
AD-.A278 461N

ý ý r1

't.r

*VV

AN INVESTIGATION OF SIMULATED ANNEALING

APPLIED TO
STRUCTURAL OPTIMIZATION PROBLEMS

THESIS D I
Richard Charles McEachin D I

Captain, USAF r AR~l9
4 -- ~*' *AFIT/GST/ENS/94M-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY,

Wright-Patterson Air Force Base, Ohio

"AFIT/GST/ENS/94M-08

AN INVESTIGATION OF SIMULATED ANNEALING

APPLIED TO

STRUCTURAL OPTIMIZAT?:ON PROBLEMS

THESIS
Richard Charles McEachin

Captain, USAF

AFIT/GST/ENS/94M-08 APR ?

94-12274
11111 11 11/ I /I III li/ i 11111 11 lIH

Approved for public release; distribution unlimited

94 4

S

AFIT/GST/ENS/94M-08

AN INVESTIGATION OF SIMULATED ANNEALING

APPLIED TO

STRUCTURAL OPTIMIZATION PROBLEMS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Accesion For
NTIS CRA&I
DTIC TAB
Unannounced

Richard Charles McEachin, B.S. Ju6tification .

Captain, USAF By

Distribution I

Availability Codes

Avail and I or
March, 1994 Dist Special

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Richard C. McEchin, Capt, USAF CLASS: GST-94M

THESIS TITLE: AN INVESTIGATION OF SIMULATED ANNEALING
APPLIED TO STRUCTURAL OPTIMIZATION
PROBLEMS

DEFENSE DATE: 24 February 94

COMMITTEE:

Name/Title/Department Signature

Advisor:
James W. oirissis, PhD, P.E.
Associate Professor of Operations Research
Department of Operational Sciences
School of Engineering

Reader:-
James S. Shedden, Lt Col, USAF, PhD
Assistant Professor of Operations Research
Department of Operational Sciences
School of Engineezing

ii

4

Acknowledgements

I would like to express my appreciation to Dr. Vipperla B. Venkayya. As my spon-

sor, he provided me with background on the structural optimization process, but more

important, he helped me see the value of doing research and writing a thesis. Dr. James

W. Chrissis advised me to look at all those pesky details that would have been so easy to

ignore, and so, guided me to produce my best quality product. Lt Col James S. Shedden

read my work, and asked me questions which were difficult to answer. In the process, he

led me to the heart of the Simulated Annealing process. Professor Lester Ingber devel-

oped the Adaptive Simulated Annealing code that was the key to my applying Simulated

Annealing to structural optimization. If I was building the code myself, I would have had

a soap-box derby entry, instead he let me use his Corvette.

I appreciate the help of my parents, Angus and Madeline McEachin, who gave me a

happy home to grow up in, three squares (at least), great siblings, and a quality education.

Most important of all, I appreciate Neil, Danielle, and Aaron. My three children did

mountains of dishes, vacuumed acres of carpet, and listened to me whine about all the

hard work. I'm proud of what nice people they are, and I appreciate their patience and

understanding. They made it possible for me to do this work.

Richard Charles McEachin

1i1

Table of Contents

Page

Acknowledgements iii

Table of Contents iv

List of Figures .. vii

List of Tables .. viii

Abstract ix

I. Introduction 1-1

1.1 Background of the Problem 1-1

1.1.1 Engineering Optimization 1-1

1.1.2 Numerical Optimization Methods 1-2

1.1.3 Structural Optimization 1-3

1.1.4 Simulated Annealing 1-4

1.2 Conduct of the Research 1-5

1.2.1 Purpose of the Research 1-5

1.2.2 Problem Statement 1-5

1.2.3 Organization of the Report 1-5

II. Literature Review 2-1

2.1 Simulated Annealing (SA) in Structural Optimization 2-1

2.2 Outline of the Standard SA Algorithm 2-1

2.3 Highlights of the Algorithm 2-2

2.4 New Developments 2-6

iv

Page

III. Simulated Annealing and Ben1hmarking 3-1

3.1 Theoretical Development of the SA algorithm 3-1

3.1.1 Global Optimality.. 3-2

3.2 The Adaptive Simulated Annealing Algorithm 3-2

3.2.1 Temperatures 3-2

3.2.2 Fundamental Distributions and Equations 3-4

3.2.3 Initial Conditions and Stopping Criteria 3-5

3.3 Features Specific to Adaptive Simulated Annealing 3-7

3.4 Benchmarking in Structural Optimization 3-8

3.4.1 Benchmarking with SA 3-9

3.4.2 Problem Formulation 3-10

3.4.3 Benchmarking with Other Optimizers 3-12

3.4.4 Measure of Complexity. 3-12

IV. Results and Analysis 4-1

4.1 Variations in Initial Conditions/Stopping Criteria 4-1

4.2 Quality of Solutions Found 4-6

4.3 Dimensionality and Constraints 4-9

4.3.1 Measure of Complexity 4-10

4.3.2 Analysis of the Effects 4-10

4.4 Overall Evaluation 4-12

V. Summary, Recommendations, and Conclusion 5-1

5.1 Summary of the Research 5-1

5.1.1 Highlights of the Research 5-1

5.1.2 Results 5-2

5.1.3 Evaluation of Applicability 5-3

5.2 Recommendations for Further Research 5-3

5.3 Conclusion 5-5

v

Page

Appendix A. Making ASA Run A-1

Appendix B. Standard Conditions for ASA B-1

Appendix C. Benchmark Problems and ASA Solutions C-I

Bibliography BIB-1

Vita VITA-I

vi

Lit of Figures

Figure Page

2.1. The Boltzmann Distribution for High and Low Temperatures 2-4

3.1. Parameter Temperature Compared to Uniform Distribution 3-3

vii

List of Tables
Table Page

4.1. Effect of Variations in Initial Conditions and Stopping Criteria 4-2

4.2. Quality of ASA Solutions Compared to Other Optimizers 4-8

4.3. Effect of Dimensionality and Constraints on Solution Time 4-11

viii

AFIT/GST/ENS/94M-08

Abstract

This thesis investigates the feasibility of using Simulated Annealing (SA) in structural

optimization problems. SA is an optimization process modeled after the physical process

of annealing. It is under development in many branches of the sciences, mathematics, and

engineering. Its usefulness depends on making many iterations in a random search among

the feasible values of the variables of a cost function. These many iterations are becoming

more practical as computers become more powerful. This algorithm differs from other

random search methods by accepting a worse solution (less optimal) than the previous,

with a probability derived from a Boltzmann distribution. The probability of accepting a

worse solution starts out high, and decreases as the iterations progress. This allows the

algorithm to escape from a local optimum and, with a number of iterations approaching

infinity, to find the global optimum.

The investigation involves solving benchmark structural optimization problems with

an SA algorithm, and comparing its solutions to the solutions found by four other opti-

mizers. The primary comparison is in quality of solution. However, each optimizer has

its strengths, and an effort has been made to highlight the strengths of SA in structural

optimization.

Overall, the analysis shows that SA has limited applicability in structural optimiza-

tion. Two primary factors were found to adversely impact the performance of the SA

algorithm in these problems. These factors are high dimensionality, and high levels of con-

straint. The difficulty involved in solving these problems with a random search increases

exponentially with the number of dimensions. This limits the applicability of this algo-

rithm to problems having less than twenty variables. The number, and non-linearity, of

the constraints also have an appreciable effect on the success of the algorithm. A Measure

of Complexity was created to quantify the combined effect of dimensionality and level of

constraint. This measure can be used to predict the applicability of the SA algorithm in

optimizing a given system of non-linear equations.

ix

AN INVESTIGATION OF SIMULATED ANNEALING

APPLIED TO

STRUCTURAL OPTIMIZATION PROBLEMS

L Introduction

1.1 Background of the Problem

1. 1. 1 Engineering Optimization. The concept of optimization in engineering appli-

cations is centuries old. One of the first recorded engineering optimizations was by Galileo

Galilei, when he found the strongest cantilever beam in bending and constant shear (Ka-

mat, 1993:2). Typically, in formulating the optimization problem, the performance of a

system is modeled by an objective function. The optimization task is to minimize or maxi-

mize the value of the objective function by finding optimal values of the decision variables.

1.1.1.1 Gradient Search. Many of today's more prevalent optimization meth-

ods depend on the calculus, developed in the 17th century. In these methods, the deriva-

tives of the objective function (with respect to each of the decision variables) are set to

zero, generating a set of simultaneous equations. These simultaneous equations are solved,

yielding the values of the decision variables at the stationary point, or points (Kamat,

1993:3). The derivatives of the objective function form the gradient at a certain point,

so this process may be termed a gradient based search. In a variation of this method,

the gradient of the "surface" at a chosen point in the feasible region is found. With this

information, an iterative gradient search algorithm can proceed from the chosen point, in

a direction which always yields an improved solution at the next step. Some potential

difficulties exist with a gradient search. Computing the gradients of the surface requires

many calculations, and may be very time consuming. The search algorithm could stall at

a relative minima (local optimum), rather than finding the overall minimum (global op-

timum) for the entire system. Also, the surface being searched must be continuous. In

spite of these potential difficulties, gradient search has been successfully applied to many

1-1

optimization problems. This basic process identifies the stationary points (function max-

ima, minima, or saddle points) in an unconstraimed optimization. In this case, there are

no restrictions on the values of the decision variables.

1.1.1.2 Constrained Optimization. For most engineering applications where

the decision variables represent physical characteristics (such as temperature, pressure,

length, etc.), there are physical or economic constraints on the values of the decision vari-

ables. The constraints may be inequalities, equalities, or (upper/lower) bounds (also called

side constraints). These constraints can be met in the optimization process by forming

the augmented Lagrangian function. In forming the Lagrangian, each of the constraints

is assigned a weighting variable (Lagrange multiplier) and the augmented function is a

composite of the objective function and the sum of the weighted constraints. This aug-

mented function becomes the objective function, and is minimized as before, including

solving for the values of the multipliers. The use of multipliers increases the number of

variables (dimensionality) of the problem, and so, the complexity of the minimization.

However, the Lagrange multipliers make the connection between the objective function

and constraints, and they give a proportional weight to the relative importance of each

constraint. These methods are implemented currently in structural optimization by the

steepest descent, conjugate gradient, sequential quadratic/linear programming, or feasible

directions methods (Kamat, 1993:4).

1.1.2 Numerical Optimization Methods. With the advent of modem digital com-

puters numerical methods of optimization became practical, with finite element, finite

difference, and other discrete methods of optimization coming into use for structural opti-

mization (Venkayya, 1993:4). Typically, the process involves five steps:

1) find a feasible solution

2) evaluate the solution

3) compare the new solution to previous solutions

4) accept (or reject) the new solution

5) stop when some final stopping criteria is met, or go to step 1.

1-2

1.1.2.1 Limitations of Numerical Optimization. While this type of search

seems like a simple process, it has some potential pitfalls. For instance, non-linear systems

may have more than one optimal solution. This could lead to finding a local optimum,

rather than the single best global optimum over the entire search space. In the case of

finding a local optimum, the particular local optimum found might depend on which initial

feasible solution was chosen.

At each iteration, the method used for finding the new feasible solution may be the

factor which has the greatest effect on the conduct of the minimization, and perhaps the

quality of the final solution. For example, making a random perturbation of the system at

each iteration is a very simple way of choosing the next solution, but this method may never

find the optimum. On the other hand, a pure gradient search may lead to choosing the

first local optimum encountered, rather than the global optimum (McLaughlin, 1989:26).

The most appropriate stopping criteria for a numerical search algorithm depend on

the nature of the problem. For a convex objective function with concave constraints, a

unique global minimum is found when the necessary and sufficient conditions are met.

For non-convex problems, meeting the necessary conditions may not uniquely solve the

problem (Kamat, 1993:5). Linear approximations of the non-linear functions can simplify

the process, but then the overall quality of the solution depends on the quality and locality

of the approximation.

Numerical search techniques are especially useful because of their generality. How-

ever, for problems with many variables, or for highly non-linear systems where convergence

to an optimal solution is questionable, the numerical search process may stall. In these

cases, potential solutions can be compared to optimality criteria, eliminating solutions that

do not meet the necessary conditions.

1.1.3 Structural Optimization is the process of finding the best structure for a given

task (Vanderplaatz, 1984:1). The structure has to meet all the requirements, as well as

meeting the definition for being the "best." Being best may involve being the lightest, or

the cheapest, or the smallest. In the case of modern aircraft, the best structure is often

the lightest.

1-3

Structural optimization related to aircraft design is normally done to minimize weight.

This is important for fuel conservation, and allows for maximum performance of the aircraft

as a whole. In nr st current applications this minimization is accomplished by a gradi-

ent search of the objective function with constraints formed into a Lagrangian function.

One example of an aircraft structural optimization system is the Automated Structural

Optimization System (ASTROS).

ASTROS is a structural design optimization program being developed by the Flight

Dynamics Directorate of Wright Laboratories. ASTROS includes a module to minimize

the weight of aircraft components while meeting all strength and flexibility requirements.

The primary algorithm in the minimization module forms the Lagrangian of the objective

function and constraints and uses a gradient search to solve this as an unconstrained
minimization (Canfield and Venkayya, 1990:1038). First, the system is solved for the values

of the Lagrange multipliers. As mentioned, the minimization process involves finding the

derivatives of the active constraints. However, if the value of a Lagrange multiplier is

zero, then the corresponding constraint has no "weight" (is not active), and the algorithm

can save time by not calculating the derivative of the constraint. However, finding the

derivatives of the active constraints can be time consuming (Canfield, 1993). For large,

fully constrained problems, this may overwhelm even a supercomputer. Several approaches

have been tried to overcome this problem, but none is completely satisfactory for these

large, fully constrained problems (Canfield and Venkayya, 1990:1037).

1.1.4 Simulated Annealing (SA) is an optimization process that does not use deriva-

tives in minimizing a function. For this reason, SA may be useful in structural optimization

to solve some problems which cannot be solved using a gradient search approach.

SA is a fairly new process for numerical optimization of many classes of problems. It

is modeled after the centuries-old annealing process for metal and glass castings. Manufac-

turers anneal castings to make them tougher, by reducing their internal energy (McLaugh-

lin, 1989:28). There are strong parallels between Simulated Annealing and the physical

process of annealing. In each case, a system of many variables is minimized.

1-4

SA uses many steps in a random search to find the optimum of the system. Other

random search algorithms are prone to selecting the first local optimum encountered. How-

ever, SA has a feature that helps it find the global optimum rather than a local optimum.

The many steps required in SA are possible with modern computers, and the more capable

computers become, the more useful SA will be.

1.2 Conduct of the Research

1.2.1 Purpose of the Research. This research investigates the advantages and dis-

advantages of applying SA to structural optimization problems. It highlights the areas

where SA shows potential for further use in structural optimization. The results of this

investigation can be used to determine if further work should be done to implement SA in

specific structural optimization packages by commercial and government users.

1.2.2 Problem Statement. The problem posed for this research is to implement SA

in benchmark structural optimization problems, and analyze the performance of SA in this

application. The analysis will identify strengths and weaknesses of SA in this application

and provide guidance to potential users concerning the applicability of SA to structural

optimization problems.

1.2.3 Organization of the Report. This thesis consists of five chapters, beginning

with this introductory chapter. Chapter II highlights the pertinent structural optimization

and SA literature that has been published to date. Chapter III outlines the theoretical

background and development of SA and Adaptive Simulated Annealing, as well as ex-

plaining the benchmarking process used for this analysis. In Chapter IV, the results of

optimizing the benchmark problems with SA and analysis of these results are shown. Fi-

nally, Chapter V gives a summary, recommendations for further research, and conclusions

of the investigation.

1-5

II. Literature Review

2.1 Simulated Annealing (SA) in Structul Optimization

While no direct applications of simulated annealing to structural optimization have

appeared in the literature yet, SA has been applied in a wide variety of other contexts.

The SA algorithm has been developed over the last twenty years by integrating proven

techniques from statistical mechanics with new insights into combinatorial optimization.

Kirkpatrick, et.al., brought SA to the attention of scientists in many fields when they

published Optimization by Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi, 1983).

Prior to this, SA was an obscure mathematical tool, and its applicability to other fields was

not widely recognized (Collins, Eglese, and Golden, 1988). Kirkpatrick's article becar

launching point for many investigations into the use of SA in fields as diverse as cor.

architecture, geology, chemistry, and biology.

Kirkpatrick, et.al, identified the connection between statistical mechanics and combi-

natorial optimization. They explained that in annealing, statistical mechanics models the

minimization of the internal energy (heat) of many molecules. Combinatorial optimization
minimizes (or maximi es) the value of an objective function of many variables. They gave

examples showing how statistical mechanics in annealing is analogous to combinatorial

optimization in designing computer chips and in the classic traveling salesman problem.

2.2 Outline of the Standard SA Algorithm

The SA algorithm involves six fundamental steps (Aarts and Korst, 1990:12)

1. Choose a feasible starting point and temperature; then evaluate the objective

function.

2. Randomly perturb the system by changing the value of one or more decision

variables, while ensuring that their values remain feasible.

3. Evaluate the objective function at the new point.

4. Apply the acceptance criteria for the new solution.

2-1

5. Repeat steps I through 4 until the system is stable, then reduce the temperature

according to the annealing schedule.

6. Repeat steps I through 5 until the final stopping criteria is met.

2.3 Highlights of the Algorithm

(1) The first step in the algorithm is to choose a starting configuration and control

parameter (analogous to temperature in physical annealing), then find the initial value

of the objective function. While these choices of starting solution and temperature are

unique to each application, SA is normally fairly insensitive to the starting conditions. In

the application to structural optimization, this step establishes the initial physical charac-

teristics of the structural components, ensures that all constraints are met, and determines

the initial weight of the structure.

The term temperature is a holdover from the physical process of annealing, where it

refers to the actual heat content of a casting. In simulated annealing, temperature is a

parameter that controls the probability of accepting a new solution that is "worse" than

the old one. The higher the temperature, the greater the chance of accepting a "worse"

solution. This probability of accepting a worse solution is the feature that allows SA to

leave a local minimum and continue to search for the global minimum. McLaughlin suggests

that the initial temperature should be high enough that virtually any feasible solution will

be accepted (McLaughlin, 1989:32), but a more common initial target acceptance rate is

about 80 percent.

(2) The second step in the algorithm is to randomly perturb the system. In explain-

ing combinatorial optimization, Kirkpatrick, et.al., described a random search method that

accepts only lower values of the objective function at each iteration. It usually gets stuck in

the local minimum closest to the starting point. This algorithm is often called the Greedy

Algorithm because, in its "greed" to find any optimum, it will likely miss the global opti-

mum and accept a local instead (McLaughlin, 1989:25). In 1985, Cerny presented a Monte

Carlo algorithm to find approximate solutions to the traveling salesman problem. "The al-

gorithm generates randomly the permutations of the stations of the traveling salesman trip,

2-2

with probability depending on the length of the corresponding route" (Cerny, 1985:41).

This offers one method for generating random perturbations to a system. In structural

optimization, this step corresponds to a random change in the physical dimension of one

or more components.

(3) The third step is to evaluate the new solution. The specific mechanics of this

evaluation depend on the application. For structural optimization, this step determines

the total weight of the structure with the new dimensions.

(4) In the fourth step, accept or reject the new solution. If the new solution gives

a lower value for the objective function, accept it. However, if the new solution gives a

higher value, consider accepting it. This possibility of accepting the "worse" solution gives

the SA algorithm the ability to leave a local optimum, and continue to search for the global

optimum. This is the key feature that sets SA apart from other random search algorithms.

From statistical mechanics, Kirkpatrick, et.al., described the Metropolis procedure to over-

come the Greedy Algorithm's problem of stalling at a local optimum. "The Metropolis

procedure from statistical mechanics provides a generalization of iterative improvement in

which controlled uphill steps can also be incorporated in the search for a better solution"

(Kirkpatrick, Gelatt, and Vecchi, 1983:674). This makes it possible for the algorithm to

climb out of a local minimum and find a better local minimum, or the global minimum.

Control for the uphill steps is given by the Boltzmann distribution (Figure 2.1):

P(E) = Z(T) exp (iT

where Pr(E) is the probability of accepting the uphill step, Z(T) is a normalizing factor

depending on the assigned temperature (T), E is the average energy leve3, vNn1 kE is the

Boltzmann constant. The value of kz is a natural constant, determined by experiment ation,

which adjusts the shape of the Boltzmann distribution to model the physical annealing

process. It normally would not represent a valid constant in the SA process, but a different

constant may be appropriate. For a given change in temperature, when the temperature

is high, the probability of accepting an uphill step is high. As the temperature is reduced,

the probability of accepting the uphill step is reduced.

2-3

0. -

0.72 -

Pr bility 0.56-- - -of Given \

change in\

Energy o. - - -state \'

Mim

0.4 ,\

0.32 - - -

0.242

0.16 - - ' - -.

0-
0 2 4 6 s 10 12 14 16 16 20

'rime

Figure 2.1 TIhe Boitzmann Distribution at
High and Low Tempeatre

2-4

(5) The fifth step in the algorithm is to iterate at a given temperature and, when the

system is at a stable average configuration for that temperature, reduce the temperature

according to the annealing schedule. This schedule for reducing the temperature is critical

to the success of either real or simulated annealing. According to Cerny, "Experiments

... are done by careful annealing, first melting the substance, then lowering the temperature

slowly, and spending a long time at temperatures in the vicinity of the freezing point. If

this is not done, and the substance is allowed to get out of equilibrium, the resulting crystal

will have many defects" (Cerny, 1985).

Quenching is the process of deliberately reducing the temperature quickly, without

allowing the substance to reach equilibrium. This degenerates the SA algorithm to an

ordinary random search like the Greedy Algorithm. In annealing, this process creates a

brittle casting, but it is much quicker, and in some cases may be preferred to the slow

annealing process. Quenching is not normally used in SA. To get the lowest possible

cost with SA, the annealing schedule must allow the system to reach steady-state at each

temperature. On the other hand, spending too much time at a given temperature wastes

computer resources. So, the annealing schedule must allow the system to stabilize before

changing temperature, and then change promptly.

The cooling schedule is often found by trial and error (Brooks and Verdini, 1988:431).

However, Basu and Fraser suggest that it may be cost effective to spend up to 80 percent of

the total CPU time to establish the best cooling schedule (Basu and Frazer, 1990). Collins,

et.al., listed five different schemes for controlling the temperature, T, (Collins, Eglese, and

Golden, 1988):

"* A constant value of T; T(t) = C

"* An arithmetic function of T; T(t) = T(t - 1) - C

"* A geometric function; T(t) = a(t)T(t - 1)

"* An inverse; T(t) = C/(1 + ta)

"* A logarithmic function; T(t) = C/In(1 + t)

2-5

(6) The last step in the SA algorithm is to iterate until the stopping criteria is met.

Several classes of stopping criteria can be used (Collins, Eglese and Golden, 1988).

"* In the simplest criteria, a fixed amount of CPU time is allocated, and the process

stops when the time runs out (Brooks and Verdini, 1988:429).

"* Another approach is to compare the value of the objective function at each itera-

tion with the value at previous iterations. Under this criteria, stop when the func-

tion reaches a stable value for a certain number of iterations (Brooks and Verdini,

1988:430).

"* If there is a certain target value of the function (a known or estimated minimum),

stop when the configuration meets the target (Brooks and Verdini, 1988:430).

"* When the algorithm is near the optimum the ratio of accepted configurations to

total configurations will become very small. The algorithm can stop when this ratio

reaches a predetermined value (Ingber, 1993b:6).

"• If none of the other criteria are met, stop when the temperature reaches a value near

zero (Collins, Eglese, and Golden, 1988:212). At this point the algorithm degenerates

to a random search, and the cost of further annealing should be compared to the

benefit that might be gained.

When the correct stopping criteria is met, the algorithm will have a solution close to the

global optimum.

2.4 New Developments

Until about 1987, simulated annealing was considered useful for finding only local

optima. However, new references in the field refer to SA finding global optima rather than

local optima. Brooks and Verdini report: "The rapid increase in inexpensive computing

power has contributed to an increase in interest in solving global optimization problems

using stochastic methods (Brooks and Verdini,1988:427)." Given enough iterations, SA

can be expected to find the global optimum. With a powerful enough computer, this may

be realistic for all discrete optimizations and for many continuous functions.

2-6

Some new methods are being investigated to help speed up the SA process. Gold-

stein and Waterman have considered varying the size of the neighborhood of the acceptable

steps by changing the permutation mechanism (Goldstein and Waterman,1988:411). Tovey

wrote Simulated Simulated Annealing to discuss three other methods of speeding the pro-

cess (Tovey, 1988). He calls them the Surrogate Function, Neighborhood Prejudice, and

Target Prejudice swindling ideas. These have potential for improving the speed of SA

by making each iteration more efficient. This suggests the need to count the number of

iterations that SA uses for each solution. An old method for speeding SA is to make it

interactive with a human operator. This method is gaining new attention as interaction

techniques are improved. With a human to intervene when the process takes a bad turn,

SA's efficiency can be greatly improved (Tovey, 1988:405). New parallel processing hard-

ware will also make SA more attractive by increasing the speed of processing when making

many iterations and when checking the constraints imposed on the solution.

Overall, the literature on Simulated Annealing has touched many different fields.

The algorithm is under rapid development by many researchers. As yet, the application of

SA to structural optimization problems has not appeared in the literature. However, the

foundation of SA in general has been thoroughly developed, opening the door to research

on this particular application.

2-7

III. Simulated Annealing and Benchmarking

This chapter outlines the basic tools used to evaluate the application of Simulated

Annealing to structural optimization problems. It highlights the theoretical development

of the standard Simulated Annealing algorithm and the features specific to Adaptive Simu-

lated Annealing, the software package implemented for this research (Ingber, 1993b). The

concept of benchmarking is introduced, and the specifics of the benchmark problems are

discussed.

3.1 Theoretical Development of the SA algorithm

The standard SA algorithm uses a Boltzmann distribution to control the probability

of accepting a worse solution at each iteration. As discussed in Chapter 2, the Boltzmann

distribution is a negative exponential with parameters to control the shape of the curve,

thus controlling the probability of accepting a worse solution. Each time a worse solution

is proposed, the value of the Boltzmann distribution is compared to the value of a random

variable drawn from a uniform distribution. If the Boltzmann value is higher than the

uniform random variable, the new solution is accepted, even though the cost (weight) is

higher. At each iteration, there is some finite probability of accepting a worse solution.

However, this probability approaches zero near the end of the program, as the temperature

approaches the "freezing" point.

The primary control parameter in the Boltzmann distribution is the temperature.

This term initially referred to the actual temperature in a physical annealing process, and

so was held over by most users of SA. In Simulated Annealing, "temperature" refers to a

control parameter for the negative exponential distribution, even if it looks different from

the original Boltzmann distribution. Because the temperature term is in the denominator

of the negative exponential term, a high temperature yields a large value from the Boltz-

mann distribution, and a high probability of accepting a worse solution. This is the case

at the beginning of the process. As the temperature is decreased, the value drawn from

the distribution decreases, and the probability of accepting a worse solution decreases.

3-1

9.1.1 Global Optimality. It has recently been proven that, with an infinite num-

ber of iterations, Adaptive Simulated Annealing will find the global optimum (Ingber,

1993a:39). Since there is always a finite probability of accepting a worse solution at each

iteration, the algorithm can always leave a local optimum. As the number of iterations

approaches infinity, Adaptive Simulated Annealing must leave all of the local optima and

find the global optimum. At each iteration of the algorithm, Adaptive Simulated Anneal-

ing saves the best cost yet, and the global optimum will be saved even if the algorithm

leaves this configuration.

3.2 The Adaptive Simulated Annealing Algorithm

Adaptive Simulated Annealing has been developed and modified over the last ten

years by Dr. Lester Ingber (Ingber, 1993b). The code was originally developed and made

available in 1987 as Very Fast Simulated Reannealing, and is under continuing development.

3.2.1 Temperatures. In Adaptive Simulated Annealing, a temperature term is used

to control the step size from one solution to the next proposed solution as well as to control

the probability of accepting a new "worse" solution. The temperature which controls the

acceptance probability is called the cost temperature and the control for the step size is

the parameter temperature (Figure 3.1). If a feasible solution is available, a new proposed

solution is generated from it. The new proposed solution is projected uniformly along each

variable (dimension) within the upper and lower bounds defined for that variable. When

the parameter temperature is very high, there is a high probability of choosing a value far

from the current value for each variable. At this high temperature almost any value within

the bounds defined for the variable is likely to be chosen for the new proposed solution.

When the parameter temperature is reduced, there is a lower probability of choosing a

value far from the starting value for each variable. This allows the algorithm to survey the

entire solution space, then close in on the optimum. If there is no initial feasible solution,

the parameter temperature remains high and proposed solutions are created by randomly

choosing variable values within the upper and lower bounds defined for each variable, until

a feasible solution is found.

3-2

Probability of 0.7

Accepting
Parameter Value 063

Chosen from
Uniform
Distribution 0.56

0.49 -

0.42

0.35 -

0.28

0.21

0.14 4-

0.07

0 2 4 6 8 10 12 14 16 18 20

1.1

Uniform Distrioution IT
of Parameter Values

0.9
0 2 4 6 8 10 12 lA 16 18 20

Current Parameter Upper/Lower
Value Bound

Figure 3.1 Parameter Temperature Compared to
Uniform Distribution

3-3

3.1.2 Fudamental Distributions and Equations (Ingber, 1993b:5). There are five

fundamental equations which control the function of Adaptive Simulated Annealing.

"* The Parameter Generating PDF generates new variable values:

p(h + 1) =p(k) + y(B- A)

where p(k) and p(k + 1) are the current parameter value and the next for the variable

representing one dimension. The y parameter is a uniform [-1,1] random variable.

The B and A terms represent the upper and lower bounds defined for the variable.

"* The probability of using this newly generated parameter value in the new proposed

solution is controlled by the parameter temperature function:

1
(= 2[IyI + T,(k,)] h[1 +

where Tp(k.) is the parameter temperature at iteration kp defined in the algorithm

according to the annealing schedule created by the Annealing Temperature Schedule.

This is the behavior described previously: a high parameter temperature gives a high

probability of making a large step, and a low temperature gives a low probability of

making a large step.

" The Parameter Annealing Temperature Schedule controlling the parameter temper-

atures is given by:

TP(4,) = T7,(O) exp(-Wk/,D)

where Tp(kp) and Tp(O) are the current temperature and the initial temperature,

respectively, W is the current weight, kp counts the number of iterations completed

in selecting values for this parameter, and D is the number of dimensions. Note that

as the weight, W, is reduced, the temperature tends to rise. However, the number of

iterations increases steadily, and reduces the temperature. It is this balance between

3-4

the weight and the number of itqrations that drives the annealing schedule for the

temperatures of the parameters.

e The cost temperature (Acceptance PDF) controls the probability of accepting worse

solutions:

F =exp([W(k.) - W(k. - 1)])
T.(k.)

where W(k.) and W(k, - 1) are the weights (or costs) of the structure at the current

and previous solutions, and T,(k,) is the assigned cost temperature according to the

Annealing Temperature Schedule. This value is compared to a uniform [0,1] random

variable U (Figure 3.1). If F > U, the new solution is accepted; if F < U, another

solution is tried.

e The cost temperature is reduced according to the Cost Annealing Temperature Sched-

ule:

T.(k.) = T.(O) exp(-W4/1D)

This cost temperature schedule is similar to the parameter temperature schedule

except that k, counts the number of iterations tried for the cost function.

3.2.3 Initial Conditions and Stopping Criteria are required for the standard SA

algorithm as well as for Adaptive Simulated Annealing. With the exception of the rean-

nealing parameters and the specific names of the other parameters, the terms used here

can be applied to the standard SA algorithm. The initial conditions of the optimization

determine the initial feasible solution, initial temperatures, and user selectable features.

Some of these user-controllable features are:

"* Initial Cost Temp can be user defined to adjust the initial rate of acceptance.

"* Include Integer Parameters can be set to make Adaptive Simulated Annealing find

integer solutions only (Integer Programming).

3-5

e User Initial Parameters can be set to give Adaptive Simulated Annealing a user

defined initial feasible solution.

* User Initial Parameters Temps can be set to adjust how fast Adaptive Simulated

Annealing initially surveys the solution space.

The stopping criteria define when Adaptive Simulated Annealing stops making itera-

tions, and considers reannealing, or (for SA in general) stops annealing at the final solution.

The process stops when any one of the selected stopping criteria is met, so the stopping

criteria plays an important role in determining the precision of the solution. Again, these

criteria apply to generic SA as well as to Adaptive Simulated Annealing. Some of these

tolerances are:

"* Limit Acceptances defines the maximum number of feasible solutions Adaptive Sim-

ulated Annealing accepts before stopping.

"* Limit Invalid Generated States defines the maximum number of infeasible solutions

Adaptive Simulated Annealing generates before stopping.

"* Accepted to Generated Ratio defines the smallest allowable ratio of accepted to gen-

erated solutions. When the algorithm is dose to the minimum, the cost temperature

may be low, so few new solutions will be accepted and this ratio approaches zero.

"* Cost Precision defines the smallest difference between cost (weight) values of the

objective function considered to be significant. This influences the use of Mazimum

Cost Repeat, which stops the iteration process when the cost (weight) is repeated a

defined number of times.

"* Parameter Temp Test sets a flag when the parameter temperature is reduced to a

defined value. When the parameter temp is near zero, only very small steps are likely

to be made from one feasible solution to the next, and it is relatively expensive to

continue searching compared to the potential benefit.

"* Cost Temp Test sets a flag when the cost temperature is reduced to a defined value.

When the cost temperature is very low, there is a very low probability of accepting

a new higher cost, indicating that the search is near the optimum. At this point the

3-6

algorithm is an ordinary random search, accepting only improved solutions at each

iteration.

3.3 Features Specific to Adaptive Simulated Annealing

This code is available free from Dr. Ingber. It is made to be highly portable for

platforms ranging from microcomputers to supercomputers. It is written in the "C" pro-

gramming language, which is modern and flexible, and the code is setup for ANSI C or for

previous versions. Dr. Ingber himself is available for consultation by electronic mail. In

fact, he provides feedback to users and updates to the code via a mailing list for anyone

interested in the code. This communication among users creates the interaction among

users which is necessary for research progress.

An important underlying reason for using the Adaptive Simulated Annealing code

for this investigation is its many user-controllable options. These options make the code

flexible and allow the user to target the specific features of SA which are needed for a specific

task. Adaptive Simulated Annealing implements the basic SA algorithm, and makes it very

user friendly. Default values for each of the options are built into the Adaptive Simulated

Annealing algorithm. Some of these options that are specific to the Adaptive Simulated

Annealing algorithm are:

e Reannealing. In the reannealing process, when the initial stopping criteria is met

the parameter temperatures are rescaled and the annealing is restarted. This allows

greater precision in the solution by minimizing round-off error. Reannealing is an

optional process, selectable by the user, along with the number of restarts to be

made.

e Self Optimizing. In case the initial conditions are difficult to define, the Adaptive

Simulated Annealing algorithm will anneal the annealing process. This process op-

timizes the initial conditions for a subset of the solution space, then provides these

initial conditions for the full solution. This process is CPU-intensive, but it gives the

program a starting point in case the defaults don't work and the user has no other

method of identifying initial conditions.

3-7

"* 0Ct•ature Zero tells Adaptive Simulated Annealing not to calculate the slope of the

solution space at the optimal point. This calculation is used when rescaling the

parameters based on curvature, prior to reannealing.

"* Quench Parameters allows the annealing process to proceed to a defined point, then

the parameter temperature is reduced to a value near zero. This effectively stops the

annealing process at that point, and the search degenerates to an ordinary random

search. This option allows for a quick solution in the case of many dimensions or

a complex system of equations to evaluate. However, the solution found is very

approximate and the theoretical guarantee of global optimality is lost.

"* Adaptive Simulated Annealing has an option to keep track of CPU-time wsed in

finding a solution. This makes it easy to compare the performance of the algorithm

with standard benchmark problems on a standard computer platform.

"• The input/output functions are very flexible. This feature is especially user friendly.

The user can easily define the input and output options, as well as the name of the

output file and the media where it's written.

"* To make the code applicable to many computer platforms, the machine precision,

and overload values are user selectable.

3.4 Benchmarking in Structural Optimization

Structural optimization is carried out using various optimization packages. Typically,

to compare the performance of one optimizer against others, standardized "benchmark"

problems are run with each optimizer under conditions as similar as possible. The bench-

mark problems should give a representative sample of the types of problems that the

optimizers can be expected to solve, as well as a common ground for comparison among

the optimiszers.

The r-ladive quality of the solution found, the number of iterations and the time

required to find the solution can be compared among the optimizers. The relative quality

of the solution is the easiest of these to compare; normally the lowest value that meets the

constraints is the best solution. Other criteria are harder to compare among optimizers.

3-8

The number of iterations required depends on the design of the algorithm, and may depend

on the definition of an uiteration" for a certain algorithm.. The time required for a certain

optimizer to find the solution varies depending on the type of problem, the starting point,

the computer architecture, and the precision required.

Many structural optimization problems can be formulated as standard linear or non-

linear programs, with the objective function and constraints explicitly defined at the start

of the program and evaluated at each iteration. However, because of the complexity of

evaluating highly non-linear functions and their derivatives, even a supercomputer may

be overwhelmed by problems with many variables. To resolve this shortcoming, large

structural optimization problems are usually solved with some type of active-constraint

strategy. In this formulation, the constraints are not explicitly defined at the beginning of

the non-linear program. Rather, the active constraints are redefined at each iteration and

only these constraints are evaluated. This process resolves some of the size and complexity

difficulties in large problems, but requires the extra step of redefining the active constraints

at each iteration.

The active-constraint formulation does not lend itself to SA, which evaluates all of

the constraints at each iteration. For SA, this saves the effort of frequently redefining the

constraints, but requires working with a larger non-linear program. However, since SA

does not have to calculate the derivatives of the objective function and constraints at each

iteration, a larger problem may be easier to evaluate and may not overtax the computer's

capacity.

3.4.1 Benchmarking with SA. To evaluate the performance of SA in structural op-

timization, eighteen explicitly defined benchmark structural optimization problems were

solved. These eighteen problems, along with the solutions found by four other optimizers,

were provided by the Flight Dynamics Directorate at Wright Laboratories. These prob-

lems represent "real" structural optimization problems. They are formulated as linear or

non-linear programs, and range in number of variables from two to eight, in number of

constraints from one to twenty-five, and in complexity from linear to highly non-linear

3-9

(Venkayya, Tischler, and Pitrof, 1992). None of the eighteen structural optimization prob-

lems included more than eight variables.

To test simulated annealing on problems of higher dimensionality, two non-linear

programs were chosen from another set of benchmark problems (Floudas and Pardalos,

1990). These are not "real" structural optimization problems, but they are formulated

in a manner similar to the structural optimization problems. They have thirteen and

twenty variables, respectively. Using these problems allowed a more complete test of the

capacity of the Adaptive Simulated Annealing algorithm in solving problems with higher

dimensionality.

3.4.2 Problem Formudation. Each problem is expressed in the following form:

Min

F(r)

Subject to

h(m) = 0

g(0)00

where F(z) is a real-valued continuous function, h(z) represents the set of equality con-

straints and g(z) represents the set of inequality constraints. All decision variable values

must be non-negative, since the variables in this set represent the physical dimensions of

structures, and negative values would normally be meaningless.

3.4.2.1 Constraints. Except for upper and lower bounds, no method for eval-

uating constraints is explicitly built into the Adaptive Simulated Annealing algorithm.

The set of bounds defines the neighborhood that the algorithm initially searches. If there

are no other constraints, this represents the feasible region. However, structural optimiza-

tion problems are usually constrained beyond any upper or lower bounds on the individual

variables. In aircraft structural optimization, constraints must be met for flutter, displace-

ment, total weight, etc., and the constraints may make the actual feasible region much

smaller than the neighborhood set by the bounds on the variables.

3-10

To ensure that the constraints were all met prior to evaluating the objective function,

each constraint was checked for feasibility. If all of the constraints were met, the objective

function was evaluated, and this weight was returned to the optimizer. If any constraint

was not met, a flag was set and no value was returned to the optimizer, saving the time

which would have been required for evaluating the objective function for an infeasible

solution.

Inequality Constraints. By far, most of the constraints in structural optimization

problems are inequalities. This is because, in most structural optimization, a given perfor-

mance level or physical characteristic must be met or exceeded in finding the best structure.

In the formulation for optimizing these benchmark problems, all inequalities, g(z), are ex-

pressed as < constraints. This includes the cases where the original formulation included

a function which was bounded above and below. In this case the bounds were rewritten

as two separate inequality constraints. This constraint structure is simple. A formulation

with fewer constraints might be possible at the expense of making each constraint more

complex.

Equality Constrains. There is only one equality constraint in the entire set of bench-

mark problems. However, since equality constraints are possible in structural optimization

problems, consideration was given to satisfying them. One way of satisfying these equality

constraints is to use Lagrange multipliers and build the equality constraints and the origi-

nal objective function into an augmented Lagrangian objective function. This method was

not used because it increases the dimensionality of the non-linear program by introducing

more variables (the Lagrange multipliers). Instead the equality constraint was used to

redefine the value of one variable in terms of the others by direct elimination of one vari-

able. This redefined term was then substituted back into the problem and the optimization

was conducted without equality constraints. This process makes the inequality constraints

more complex, but it reduces the dimensionality of the problem and the total number of

constraints.

3.4.2.2 Objective Function. If the constraints are all met, the objective func-

tion is evaluated to find the total weight of the structure with the new values of the

3-11

variables. This value is returned to the optimizer, and is compared to the previous value of

the objective function. If this new value is better than the previous value, the new solution

is kept as the current solution. If it is not better than the previous, it may still be kept as

the current solution with a probability depending on the current temperature.

3.4-.2.3 Initial Feasible Solution. The algorithm accepts an initial feasible so-

lution, if one is available. Since all of these problems have been solved by other optimizers,

a very good initial feasible solution was available. As part of the evaluation, this solution

was provided to the Adaptive Simulated Annealing algorithm in some runs. Additionally,

in some cases, the known optimum was used to narrow the bounds of the neighborhood

around each variable. These "unfair" variations in the initial conditions were used in cases

where the Adaptive Simulated Annealing algorithm could not find a solution, and were

considered in the analysis of the results.

3.4.3 Benchmarking with Other Optimizers. The other standard optimizers used

on the benchmark problems represent basic techniques currently in use for structural opti-

mization. FUNOPT uses a Generalized Compound Scaling scheme, ADS uses a Modified

Feasible Directions approach, NEWSUMT implements a Sequential Unconstrained Min-

imization with Penalty Function, and NLPQL implements a Sequential Quadratic Pro-

gramming scheme. All of the benchmark structural optimization problems were optimized

by ADS, and NLPQL. Seventeen of them were optimized by FUNOPT, and only the first

six were optimized by NEWSUMT (Venkayya, Tischler, and Pitrof, 1992:2). Solutions to

the two additional non-linear programs were provided by Floudas and Pardalos (Floudas

and Pardalos, 1990: 9-15).

Non-linear programs frequently have multiple local optima, and the solutions found

to the benchmark problems by the various optimizers illustrate this point. Each non-linear

program poses a unique problem for each optimizer, depending on problem structure,

methodology, implementation, initial conditions, and other factors.

3.4.4 Measure of Complexity. The number of local minima, as well as the complex-

ity of evaluating the objective function and constraints depend on the level of non-linearity

3-12

of these functions and the number of variables. A linear program has a linear objective

function and constraints, and is one of the simplest to evaluate. A function with a non-

linear objective function and constraints is much more difficult to evaluate, and may have

many local optima. It became apparent during the course of this investigation that, along

with the number of variables, the complexity of the constraints is an important factor in

the success or failure of the simulated annealing algorithm in finding the global optimum.

These factors determine whether or not an optimum is found, the time required to find an

optimum, and the quality of the solution found.

The algorithm initially searches the entire neighborhood defined by the bounds on the

variables. If there are many constraints, or they are complex, the actual feasible region may

be much smaller than this neighborhood. In one case, the feasible region was estimated to

be smaller than one millionth of the neighborhood. To illustrate how this affects the search,

consider a two-dimensional neighborhood the size of this standard (8.5 x 11 inch) sheet

of paper. A feasible region one millionth the size of this two dimensional neighborhood

would be approximately - of the size of this letter "0", even smaller than a period (".")

on this page. In this case, the Adaptive Simulated Annealing algorithm starts a random

search of the entire neighborhood (8.5 x 11 inches), and has a very small probability of

finding the feasible region.

It seemed possible that some measure of complexity could be used to predict the

effects that the constraints and the number of variables would have on an optimization

by the Simulated Annealing algorithm. After a review of the literature in the field, and

consultation with several mathematicians, it was determined that no such measure exists.

An index representing a Measure of Complexity (MOC) was defined to help predict these

effects. The objective function and the entire set of constraints for a given problem are

evaluated and assigned a MOC value based on the non-linearity of the objective function

and constraints, the number of variables, and the number of constraints. Based on the

MOC value, a user may be able to make predictions about the performance of the algorithm

on a certain problem. The MOC index was not designed to predict the performance of

other optimizers. However, the same criteria used here would be appropriate to build

indexes for other optimizers, or the MOC may apply as presented.

3-13

Measure of Coaupdft (MOC) Caulation. Sum the point values assigned to the

objective function and constraints, according to the following criteria :

I point for each term with a linear exponent or negative exponent

2 points for each term with an integer non-linear exponent or integer crossproduct

3 points for each term with a non-integer exponent

2 points for each constraint

3 points for each variable

If a term meets the criteria for more than one point value, assign the highest appropriate

point value for the term.

Example:

Min

(z) = 3zoziz" + 2X2

Subject to:

gl = zo - 1

g2 = ZoZ2 + z 1.0

MOC count

f(x): 3 points for non-integer exponent

I point for integer exponent

variables: 9 points for three variables

gi: 2 points for non-linear exponent

g2: 2 points for integer crossproduct

1 point for negative exponent

constraints: 4 points for two constraints

Sum MOC 22

3-14

Before each problem was optimized with the Adaptive Simulated Annealing algo-

rithm, information was gathered on the number of variables, number and type of con-

straints, the Measure of Complexity, and variations in the initial conditions given to the

algorithm. After optimizing, the best solution found, the number of solutions generated,

and the amount of time required to find the solutions were noted. Chapter Four shows

how this information was used to analyze the performance of the algorithm, and to make

comparisons with the other optimizers.

3-15

IV. Resufts and Ana lJai

This chapter presents the results of optimizing each of the benchmark problems using

the Adaptive Simulated Annealing algorithm. The analysis centers on three main results.

The first concerns the effects of variations of the initial conditions and stopping criteria.

Next, the quality of solutions found by the Adaptive Simulated Annealing algorithm is

compared to the quality of solutions found by the other optimizers. And finally, the effects

of high dimensionality and high non-linearity of the objective function and constraints are

related to the success of the optimization.

4.1 Variations in Initial Conditions/Stopping Criteria

The initial conditions and stopping criteria given to an optimizer can have a great

impact on the success of the optimization. These parameters may determine whether or

not the algorithm finds a solution, the quality of the solution found, and the time required

to find a solution. By trial and error, it was determined tiat the initial conditions/stopping

criteria that seem to make the most significant difference for SA in structural optimization

are: Limit Acceptances, Limit Invalid Generated States, Accepted to Generated Ratio,

Cost Precision, Maximum Cost Repeats, Number of Cost Samples, User Initial Parameters

(true/false), Activate Reanneal (true/false), Upper/Lower Bounds, and Random Number

Generator Seed. Benchmark Problem One was used to evaluate the effects of variations in

these initial conditions/stopping criteria on the success of the algorithm (Table 4.1).

To identify the effects of varying these ten parameters, Problem One was initially

optimized using a set of "Standard Conditions" (page C.1). Each condition that was

identified as having a potentially significant effect on the optimization was isolated and

modified, then the optimization was re-accomplished for each change. Analysis of the effect

of each variation on optimizing this problem was generally useful for predicting the effects

of variations in other problems. No effort was made to evaluate interaction effects among

these variations in the initial conditions/stopping criteria, because the results would be so

specific to each individual problem.

4-1

"Table 4.1 Effect of Variations in Initial Conditions and Stopping Criteria
Modified Standard Modified Solutions Solution

Parameter Value Value Generated Time

Standard
Condition
No Modif 33453 Om 21.53s

Limit
Acceptances 1000 10000 769257 8m 21.539
Lim Invalid
Gen States 1000 10000 33453 Om 21.489
Acc/Gen

Ratio 10-4 10-8 33453 Om 21.479
Cost

Precision 10-a 10-4 33453 Um 21.33s
Max Cost
Repeats 2 5 33453 Om 22.31s
No. Cost
Samples 2 5 3155 Um 01.998
User Init

Parameters Yes No 29756 Um 20.099
Activate
Reanneal No Yes 14912 Um 09.14s

Bound
Change 0 to 10 0 to 20 57787 Um 38.4s
Bound No Feasible
Change 0 to 10 0 to 100 0 Solution

Random No.
Seed 696969 697969 80091 Om 54.51s

Random No.
Seed 696969 696971 3735 Urm 02.55s

4-2

Benchmark Problem One was chosen to evaluate the effects of these variations be-

cause of its simplicity. It has only two linear constraints, one non-linear constraint, and two

variables in the objective function (MOC value of 22). The Adaptive Simulated Annealing

algorithm was able to find the same optimal solution under all but one of the variations,

eliminating variability in the quality of the solution. This made the time required to solve

the problem the primary basis for comparison of the variations. Generally, the time re-

quired is proportional to the number of solutions generated. As shown in Table 4.1, the

effect of each variation can be seen in the results of these tests:

"* Limit Acceptances limits the total number of feasible solutions accepted by the op-

timizer (page C.2). The effect of a change in Limit Acceptances is significant. By

increasing the number of acceptances by a factor of 10, the number of solutions

generated increased by a factor of 25, and the time required to find the solution

also increased by a factor of 25. Analysis of intermediate steps in the optimization

showed that the actual number of solutions generated and the time required to find

the optimal values of the decision variables were similar to those required under the

standard conditions. However, the algorithm continued to "spin its wheels" for the

additional allowed number of solutions. To avoid this waste, the user can allow a

relatively small number of acceptances initially, then increase the number allowed in

subsequent optimizations if an improved solution is desired.

" Limit Invalid Generated States limits the number of infeasible solutions the optimizer

may generate (page C.3). For this problem, changing this parameter did not influ-

ence the optimization significantly. This parameter could be significant in highly

constrained problems, where many infeasible solutions will be generated at the be-

ginning of the optimization. In that case, allowing more infeasible solutions could be

the key to the optimizer finding a feasible solution. This was the case with Bench-

mark Problem Six (pages C.18 and C.19). The algorithm could not find a solution

under the standard conditions, but when the stopping criteria allowed more infeasible

solutions, the algorithm found a good solution.

4-3

* Accepted to Generated Ratio defines the smallest ratio of accepted solutions to total

solutions allowed (page C.4). Variation of this parameter did not significantly influ-

ence the optimization of Problem One. For problems with little curvature near the

optimum, there would be relatively few acceptances compared to generated solutions,

and this parameter could have a significant effect.

* Cost Precision defines the smallest difference considered significant between cost

(weight) values when counting cost repeats of the objective function for Mazimum

Cost Repeats (page C.5). For instance, a cost of 3.01 may be considered the same

as 3.00 if Cost Precision is set to a value greater than 10-2. In Problem One, a

change in cost precision did not make a significant difference in the optimization.

This parameter could be significant when very fine precision is required in finding

the optimum, and generally this parameter can be set for the precision needed in the

solution.

e Maximum Cost Repeats stops the optimization when the cost value of the objective

function is repeated a given total number of times (page C.6). The change in this

value was not significant in this problem. In other problems, extra cost repeats

caused the algorithm to "spin its wheels" similar to the effect of extra acceptances.

This value can be set at a relatively low value, and increased if necessary for a better

solution.

* Number of Cost Samples tells the algorithm how many samples to use when initially

evaluating the "surface" of the cost function (page C.7). The more samples the

algorithm uses, the better the initial survey of the cost function. In Problem One, an

increase by a factor of 2.5 in the Number of Cost Samples decreased the time required

to find the solution by a factor of more than ten. This is a significant improvement.

* User Initial Parameters allows the user to give the algorithm an initial feasible so-

lution from which to begin the search (page C.8). If an initial feasible solution is

provided, the algorithm centers the search on this value and searches in each direc-

tion from this point. If no initial feasible solution is provided, the algorithm searches

the neighborhood defined by the upper and lower bounds until a feasible solution

is found. In this problem, the algorithm required about 10 percent fewer generated

4-4

solutions when it found its own initial feasible solution, and the difference in time

was proportionally smaller. Intuitively, the algorithm should find the optimum faster

with a good initial feasible solution. However, because of the random nature of the

algorithm's search, this is not always the case. In runs where an infeasible solution

was given as the starting point, the algorithm generally could not find the feasi-

ble region. For these reasons, consideration should be given to setting User Initial

Parameters to false.

"* Activate Reanneal allows the algorithm to reach a stopping point, then re-scale the

parameter temperatures and begin the annealing again (page C.9). Normally this i.

done to improve the quality of the solution by reducing round-off error. In Problem

One, switching this option to true did not change the optimal solution found, but

it reduced the number of solutions generated by a factor of 0.5, and reduced the

solution time proportionately. This result opens the door to both improved quality

of solution and improved solution times.

"* The Upper/Lower Bounds define the neighborhood initially searched by the algo-

rithm (page C.10). In this case, the optimal solution was at (0.55, 0.10). When

the lower and upper bounds were set to zero and ten, respectively, the algorithm

found the optimum. When the upper bound was changed to twenty, the number of

solutions generated increased by a factor of almost two and the time required in-

creased proportionately. When the upper bound was increased to 100, the algorithm

could not find a feasible solution. This is because it was searching such a large space

compared to the feasible region. In this case, the probability of finding a feasible

solution via random search is very small. This problem is significant whenever the

neighborhood defined by the bounds is much larger than the feasible region defined

by the constraints. The problem of a large neighborhood size compared to the feasi-

ble region became significant for Benchmark Problems Seventeen and Eighteen. This

issue is discussed in more detail in section 4.3 (Dimensionality and Constraints).

"* Benchmark Problem Four was given negative values as a variation of its lower bounds

(pages C.15 and C.16). Normally, structural optimization problems do not allow

for negative values of the decision variables. However, to allow for a case where a

4-5

comparison (i.e. right wing/left wing) could be expressed as positive/negative values

of a variable, the algorithm can find a solution.

* The Seed Value for the random number generator influences the Uniform Random

Variable value which the algorithm compares with the temperature (page C.10) and

so, the number of acceptances. In this case, the algorithm found the solution much

more quickly with one of the alternate seed values and much more slowly with the

other alternate seed value. In each case, the global optimum was found, but the time

varied widely. The effect seems to be unpredictable. This illustrates that the seed

value for the random number generator can impact the success of the optimization,

and seed values should be tested carefully before use. This is normally done by the

originator of a random number generator.

Other variations in the initial conditions/stopping criteria are possible, but weren't

considered significant in this application. For instance, the Include Integer Parameters

option would certainly influence the optimization, but this research is not concerned with

integer programming, so no effort was made to evaluate this effect. The complete set of

initial conditions/stopping criteria is listed in Appendix B.

4.2 Quality of Solutions Found

For the problems that the Adaptive Simulated Annealing algorithm was able to solve,

the quality of solution was excellent compared to the other optimizers. In the worst case,

the Adaptive Simulated Annealing algorithm's solution was two percent higher than the

best of the other optimizers' solutions. But in all other cases, the algorithm found the best

solution or one of the best solutions. Table 4.2 lists the solutions found by the Adaptive

Simulated Annealing algorithm and by the other four optimizers. The values given in Table

4.2 for the Adaptive Simulated Annealing solutions are the best found among all the runs

for each problem. These solutions were not generally found with the standard conditions.

Rather, the initial conditions and stopping criteria were modified as necessary to find the

best combination for each problem.

4-6

All five optimizers found comparable answers to Problems One through Six. ASA,

FUNOPT, ADS, and NLPQL found comparable answers for Problems Seven through Six-

teen, although ASA's solution to Problem Twelve is about two percent higher than the

best of the other optimizers.

ASA found solutions to the highly constrained problems (Seventeen and Eighteen)

only after the bounds on the problem were reduced to a very small part of the original

neighborhood, and centered on the optimal solutions found by the other optimizers. This

is discussed further in Section 4.3, but analysis of the quality of the solution must consider

this fact. Even with the reduced bounds, the solution ASA found for Problem Seventeen

has a fifteen percent higher weight than the best solution found by the other optimizers.

ASA's solution to problem eighteen (with the modified bounds) compares favorably with

the solutions found by the other optimizers.

It should be noted that some of the variation between solutions found by the optimiz-

ers can be attributed to the fact that the solution space, near the optimum, may be almost

flat. In this case, it is relatively expensive to continue a search near the optimum compared

to the potential benefit, so most algorithms stop when "close enough" to the optimum.

In this investigation, differences between solutions found by the various optimizers were

considered noteworthy if they were larger than one percent.

Alternate Optimal Solutions. Benchmark Problem Seven illustrates the property of

alternate optimal solutions, found by varying the initial feasible solution (pages C.20 and

C.21). The optimization was started at various initial feasible solutions and in each case

a different optimal point was found. The objective function value was the same for all of

these points.

Problems Nineteen and Twenty came from a different problem set than the first

eighteen, and the other four optimizers were not used to solve them (Floudas and Pardalos,

1990). ASA found the global optimum for Problem Nineteen (under Standard Conditions).

It could not find any solution for Problem Twenty, even when the neighborhood was

reduced to 10-20 of the original neighborhood and centered on the solution provided by

Floudas and Pardalos.

4-7

Table 4.2 Quality of ASA Solutions Compared to Other Optimis•rs

[Prob ASA FUNOPT I ADS [NLPQL I NEWSUMT

1 5.606 5.61 5.61 5.61 5.61

2 1.509 1.514 1.504 1.508 1.519

3 18.474 18.69 18.46 18.47 18.46

4 1.340 1.340 1.340 1.340 1.341

5 1560.129 1560.17 1560.10 1560.06 1560.64

6 2994.31 2997.61 2997.17 2994.89 2990.73

7 *112500 112500 112500 112500 **

8 *10250 10250 10250 10250 **

9 0.200 0.200 0.232 0.200 **

10 0.503 0.500 0.499 0.500 **

11 -1.00 -0.979 -1.00 -1.00 **

12 53.419 52.767 52.055 52.000 **

13 -8.333 -8.332 -8.333 -8.333 **

14 94.164 93.180 93.277 93.254 **

15 3.500 3.500 3.500 3.500 **

16 9.037 9.521 9.036 9.037 **

17 *1042.77 ** 912.26 911.88 **

18 *3.954 3.928 3.989 3.951 **

19 -15.0 ** ** **

20 No Solution* **

*Modified bounds, "Not solved by this optimizer

4-8

4.3 Dimensiouality and Constraint.

Dimnwionality. High dimensionality and high degree of constraint were both signif-

icant factors in determining the success of the Adaptive Simulated Annealing algorithm in

solving the benchmark problems. "From the complexity point of view global optimization

problems belong to the class of NP-hard problems. This means that as the input size of the

problem increases the computational time required to solve the problem is expected to grow

exponentially" (Floudas and Pardalos, 1990:2). This is because the search must expand

in a new dimension representing each variable added, while retaining all of the previous

dimensions in the search. For example, in finding length, area, and volume; each added

dimension is multiplied by the previous dimensions. As the search proceeds from length,

to area, to volume; the number of dimensions increases from one, to two, to three; and the

"4size" increases from first power to second power, to third power. For higher dimensions

the "size" increases to fourth power, and fifth power, and so on. Using a random search,

this increase in dimensionality eventually overwhelms the capacity of the algorithm.

Non-linearity of Constraints. The non-linearity and number of constraints in each

of the benchmark problems were also significant factors in determining the success of

the algorithm in solving the problems. In a problem with many or highly non-linear

constraints, the feasible region may be a small part of the neighborhood defined by the

upper and lower bounds on each variable. In a highly constrained problem, a random

search of the neighborhood is unlikely to find the feasible region. To help identify this

effect, the problems which could not be solved with the original bounds were modified.

For Problem Seventeen, the neighborhood had to be reduced to approximately 106 of

the original neighborhood and centered near the optimum before the algorithm could find

a solution. For Problem Eighteen, the reduced neighborhood was approximately 10-l of

the original neighborhood for the algorithm to find a solution. For Problem Twenty, the

neighborhood was reduced to approximately 1020 of the original, and the algorithm still

could not find a feasible solution. Note that the bounds on these problems could not

have been reduced this way unless the optimal solutions were known in advance, so the

algorithm wasn't really solving the problems.

4-9

4.3.1 Measure of Complexity. Benchmark Problems Seventeen and Eighteen have

high levels of constraint and Benchmark Problems Nineteen and Twenty have high dimen-

sionality. It is difficult to isolate the effect of a high level of constraint from the effect of

high dimensionality in the results of this investigation because these two effects interact.

In an attempt to combine and quantify these effects, a Measure of Complexity (MOC) was

calculated for each of the benchmark problems. This is a weighted sum which considers

the level of non-linearity of the constraints and objective function, the total number of

constraints, and the number of variables in each problem (Section 3.4.4). These factors,

as well as the so!ution time for each benchmark problem are listed in Table 4.3.

Standard Conditions. To validate the solution times reported in Table 4.3, all of the

problems were initially optimized under Standard Conditions. Some of the problems could

not be solved under the Standard Conditions, and these are highlighted in the table. For

these problems, the Standard Conditions were modified as little as possible to allow the

algorithm to find a solution. (The Standard Conditions are listed in Appendix B.)

4.3.2 Analysis of the Effects. The results of optimizing each problem are presented

in Table 4.3. The Adaptive Simulated Annealing algorithm solved problems with Measure

of Complexity (MOC) values below 30 quickly and accurately. All of the problems with

Measure of Complexity (MOC) values of 20 and below were solved in less than eleven

seconds CPU-time, under the Standard Conditions. All of the problems with MOC val-

ues of 30 or less were solved in less than thirty seconds CPU-time, also under Standard

Conditions.

Problems having MOC values between 55 and 106 are in a transition zone. The

algorithm was able to find solutions, but with some difficulty. Problems Six and Sixteen

have MOC values of 55 and 73 respectively. They were solved in less than one minute, but

only after modifications to the Standard Conditions. Problem Six required more Invalid

Generated States and Problem Sixteen required a modified bound. For these problems,

knowing the optimal solution in advance was not required to make the modification to

the Standard Conditions. For problems Seventeen and Eighteen, with MOC values of 106

and 82 respectively, the bounds had to be modified significantly before a solution could be

4-10

Table 4.3 Effect of Dimensionality and Constraints on Solution Time

Number Linear Non-Lin Meas of Solution
[Probj Vats Const Count Comple Time

1 2 2 1 22 Oh 0m 38.4s

2 2 0 2 19 Oh Om 1.77s

3 2 0 2 17 Oh Om 1.84s

4 5 0 1 28 Oh Om 22.32s

5 3 0 1 19 Oh Om 3.52s

6 7 0 11 73 Oh Om 58.84s*

7 2 1 2 20 Oh Om lO.15s

8 2 2 0 14 Oh Om 10.43s

9 2 1 0 14 Oh Om 2.56s

10 2 1 0 14 Oh Om 2.1s

11 2 1 0 15 Oh Om 0.66s

12 3 2 0 23 Oh Om 2.92s

13 1"* 0** 0"* 10 Oh Om 0.61s

14 3 0 2 27 Oh Om 3.14s

15 2 0 2 14 Oh Om 1.76s

16 4 0 3 55 Oh Om 8.76s*

17 7 0 6 106 Oh 8m 30.63s*

18 8 0 6 82 Oh 24m 29.65s*

19 13 9 0 97 11h 57m 12.79

20 20 10 0 258 No Solution
*Not solved under Standard Conditions, ** Equality constraint

4-11

found. This could have been done only with extensive trial-and-error or by knowing the

solution in advance. Problem Nineteen (MOC 97) was solved without modification, under

the Standard Conditions, but the solution time was nearly 12 hours of CPU-time.

Problem Twenty has a MOC of 258, and was found to be beyond the capacity of

the algorithm. Even with extensive modification to the standard conditions, and with the

bounds narrowed to 10-20 of the original neighborhood and an initial solution provided

near the optimum, the algorithm was unable to find a solution.

4.4 Overall Evaluation

The benchmark problems in this set explored the full range of ability of the Adaptive

Simulated Annealing algorithm in both dimensionality and level of constraint. Overall,

the Adaptive Simulated Annealing algorithm found excellent solutions to seventeen of the

twenty benchmark problems. For the low dimension, lightly constrained problems, the

performance of the algorithm is very good. For these problems with MOC values below

50, the solutions found were as good as the solutions found by the other optimizers and

the time required was insignificant.

The performance of the algorithm on problems with moderate MOC values was not

as good. In some cases, to solve problems with MOC values between 50 and 100, only

the initial conditions/stopping criteria had to be modified, and knowledge of the solution

was not necessary in advance. Generally, for problems with MOC values between 50 and

100, the optimizer may find a solution with some "tinkering", or may require hours of

CPU-time.

In some problems with higher MOC values, the bounds had to be modified signifi-

cantly and the optimum had to be known before the algorithm could find a solution. This

result suggests a possible use for fine tuning a solution in a neighborhood found by some

other optimizer. However, the solution found for problem seventeen was not nearly as

good as the other optimizers' solutions, suggesting that even this limited application may

be undesirable for problems with MOC values above 100. For the problem with a MOC

value above 200, the optimizer was unable to find solution.

4-12

Analysis of these results was used to draw conclusions about the effectiveness of us-

ing Simulated Annealing in structural optimization problems. Chapter Five summarizes

the entire research process; addresses the conclusions drawn from the results of the in-

vestigation; and makes suggestions for further research relating to Simulated Annealing,

non-linear programming, and structural optimization.

4-13

V. Summary, Recommendations, and Conclusion

5.1 Summary of the Research

This research was conducted to investigate the advantages and disadvantages of using

Simulated Annealing to solve structural optimization problems. Simulated Annealing has

been applied to many types of optimization problems, but not to structural optimization

until this research was conducted. To determine the applicability of Simulated Annealing

to structural optimization problems, the Adaptive Simulated Annealing algorithm was

used to optinize twenty benchmark problems. The success or failure of the algorithm in

solving these benchmark problems is the basis for evaluation.

5.1.1 Highlights of the Research. Eighteen of the twenty benchmark problems rep-

resent "real" structural optimization problems. For research in structural optimization,

this is the most valid type of problem, but the largest of these problems only had eight

variables. To test the ability of the Simulated Annealing algorithm in higher dimensions,

two high-dimension non-linear programs were added to the set of structural optimization

problems. These two problems are not "real" structural optimization problems, but they

were formulated in a similar manner to the structural optimization problems, and thus al-

lowed the investigation to extend to what may be considered the limits of the algorithm's

capability.

Variations in Initial Conditions/Stopping Criteria. Variations in the initial condi-

tions and stopping criteria can greatly impact the success of any optimization. The first

benchmark problem was used to test the effects of variations in the initial conditions and

stopping criteria. The algorithm found the same solution under each variation, so the effect

of these variations was evaluated by comparing the amount of time required to solve the

problem under each variation. Based on this evaluation, a set of "Standard Conditions"

was established for use with the remaining problems.

Dimensionality and Constraint. To evaluate the effects of dimensionality and con-

straint, all of the benchmark problems were optimized under the Standard Conditions.

Dealing with problems having many variables was expected to be a weakness of this algo-

rithm. However, as the research progressed it became dear that the constraints imposed

5-1

on the solution were also significant in determining the success of the algorithm. The con-

straints may make the feasible region very small compared to the neighborhood searched

by the algorithm. The number of variables and the level of non-linearity of the constraints

in a problem determine how difficult the problem is to solve using Simulated Annealing. A

problem containing many variables, many constraints, and/or highly non-linear constraints

is difficult for this algorithm to optimize. It is difficult to separate and assess the effects

of dimensionality and constraint because these effects interact.

Measure of CompLezity. To help quantify the effects of dimensionality and constraint,

"a Measure of Complexity (MOC) index was established. This measure is used to assign

" relative score to each non-linear program, based on the non-linearity of the objective

function and constraints, the number of variables, and the number of constraints. It

assigns a single-value score which quantifies the overall topology of the problem, giving a

relative indication of how difficult the problem may be to solve.

Quality of Solution. The quality of the solutions found by an algorithm may be the

most important criteria for evaluation. In this investigation the algorithm minimized the

value of the objective function, and the lowest value which met the constraints was the best

solution. The best solutions found by the Adaptive Simulated Annealing algorithm were

compared to the best solutions found by four other optimizers currently used in structural

optimization. The best solutions found by the Adaptive Simulated Annealing algorithm

were found by varying the initial conditions and stopping criteria, as necessary, for each

individual problem.

5.1.2 Results. The Adaptive Simulated Annealing algorithm found solutions equiv-

alent to the other optimizers for seventeen of the twenty benchmark problems. The solution

time was nearly twelve hours for one of these optimizations, but was insignificant for the

other sixteen successful optimizations. The initial conditions were modified as necessary

for the algorithm to find the best solutions to these problems, but advance knowledge of

the solution was not required to make these modifications.

The algorithm was unable to solve three of the twenty problems. It eventually found

solutions to two of these, but only after the bounds on the variables were modified sig-

5-2

nificantly and an answer very close to the optimum was provided as an initial feasible

solution. Because these modifications could only have been made with advance knowledge

of the solution, the algorithm didn't really solve these problems. The algorithm was unable

to find a solution to one problem even after modification of the initial conditions, extensive

modification of the bounds, and an initial feasible solution very near the optimum.

In these problems, the Measure of Complexity value is a useful tool for predicting the

success of the algorithm. MOC values below fifty predict a good solution, very little CPU-

time, and few modifications to the initial conditions/stopping criteria. Values between 50

and 150 predict a good solution only with modifications to the initial conditions/stopping

criteria, and/or hours CPU-time. MOC values well above 150 predict that the algorithm

will not solve the problem.

5.1.2.1 Most Significant Result. Identification of the limitations of the algo-

rithm in solving constrained problems is the most significant result of this research. Previ-

ous investigations suggested that high dimensionality might limit the use of the algorithm,

but limitations on the level of constraint had not been addressed in the literature.

5.1.3 Evaluation of Applicability. The purpose of this research was to determine if

Simulated Annealing is a good tool for structural optimization problems. In light of the

results, it appears that Simulated Annealing has only limited applicability in structural

optimization. "Real" structural optimization problems may have hundreds, or thousands,

of variables and many highly non-linear constraints. Simulated Annealing seems best

suited to low dimension, lightly constrained problems, including those with highly non-

linear objective functions.

5.2 Recommendations. for Further Research

In large structural optimization problems, the number of constraints is normally

reduced by an active-constraint strategy. Also, the number of variables may be reduced by

linking variables together in sets that then work as a single unit (Kamat, 1993:6). Under

these circumstances, where the effective MOC value is reduced, Simulated Annealing may

5-3

peroirm as well as, or better than, other optimizers. Further research could establish the

conditions where am active-constraint strategy and linking variables would make Simulated

Annealing effective in structural optimization.

Measure of Complezity Index. The level of constraint and number of variables are

critical to the success of Simulated Annealing, but also are significant for other optimizers.

No theoretical basis was established for using the Measure of Complexity in this research;

it seems to work, so it was used. It assigns a single quantitative value to the overall

topology of a non-linear program. With further research, this measure could provide

common ground for comparing the performance of optimizers with significant method-to-

method differences. Theoretical proof of the validity of the method would help establish it

as a basis for comparison. Consideration should be given for weighting periodic functions,

transcendentals, and other non-polynomials.

Parallel Processing. A significant part of the time required to evaluate each new

solution proposed in the Simulated Annealing algorithm is used to check feasibility. Af-

ter a solution is proposed, the variable values are substituted into each constraint. The

constraints are evaluated sequentially and, if all of them are met, the objective function

is evaluated. After a solution is proposed, a parallel processor could check all of the con-

straints at once. This would significantly reduce the time required for the calculations. A

parallel processor might also be used to choose the variable values for the new proposed

solution. In this way, all of the new variables could be selected at once, then the new

proposed solution could be evaluated.

Decomposition. A non-linear program with many variables could be partitioned (in a

process like Rosen's partitioning algorithm or Benders' decomposition) into multiple sub-

problems and a master problem, with each sub-problem having fewer dimensions than the

initial problem (Lasdon, 1970:358). The Simulated Annealing process could be used to

solve the subproblems, and perhaps the master. The MOC index could be used to guide

the partitioning process, breaking the problem up into manageable pieces for SA to solve.

Reannealing. One result of the investigation is that the reannealing process may im-

prove the speed of the Adaptive Simulated Annealing algorithm, along with the expected

5-4

result of improving the accuracy of the solution. Analysis of the reason for this behavior,

and further exploitation of this advantage would be useful in the development of Adap-

tive Simulated Annealing in many applications. Dr. Ingber has expressed an interest in

supporting further research in this area.

It also seems possible that the algorithm may be able to reduce the actual upper and

lower bounds on variables, to reduce the search neighborhood. If this could be done in

conjunction with reannealing (or quenching), it may further speed the solution. A related

idea would be to partition the solution space, and search in each partition separately. In

either case, provisions would have to be made to ensure that the global optimum would be

retained within the modified bounds.

Fine-Tuning of Solutions. Further research might identify the circumstances where

Simulated Annealing could be used for fine-tuning solutions found by other optimizers.

Random Number Seed. Further research may reveal ways to improve the quality of

the solution or the solution time by modifying the random number seed.

Optimizing Initial Conditions. Adaptive Simulated Annealing has an option for self-

optimizing the initial conditions of a subset of the non-linear program, then providing these

initial conditions for the full optimization. This is a process of annealing the annealing

process and is considered to be CPU-intensive. Perhaps a linear model of the effects of

variations in the initial conditions or an application of the MOC index could be used to

predict the best initial conditions for a given non-linear program. This prediction could

be used to provide initial conditions for a full optimization.

5.3 Conclusion

The applicability of Simulated Annealing to structural optimization problems ap-

pears to be limited. The effects of high dimensionality and high levels of constraint over-

whelm the random search process of this algorithm. While this algorithm is not well suited

to this application, it shows promise for further development in many other fields. As com-

puter hardware becomes more capable, the applicability of this algorithm becomes broader

and further research is justified.

5-5

Appendix A. Making ASA Run

The ASA algorithm is set up to make the user.c file a template for the user to modify

for the individual nonlinear programming (NLP) problem.

a. The user modifies the options as necessary, or allows the algorithm to run the

default values.

b. The user defines the number of parameters (dimensions) in the NLP. This allocates

storage space for the parameter arrays, and defines D in the Temperature Ratio Scale

function.

c. The user sets upper and lower bounds for each parameter. This step is required

for each parameter, even if the NLP does not define the bounds. ASA uses these values

as B and A in the Parameter Generating PDF. The values of each parameter are chosen

from this range.

d. The user defines constraints, if applicable. These can be built into the algorithm

with an IF statement (i.e. if constraint x is met), prior to evaluating the objective function.

e. The user defines the objective function. In user.c the value of "summ" is returned

to the optimizer, so the objective function is set equal to "summ". The objective function

and constraints must be explicitly defined for ASA.

In UNIX, the user can use the "make" command. This command compiles, links,

and runs all the necessary files according to the Makefile command (provided with the

ASA code). The important files are:

a. user.c which the user modifies with options, constraints, and objective function.

b. user.h which contains the header files for user.c

c. asa.c which contains the SA optimizer

d. asa.h which contains the header fies for asa.c

e. asaopt (if used) which defines the options chosen

f. asaout which is the default output file

A-1

Appendix B. Standard Conditionsa for ASA
Standard Adaptive Sim~ulated Annealing initial
conditions and stopping criteria for all benchmark problems:

OPTIONS-.FILE -0

HAVE-ANSI - 1
ID..PROTOTTPES I

TIME-.CALC - 1
INT-.LONG a 1
INT-ALLOC - 0
SKALL..FLOAT = 1e-18
MIN-DOUBLE a le-18
Mil-DOUBLE = 1e418
EPS..DOUBLE a le-18
NO-.PAWL.-TEHP.TEST =0

NO-.COST-.TEMP-TEST =0

SELF-O.PTIMIZE = 0
OPTIONAL-.DITA = 0
ASk. PRINT - 1
ASk-OUT =asa..out
USER-I.SA-.OUT = 0
ASA-.PRINT-.INTE RNED I
ASA-PRINT-MORE = 0
OPTIONS->LINIT-.ACCEPTINCES =1000

OPTIOIS->LIKIT-.INVALID-.GENERATED-.STATES =1000

OPTIOIS->ACCEPTED-.TO...GENETED-.RATIO = 0.0001
OPTIONS->COST..PRECISION = le-08
OPTIUIS->MAIINUMLCOST-.REPEAT - 2
OPTIOIS->NUNBER-.COST-.SAMPLES = 2
OPTIONS->TENPERATURE-.RATIO-.SCALE = Ie-05
OPTIOIS->COST-PARANETER-.SCALE = 1
OPTIONS->TENPERATIJRE-.ANNEAL-SCILE = 100

Standard Bounds: 0 lover, 20 upper

B-1

Standard Conditions Continued:

OPTIOIS->USK-IIITIAL-CGST..TKNP - 0
OPTIONS->INCLUDL-INTIGU..PARANETERS - 0
OPTIOIS->USK-IIITIAL-PA1*IIETERS - 1
OPTIOIS->INITIAL-PAU~rR..MTEMPERTURU - I
OPTIOIS->UATIO-.TENPERATURE..SCALES - 0
OPTIOIS->USKR-.INITIAL-PARAMETERS-TEMPS a 0
0PTIOIS->TESTIIG-.FREQUECY-.M0DULUS - 100
OPTIOIS->ACTIVATE-REANNEAL a 0
OPTIOIS->REANNEAL-RUSCALE - 10
0PTIOIS->KAZNUNJIENNEU.INDEI - 50000
OPTIONS->DELTA... - 0.001
OPTIONS->DELTA.-PARANETERS - 0
OPTIOIS->CURVATURE0 a 0
0PTIOIS->QUENCH..PARANETERS - 0
OPTIOIS->QUENCU..COST = 0

B-2

Appendix C. Benchmark Problems and ASA Solutions

BECINAM PROBLEM #1

Constraints:
Si - (-2 * x(0] + x[11 + 1);
X2 - (-x[O] + 2 * x[11 -1);
V3- (x(O] * x(O] - 2 * xO] - 2* x[11 + 1);

Objective Function:
oun - (10 * z[0J + iXl]

Initial Conditions:
OPTIOIS->LIMIT-.ACCEPTANCES a 1000
OPTIONS->LIMIT-INVALID-.GENERATED-.STATES = 1000
OPTIOIS->ACCEPTED-.TO-.GENERATED-.RATIO - 0.0001
OPTIOIS->COST-.PRECISION - 1e-8
OPTIOIS->KAZIMUM-.COST-REPEAT - 2
OPTIOES->NUIEER..COST-SAMPLES - 2
OPTIOIS->USER-.INITIAL-PARANETERS - 1
OPTIONS->ACTIVATE-.REANNEAL = 0

index-.v parem-.minimun paraz..axiau= param..valiie param-.typo
0 0 10 1 -1
1 0 10 1 -1

Results:
number.generated - 33453, *number-.accepted a1001
beat .. generated-.state->parameter [0] = 0.5505103
bost-.generated..state->paxameter [11 = 0.1010205

NOIMAL...EIIT exit-.status = 0
final-.cost = best-.gonerated-s.tate->cost = 5.606123
asa-.end:tim.: Oh Om 21.63s; incr: Oh 0n 0.

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-1

DENCIKARX P3031M 1Ki, MODIFIED LIMIT ACCEPTANCES

Constraints:
Si a (-2 * x[0J + x[11 + 1);
S2 a (-x[0J + 2 * x[11 -1);
g3 - (x[OJ * x[O] - 2 * x[0J - 2 * x(1J + 1);

Objective Function:
BMa (10 * z(0J + 1(1])

Initial Conditions:
OPTIONS->LIMIT-.ACCEPTANCES = 10000
OPTIONS->LINIT-.IUVALID-.GENERATED..STATES - 1000
OPTIOIS->ACCEPTED-.TO-.GENEUATED..RATIO - 0.0001
OPTIOIS->COST-.PRECISIOI = le-8
OPTIONS->NAZIIMUM.COST-.REPEAT - 2
OPTIONS->NUMBER-.COST-.SANPLES - 2
OPTIOIS->JSER-INITIAL-.PARANETERS - I
OPTIOIS->ACTIVATE..REANNEAL a 0

index-.v paraa..mininu. paxam....axizmi parau..valu. paran..type
a0 10 1 -1

1 0 10 1-

Results:
number-generated 7 69257, *number-.accepted = 1045
best-.generated...tate->parameter E0J = 0.5505103
best-.gonerated-state->parameter(1J = 0.1010205

COST-.REPEATIIG exit-status = 3
final-.cost = best..gonerated..state->cost = 5.606123
asa....nd:tiuie: Oh 8m 33.63.; incr: Oh Om Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-2

BENCHMARK PROBLEM 01, M ODIFIED LIMIT INVALID GEN STATES

Constraints:
S1 - (-2 * x(0] +4 x[1] + 1);
82 - (-x[0] + 2 * x[11 -I);

93 - (x1O] * xEOl - 2 *x[O] - 2 * x(11 + 1);

Objective Function:
amu a (10 * X(0] + X[11)

Initial Conditions:
OPTIOIS->LIMIT-.ACCEPTANCES, = 1000
OPTIONS->LIM4IT3NALID_.GENERATED..STATEs = 10000
OPTIOIS->ACCEPTED-.T0.GEIERATED..RATIO = 0.0001
OPTIONS->COST-PRECISIOI - 10-8
OPTIOIS->MAXIMUM_.COST_.REPEAT - 2
OPTIOIS->NUMBER-COST..SAMPLES, - 2
OPTIOIS->USERIN.IITIAL-PARAMETERS - 1
OPTIONS->ACTIVATE-R.EANNEAL = 0

index-.v parez..mnium param...iaximum paramu-value paraza..type
0 0 10 1 -1
1 0 10 1 -1.

Results:
number-.generated = 33453, *number-.accepted = 1001
best-.generated-s.tate->parameter [0] = 0.5505103
best..generated...tate->parumeter [1] = 0.1010205

NORMAL-.EXIT exit-.status = 0
final-.cost - bemt..generated-state->cost - 5.606123
ana-.end:tixne: Oh Om 21.48s; incr: Oh Om 0.01.

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-3

BUCEINARMM 013.1 1, MODIFIED ACCEPTED TO GENERATE.D RATIO

Constraints:
S1 - (-2 * x(O] + x[l1 + 1);
g2 - (-x[0] + 2 * x[11 -1);
g3 -(x[0] * x[O] - 2*x[0] - 2 * x[1 +1);

Objective Function:
5-M a (10 * z[0J + x[1])

Initial Conditions:
OPTIOIS->LIMIT-.ACCIPTANCES - 1000
OPTIONS->LINIT-.INVALID-.GEUERATED..STATKS - 1000
OPTIONS->ACCEPTED-.TO-.GENERATED-.RATIO = 1e-08
OPTIONS->COST-PRECISION - le-8
OPTIONS->MAXIMUL-COST-.REPEAT = 2
OPTIOIS->UUMBEI..COST-.SANPLES - 2
OPTIONS->USERJINITIAL-PARAMETERS z I
OPTIOIS->ACTIVATE-REANNEAL = 0

indez..v paran...miniaum paranjuaxinmu param..value paraintype
0 0 10 1 -1
1 0 10 1 -1

Results:
number-.generated a 33453, *number-.accepted - 1001
best-.generated-.state->parameter [01 = 0.5505103
best-.generated-.state->pazrameter [1] = 0.1010205

NORMAL-.EXIT exit-status - 0
final-.cost = best-.generated-.state->cost = 5.606123
aua..end:time: Oh On 21.47s; incr: Oh Om Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-4

BDINCMARK PROBLEM 61, MODIFIED COST PRECISION

Constraints:
gi - (-2 * x[O] + x[l1 + 1);
g2 - (-z(O] + 2 * x[1] -1);
S3 - (x[0] * x[G] - 2 * x[OJ - 2 * x[11 + 1);

Objective Function:
own - (10 * zEOl + z(1])

Initial Conditions:
OPTIOIS->LIMIT-ACCEPTANCES, - 1000
OPTIOIS->LIMIT..INVALID-GENERATED..STATES - 1000
OPTIOES->ACCEPTED-TO-.GENERATED..RATIO - 0.0001
OPTIOIS-KCOST..PRECISIOI - 0.0001
OPTIONS->MAXIMUM-.COST-REPEAT - 2
OPTIONS->NUMBER-.COST-.SAMPLES, = 2
OPTIONS->USER-INITIAL-.PARAMETERS = I
OPTIOES->ACTIVATE-.REANNEAL = 0

index-.v paxam...iniamu param-..aximuu param..value paxam..typ.
0 0 10 1 -1
1 0 10 1 -1

Resul~ts:
number-.generated - 33453, *number.accepted = 1001
best-.generated-s.tate->parameter [0] = 0.5505103
best...goeurated-state->paramet.e [1] = 0.1010205

?*OINAL..EZIT exit-status = 0
final-.cost = best..generated...tate->cost = 5.606123
asa..end:time: Oh Om 21.33s; incr: Oh Om Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-5

DEECIMARK PROBLEM 01, MODIFIED KAI COST REPEATS

Constraints:
S1 - (-2 * x(0] + x[11 + 1);

g2 (-x[O] + 2 * x[l] -1);
P3 - (xCO3 * x[O] - 2 x[01O - 2 * x[11 + 1);

Objective Function:
aUMM a (10 * iLO] + X[l1)

Initial Conditions:
OPTIONS->LIHIT-.ACCEPTANCES = 1000
OPTIOES->LINIT..INVALID-.GUNKIATED..STATES a 1000
OPTIONS->ACCEPTED-.TO..GENERATED..RATIO w 0.0001
OPTIOIS->COST..PRECISION - 10-8
OPTIOIS->KAZIIUMUCOST..REPEAT a 5
OPTIONS->NUUBER..COST-.SAMPLES - 2
OPTIOIS->USER-.INITIAL..PARANETERS - 1
OPTIONS->ACTIVATE-.REANNEAT. a 0

index-.v param-mjinimum param-mjaximum pal a.=value param..type
0 0 10 1 -1
1 0 10 1 -1

Results:
number-generated a 33453, *number-.accepted = 1001
beat-.gonerated..tate->parameter (0] - 0.5505103
best..gonerated...tate->paxameter (1] = 0.1010205

NORMAL-EXIT exit-status = 0
final-cost -best-.gonerated-state->cost = 5.606123
aua...nd:time: Oh Om 22.31s; incr: Oh Om 0.018

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-6

UENICEAU PROBLEM #1, MODIFIlED NUMBER COST SAMPLES

Constraints:
gi a (-2 * x(0] + z(1J + 1);
V2 = (-x(0] + 2 * x[11 -1);
g3 a (x[0] * z(0] - 2 * xfo] - 2 * x[11 + 1);

Objective Function:
sum - (10 * z[0J + X[1])

Initial Conditions:
OPTIOIS->LIMIT-ACCEPTkNCES - 1000
OPTIOIS->LIMIT-INVALID-GENERATED-.STATES a1000
OPTIOIS->ACCEPTED-.TO-.GENEUATED..RATIO a0.0001
OPTIONS-)COST-.PRECISIOI = 1e-8
OPTIOIS-MAUIIUM-.COST-R.EPELT - 2
OPTIOIS->NUMBER-.COST..SANPLES = 5
OPTIOIS->USEI..INITIAL-.PARANETERS - 1
OPTIONS->ACTIVATE-.REANNEAL = 0

index-.v paraw-.minimum paxan...maximum param..value param-.type
0 0 10 1 -1
1 0 10 1 -1

Results:
number-.generated = 3155, *number-.accepted = 1001
best-generated-.state->paraueter (0] = 0.5050103
best-.generated-state->pa~rameter (1] = 0.1010205

NORMAL..EXIT exit-status = 0
final-.cost = best-.generated-.state->cost = 5.606123
asa..end:time: Oh Om 1.99s; incr: Oh Om 0.01.

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-7

RUCIMARX P3031.1K #I, MODIFIED USER I111 PAIANS (FALSE)

Constraints:
S1 (-2 * X[0J + x[11 + 1);

g2 - (-X[0J + 2 *.x[1J -1);
S3 -(x[O] * x[0]- 2 x[0] - 2 *x[11]+i);

Objective Function:
sumi a (10 * X[0J + 1(1])

Initial Condition.:
OPTIONS->LIMIT-.ACCEPTANCES a 1000
OPTIONS->LIMIT..INVALID-.GENERATED-.STATES - 1000
OPTIOIS->ACCEPTED-.TO-.GENEIATED-.RATIO a 0.0001
OPTIONS->COST-.PRECISION = 1,-a
OPTIONS->NAXIIUM..COST-R.EPELT - 2
OPTIONS->UumBER..COST-.SAMPLES - 2
OPTIONS->USER-INITIAL-PA1ANETERS = 0
GPTIONS->ACTIVATE-.REANIEAL a 0

index..v param-..inimum param..maximum paxu...value paran..type
0 0 10 1 -1
1 0 10 1 -1

Results:
number-.generated - 29756, *number...accepted = 1001
b..t-.generated..state->parameter (0] = 0.5505103
best-.generated-state-)paxamaeter (1J = 0.1010205

COST-.REPEATING exit-.status = 3
final-cost = best-.generated-.state->cost = 5.606123
asa-.ead:time: Oh On 20.09.; incr: Oh Om Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

c-8

BRNCIMAR. PROBLEM 01, MODIFIED ACTIVATE REANNEAL (TRUE)

Constraints:
S1 - (-2 * x[0J + x[11 + 1);
S2 = (-x[0] + 2 * x[11 -1);
S3 -(x[0J * x[0] - 2 x[0J - 2* x[11 + 1);

Objective Function:
sUMM = (10 * z(0J + X[1J

Initial Condition.:
OPTIONS- >LIMIT-ACCEPTANCES a 1000
OPTIOIS->LIMIT..INVALID..GENERATED-.STATES = 1000
OPTIONS->ACCEPTED-.TO-.GENERATED...D.TIO = 0.0001
OPTIONS->COST-PRECISION = 16-8
OPTIONS->MAZIMU!LCOST..REPEAT - 2
OPTIOIS->NUKBER-.COST-SAMPLES - 2
OPTIOIS->USER..INITIAL-PARAMETERS = 1
OPTIOHS->ACTIV.ATE-REANNEAL = 1

index-.v param-..inimum param..maxizmu parai-value paxam..type
0 0 10 1 -1
1 0 10 1 -

Results:
number-.generated = 14912, *number-.accepted = 900
best-.geuerated..state->parameter (0] = 0. 5506101
best ..geuerated-.state->paxameter (1] = 0.101020b

COST-.REPEATING exit-.status = 3
final-cost = best-.generated-.state->cost = 5.606123
asa-.end:time: Oh 0. 9.15.; incr: Oh Gm Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-9

BENCHMARK PROBLEM 01, MODIFIED SEED VALUES

Constraints:
S1 - (-2 * x[0J + x[13 + 1);
g2 - (-x[0] + 2 * x[13 -1);
g3 -(x[OJ * x[0 - 2 x[03 -2* x[13 +1i);

Objective Function:
Bunn (10 * X[OJ + x[11)

Initial Conditions:
OPTIOIS->LIMIT-ICCEPTINCES - 1000
OPTIONS->LIMIT..INVALID-.GENERATED..STATES = 1000
OPTIONS->ACCEPTED-.TO-.GEJIERATED-.RATIO = 0.0001
OPTIONS->COST-.PUECISIOI z 1e-8
OPTIONS->MAZIMUM-COST-.REPEAT = 2
OPTIONS->NUNBER-COST-.SAMPLES = 2
OPTIONS->USER-.INITIAL-.PARAMETERS a 1
OPTIONS->ACTIVATE..REANNEAL = 0

index..v param..mininzum parazn..maximum param..value param-.type
0 0 10 0 -1
1 0 10 0 -1

Results:
number-.generated = 3735, *numbor-.accepted =1001
best..generated-.state->paxameter (0J = 0.5505103
best..generated..state->parameter [1] a 0.1010205

NORMAL-.EXIT exit-.status = 0
final-cost = best..generated-.state->cost = 5.606123
asa-end:time: Oh Om 2.55.; incr: Oh Om 0.01s

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-10

BENCINARIC PROBLEM 61. MODIFIED BOUNDS (0 - 20)

Constraints:
S1 - (-2 * x[OJ + x[11 + 1);
g2 - (-x[OJ + 2 * x[11 -1);
g3.-(x(O] * x[01 - 2*x(OJ - 2 * 1] + 1);

Objective Function:
suu = (10 * z[OJ + z(1])

Initial Conditions:
OPTIONS->LINIT..ACCEPTANCES = £000
OPTIOIS->LINIT..INVALID-.GENEUATED-.STATES = 1000
OPTIONS->ACCEPTED-.TO..GEIERATED..RATIO =0.0001
OPTIOIS->COST..PRLCISION = 1e-8
OPTIOES->NAXIINUMCOST-.REPEAT - 2
OPTIONS->NUUBER..COST..SAMPLES = 2
OPTIOIS->USER-.INITIAL-.PAR&METERS = 1
OPTIONS->ACTIVATE-.REANNEAL = 0

index-v param-.minimum param-~maximum param-.value param-.type
0 0 20 1 -1
1 0 20 1 -1

Results:
number-.generated = 57787, *number..accepted = 1001
beut-.generated-.state->pazameter [01 = 0.5505103
best-.generated..state->parameter [11 = 0.1010205

NORMAL-.EXIT exit-.status = 0
final-.cost = best..generated-.state->cost = 5.606123
asa-.end:time: Oh Om 38.4s; incr: Oh Om Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-11

BENCNMA PROBLEM 01. MODIFIED BOUNDS (0 -100)

Constraints:
gi - (-2 * x[0] + x[11 + 1);
g2 - (-x[O] + 2 * x[l1 -1);
s3 - (x[OJ ex[OJ - 2 * x[0 - 2 * x[1 + 1);

Objective Function:
suu - (10 * X[0J + x(1]

Initial Conditions:
OPTIONS->LIMIT-.ACCEPTANCES = 1000
OPTIONS->LIMIT-INVALID-.GUNERTED-.STATES =1000
OPTIOIS-ALCCEPTED-.TO..GENERATED-.RATIOa 0.0001
OPTIONS->COST-.PRECISIOI = le-8
OPTIOIS-MKAZIMUHLCOST-.REPEAT = 2
OPTIOIS->NUMBER-.COST-.SkMPLES = 2
OPTIONS->USEI.INITIIk.PARANETERS = 1
OPTIOIS->ACTIVATE-R.E&NNEAL = 0

index-.v param-.mininum param...maximum param-.value param-.type
0 0 100 1 -1
1 0 100 1 -1L

Results:
number-.generated = 0. *number-.acceptod = 0
best-.generated-.state->parameter [0] = 0
best-.generated-.state->parameter [1] = 0

TOO-.MANY-INVALID...STATES exit-status = 4
final-cost = best..generated-.state->cost = 0
asa..end:time: Oh Om 0.23s; incr: Oh Om Os

BEST COST WITH MODIFIED PARAMETERS 5.606123

C-12

DUNCMURK PROBLEM 82, STANDARD CONDITIONS

Constraints:
81 a (.124 * *qrt(I + x[11 * x[l]) * (8/x[OJ +

g2 - (.124 * sqrt(1 4 x[l] * x[1]) * (8/x(O] -

1A1[0J *z(1]) - 1);

Objective Function:
sum. a (x[0] * sqrt(1e x[11 * x[1J)

Initial Conditions:
OPTIONS->LINIT-.ACCEPTANCES, = 1000
OPTIONS->LINIT-INVALID-.GENEUATED-.STATES = 1000
OPTIONS->ACCEPTED..TO..GENERATED-.RATIO = 0.0001
OPTIONS->COST-.PRECISION = 1e-8
OPTIONS->NAXIIMUICOST..REPEAT = 2
OPTIONS->NUMBER-.COST-.SANPLES, = 2
OPTIONS->USER-.INITIAL-.PARANETERS = 1
OPTIOIS->ACTIVkTE..REANNEAL = 0

index-.v param-..inimau param-maxiaum parain..value paru...type
0 0.2 4 4 -1
1 0.1 1.6 1.6 -1

Results:
number-.generated = 3482, *number..accepted =1001
best-.generated-.state->parameter[0] = 1.419945
best-.generated.state->parameter [1] = 0.3610655

NOR MAL-EXIT exit-.,status = 0
final-cost = best-.geuerated-.state->cost = 1.509699
asa..end:time: Oh Om 1.77s; incr: Oh Om Os

BEST COST WITH MODIFIED cONDITIOIS 1.508653

C-13

BENCHMRK PROBLEM U3 STANDAID CONDITIONS

Constraints:
gi a -1 + 16/(x[1J + 0.25 * x[O]);

g2a-1 + sqrt(3)I(3 * x[0]) + 2/(x[1] + 0.25 x[z0]);

Objective Function:
svz - 4.0 * x[0] + x[11

Initial Conditions:
OPTIONS->LIMIT...ACCEPTANCES - 1000
OPTIOIS->LINIT-INVALID..GENERATED-.STATES = 1000
OPTIONS->ACCEPTED..T0.GEIIEATED-RATIO = 0.0001
OPTIOIS->COST-PRECISION - 1e-8
OPTIONS->KAIIMUM..COST-.REPEAT = 2
OPTIOIS->NUNBER..COST..SJJPLES, = 2
OPTIONS->USER-INITIAL-PARAMETERS = 1
OPTIONS->ACTIVITE-.REANNEAL = 0

index-Y paramn.minimum pazam-.maximum paranm value parhuL type
0 0 20 1 -1
1 0 20 1 -1

Results:
number-.generated = 3589. *nuuber..accepted = 1001
best ..generated..state->parameter [0] = 0.6598288
best..generated-.state->parameter (1] = 15.83505

NORMAL-.EZIT exit-.status = 0
final-cost = best..generated-.state->cost = 18.47436
asa-.end:time: Oh Om 1.84s; incr: Oh Om 0.

BEST COST WITH MODIFIED CONDITIONS 18.47436

C-14

BIUCNKMAR PROBLEM #4. STANDARD CONDITIONS

Constraint:
Si - 61/ pov(x(01,3) + 37/ pow(x[1L,3) + l9/pov(x(2J,3)+
7/pow(x[3] .3) + 1/pov(x(4].3) -1;

Objective Function:
sum - 0.0624 * (x[O] + x[11 + x[2J + x[3] + x[4J)

Initial Conditions:
OPTIOIS->LIMIT. ACCEPTANCES - 1000
OPTIONS->LINIT-INVALID..GUERATED..STATES = 1000
OPTIOIS->kCCEPTED..TO-.GKNElATED-.RATIO = 0.0001
OPTIONS->COST-.PUECISION = 19-8
OPTIONS->NAZINM-J.COST-.REPEAT = 2
OPTIONS->NUMBEI..COST..SANPLES, = 2
OPTIOIS->USE-INITIAL-.PARANETERS = I
OPTIONS->ACTIVATE-REkNNEAL

index..v paraz..minimum paraz..maximum param..valu. param..type
0 0 20 1 -1
1 0 20 1 -1
2 0 20 1 -1
3 0 20 1 -1
4 0 20 1 -1

Results:
*number..generated = 17831, *number..accepted = 1001
best-.generated-state->parameter [01 = 6.019731
best..generated..state->parameter [1] = 5.236718
best ..generated.state->parumeter (21 = 4.539208
best..generated-.state->parameter (3] = 3.547769
beut..generated.state->parameter [41 = 2.134679

NORMAL..EIIT exit-.status = 0
f inal-.cost = best-.generated-.state->cost = 1.340234
asa-.end:time: Oh Om 22.32s; incr: Oh Om 0.Ols

BEST COST WITH MODIFIED CUNDITIONS 1.340036

C-15

D UCUI PIODLIEN #4. NEGATIVE LOVER BOUND

Constraint:
S1 a 61/ pov(xE0] 3) + 37/ pov(x[11,3) + 19/pov(x[2],3) +
7/pow(X[3] 3) + 1/pov(z(4L.3) -1;

Objective Function:
own a 0.0624 * (x(0] + x[11 + x[2] + x[3] + x[4])

Initial Conditions:
OPTIOES->LINIT..ACCEPTAICES - 1000
OPTIONS->LIMIT-INVALID-GUNERATED-.STATES - 1000
OPTIOIS->ACCEPTED..TO-.GENERATED..RATIO - 0.0001
OPTIONS->COST-.PRECISION a 10-8
OPTIONS->MAXIMULCOST-.REPEAT - 2
OPTIONS->NUNBER-.COST-SANPLES = 2
OPTIONS->USfl..INITIAL-.PARANETERS = 1
OPTIONS->ACTIVATE..REANNEAL

indez-.v paru...mininum paxam...axizuu param..valu. param-type
0 -20 20 1 -1
1 -20 20 1 -1
2 -20 20 1 -1
3 -20 20 1 -1
4 -20 20 1 -1

Results:
*number-.generated = 16548, *number..accepted = 1001
best-.generated-.state->parameter[0] = 1 .286e-14
best..generated-.state->pararnter [1] = 1. 286e-14
best-.generated-.state->parameter[2] = 1 .286e-14
best-generated.state->parameter [3] = 1. 286e-14
best..generated..tate->parameter (4] = 1. 286e-14

NORZ4AL-.EIIT exit..statu
final-cost = best..gener state->cost = -6.24
aua-.end:time: Oh Om 15.74b, incr: Oh Om 0.01s

BEST COST WITH MODIFIED CONDITIONS 1.340036

C-16

DENIMAIKA PROBLIEM # , STANDARD CONDITIONS

Constraint:
gi a -z[OJ*x(]E'z(x2] + 125;

Objective Function:
soa 20*x (1]*z (2] + 30*z (0] *x(2] + 16*z (0] *z (1;

Initial Conditions:
OPTIOIS-)LINIT-ACCEPTANCES - 1000
OPTIOIS->LIMIT-.INVALID..GEIERATED..STATES - 1000
OPTIOES->ACCEPTED-.TO..GENERATED-.RATID = 0.0001
OPTIOIS->COST-.PRECISIOI a 1e-8
OPTIOIS->NAXIIMUICOST-R.EPEAT = 2
OPTIONS->NUMBER-.COST-.SANPLES a 2
OPTIOIS->USERIIITIAL-PARANETERS 1
OPTIONS->ACTIVATE-R.EANNEAL a 0

index-v parumeter..mininm parameter-..aximu param..yalue param..type
0 0 20 1 -1
1 0 20 1 -i
2 0 20 1 -1

Results:
number-.generated =6342. *numbsr..accepted = 1001
best-.gonerated..tate->paraueter(0J = 4.72971
best-.gonerat.&.state->parameter (1] = 6.53976
bset..generated-.state->paraueter (2] a 4.041359

COST..REPEATING exit..statas - 0
final-cost = best-.generated..atate->cost = 1565.991
asa-.end:time: Oh Om 3.52s; incr: Oh Om 0.01.

BEST COST WITH MODIFIED CONDITIONS 1560.129

C-17

DUCEKARI PROBLEM 6. M ODIFIED MNALID GENEATED STATES

Constraints:
St a 27.O/(z(O] pow(x(1],2) * x[21) -1;
g2 = 397.5/(x(0] *pov(x(IJ .2) *pov(x(2J.2)) -1;
g3 a 1.93 * pow(x[3L,3)I(x~l] * x[21 * pov(x[(5L4));
g4 - 1.93 * pow(x(4],3)/(x[l] * x[2J * pov(x[6J,4));
gfi - sqrt(655025.0 * pow(x(3],2)/(pow(x(1J,2) *
pow(x(2],2) + 16.916)1(0.1 * pow(x[5],3)) - 1100.0;
g6 sqrt(555025.0 * pow(x[4L,2)I(pow(x(1J,2) *

pow(x(2J,2) + 167.51E6)/(0.1 * pow(x[6L,3)) -850.0;
g7 - x[] * x[2J - 40;

g8 - 5 - x[OJ/z(1];
g9 - zE0l/z[l]- 12;
g24 - (1. 5 * x [5] + 1. 9) /x[31 - 1;
g25i = (1.1 * x[6J +1.9)/x[4] - 1;

Constraints 10 thru, 23 handled by defining bounds
(below) on variables

Objective Function:
sum =(0.7854 * x[0] * x[l]1 x[1J) * (3.3333*
x[2] x[z2J + 14.9334 * x[2] 43.0934) - (1.508
* x [0) * (x [61 * x(5 E 4l x (6 x x(6]) +

7.477 *(xi(S) *x[51 * x[51 + x[6] x[61(6 x[6]) +

0.7854 *(x[3] * fi(S * x[51 + x[1(4 x[6J x[*)

Initial. Conditions:
OPTIONS->LIKIT-ACCEPTANCES, = 1000
OPTIONS->LIMIT-IIVALID-.GENEUATED-.STATES = 10000
DPTIONS->ICCEPTED-.TO..GENERATED-RATIO = 0.0001
OPTIONS->COST-PRECISION = le-8
OPTIONS->MAIINUWLCOST-.REPEAT = 2
OPTIONS->NUNBER-.COST-.SAMPLES = 2
OPTIONS->USER-.INITIAL-PARAMETERS = 1
OPTIONS->ACTIVATE..REANNEAL = 0

index..v param-.minimum param-.maximum param..value param-.type
0 2.6 3.6 3.1 -1
1 0.7 0.8 0.75 -1
2 17 28 22.5 -1
3 7.3 8.3 7.8 -1
4 7.3 8.3 7.8 -1
5 2.9 3.9 3.4 -1
6 5 5.5 5.25 -1

0-18

Results:
number-.generated a 12179, *nuuber-.accepted a1001

bent-.geuerated...stat.->parueter (0] - 3.500005
best-.generated...tate->paraiaeter (1] a 0.7000001
best-generat.&..mtate->paru~ter(2] - 17
b~at-.geuerated-s.tat.->parzaeter[3] a 7.300018
beat .. generate&..utate->parumeter (4] - 7.715332
best..generated-.state->parameter (5J a 3.350215
best .. generate&..atate->paraueter[[6] 5.286655

NORMAL-EXIT exit-status = 0
final-cost - best-generated-state->cost = 2994.345
aua-.end:time: Oh Om 58.84s; incr: Oh Om 0.02s

BEST COST WITH MODIFIED CONDITIONS 2994 .31

C-19

BEUCIKAI PRBLERM S 6* STANDAID CONDITIONS

Constraints:
gi - 27.0/CiLO] * pow(x[1L.2) * x[2]) -1;
g2 - 397.5/(x(O] * pow(x[1L.2) *pow(x[2].2)) -1;
g3 a 1.93 * pov(x(3],3)I(x(1] * x[2] * pov(X(6].4));
g4 a 1.93 * pow(x(4L,3)I(x(1J * x[21 * pow(x(6J,4));
g6 - *qrt(555026.0 * pov(x(3].2)I(pow(X[lJ, 2) *
pov(x[2J,2) +. 16.9E6)1(0.1 * pow(x[5]1.3)) - 1100.0;
g6 m sqrt(555026.0 * pov(x[4].2)I(pow(X[1J.2) *
pow(x[2],2) + 167.5E6)I(0.1 * pov(x[6L,3)) -850.0;
g7 - X[11 * X[2J - 40;
58 - 5 - x(0]/xIll];
g9 - z(0I/x[1J- 12;
g24 =(1.5 * xi(S) + 1.9)/x[3] - 1;
g25 a (1.1 * X[6] +1.9)/X[4J - 1;

Constraints 10 thru 23 handled by defining bounds
(below) on variables

Objective Function:
sum= (0.7854 * x[0J * x[1J * z(1) * (3.3333*
x[2J x[2] + 14.9334 * x[21 43.0934) - (1.508
* X10J) * (i(S)l * X(51 + X16J *X(6]) +
7.477 *(x[61 x[5J * x[51 + x[6] x[6J *x[6]) +
0.7864 *(x[3J x[51S * x1(5] + x[1(4 x[6] x[6J);

Initial Conditions:
OPTIOIS->LIMIT-ACCEPTANCES = 1000
OPTIOIS->LIMIT-INVLID-.GENERATED-.STATES = 1000
OPTIONS->ACCEPTED-.TO-.GENEUATED-.RATIO = 0.0001
OPTIONS->COST-PRECISION = le-8
OPTIONS->MAXIMULCOST-.REPEAT = 2
OPTIONS-)JrUNBER..COST-.SINPLES a 2
OPTIONS->USER..INITIAk.P.AfLAETERS = 1
OPTIONS->ACTIVATE-.REANNEAL = 0

index-.v paraua..minimum param...aximuu param-.value parem-.type
0 2.6 3.6 3.1 -1
1 0.7 0.8 0.75 -1
2 17 28 22.5 -1
3 7.3 8.3 7.8 -1
4 7.3 8.3 7.8 -1
5 2.9 3.9 3.4 -1
6 6 5.5 5.25 -1

C-20

Results:
nuuber-snerated - 0, *nubdwr-.accepted =0

bOSt-4.aerated..utate-)para.ter[O] m 0
beat-.gonerated-state->paraueter (11- 0
best-.gonerated..state->parameter (21 - 0
bout .. gmnrated-..tate->parauter (3] - 0
best-.guwerat.&..stat.->Paraaeter[4J - 0
best-.gonerat.&..utat.->parameter (5] - 0
best...generat.&..utate->Parawtor([61 = 0

TOO-M. AY INVALID-.STATES exit-status = 4
final-..cost - best-.gonerated..state->cost = 0
ana-a..d:tim.: Oh 0m 0.74s; incr: Oh Om 0.01.

BEST COST WITH MODIFIED CONDITIONS 2994.31

C-21

DENCENAR PROBLEM # 7. MODIFIED UPPER BOUND (600)

Constraints:
gi a 2.497 - x[0J*x[1)*x[lJ;
g2 - 1.12SES - x(0J*x[1J;
P3 = x[11 - 2*x[O];

Objective Function:
su x[O1*x[1J

Initial Conditions:
OPTIONS->LIMIT...ACCEPTINCES = 1000
OPTIONS->LINIT-.INVALID-.GENERATED-.STATES - 1000
OPTIOIS->ACCEPTED-.TO-.GENERATED..RATIO = 0.0001
OPTIONS->COST-PUECISION = i.-8
OPTIOKS->KAXIMUILCOST-REWEAT -2
OPTIOIS->NUUNBER.COST-.SANPLES =2
OPTIOIS->USER-.INITIAL-.PARAMETERS = 1
OPTIOIS->ACTIVATE RELNNEAL = 0

index-.v param-..inimum param-.maximum param..value parem-.type
0 0 5001o-
1 0 5001o-

Results:
number-.generated = 24267, *number..accepted = 1000
best-.generated-.state->parameter (0] = 241 .9632
beut-.generated..state-)parameter El] - 464.9468

COST-R.EPEATING exit-s.tatus = 3
final-cost = best-.generated-.state->cost = 112500
aua-.end:time: Oh Om 10.15s; incr: Oh Om Os

BEST SOLUTION WITH MODIFIED CONDITIONS 112500

C-22

BENCEMARX PROBLEM S 7, ALTERNATE OPTIMAL SOLUTION

Constraints:
51 = 2.4E7 - x[0]*x[1]*x[1J;
g2 a 1.125KB - x[OJ*x(1J;

SS x[11 - 2*x[0];

Objective Function:
BUICKa *X[0J*x(1]

Initial Conditions:
OPTIOIS-)LINIT-.ACCEPTANCES - 1000
OPTIDIS->LIMIT-.INVALID-.GENELTED-.STATES = 1000
OPTIOIS->ACCEPTED-TO-.GENERATED-.RATIO -0.0001
OPTIONS->COSTPRECISION a 1e-8
OPTIOIS->MAXIIUM-.COST-REPEAT = 2
OPTIONS->NUMBER-.COST-SAMPLES = 2
OPTIOIS->USER-INITIAL-.PARAMETERS = 1
OPTICŽN3-ACTIVATE REANNEA&L = 0

index-.v param...min,.aim param...iaximu- paraz..value pazam-.type
0 0 500 100 -1
1 0 500 100 -1

Results:
number-.generated = 25161, *number-.accepted = 1000
best-.generated-.state->parame ter (0] = 307.3S417
best-.generated..state->parameter [1] = 366 .0421

COST...REPEATING exit-.status = 3
final-.cost = best-.generated-state->cost = 112500
asa-.end:time: Oh Om 10.24s; incr: Oh Om 0.01.

BEST SOLUTION WITH MODIFIED CONDITIONS 112500

C-23

BENCIMUfl PROBLEM 0 8. MODIFIED UPPER BOUND

Constraints:
51 125. 0 -x[0

g2 = 0. - [1

Objective Funct ion:
mu-m - 50 * x[0] +440 * x[11];

Initial Conditions:
OPTIONS->LIMIT..ACCEPTANCES = 1000
OPTIONS->LIMIT-INVALID..GENERATED..STATES = 1000
OPTIONS->ACCEPTED-.TO..GENERATED..RATIO = 0.0001
OPTIONS->COST-PRECISION = le-8
OPTIONS->MAIIMUM-.COST-REPEAT = 2
OPTIONS->NUNBEI..COST.SAMPLES = 2
OPTIOIS->USER..INITIAL-.PARAMETERS = 1
OPTIONS->ACTIVATE-.REANNEAL = 0

index-.v paxaza..minimum paxam-.maximum param..value param-.type
0 0 500 200 -1
1 0 500 200 -1

Results:
number-.generated = 19248, *number-.accepted = 1001
best..generated-state->parameter [0] = 125
best..generated-.state->parameter [11 = 100

NORMkL..EXIT exit-status = 0
final-cost = best-.generated-.state->cost = 10250
asa..end:time: Oh Om 10.43s; incr: Oh Om Os

BEST SOLUTION WITR MODIFIED CONDITIONS 10250

C-24

BENCHMARK PROBLEM # 9, STANDARD CONDITIONS

Constraint:
g1 a x[OJ + 2 * x[11 - 2;

Objective Function:
sum. - (x[O1 - 1)*(x[O) - 1) + (xU. - 1)*(xl1] 1)

Initial Conditions:
OPTIONS->LIMIT-ACCEPTANCES a 1000
OPTIONS->LINIT-.IIVALID-GENERATED-.STATES = 1000
OPTIONS->ACCEPTED..TO-.GUERATED-.RATIO = 0.0001
OPTIOIS->COST.PRECISION = 19-8
OPTIONS->KAXINUM-.COST-.REPEAT - 2
OPTIOIS->NUMBER-COST-.SAI4PLES = 2
OPTIONS->USER-IIITIAL..PARAMETERS = I
OPTIONS->ACTIVATE-REANNEAL = 0

index-.v param..minimum param...raximilu param..value param-.type
0 0 20 1 -1
1 0 20 1 -1

Results:
number-.generated = 5022, *number-.accepted = 1001
best-.generated-.state->paramoter [01 = 0.829913
best-.generated..state->parameter [1] = 0.5850434

NORMAL-EXIT exit-.status = 0
final-cost = best-.generated-state->cost = 0.2011185
asa-.end:time: Oh Om 2.566.; incr: Oh Om 0.0.

BEST COST WITH MODIFIED CONDITIONS 0.2004642

C-25

INCMUXAR PROBLEM 010, STANDARD CONDITIONS

Constrsaints:
gi - x[0] + x(11 - 5;

Objective Function:
summ (x[0] - 3) * (x[0] - 3) + (x[1] - 3) *(x(1] 3)

Initial Conditions:
OPTIONS->LIMIT..ACCEPTANCES - 1000
OPTIONS->LIMIT-.INVLID..GENERATED-.STATES = 1000
OPTIONS->ACCEPTED..TO-.GENERATED-.RATIO a 0.0001
OPTIONS->COST-PRECISION = 1e-8
OPTIOIS->KAXIMUK-COST-.REPEAT = 2
OPTIONS->NUMBER-.COST..SAMPLES = 2
OPTIONS->USER-.INITIAL...PARANETERS = 1
OPTIONS->ACTIVATE-.REANNEAL = 0

index-.v param..minimum param-..aximul param...value param-.type
0 0 20 1 -i
1 0 20 1 -1

Results:
*number..generated = 4152, *number-.accepted = 1001
best-.generated-state->pa~rameter [0] = 2.642822
best-.generated-.state->parameter [1] = 2.357178

NORMAL-.EXIT exit-.status =0
final-cost abest-.generated-state->cost = 0.5407964
asa..end:time: Oh Om 2.1s; incr: Oh Om Os

BEST COST WITH MODIFIED CONDITIONS 0.5026903

C-26

BENCHMRKI PROBLEM 8 11, STANDARD CONDITIONS

Constraint:
gi - x([0] + x [11 - 4;

Objective Function:
summ (x [0J - 1) *(x [0] - 1) +
(x[1] -1) * (x[11 -1) - 2 * x[11 + 2.0

Initial Conditions:
OPTIONS->LIMIT-.ACCEPTANCES - 1000
OPTIONS->LINIT-IIVALID-GENERATED-.STATES -1000
OPTIONS-AICCEPTED-.TO-.GENEUiTED-.RATIO = 0.0001
OPTIONS->COST-.PRECISION = 19-8
OPTIONS-)MAXIIUMUCOST-.REPEAT - 2
OPTIOIS->NUMBER-.COST-SAMPLES = 2
DPTIONS->USER..INITIIL-PARAMTERS = 1
OPTIOIS->ACTIVATE-.REANNEAL = 0

index-.v param-.minimum param-Lmaximuy param..value paraa..type
0 0 20 1 -1
1 0 20 1 -1

Results:
number-.generated = 1711, *number-.accepted = 700
best-.generated-.state->parameter [0] a 1.000001
best..generated.state->parameter [1] = 2

COST-.REPEATING exit-.status = 3
final-cost = best-.generated-.state->cost =-1
asa..end:time: Oh Om 0.66s; incr: Oh Om .0.s

BEST COST WITH MODIFIED CONDITIONS -1.0

C-27

DUNCKMARI PROBLEM # 12, STANDARD CONDITIONS

Constr~aints:
gi - 10 -(xE0J + X1l]);
g2 a 8 URI(1 + 2 * x[2J);

Objective Function:
sum * (x(0] * x[0J) + (x[11 * x[i]) + (x[2] x* 1)

Initial Conditons:
OPTIONS->LIHIT-ACCEPTANCES a 1000
OPTIDIS->LINIT-.INVALID..GENERATED-.STATES = 1000
OPTIONS->ACCEPTED-.TO-.GENERUTED-.RATIO = 0.0001
OPTIONS-)COST-PRECISION = 1.-8
OPTIONS->KAIIHULCOST-REPEAT = 2
OPTIONS->NUMBER-.COST-SANPLES = 2
OPTIONS->USER-.INITIAL-PALRAMETERS = 1
OPTIONS->ACTIVATE-.REANIEAL = 0

index-.v parain..minimum paxam-.maximum param..value pazam...type
0 0 20 1 -1
1 0 20 1 -1
2 0 20 1 -1

Results:
number-.generated = 4524, *number..accepted = 1001
best-genoratad..state->parameter [0] = 5.74947
best-.generated..state->parameter [1] - 4.25053
best..geuerated-state->parameter[2] = 1.874735

NORMAL-.EXIT exit-status = 0
final-cost =best-.generated..state->cost = 54.63804
asa-e.nd:time: Oh Om 2.92s; incr: Oh Om Os

BEST COST WITH MODIFIED CONDITIONS 53.41885

C-28

BENCH=AI PROBLEM # 13, STANDARD CONDITIONS

Constraint:
x[11] 4 -[]

Objective Function in terms of x[0J only:
mun = 4 *x[0J * x[o] + 3 *(4 - x[0]) *(4 - x[0J)-

5 * x(0] *(4 - x[0]) - 8 * x[0]

Initial Conditions:
OPTIONS->LINIT-ACCEPTANCES =1000

OPTIONS->LIMIT-.INVALID-GENEUATED-.STATES= 1000
OPTIONS->ACCEPTED-.TO-.GENERATED-.RATIO = 0.0001
OPTIONS->COST-.PRECISION = le-8
OPTIONS->NAXIKM-N.COST-.REPEkT = 2
OPTIONS->NUUBER-.COST-SANPLES, = 2
OPTIONS->USER..INITIAL-PARAMETERS = 1
OPTIOIS->ICTIVITE..REAJNELL = 0

index..v pazam..minimum paral-maximum param-.value pSXU...type
0 0 20 1 -1

Results:
number-.generated = 1715, *nuuber..accepted = 1001
best-.generated.state->parameter [0] = 2.166665
best..generated-state->parameter [1] = 1.833335

NORKIL-.EIIT exit-status = 0
f inal-cost = best..generated..state->cost = -8.333333
asa-.end:time: Oh Om 0.61s; incr: Oh Om 0.Ols

BEST GENERATED COST WITH MODIFIED CONDITIONS -8.333333

C-29

BDUCKKRAK PROBLEM S 14,* STANDARD CONDITIONS

Constraints:
gi - 16/(x[O] * x[OJ) + 16/(x(1] * x[1J) - 1;
g2 - 16/(x~lJ * x[1J) + 16/(x[21 * x[2]) - 1;

Objective Function:
su (x[O] * x[0J) +(x[1] * x[1J) + (x[2] x[z2J);

Initial Conditions:
OPTIONS->LIMIT-.ACCEPTANCES, = 1000
OPTIONS->LINIT-INVALID..GENEULTED-.STATES = 1000
OPTIONS->ACCEPTED-.TO-.GENERATED..RATIO a 0.0001
OPTIONS->COST-PRECISIOI - 1.-8
OPTIONS->MAXIMUW..COST..REPEAT a 2
OPTIONS->NUMBER-.COST-SAMPLES, 2
OPTIOIS->USER..INITIAL..PARAIIETERS = 1
OPTIOIS->ACTIVATE..REANNEAL = 0

index-v paxaiujninimum parazn...axinmu param-.value paraza..type
0 0 20 1 -1
1 0 20 1 -1
2 0 20 1 -1

Results:
number-.generated = 4152, *number..accepted = 1001
best-.generated..state->parameter (0) = 5.777124
best..generated...tate->parameter [1] = 5.543801
best-.generated..state->parameter[2] = 5.77119

NORMAL-.EXIT exit-.status = 0
f inal-cost = best..gonerat.&.state->cost = 97.48401
asa-.end:time: Oh 0m 3.14s; incr: Oh Om Os

BEST COST WITH MODIFIED CONDITIONS 94.16438

C-30

BINCIIURK PROBLEM # 15, STANDARD CONDITIONS

Constraints:
gi = l.0/x[0J - 1.0;
g2 a 1.6/(x~l] + x[O]/4) - 1.0;

Objective Function:
su * aE~ X[1 2 * x[11

Initial. Conditions:
OPTIOIS->LIMIT-ACCEPTANCES - 1000
OPTIONS->LIMITINVALID-.GUNERATED..STATES a 1000
OPTIOIS->ACCEPTED-.T0-GENERATED.RkTIO = 0.0001
OPTIONS-)COST-.PRECISION = 10-8
OPTIONS->MAXIMUILCOST-R.EPEAT a2
OPTIONS->NUNBER-.COST-.SANPLES =2
OPTIONS->usn-.IIITIAL-.PARAMETERS = I
OPTIOIS->ACTIVATE-REANNEAL = 0

index-.v param..minimu- Param..maximum param..value paxam-.type
0 0 20 1 -1
1 0 20 1 -1

Results:
number-.generated = 3570, *number-.accepted = 1001
best-.generated-.state->parameter(0] = 2.402833
best..generated-.state->pa~rameter [1] = 0.8992917

NORKAL-.EIIT exit-status = 0
final-cost = best-.geu~erated-state->cost = 4.201417
asa..end:tiue: Oh Om 1.76s; incr: Oh Om Os

BEST COST WITH MODIFIED CONDITIONS 3.50

C-31

BENCEIK~l PROBLEM # 16, STANDARD CONDITIONS

Constreaits:
gi - (z(0]*z[0J + zEOl) + (z[l]ez(1] -X(11) +

(x[2]*x[2] + x[2J) + (x[3J*x(3J - x[31) -8.0;

g2 (x(0J*x(OJ - iO]) + 2*x[1]*x[1J + x[21*x[2] +
(2*x[3]*x(31 - x[3J) -10.0;

S3 - (2*x(0]*x[OJ + 2*x[0J) + (x[1J*x(1] - x[1]) +
x [21 *x[2J - x [3J - 5. 0

Objective Function:
sum a (x(0J*z[0J - 5*x[0J) + (X(1J*XE1J - S*i1l)) +
(2*x[2J*x[2J - 21*x[2]) + (x[3]*x[3] + 7*x[3]) + 50.0

Initial Conditions:
OPTIOIS->LINIT-ACCEPTAkNCES a 1000
OPTIONS->LIKIT-.INVALID-GENERATED-.STATES = 1000
OPTIOIS->ACCEPTED-.TO..GENERATED-.RATIO = 0.0001
OPTIONS->COST-PRECISION - 10-8
OPTIONS->K&IIKUM-COST-REPEAT = 2
OPTIOIS->NUNBER-.COST..SAMPLES =2
OPTIONS->USER_.INITIAL-.PARAJ4ETERS, = 1
OPTIONS->ACTIVATE-.REANNEAL = 0

indox-.v param-.minimum param..maximum param..value param..type
0 0 20 1 -1
1 0 20 1 -1
2 0 20 1 -1
3 0 20 1 -1

Results:
number-.generated = 0, *number..accepted =0
beat..generated.state->parameter [01 = 0
best-.generated-state->parameter [1] = 0
best-.generated..state->parameter [21 = 0
best..generated..state->parameter [31 = 0

TOO-M.&N-INVAkLID-.STALTES exit-.status = 4
f inal-cost = best..-generated-state- >cost= 0
asa-.end:time: Oh Om 0.43s; incr: Oh Om 0.Os

BEST COST FOUND WITH MODIFIED CONDITIONS 9.036721

C-32

BUACIM*B PROBLEM # 16, MODIFIED BOUNDS (0,10)

Constraints:
gi a (z(0J*x[OJ + x(OJ) + (x[l]sz[l] - z11) +

(x[2]sx[2J + x[2J) + (x[3Je'z[3J - x[3]) -8.0;

g2 - (x(O1*x(OJ x[O]) + 2*rfl]*x(1] + x(2]sx(2] +
(2*x[3J*x[3J - x[3]) -10.0;

g3 - (2*x[0]*x[WJ + 2*x[0]) + (x[1]*x[l] - x[1]) +

x [2J*x [2J - x [3J - 5. 0

Objective Function:
sua (x(0J*z[O] - 5i*x(0]) + (X[1J*X(1J - 6i*x[iJ) +

(2*x(2]*x[2J - 21*x[2J) + (x(3J*x(3] + 7*x[3]) + 50.0

Initial Conditions:
OPTIONS->LINIT-1.CCEPTANCES, 1000
OPTIOIS->LIMIT..INVALID-.GENERATED-.STATES = 1000
OPTIONS->ACCEPTED-.TO..GENERATED...UTIO = 0.0001
OPTIOIS->COST-.PRECISIOI - 1e-8
OPTIONS->KAXIMUM-.COST-.REPEAT -2
OPTIONS->NUMBER-.COST-.SAMPLES, a 2
OPTIONS->USER-.INITIAL-.PARANETERS = 1
OPTIONS->ACTIVATE-REANNEAL = 0

index-.v Param-.minimuzn param..maximum param..value param-.type
0 0 10 1 -1
1 0 10 1 -1
2 0 10 1 -1
3 0 10 1 -1

Results:
number-.generated = 10102, *number-.accepted = 1001
best-.generated-.state->parameter [0] = 0.001839589
best ..generated..state->parameter [1] = 1.037515
best-.generated-.state->parameter [2] = 2.22652
best..generated..state->parameter (3] = 1. 068709e-08

NORMIL-.EXIT exit-.status = 0
final-cost = best-.generated-state->cost = 9.037529
asa..end:time: Oh Om 8.76s; incr: Oh Om 0.Ols

BEqT COST FOUND WITH MODIFIED CONDITIONS 9.036721

C-33

BUCEUR PROBLEM $17,* MODIFIED BOUNS (+.,- 0.8 UNITS5)

Constraints:
gi - 0.5*sqrt(x[0J)*z[6]/(x[2]*x[5]*x[5]) +

0.7epow(z(0],3.0)*x[1]ex[51*uqrt(x[6])/(x[21*x[2]) +
O.2*x[2]*pow(x[5J,0.667)*pov(x[6],O.25)/(x[l1*uqrt(x[3])) - 1.0

g2 = 1.3*x[1J*x[5]/(sqrt(x[0])*x[2]*x[41) +

O.8*x[21*x[6J*x[61/(x[3]*x[41) +
3.l*sqrt(x(1])*pov(x[5J ,0.333)/(x(01*x[3]*x[3]*x[4]) - 1.0;

g3 - 2.0*x[olez(4lepow(x[61,0.333)/(pov(x[2],1.5)*x[5J) +

0.1*x[1]*x(41/(sqrt(x(2])*x[5].sqrt(x[61)) +

x[il]*sqrt(x [21)*x[4]/x[0J +

0.65*x[21*x[4J*x[6]/(x[l1*x(1]*x[51) - 1.0;

g4 - 0.2*x[1J*sqr-t(x[41)*pov(x[61,0.333)/(x(0]*x(0]*x[3]) +

0. 3*sqrt (x[0])*x [11*1 [11*1(2]*pow(x [3] 4/3) *po (x [6] *1/4)/pow (x[4] 2/3) +

0.4*x(21*x[4]*pow(x(6] ,0.75)/(pov(x[01 ,3)*x[i]*x[1]) +

0.5*x[3]*sqrt(x[6])/(x[21*x[2]) - 1.0;

gfi = 10.0*x[01*x[3]*x(31*pov(x[61 ,0.125)/(x(11*pov(x[51 .3.0)) +
15. O*x[2]*x [31 /(x[01 *x[i]*x[i] *x[41 *sqrt(x[61)) +

20.0*x[11*x[5)/(xto]*x(0J*x[3]*x[4]*x[4]) +

25.0*x[01*1 [0] *1 [11*x(1]*sqrt (x(41)*x[6] /(x (21*1(5] *x[5]) - 3000;

g6 = 100.0 -

(10.0*x[0J*x(31*x[3]*pov(x[61 ,0.125)/(x[1]*pow(x[5] .3.0)) +

15 .0*x[2] *x[3] (x[0]*(1*x 1(1] l*x[4] *sqrt(I [6])) +
20.0*x[1]*x[5]/(x[0J*x[0]*x[3]*x[4]*x[4]) +

25.0*x[0]*x[0J*x[1]*x[1]*sqrt(x[41)*x[6]/(x(21*x[51*x[51));

Objective Function:
slim = 10.0*x[01*x[3]*x(31*pow(x(61,0.125)/(x[11*pov(x[5L,3.0)) +

15.0*x[2]*x[3]/(x(01*x[1]*x[1]*x[41*sqrt(x[61)) +
20.0*x[1]*x[51/(x[0]*x(01*x(3]*x[41*x(41) +

25.0*x(01*x[01*1 [11*1(11*sqrt (x(4]) *16]/ (x [21*1(51*1(51);

C-34

Initial Conditions:
OPTIONS->LIMIT..ACCEPTANCES = 1000
OPTIONS->LINIT-INVALID-.GENERATED-.STATES =1000
OPTIOIS-)ACCEPTED-.TO-.GENER&TED-...TIO - 0.0001
OPTIONS-)COST.PUECISION - le-08
OPTIOIS->MAZIKUN..COST-.REPEAT - 2
OPTIONS-mmUBER-.consT..AmPLEs = 2
OPTIONS->USER-.INITIAL-.PRAIUETERS = 1
OPTIONS->ACTIVATE-REANNEAL = 0

index..v paxam-.minimum paxan...aximum param-.value paxam-.type
0 3 4.6 3.873 -1
1 0 1.6 0.801 -1
2 1.8 3.4 2.616 -1
3 3.4 5 4.266 -1
4 0 1.6 0.85 -1
5 0.2 1.8 1.095 -1
6 0 0.8 0.027 -1

Results:
number-.generated = 56185, *number-.accepted = 1001
best-.generated-.state->parameter [0] = 4.00166
best-.generated-atate->parameter [1] = 0.5775299
best-.generated-.state->parameter [21 = 2.380327
best..generated..state->parameter[3] = 3.439459
best-.geu~erated..state->pazameter [4] = 0.9862509
best-.gonerated-.state->parameter(5] = 1.164156
best-.generated-.state->parameter [6] = 0.001627114

NORMAL-.EXIT exit-status = 0
final-cost = best-.generated-.state->cost = 1042.766
asa-.end:time: Oh 8m 30.63s; incr: Oh Om 0.Ols

BEST COST WITH MODIFIED CONDITIONS 936.8749

C-35

BUNCIMAN PRBLEM S17T, MODIFIED BOUNDS (4+,- 0.9 UNITS)

Constraints:
gi - 0.5*sqrt(x[0])*x[6]/(x[2]*x[5J*x(5J) +

0.T*pow(x(0] ,3.0)*x~llex[5]*sqrt(x[6])/(x[2J*x[2]) +.
0. 2*x [2] *pow (x [6].0.667) *pow (x [61.0.25) /(x [1]*sqrt (x(3DID - 1.0

g2 - 1.3*x[l]*x[51/(sqrt(x[o])*x[2]*x(4]) +.
0.8*x[2]*x[5]*x[5]1/(x[31*x[4]) +
3.1*uqzt(x(1])*pov(x(5] ,0.333)/(x[0]*x[3]*z[31*x[4]) - 1.0;

g3 = 2.O*x[0]*x[4]epov(x[611 50.333)/(pov(x[2],1.5)*x(5]l) +
0.1*x[1]*x[4]/(sqrt(x[2J)*x[5]*sqrt(x[6])) +
x[1] *sqrt(x[2J)*x[4]/x[0] 4

0.65*x[2]*x(4]*x[6J/(x[1]*x(1]*x[5]) - 1.0;

g4 = 0.2*x[1]*sqrt(x[4J)*pow(x[6J,0.333)/(x[0J*x[0]*x[3]) +
0.3*uqrt(x(0])*x[1J*x[lJ*x[2]*pov(x[3] ,1/3)*pov(x[6] ,1/4)/pov(x[4] .2/3) +

0 .4*x[2] *x[4J *pov(x(61 ,0 .75)/(pov(x[O] ,3)*x[i] *x[1]) +
0.5*x[3]*sqrt(x[6])/(x[2]*x(2]) - 1.0;

g5 = 10.0*x[01*x[3]*x[3]*pov(x[6]O0.125)/(x[1]*pow(x[5],3.0)) +
15.0*x[2]*x[31/(x[0]*x[1]*x[11*x[4]*sqrt(x[61)) +
20.0*x(1J*x[5]/(x[0J*x[0]*x[31*x[4]*x[4]) +

25. 0*x [0]*x[OJ *x[i]*x [1] sqrt(x [4])*x [6] / ([2] *x[5] *x [5]) - 3000;

g6 = 100.0 -

(10.0*x[0]*x[3]*x[3]epov(x[61 ,0.125)/(x[11*pow(x[5] ,3.O)) +
15.0*x[2]*x[3]/(x[0]*x(1]*x[11*x[4]*sqrt(x[6])) +

20.0*x(1]*x[5]/(x(0]*x[0]*x[3]*x[4]*x(4]) +

25. 0*x [ol*x [0] *x [11*,[1] *qrt (I[4])*x [6] /(x[2] *x[5] *x[5]));

Objective Function:
sum = 10.0*x[0]*x[3]*x[3]*pow(x[6],0.125)/(x[1]*pov(x[5L,3.0)) +

15.0*x[21*x[3]/(x[0]*x[1]*x[11*x[4]*sqrt(x[61)) +
20.0*x[1]*x[,5]/(x[0]*x[0]*x[3]*x[4]*x[4]) +

25.0*1 [01*, [0] *x [11*1(1]*sqrt (x [4]) *x[61 / ([2] *z[5] *x[5]);

C-36

Initial Conditions:
OPTIONS->LIRITAJCCEPTANCES - 1000
OPTIOIS->LIKIT-INVALID..GEUKR&TED..STATES = 1000
OPTIONS->ACCEPTKD..TO.GUEUETED..RATIO a 0.0001
OPTIONS->COST..PUCISIOI = 10-08
UPTIONS->NAXINUN..COST.REPKAT = 2
OPTIONS->NUMBEI..COST-SAMPLES - 2
OPTIONS->usELINITIAL-.PARANETERS = I
OPTIONS->ACTIVATE-.REANNEAL a0

index-v parama.minimum paxam-.maximum paraa..value param..type
0 2.9 4.7 3.873 -1
1 0 1.7 0.801 -1
2 1.9 3.5 2.616 -1
3 3.3 5.1 4.266 -1
4 0 1.7 0.85 -1
5 0.1 1.9 1.095 -1
6 0 0.9 0.027 -1

Results:
nuimber-.generated = 0, *number-.accepted = 0
best-.generated-state->parameter (0) = 0
best-.generated-.state->parameter (1] = 0
best..generated.state->parameter (2) = 0

best-.generated-state->parameter (3] = 0
best-.generated-.state->parameter (4) = 0
best-.generated..state->parameter (5] = 0
best-.generated-state->parameter (6] = 0

TOO-.MANY-INVALID..STATES exit-.status = 4

final-cost = best-.generated-.state->cost = 0
asa-.end:timo: Oh Om 1.27s; incr: Oh Om O.Ols

BEST COST WITH MODIFIED CONDITIONS 936.8749

0-37

BENCINAI PROBLEM 818, MODIFIED BOUNDS (+-0.5 UNITS)

Constraints:
gi = 0.0588*x[4J*x[6] + 0.l*x[0] - 1.0

S2 = 0.0588*z(5]*x(7] + 0.1*x(0] + 0.i*x(1] - 1.0;

g3 -4.0*x[21*pov(x[41,-i.0) +
2.O*pov(x[2] ,-0.71)*pow(x(4] ,-i.0) +
O.0588*x[61*pov(x[21,-l. 3o) - 1.0;

g4 = 4.0*x[3J*pov(x[6],-i.0) +
2.O*pow(x[3] ,-O.Tl)*pov(x[51, -1.0) +
0.0588*x[7]*pov(x[3J.,-1.3) - 1.0;

g6 = 0.4*pov(x[0J,0.67)*pov(x[61,-0.67) +
0.4*pov(x[1J ,O.6T)*pov(x[7] ,-0.67) +
10.0 - x[0J - x[11 - 4.2;

g6 = 0.1 - (0.4*pov(x[OJ,0.67)*pov(x(8],-0.67) +
0.4*pov(x[1] ,0.67)*pov(x[7] ,-0.67) +
10.0 - X[01 - x[1J);

Objective Function:
summ = 0.4*pov(x(0],0.67)*pov(x(6L,-0.6T) +
0.4*pov(x(11.0.67)*pov(x[71,-0.67) + 10.0 - x[01 x[11);

Initial Conditions:
OPTIONS->LIMIT-.ACCEPTkNCES = 1000
OPTIONS->LINIT-.INVALID-GENERATED..STATES = 1000
OPTIONS->ACCEPTED..TO..GENERATED-.R&TIO = 0.0001
OPTIONS->COST-PRECISION = le-8
OPTIONS->MkIIMUW.COST..REPEkT = 2
OPTIONS->NUMBER..COST-SAMPLES = 2
OPTIONS->USER..INITIAL-.PARANETERS = I
OPTIONS->ACTIVATE-REkNNEAL = 0

C-38

index-.v param.ter-.mininmu paramater..maximum paramm.valu. param-.typ.
0 5.7 6.7 6.226 -1
1 2 3 2.582 -1
2 0.1 1.1 0.629 -1
3 0.1 1.1 0.663 -1
4 5.4 6.4 5.994 -1
5 6 6 5.541 -1
6 0.5 1.5 1.081 -1
7 0 0.8 0.381 -1

Rtesults:
number-.generatecl = 0, *nuuber-.accepted =0

best ..generated..state->parameter (0] = 0
best..generated...tate->Pazrameter [1]a 0
best-.generated-s.tate->pazrameter [2] 0
best ..geuerated...state->parameter [3] 0
best..generated~state->parameter [4] 0
best-generated..state->parameter[(5= 0
best-.geuerated-.state->parameter [6] = 0
best-.generated-.state->parameter[7] 0

TOO-(ANY-INVALID-.STITES exit-.status =4

f inal-.cost = best..generated-.state->cost = 0
asa-.end:time: Oh Om 1.16s; incr: Oh Om 0.02s

BEST COST WITH MODIFIED PARAMETERS 3.984401

C-Z9

BEICIURAI PROBLEM #18, MODIFIED BOUNDS C.-0.5 WNITS). AND OTHERS

Constraints:
gI a O.0688*x[4J*x[6J + 0.l*x[O] - 1.0

g2 = 0.0588*x[6J*x[7J + O.lex[0J + 0.i*x[lJ - 1.0;

g3 a 4.0*x[2J*pov(x[4J,-1.0) +
2.0*pov(x(2] ,-0.71)*pov(x[4] .-1.0) +
0.0588*x(61*pov(x[2J .-1.30) - 1.0;

g4 - 4.O*x[3J*pov(x[6] -1.0) +
2.O*pov(z(3],-O.71)*pow(x(5], -1.0) +
0.0588*x[7]*pow(x[3J -1.3) - 1.0;

g5i = 0.4*pov(x(0],0.67)*pov(x(61,-o.67) +
0.4*pov(x[1J ,O.67)*pov(x[7] ,-0.67) +
10.0 - x[0J - x[1] - 4.2;

g6 = 0.1 - (0.4*pov(z[0J,0.67)*pov(x[611,-0.67) +

O.4*pov(x[l] ,0.67)*pov(z[7] ,-0.67) +
10.0 - X[0] - x[1J);

Objective Fuinct ion:
summ = 0.4*pov(x[01,0.67)*pov(x[6],-0.67) +
0.4*pow(x[1],0.67)*pov(x[7],-0.6T) + 10.0 - x[01 x- 1

Initial. Conditions:
OPTIONS->LIMIT..ACCEPTANCES = 10000
OPTIONS->LINIT-INVALID..GENERATED..STATES = 10000
OPTIONS->ACCEPTED..TO-.GENERATED..RATIO = 16-06
OPTIONS->COST-PRECISION = le-18
OPTIONS->MAIIMUM..COST-.REPEAT a 2
OPTIONS->NUMBER-COST-.SIMPLES = 5
OPTIONS->USER-.INITIAL-.PARAMETERS = 1
OPTIOIS->ACTIVATE-R.EANNEAL = 0

C-40

izdex..v parameter-mnimuiu parameter..maximuu param..value param-.type
0 5.7' 8.7 6.226 -1
1 2 3 2.582 -1
2 0. 1 1.1 0.629 -1
3 0.1 1.1 0.663 -1
4 5.4 6.4 5.994 -1
6 5 6 6.541 -1
6 0.5 1.5 1.081 -1
7 0 0.8 0.381 -1

Results:
number-.generated z 170636, *number..accepted = 2236
best-.generated..state'->parameter (0] = 6.27728
best..goenrated-.state->parmmeter[1] = 2.455755
beut-.generated-.state->parameter [21 - 0.6727257
best..gen~erated..state->parameter [3] = 0.5941369
best-.generated-.state->parameter[421 = 5.96429
best-.generated-.state->parameter [5] = 5.520324
best-.generated-.state->parAmeter [61 = 1.061509
best-.generated-s.tate->parameter[71 = 0.3903215

P-.TENP..TOO..SMALL exit-status = 1
final-.cost = best..generated..state->cost = 3.954401
asa..end:time: Oh 24m 29.65s; incr: Oh Om 0.02s

BEST COST WITH MODIFIED PARAMETERS 3.954401

C-41

BENCHMARK PROBLEM #19, STANDARD CONDITIONS

Constraints:
gi - 2*x(0] +2*x(1] +x[91 +x[10J -10;

g2 - 2*x[0J +2*x[2J +x[91 +x[11J -10;

g3 - 2*x(1J +2*x[2] +x[103 +x[111 -10;

g4 - -8*x[01 *x[9];

g5 = -8*x[11 +x[103;

gG - -8*z[2] +x[11];

g7 = -2*x(31 -x[41 -x[9];

g8 - -2*x[5] -x[6J -x[10];

g9 = -2*x[7] -x[8I +x[11;

Objective Function:
suzmin*x [0] +5*1[1] 5*x [2] +
5*x [3] -5.0* (x [01 *z(0]+x (11*x [1]ix [21*x [21 +x(31 *z(31)
-1(41-x[16]-i[61-x [71-1(8] -x [91-x(10] -xil l-x [12];

Initial Conditions:
OPTIONS->LIMIT-.ACCEPTANCES = 1000
OPTIONS->LIMIT..INVkLID-.GENERATED..STAiTES = 1000
OPTIONS->ACCEPTED-.TO..GENERATED-.RATIO = e-04
OPTIONS->COST-PRECISION = 10-8
OPTIONS->MAIIMU!LCOST-.REPEAT = 2
OPTIONS->NUMBER-.COST-.SAMPLES = 2
UPTIOIS->USER-.INITIAL...PARAMETERS = I
OPTIONS->ACTIVATE...REANNEAL = 0

C-42

index..v parem-m.inimuu paria....aximuz parn...valu. paran..type
0 0 1 1 -1
1 0 1 1 -1
2 0 1 1 -1
3 0 1 1 -1
4 0 1 1 -1
5 0 1 1 -1
6 0 11 -1
7 0 11 -1
8 0 1 1 -1
9 0 10 3 -1
10 0 10 3 -1
It 0 10 3 -1
12 0 1 1 -1

Resul.ts:
number-.generated 13232607, *number-.accepted =1001
best-generated-state->parameter [0] = I
best-.generated-state->paxameter [1] = 1
best-generated-..tate->paxameter (2] =1
best..generated..state->parameter [3] = 1
best-.generated-.state->parameter [41 = 1
best .genorate&. state->parameter [5] = 1
best-.generated-state->para~meter [6] = 1
best .. generated-.state->paxumeter [7] = 1
beat-.geuerated-state->paxameter [8] = 1
best-.generated..state->parsmeter (9] = 3
best-.generated-.state->parameter [101= 3
best-.geuerated-.state->parameter (11] a 3
best .. generated..state->parameter (12] = 1

NORMAL..EZIT exit-status a0
final-cost = best-.generated-.state->cost =-15
asa..end:time: 1lh 67m 12.71; incr: Oh 0m 0.03s

BEST COST WITH MODIFIED CONDITIONS -15

C-43

BENCHMAK PROBLEM #20. MODIFIED BO UND S (+/- 0.1 UNITS)

Constraints:

sg x (0] +x(1] +x [2 +x([3] +x [41 +x [5] *x [6] + [71(+
x[8] +x[9] +x[101 +x(111 +x[12] +x[131 +x[14] +x(16] +
X(16] +x[171 +x[18] +.z[19] +6;

g2 - -z (0] -1(1] -9*1 (2] +3*x(3] +S*x (4] +x[71 +7*x (8] -

-7*x[9] -4*x[l0J -6*x(11] -3*x(121 +7*x(13] -6i*x[Ii5 +
x1(16 +x(17) +2*x(19] -2;

g3 - 2*x(0] -x[l] -x[21 -9*x[3J +3*x[4] +S*x[r5] 4x[81 +
7*x(9] -7*x(10] -4*x(11J -6*x(12J -3*x(13J +7*x[14J -

5*z(16] +x[171 +x[18] +1;

g4 - 2*x(1] -x[2] -x[3] -9*x[4J +3*x(5] +6*x[6] +x[9] +
7*x1(10 -7*x(11] -4*x[12] -6*x1(1] -3*x(14] +7*x(16] -

5*x(17] +x181] +x191] +3;

gS - x(01 +2*x (21 -x(3] -x(4] -9*x(5] +3*[1 (]+5*x (7] +

x[101 +7*x(111 -7*x[12] -4*x[13] -6*x1(14 -3*x(16]j +
7*X(16] -5*1(18] +x1919 -5;

g6 = x(01 41(1] +2*x(3] -x[4] -x (6] -9*x (6] +3*x (7] +
S*x(8] +x(11] +7*x[121 -7*x[13] -4*x[14J -6*x1(15 -

3*x(161 +7*x[171 -6*x(19] -4;

g7 -5*x[z (0]41(] +x[21 +2*x (4] -x[51 -x [61 -9*x (71 +
3*x(8] +5*x(9] +x[12] +7*x(13] -7*x(14] -4*x(15] -

6*x1(16 -3*x(17] +7*x[18] +1;

g8 =-5*x (1] +x[2] +x[3] +2*x (5] -x[6] -x(7] -9*x (8] +
3*x (9] +5*x1(10 +x131] +7*x (14] -7*x (15] -4*x1(16 -

6*x(17] -3*x1(18 +7*1(191;

g9 = 7*x(0] -6*x(2] +x[3] +x[4] +2*x[6] -x[7] -x(8] -

9*x(9] +3*x(10] +5*x(11] +x(14] +7*x[15] -7*x(16] -

4*x(17] -6*x(18] -3*x(19] -9;

glOu-3*x (0] +7*x(1] -5*z (3] +x[4] +x[6] +2*x(7] -x[8] -

x[9] -9*x(10] +3*x(11] +S*x(12] +x[16] +7*x(16] -7*x(171-
4*x (18] -6*x1(19]-40;

C-44

Objective Function:
suuu-0 .5* ((X(01-2) * (z01 -2) +(x [11-2) *(x[11-2) +
(x[21-2)*(x[21-2).(X[31-2)*(x(31-2)+
(x[41-2)*(x[41-2).(x(51-2)*(x[51-2).(x[61-2)*(x(61-2).
(x[71 -2) * ([7]-2)4(x (81-2) *(x [83-2)4 ('[91-2) *(x [91-2) +
(x(10] -2) *(z [10]-2)4(X (1 1]-2) * (x(11-2)4(x(121-2) *(x (121-2) *
(x(131 -2 * ('(131-2) (z (141-2) * ([141-2). (x (151 -2) *(x[151-2)4
(x (161-2) *(x1(1-2) + (x171-2) * ([171-2)4(x(181-2) *('[181-2)4
(x [191 -2) *(x [191 -2));

Initial Conditions:
OPTIDMS->LIMIT.ACCEPTANCES = loot'
OPTIOIS->LIMIT-INVALID-.GENERATED-.STITES = 1000
OPTIONS->ACCEPTED..TD..GENERATED-RATIO - 19-04
OPTIONS->COST-.PRECISION = 10-8
OPTIONS-MIXI1JUM-COST-.REPEAT= 2
OPTIONS->NUMBEILCOST-.SAMPLES =2
OPTIONS->USER-.INITIAL...,PRAMETERS = 1
OPTIDNS->AkCTIViTE-REANNEAL = 0

index..v pazam-minimum param...wimum param-.value param..type
0 0 0.1 0 -1
1 0 0.1 0 -1
2 28.7 28.9 28.8 -1
3 0 0.1 0 -1
4 0 0.1 0 -1
5 4 4.2 4.1 -1
6 0 0.1 0 -1
7 0 0.1 0 -1
8 0 0.1 0 -1
9 0 0.1 0 -1
10 0 0.1 0 -1
11 0 0.1 0 -1
12 0 0.1 0 -1
13 0 0.1 0 -1
14 0.5 0.7 0.6 -1
15 3.9 4.1 4 -1
16 0 0.1 0 -1
17 2.2 2.4 2.3 -1
18 0 0.1 0 -1
19 0 0.1 0 -1

C-45

Results:
number-..enerated a 0, *number..accepted -0

best-.geuerated-state->,paraueter (01 - 0
best .. gouerated.state-)parameater (1] - 0
best-.goenrated-.state->paraueter[2(2] 0
best-generated-s.tate->parameter (3] = 0
best..generated-.state->parameter (41 - 0
bost-.geaerated-.state->parameter(5] = 0
best-generated.. t ate->parameter[6(6] 0
best-.geuerated-.state->parameter [7] - 0
best-.gouerated-.state->parameter[8] a 0
best-.generated-.state->parueter (91 = 0
best-.geuerated-.state->parameter [10] = 0
best-.generated-utate->parameter [ill = 0
best .. generate&. state->parameter [121 = 0
best-.generated-.state->parumeter (13] = 0
best .. generated-.state->parameter (14] = 0
best-.generate&. atate->paxumeter (15] = 0
best-.generated-.state->parameter (16] = 0
best-.gen~erated-.stat e->parameter [17] = 0
best-.geuerated-.state->parauxeter (18] = 0
best-.generated-.state->parameter (19] = 0

TDOJIANL INVALID-.STATES exit-status = 4
final-cost = best-.generated-.state->cost 0
asa-.end:time: Oh Om 2.03s; incr: Oh Om 0.Ols

BEST COST WITH MODIFIED CONDITIONS none

C-46

BiblorVphy

Aarts, E. and J. Korst. Simulated Annealing and Boltzmann Machines New York:
John Wiley and Sons 1990.

Basu, Atanu and L. Neil Fraser. "Rapid Determination of the Critical Temperature
in Simulated Annealing Inversion," Science, 1409 - 1412 (21 September 1990).

Baker, W. M. Professor of Mathematics, Air Force Institute of Technology, Wright
Patterson Air Force Base OH. Personal Interview. 20 January 1994.

Brooks, Daniel G. and William A. Verdini. "Computational Experience with Simu-
lated Annealing Over Continuous Variables," American Journal of Mathematical
and Management Sciences, 8:425 - 449 (1988).

Canfield Robert A. Associate Professor of Aeronautical Engineering, Air Force Insti-
tute of Technology, Wright Patterson Air Force Base OH. Personal Interview. 6
August 1993.

Canfield, Robert A. and V. B. Venkayya. "Implementation of Generalized Optimal-
ity Criteria in a Multidisciplinary Environment," Journal of Aircraft, 27:1037-
1042 (December 1990).

Cerny, V. "Thermodynamical Approach to the Traveling Salesman Problem: An Effi-
cient Simulation Algorithm," Journal of Optimization Theory and Applications,
45:41-51 (January 1985).

Collins, Eglese, and Golden. "Simulated Annealing Bibliography," American Journal
of Mathematics and Management Science, 8:212-233 (1988).

Coulliette, D. Associate Professor of Mathematics, Air Force Institute of Technology,
Wright Patterson Air Force Base OH. Personal Interview. 20 January 1994.

Floudas, C.A., and P.M. Pardalos. Lecture Notes in Computer Science, Number 455,
A Collection of Test Problems for Constrained Global Optimization Algorithms
New York:Springer Verlag 1990.

Goldstein, Larry and Michael Waterman. "Neighborhood Size in the Simulated An-
nealing Algorithm," American Journal of Mathematical and Management Sci-
ences, 8:409-423 (1988).

Ingber, Lester. "Simulated Annealing: Practice Versus Theory," Mathematical Com-
puter Modeling, 18:29-58 (1993).

Ingber, Lester and Bruce Rosen. "Genetic Algorithms and Very Fast Simulated An-
nealing," Mathematical Computer Modeling, 16:87-100 (1992).

lugber, Lester. Adaptive Simulated Annealing (ASA) v1.44, README.ps. Computer
Software. GNU General Public License (GPL), ftp.caltech.edu pub/ingber direc-
tory, (24 September 1993).

Kamat M.P. Structural Optimization Status and Promise. New York:AIAA Press,
1993.

Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi. "Optimization by Simulated Anneal-
ing,"Science, 220:671-680 (13 May 1983).

BIB-I

Lasdon, Leon S. Optimization Theory for Large Systems. New York:McMiIlan Pub-
lishing Co. 1970.

McLaughlin, Michael P. "Simulated Annealing," Dr. Dobbs Journal, 26-36 (Septem-
ber 19eq).

Tovey. Craig A. "Simulated Simulated Annealing," Am. Journal of Mathematical and
Management Sciences, 8:389-407 (1988).

Vanderplaats, G. Numerical Optimization Techniques for Engineering Design. New
York:McGraw Hill, 1984.

Venkayya, V. B. "Bench-Mark Studies Using Various Optimization Algorithms,"
Conference Report. NATO/DFG Advanced Study Institute. University of Es-
sen, Berchtesgaden, Germany September 23 - October 4 1991.

Venkayya, V.B. and E. Johnson. Automated Structural Optimization (ASTROS)
Theoretical Manual. Wright Laboratories, Flight Dynamics Directorate, Wright
Patterson AFB OH, December 1988.

Venkayya, V.B., V. Tischler, and S. Pitrof. "Benchmarking in Structural Optimiza-
tion," AIAA Conference Papers, 92-4784, September 1992.

BIB-2

Vita

Captain McEachin grew up in a large family in Kalamazoo Michigan. He joined

the Air Force and trained as an aircraft weapons mechanic and then an Explosive Ord-

nance Disposal (EOD) specialist. He was assigned in EOD at Barksdale AFB, Louisiana

and Spangdahlem AB, Germany. While assigned to Barksdale AFB, he participated in

the Render Safe Procedure and cleanup of the 1980 Titan missile explosion at Damascus

Arkansas. He completed his Bachelor's degree at Southern Illinois University while on ac-

tive duty, and was selected for Officer Training School. After commissioning, he trained as

a navigator and Electronic Warfare (EW) Officer and was assigned to the B-52 squadron

at Blytheville (renamed Eaker) AFB, Arkansas. While in Arkansas, Captain McEachin

worked as an Electronic Warfare Officer, Staff Instructor and Evaluator, and was certified

for SIOP alert for over eight years. Captain McEachin participated in Operation Desert

Storm on the planning staff of the 806th Bombardment Wing (Provisional) and flew two

combat sorties, logging over 26 hours of combat time with the wing. Captain McEachin was

selected for an AFIT education in Operations Research, Strategic and Tactical Sciences,

and is expecting to be assigned to Headquarters US Strategic Command as a strategic

analyst.

Permanent address: 1072 Baylield Dr.
Beavercreek, Ohio 45430

VITA-1

I I I IForm Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

*l li•IIfofc recolfr- urato ?of th1is Collction of ntormation % eitirmatea !o averiqe hour h 0• 0 • 'lonse. .n•tuaIig tne urnt for revewing rutrsuonh. ,earhnn er-itnq aa •our-:-is
4L gathringg ijto -aintalning the data needed *no comrioietn• q and reviewing -ml.e ýlIt•eitof Of flfOtmltion nd commentrn e.it reg inr g this burden estimaate ot ini ýther aspdct of tmi

collecton)!f 1, 'rM4t on. dI•cudng suggestons for reducing this burden. to NAviinqton Hesdi lartl• t ervices, 0orectorate fOr no•rfmaion Ooerations aid ae•iorts, :2 ti -etteron
Oavis Hiqrw4v. 3u-te '204. Arlington. JA 22232-4302. and to tlhe Office mt %anagiement anid 8~iage. PlnerWOrft Reduction Project (0704-0188), Nasnir•gton. DC 20503.

1. AGENCY USE ONLY (Leave W:7nk) 2. REPORT DATE I3. REPORT TYPE AND DATES COVERED

I March 1994 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN INVESTIGATION OF SIMULATED ANNEALING
APPLIED TO STRUCTURAL OPTIMIZATION PROBLEMS

6. AUTHOR(S)
Richard C. McEachin, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 3. PERFCRMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GST/ENS/94M-08

9. SPONSORING; MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Dr. V. B. Venkayya AGENCY REPORT NUMBER

Wright Laboratories, Flight Dynamics Directorate
Optimization Branch, WL/FIBRA
Wright-Patterson AFB, OH 45433-6553

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

Abstract

This thesis investigates the feasibility of using Simulated Annealing (SA) in structural optimization
problems. The investigation involves solving benchmark structural optimixation problems with an SA
algorithm, and comparing its solutions to those found by four other optimisers. Overall, the analysis
shows that SA has limited applicability in structural optimization. Two primary factors were found
to adversely impact the performance of the SA algorithm in these problems. These factors are high
dimensionality, and high levels of constraint. The difficulty involved in solving these problems with a
random search increases exponentially with the number of dimensions. The number, and non-linearity, of
the constraints also have an appreciable effect on the success of the algorithm. A Meaure of Complexity
was created to quantify the combined effect of dimensionality and level of constraint. This measure
can be used to predict the applicability of the SA algorithm in optimizing a given system of non-linear
equations.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Stochastic Processes, Non-Linear Programming, Mathematical Programming, Sim- 108

ulated Annealing, Non-Convex Programming 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LiMITATION OF ABSTRACT
0•LJATSSIPIED WKINIFIED 1 tN1F IED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev, 2-89)
Prescribed by ANSI Std Z39-1S
298-102

