, called output units. The output

units of the intermediate layers are referred to as hidden units because they are not units

that are naturally defined by the application. Like the perceptron, each output unit has a

threshold or bias associated with it.

The multilayer network of Figure 5 can be extended to unlimited numbers of ad-

ditional layers. Potentially, this makes the multilayer neural network a very powerful

classifier. Cybenko has shown that, a two-layer network with one layer of hidden units,

can implement most decision surfaces, and can closely approximate any decision surface

[3]. In addition, this two-layer structure allows for the formation of nonlinear decision

regions, including disjoint regions. Therefore, this two-layer network structure is used in

the FORTRAN program developed in this research.

2.4.6 Back-Propagation Procedure. The multilayer neural net can be trained by

using the back-propagation training procedure. Before we discuss this procedure, a slight

variation in the computation of the output f[.], must be considered.

In the previously described perceptron, once the weighted sum was computed, the

activation of the output unit was determined by threshold logic. The activation f[.], was

0 or 1, depending on whether a threshold was exceeded. This threshold logic activation

function creates a nonlinearity, a desirable characteristic. However, it does not provide the

other desirable characteristic which we seek; that of a continuously differentiable function

[11]. In order to obtain these two characteristics, an alternative activation function, f[.],

is used; it is known as the sigmoidal or logistic function. For any real-valued numbers,
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the output of the sigmoidal function is between 0 and 1. This function and its graph are

shown in Equation 11 and Figure 7.

1
f(a) + (11)

-3 -2 -1 0 1 2 3
S

Figure 7. Nonlinear Sigmoid Function

Equations 12 and 13 show how each training vector is propagated up through the

network to produce network outpuLs zM1 and zk. Equations 14 and 15 show how the

network outputs are then back-propagated down through the network, producing error

derivatives 61 and bJ. These error derivatives are then used to adjust the weights. After

the weights have been adjusted, the next training vector is presented and the process is

repeated. These equations are the heart of the back-propagation training procedure.

In Equation 12 the output or activation, z, , of a hidden unit, m, is computed by

applying a sigmoidal function to the net input, Nm, of unit m. The net input of hidden

unit m is the sum of the bias of hidden unit m, 01,,,, and the weighted sum of the input

features, xj, connected to hidden unit m. The weight, w!, connects input node j to hidden

node m. Refer to Figure 6 (Detail of Hidden Layer Node).

n

Nm = m X1 (11
j=1 (12)

Zm . l+e N-
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In Equation 13 the output or activation z4, of an output unit, k, is computed by applying

a sigmoidal function to the net input, Nk, of output unit k. The net input of output unit

k is the sum of the bias of unit k, 6k, and the weighted sum of the hidden layer outputs,

zi, connected to output unit k. The weight, wk connects hidden node j to output node k.

Nk E-- i i
N--, W(13)

Z2 1

Equation 14 begins the error back-propagation by calculating the error derivative,

62, associated with output unit k:

b = z2(1 - Z)(dk- k) (14)

where z2 is the output of output unit k, and dk is the desired or true output of output unit

k. In Equation 15 the error derivative of hidden unit j, bJ1 is calculated by:

--z •2k wjk (15)
k

where z• is the output of hidden unit j, 6b is the error derivative calculated in Equation 14,

and w?, is the weight connecting hidden unit j to output unit k.

We now have all the information required to calculate the new weights at time (t+ 1)

from the current weights at time t. Using Equations 6 and 8:

wim(t + 1) = WJm(t)+ 6 J'Xj (16)

OW (t+1) = O"(0 +01

wjh(t + 1) = w2k(t) + kZ (17)
o0(t + 1) = 02(t) + 76

where 17 is the learning rate, xj is the input from input node j, and zJ is the output from

hidden node j. With the weights adjusted, we are ready to present the next training vector

which starts the propagation process all over again.
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2.4.7 Momentum. Empirical evidence supports the notion that the use of a term

called momentum in the back-propagation revision procedure can be helpful in speeding

convergence and avoiding local minima. Momentum towards convergence is maintained

by making nonradical revisions to the weight change direction. Weights are revised by

combining the indicated new weight revision, Equations 16 and 17 with part of the previous

weight revision. Mathematically, the weights are revised as indicated in Equations 18

and 19, where a is a momentum term that indicates the fraction of the previous weight

adjustment that is used for the current revision.

WU,(t + V = wU,(t) + rl77,xj + a[wjm,(t) - wlm(t - 1)] (18)

O9i(t + 1) = 0m,,(t) + r77J + a[O8M(t) - OM1(t - 1)]

w.k(t + 1) = wJ.k(t) + 7AIZJý + a[w,.k(t) - WJ.k(t - 1)](19)
02(t + 1) = 02(t) + r17 + a[02(t)-_ O(t - 1)]

According to Weiss, the hope is that the momentum term will allow a larger learning

rate and that this will speed convergence and avoid local minima. On the other hand,

a learning rate of 1 with no momentum will be much faster when no problem with local

minima or non-convergence is encountered [20:101].

2.5 The Saliency Metric

2.5.1 Ruck's Saliency. Any classifier is at the mercy of the sample data and

the quality of the features. Even when no errors are made in recording the data, the

predictive capabilities of some features can be quite weak. It is quite possible that revising

or adding features can lead to greatly improved performance in the classifier. With this in

mind, we turn to Ruck's saliency metric. Ruck describes a saliency metric which measures

feature i's effect on a neural network's output [16:32-38]. This metric attempts to capture

the total of the partial derivatives of the network's outputs with respect to the entire

M-dimensional feature space RM. Ruck's saliency metric for feature i is built from the

exact partial derivatives of network outputs, z2, with respect to feature inputs xi using the

trained network.
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The derivative of the outputs with respect to the input can be written as a function

of only the weights and activations as follows:

2k = 2( _12 EW

Ox k - - W (20)

where, z4 is the output of node k in the output layer, z,'n is the output of node m in the

hidden layer, Wjm is the weight connecting node j in the input layer to node m in the

hidden layer, and W~,k is the weight connecting node m in the hidden layer to node k in

the output layer. The derivative equation above is applicable for perceptrons with a single

hidden layer. As the number of hidden layers increases, the calculation of this saliency

metric becomes more complex.

Ideally, the input space would be systematically sampled over its entire range of

values. If R points were used for each input, the total number of derivatives would be

on the order of RM, where M is the number of feature inputs. For other than very

small problems, the number of computations in RM is intractable. In fact, this is an NP-

complete problem [16:34-37]. Ruck proposes a sampling method which is computationally

tractable. For every training vector, each feature input is sampled over its range while

the other feature inputs are held constant at their actual training vector values. For P

training vectors, the number of derivative evaluations is PMRK, where M is the number

of features, R is the number of samples for each feature input of each training vector, and

K is the number of output classes. For the saliency computation of each feature, the set

of R "pseudo" data points remains the same. If we define d. as the vector of R uniformly

spaced pseudo points covering the range of the mth input feature, then the rth component,

d,, of d.. can be defined as:

d, = minxm + (r - 1)maxxm - minxm 1,2,...,R (21)R - i ,2..,a(1

where minxm, is the minimum value of x.. taken over all P training vectors, and max xm

is the maximum value of xm taken over all P training vectors.
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The Ruck saliency metric, Ai, for feature i when a sigmoid nonlinearity is used is

defined as:
P M R K O2

X P (22)p1l iai1 r=I k-I (•X-'-i X f

where P is the number of training vectors i; M is the number of features; R is the number

of uniformly spaced points covering the range of each input feature found in the training

set; K is the number of output classes; the vector i(r) is the vector '4p with its mth

component replaced by, dr, the rth component of din; and (.-(r),i) indicates that the

derivative is evaluated with the feature vector j(r) and the final estimates of the trained

network weight parameters W. Also, the absolute value of the derivative is used, so positive

and negative derivative changes do not cancel out.

Equation 22 has been modified from Ruck's original presentation to reflect that for

each vector there are PMRK derivative evaluations as Ruck intended, rather than just

PRK derivative evaluations as denoted in Ruck's notation [16:37].

2.5.2 Tarr's Saliency. A simpler method of determining the relative significance

of the input features once the network has been trained has been suggested by Tarr. He

states the following:

When a weight is updated, the network moves the weight a small amount
based on the error. Given that a particular feature is relevant to the problem
solution, the weight would be moved in a constant direction until a solution
with no error is reached. If the error term is consistent, the direction of the
movement of the weight vector, which forms a hyper-plane decision boundary,
will also be consistent. ... If the error term is not consistent, which can be the
case on a single feature out of the input vector, the movement of the weight
attached to the node will also be inconsistent. In a similar fashion, if the feature
did not contribute to a solution, the weight updates would be random. In other
words, useful features would cause the weights to grow, while weights attached
to non-salient features would simply fluctuate around zero. [19:44]

Therefore, the following alternate saliency metric is proposed:

rw= (W 2  (23)

Which is simply the sum of the squared weights between input node i and hidden node m.
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2.6 High-Order Inputs and Correlation

Networks that have second, third or greater order terms for inputs are referred to as

high-order networks. If two inputs x, and x2 represent two separate pieces of information,

then x2 or xIx 2 may represent pieces of information more important to discrimination than

either one separately. Giles suggests that an examination of correlation matrices which

relate the high-order input terms with the outputs of a trained network would be useful.

The entries in the correlation matrix that have the largest absolute value correspond to the

high-order input terms that should be considered for inclusion in the network [6:4977-4978].

We will use the following equations to calculate the second-order correlation matrix of the

product of two inputs with the output. These equations and notation were developed by

Belue and Bauer [2:9].

First, define the sample covariance C(i, (j, k)), between the ith output node of the

network and the second-order product of the jth and kth input nodes as:

N

C(i, (j, k)) = F[z2(s) - '(i)][y8(j, k) - •(j, k)] (24)

where
yl(j,k) = xo(j)x'(k)

N
E_ x"(j)x"( k)

%(j,k) = , (25)
N

T( i ) = 3-- I

and x8(j) is the value of the jth feature in exemplar s, x-(k) is the value of the kth feature

in exemplar s, zr(s) is the output of output node i for exemplar s and N is the number of

exemplars in the training set.

Next, define an element of the second-order correlation matrix R(i, (j, k)), as the

correlation between the ith output node of the network and the second-order product of

the jth and kth input nodes where:
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R(i,(j,k)) = C Uij k))

1 [zr(s) - T(i)I2f [z, - (j, k)]2  (26)

The entries in the correlation matrix that are greatest in absolute value correspond to

second-order terms that are highly correlated with output i.

2.7 The Shell-Mezgar Sort

Empirical evidence has shown that a reshuffling of training vectors at the beginning of

each epoch will yield superior results [20:99-100]. With some networks requiring thousands

of epochs before they are trained, it is wise to incorporate an efficient reshwlif*ing algorithm

into the software. By generating a random number for each training vector and then

sorting on these random numbers, we can reshuffle the training vectors. Therefore, the

efficient reshuffling algorithm that we seek transforms into an efficient sort algorithm.

According to Press, et.al., for the basic task of sorting N elements, the best sort

algorithms require on the order of several times N1og 2N operations. The algorithm inventor

tries to reduce the constant in front of this estimate to as small a value as possible [13:226-

229]. Knuth has shown that for "randomly" ordered data, the operations count on the

Shell-Mezgar sort goes approximately as N 12 , for N < 60000 [9]. Since our sort index

consists of random numbers, and the number of training vectors will be < 60000, the

Shell-Mezgar sort is an ideal candidate. In chapter 4 there is a table which compares

Nlog2N and N1. 27 for various values of N. A FORTRAN version of this sorting routine

may be found in Press, et.al. [13:226-229].
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IHL Methodology

The overall objective of this thesis was to develop software to assist the researcher

in building an appropriate back-propagation neural network. The software was to enable

the researcher to quickly define a neural net structure, run the neural network, interrupt

training at any point to analyze the status of the current network, re-start training at the

interrupted point if desired, and analyze the final network. What follows is a synopsis of

each of the subroutines found in the FORTRAN code as well as the MATLAB interface.

By following the program flow we can define the methodology used. Figure 8 shows the

overall program flow.

3.1 Defining Neural Network Parameters

The subroutine NETIN reads all network parameters from a user designated param-

eter file. These parameters name the raw data file, determine a stopping criteria, layout

the neural network structure, and define the desired 2D and 3D graphs. An explanation

of the required parameters follows. The FORTRAN program will prompt the user for the

name of this parameter file. Appendix A gives an example of such a parameter file and

defines the allowable values.

"* Data File Name This parameter defines the name of the data set where all the raw

data resides. Training, test, and validation sets will be pulled from this data set in

a random order.

"* Stopping Criteria Determines when training of the neural network will end. The

user can specify number of epochs or average absolute error as the stopping criteria.

If number of epochs is specified, the program will stop and present the network

results as they existed at the end of the specified epoch. If average absolute error is

specified, the program will stop when the average absolute error (for the training or

test set) at the end of an epoch is less than or equal to the specified error rate. It

should be noted that this parameter is over-ridden if the user terminates training of

the network interactively. See sub-section 3.4.3.
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"* Number of Training Vectors (NI) Defines the number of vectors to be put into

the training set.

"* Number of Test Vectors (N2) Defines the number of vectors to be put into the

test set.

"* Number of Validation Vectors (N3) Defines the number of vectors to be put into

the validation set.

"* Number of Input Nodes This parameter is equal to the number of features or

independent variables found in each vector.

"* Number of Middle Nodes The user must determine the number of middle nodes

required in the network structure. This may have to be determined through experi-

mentation.

"* Number of Output Nodes This parameter is equal to the number of output classes

found in each vector.

"* Type of Learning Rate (LTYPE) Defines the type of learning rate that will be used

in the back-propagation algorithm. There are six types of learning rates: constant,

linear, log, log-linear, loq-square root, and log-square root linear. See Appendix A

for a detailed description of the learning rates supported by this software.

"* Learning Rate Gives the constant learning rate value, if (LTYPE=1) in the pa-

rameter above. If (LTYPE $ 1), this parameter is ignored.

"* Momentum Rate Defines the constant momentum rate that will be used in the

back-propagation algorithm. If no momentum rate is desired, set momentum rate

equal to zero.

"* Range of Weight Initialization Before beginning the back-propagation algorithm,

the program must initialize all weights between the nodes to random numbers. The

random number generator used in the FORTRAN program generates Uniform(O, 1)

random deviates U. These random deviates are then run through a transformation

function of the form:

a + (b - a)U (27)
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where a is the desired lower limit of the range initialization, and b is the desired

upper limit. In effect, we are generating random deviates with a Uniform(a,b)

distribution.

"* Random Number Seed Defines the seed for the random number generator used

in initializing weights and determining the sort order of the training set.

"* Type of Normalization of Data Determines if data is to be normalized. User may

normalize data between (0, 1), standardize the data, or use the data in its original

form.

"* Number of Divisions for Pseudo-sampling This parameter is used when calcu-

lating Ruck's saliency. This is the value of R as described in Equation 22.

"* Graphics Parameters Define 2D and 3D graphs which will be created by MAT-

LAB. See Appendix A for details.

3.2 Defining Train, Test and Validation Sets

The subroutine INPUT reads the raw data from a single file. Each input line is an

exemplar or case. This case vector consists of feature values and the corresponding correct

classification. For example, a problem with two input features x, and x2, and four output

classes c1 ,c 2 , c 3 and c4 , would have the following input vector: (xI,x 2,c 1 ,c 2,c 3 ,c 4 ). If a

particular case had a correct classification of class 3 the vector would be: (x 1, x 2, 0, 0, 1,0)

A random number is generated and attached to each vector. We then perform a Shell-

Mezgar sort on the vectors using these random numbers as the sort index. We then place

the first N1 vectors in the training set, the next N2 vectors in the test set, and finally the

last N3 vectors in the validation set, wher N1, N2 and N3 are defined in the parameter

file described above. This procedure randomly creates the training, test and validation

sets. To create different sets, simply change the random number seed in the parameter file.

These three sets of vectors will remain fixed throughout the entire computer run. However,

the vectors within the training set are reshuffled after each epoch.

28



3.3 Normalization of Data

The subroutines NORMAL1 and NORMAL2 normalize the data now residing in the

train, test and validation sets. The user has the option, as specified in the parameter file,

of not normalizing the data at all, normalizing between 0 and 1, or performing Gaussian

normalization. Subroutine NORMAL1 normalizes each of the feature vectors to values

between 0 and 1, based on the range of the training set. The test set and validation set

are also normalized based on the range of the training set. By basing normalization on

the training set only, we keep everything on the same scale.

Subroutine NORMAL2 statistically normalizes each of the feature vectors to values

based on the mean and standard error of the training set. Let xi be the vector value of

the ith feature, ii be the mean of feature i over the training set and si be the standard

deviation. Then for every vector in the training, test and validation set, the normalized

ith feature is:

X1 = (28)Ssi

This procedure is known as standardization. Ruck refers to it as Gaussian Normalization

[16:15-16].

3.4 Artificial Neural Network (ANN)

Subroutine ANN is the heart of this FORTRAN based neural network system. It

is where the back-propagation algorithm is performed. Figure 9 gives a detailed flow

of the subroutine ANN. This subroutine assumes the following network structure and

characteristics:

"* Fully connected feed-forward perceptrons

"* Back-propagation training as defined in Equations 18 and 19.

"* Single hidden layer

"* Sigmoid non-linear transformation

The artificial neural net subroutine begins by initializing the weights connecting both

the input layer and hidden layer and the hidden layer and output layer. Normally, these
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weights are random numbers between -.5 and +.5. This range of weight initialization is

controlled by the user from the input parameter file. After the random initialization is

complete, the program begins epoch number one. Each presentation of the set of training

vectors and test vectors is defined as an "epoch".

3.4.1 Calculations By Epoch. At the beginning of each epoch a learning rate

is calculated. Except for the constant learning rate, all learning rates are a function of

the specific epoch number. As the epoch number increases, all learning rate functions are

designed to decrease. Recall that the selection of a learning rate is of critical importance

in finding the true global minimum of the absolute error. Back-propagation training with

too small a learning rate is agonizingly slow, but too large a learning rate may produce

oscillations between relatively poor solutions. See Appendix A, for specific learning rate

functions.

The next step in the ANN subroutine is the reordering of the feature vectors in the

training set into a random list. Random ordering prevents the network from learning the

order of the data and may speed the training time. This random reordering is accomplished

by attaching a random number to each training vector and then using the random number

as a sort key. A Shell-Mezgar sort is then applied to the set of training vectors. As

mentioned in Section 2.7, this sort needs to be very efficient since it is performed at the

beginning of each epoch, which may number in the thousands.

With the training set randomly sorted, we are ready to begin training of the weights

in the network. For each exemplar in the training set the algorithm performs the following

three steps. First an activation of the hidden layer and output layers is calculated using

the sigmoid non-linear transformation. Second, the activations of the output layer are

compared to the desired (known) output and placed into the training set confusion ma-

trix. Finally, the back-propagation training procedure is performed updating the network

weights. After all the training vectors have been presented to the network, the weights

are held constant and the test vectors are presented to the perceptron. Once again, the

activations of the output layer are compared to the desired (known) output, but this time

placed into the test set confusion matrix. After all training and test vectors have been
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presented to the network, an average absolute error and classification error are calculated

for the training and test sets. These two errors appear on the 2D graphs produced by

MATLAB. They are used as an indicator of the performance of the network. By collecting

the absolute error and classification error for the two sets at the end of each epoch, an

error curve can be constructed and a minimum error observed somewhere along this curve.

In addition, the weights specified by the user to be monitored are saved at the end of each

epoch. By graphing these weights, we can see how they have changed over the entire run.

Some will be trained and remain relatively constant, while others will still be increasing

or decreasing.

3.4.2 User Directed Interrupt. The amount of time it takes to train a neural

network can range from trivial to infinite. Therefore, it is desirable to design a system

which allows the user to "monitor" the training of the network. In order to monitor

training, the following screen output was designed for the user.

MONITOR SELECTED WEIGHTS

INPUT NODE TO HIDDEN NODE --- > IN-HN-1
HIDDEN NODE TO OUTPUT NODE --- > HN-ON-2

EPOCHS TRAINING TEST SET
COMPLETED SET ERROR ERROR 1- 2-1 2- 4-1 3- 2-2

38 0.0889 0.0826 -6.8170 3.3679 -2.8529

At the end of each epoch, these figures are updated. Epochs Completed represents

the number of epochs which have been completed since training began. The Training and

Test Set Errors represent the average absolute error of all exemplars found in the respective

sets. The average absolute error is calculated with the following formula

P K

j=Ik=1 (29)
PK

where P is the number of exemplars in the respective set, K is the number of output
nodes, z4 is the network output of output unit k, and dik is the desired or true output of
output unit k for the jth exemplar. In this example the user has decided to monitor three
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different weights. For example, the second monitored weight is designated "2-4-1". The
code "2-4-1" indicates the user is monitoring the weight connecting input node 2 to hidden
node 4 of layer 1. The third monitored weight is designated "3-2-2". The code "3-2-2"
indicates the user is monitoring the weight connecting hidden node 3 to output node 2 of
layer 2. To help the researcher keep these indices straight, the heading provides a simple
key:

INPUT NODE TO HIDDEN NODE --- > IN-HN-1
HIDDEN NODE TO OUTPUT NODE --- > HN-ON-2

where IN represents the input node, HN the hidden node, and ON the output node.

The last digit represents the layer.

As the user watches the epochs "tick" by (or comes back to the terminal after lunch

or the following day for a "large" neural net), they can interrupt the training procedure at

any time. See Appendix A for details. At the end of each epoch subroutine ANN checks

to see if the user has interrupted training of the network. If it detects an interrupt the

FORTRAN program pauses, creates an input file for MATLAB called "plotdatl.m", and

calls MATLAB. The MATLAB program automatically produces four separate graphs of

error curves. See Figures 10, 11, 12, and 13. Figure 10 shows the average absolute error of

the training and test sets for each epoch, while Figure 11 displays the same information for

the last 100 epochs only. Figure 12 shows the classification errors of the training and test

sets for each epoch, while Figure 13 displays the same information for the last 100 epochs

only. In addition to the four graphs mentioned above, the user has designated specific

weights to monitor in the parameter file. A graph is produced for each weight specified.

See Figures 14, and 15.

The goal is to cease training at the point corresponding to a minimum error on the test

set. The choice of this point may be difficult since it is necessary to consider both average

absolute error and classification error. After analyzing the graphs the researcher must

determine if additional training of the network is required, or if the network is sufficiently

trained. After quitting the MATLAB program, the FORTRAN program prompts the

user for their decision. If its determined that additional network training is required, the

program will begin at the point where it was interrupted. No information from prior

training is lost. The user may interrupt the training process as often as necessary. If its

determined that the network is sufficiently trained, the program saves all information as
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of the last epoch completed. This information will be used to produce the final output

products.

3.4.3 Termination of Network Training. The primary function of subroutine

ANN is to train the neural network. Since training can go on indefinitely, the subroutine

must know when to terminate training. There are four ways to terminate network training.

1. User Directed Termination. After interrupting the program as described above, the

researcher analyzes the graphs and decides the average absolute error or the classifi-

cation error is low enough. The user directs training to stop.

2. The number of epochs as specified in the parameter file is reached. The user may

wish to stop training after, say, 3000 epochs.

3. The average absolute error of the training set or test set is less than or equal to the

tolerance specified in the parameter file. The user may wish to stop training after

the average absolute error goes below, say, 0.05.

4. The maximum number of allowable epochs is reached. This maximum number is set

when the FORTRAN program is compiled. It is currently set at 10,000 epochs. If

more epochs are required, the researcher must change the parameter in the FOR-

TRAN program and recompile. See Appendix A.

Once network training has been terminated, the weights from the last completed epoch are

written to the file, "weights.dat". These are considered the final network trained weights.

In addition, the file "plotdatl.m' is recreated for input into MATLAB. All subsequent

subroutines will use these final trained weights.

3.5 Saliency Calculations

Now that we have a final set of trained weights, we can begin the saliency calculations.

Subroutines RUCKSAL, RUCKSAL2, and TSAL all calculate a saliency metric using

different algorithms.

Subroutine RUCKSAL computes Ruck's saliency for each of the features based on the

weights of the final trained network. Recall that saliency is a measure of the significance
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that a feature has on the output of the multilayer perceptron. This subroutine uses pseudo-

sampling and calculates the saliency metric using Equations 20 and 22.

Subroutine RUCKSAL2 also computes Ruck's saliency for each of the features based

on the weights of the final trained network. However, no pseudo-sampling is involved. The

computations in RUCKSAL2 reflect a slight modification to Equation 22. By eliminating

the pseudo-sampling Equation 22 becomes:

P M K Z
A, =_ ax P )-• • IVx~)l (30)

p=1 m=1 k=1

Subroutine TSAL calculates Tarr's saliency of each of the features based on the

weights of the final trained network. Tarr's saliency for each feature is a function of the

weights from a particular input node to all middle nodes. This subroutine calculates four

types of Tarr saliencies. On all computer outputs they are referred to as TARRI, TARR2,

TARR3, and TARR4 where:

1. TARR1 represents the sum of the squared weights from a particular input node to

all middle nodes. This is Tarr's original saliency as defined in Equation 23.

2. TARR2 will signify the square root of the sum of the squared weights from a partic-

ular input node to all middle nodes. This can be considered the Euclidian Norm of

a feature's weights.

3. TARR3 will signify the sum of the absolute value of the weights from a particular

input node to all middle nodes. This is sometimes referred to as the taxi-cab norm

of a feature's weights.

4. TARR4 will represent the largest weight in absolute value from a particular input

node to all middle nodes. This can be considered the Infinity Norm of a feature's

weights.

3.6 Validation Subroutine

The subroutine VALIDT presents the validation set defined in the parameter file

to the final trained network. Recall that the validation set is presented only after the
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multilayer perceptron is considered optimally trained. It verifies the performance of the

trained network since its exemplars are never seen by the network during its development.

The subroutine runs each exemplar through the network and creates a confusion matrix

for the validation set.

3.7 Correlation Subroutine

The subroutine CORRELATE calculates second-order correlation matrices of the

product of two inputs with the output. A matrix is produced for each output. The

resulting matrices are helpful in determining which second-order terms should be included

in the input vectors. The correlation matrices are calculated using Equations 24 and 26.

These matrices are printed in the summary report.

3.8 Activation and Saliency Grids

Subroutine GRID calculates the data to be used in the MATLAB 3-D activation

grids. In the parameter file, the user defines which variables are to be plotted on the x,

y, and z axes. The variables assigned to the x and y axes are features, while the variable

assigned to the z axes is the activation of a particular output class.

The program creates a 35x35 grid, where the x axis covers the range of the feature

selected for the x axis using 35 equal increments, and the y axis covers the range of the

feature selected for the y axis using 35 equal increments. If a finer or coarser mesh than

35x35 is desired, the user will have to change the parameter GRIDDIM in the FORTRAN

program and recompile. These 1225 grid points are then run through the final trained

network and the activation of the designated output class is recorded for graphing on the

z axis. We now have 1225 3-tuples to pass to MATLAB for 3-D processing.

When we create the 1225 grid points, we are, in effect, creating a new set of 1225

exemplars with values for the two features being graphed, only. The question arises: what

values should be used in these new exemplars for the features that are not being graphed?

Since we are running these 1225 exemplars through the network, each exemplar must have

values for the features not being graphed. If the network has only two features, there
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is no problem. However, if there is more than two features, then choices must be made

by the user. The program allows the user to choose a constant value for all features not

graphed, or to choose the mean value of that feature, as calculated over the training set.

See Appendix A.

Subroutine GRIDSAL calculates the data to be used in the MATLAB 3-D saliency

grids. In the parameter file, the user defines which variables are to be plotted on the x,

y, and z axes. The variables assigned to the x and y axes are features, while the variable

assigned to the z axes is the saliency, A1, of the feature on the x or y axis.

Once again, the program creates a 35x35 grid, where the x axis covers the range of

the feature selected for the x axis using 35 equal increments, and the y axis covers the

range of the feature selected for the y axis using 35 equal increments. These 1225 grid

points are then run through the final trained network and the saliency of the designated

feature is recorded for graphing on the z axis. Equations 20 and 30 are used to calculate

the saliency.

As before, when we create the 1225 grid points, we are creating a new set of 1225

exemplars with values for the two features being graphed, only. Once again, the user

chooses a constant value for all features not graphed, or the mean value of that feature, as

calculated over the training set. See Appendix A.

3.9 Summary Reports

Subroutine OUT produces a summary report of the final trained network. This

report summarizes the following:

"* Network parameters used to build and train the network.

"* Confusion matrices for training, test, and validation sets

"* Summary of Ruck's saliency metric. Side by side comparison of "with" and "without"

pseudo-sampling for each feature.

"* Summary of Tarr's saliency metric. All four variants of Tarr's saliency metric are

shown for each feature.
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e a second-order correlation matrix for each output.

An example of this report can be found in Appendix B.
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IV. Verification and Validation

In her tlhesis, Belue created a flowchart which depicted a procedure the researcher can

use to iterate through the myriad of multilayer perceptron parameter combinations and

arrive at an optimal network structure [1:48]. Figure 16 is a reproduction of this flowchart.

The primary parameters are number of epochs, number of middle nodes, learning rate, and

momentum rate. Although this is not an optimal testing strategy (the interactions of the

parameters are confounded), we will use this strategy to verify and validate our computer

model. The alternative is to train the multilayer perceptron for all possible combinations

of number of middle nodes, '•arning rates, and momentum rates. Time constraints do not

make this approach practical. Two classical classification problems will help verify and

val;.'q.te the model. They are the XOR problem and the four class MESH problem. It

be emphasized that all graphs and tables found in this chapter are automatically

produced by this program. That's what makes this system a very powerful analysis tool.

Before we examine these two problems, we need to define the network structure being

used at each point in the flowchart. The network structure is defined by the following

parameter vector:

(nl, n2, n3 , 77, a) (31)

where nj is the number of input nodes, n2 the number of middle nodes, n 3 the number of

output nodes, q7 the learning rate, and a the momentum rate.

4.1 XOR Problem

The XOR problem is often used to test classifiers to determine their ability to classify

non-lineaily separable decision regions. Figure 17 illustrates the problem. We see that the

regions 91 and 02 cannot be separated by a single line. In addition to the two significant

variables x, and X2, we will add two noise variables, X3 and £4. These noise variables will

be used to see if the saliency metrics can detect them, and to see what a 3-D graph of

noise saliency looks like.

The rest of this section will show the researcher how to use this system to solve the

XOR problem. Real world problems can be analyzed in an analogous manner.
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Figure 17. The XOR Problem

4.1.1 XOR Network Structure (4,2,2,1,0). Our first task is to determine a stan-

dard set of parameters. For purposes of illustration, we are going to assume that this is

a brand new problem and that no standard parameters exist. Therefore, our initial pa-

rameter vector will consist of best guesses. The initial parameter vector is: (4,2,2, 1,0).

Figures 18, 20, and 19 show selected output produced by the FORTRAN and MATLAB

programs. Keep in mind that all these outputs were produced automatically. All the user

had to do was create the parameter file which defined the network structure, the stopping

criteria, and the 3-D graphs desired. See Appendix A.

Figure 18 shows a "History of Average Absolute Error" and a "History of Classifica-

tion Error". The researcher has made a decision that the entire training cycle is evident

after 300 epochs and stops training the network at this point. The average absolute error

has leveled off at around 0.32 for the training set, and 0.30 for the test set. Classification

error has leveled off at 30% for both sets. If the researcher wanted to continue trainiixg

beyond the 300 epochs, they would simpjy instruct the program to continue training. The

program would continue training starting at epoch 301. All information learned from the
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first 300 epochs is retained. The researcher does not have to go back to square (epoch) one

and start over. They can interrupt the training process as often as they like to determine

if the training cycle is complete.

Figure 19 shows the average absolute error, classification error, and confusion matri-

ces for the training and test sets at epoch 300. The training set had an average absolute

error of 0.32 and a classification error of 30.8%, while the test set had an average absolute

error of 0.30 and a classification error of 26.7%. We see that this network structure clas-

sifies the 01 class (Class 1) correctly 240 out of 336 times in the training set, while the 02

class (Class 2) is correctly classified 210 out of 314 times. The test set confusion matrix

can be read in a similar manner. The researcher's objective is to drive up the numbers on

the diagonal elements and reduce the off diagonal elements for both sets.

Figure 20 shows a 3-dimensional view of the network at epoch 300. A "perfectly"

trained network would show the activations of Class 1 to be equal to one in the first and

third quadrants, while the activations of Class 1 in the second and fourth quadrants would

be equal to zero. In a similar fashion, the "perfectly" trained network would show the

activations of Class 2 to be equal to one in the second and fourth quadrants, while the

activations of Class 2 in the first and third quadrants would be equal to zero. Figure 20

shows that this network structure is beginning to learn how to classify exemplars in the

first and fourth quadrants, but is having difficulty in classifying exemplars found in the

second and third quadrants. Following the flowchart of Figure 16, our next step is to

increase the number of middle nodes.

4.1.2 XOR Network Structure (4,4,2,1,0). In order to change the network struc-

ture from 2 middle nodes to 4 middle nodes, the researcher simply changes the middle

node parameter in his parameter file. Figures 21, 23, and 22 show the output produced by

the (4,4,2,1,0) network structure.

Figures 21 and 22 show that after 300 epochs the average absolute error is 0.10 for the

training set and 0.13 for the test set. In addition, the classification error has been reduced

to 6.8% for the training set and 10.2% for the test set. This is a substantial improvement

over the (4,2,2,1,0) network structure.
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Figure 23 shows the 3-dimensional view of the network at epoch 300 for the (4,4,2,1,0)

network structure. We see that this network structure is beginning to learn how to classify

exemplars in all four quadrants. Recall that the (4,2,2,1,0) network structure was having

difficulty classifying exemplars in the second and third quadrants. This new network

structure classifies the 01 class correctly 316 out of 336 times in the training set, for a

94.05% accuracy, while the 02 class is correctly classified 290 out of 314 times, a 92.36%

accuracy rating. The test set shows 92.52% and 87.29% accuracy for the two respective

classes. By simply changing the number of middle nodes from 2 to 4 in the network

structure, we have greatly improved its performance. Proceeding on through the flowchart

of Figure 16, we analyze our way to the following "optimal" structure.

4.1.3 XOR Network Structure (4,10,2, 0.2, 0). There are many subjective deci-

sions which the researcher must make to arrive at the "optimal" network structure. After

trying numerous other combinations of middle nodes, learning rates, and momentum rates,

the (4,10,2, 0.2, 0) network structure was found to be "optimal". The researcher must de-

cide when the error rates are low enough. How many additional epochs is the user willing

to compute in order to squeeze out an additional percentage point. Recall that, if training

goes on for too many epochs, over-fitting of the training data may occur. The error curve

for the test set may begin to rise.

The top halves of Figures 24 and 25 show that the average absolute error and classi-

fication error are quickly driven toward zero. A desirable outcome. In addition, Figure 30

shows that after 400 epochs the average absolute error is 0.04 for the training set and 0.04

for the test set. The classification error has been reduced to 0.6% for the training set and

0.4% for the test set. These error rates are judged to be low enough for this illustration.

This will become the optimal network structure. This network is now ready to predict the

classification of new exemplars.

The bottom halves of Figures 24 and 25 show the last 100 epochs of their respective

top halves. In effect, it allows the researcher to zoom in on the activities of the last 100

epochs. By zooming in, the bottom half of Figure 24 reveals that the average absolute
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error of both sets is still decreasing. In addition, the bottom half of Figure 24 shows that

the classification error for the test set was actually 0 at epoch 359.

Figure 27 shows the 3-dimensional view of the trained network at epoch 400 for

the (4,10,2, 0.2 ,0) network structure. We see that fine tuning the network parameters

begins to "square off" the cubical shapes indicating more precision at the class borders.

In addition, the saddle point begins to rise toward an activation of one.

Figure 26 shows an example of two different weights being monitored while training

is on-going. The researcher defines which weights to monitor in the parameter file. See

Appendix A. The top graph monitors the weight from "Input Node 1 to Middle Node 5".

Input node 1 represents the variable xi, a significant variable (i.e., not a noise variable).

The bottom graph monitors the weight from "Input Node 3 to Middle Node 2". Input

node 3 represents the variable x3 , a noise variable. Note the jaggedness of the weights

eminating from the noise variable compared to the smoother curve of weights eminating

from the significant variable. As Tarr predicted, weights fluctuating around zero eminate

from noise variables.

The 3-dimensional graphs of Figure 28 show the saliency of x, and x2 respectively.

Recall that the saliency of x, is just the change in network output (class) with respect to

a change in x, network input. As x, goes from negative to positive values we see that the

saliency gets very large in value. This indicates that there is a classification change along

these high saliency values. In effect, we are drawing the borders of the two classes 01 and

02. In a similar fashion, the bottom half of Figure 28 shows the saliency of x2. As X2

goes from negative to positive values, we see that once again the saliency gets very large

in value. This represents another border between the two classes.

The 3-dimensional graph of Figure 29 shows the saliency of x4 which is named "Noise

2" on the graph. Note that the scale of the z-axis is very small when compared to the two

previous saliency plots. If Figure 29 were redrawn using the z-axis scales of Figure 28 it

would appear to be a flat plane. This gives the researcher another visual way of identifying

noise variables.
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Figure 31 shows Ruck's saliency metric with and without pseudo-sampling, as well

as all four variants of Tarr's saliency. Recall that, the higher the value of a saliency metric

for a particular variable, the higher its ranking as a significant variable. Ruck's saliency

for features 3 and 4 are at least one order of magnitude less than the saliency's for features

1 and 2. Once again, features 3 and 4 look like noise variables. Tarr's saliency metrics also

indicate that features 1 and 2 are significant, while features 3 and 4 are noise.

Figure 32 shows the confusion matrix of the final trained net when applied to the

validation set. It shows that only one exemplar was misclassified out of 125 total exem-

plars. In addition, the second-order correlation matrix for each output class is listed. The

only significant element in these matrices occurs at the (1,2) position. These values of

.77129 and .77133 indicate that an x1 x2 term may have significant explanatory power for

classifying the exemplars.

At this point, the researcher may want to restructure the exemplar data sets. Since

features 3 and 4 have been shown to be noise, we can drop them from the dataset. In

addition, we may wish to add an x1 x2 term to the exemplar data set. This program could

then be used to build an improved network structure that uses only three input features

(i.e., xi, x2, and xIx 2 ), or perhaps a network structure that uses only the xIx 2 variable.

This computer tool can help build these structures efficiently.
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I TRAINING SET I

CLASSIFICATION ERROR (%): 30.7692

AVERAGE ABSOLUTE ERROR : 0.3172

I NETWORK CLASSIFICATION I

ICLASS 1ICLASS 21 TOTAL I
--------------------------------------

I ICLASS 11 240 1 96 I 3361
1 T 1 I 71.43%1 28.57%1 I

I R I ------------------------ +------------
I U ICLASS 21 104 I 210 I 3141

I E 1 I 33.12%1 66.88%1 I
I I-------------------------------------
I I TOTAL I 3441 3061 6501

I TEST SET I

CLASSIFICATION ERROR MZ): 26.6667
AVERAGE ABSOLUTE ERROR : 0.3002

I NETWORK CLASSIFICATION I

ICLASS I1CLASS 21 TOTAL I
------------------+-----------4------------

I ICLASS 11 49 I 58 I 1071

1 T 1 I 45.79%1 54.21%1 I
I R I -------------+-----------

I U ICLASS 21 2 I 116 I 1181
I E 1 I 1.69%1 98.31%1 I
I I -------------------+-----------+

I I TOTAL I 511 1741 2251

Figure 19. Network Structure (4,2,2,1,0) Train/Test Confusion Matrices
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I TRAINING SET I

CLASSIFICATION ERROR (W): 6.7692
AVERAGE ABSOLUTE ERROR : 0.1008

I NETWORK CLASSIFICATION I

ICLASS lICLASS 21 TOTAL I
-------- ------------------- -------------

I ICLASS II 316 I 20 I 3361
1 T 1 I 94.05%1 5.95%1 I
1 R I ------------------------------------
I U ICLASS 21 24 I 290 I 3141
1 E 1 I 7.64%1 92.36%1 I

1 ------ + -------------------------

I I TOTAL I 3401 3101 6501

TEST SET I

CLASSIFICATION ERROR (M): 10.2222
AVERAGE ABSOLUTE ERROR : 0.1258

I NETWORK CLASSIFICATION I

ICLASS lICLASS 21 TOTAL I
-----------------4-----------4------------

I ICLASS 11 99 I 8 I 1071
1 T 1 I 92.52%1 7.48%1 I
1 R I ------------------------------------
I U ICLASS 21 15 I 103 I 1181
1 E 1 I 12.71%1 87.29%1 I
1 I ----------------------------
I I TOTAL I 1141 1111 2251

Figure 22. Network Structure (4,4,2,1,0) Train/Test Confusion Matrices
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Figure 23. Network Structure (4,4,2,1,0) Activation Grids
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Figure 24. Network Structure (4,10,2,0.2,0) Absolute Error-Last 100 Epochs
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Figure 26. Network Structure (4,10,2,0.2,0) Weight Monitoring Graphs

57
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Figure 27. Network Structure (4,10,2,0.2,0) Activation Grids
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Figure 28. Network Structure (4,10,2,0.2,0) Saliency Grids
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Figure 29. Network Structure (4,10,2,0.2,0) Noise Saliency Grid
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I TRAINING SET I

CLASSIFICATION ERROR (M): 0.6154

AVERAGE ABSOLUTE ERROR : 0.0388

I NETWORK CLASSIFICATION I

ICLASS 11CLASS 21 TOTAL I
-------------------------------------------

ICLASS 11 334 I 2 I 3361
1 T 1 I 99.40%1 0.60X1 1

1 R I ------------------------------------
I U ICLASS 21 2 I 312 I 3141
1 E 1 I 0.64%1 99.36%1 I

1 I ------------------------------------
I I TOTAL I 3361 3141 6501

I TEST SET I

CLASSIFICATION ERROR (M): 0.4444
AVERAGE ABSOLUTE ERROR : 0.0444

I NETWORK CLASSIFICATION I

ICLASS 1ICLASS 21 TOTAL I

------------- 4-----------+-----------+------------

I ICLASS 11 106 I 1 I 1071
1 T 1 I 99.07%I 0.93%1 I
1 R I ------------------------------------
I U ICLASS 21 0 I 118 I 1181
1 E I 1 0.00oI 100.001 I
I I ---------------- +-----------+------------

I I TOTAL I 1061 1191 2251

Figure 30. Network Structure (4,10,2,0.2,0) Train/Test Confusion Matrices

61



******* RUCK'S SALIENCY *******

*** WITHOUT PSEUDO-SAMPLING **** ***** WITH PSEUDO-SAMPLING *****

FEATURE SALIENCY STD DEV FEATURE SALIENCY STD DEV

1 0.5284 2.1787 1 0.4668 2.0512
2 0.4291 1.6221 2 0.3879 1.6033
3 0.0194 0.0787 3 0.0178 0.0796
4 0.0169 0.0625 4 0.0168 0.0690

Constant 0.0926 0.3071 Constant 0.0962 0.3495

*** TARR'S WEIGHT SALIENCY ****

FEATURE TARR1 SAL TARR2 SAL TARR3 SAL TARR4 SAL

1 327.48 18.10 51.57 8.06
2 309.68 17.60 49.05 8.67
3 7.46 2.73 6.93 1.60
4 4.58 2.14 4.33 1.92

Constant 112.85 10.62 32.30 4.45

Figure 31. Network Structure (4,10,2,0.2,0) Ruck/Tarr Saliencies
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I VALIDATION SET I

CLASSIFICATION ERROR (M): 0.8000
AVERAGE ABSOLUTE ERROR : 0.0428

I NETWORK CLASSIFICATION I

ICLASS lICLASS 21 TOTAL I
-------------------------------------------

ICLASS 11 67 1 0 I 671
1 T I I 100.00ol 0.00%1 I
IR I ÷------------------------ ------------
I U ICLASS 21 1 I 57 I 581
I E I I 1.72%1 98.28%1 I
1 I --- ------------- +-----------+------------

I I TOTAL I 681 571 1251

**** CORRELATION OF OUTPUT 1 WITH J*K INPUT *****

FEATURE 1 2 3 4

1 -0.08155 0.77129 0.03223 -0.07564

2 0.77129 -0.03472 -0.00103 -0.01085
3 0.03223 -0.00103 -0.02123 0.00846
4 -0.07564 -0.01085 0.00846 -0.00823

***************************************k ******

**** CORRELATION OF OUTPUT 2 WITH J*K

FEATURE 1 2 3 4

1 0.08155 -0.77133 -0.03211 0.07599

2 -0.77133 0.03526 0.00136 0.01149
3 -0.03211 0.00136 0.02114 -0.00863
4 0.07599 0.01149 -0.00863 0.00836

Figure 32. Network Structure (4,10,2,0.2,0) Correlation Matrices

63



4.2 Mesh Problem

The second classification problem used to test the system is the four class mesh

problem. Figure 33 illustrates this problem. Once again, we see that the regions 01, 02, 03,

and 04 are not linearly separable. Instead of developing this problem iteration by iteration,

as we did in the XOR problem, we will simply show the results from the final "optimal"

trained network.

+1
03

0 -" -0 4

0 x +1

Figure 33. The Four Class MESH Problem

4.2.1 Mesh Network Structure (2,25,4, 0.3, 0.2). After numerous combinations

of network parameters were analyzed, the (2,25,4,0.3,0.2) network structure was deemed

to be adequate for purposes of this validation. All outputs were produced automatically

by creating a single parameter file.

Figure 34 shows a "History of Average Absolute Error" and a "History of Classifica-

tion Error". The researcher has made a decision that the entire training cycle is evident

after 1300 epochs and stops training the network at this point. The average absolute error

has leveled off at around 0.04 for the training set, and 0.05 for the test set. Classification

error has leveled off at 5% for the training set and 9% for the test set. Note that the

64



training set curve and test set curve are beginning to diverge from each other at around

epoch 800. This may be an indication that over-training is beginning to occur. To test

this divergence hypothesis, the researcher could simply instruct the program to continue

training.

Figures 35 and 36 show the average absolute error, classification error, and confusion

matrices for the training and test sets at epoch 1300. The training set had an average

absolute error of 0.04 and a classification error of 4.4%, while the test set had an average

absolute error of 0.05 and a classification error of 6.0%. Looking at the off-diagonal ele-

ments of these two confusion matrices shows that the network is having the most trouble

distinguishing between class 01 and 02. Figure 38 shows Ruck's saliency metric with and

without pseudo-sampling, as well as all four variants of Tarr's saliency. Recall that, the

higher the value of a saliency metric for a particular variable, the higher its ranking as a

significant variable. Ruck's saliency for features 1 and 2 indicates that each feature has

approximately the same significance. Tarr's saliency metrics also indicate that features 1

and 2 are of equal significance.

Figures 40 and 41 show the 3-dimensional view of the trained network at epoch 1300

for the (2,25,4, 0.3 ,0.2) network structure. These four 3-dimensional plots compare quite

favorably to Figure 33, except for the notch in the middle of class 01. This may be due to

the fact that there are very few exemplars (data points) in the notched region.

The 3-dimensional graphs of Figure 42 show the saliency of x, and x2 respectively.

Recall that the saliency of x, is just the change in network output with respect to a change

in x, network input. This implies there is a classification change along high saliency values.

In effect, we are drawing the borders of the four classes 01 through 04. These saliency plots

also compare favorably to Figure 33.

In Figure 39, the second-order correlation matrix for each output class is listed. A

possible significant element occurs at the (2,2) position for outputs 3 and 4. These values

of .69579 and -. 55727 indicate that an x2 term may have significant explanatory power

for classifying the exemplars into class 3 or class 4.
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Figure 34. Network Structure (2,25,4,0.3,0.2) Absolute/Classification Error
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---

I TRAINING SET I

CLASSIFICATION ERROR (%): 4.3750
AVERAGE ABSOLUTE ERROR : 0.0355

I NETWORK CLASSIFICATION I

ICLASS lICLASS 21CLASS 31CLASS 41 TOTAL I
----------- +-----------4-----------4------------+-----------+------------

I ICLASS 11 193 I 9 I 3 I 2 I 2071
1 T 1 I 93.24%1 4.35%1 1.45%l 0.97%1 I
1 R I --------------------------------- +------- +------------
I U ICLASS 21 10 I 201 I 1 I 1 I 2131
1 E 1 I 4.69%1 94.37Xl 0.47%1 0.47%1 I
1-------+---------+-----------4------------+-----------4------------

ICLASS 31 6 I 1 I 174 I 0 I 1811
1 1 I 3.31%1 0.55X1 96.13%1 0.00%1 I
I I------------+-----------+-----------+-----------4------------
I ICLASS 41 1 I 1 1 0 I 197 I 1991
1 1 I 0.50I1 0.50l 0.oo00 98.99%l I

1 I -------- +-----------+-----------+-----------+-----------

I I TOTAL I 2101 2121 1781 2001 8001

Figure 35. Network Structure (2,25,4,0.3,0.2) Confusion Matrix for Training Set
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I TEST SET I

CLASSIFICATION ERROR (W): 6.0000
AVERAGE ABSOLUTE ERROR : 0.0502

I NETWORK CLASSIFICATION I

ICLASS lJCLASS 21CLASS 31CLASS 41 TOTAL I
---------------+-----------+-----------+-----------+------------

I ICLASS 11 32 I 7 I " 0 I 1 I 401
1 T 1 1 80.00%1 17.50%1 0.00%1 2.50%1 1

1R I -------------------------------------------------------
I U ICLASS 21 0 1 so 1 0 1 01 501
I E I 1 0.00o1 100.00o1 0.00o 1 0.00o1 I
I I---------------+-----------+-----------+-----------+------------
I ICLASS 31 0 I 0 I 29 1 1 I 301
1 1 I 0.00%1 0.00%1 96.67%1 3.33%1 I

1 ----- +----------+-----------+-----------+-----------+------------

I ICLASS 41 0 1 0 1 0 1 30 1 301
1 1 I 0.0021 0.0021 0.00%1 100.00%1 I
I I---------------+-----------+-----------+-----------+------------

I I TOTAL 1 321 571 291 321 1501

Figure 36. Network Structure (2,25,4,0.3,0.2) Confusion Matrix for Test Set
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I VALIDATION SET I

CLASSIFICATION ERROR (%): 8.0000
AVERAGE ABSOLUTE ERROR : 0.0512

I NETWORK CLASSIFICATION I

ICLASS IlCLASS 21CLASS 31CLASS 41 TOTAL I
------------- +-----------4-----------+-----------+-----------4-------------

I ICLASS 11 8 1 1 1 0 1 0 1 91
1 T 1 I 88.89%1 11.11%1 0.00%1 0.00%1 I
I R I ------------------ 4-----------------------------------

I U ICLASS 21 0 1 18 1 0 1 0 1 181
1 L I I 0.00%1 I00.00%1 0.00%1 0.00%1 1

I I --------------------------------- 4------- +------------

I ICLASS 31 1 I 2 I 12 I 0 I 151
I 1 I 6.67%1 13.33%1 80.00%1 0.00%1 I
I I- -------------------- +--------------------+------------

I ICLASS 41 01 0I1 0 1 8 1 81
1 1 I 0.00%1 0.00%1 0.00%1 100.00%1 I

I I ----------------------------------------- 4-----------+

I I TOTAL I 91 211 121 81 501

Figure 37. Network Structure (2,25,4,0.3,0.2) Confusion Matrix for Validation Set
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******* RUCK'S SALIENCY *******

WITHOUT PSEUDO-SAMPLING **** ***** WITH PSEUDO-SAMPLING *****

FEATURE SALIENCY STD DEV FEATURE SALIENCY STD DEV

1 1.3509 6.4056 1 1.0862 5.9796
2 1.2705 5.9786 2 1.0130 5.4914

Constant 1.1548 5.9985 Constant 0.9029 5.2212

*** TARR'S WEIGHT SALIENCY ****

FEATURE TARRI SAL TARR2 SAL TARR3 SAL TARR4 SAL

1 8880.52 94.24 332.00 49.43
2 6106.20 78.14 272.71 29.52

Constant 5109.10 71.48 253.21 36.92

Figure 38. Network Structure (2,25,4,0.3,0.2) Ruck/Tarr Saliencies

70



* .

**** CORRELATION OF OUTPUT 1 WITH J*K INPUT *****

FEATURE 1 2

1 0.12846 0.17137
2 0.17137 -0.03667

**** CORRELATION OF OUTPUT 2 WITH J*K INPUT *****

FEATURE 1 2

1 -0.32094 -0.12129
2 -0.12129 -0.05753

**** CORRELATION OF OUTPUT 3 WITH J*K INPUT *****

FEATURE 1 2

1 0.10671 0.43324
2 0.43324 0.69579

*********************************** **************

**** CORRELATION OF OUTPUT 4 WITH J*K INPUT *****

FEATURE 1 2

1 0.07635 -0.45934
2 -0.45934 -0.55727

Figure 39. Network Structure (2,25,4,0.3,0.2) Correlation Matrices
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Figure 40. Network Structure (2,25,4,0.3,0.2) Activation Grids-Class 3 and 4

72



S

ACTIVATION GRID OF OUTPUT CLASS #1

0.0

0.8

0.6 0.8

0.4 0.6

0.4

)20.2 0- .2x

ACTIVATION GRID OF OUTPUT CLASS #2

Q

Cp
-S 0.5ý

01
0.8

0.6 0.8

0.4 0.6

0.4
0 .20 .00.2

X2 •0 0 x1

Figure 41. Network Structure (2,25,4,0.3,0.2) Activation Grids-Class 1 and 2
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Figure 42. Network Structure (2,25,4,0.3,0.2) Saliency Grids
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V. Final Results and Recommendations

The following results and recommendations are drawn from the work involved in this

thesis.

5.1 Final Results

"* The interactive computer system developed in this thesis provides an excellent plat-

form for determining the optimal structure of a multilayer perceptron. By following

"a predefined procedure, the researcher can start with a set of raw data and build

"a neural network structure that minimizes average absolute error and classification

error. This final network structure produces a set of weights which can be used to

predict the classification of future exemplars.

"* The interactive capabilities of this system allow the user to quickly develop and

fine-tune an "optimal" neural network structure. By allowing the user to interrupt

network training at any time to see the "status" of the system, and then continue

training if desired, saves countless hours of computer and research time. This "hot

start" prevents valuable training information from being lost and allows the optimal

network structure to be developed in a minimum amount of time.

"* Error graphs produced by the system aid the user in determining when the training

cycle has stopped. This helps prevent over-training and under-training of the net-

work. This is the primary tool used to get the researcher through the flowchart of

Figure 16.

"* Changing network structure, data, and graph parameters is as easy as editing a single

parameter file.

"* Six types of variable learning rates are incorporated into the program. All six func-

tions decrease the learning rate as the number of epochs increases. This allows the

training process to take large steps in its gradient search at the beginning of the

process and small steps toward the end of the process.

"* The 3-dimensional graphs of class activation and saliency produce pictures never

seen before. These images allow the user to visualize where the class boundaries lie
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in a particular problem and the shape of each class. By interfacing the FORTRAN

code with the MATLAB Graphics Package, this system allows the user to rotate the

3-dimensional object to any angle or azimuth they desire.

"* Producing 3-dimensional saliency graphs of known noise variables showed that these

graphs will resemble a plane. Remember to be wary of the z-axis scale.

"* While programming the FORTRAN code, it was discoverd that Ruck's saliency for-

mula was incorrect [17:37]. This led to the development of Equation 22 and its

subsequent notation.

"* The Shell-Mezgar sort was incorporated into the FORTRAN code to re-shuffle the

training vectors at the beginning of each epoch. With epochs numbering in the

hundreds or even thousands, this efficient sort helped speed up processing time im-

mensely.

"* The Shell-Mezgar sort also allowed us to reduce the number of random deviates

generated by the random number generator by a factor ranging from 3 to 11.

"* In the original FORTRAN code, three arrays had to be eliminated due to their

excessive size. Although it costs more computing time, the elimination of these three

arrays allows the system to tackle larger problems. These arrays were involved in

computing the covariance matrix and the saliency metric.

5.2 Recommendations

In Chapter 4 we demonstrated the ability of this system to build an optimal network

structure for the XOR and Four Class Mesh classification problems. In each case the

system came up with an optimal network structure. The 3-dimensional pictures of the

activations and saliencies tracked very closely to what was expected. Therefore, it is

highly recommended that this system be used on a real-world classification problem.

In her thesis, Belue suggests that further study of Armor Piercing Incendiaries (API)

is necessary to ensure that the optimal network structure was discovered and that the error

rates cited are corr •ct [1:120]. In her study, the problem was treated as a two-class problem;
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complete burn or other than complete burn. In reality, there are six classifications of API

projectile firings. This is an ideal classification problem for this system to analyze.

Another prime candidate would be a target recognition problem. In his dissertation,

Ruck deals with the problem of identifying targets from non-targets in forward looking

infrared (FLIR) images [17:41]. The target classes consist of tanks, trucks and armored

personnel carriers. A set of nine input features is used.
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Appendix A. User's Manual for Running the Program

This appendix will provide guidance for running the FORTRAN and MATLAB pro-

grams. All MATLAB and FORTRAN interfaces are automatic. The only files the user

must provide is the raw exemplar data file, and the parameter file which defines the network

structure, stopping criteria, and the graphs desired.

A.1 Raw Exemplar Data File Format

The raw exemplar data file "must" contain one exemplar per logical line. For ex-

ample, a problem which has 3 features and 4 classes would have input liles that look like

this:

0.5673 0.3218 2.987076 0 1 0 0 < Return >

or

1.2978 32 58.7 0.0 1.000 0.00 0. < Return >

The numbers do not have to follow any specific format, or be put in specific columns.

A.2 Parameter File

All discussion that follows, refers to the example parameter file found on the last

page of this appendix. The program reads the first number or word of each line only.

All comments that follow the numbers are ignored. Parameters must appear in the order

shown. A description of each parameter follows.

" Name of Raw Exemplar Data File. Exemplars from this file will be used to

create the training, test and validation sets. Including the ".", a maximum of 12

characters is allowed. In the example parameter file the name of the data set is

"shotsin.dat".

"* Stopping Criteria. If this number is > 1 then it represents the number of epochs

the system will train before it stops. If this number is < 1 then it represents a

tolerance. If the average absolute error of the training set or test set falls below this

tolerance the system will stop training. The user may override this criteria while
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the system is running by interrupting the system and telling it to stop training. No

matter how the system is stopped, all reports and requested graphs will be produced

as of the last complete epoch calculated. Currently, there is an upper limit of 10,000

epochs. If the user requires more than 10,000 epochs, the parameter NNE in tile

FORTRAN program will have to be changed and the program recompiled. In the

example parameter file we have chosen a stopping criteria of 1328 epochs.

"* Number of Training Vectors. This is the number of exemplars which will be

randomly selected from "shotsin.dat" and put into the training set. In the example we

have selected 200 training vectors. Currently, there is an upper limit of 3000 training

vectors. If the user requires more than 3000 training vectors, the parameter NTRAIN

in the FORTRAN program will have to be changed and the program recompiled.

"* Number of Test Vectors. This is the number of exemplars which will be randomly

selected from "shotsin.dat" and put into the test set. In the example we have selected

41 test vectors. Currently, there is an upper limit of 2000 test vectors. If the

user requires more than 2000 test vectors, the parameter NTEST in the FORTRAN

program will have to be changed and the program recompiled.

"* Number of Validation Vectors. This is the number of exemplars which will

be randomly selected from "shotsin.dat" and put into the validation set. In the

example we have selected 40 validation vectors. Currently, there is an upper limit

of 1000 validation vectors. If the user requires more than 1000 validation vectors,

the parameter NVALID in the FORTRAN program will have to be changed and the

program recompiled.

"* Number of Input Nodes. This is the number of input nodes in the input layer.

Also equal to the number of input features in the discrimination problem. In the

example we have 4 input features. Currently, there is an upper limit of 100 input

features. If the user requires more than 100 input features, the parameter NNVAR

in the FORTRAN program will have to be changed and the program recompiled.

"* Number of Middle Nodes. This is the number of middle nodes in the hidden layer.

In the example we have 20 middle nodes. Currently, there is an upper limit of 200
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middle nodes. If the user requires more than 200 middle nodes, the parameter NNM

in the FORTRAN program will have to be changed and the program recompiled.

"* Number of Output Nodes. This is the number of output nodes in the output

layer. Also equal to the number of output classes in the discrimination problem. In

the example we have 2 output classes. Currently, there is an upper limit of 10 output

classes. If the user requires more than 10 output classes, the parameter NNO in the

FORTRAN program will have to be changed and the program recompiled.

"* Type of Learning Rate. Can take on an integer value from 1 thru 6. This value

determines the type of learning rate calculated according to the following table:

1 77 Constant Update

2 71 r/[1 NL ] Linear UpdateNE+1

3+1 Log Update== n(LL+I) (32)

41- Log -Linear Update4 =• ln(LL+I)

5 q Log - Sqrt Update

6= 1 -"i'+) Log- Sqrt - Linear Update

where 77 is the constant given in the next parameter, LL is the current epoch, and

NE is the total number of epochs expected to be run. The variable NE is set equal

to the number of epochs given in the stopping criteria above. If the stopping criteria

is < 1 (a tolerance), NE is set equal to NNE. In the example, the type of learning

rate is 1 which implies the constant update is used.

"* Learning Rate. This is the value of 77 in the formulas above. If the type of learning

rate above is 3,4,5, or 6, this value is ignored. In our example, the learning rate is

set to 0.2 and is used since type of learning rate is 1.

"* Momentum Rate. In our example, the momentum rate is set to 0.0. No momentum

rate is desired.

"* Range o€ Weight Initialization. All weights initially used by the network will

be initialized between the two given numbers. In our example, we have chosen to

initialize weights between -0.5 and 0.5.
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e Random Number Seed. This number seeds the random number generator. In

the example, the random number seed 1234567 was chosen.

e Type of Normalization of Data. Can take on the integer values 0, 1, or 2. A

value of 0 implies no normalization, the exemplars are not transformed. A value of

1 implies all exemplars will be normalized to values between 0 and 1 based on the

range of the training set. A value of 2 implies all exemplars will be standardized

according to Equation 28, based on the range of the training set. The example shows

that normalization between 0 and I was chosen.

* Number of Divisions for Pseudo-Sampling. This parameter is used when cal-

culating Ruck's saliency. This is the value of R as described in Equation 22. In

the example, 5 divisions for pseudo-sampling were chosen. Currently, there is aii

upper limit of 10 divisions for pseudo-sampling. If the user requires more than 10,

the parameter NNDIV in the FORTRAN program will have to be changed and the

program recompiled.

e Constant for Activation and Saliency Grids. When we create the 35x35 grid,

we are, in effect, creating a new set of 1225 exemplars with values for the two features

being graphed, only. The question arises: what values should be used in these

new exemplars for the features that are not being graphed? Since we are running

these 1225 exemplars through the network, each exemplar must have values for the

features not being graphed. If the network has only two features, there is no problem.

However, if there is more than two features, then choices must be made by the user.

The program allows the user to choose a constant value for all features not graphed,

or to choose the mean value of that feature, as calculated over the training set. A

value of 999 tells the program to use the mean of the feature. Any other value will

be used as the constant for all features not being graphed. In our example, we used

999, the average values.

* Number of Weights to Monitor. Indicates the number of weights to monitor

and the number of weight monitoring graphs the user desires. In this example, we

chose to monitor 2 different weights. Note: this parameter may be 0, but remember

to delete all (FROM Node/TO Node/LAYER) 3-tuples defined below. Currently,
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there is an upper limit of 5 weight monitoring graphs. If the user requires more than

5, the parameter NNUMWT in the FORTRAN program will have to be changed and

the program recompiled.

e FROM Node/TO Node/LAYER. In the parameter above we indicated how

many weight monitoring graphs we wanted. For each graph, we must define a 3-

tuple which indicates the weight we want to monitor. In the example we used 4 1 1

and 9 2 2. The first 3-tuple is designated 4 1 1. The code 4 1 1 indicates the user

is monitoring the weight connecting input node 4 to hidden node 1 of layer 1. The

second 3-tuple is designated 9 2 2. The code 9 2 2 indicates the user is monitoring

the weight connecting hidden node 9 to output node 2 of layer 2. You must have

the exact number of 3-tuples as indicated by the parameter "Number of Weights to

Monitor".

e Number of Activation Grids to Plot. Indicates the number of 3-dimensional

activation grids the user desires. In this example, we chose to create 2 activation

plots. Note: this parameter may be 0, but remember to delete all (FEATURE for

X-Axis/FEATURE for Y-Axis/Activation Class) 3-tuples defined below. Currently,

there is an upper limit of 5 activation grids. If the user requires more than 5, the

parameter NNGRID in the FORTRAN program will have to be changed and the

program recompiled.

* FEATURE for X-Axis/FEATURE for Y-Axis/Activation Class. In the

parameter above we indicated how many activation grids we wanted. For each grid,

we must define a 3-tuple which indicates the feature we want on the x-axis, the

feature we want on the y-axis and the activation class we want on the z-axis. In the

example we used 3 4 1. This 3-tuple tells the system to create a 3-dimensional grid

with feature 3 on the x-axis, feature 4 on the y-axis, and output class 1 on the z-axis.

In addition, the words "Mass" and "Secant" indicate the labels which will be put

on the x-axis and y-axis respectivrly. These labels may be up to 12 characters long.

Once again, you must have the exact number of 3-tuples and label sets as indicated

by the parameter "Number of Activation Grids to Plot". The second 3-tuple (1 4 1),

and label set (Ply, Secant) define the second activation grid to be plotted.

82



"* Number of Saliency Grids to Plot. Indicates the number of 3-dimensional

saliency grids the user desires. In this example, we chose to create 2 saliency plots.

Note: this parameter may be 0, but remember to delete all (FEATURE for X-

Axis/FEATURE for Y-Axis/Feature for Saliency) 3-tuples defined below. Currently,

there is an upper limit of 5 saliency grids. If the user requires more than 5, the

parameter NNGSAL in the FORTRAN program will have to be chaii id and the

program recompiled.

"* FEATURE for X-Axis/FEATURE for Y-Axis/Feature for Saliency. In the

parameter above we indicated how many saliency grids we wanted. For each grid,

we must define a 3-tuple which indicates the feature we want on the x-axis, the

feature we want on the y-axis and the saliency feature we want on the z-axis. In the

example we used 3 4 3. This 3-tuple tells the system to create a 3-dimensional grid

with feature 3 on the x-axis, feature 4 on the y-axis, and the saliency of feature 3

on the z-axis. In addition, the words "Mass", "Secant", "Mass" indicate the labels

which will be put on the x-axis, y-axis, and z-axis respectively. These labels may be

up to 12 characters long. Once again, you must have the exact number of 3-tuples

and label sets as indicated by the parameter "Number of Saliency Grids to Plot".

The second 3-tuple (3 4 4), and label set (Mass, Secant, Secant) define the second

saliency grid to be plotted.

"* END. The last parameter in the parameter file must be the word "END". If it

is omitted, or there are an improper number of parameters, the program will give

you the following error message: "ERROR IN PARAMETERS". The most probable

cause is that the user indicated a certain number of graphs to be created, but forgot

to define the 3-tuples or labels to put on the axes. It is best to compare this problem

parameter file with one that you know is working.

A.3 Program Execution

To sta.u the FORTRAN program simply enter: "neural7.exe". The program will

prompt you for the name of your parameter file. After entering your parameter file, a

computer window will appear. This window shows the number of epochs that have been
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completed as well as the absolute and classification errors. Note: Be sure to keep all

executable files, data files, and parameter files in the same directory.

To interrupt the program and see the current status of the training process, simply

enter: "status.exe". Note: This command must be entered from its own separate shelltool

window or cmdtool window (.e., do not enter "status.exe" in the same window as you

entered "neural7.exe"). After you interrupt the program, error graphs and weight monitor-

ing graphs will appear (3-D graphs do not appear until training is complete). At this time

the analyst can use any MATLAB command, they choose. After analyzing the graphs, the

user types in "quit". This ends the MATLAB session and puts you back into FORTRAN.

The user is then asked ii they wish to continue training. If the user answers yes, training

picks up from where it was interrupted. If the user answers no, the program jumps back

into MATLAB and recreates the error graphs, the weight monitoring graphs, and creates

all requested 3-D graphs. At this time all MATLAB commands are active again. See next

section for some valuable MATLAB commands. When the analyst is finished viewing the

various graphs and issuing MATLAB commands, they type in "quit". This ends both the

MATLAB and FORTRAN programs.

A.4 MATLAB Commands

When in the MATLAB portion of the program all MATLAB commands may be used.

When MATLAB is first entered, all graphs are stacked up on the right hand side of the

screen. Each graph is identified by a (Figure #) found at the top of each graph. The user

may drag and drop these figures any where on the screen. Here are a few useful MATLAB

commands:

"* figure(n). This command brings figure number n to the forefront of your screen. In

addition, all subsequent MATLAB commands will apply to this figure (e.g. view).

"* view(AZ,EL). 3-D graph viewpoint specification. The command view(AZ,EL) sets

the angle of the view from which an observer sees the current 3-D plot. AZ is the

azimuth or horizontal rotation and EL is the vertical elevation (both in degrees).

Azimuth revolves about the z-axis, with positive values indicating counter-clockwise

84



rotation of the viewpoint. Positive values of elevation correspond to moving above

the object; negative values move below.

Here are some examples:

AZ = -37.5, EL = 30 is the default 3-D view. AZ = 0, EL = 90 is directly overhead

AZ = EL = 0 looks directly up the first column of the matrix. AZ = 180 is behind

the matrix.

The best thing to do is play around with this command until you get your 3-D

thought process calibrated.

* print. Prints designated figures directly to a printer or to a file. To print figure(5)

directly to printer rm22021ps20 you would enter:

print -f5 -Prm22021ps2O

To print figure(3) directly to an encapsulated postscript file named fg5.eps to be used

later in LATEX you would enter:

print 43 -deps fg5.eps

* help. To find out more about the above commands and others, simply type in help

and the name of the command while in MATLAB.

For example: help view
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lb

shotain.dat Name of EXEMPULR dataset

1328 STOP CRITERIA: ( < 1 -- > ERROR RATE) ( > 1 -- > NUER OF EPOCHS)

200 Number of TRAINING Vectors to use.

41 Number of TEST Vectors to use.

40 Number of VALIDATION Vectors to use.

4 Number of INPUT Nodes or FEATURES

20 Number of MIDDLE Nodes

2 Number of OUTPUT Nodes or CLASSES

1 TYPE OF LEARNING RATE (e.g. 1-Constant, 4-Log-Linear, etc...)

0.2 LEARNING RATE (Only used when TYPE OF LEARNING RATE - 1 or 2)

0.0 MOMENTUM RATE

-0.5 0.5 RANGE of Weight Initialization

1234567 SEED for Random Number Generator

1 Type of NORMALIZATION of data.

5 Number of Divisions for Pseudo-Sampling for RUCK'S SALIENCY

999 Constant for GRID and GRID Saliency Plots. 999 -- > Use Feature Average

2 Number of WEIGHTS TO MONITOR During Training

4 1 1 FROM Node/TO Node/LAYER

922

2 Number of ACTIVATION GRIDS to Plot

3 4 1 * of FEATURE for X-AXIS / S of FEATURE foi Y-AXIS / Activation Class

Mass

Secant

1 4 1 * of FEATURE for X-AXIS / * of FEATURE for Y-AXIS

Ply

Secant

2 Number of SALIENCY GRIDS to Plot

3 4 3 * of FEAT for X-AXIS/* of FEAT fr Y-AXIS/S OF FEAT for SALIENCY

Mass

Secant

Mass

3 4 4 * of FEAT for X-AXIS/S of FEAT for Y-AXIS/S OF FEAT for SALIENCY

Mass

Secant

Secant

END
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