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A bstract

This research proposes an analytical approach for assessing flow disturbance, or

"compromise," based on limited sampling of arc flow information in multi-commodity,

or multiple origin-destination (O-D), networks with failing arcs. There were three

objectives established for this research. The first objective was to bound the expected

flow, given the arcs fail with certain probabilities, which was accomplished by reviewing

current approaches for single-commodity networks and extending the results to the multi-

commodity case. The second objective was to determine the best placement of flow

monitors to obtain the most accurate estimates of O-D pair volumes. This was

accomplished using a multi-criteria approach for defining and evaluating all possible

monitor placement strategies satisfying monitor availability. The O-D pair volumes were

estimated using the Ip-norm metric for varied levels of p. The final objective was to

define a compromise metric providing confident assessments on the occurrence of

"compromise." This was accomplished using simple regression techniques to generate

confidence intervals around the expected flow for each O-D pair. The approach proposed

in this research is provided as an initial look into "compromise" assessment based on

limited network information.

xii



ASSESSING THE VULNERABILITY OF

MULTI-COMMODITY NETWORKS

WITH FAILING COMPONENTS

L Introduction

This chapter begins with a brief background on the study of vulnerability of

communication networks. Next, the research problem and objectives are stated, followed

by the assumptions which are carried throughout the study. Also, the scope of the

research is discussed, both for the current study as well as for potential follow-on efforts.

Finally, a brief outline of the different sections of this study is presented.

1.1 Background

Considerable research over the past several decades has been accomplished in the

field of communication network design where the objective is the efficient design of

network structures maximizing transmission throughput at minimal cost [1, 8, 16, 37].

The level of research in this field does not appear to be dwindling given the increasing

complexity of global communication systems and the achieved efficiencies in large

network solution algorithms.

The efficiency of a communication network design can be assessed using various
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measures (e.g. throughput, cost, transmission delay, reliability, and vulnerability) [22, 25,

35]. Focusing on vulnerability measurement, researchers have generally defined

vulnerability as either the effort needed to disconnect a network [3, 6, 21] or "the effort

required to disrupt the maximum amount of traffic of the network by disconnecting a

minimum number of links" [19]. In essence, research has focused on developing efficient

analytical and simulation models to pin-point the weakest part (or "Achilles Heel") of a

network. Obvious beneficiaries of this research include communication carriers and the

military community who have used the results to better design functional, reliable, and

survivable communication networks. An important observation is that the research has

been primarily geared toward assisting designers of communication networks.

Vulnerability measurement of a communication network from a user perspective

appears somewhat less developed. The user perspective, as perceived for this study, is

interested in assessing the vulnerability of its transmissions within an operational

communication network. A potentially useful measure is the vulnerability of

communication transmissions to unexpected disruptions (e.g. unexpected rerouting or

tampering) [13]. Whereas the designer focuses on identifying and improving the weakest

link(s), the user (who must assume a more passive role given the network configuration

already includes the weak links) must focus on identifying transmission disruptions.

Given the apparent lack of a precedent in the literature, the following definition of

vulnerability is used throughout this study: vulnerability is a measure of risk of the

susceptibility of communication traffic (or flow), between a specified origin and

destination, to disruptions over and beyond "expected" disruptions due to carrier
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management of traffic. Any observed disruptions exceeding "expected" bounds define a

compromised network flow configuration.

1.2 Research Problem

Generally stated, the problem is one of determining if a user can assess the

vulnerability of its communications to disruptions. The approach is to pla limited

number of costly monitors at specific points within a network to monitor con. ,ication

flow patterns, and based on sample measures of flow deviations (i.e. between expected

and observed flows) assess the vulnerability of the user's communications [13]. The

problem itself is twofold:

(1) separate the "unexpected" disturbance (i.e. the disturbance we want to detect)

from the existing, or built-in, disturbance due to normal operations; and

(2) determine the placement of monitors such that the sampled information

provides the most accurate representation of the network flow pattern.

The problem is further complicated in that network components (i.e. nodes and

links) are not totally reliable and will fail randomly, and multiple users within the same

network are competing for common assets which may lead to congestion and rerouting.

1.3 Research Objectives.

The following objectives are identified to examine and assess the feasibility of the

above stated problem:

Objective #1: Establish a steady-state flow through a multi-commodity
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communication network with failing components that minimizes carrier costs and

satisfies user throughput demands. This steady-state system represents the

expected flow pattern in an uncompromised scenario.

Objective #2: Determine monitor placement strategies that maximize the

likelihood that the origin-destination (O-D) demands estimated from partial

sampling of network components accurately represent the actual O-D demands in

the original network.

Objective #3: Define a metric for determining if a flow disturbance, or

"compromise," has occured, and evaluate the compromise assessment for varying

O-D estimation perspectives.

1.4 A ssumptions

The following assumptions are carried throughout this study:

a The basic network configuration is a multi-path network with multiple O-D

pairs (or commodities) representing the users of the system.

* The network structure assumes a circuit-switched design rather than a packet-

switched design; in other words, once a route is established it remains fixed or

dedicated.

* The routing algorithm that determines the path(s) taken by each O-D pair is a

simple minimum path algorithm (e.g. minimum distance).

* The flow control algorithm that limits traffic on arcs to avoid excessive

congestion is a function of constant arc capacities.
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* Flow disturbance, or "compromise," is exhibited as an increase in flow

along a particular O-D pair's path(s) [13].

* Network components are either in a state of operation or failure with known

probabilities (given that nodes can be modeled as arcs, the problem is further

simplified by assuming all nodes are 100% reliable).

1.5 Scope of Research

1.5.1 Current Study. This study is partitioned into four distinct problems: first,

measure the expected flow pattern in a multi-commodity network subject to random arc

failures; second, determine the optimal location of flow monitors within the network

subject to conflicting objectives; third, measure the estimated O-D demands based on a

sampling or subset of arc flow observations; and fourth, define a measurement tool to

enable probabilistic assessments of flow "compromise." These problems can be solved

either analytically or by simulation. This study uses an analytical approach to solving

these problems using mathematical programming techniques. The Advantages of this

approach are that an analytical solution can yield as useful a result as a more coriplicated

simulation, especially under the simplified assumptions of this study, and the feasibility

of the approach can be readily assessable from this analytic result.

The network structure itself represents a circuit-switched design rather than a

packet-switched design as assumed earlier. A circuit-switched network reduces a

significant amount of complexity by establishing virtual routes (fixed routes) and is the

more common network structure used by carriers for voice communication. A packet-
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switched network introduces a great deal more variability since transmission routing is

dynamic and is designed primarily for data communication.

1.5.2 Follow-on Studies. Evidently, the scope of the current study is at best

limited from a practical perspective given the simplifying assumptions. Its purpose,

nevertheless, is crucial for determining the overall feasibility of the stated approach.

Assuming the results of this study are favorable, the scope of the follow-on research can

be readily expanded to encompass the realities and complexities of real systems.

The next logical step is perhaps to either develop a more complex analytical model

or develop a discrete-event simulation model of a realistic communication network, based

on either a circuit-switched or packet-switched design. This model can be progressively

enhanced to incorporate (1) larger sized networks, (2) variable arc capacities as a function

of time, (3) continuous arc reliability functions (to model the more realistic case of partial

versus total failure), (4) preferential route assignments (based on some message priority

heuristic), and (5) improved network performance measures based on (i) average traffic

loads every hour (rather than the limiting overall expected value used in this study), or

(ii) each individual call (or entity) accessing the system.

1.6 Summary

This chapter presented an overview of the focus of this study. It included a brief

discussion on past studies of vulnerability measurement, a suggested interpretation of the

term vulnerability as used in this study, the problem statement, and the objectives of the

study. Also included were the assumptions which mainly served to simplify the problem
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so it could be handled using an analytical solution approach. Finally, the scope of the

research was presented for both the current study and for potential follow-on efforts.

Chapter II, Literature Review, presents a comprehensive review of the literature

as it regards the measurement of expected flow in multi-commodity networks with failing

arcs, the location of flow monitors based on potentially conflicting objectives, and O-D

demand estimation based on limited sampling of network flows.

Chapter III, Model Formulation, describes the different models developed to meet

the objectives stated in this chapter and presents an overall solution algorithm.

Chapter IV, Compromise Measurement, describes the compromise metric used to

assess flow disturbance.

Chapter V, Case Study, introduces the case network and applies the overall

solution algorithm to a set of possible monitor location strategies. This chapter also

evaluates the performance of these strategies in assessing compromise.

Chapter VI, Conclusions and Recommendations, provides a summary of the

approach and its conclusions, and recommends appropriate extensions for follow-on

efforts.
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II. Literature Review

This chapter presents a review of the literature applicable to the estimation of flow

in stochastic networks and the assessment of compromise using multiple-criteria decision

making (MCDM) principles. First, we present notation along with a basic review of

network flow models. Next, we extend this review to networks with failing components

and present existing estimation methods. The next section provides an overview of

MCDM principles and demonstrates how they apply to monitor location problems.

Finally, we review current methods for estimating O-D demands from partial network

information.

2.1 Minimal Cost Network Flow Representation

2.1.1 Network Parameters. Let G(N, A) be a directed graph, or network, defined

by a set of nodes N, {i = 1, 2, . . ., m), and a set of arcs A = {(i,j), (k, 1), . . ., (s, t)).

The network consists of m distinct nodes and n directed arcs collectively referred to as

network components. With each node i in G is associated an external flow parameter b,

which is positive, negative or zero depending on whether node i is, respectively, a source

(supply), sink (demand), or intermediate node. With each arc(i, j), directed from node i

to node j, is associated both a flow capacity parameter, u., which constrains the maximum

feasible flow along arc(i, j), and a unit flow cost parameter, c.

In a telecommunication network the nodes may represent users and switching

centers within the network and the arcs may represent communication facilities such as
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access lines and trunks interconnecting the switching centers [33: 3]. The external flow

parameter b may represent the total number of simultaneous calls, or flow units, input to

the system from a specific user node. The arc capacities may represent the maximum

number of simultaneous calls handled by each communication facility and expressed in

the same unit measurement as the external flow. Finally, the arc cost parameter may

represent various criteria. For instance, the cost function may be expressed as delay in

traversing an arc, as arc distance (e.g. miles), or as a communication facility usage

charge [35: 3621. Since it was assumed in the previous chapter that the flow routing

algorithm was based on the shortest path, arc costs will be expressed as distance

measures.

2.1.2 Network Flow Variables. The objective in a minimum cost network flow

problem (MCNFP) is to determine the optimal value of flow variables that satisfy both

the flow conservation and arc capacity constraints at minimal cost [4: 420]. The flow

variables can be expressed as either arc or path flow variables. The choice of modeling

either flow variable dictates the form of the incidence matrix H used to represent the

network structure. If we use the arc flow convention we must represent the network in

a m x n node-arc incidence matrix where each element hi, of H is defined as +1 if arc i

is directed at node k, -1 if arc i is directed from node k, and 0 otherwise. By constrast,

if we use the path flow convention we must represent the network as a n x p arc-path

incidence matrix where p represents the number of possible paths connecting the source

and sink nodes, and where each element h. of H is defined as +1 if arc i lies on path j,
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{j--- 1 ., p), and 0 otherwise.

To assist in deciding which convention to use we make use of the assumption

stated in Chapter I that the system modeled is a voice network. In most cases, the

manner in which communication facilities, or arcs, are shared among users in ordinary

telephone calls is determined by the circuit switching technique. This technique

establishes a dedicated path through the network connecting the source (origin) node and

sink (destination) node for the entire duration of the call [33: 2-3; 35: 95-97]. This

process is one reason why the arc-path formulation for the MCNFP is used.

2.1.3 Network Flow Model. In its simplest from the MCNFP is formulated as a

single-commodity flow model since only one type of flow is required between one origin

node and one destination node, or one origin-destination (O-D) pair. In many situations,

however, more elaborate flow models are required to capture the complexities of practical

networks. Examples include flowing multiple commodities, or flow types, along common

arcs, and modeling multiple origin and/or multiple destination nodes. A comprehensive

review of multi-commodity, nonsimultaneous, and multiterminal network flow models is

presented in [25: 315-317]. The class of multi-commodity network flow models is of

particular interest in this research for it allows communication between many distinct O-D

pairs to occur simultaneously throughout the network.

The general deterministic minimum cost multi-commodity network flow

(MCMCNF) problem formulated on path flow variables is presented in Figure 2.1.
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Figure 2. 1. Deterministic MCMCNF Model

Objective Function

Minimize

Kel PePt

subject to

pePt

Vf-:.u V (QJ)EA

hX p a 0 V klC, pept

where A = set of directed arcs in the network
K = set of distinct O-D pairs (or commodities)
Pt = set of paths connecting O-D pair k
bk = total flow input to the network by O-D pair k
c/k = path cost equal to the sum of all arc costs lying on

pathp r Pt
ft = path flow on the p th path of the set of candidate

paths Pt
h kP = I if arc(i, j) lies on path p - Pt; 0 otherwise
uY = flow capacity of arcO, A)
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The objective function is similar to that of the MCNF problem (single-commodity)

except for the subset of paths which must be considered for each O-D pair. The first

constraint represents the set of flow conservation constraints ensuring the sum of the path

flow variables for each O-D pair equals the flow volume input to the network by the O-D

pair. The second constraint represents the set of arc capacity constraints ensuring the sum

of the path flow variables for all O-D pairs sharing a specific arc does not exceed the

arc's capacity.

2.1.4 Solution A lgorithms. Unlike single-commodity network flow problems, the

capacitated MCMCNF problem does not have a completely special structure allowing it

to be solved efficiently using the network simplex method. It is characterized by its set

of "nice" constraints, represented by the flow conservation constraints partitioned into

block angular and :_etwork structures, and "general" or "complicating" constraints,

represented by the arc capacity constraints. Problems with this structure can be solved

using the Dantzig-Wolfe decomposition algorithm [4: 320-349].

MCMCNF problems in the node-arc incidence matrix formulation can be solved

fairly efficiently using commercial software packages such as SAS Netflow, which uses

the Dantzig-Wolfe decomposition techniques; however, problems of this form which

model specific O-D pairs can yield very large linear programs resulting in potential

computational difficulties [15: 671]. Farvolden, et al [15], suggest the arc-path

formulation based on the observation that not all paths need be enumerated since a

smaller subset of paths will dominate the majority.
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2.2 Network Models With Failing Components

2.2.1. Component Reliability. As described earlier, network components are

represented by nodes and arcs, which in this research are assumed to be in either a

complete state of operation or failure with probability r and (1 - r) respectively [1: 1080;

37]. A network with this characteristic is sometimes referred to as a stochastic binary

system [3: 154; 34: 101]. For simplicity, and without loss of generality, we assume the

nodes are perfectly reliable. As demonstrated in [37: 10-11] a node subject to random

failure can be modeled as two nodes connected by a "dummy arc."

It is further assumed that the arc failures are independent of each uther [3, 34, 37]

yielding, for each path p : P' connecting a specific O-D pair k, a path survival probability

RPk represented by the product of the individual arc survival probabilities connected in

series from origin to destination [9, 33: 43]:

R•,= 17 r

2.2.2 Expected Minimum Cost Network Flow. Determining the exact flow

through a network subject to random component failures, whether it be a minimum cost

or maximum flow, single- or multiple-commodity problem, "is classified as NP-hard

which simply means that the computational effort grows exponentially with the number

of stochastic components" [371. Yim [37] describes the computational effort required to

compute the exact value of the expected maximum flow through a small, single-
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commodity network, which can be generalized for the MCMCNF problem. This example

clearly illustrates the computational complexity inherent to networks of interesting size.

The expected value of the MCMCNF problem formulated on path flow variables

is presented in Figure 2.2 [28: 766; 34: 8].

2.2.3 Solution Approaches. In this section we present a few approaches to

solving for the exact value of flow through a network. The form of the objective function

and network is not necessarily pertinent to this discussion.

Shier [34: 101-117] proposes an approximation to the exact value for a binary

system which "involves generating a relatively small number of [failure] states that

encompass a relatively large proportion of the total probability." The method is one of

"generating the [failure] states of a system in order of nonincreasing probability" such that

a "maximum coverage of the state space (in terms of probability) [is] obtained for a

specified number of generated states." For example, in a network consisting of 25 arcs

with equal survival probabilities at 0.90, Shier's method reduces the failure-state space to

be considered from 225 = 33,554,432 states to a mere 15,100 states (or 0.045 percent) to

achieve a specified coverage probability of 0.90. His results suggest that the proportion

of states needed to be evaluated significantly decreases as arc survivability rates increase;

for a communication network, it is common that arc survivability rates tend to unity [28,

34].
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Figure 2.2. Expected Value of MCMCNF

Objective Function

E(MCMCNF) = Z(S)P(S)
aes

where S = set representing all failure states s, {s = 1,. .. , 2"},

where any given state represents a combination of
operating and failed arcs

ni = number of arcs having survival probability strictly
less than 1 (n' < n)

Z(s) = objective function value of the deterministic
MCMCF problem when in state s

P(s) = probability of failure state s and is obtained as
follows:

1H r.]a1I o- q)
(I.J)EA0 (Q)64

where A = subset of arcs in A operating in state s
A S = subset of arcs in A failed in state s
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Based on the last observation that arc reliabilities tend to unity in practical

communication networks, a second approach assumes that it is highly unlikely that more

than one arc fail simultaneously, assuming they fail independently of each other [25].

Failure-state enumeration for this method is reduced to simply evaluating the n' + 1

combinations of failure states with at most one failed arc.

A third approach was implemented by Bailey [2] who actually simulated a single-

commodity, maximum flow network to obtain the expected value of the maximum flow.

Currently, an efficient solution algorithm for determining the exact value of the expected

flow, short of simulation, does not appear forthcoming [37: 13].

2.2.4 Bounds For The MCMCNF Problem. Prior research of binary systems has

mainly focused on the development of lower and upper bounds for the single-commodity,

maximum flow case (8, 28, 37, 38]. Aneja and Nair [1] did extend their work to

encompass multi-commodity networks, but the focus was to develop an algorithm to

compute the expected maximum flow. The common purpose of this prior research has

been the development of relatively tight bounds on the expected maximum flow through

a network irresepective of any demand constraints. Our research, besides assuming a

minimum cost objective which can easily be transformed to a maximization problem, adds

complexity by requiring all demands between O-D pairs be satisfied. Essentially, the

model resembles a multi-commodity transportation problem; however, the addition of arc

reliabilities requires us to resort to bounding the expected minimum cost flow in the

network. Proposed bounds are presented in Chapter III.
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2.3 Multiple Criteria Decision Making

Most realistic decision problems can best be modeled as multiple criteria decisions

[14, 30, 39]. An important characteristic of these models is that the criteria, or stated

objectives of the decision maker (DM), are often in conflict. Given this conflict, it is

usually not possible to obtain a single optimal solution such that all criteria are

simultaneously optimized. More realistically, a compromise solution must be arrived at

which satisfies the DM's revealed preference structure. This preference structure can be

either stated up-front in the form of goals and solved independently of the DM, such as

goal programming, or it can be applied interactively where the DM can influence the

direction of the solution algorithm to obtain the best solution [39].

These approaches have been used to solve a variety of multi-criteria decision

problems, the most prominent relevant to this course of study being facility location. The

next sections will illustrate the multi-criteria location problem in greater depth.

2.3.1 Multi-Criteria Location Problems. Location problems, generally referred to

as facility location problems, "concern the location of facilities to serve clients

economically" [26: 7]. The problem is essentially one of determining the optimal

placc~m. t of facilities such that the cost of placing a facility at a specific site is

minimized while client demand for facility service is satisfied [26]. The decision variable

denoting facility location is modeled as a binary variable x, = 1 if a facility is located at

site ij (or in this context, arc (i,j), and xi = 0 otherwise. The demand variable, which is

not considered in our approach, is generally modeled as a non-negative, continuous variable.
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Examples of single-criteria locational problems are numerous. A recent study [5],

for example, focused on optimally locating "discretionary service facilities" (e.g. automatic

teller machines and gasoline service stations) so as to maximize the amount of intercepted

flow, or consumers. However, the extent of the research for locational decisions

involving multiple criteria appears somewhat less developed. According to some

researchers [29, 30] facility location problems are inherently multi-criteria problems where

a typical set of conflicting criteria would include cost (minimize) and service (maximize).

The general multi-criteria problem can be expressed mathematically as follows [29,

39]:

maximize fr(x), i = I ... q

subject to gj(x) < O, j= 1 ... m

where x E X and X represents the decision space, fi(x) represents the criterion functions

and g,(x) the constraints. Assuming the criterion functions are conflicting in nature, it

may be difficult, if not impossible, to obtain a single optimal solution to all criteria, In

this case, we search for the best possible solution, also referred to as efficient solutions

based on the Pareto preference concept of "more is better", for each criterion function.

By definition, a decision x° is a Pareto optimal or efficient solution for the set of criteria

f, if there exists no x E X such thatf,(x) >_f(x°) for all i [29: 84; 39: 22].

2.3.2 Complexity of the 0-1 Multi-Criteria Problem. The difficulty in solving the

above problem when expressed in the context of a location problem is twofold: (1) given

the decision variables are binary 0-1 variables, as the number of possible sites (or arcs)
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increases, the complexity of the branch-and-bound enumeration algorithm grows

exponentially [5: 203; 26: 114]; and (2) given that every feasible solution to the binary

problem is an extreme point [26: 457], "using parametric analysis of the convex

combination problem [is] of little use in the search for all efficient solutions" [29: 84].

The first difficulty indicates that this class of problems is considered NP-hard and,

as such, can be very difficult to solve for medium to large problems (or networks). The

fact that the number of possible solutions grows exponentially as problem size grows

linearly is a well-known characteristic of the binary problem and many solution

approaches have been proposed including implicit enumeration and cutting plane

algorithms [24: 41-55, 81-86; 26: 456-464].

The second difficulty is inherent to the multi-criteria binary problem. In the

general linear case, where the decision variables are continuous, we can apply Geoffrion's

results [18] to determine the complete set of properly efficient solutions (i.e. set of

efficient solutions minus the subset of improperly efficient solutions which allow

unbounded tradeoffs [39: 29]) by parametric analysis of the following problem with

respect to X:

maximize F, Xjf(x)

subject to x ( X, X ŽO 0

Ross and Soland [30: 313] note that the set of efficient and properly efficient solutions

are identical when either the solution set is finite or the criteria functions are linear and

the constraint set X is a linear polytope. For this research, then, we can generalize the

case to simply the set of efficient solutions.

2-12



Continuing the discussion for the continuous variable case, parametric analysis of

the above problem implies that the efficient solutions can be obtained by maximizing

various convex combinations of the criterion functions. However, for the binary variable

case, the decision space is discrete and the convexity assumption no longer applies [29].

Therefore, to determine the set of efficient solutions for the binary multi-criteria problem

other solution approaches must be investigated.

2.3.3 Solution Approaches. Current solution approaches for the deterministic,

multi-criteria problem are classified as methods involving value functions, efficient

solution sets, and interactive algorithms [30: 308]. We introduce new notation in the

following discussion where.Y represents the outcome space, y =f(x) represents the vector

of q criterion functions introduced earlier, and y' represents the outcome for decision, or

alternative, 1.

2.3.3.1 Value Functions. The use of value functions to solve the

multi-criteria location problem assumes prior knowledge of the DM's underlying

preference structure. A DM's value function, v(y), is defined such that the DM prefers

yI to y' if and only if V(y') > v(y 2) [30: 312; 39: 96]. The optimal solution is obtained

from the following problem [30: 312]:

maximize v(f(x))

subject to x e X

The difficulty with this approach is determining the value function v. Its
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construction is usually based on interviews with the DM and may require repeated

sessions to ensure a consistent model is developed [39: 122].

2.3.3.2 Efficient Frontier. The efficient frontier is defined as the

set of efficient solutions. Unlike the value function approach, the analyst needs little

information regarding the DM's preference structure to determine the efficient frontier

[30: 313]. In this case, it may be possible for the DM to determine the optimal solution

simply by choosing one from the set presented to him.

The difficulty with this approach, as discussed earlier, is the discreteness of the

feasible set. Rasmussen [29] presents a comparative study of solution methods used to

establish a complete, or even partial, set of efficient solutions for the binary, multi-criteria

problem. Yu [39] presents another set of solution methods using compromise

programming to obtain the set of compromise, or efficient, solutions. This latter approach

is implemented in this research and fully presented in Chapter III.

2.3.3.3 Interactive Algorithms. Interactive algorithms, unlike the

prior two approaches, involve the DM and analyst working together in breaking down the

solution space iteratively incorporating the DM's preferences. Ross and Soland [30: 313-

314] warn that although this type of approach can usually lead to a quicker solution, some

of the existing algorithms "will not, in practice, yield a final choice which is an efficient

solution."

The obvious difficulty with this approach is having the luxury of a DM who will

interact with the analyst. An interactive approach was not considered for this research,
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therefore a description of algorithms will not be presented. Refer to [12, 14, 29: 84-92;

30: 317-318; 39: 325-333] for more information on interactive algorithms as applied to

multi-criteria problems.

2.4 Origin-Destination Marix Estimation

A typical problem which occurs frequently in urban planning is the estimation of

origin-destination (O-D) matrices based on limited information regarding the particular

transportation networks under consideration [10, 1i, 17, 32]. Proposed O-D estimation

methods applied to transportation networks are extended in this research to simplified

communication networks given the inherent similarities in network structures and

parameters.

An O-D demand was defined earlier as the parameter bY representing the total

flow, or external flow, contributed to the network by O-D pair k. The O-D matrix, D, is

defined as the matrix representing the proportion of flow b' connecting O-D pair k on

specific arcs [32: 441] and is referred to in later chapters as a routing matrix. The

purpose of the estimation process, then, is to obtain an accurate estimate of the target

demands b for all O-D pairs, denoted as the vector F, using as little information as

possible from the underlying network [10: 1; 11: 27].

For the networks considered in this research, the only information available to the

analyst is flow totals on particular arcs, namely those arcs where flow monitors are

located. Some studies [10, 11] have considered introducing additional available

information into the estimation process, such as trip distribution and "turning movement"
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information, to increase estimation accuracy without increasing the need for more flow

sampling; although the results appear favorable, this additional information is not

assumed known in this research.

The O-D estimation problem can be represented mathematically as the set of linear

equations [10: 2]:

DF=V

where D is an n" x t routing matrix, where n" is the number of arcs sampled (n" < n) and

t is the number of distinct O-D pairs. The entries of D, denoted as d,', represent the

proportion of external flow bk routed along arc (i, j). Since the networks considered can

assume multi-path assignments for each O-D pair, the entries d,, can take any value

between 0 and 1. In addition, F is a I x I vector representing the estimated demands, or

estimated external flows, for all O-D pairs where each element of the vector is denoted

as P. Finally, V is a n" x 1 vector representing the observed flow totals on the sampled

arcs.

A survey of optimization methods for obtaining the estimated O-D matrix is

presented in [10, 11, 32]. The procedure, in general, is the inverse of obtaining the

minimum cost network flow. In other words, given V, which is usually the variable in

traditional network flow problems, the objective is to determine the estimated O-D

demands, F, which is usually a given parameter in network problems. The concept of

matrix inversion is the basis for the following optimization methods: Generalized Inverse,

Entropy Maximization, and Lu-Norm Minimization.
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2.4.1 Generalized Inverse Method. The generalized inverse method consists of

an objective formulated as a quadratic penalty function measuring the deviation between

the observed and estimated flow values on sampled arcs. The objective is minimized over

all sampled arcs resulting in a generalized least-squares estimator given by:

minimize V (VV - 2k dyk P )2

A peculiarity of this approach is presented in [10, 11] where the authors note that

the dot-product of F, given by Yk (P )2, is minimized also, resulting in a set of equalized

O-D estimates, given by F* = Y2F* / n", which does not necessarily minimize the least-

squares estimator.

2.4.2 Entropy Maximization Method. The entropy maximization method uses an

entropy penalty function which "has a theoretical justification based on principles of

information theory" [32: 449]. A simplified form of the entropy maximization

formulation is presented in Figure 2.3 [10: 4].

It is demonstrated in [23] that obtaining a satisfactory estimate of the O-D

demands is indeed difficult given the non-linearity and lack of strict concavity of the

objective function. In fact, a unique solution is not guaranteed. Further, it is shown that

for a given F,,, = ZkFP, the entropy maximization method yields a set of equalized O-D

demand estimates identical to the generalized inverse method [10].
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Figure 2.3. Entropy Maximization Model

Objective Function

Maximize

E= _ Fk(ogF -1)

subject to

diFt = Vj V (ij)eA

FP 2 0 VkeK
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2.4.3 L,-Nonn Minimization Method. In [10] the authors propose an algorithm

to improve the O-D estimation process based on the class of /.-norm deviational measures.

Besides simplifying the computational aspect of the problem, the use of /.-norms allows

the analyst to model deviations between target demands, b*, and estimated demands, F*,

incorporating limited information regarding the DM's preference structure [39: 66-711.

The /.-norm formulation is presented in Figure 2.4 [10: 6-7; 39: 69]. The function r(p),

I < p < 00, is interpreted as a regret function using distance measure to denote the level

of regret using F* instead of bk. The parameter X* represents weight values used to assess

varying levels of importance to specific O-D pairs. In the general case all weights are

equal. Finally, the exponent p is used to define the DM's risk preference. When p = 1,

the regret function '(1) minimizes the sum of the absolute deviations. When p = 2, r(2)

is the least-squares solution similar in function to the generalized inverse approach. When

p = 00, r(OO), also known as the Tchebyschev norm, minimizes the maximum deviation.

Results identified in [10: 7-8, 20-21] using the /p-norm metric appear to indicate

that as p tends to oo, for a fixed Fo, the solution tends to represent an equalized set of

O-D estimates similar to results obtained using the two previous methods. However, the

authors demonstrate that the /,-norm, specifically, "'tracks the [target] O-D values instead

of simply equalizing -hie grand sum [Fo]j -- which is a highly desirable property" [10: 81.
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Figure 2.4. L,-Norm Minimization Models

Objective Functions

for I •pp<00:

I

r(p) = min [ErpIFk -bkrJP
k

for p = 0o:

r(-) = min[maxlFk-bkl]
k

subject to

dfkk= V_. V(Q)= GA

kk

FkO
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2.5 Summary

Communication networks, factoring in simplifying assumptions regarding network

parameters, can be adequately modeled as multi-commodity networks. Therefore,

determining the optimal flow through a network satisfying all commodity demands at

minimum cost can be solved using a deterministic, multi-commodity, minimum cost

network flow model. However, when arcs are subject to failure, we must resort to

obtaining the expected flow through the network. Since obtaining a solution to this

problem is computationally infeasible, we must develop bounds on the expected flow

representing a range of feasible flows capturing the exact flow.

Once flow patterns are determined for both bounds we can determine an optimal

placement of flow monitors by applying multi-criteria decision making principles to

location modeling. Formulating the location problem as a weighted compromise program

gives us flexibility to evaluate various location strategies with regards to the accuracy of

the O-D estimates obtained and the compromise assessment itself.

Finally, having selected various location strategies, we formulate the O-D

estimation model as a range of p-norm functions factoring in both the sampled arc flows

and the DM's preference structure.
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III. Model Formulation

This chapter presents a description of the modeling approach and associated

mathematical programs. First, we summarize the problem and the objectives the overall

model is designed to achieve. The next three sections describe the models developed:

network flow bounds, monitor location strategy, and O-D demand estimation models.

Next, we present a comprehensive step-by-step procedure which incorporates the above

models. Finally, we review the software package used in this research.

3.1 Problem Summary

The problem is stated from a user perspective where a particular user of a

communication network is interested in determining if its communication transmissions

have been "compromised" by outside influences. For this research, a "compromise"

scenario is exhibited as an increase in flow along specific paths and modeled by

increasing a particular O-D pair's external flow. The user has the option of placing a

limited number of flow sampling monitors on arcs within the network with the purpose

of obtaining arc flow information to estimate O-D pair external flow values. O-D

estimation is initially performed for a network under "normal" conditions where the

estimates are used to establish a compromise measure. Subsequent O-D estimates are

obtained from periodic flow sampling and compared to the compromise measure to

determine if a "compromise" condition exists.

The overall model is designed to satisfy three specific objectives where each
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objective is represented by a specific sub-model. These objectives are summarized below:

(1) Given that arcs have reliability rates associated with them, define a lower and

upper bound on the expected minimum cost flow through a network satisfying all

user demands.

(2) Develop a monitor location model and present a strategy maximizing the

likelihood that the O-D demands estimated from partial sampling of network

components accurately represent the target O-D demands in the actual network.

(3) Develop an O-D demand estimation model and a corresponding compromise

metric.

3.2 Minimum Cost Multi-Commodity Network Flow Models

3.2.1 Deterministic and Expected Network Flow Models. The first phase of

modeling this problem is formulating the basic network model upon which all future

assessments will be made. In its simplest form the network is totally deterministic where

all network components are perfectly reliable. A mathematical model for the perfectly

reliable network is presented in Chapter II.

In our problem the network is defined as a binary system [34] in the sense that

an individual arc(i, j) can either be up or down with probability r, or (1 - r, ),

respectively. As mentioned earlier, solving for the exact minimum cost flow for networks

of interesting size when reliability is introduced can be very difficult. This difficulty is

illustrated in [37] and a corresponding mathematical model for the expected minimum

cost flow is presented in Chapter II.
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3.2.2 Bounds for the Expected Network Flow. Although obtaining an exact value

for the expected flow may be computationally infeasible, it is possible to obtain lower and

upper bounds on the expected flow thus defining for each arc and O-D pair a range of

"expected" flow behavior. The bounds established for this research are partly based on

results forwarded by [1, 8] for the single-commodity maximum flow network. The

assertion for this research is that the bounds formulated below indeed capture the expected

flow. Some properties related to these bounds are presented in Appendix A.

3.2.2.1 Lower Bound Formulation. The lower bound on the expected flow

represents the best case from the user perspective where total cost is less than expected

cost. The objective function represents the total cost (or distance) of the system and is

formulated on arc-path decision variables fk. The network flow is subject to several

constraint sets. The first set of constraints requires all O-D pair demands to be satisfied

and is identical to the deterministic constraint set. The second set constrains maximum

arc utilization to the expected capacity of the arc, for all arcs. This aspect of the

formulation is adapted from [1, 8, 38] where expected capacity was used to establish an

upper bound on maximum flow in a single-commodity network. The final constraint set

establishes non-negativity requirements for the decision variables. The mathematical

model is presented in Figure 3.1.
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Figure 3.1. Lower Bound Network Flow Model

bt V keK
peph
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where A = set of directed arcs in the network
K = set of distinct O-D pairs (or commodities)
P' = set of paths connecting O-D pair k
bk = total flow input to the network by O-D pair k
c/k = path cost equal to sum of arc costs lying on path

pepk
fpk = path flow on the pe' path of the set of candidate

paths P'
hyP = 1 if arc(i, j) lies on path p r P•; 0 otherwise
r. = reliability of arc(i, j)
uY = flow capacity of arc(i, j)

and where the expected arc capacity, e(u.), is equal to r. u,,
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3.2.2.2 UpperBound Fom ulation. The upper bound on the expected flow

represents a worse case scenario from the user perspective where total cost is greater than

expected cost. The objective function represents the total cost (or distance) of the system

and is identical to the lower bound objective. The network flow is subject to several

constraint sets. The first set of constraints requires all O-D pair demands to be satisfied;

however, each path variable has an associated loss parameter if at least one arc in the path

is not totally reliable. This potential loss of flow may lead to an influx of slack external

flow at some or all O-D pair origin nodes. Consequently, system cost increases as slack

external flow increases. This aspect of the formulation is also adapted from [1, 8, 38]

where the loss parameter was used as an objective function coefficient to establish a lower

bound on maximum flow in a single-commodity network.

The second set constrains maximum arc utilization to the original capacity of the

arc, for all arcs, and is identical to the deterministic constraint set. The final constraint

set establishes non-negativity requirements for the decision variables. The mathematical

model is presented in Figure 3.2.

3.3 Multi-Criteria Monitor Location Model

Once the flow patterns are established for both bounds, the next step is to

determine which subset of arcs within the network will maximize the likelihood of

obtaining flow information from all users while deploying the least number of monitors.

This subproblem is modeled as a multi-criteria 0-1 integer program and solved using

compromise programming to obtain the best monitor location strategy common to both
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Figure 3.2. Upper Bound Network Flow Model

minimizc Z =E E ¢CP
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where A = set of directed arcs in the network
K = set of distinct O-D pairs (or commodities)
P' = set of paths connecting O-D pair k
R k = reliability of path p for O-D pair k
bf -= total flow input to the network by O-D pair k
c,' = path cost equal to sum of arc costs lying on path

peP
fpk = path flow on the pP path of the set of candidate

paths P'
hulcP = 1 if arc(i, j) lies on path p E pt; 0 otherwise
U# = flow capacity of arc(i, j)

and where path reliabilities are obtained as follows:
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network flow patterns (i.e. lower and upper bounds).

3.3.1 Crteria Functions. For this research we choose two criterion functions,

among many possible functions, to represent an arbitrary decision maker's (DM)

preferences regarding where the monitors should be placed in the network such that a

flow disturbance is intercepted. A basic assumption related to criterion selection is that

no prior knowledge is given regarding specific "hot spots" or particularly vulnerable arcs;

instead, we assume that a compromise flow is simply routed along the least costly path(s).

The two proposed criterion functions are described below and mathematically presented

in Figure 3.3:

(1) Criterion Function I (CFI) - Maximize arc reliability to cost ratio,

v,, = r,, / c,,, where it is expected that the majority of the flow will traverse the arcs with

the greatest ratio. Note that v,. increases for increasing r,, or decreasing c,, (c. >_ 1).

(2) Criterion Function 2 (CF2) - Maximize arc flow where we want to place

monitors on arcs with the maximum proportion of flow. CF2 may appear at first glance

to be equivalent to CF1, but it is possible for both criteria to conflict on certain arcs since

the second criteria, unlike the first criteria, is indirectly a function of arc capacities. In

other words, a highly reliable, low cost, and low capacity arc may lead to conflict

between both criteria.

The arc consideration parameter w included in both criterion functions is

presented in Section 3.3.3.3, Location Model Simplifications.

3.3.2 Decision Space. The decision variable is modeled as a binary 0-1 variable,
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xk', which takes on a value of I if a monitor is placed on arc(i, j) and 0 otherwise, and

where k' is an index denoting the possible combinations of users on arcs of the network.

This index will grow exponentially as the number of distinct O-D pairs increases, where

the maximum number of combinations contained within the set is

by the binomial theorem [31:10]. Fortunately, this number can be significantly reduced

by evaluating the network flow patterns and determining a routing table which identifies

the specific user combinations for each arc. Therefore, the maximum number of user

combinations is reduced to no greater than the number of active arcs (i.e. arcs carrying

flow) in the network.

The decision space X for this problem consists of four proposed constraints sets.

These sets are described below and mathematically presented in Figure 3.3:

(1) Redundancy Avoidance - This set of constraints limits the number of

monitors located on arcs where the user combinations are identical to no more than one

monitor. This is justified because locating two or more monitors covering the same

combination of users yields two or more redundant arc flow constraints in the O-D

estimation model (see section 3.4. O-D Demand Estimation Models).

(2) Monitor Goal - This is an equation which either constrains the decision to

fielding a maximum of M monitors or is relaxed to determine the maximum number of

monitors required.

(3) Minimum User Coverage - This set of constraints requires that every user,
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Figure 3.3. Monitor Location Model For Each Network Bound

Criterion Functions

CFI = yj= max WNV 'Ty 4iit

(2 = y2 = max V w•,4 4

subject to
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where wY = arc consideration coefficient = 1 if
Uy' ,'Ykpe,• > 0;

0 otherwise
= average proportion of flow on arc (i, j) for all users

of arc (0, ) = (Yk -p Pk hkpfpk) / (Ak 2pEPk fIk)
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or O-D pair, be accounted for by the monitor location strategy; in other words, we desire

flow information on all users of the network. This requirement may be relaxed if some

users are of no consequence in the assessment of compromise.

(4) Binary Requirement - The decision variable is constrained to either 0 or 1.

3.3.3 Solution Approach.

3.3.3.1 Compromise Programming. To solve this bi-criterion problem, we

use compromise programming techniques to obtain the best compromise solution to both

criterion functions. The objective function for the compromise program is commonly

refered to as a regret function r(y) where the objective is to minimize the "regret of using

y instead of obtaining the ideal point y *," which can be modeled as a distance measure

[39: 68]. Yu [39: 69] presents a class of /,-norms which can be used to model the DM's

preference structure with regards to the measurement of regret. Gershon [20: 245, 248]

presents a generalized version of the p-norm introducing weights and normalization which

permit us to interpret and compare the compromise solutions obtained by a weighted

solution method [14: 164; 39] as weighted distances reflecting a percent shortfall from the

ideal solution. Using this method we can determine which monitor location strategy will

best achieve the DM's stated criteria. The compromise program for the monitor location

model is presented in Figure 3.4, where the regret function is generalized for 1 < p <

0; however, in this research we only evaluate compromise solutions based on absolute

deviations ( p = 1).
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Figure 3.4. Monitor Location Model Compromise Program

Compromise Function

r(y,;,p=1) = in

subject to

xeX

where

A = R, {X xR' A3-1
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3.3.3.2 Arc Selection Strategy. The above solution approach results in

possible monitor location strategies for each of the network bound configurations when

viewed separately. However, a realistic scenario requires a single overall placement of

monitors. In order to achieve this it is necessary to design a common monitor location

strategy to both network bounds. Two simple approaches come to mind for selecting a

common set of arcs: the first approach is to only place monitors on the common arcs

shared by both network bounds (i.e. the intersection of both sets), and the second

appro.Ich is to place monitors on all the arcs selected in both bounds (i.e. the union of

both sets). The first approach is advantageous in that fewer arcs are likely to be selected,

which reduces the cost of placing monitors; however, it is possible that arc selection in

both bounds yield individual strategies sufficiently diverse that when considered together

yield no arc selection strategy at all. On the other hand, the second approach may appear

more costly yet guarantee a sufficient number of monitors are placed to collect the flow

information required for O-D estimation. Further, if cost is a consideration, the value M

used to obtain the compromise solutions for each boumd can be incrementally decreased

and evaluated. Given this flexibility, the second approach is used in this research.

The algorithm for the monitor location problem is summarized below:

SteD 1: Solve for the compromise solution by minimizing ?(y; p) for the lower

bound network flow.

Steo 2: Repeat Step 1 for the upper bound network flow.

Steo 3: Define an overall monitor location strategy as the union of the sets

obtained in Steps I and 2.
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We can extend this arc selection strategy to the situation where a maximum

number of monitors, say M', can be fielded. For example, if no more than 3 monitors can

be fielded (M'= 3), then Steps 1 and 2 above are run where M = 3, noting that y,*

(I = 1, 2) is also obtained for M = 3 to ensure consistency. In Step 3 a common strategy

is defined where the number of selected arcs ranges from 3 (best case) to 6 (worse case).

If the best case is achieved then stop; otherwise, if the number of selected arcs is greater

than the maximum requirement then either eliminate the additional arcs based on some

ranking scheme or repeat Steps I and 2 for M = 2, noting that y,* is also obtained for

M = 2. Step 3 results in a common strategy of 2 to 4 arcs where either a strategy is

selected or the process continues until the number of common arcs is less than or equal

to M'.

3.3.3.3 Location Model Simplifications. The monitor location model

considered in this research can be simplified by introducing an arc consideration

coefficient, wr, and modifying the compromise program objective function in Figure 3.4.

First, the arc consideration parameter, w,, is defined as a 0-1 objective function

coefficient which assumes the value 1 if an arc (i, j) has remaining capacity after an

optimal flow is obtained, and the value 0 otherwise (i.e. if the arc is at full capacity).

The reason this parameter is included in the model is particular to the earlier definition

of "compromise" or flow disturbance: an increase in flow along a specific path or subset

of paths connecting an O-D pair. If an arc is expected to be 100% utilized in a normal

situation, then introducing a compromise flow will aot affect the status of this arc.
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Therefore, considering it for possible placement of a monitor is not preductive. On the

other hand, if an arc is under-utilized then compromise flow may or may not manifest

itself on this arc and, therefore, this arc should be considered for possible monitor

placement. The parameter w, is obtained by computing the following expression for each

arc in A:

kel pe~ph

If the above expression is positive, or greater than a specified tolerance, then w. = 1 and

arc(i, j) is considered; else if the expression equals zero, then w . = 0.

The next two simplifications occur in the formulation of the compromise program

objective function ?(y; X, p) for p = 1. First, the function r as stated represents the

percent shortfall (when multiplied by 100) from the ideal solution (Y1*, Y2*). As

illustrated in Figure 3.5 (a), we can simplify the model by optimizing the function r,

which represents the percent coverage (when multiplied by 100) of the ideal, and where

r= 1 -r'.

Second, a single parameter %j, for fixed weights ), is calculated for each arc,

which consolidates both criteria function coefficients and restates the objective function

in terms of a single variable, xuk. The parameter a, can also be evaluated as the function

a,,(X) for varying weights and is illustrated in Figure 3.5 (b). The revised monitor

location compromise model is presented in Figure 3.6.
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Figure 3.5 (a). Simplification Of Compromise Program Objective Function

Compromise Function Reformulation for p = 1 and X fixed:

q
r = mi n ;

,r = mi1 t I - ;L(;"I

where the function to be optimized is r':

r- = max
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Figure 3.5 (b). Simplification Of Compromise Program Objective Function
Coefficients

Expanding the bi-criteria function r':

r = m a x 
E _Jy 

y

r' max r Wt(,i + "2f
41 i Y2

we obtain the simplified function for variable X:

3- 'L V6 + 2_f "++i•' =+ Yif Y2

3-16



Figure 3.6. Revised Monitor Location Model Compromise Program

Compromise Function

r'(yA,Xp=1) m 1ax Ax

subject to

xX

where X = decision space for monitor placement
A = decision space for criterion weighting
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3.4 Ofigin-Destination Demand Estimation Models

The final model is designed to estimate the O-D demands, or external flows, input

to the network by sampling flow information on the arcs where the monitors are fielded.

This estimation process is initially conducted for both network bounds assuming the flow

represents "normal" flow through the system. The O-D estimates are then used in

defining a compromise metric, or confidence interval for "normal" flow behavior,

presented in Chapter IV. This estimation process is repeated in subsequent time periods

to obtain new O-D estimates which are used to assess "compromise" by comparing the

new estimates to the established confidence interval.

3.4.1 LP-Norm Minimization Model. This subproblem is modeled using the class

of lp-norm deviational measures presented in Chapter II. The general Lp model where p

is bounded by I and infinity, and where each O-D pair is weighted, is provided in Figure

3.7. For this research we only investigate the effects of estimating O-D demands for

p = 1, 2 and infinity.

3.4.2 Goal Programming Solution Approach. The general lp-norm model is

operationalized as a goal program due to possible numerical problems when optimizing

absolute value functions using General Algebraic Modeling System (GAMS) software

(reference Section 3.6 for discussion of software) [7: 92]. The revised model is as

presented in [39: 84-89] where the absolute value functions are eliminated by introducing

non-negative deviational variables, dpk and dm', for each O-D pair k. The goal program
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Figure 3.7. Generalized L,-Norm Minimization Model

Objective Functions

Minimize (for 1 < p < co)

1
L(p) X[~IkJPbtr]'

Minimize (for p = oo)

l(oo) =max iFk-bkI
k

subject to

SPt= V (Qij) ES

kk

Pt z0 X.Pk k 0

where S = set of arcs selected for monitor placement
bk = target O-D demand for user k
dii" = proportion of user k flow on arc(i, j), obtained from

routing matrix
FP = estimated O-D demand for user k
V# = observed flow on arc (i, j)
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using equal weights for all O-D pairs is represented in Figures 3.8 (a) and (b)

3.5 Solution A Igorithm

This section presents an algorithm for solving the problem under consideration

which incorporates the models presented above. The algorithm first evaluates a network

under "normal" conditions to establish a monitor location strategy and develop a

compromise metric (presented in Chapter IV, Compromise Measurement) which defines

a threshold for "normal" O-D demand variation based on O-D estimates. The algorithm

then evaluates the same network under "compromise" conditions where revised O-D

estimates are compared to previously established thresholds to assess compromise. The

algorithm is summarized below as a sequence of steps:

Stegp 1: Once the network parameters (i.e. O-D pair target demands, arc

reliabilities, capacities and costs, and possible path sets) are defined for the

"normal" scenario, solve for the optimal minimum expected cost for each

network bound which satisfies all O-D demands. Define a routing matrix

representing the proportion of user flow on each arc for both bounds.

Step 2: Using the arc flow values obtained in Step 1, solve for a common

monitor location strategy to both network bounds for specified M and fixed

weighting of criterion functions (reference arc selection algorithm in Section

3.3.3.2).

Ste• 3: Using the arc flow values for the specific arcs having monitors, obtain the

O-D demand estimates for p = 1, 2 and 00.
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Figure 3.8 (a) O-D Estimation Goal Programming Model (1 < p < oo)

Objective Function

Minimize

I~ kdm+ dp )f
k

subject to

Fk +dmk - dp= b* Vk

d•Ft V (iQ) ES

F k 0 Vk
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Figure 3.8 (b) O-D Estimation Goal Programming Model (p = oo)

Objective Function

Minimize

AM) . w

subject to

W - dmk - dp 0 V k

Fk+dmk-dpk=bk Vk

k2iFk=vu V(id)EGS

Fk>O Vk
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S..4: Based on the O-D estimates in Step 3, define the compromise metric for

each level of p (see Chapter IV).

SH_ 5: Create a "compromise" scenario by introducing an increase in flow at an

arbitrary O-D pair and repeat Step 1 to obtain the revised arc flow values for each

network bound.

&%L& Using the arc flow values for the specific arcs having monitors, obtain the

revised O-D demand estimates for p = 1, 2 and oo as in Step 3.

Stg 7.: Compare results in Step 6 to the compromise metric defined in Step 4.

3.6 Software

The solution algorithm is programmed primarily using GAMS. GAMS is a

commercially available software package that provides a high-level language simplifying

the development and solution of large-scale and complex models. The development of

a model is performed independently of the solution algorithm, which allows for quick and

easy modifications. The solution is obtained through accompanying solvers such as

MINOS 5 (linear and non-linear programs) and ZOOM (mixed-integer programs) [7: 3,

105]. GAMS Version 2.20 is the VMS version used for this research.

3.7 Summay

This chapter reviewed the various mathematical models used in this research.

They include lower and upper bounds on the expected minimum cost network flow, a

compromise monitor location solution based on multiple criteria, and O-D estimates based
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on the class of L.-norm functions. Also presented was a step-by-step algorithm for

solving the problem of compromise assessment for a given network, where the

compromise metric itself is developed in the next chapter. Finally, the software tool used

for programming the various models was identified.
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IV. Compromise Measurement

This chapter presents a modeling approach for developing a compromise metric

(Step 4 of the solution algorithm in Chapter I1) used for assessing flow disturbance, or

"compromise." The problem of compromise measurement is first presented followed by

a description of the modeling approach, which identifies the assumed regression model,

the different sources of potential variability, and the compromise metric itself. A final

section is included which presents an alternative method for assessing "compromise"

where the O-D sample size is small and the normality assumption may not hold.

4.1 The Measurement Problem

This aspect of the modeling approach is considered separately given the

importance of the measurement problem. The original problem assumes that

"compromise" occurs randomly from the user perspective and therefore the assessment of

"compromise" from only partial information of a network involves uncertainty. For this

reason we develop a compromise metric as a means of determining if a "compromise" has

occurred and locating the specific O-D pair contributing to the apparent flow increase.

This metric is defined in terms of confidence intervals to allow us to express our

assessment of "compromise" as a confidence statement. The intervals themselves are a

function of the expected variability due to "normal" network behavior (i.e. the expected

flow pattern under "normal" conditions) which we assume can be readily obtained.

The use of confidence intervals to bound O-D flows assumes the O-D flows are
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normally distributed. We use the law of large numbers to justify this assumption where

in more realistic networks we would expect the number of O-D pairs to be on the order

of n' for fully connected networks, where n represents the number of nodes [31: 31].

A numerical example of the measurement problem is presented as part of the case

study in Chapter V, Section 5.4.1, Step 4.

4.2 Modeling Approach

The model proposed in this section is used to explain the variability due to flow

differences in both network bounds and to construct appropriate confidence bounds around

"normal" flow behavior. The O-D pairs in each network bound are characterized by the

specific paths selected and the flow values on the arcs along those paths. To understand

the flow behavior between both bounds, we analyze the sources of variance, namely the

path selection differences and the arc flow differences.

To understand this variance we develop a statistical relation between the dependent

variable Y and the independent variable X of the form

Y =f(X)

where Y = (Y1 , Y2, , Y,) is a vector of O-D pair volumes represented as the

difference of the lower bound from the upper bound O-D external flow, and

X = (X1 , X 2 ,. . , X, ) is a vector of path differences representing the number of distinct

path selection differences between the lower and upper bound network flow patterns for

each O-D pair.

The variable Yk could be modeled as the O-D pair external flows for lower bound
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(bkLB) and upper bound (bkUB) separately, but is consolidated as a deviation measure

(bkuB - bkLB) for simplicity. Further, Yk is assumed to be normally distributed, as stated

earlier, with mean E(Yk) and equal variance oy for all k.

The independent variable Xk is selected to help explain the potential variability in

Yk due to path selection preferences in both network bounds. The proposed model

presented in the next section accounts for this variability. The arc flow variance,

however, is not accounted for by this model and is therefore used to construct the

confidence bounds.

4.2.1 Regression Model. It is assumed that a simple first-order model, linear in

the regression parameters and the independent variable, adequately describes the

relationship between Y and X, and is of the form

Yk = PO + I3IXk + ek

where J30 and 03, are the regression parameters, and 6 k represents the deviation of Y. from

its mean value E(Yk) and is normally distributed with mean E(Sk) = 0 and variance

(2{lk} = a2 [27: 31 ]. See [27: 38-43] for a discussion of methods to obtain the estimated

regression function:

k =bo + bXk
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4.2.2 Analysis of Variance.

4.2.2.1 Sum of Squares. The analysis of variance approach to regression

analysis is useful in understanding the sources of variability in the model. As presented

in [27: 87 - 931, the total variation in the observations, or O-D deviations, is measured

as the total sum of squares, SSTO, which is composed of the sum of the regression sum

of squares, SSR, and the error sum of squares, SSE, where

SSTO= E (Y- Y?, - k
k-I t

t

SSR =?(Yk-Y
k-I

where SSR represents the squared deviation of the fitted regression around the overall

mean, and

SSE = "I ("- k)2

k-i

where SSE represents the variation of the O-D deviations around the fitted regression line.

4.2.2.2 Mean Squares. The associated mean squares for SSR and SSE,

when divided by their respective degrees of freedom, are as follows [27: 91]:

SSR_
MSR -M- SSR
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SSE
MSE - t-2

where MSR now represents the total variation in the model explained by the estimated

regression function. In other words, MSR denotes the variability due to different path

selections explained by the model. The variance of interest, however, is MSE which

represents the unexplained error and will be used to help build the subsequent confidence

intervals.

4.2.2.3 O-D Estimation Error. A third source of variability not accounted

for by the analysis of variance approach is the error due to O-D estimation: the deviation

between the target, bk, and estimated, FP, O-D pair external flow for each network bound.

Similarly, this variance can be expressed as the deviation between the target O-D

deviation, Yk, and the estimated O-D deviation, D., where Dk = (FJuB - F)LB). This

variance, also referred to as an accuracy measure [9: 370], is denoted as MSE,, where:

t

MSEw 
t -

4.2.3 Compromise Metric. There are 2 forms of the compromise metric proposed

for this research: individual confidence intervals ("individual metric") for each O-D pair

and an overall joint confidence interval ("joint metric").
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4.2.3.1 Individual O-D Confidence Intervals. Constructing a confidence

interval around each O-D pair serves the dual purpose of identifying a "compromise" and

its source. The objective is to estimate for each O-D pair the mean O-D deviation

denoted as E(Yk) for specific k. Since this value is generally not known, we use the point

estimator Fk defined in the earlier regression model for specific Xk.

An initial confidence interval for E(Yk) is developed using the t distribution (not

to confuse with the scalar t used to denote the number of O-D pairs) [27: 77-78]. The

I - a confidence limits are:

±k * t(l -ca/2;t-2)stt

where

2 1 (Xk -_ 2

Sk=MSEi $L J

A final confidence interval for E(Yk) incorporates the mean error due to the O-D

estimation process and is of the form:

Y± * (t(1-a/2;t-2)st + K )

4.2.3.2 Joint Confidence Interval. A joint metric is considered to assess

the sensitivity of the model to mean O-D volumes with no expectation of being able to

determine the specific source of compromise. The joint metric is of the form:
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t 14 -

where the mean of the O-D pair deviations Yt is equivalent to the mean of the fitted O-D

pair deviations Pt [27: 49].

4.3 A Itemative Compromise Metric

An alternative method for assessing "compromise" is proposed in this section as

an extension of this research. The method, as described by Upton and Fingleton [36: 170-

75], uses the Moran statistic I to determine if correlation exists between the values of

each O-D pair. A set of O-D pairs is considered correlated if their exists a connection

or similarity between the values of each O-D pair..

This method is useful for the case where the number of locations, or O-D pairs,

considered is small. Although the distribution of I is assumed approximately normally

distributed for a large number of sampled locations, the method allows for probabilistic

assessments of the observed statistic I for smaller sample sizes [36: 171].

The stated hypotheses for this test are:

Null Hypothesis: No correlation present (i.e. no similarity exists between the

source and destination node flow values for each O-D pair)

Alternative Hypothesis: Correlations present (i.e. a similarity does exist between

the source and destination node flow values for each O-D pair)

In the context of our research, it is proposed that rejecting the null hypothesis is
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equivalent to stating that no "compromise" has occurred given that the deviation between

source and destination flows for each O-D pair is sufficiently close to be deemed similar.

On the contrary, failing to reject the null hypothesis indicates that the deviations are

sufficiently large to be deemed unsimilar. This last statement suggests that a possible

"compromise" has occurred given that a "compromise" scenario is exhibited as an increase

in flow at a particular O-D pair's source node.

The test statistic I is presented below in the authors' original notation and related

to the context of our research. Note that i denotes the source node and j denotes the

destination node.

n i
So X

where n = number of locations, or nodes, sampled = 2t

x,= value of flows at source nodes = Dk'

x= value of flows at destination nodes = Dk = 0 given that flow demands are

unchanged from lower to upper bound

I= average of all node values x, and x,

wti = matrix representing the O-D pairs where W0 =I if nodes i andj denote an

O-D pair, and W, = 0 otherwise

So= YXYJW 0l#J)

Furthermore, we define the matrix of elements YY where



Given the lack of appropriate probability tables for small sample size problems,

we make use of this proposed method which defines the cumulative distribution function

(CDF) for I as a reference curve against which observed values of the test statistic I can

be compared to assess the significance of the observation. The CDF for I is obtained

using a randomization process of the matrix Y where (1) the x, and x. values assume the

estimated O-D deviations in the "normal" scenario, and (2) n! Y matrices are obtained by

random permutations of the n rows and n columns [36: 152]. It is under this

randomization process that the authors claim the distribution of I to be approximately

normally distributed with specified mean and variance [36: 171]. The CDF for I is

defined by solving I for each specific random matrix Y and obtaining a frequency count

of the number of Y matrices resulting in a specific I value. The resulting CDF is a

frequency distribution of I in the "normal" scenario.

To assess "c• ise," we would compute the I statistic where x, and x, assume

the estimated deviations in a "compromise" scenario. To assess the significance of the

resulting I value we compare it to the CDF for I. If the observed value is extreme (e.g.

only in a few occasions is the observed value equalled or exceeded) then we would

conclude that correlation is present; in other words, we would conclude that

"compromise" has not occurred with certain significance. Contrarily, if the observed

value is exceeded by a specified percentage of observations, then we would conclude that

4-9



"compromise" has occurred.

4.4 Summay

This chapter reviewed the proposed metric for determining if a "compromise"

situation exists based on the comparison of estimated O-D external flow values to pre-

established confidence intervals encompassing "normal" network behavior. This chapter

also presented, as an extension, an alternative test statistic for measuring "compromise"

for small O-D sample sizes. The next chapter applies the models presented in Chapter

III to a test case network and provides, as part of this case network, a numerical example

of the method presented in this chapter.

4-10



V. Case Study

This chapter applies the solution algorithm presented in Chapter III to a test case

network. The first section briefly restates the research objectives and includes a

description of the case network and all related network parameters. The second section

illustrates Step I of the solution algorithm presented in Section 3.5, where a lower and

upper bound network flow pattern is obtained. The third section illustrates Step 2,

monitor location strategy, and describes the two sets of experiments to be conducted. The

final two sections illustrate the remaining five steps for both experiments.

5.1 Network Description

The purpose of this chapter is to apply the solution algorithm on a case network

and analyze its performance, keeping in mind the stated research objectives of Chapter

I which are summarized below:

Objective #1: Obtain a network flow that bounds the expected minimum cost

network flow.

Objective #2: Obtain a monitor location strategy that maximizes the accuracy of

estimating the true O-D external flows in both "normal" and "compromised"

network configurations.

Objective #3: Define the compromise metric and evaluate the compromise

assessment based on O-D estimation preferences for p = 1, 2, and 00.
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The case network is a three-commodity (or user) network with multiple unreliable

arcs as defined in Figure 5.1. The network arc parameters, O-D parameters, and O-D path

sets for the original "normal" configuration are provided in Tables 5.1, 5.2, and 5.3,

respectively. Note that the arc notation (i, j) used in the previous models is simplified

from this point on to the single arc index i (refer to Figure 5.1).

Table 5.1 Network Arc Parameters

i from to r, II cO

1 1 2 1 7 2

2 1 4 .95 5 1

3 3 2 1 5 2

4 2 5 1 10 3

5 3 6 .98 4 1

6 5 6 .98 8 3

7 6 5 1 4 3

8 4 5 .7 10 2

9 5 4 .8 5 2

10 4 7 1 3 1

11 7 4 1 5 1

12 5 8 1 9 3

13 6 9 1 10 3

14 8 9 .98 9 2

15 7 8 .95 6 2

16 8 7 .95 4 2
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Figure 5.1 Three-Commodity Case Network
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Table 5.2 Network O-D Pair Demands

O-D Pair Node Demand

k Pair bk

1 (1,9) 8

2 (3,7) 6

3 (7,9) 5

Table 5.3 O-D Pair Path Sets

k p Arcs R c k k

1 1 1-4-6-13 .98 11

2 1-4-12-14 .98 10

3 2-8-6-13 .6517 9

4 2-8-12-14 .6517 8

2 5 3-4-9-10 .8 8

6 3-4-12-16 .95 10

7 5-7-9-10 .784 7

8 5-7-12-16 .931 9

3 9 11-8-6-13 .686 9

10 15-14 .931 4

5.2 Network Bounds

In this section the results are presented for Step 1 of the solution algorithm as

stated below:

Step 1: Obtain the optimal minimum cost network flow for both bounds

representing the "normal" scenario. The GAMS models for both bounds are included in

Appendices B.1 and B.2, and the optimal flow patterns displayed in Appendix B.3. The
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optimal objective function values are ZLB* = 144.76 and ZUB* = 169.2. The resulting

target O-D path flows and external flows are summarized in Tables 5.4 and 5.5.

Table 5.4 Path Flowsf,' for both Network Bounds

k p fpt (LB) fpk (UB)

1 0 3.371

2 3.25 3.629

3 4.18 1.749

4 .57 0

2 5 0 0

6 2.08 2.86

7 3 3

8 .92 1

3 9 0 0

10 5 5.371

Table 5.5 Target O-D External Flow

k bk (LB) bk (UB)

1 8 8749

2 6 6.86

3 5 5.371

From the flow patterns in Appendix B.3, we can develop the flow routing matrix

for each network bound representing the proportion of user flow on each arc. This matrix

is shown below in Table 5.6 for both bounds:
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Table 5.6 Flow Routing Matrix

Lower Bound Upper Bound
i k=1 k=2 k=3 k=l k=2 k=3

1 m -0.- -

2 0.59 _ _ 020 -

3 0.35 - 0.42

4 0.41 0.35 - 0.80 0.42

5 - 0.65 - 0.58

6 0.52 - - 0.59 -

7 - 0.65 - 0.58 -

8 0.59 - - 0.20 -

9 - 0.50 - - 0.44 -

10 0.50 - 0.44 -

11 n/a n/a n/a n/a n/a n/a

12 0.48 0.50 0.42 0.56 -

13 0.52 - - 0.59 - -

14 0.48 - 1.00 0.42 1.00

15 1.00 - - 1.00

16 0.50 0.56 -

5.3 Monitor Location Strategies

In this section the results are presented for Step 2 of the solution algorithm:

Ste__2: Obtain a common monitor location strategy to both bounds for specified

M. For this case network we set M = 2 to ensure a worse case strategy of no more than

four arcs. We also propose to explore the set of compromise solutions which are also

efficient in both network bounds.

5.3.1 Set of Efficient Solutions. Obtaining the set of efficient solutions allows
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us to investigate different location strategies for various weighting of the two criterion

functions. By incrementally varying the criteria weights, we obtain a set of efficient

solutions (i.e. strategies) for each bound. The common strategies are thus defined as the

union of the efficient solutions, or strategies, and are presented in Table 5.7.

Table 5.7 Set of Efficient Solutions (both Bounds)

Weights Bound Strategy Common Strategy, S

ki < 0. 189 Lower Bound (12, 15)

Upper Bound (4, 15) 1 (4, 12, 15)

X1 > 0.189 Lower Bound 15,14)

Upper Bound 14, 15) (4, 5, 14, 15)

For M = 2 the optimal values for criterion function I are y, = 1.47 (lower bound)

and y,* = 1.487 (upper bound), and for criterion function 2 Y2* 0.808 (lower bound)

and y2* = 1.632 (upper bound). The lower bound network yielded two distinct efficient

solutions whereas the upper bound efficient solution is unique. The GAMS location

models for both bounds are included in Appendices C. I and C.2.

5.3.2 Experimental Design. Two separate experiments are conducted based on

the common strategies identified above, which exhaustively evaluate all possible 3-arc and

2-arc combinations. The first experiment assumes three monitors are fielded (or 20%

sampling of active arcs) and investigates the performance of each 3-arc strategy. The

second experiment extends the investigation to all possible 2-arc strategies (or 13.33%

rampling of active arcs). The possible location strategies for Experiments #1 and #2 are

presented in Figure 5.2 (a) and (b).
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Figure 5.2 Experimental Design

(a) Experiment #1

SEfficient Set

X• <.189 XI >.189

U2>.811 X2<.811

S= {4, 12, 15) S= {4, 5, 14, 15)

S1 = j4,12, 15)] S2={4,5,14) S4={4,14,157)
1 1

SS3={4,5, 15) S5={5, 14,15)

(b) Experiment #2

S6={4,12) S9 ={4, 5)
1 1

IS7-= 4,15) S 1Os ° 4,14)

S8- ={12, 15) S7= (4, 15)
1

SlI (={5,14)

S1=(5, 15)

S13 = (14,15)1
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The next two sections explore the results for all strategies within each experiment.

To illustrate the remaining steps of the solution algorithm, the first strategy for

Experiment #1 is developed in greater detail. All subsequent strategies are presented in

summary form.

5.4 Experiment #1

5.4.1 Location Strategy SI. Strategy SI consists of three monitors placed on arcs

(4, 12, 15).

Step 3: Obtain the O-D pair external flow estimates for both bounds representing

the "normal" scenario for p = 1, 2 and infinity. First, we note that since we are sampling

from three arcs, the constraint set for the O-D estimation model is fully determined (i.e.

3x3) therefore the O-D estimates are unique for all. p > 1. When we sample from 2-arc

strategies the relationships for different norm exponents become more evident. The

constraint set is defined by the arc flow values and the routing matrix for the specific arcs

sampled as illustrated for S1 in Table 5.8 for both bounds.

Table 5.8 O-D Estimation Constraint Set for Si

Lower Bound, d,k Upper Bound, dk

k=1 k=2 k=3 V k=I k=2 k=3 V,

4 0,41 0.35 5.33 0.80 0.42 9-86

12 0.48 0.50 6.82 0.42 0.56 7.489

15 - 1.00 5 - 1 1.00 5.371

The GAMS O-D estimation model for S l is included in Appendix D.1 and the

5-9



resulting estimates are in Appendix D.2.

Stn 4 Define the compromise metric. Using the approach proposed in Chapter

IV, we define individual and joint confidence intervals around each O-D pair's expected

flow and overall mean flow for the "normal" scenario. In the general case where we have

a large number of O-D pairs, a DM would be interested in assessing "compromise" with

a certain degree of confidence. This confidence is reflected in our confidence intervals

using the appropriate t-statistic from look-up tables. In this case study, however, given

the small sample size we simply use a scaling factor of two to conservatively widen our

intervals. As a result, confidence statements related to this case study are inappropriate

and the results themselves inconclusive; however, the goal is to gain sufficient insight

to assess the performance of the different metrics. An alternative approach was proposed

in Chapter IV which may allow for probabilistic assessments of "compromise" for small

samples. The applicability of this approach is left as an extension of this research.

Initial confidence intervals are developed based on the target flows. As presented

in Chapter IV, we define the variables Yk = (bkuB - bLB) = (0.749, 0.86, 0.371) and Xk

= (2, 0, 0), where user I (k = 1) has two distinctly different path selections, and users 2

and 3 (k = 2 and 3) have none. Using classical regression methods, we fit a simple linear

model with regression coefficients 0 = 0.616 and 031 = 0.067. Partitioning the sum of

squares, we obtain an SSE = MSE 0.12, which is used to calculate the variance term

for the fitted value fk. The results for the initial confidence intervals (i.e. not including

the O-D estimation error) are presented in Appendix D.3. Note that these intervals remain

fixed for all strategies.
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These intervals are slightly widened upon introducing the O-D estimation error

denoted as MSE5W. First, we define for strategy Si the deviational variable

Dk = (FPuB - F*LB) = (1.235, 0.384, 0.371) which represents the deviation in the O-D

estimates for the "normal" scenario. The error is then computed as the mean squared

deviation of the O-D estimated deviation Dk and the O-D target deviation Yk- This error

is added to the confidence bounds defined earlier to obtain the individual and joint metrics

(see Appendix D.2), which are summarized below in Table 5.9:

Table 5.9 Compromise Metrics for SI

Individual Confidence Intervals (CIs) Joint

Strategy k2 k3 CIs

S 1 {4, 12, 15} (-.335, 1.833) (-.266, 1.497) (-.266, 1.497) (-.132, 1.452)

Note that the individual intervals for users 2 and 3 are identical since both users have no

path selection differences between lower and upper bound, whereas user 1 has two distinct

path differences.

Step 5: Introduce a "compromise" scenario. For this case network we define

"compromise" as a single flow unit increase in the first O-D pair's demand (k = 1), from

8 to 9 units. To obtain the revised arc flow values we solve the network bound models

in Appendices B. I and B.2 with the revised O-D demand parameter. The "compromise"

network patterns are included in Appendix B.3 where the thicker arcs represent the

"compromised" paths for both bounds. This step is unchanged for all other strategies.

Steg 6: Obtain the revised O-D pair external flow estimates for both bounds
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representing the "compromise" scenario forp = 1, 2 and infinity. Similarly to the process

in Step 3, we solve the O-D estimation model in Appendix D. I with appropriate changes

to affected arcs. For this strategy, and all subsequent strategies, the only affected arc is

i = 4 in the lower bound pattern where V4 increases from 5.33 to 6.33 units. The revised

O-D estimates are included in Appendix D.2.

Stp 7: Assess compromise. This final step requires the comparison of the

revised O-D estimates to the previously established confidence intervals. Since the

confidence intervals bound the expected deviation of upper to lower bound flow, the

"compromise" estimates need to be similarly expressed as deviation measures. These

results are included in Appendix D.2 and summarized in Table 5.10.

Table 5.10 "Compromise" Estimates for SI

Strategy k= 1 k:=2 k=3 Joint

F SI F -1.568 .811 371 ~ ~

From these results we would conclude that, from an individual user basis, user I

is the source of "compromise," whereas from a joint user basis, we would conclude that

no "compromise" has occurred. Note that an actual confidence statement would be

inappropriate as stated earlier.

5.4.2 Summary Results. The results for the remaining four strategies, namely

Steps 3, 4, 6 and 7, are included in Appendices E. 1 through E.4. The overall results for

Experiment #1 (i.e. confidence intervals and "compromise" values) are presented in Table

5.11. Table 5.12 summarizes the results by displaying for the individual confidence
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Table 5.11 Experiment #1 Summary Results

Efficient Individual Confidence Intervals Joint
Solutions Strategy CIs

k=I k=2 k=3

X,< .189 Si - {4, 12, 15) (-.335, 1.833) (-.266, 1.497) (-.266, 1.497) (-.132, 1.452)
-1.568 .811 .371 -. 129

S2 = {4, 5, 141 (-.017. 1.515) (.052, 1.179) (.052, 1.179) (.186. 1 134)
-1.587 .866 1.464 .248

S3 = {4, 5, 15) (-.002, 1.5) (.067, 1.164) (.067, 1.164) (.201, 1.119)
-1.587 .866 .371 -.117

> .189

S4 = {4, 14, 15) (-.093, 1.591) (-.024, 1.255) (-.024, 1.255) (.11, 1.21)
.682 -1.745 .371 -.231

S5 {5, 14, 15) (.019, 1.479) (.088, 1.143) (.088, 1.143) (.222, 1.098)
.682 .866 .371 .64

Table 5.12 Experiment #1 Summary Results (cont)

Efficient Individual Joint
Solutions Strategy CIs CIs

X•1 < .189 St = 14, 12, 15} k = 1 NO

S2= {4, 5, 14) k = 1 & 3 NO

X,>.189 S3 = {4, 5, 15} k = 1 YES

S4 = {4, 14, 15} k = 2 YES

S5 = {5, 14, 15) None NO
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intervals the source(s) of potential "compromise", and for the joint confidence intervals,

whether a "compromise" has occurred ("YES") or not ("NO").

The key questions to be answered in this experiment are (1) how well the location

model performs in selecting the more susceptible arcs to "compromise," and (2) how

accurate the proposed compromise metrics perform in assessing "compromise" and its

source in a network known to be compromised.

Of the candidate arcs selected for monitor placement, only i = 4 incurred an

increase in flow. In other words, of the six arcs carrying the increased flow between both

bounds (see Appendix B.3), our location model managed to select only one, resulting in

a 16.7% selection rate for this particular network. It is not necessarily the intention of

this research to construct a more accurate location model, however the apparent weakness

is acknowledged and discussed in the recommendations section of the final chapter.

Of the five strategies considered in this experiment, four contain i = 4 and are

therefore of interest. Strategy S5 does not contain i = 4 and does not detect

"compromise," which is an expected result. The first four strategies (Si - S4) do detect

a source of "compromise" when the compromise metric is defined as the individual

metric. S1 through S3 correctly identify user I as a potential source of "compromise"

whereas S4 = (4, 14, 15) flatly identifies the wrong source. The reason for this error is

that arcs i = 14 and 15 fix users 1 and 3 to "normal" flow levels forcing user 2 to

compensate for the flow increase on i = 4. S2 = (4, 5, 14), which identifies user 1, also

identifies user 3. This uncertainty is caused by user 2 being fixed to "normal" levels on

i = 5 forcing user I to account for the flow increase on i = 4. It also forces user 3 to
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compensate for user l's increase to maintain the arc constraint equality on i = 14.

The individual metric approach yields three of five strategies correctly identifying

user I as a potential source of "compromise." The key characteristic of the three

successful strategies is that none of the arc constraint sets fix user 1 to a "normal" level,

unlike S4. This observation suggests that better prediction capabilities may be achieved

from a combination of arc samples serving a multitude of varied users concurrently, and

from sampling a greater number of "compromised" arcs where the objective is to isolate

the single user common to all "compromised" arcs.

The joint metric approach to assessing "compromise" yields mixed results. When

i = 4 was not included (i.e. S5), the assessment consistently agreed with the individual

assessment. However, when i = 4 was included only two of the four remaining strategies

yielded a correct assessment. Note, however, that the mean compromise estimates for SI

and S2 are relatively close to the lower confidence bound which suggests that a more

rigorous approach (i.e. larger sample size) may lead to a more favorable result.

Overall, it is difficult to make a distinction between the performance of both

metrics given the size of the O-D sample; however, we can observe for this case that the

joint metric is less sensitive to detecting "compromise" and the individual metric provides

the added benefit of identifying the potential source. So, for 3-arc strategies the

individual metric provides potentially greater insight into the true behavior of the network

and should be the preferred metric.
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5.5 Experiment #2

This experiment investigates the performance of all 2-arc combinations resulting

in nine separate strategies of which one is redundant. The results for the eight strategies,

namely Steps 3, 4, 6 and 7, are included in Appendices F. I through F.8. The compromise

metrics and "compromise" values for all strategies and p-values are displayed in Table

5.13 and summarized, as in Experiment #1, in Table 5.14.

Having addressed the location model limitations, the key question to be answered

in this experiment is how accurate the compromise metrics perform in assessing

"compromise" and its source as a function of the norm exponent p.

Of the eight strategies considered four contain i = 4 (i.e. S6, S7, S9 and S 10). The

remaining four strategies do not contain i = 4 and do not detect "compromise," which is

an expected result. Of the four strategies of interest, two (i.e. S6 and S9) only cover two

of the three users and therefore provide no insight on the effects of p on assessment

accuracy. In both S6 and S9, user 3 is not covered leading to results similar to removing

user 3 and its flow from the network. The estimates are therefore unique for all p _Ž 1.

The results for S7 and S10 are discussed next for both metrics at each level of p.

When p = 1, the deviational norm assumes a totally compensatory preference

structure: the /,-norm objective, which views all criteria (i.e. the deviation between each

O-D's target and estimated volume) on an equal basis, minimizes the overall deviation by

emphasizing a single criteria's loss with an equivalent gain spread over the remaining

criteria. In other words, the /1-norm models the preference structure of a DM bent on

identifying a single source. This result is clearly evident for S7 and Si 0 using the
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Table 5.14 Experiment #2 Summary Results (cont)

Efficient Individual Joint
Solutions Strategy p CIs CIs

S6 = {4, 12} 1, 2, oo k = 1 NO

I k = 1 YES

X7<.189 S7={4, 15} 2 k= 1 &2 YES

0o k = I & 2 YES

S8 = {12, 15} 1, 2, a none NO

S9 = {4, 5} 1, 2, o k = 1 YES

I k = 2 YES

SIO = {4, 14} 2 k = I & 2 YES

X,> .189

Sk=I&2 YES

S1 = 1{5, 14} 1, 2, o none NO

S12 = {5, 15} 1, 2, o none NO

S13 = {14, 15} 1, 2, oo none NO
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individual metric where S7 singles out user 1 and SIO user 2. Whether one user or

another is identified in this process is very dependent on the combination of users on the

arcs sampled and where the actual "compromise" occurs. For instance, the distinction

between S7 and SIO leading to conflicting assessments is that for SO = {4, 14), user 1

is common to both a "compromised" arc (i = 4) and a "normal" arc (i = 14), while user

2 is singled out on i = 4. For S7 = (4, 15), this is not the case. Also, note that the joint

metric in this case is consistent with the individual metric assessments.

When p = 2, the deviational norm assumes a preference structure resembling the

least-squares method: the 12-norm objective minimizes the sum of the squared deviations.

The DM in this case is not necessarily focused on identifying a single source, but rather

desires to minimize the potential contribution of O-Ds with relatively small deviations to

help single out the potential source(s). For this case network using the individual metric

the two sources identified for S7 and S10 are users I and 2, both common to i = 4. The

most noticeable change from p = 1 to 2 is the interaction effect between user 1 and 2,

which causes the "compromise" values to significantly converge or equalize. The joint

metric again consistently agrees with the individual metric.

When p = 00, the deviational norm assumes a totally noncompensatory preference

structure: the /.-norm objective emphasizes the largest, dominating deviation. The DM

in this case is interested in minimizing the maximum deviation regardless of the O-D

generating the deviation. This process ignores the remaining O-Ds which results in a

system attaining an equilibrium state. The changes in the "compromise" values from
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p = 2 to 00 are relatively small. The individual metric maintains users I and 2 as potential

sources and the joint metric concurs that a "compromise" has occurred. In fact, in both

strategies user 1 tends to be the furthest from its respective lower confidence bounds

which may be considered relevant information in some ranking scheme to isolate a single

source.

Ignoring the strategies not including i = 4, which consistently assess no

"compromise" and are likely to be a testament of the weakness of the location model

rather than the compromise metrics, the four strategies of interest yield the following

results:

(a) for p =1: three of four strategies using the individual metric correctly

identify user I as the definite source, and three of four strategies using the joint metric

concur that a "compromise" has occurred;

(b) for p Ž! 2: four of four strategies using the individual metric correctly identify

user I as a potential source, and three of four strategies using the joint metric concur that

a "compromise" has occurred.

These results indicate that (1) a possible tradeoff exists between the number of strategies

accurately identifying the potential source and the number of sources to be considered,

and (2) the individual metric is as sensitive to "compromise" detection as the joint metric.

Introducing risk preference it would appear from the results that a DM with a

totally compensatory risk preference structure would be the least conservative. In other

words, the risk of incorrectly assessing the source of "compromise" is increased, yet the
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decision itself is limited to fewer (in this case only one) candidates. As a DM tends

toward a total noncompensatory risk preference structure (p -+ 00), the DM becomes more

conservative. In other words, the risk of incorrectly assessing the potential source is

reduced, however, at the expense of sorting through more candidate sources which

introduces additional uncertainty and risk.

The final observations involve O-D estimation errors and their effects on

"compromise" assessment. In general, and not surprising given the small size of the

network, the estimation process applied to the "normal" scenario produced very accurate

estimates with the exception of a couple strategies that, although producing relatively

accurate estimates, affected the final assessment.

In Experiment #1, the estimation error, denoted as MSECS, was negligible for

strategies S2 through S5 (all < 0.023); however, for SI = {4, 12, 15), MSECSt = 0.154

primarily caused by O-D estimation error in the lower bound estimates. The outcome

using the individual metric was unaffected by the error, however the outcome was

particularly sensitive using the joint metric. In this case, a "compromise" was not

identified when it should have l-een, and more accurate estimates would have yielded the

correct result.

In Experiment #2, we observe a similar result. With the exception of strategy

S6 = (4, 12) for p > 1, the estimation error was consistently less than 0.004. The error

for S6 was 0.154 for the same reason as SI and results in the same outcome.

Overall, we can observe that the estimation error in the "normal" scenario appears
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to decrease in Experiment #2 where we are sampling from fewer arcs (see Figure 5.3).

This is explained by the reduction of the arc constraint set which permits the O-D

estimation model to achieve a better solution. We note that a possible tradeoff exists for

this situation where the DM must tradeoff between sampling from fewer arcs, which

improves the "normal" O-D estimates and tightens the interval bounds, and sampling from

more arcs, which increases the probability of intercepting a "compromised" arc.

In the "compromise" scenario we observe a similar trend. However, it is noted

that an increase in the "compromise" estimation error (i.e. the average squared deviation

between the "compromise" O-D estimates and the target O-Ds) denotes an increased

sensitivity of the arc sampling strategy to detecting "compromise," and is therefore

desirable. From Figure 5.3, it appears that a larger number of arcs sampled leads to this

desired property. This observation supports our intuition that a larger number of sampled

arcs should provide a more complete picture of the true state of the network.

Finally, evaluating the effects of changes in the Ip-norm exponent p, we observe

that the estimation model, for Experiment #2, is more sensitive to detecting "compromise"

(i.e. greater "compromise" estimation error) as the model tends toward total compensation,

or p = I (see Figure 5.4). This supports the earlier observation that the /,-norm tends to

single out an individual source. Given the results for p = 1 yield potential inaccurate

"compromise" assessments, it appears a tradeoff may exist between an increase in model

sensitivity (i.e. greater "compromise" estimation error) and model accuracy (i.e.

identifying the correct source).
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Figure 5.3 O-D Estimation Error as a Function of Number of Arcs Sampled
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VI. Conclusions and Recommendations

This chapter presents the summary of the research approach, its conclusions, and

recommendations for future research.

6.) Summary

The goal of this research was to develop an analytical model for assessing the

vulnerability of a multi-commodity, or multi-user, network subject to arc failures. Given

that a network achieved a "compromised" state by increasing the flow along a particular

O-D pair's path(s), the proposed method for assessing vulnerability was to strategically

field flow sensing monitors along specific arcs of the network and to use the sampled

information to help construct an image of the original network. More specifically, the

image sought was an estimate of the O-D pair volumes input to the network since a

"compromised" network would exhibit an increase in O-D volume. The overall objective

was to evaluate whether or not the model was capable of accurately assessing

"compromise" (with certain confidence), and if so, determine if it could identify the O-D

pair source.

The approach consisted of developing a sequence of three separate models and a

compromise metric used to make the final assessment. The first model involved bounding

the flow through the network given that arcs failed totally with certain probabilities. It

is known from prior research that solving for the exact flow in such a network can be
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intractable given the large number of possible failure states that would need to evaluated

separately. Therefore, the first model establishes a lower and upper bound on the exact,

or expected, flow through the network by solving simpler linear programs. The second

model consisted of locating the specific arcs on which to place the flow monitors subject

to possibly conflicting criteria and a predefined number of monitors. This model was

formulated as a weighted compromise program to obtain the set of efficient solutions, or

the set of possible monitor location strategies. The third model consisted of estimating

the O-D pair volumes based on the limited arc sampling information. This model was

formulated using In-norm objective functions and solved for p = 1, 2 and o0. The

estimates for the "normal" case were used to help define the compromise metrics and the

estimates for the "compromise" case were used to evaluate the status of the network with

respect to the compromise metrics. The compromise metrics were defined as both

individual confidence intervals (for each O-D pair) and joint confidence intervals (average

of all O-D pairs) around the expected flow (in this case, the deviation of upper to lower

O-D volume) in a "normal" network. A "compromise" situation was established if the

"compromise" estimates breached the interval bounds.

The performance of the proposed metrics was evaluated using 2 distinct

experiments consisting of the set of all 3-arc and 2-arc monitor location strategies

analyzed for each level of the norm exponent p. Although the case network used in this

research was small, important observations were made that would need to be confirmed

with more rigorous experimentation.
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6.2 Conclusions

Although it would be premature to draw any concrete conclusions from this

research, we were able to put forth several key observations.

First, it was noted that the performance of the location model in selecting

susceptible arcs was questionable even though it identified a "compromised" arc. The

original objectives of this research did not encompass the development of a location

model that accurately selected susceptible arcs. However, it is our contention that a more

accurate location model would provide a better assessment of "compromise" by helping

to single out the O-D pair common to all "compromised" arcs. Furthermore, an accurate

location model may reduce the need for more monitors.

Second, it was observed that the "compromise" assessments differed as a function

of p. Relating the assessments to a DM's risk preference structure, it was proposed that

a conservative DM's preference structure could best be modeled using a totally

noncompensatory approach to O-D estimation, whereas a DM willing to accept more risk

would have a preference structure totally compensatory in nature. It was also shown that

the latter preference structure was more sensitive to detecting "compromise" based on the

increased "compromise" estimation error. Although not foolproof, this proposition (if

shown to apply in larger and more realistic networks) could provide invaluable

information to a DM based on his or her's revealed preference structure.

Third, it was observed that the "normal" and "compromise" estimation error

generally decreased as the number of arcs sampled decreased. This led to the observation
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that a DM may need to reach a compromise in the number of monitors fielded given that

fewer monitors increased estimation accuracy of the "normal" scenario yet decreased (1)

the probability of selecting a susceptible arc, and (2) the sensitivity of the estimation

model in detecting "compromise." This tradeoff is critical given the current location

model capabilitit 3, yet may be overcome with a more accurate location model.

Finally, it was determined for the network used that no perceptible difference

existed in the accuracy of the individual and joint metrics, although the individual metric

provided additional information regarding the actual source of the "compromise." It is

expected that an individual metric would generally be preferred given the added insight

it provides the DM in assessing the source of "compromise."

6.3 Recommendations

The following recommendations are proposed for future research:

1. Assuming the models and simplifying assumptions are unchanged, more

rigorous experiments could be conducted to include (1) small sample testing using the

proposed Moran statistic I, and (2) larger networks with significantly more O-D pairs.

This work would assess the validity of the observations made in this research.

2. A better understanding of the relationships between the lower and upper bounds

and the expected value of the minimum cost flow in multi-commodity networks with

failing components should be achieved. Prior research has extensively studied the single-

commodity, maximum flow case, yet multi-commodity networks appear to have been

generally ignored. Furthermore, we believe the lower bound proposed in this research
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provides a relatively tight bound on the expected value. However, the appropriateness of

the proposed upper bound remains unanswered.

3. The development of a more accurate location model should be attempted.

Depending on the definition of "compromise," the location model criteria, of which there

may be many appropriate formulations depending on the DM's objectives, should account

for how the "compromise" flow will exhibit itself. For example, in this research we

assumed "compromise" flow to be an increase in "normal" flow routed along a particular

path(s) according to the pre-established routing algorithm (i.e. minimum cost routing).

Therefore, to increase the probability of interception, the criteria should account for the

knowledge we possess regarding the routing algorithm, namely the cost of arcs and paths

in the network.

4. The definition of "compromise" can be extended to include various other forms

of interest such as (1) the rerouting of flow along unexpected or undesirable paths, (2) the

increase of flow along a particular arc versus a path, and (3) the unexpected loss of flow

along a particular arc or path.

5. A more complex analytical model can be developed for either circuit-switched

or packet-switched communication networks. Some ideas for this extension were

previously mentioned in Chapter I, Section 1.5.2.
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Appendix A. Properties of Network Flow Bounds

Some properties regarding the relationship between the network bound models

presented in Chapter III and the expected minimum cost are identified below in Properties

I through 4. The claim for this research is that the lower and upper bound network

models envelop the true or expected network cost. In other words,

Z * < ZLB* < ZEv < ZUB*

where Z * is the optimal mimimum network cost when no arcs are subject to failure. For

simplicity, the arc iddex i is used instead of (i, j) where each arc is assigned a single

identifying number.

Pmperty 1: The optimal minimum cost, multi-commodity flow in a fully reliable

network, Z *, is less than or equal to the lower bound minimum cost, multi-commodity

flow in a network subject to arc failures, ZLB*, where individual arc capacities, u,, are set

to their expected arc capacities, e(u,), where e(u,) = r, u,

Z * < ZLS*

The minimum cost operator will route the maximum flow along arcs with least cost

limited only by arc capacities. However, unlike the totally reliable network where all arcs

are assumed 100% reliable, the lower bound network further limits the amount of flow

traversing any arc with reliability strictly less than 1.0. For any preferred arc i with least

cost having reliability less than or equal to L.O,f (u,) >f, (e(u)), wheref (.) represents

the optimal flow on arc i subject to arc capacity constraint (.). Therefore, in order to
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satisfy the demand constraints, the lower bound minimum cost operator will reroute at

least as much flow along less preferred, or more costly, arcs than the totally reliable

network, which demonstrates the above relationship.

Prperly 2: The optimal minimum cost, multi-commodity flow in the lower bound

network configuration, ZLB*, is less than or equal to the expected minimum cost, multi-

commodity flow, ZEV:

ZLB* : ZEV

It has been shown for the single-commodity, maximum flow network that the optimal

maximum flow when using expected arc capacities yields a total flow greater than or

equal to the expected value of the maximum flow [1, 8, 28, 38]. In other words, the

expected flow when at least one of the random arc capacities, Ui, is set to its expected

capacity, e(u,), is greater than or equal to the expected flow when all arc capacities remain

random variables. The general relationship is given by the following inequality:

E{MaxFlow(e(u,), e(u2), . .. , e(up), ... e(u,-,), U,,..- Um))} 2t

E{MaxFlow(e(u,), e(u2),., e(up-1), e(ur•,)..., e(un..), U,-., UP,... U.)}

Generalizing this relationship to the minimum cost, single- or multi-commodity case, it

is important to note that the minimum cost objective is similar to the maximum flow

objective above in that the minimum cost operator forces the maximum amount of flow

over the least costly arcs. If at least one of the preferred arcs has reliability strictly less

than 1.0, then by the relation above, the amount of flow traversing this arc when its

capacity is set to its expected capacity is greater than or equal to the expected flow
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traversing this arc. The difference in flow on a particular arc between the lower bound

and expected value is rerouted along arcs of equal or higher cost. It follows that the

expected system cost is greater than or equal to the deterministic, lower bound system

cost. The general relationship in this case becomes:

E{ZB(e(u,), e(U2), ... ,I e(u.), .. ., e(u._.), U,, . .. , U,))

E{ZEv(e(ul), e(u2), -... , e(u,..,), e(u..,), . ... e(u..)., U,. . .... UP2. . U.))

Properly 3: The optimal minimum cost, multi-commodity flow in the upper bound

network configuration, ZUB*, where path flows are subject to loss dependent on path

reliability rates, is greater than or equal to the expected minimum cost, multi-commodity

flow, ZEV:

ZEV < ZUB *

For this relationship to be true, it must also be true that ZLB* < ZUB*. We show this latter

relationship first.

(i) For any particular path through a network (say, the path with least cost) the

following property applies to the lower and upper bound path flow:

LB: fpLB < min(e(u,))

UB: f4 uB < min(u,)

for all i lying on path p. To meet the demand, b, a new flow,fp,, along path p' not equal

to p, at equal or higher cost, is included (assumingf, < b) to satisfy the following demand

inequalities:

A-3



LB: f,,.s t b - min(e(u,))

UB: f•.u Z b - R. min(u,)

where R. is the loss parameter for path p. Now, note that R. < min(r,), for i lying on p.

This implies that Rpmin(u,) < min(e(u,)) = min(r, u,). This, in turn, implies that

fp..UB > f,.B. Therefore, we can expect that at least as much flow will be routed along

more costly paths in the upper bound configuration as in the lower bound configuration,

which shows the relationship ZLB* < ZUB*. In fact, for a path p where more than one arc

has reliability strictly less than 1.0, R. is strictly less than min(r1 ); thus, ZLB* < ZUB*.

(ii) To demonstrate that ZEv < ZUB* we use a specific example to show where the

relationship does hold. However, it is not advisable to generalize this result to all

networks since no definitive relationship was found. The example network is a two -

commodity network, represented in Figure A. 1, where all but two arcs are perfectly

reliable, resulting in 22 = 4 possible failure states to examine to determine the expected

cost. To ensure that both commodity demands are satisfied in the expected value case

(where when an arc fails, it fails totally), all unreliable arcs must have a backup arc. For

this example, the backup arcs are perfectly reliable and have unlimited capacity, denoted

as (*). All arcs, except the two backup arcs, have a unit flow cost of 1; the backup arcs

have a cost of m, where m is strictly greater than I (the objective is to send as much flow

as possible over the primary arcs), The overall objective is to determine if the above

properties hold for all m > 1. This example network is first evaluated to determine the

lower and upper bound costs; then, the expected cost is assessed.

The example network arc parameters, O-D demands and path sets are displayed
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Figure A. I Two-Commodity Example Network
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in Tables A. 1, 2, and 3 respectively.

Table A.1 Network Arc Parameters

LL Lui c,

1 1 14 1

2 .9 2 1

3 .9 5 1

4 1 1 1 1

5 1 3 a1

6 1 * m

71 * m

Table A.2 O-D Demands

k bk I nodes

1 2 (1,4)

2 3 (3,2)

Table A.3 0-D Path Sets

kE1p arcs R , t C~k

1 1 1-2-3 .81 3

2 1-2-7 .9 2 + m

3 1-6-3 .9 2 + m

4 1-6-7 1 1 + 2 m

2 5 3-4-1 .9 3

6 3-5 .9 2

7 7-4-1 1 2+m

8 7-5 1 1 +m
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The lower and upper bound network costs are obtained by solving the linear

programs shown in Figures 3.1 and 3.2. The path flows for each bound are displayed

below in Tables A.4 and A.5:

Table A.4 O-D Path Flows (Lower Bound)

k p fj cost

1 1 1.8 5.4

2 0 0

3 0 0

4 .2 .2 +.4 m

2 5 0 0

6 2.7 5.4

7 0 0

8 .3 .3 +.3 m

ZLB*= 11.3 + .7 m

Table A.5 O-D Path Flows (Upper Bound)

1111 cost
1 2 6

2 0 0

3 0 0

4 .32 .32+.64 m

2 5 0 0

6 3 6

7 .33 .66 +.33 m

8 0 0

ZUB* 12.98 + .97 m
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To obtain the expected cost we must evaluate the set of failure states S where

s = 1 . . 4 represents the possible combinations of operating and failed arcs, and P(s) the

corresponding state probability. The expected value model is presented in Figure 2.2.

The four possible failure states are displayed in Figure A.2 and the results summarized

in Table A.6.

Table A.6 Expected Value Summary Results

s P(s) Z(s)

1 .81 12

2 .09 10 + 2 m

3 .09 7 + 5 m

4 .01 5 + 7 m

ZEv= 11.3 +.7m

The results for this example indicate that the lower bound cost and the expected

cost are equivalent for all m, but the upper bound cost is strictly greater than both. To

further investigate this relationship, the two-commodity network was modified to include

three unreliable and three backup arcs, resulting in 2' = 8 possible failure states.

Specifically, arc i = 5 was assigned a reliability of 0.9 and arc i = 8 was included as the

backup. The total number of paths was increased to 10 (4 for k =1 and 6 for k =2). The

details of this extension are not included in this appendix; however, the overall results

for both bounds and expected value are summarized in Table A.7.
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Figure A.2 Network Failure State Configurations
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Table A.7 Extended Example Summary Results

ZLB* - 11.6 +.7 m

ZBv = 11.19 +.9 m

ZuB* 12.42 + 1.88 m

The relationships for both examples are illustrated in Figures A.3 and A.4 where

it appears that the above properties hold; in fact, it appears that the lower bound model

is a tighter bound on the expected value.

Prperty 4: Tightness of Bounds.

For all arcs where reliability is strictly less than 1.0, as arc reliability increases

toward 1.0 the bounds on the minimum cost flow converge on the totally reliable

minimum cost. For communication networks, where arc reliabilities generally tend toward

unity [28], this behavior is expected. Conversely, if the arc reliabilities decrease, then the

bounds progressively widen. The obvious case, where r, = 1 for all i, is that:

Z ZLB* = ZEV = ZUB*
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Figure A.3 Linear Relationship of Objective Functions (2 Failing Arcs)
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Appendix B. Network Bounds

B.] GAMS Model for Lower Bound Network Row

GAMS 2.20 VAX VMS 3-JAN-1994
THREE-USER COWJNICATION NETWORK (LOWER BOUND)

3
4 SETS
5 I arcs /1 * 16/
6 K O-D pairs / USERI * USER3/
7 P paths / PATH1 * PATH1O/;
8
9 PARAMETERS

10 B(K) O-D pair volumes
11 / USER1 8
12 USER2 6
13 USER3 5 /
14
15 C(I) arc costs
16 /1 2
17 2 1
18 3 2
19 4 3
20 5 1
21 6 3
22 7 3
23 8 2
24 9 2
25 10 1
26 11 1
27 12 328 13 3
29 14 2
30 15 2
31 16 2/
32
33 U(I) arc capacities
34 /1 7
35 2 5
36 3 5
37 4 10
38 5 4
39 6 8
40 7 4
41 8 10
42 9 5
43 10 3
44 11 5
45 12 9
46 13 10
47 14 9
48 15 6
49 16 4/
50
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51 R(I) arc reliabilities
52 /1 1
53 2 .95
54 3 1
55 4 1
56 5 .98
57 6 .98
58 7 1
59 8 .7
60 9 .8
61 10 1
62 11 1
63 12 1
64 13 1
65 14 .98
66 15 .95
67 16 .95 / ;
68
69 TABLE D(P,K) path-user assignment matrix
70 USER1 USER2 USER3
71 PATH1 1
72 PATH2 1
73 PATH3 1
74 PATH4 1
7c5 PATH 1
76 PATH6 1
77 PATH7 1
78 PATH8 1
79 PATH9
80 PATH10 1 ;
81
82 TABLE A(P,K,I) path-arc incidence matrix by user
83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
84 PATH1.USER1 1 1 1 1
85 PATH2.USER1 1 1 1 1
86 PATH3.USER1 1 1 1 1
87 PATH4.USER1 I 1 1 1
88 PATH5.USER2 1 1 1 1
89 PATH6.USER2 1 1
90 PATH7.USER2 1 1 1 1
91 PATH8.USER2 1 1 1
92 PATH9.USER3 1 1
93 PATH10.USER3 1 1;
94
95 PARAMETER EU(I) expected arc capacities
96
97 EU(I) = R(I) * U(I) ;
98
99 PARAMETER CP(P,K) path costs;

100
101 CP(P,K) = SUM(I, D(P,K) * A(P,K,I) * C(I)) ;
102
103 VARIABLES
104 F(P,K) amount of flow on path p from user k
105 Z total costs (in equivalent miles)
106
107 POSITIVE VARIABLE F ;
108
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109 EQUATIONS
110 COST define objective function
ill VOLUME(K) satisfy O-D pair volume demands
112 CAPACITY(I) satisfy arc capacity constraints
113
114 COST Z =E= SUM(K, SUM(P, CP(P,K) * D(P,K) * F(P,K))) ;
115
116 VOLUME(K) SUM(-, D(P,K) * F(P,K)) =E= B(K) ;
117
118 CAPACITY(I) SUM((K,P), A(P,K,I) F(P,K)) =L= EU(I)
119
120 MODEL NK3LB /ALL/
121
122 SOLVE NK3LB USING LP MINIMIZING Z
123
124 DISPLAY F.L;
125
126 PARAMETER FARC(I) arc flows;
127
128 FARC(I) = SUM(P, SUM(K, A(P,K,I) F.L(P,K)));
129
130 DISPLAY FARC;
131
132 PARAMETER ROUTE(I,K) routing matrix;

134 ROUTE(I,K) = (SUM(P, A(P,K,I) * F.L(P,K))) / B(K);
135
136 DISPLAY ROUTE;
137
138 PARAMETER BI(I,K) arc-user assignment matrix;
139
140 B5I(I.K) = 1$(SUM(P, A(P,K,I) * F.L(P,K)) GT 0);
141
142 DISPLAY BI;
143
144 PARAMETER PROP(I) proportion of flow on arc i for users k of i;
115
146 PROP(I) = FARC(I) / (SUM(K$(BI(I,K) NE 0), BI(I,K) *B(K)));
147
148 DISPLAY PROP;
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B.2 GA MS Model for Upper Bound Network Flow

GAMS 2.20 VAX VMS 3-JAN-1994
THREE-USER COMMUNICATION NETWORK (UPPER BOUND)

3
4 SETS
5 I arcs /1 * 16/
6 K O-D pairs / USER1 USER3/
7 P paths / PATHI * PATH10/;
8
9 PARAMETERS

10 B(K) O-D pair volumes
1.1 USER1 8
12 USER2 6
13 USER3 5 /
14
15 C(I) arc costs
16 /1 2
17 2 1
18 3 2
19 4 3
20 5 1
21 6 3
22 7 3
23 8 2
24 9 2
25 in 1
26 11 1
27 12 3
28 13 3
29 n
30 15 2
31 16 2 /
32
33 U(I) arc capacities
34 /1
35 2 5
36 3 5
37 4 10
38 5 4
39 6 8
40 7 4
41 8 10
42 9 5
43 10 3
44 11 5
45 12 9
46 13 10
47 14 9
48 15 6
49 16 4/
.JV

51 R(I) arc reliabilities
52 /1 1
53 2 .95
54 3 1
55 4 1
56 5 .98
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57 6 .98
58 7 1
59 8 .7
60 9 .8
61 10 1
62 11 1
63 12 1
64 13 1
65 14 .98
66 15 .95
67 16 .95 /
68
69 RP(P) path reliabilities
70 / PATHI .98
71 PATH2 .98
72 PATH3 .6517
73 PATH4 .6517
74 PATH5 .8
75 PATH6 .95
76 PATH7 .784
77 PATH8 .931
78 PATH9 .686
79 PATH10 .931 / ;
80
81 TABLE D(P,K) path-user assignment matrix
82 USERI USER2 USER3
83 PATHI 1
84 PATH2 1
85 PATH3 1
86 PATH4 1
87 PATH5 1
88 PATH6 1
89 PATH7 1
90 PATH8 1
91 PATH9
92 PATH10 1 ;
93
94 TABLE A(P,K,I) path-arc incidence matrix by user
95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
96 PATHI.USER1 1 1 1 1
97 PATH2.USERI 1 1 1 1
98 PATH3.USER1 1 1 1 1
99 PATH4.USER1 1 1 1 1

100 PATH5.USER2 1 1 1 1
101 PATH6.USER2 1 1
102 PATH7.USER2 1 1 1
103 PATH8 .USER2

104 PATH9.USER3
105 PATH10.USER3 1;
106
107 PARAMETER CP(P,K) path costs;
108
109 CP(P,K) = SUM(I, D(P,K) * A(P,K,I) * C(I)) ;
110
111 VARIABLES
112 F(P,K) amount of flow on path p from user k
113 Z total costs (in equivalent miles) ;
114
115 POSITIVE VARIABLE F ;
116
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117 EQUATIONS
118 COST define objective function
119 VOLUME(K) satisfy O-D pair volume demands
120 CAPACITY(I) satisfy arc capacity constraints ;
121
122 COST Z =E= SUM(K, SUM(P, CP(PK) - D(P,K) - F(P,K)))
123
124 VOLUME(K) SUM(P, RP(P) * D(P,K) * F(P,K)) =E= B(K) ;
125
126 CAPACITY(I) SUM((K,P), A(P,K,I) * F(P,K)) =L= U(I) ;
127
128 MODEL NK3UB /ALL/ ;
129
130 SOLVE NK3UB USING LP MINIMIZING Z
131
132 DISPLAY F.L;
133
134 PARAMETER FARC(I) arc flows;
135
136 FARC(I) = SUM(P, SUM(K, A(P,KI) *F.L(P,K)));
137
138 DISPLAY FARC;
139
140 PARAMETER BU(K) revised O-D demands;
141
142 BU(K) = SUM(P, F.L(P,K));
143
144 DISPLAY BU;
145
146 PARAMETER ROUTE(I,K) routing matrix;
147
148 ROUTE(I,K) = (SUM(P, A(P,K,I) * F.L(P,K)) / BU(KY;
149
150 DISPLAY ROUTE;
151
152 PARAMETER BI(I,K) arc-user assignment matrix;
153
154 BI(I,K) = 1$(SUM(P, A(P,K,I) * F.L(P,K)) GT 0);
155
156 DISPLAY BI;
157
158 PARAMETER PROP(I) proportion of flow on arc i for users k of i;
159
160 PROP(I) FARC(I) I (SUM(K$(BI(I,K) NE 0), BI(I,K) * BU(K)));
161
162 DISPLAY PROP;
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B.3 Optimal Flow Patterns

The optimal arc flow values for both the lower and upper bound networks in both

the "normal" and "compromise" scenarios are illustrated in Figures B.A and B.2. Note

that the thicker arcs in the "compromise" scenarios denote the "compromise" arcs.
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Figure B. 1 Lower Bound Network Flow Patterns
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Figure B.2 Upper Bound Network Flow Patterns
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Appendix C. Monitor Location Models

C.) GAMS Model for Lower Bound Monitor Placement

GAMS 2.20 VAX VMS 24-JAN-1994
THREE-USER COMMUNICATION NETWORK - LOCATION MODEL, N-SET (LOWER BOUND)

4 SETS
5 I arcs /1 * 16/
6 K O-D pairs / USER1 * USER3/
7 KP k' set /1, 2, 3, 4, 5/
8 PAIR(K,KP) k in k' / USER1.1, USER1.4, USER1.5,
9 USER2.2, USER2.4,

10 USER3.3, USER3.5 I
11 J weight index /1 * ii/ ;
12
13 PARAMETERS
14 C(I) arc costs
15 /1 2
16 2 1

30 16 2/
31
32 U(I) arc capacities
33 /1 7
34 2 5

48 16 4/
49
50 R(I) arc reliabilities
51 /1 1
52 2 .95

66 16 .95 /
67
68 FARC(I) arc flow values
69 / 1 3.25
70 2 4.75
71 3 2.08
72 4 5.33
73 5 3.92
74 6 4.18
75 7 3.92
76 8 4.75
77 9 3
78 10 3
79 11 5
80 12 6.82
81 13 4.18
82 14 8.82
83 15 5
84 163 /
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85
86 PROP(I) arc flow proportions
87 / 1 .406
88 2 .594
89 3 .347
90 4 .381
91 5 .653
92 6 .522
93 7 .653
94 8 .594
95 9 .5
96 10 .5
97 11 0
98 12 .487
99 13 .522

100 14 .678
101 15 1
102 16 .5
103
104 NSET(*) effecient solutions for varying weights ;
105
106 TABLE E(I,KP) arc-user coverage assignment matrix
107 1 2 3 4 5
108 1 1
109 2 1
110 3 1

4
112 5 1
113 6 1
114 7 1
115 8 1
116 9 1
117 10 1
118 11
119 12
120 13 1
121 14
122 15 1
123 16 1
124
125 PARAMETER WA(I) remaining arc capacities
126
127 WA(I) = U(I) - FARC(I)
128
129 PARAMETER W(I) arc consideration;
130
1 •1 W(I) = 1$I(WA(I) GT 0) ;
132
133 PARAMETER V(I) arc reliability to cost ratio;
134
135 V(I) = R(I) / C(I) ;
136
137 SCALAR M number of monitors;
138
139 M = 2;
140
141 SCALAR WEIGHT
142
143 WEIGHT = 0.0 ;
144
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145 VARIABLES
146 X(I,KP) binary monitor location decision variable
147 Y1 criterion function 1
148 Y2 criterion function 2
149 Y compromise function (Yl and Y2)
150
151 BINARY VARIABLE X ;
152
153 EQUATIONS
154 CF1 objective function (CF1 only)
155 CF2 objective function (CF2 only)
156 REDUND(KP) redundancy avoidance constraints
157 GOAL number of available monitors
158 COVER (K) minimum user coverage constraints ;
159
160 CF1 Y1- E= SUM(I, SUM(KP, E(I,KP)*W(I)*V(I)*X(I,KP))) ;
161
162 CF2 Y2 =E= SUM(I, SUM(KP, E(I,KP)*W(I)*PROP(I)*X(I,KP))) ;
163
164 REDUND(KP) .. SUM(I, E(I,KP)*X(I,KP)) =L= 1 ;
165
166 GOAL SUM(I, SUM(KP, E(I,KP)*X(I,KP))) =E= M ;
167
168 COVER(K) SUM(PAIR(K,KP), SUM(I, E(I,KP)*X(I,KP))) =G- 1 ;
169
170 MODEL OPTCFI /CF1, REDUND, GOAL, COVER/ ;
171 MODEL OPTCF2 /CF2, REDUND, GOAL, COVER/ ;
172
173 SOLVE OPTCF1 USING MIP MAXIMIZING Y1 ;
174 SOLVE OPTCF2 USING MIP MAXIMIZING Y2 ;
175
176 DISPLAY "CFI AT OPTIMUM", YI.L;
177 DISPLAY "CF2 AT OPTIMUM", Y2.L;
178
179 PARAMETER ALPHA(I) compromise coefficient ;
180
181 ALPHA(I) = W(I)*(((WEIGHT*V(I))/YI.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L))
182
183 EQUATION
184 CS compromise solution (CF1 and CF2)
185
186 CS .. Y =E= SUM(I, SUM(KP, E(I,KP)*ALPHA(I)*X(I,KP)));
187
188 MODEL COMPSOL /CS, REDUND, GOAL, COVER/ ;
189
1a SOLTVE COMPSOL TTQtM( MIP VTXTMT7T1TJ V

191
192 NSET('I') = Y.L
193
194 SCALAR SHORT percent shortfall from ideal solution
195
196 SHORT = (1 - Y.L) * 100 ;
197
198 DISPLAY "PERCENT SHORTFALL FOR WEIGHT =", WEIGHT, SHORT
199
200 DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L ;
201
202 WEIGHT = 0.1 ;
203
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204 PARAMETER ALPHA(I) compromise coefficient ;
205
206 ALPHA(I) - W(I)*(((WEIGHT*V(I))/Yl.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L)) ;

207
208 SOLVE COMPSOL USING MIP MAXIMIZING Y ;
209
210 NSET('2') = Y.L
211
212 SCALAR SHORT percent shortfall from ideal solution ;
213
214 SHORT = (1 - Y.L) * 100 ;
215
216 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;
217
218 DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L ;
219
220 WEIGHT = 0.2 ;
221
222 PARAMETER ALPHA(I) compromise coefficient ;
223
224 ALPHA(I) = W(I)*(((WEIGHT*V(I))/Yl.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L)) ;
225
226 SOLVE COMPSOL USING MIP MAXIMIZING Y ;
227
228 NSET('3') = Y.L
229
230 SCALAR SHORT percent shortfall from ideal solution ;
231
232 SHORT = (I - Y.L) * 100 ;
233
234 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;
235
236 DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L ;

364 WEIGHT = 1.0 ;
365
366 PARAMETER ALPHA(I) compromise coefficient ;
367
368 ALPHA(I) = W(I)*(((WEIGHT*V(I))/Y1.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L))
369
370 SOLVE COMPSOL USING MIP MAXIMIZING Y
371
372 NSET('11') = Y.L
373
374 SCALAR SHORT percent shortfall from ideal solution
375
376 SHORT = (1 - Y.L) * 100
377
378 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT
379
380 DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L ;
381
382 DISPLAY NSET ;
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C.2 GA MS Model for Upper Bound Monitor Placement

GAMS 2.20 VAX "IMS 24-JAN-1994
THREE-USER COMMUNICATION NETWORK - LOCATION MODEL, N-SET (UPPER BOUND)

4 SETS
5 I arcs /1 * 16/
6 K O-D pairs I USER1 * USER3/
7 KP k' set / 1, 2, 3, 4, 5 /
8 PAIR(K,KP) k in k' / USER1.1, USER1.4, USER1.5,
9 USER2.2, USER2.4,

i0 USER3.3, USER3.5 /
11 J weight index /1 * ii/ ;
12
13 PARAMETERS
14 CMI) arc costs
15 /1 2
16 2 1

30 16 2/
31
32 U(I) arc capacities
33 /1 7
34 2 5

48 16 4/
49
50 R(I) arc reliabilities
51 1/ 1
52 2 .95

66 16 .95/
67
68 FARC(I) arc flow values
69 /1 7
70 2 1.749
71 3 2.86
72 4 9.86
73 5 4
74 6 5.12
75 7 4
76 8 1.749
77 9 3
78 10 3
79 11 5
80 12 7.489
81 13 5.12
82 14 9
83 15 5.371
84 16 3.86 /
85
86 PROP(I) arc flow proportions
87 /1 .8
88 2 .2
89 3 .417
90 4 .632
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91 5 .583
92 6 .585
93 7 .583
94 8
95 9 .437
96 10 .437
97 11 0
98 12 .48
99 13 .585

100 14 .637
101 15 1
102 16 .563 /
103
104 NSET(*) effecient solutions for varying weights ;
105
106 TABLE E(I,KP) arc-user coverage assignment matrix
107 1 2 3 4 5
108 1 1
109 2 1
110 3 1
ill 4 1
112 5 1
113 6 1
114 7 1
115 8 1
116 9 1
117 10 1
I1a 11
119 12 1
120 13 1
121 14 1
122 15 1
123 16 1
124
125 PARAMETER WA(I) remaining arc capacities ;
126
127 WA(I) = U(I) - FARC(I) ;
128
129 PARAMETER W(I) arc consideration;
130
131 W(I) = 1$(WA(I) GT 0) ;
132
133 PARAMETER V(I) arc reliability to cost ratio;
134
135 V(I) = R(I) / C(I) ;
136
137 SCALALR M number of m tors;
138
139 M = 2;
140
141 SCALAR WEIGHT
142
143 WEIGHT = 0.0 ;
144
145 VARIABLES
146 X(I,KP) binary monitor location decision variable
147 Y1 criterion function 1
148 Y2 criterion function 2
149 Y compromise function (Y1 and Y2) ;
150
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151 BINARY VARIABLE X
152
153 EQUATIONS
154 CF1 objective function (CF1 only)
155 CF2 objective function (CF2 only)
156 REDUND(KP) redundancy avoidance constraints
157 GOAL number of available monitors
158 COVER (K) minimum user coverage constraints ;
159
160 CF. Y1 =E= SUM(I, SUM(KP, E(I,KP)*W(I)*V(I)*X(I,KP)))
161
162 CF2 .. Y2 =E= SUM(I, SUM(KP, E(I,KP)*W(I)*PROP(I)*X(I,KP))) ;
163
164 REDUND(KP) .. SUM(I, E(I,KP)*X(I,KP)) =L= I
165
166 GOAL SUM(I, SUM(KP, E(I,KP)*X(I,KP))) =E= M ;
167
168 COVER(K) SUM(PAIR(K,KP), SUM(I, E(I,KP)*X(I,KP))) =G= 1
169
170 MODEL OPTCFI /CF1, REDUND, GOAL, COVER/ ;
171 MODEL OPTCF2 /CF2, REDUND, GOAL, COVER/ ;
172
173 SOLVE OPTCFI USING MIP MAXIMIZING Y1
174 SOLVE OPTCF2 USING MIP MAXIMIZING Y2 p
175
176 DISPLAY "CF1 AT OPTIMUM", Yl.L;
17 DISPLAY "CF2 AT OPTIMyUM, Y2.L;
178
179 PARAMETER ALPHA(I) compromise coefficient ;
180
181 ALPHA(I) = W(I)*(((WEIGHT*V(I))/Y1.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L))
182
183 EQUATION
184 CS compromise solution (CF1 and CF2) ;
185
186 CS Y =E= SUM(I, SUM(KP, E(I,KP)*ALPHA(I)*X(I,KP)));
187
188 MODEL COMPSOL /CS, REDUND, GOAL, COVER/
189
190 SOLVE COMPSOL USING MIP MAXIMIZING Y ;
191
1q92 NSET('1') = Y.L
193
194 SCALAR SHORT percent shortfall from ideal solution
195
i96 SHORT 0'=D -Y.L) * Inn

197
198 DISPLAY "PERCENT SHORTFALL FOR WEIGHT =", WEIGHT, SHORT ;
199
200 DISPLAY "MONITOR LOCATION STRATEGY (UPPER BOUND)", X.L
201
202 WEIGHT = 0.1 ;
203
204 PARAMETER ALPHA(I) compromise coefficient ;
205
206 ALPHA(I) = W(I)*(((WEIGHT*V(I))/YI.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L))
207
208 SOLVE COMPSOL USING MIP MAXIMIZING Y
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209
210 NSET('2') = Y.L
211
212 SCALAR SHORT percent shortfall from ideal solution
213
214 SHORT = (I - Y.L) * 100 ;
215
216 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;
217
218 DISPLAY "MONITOR LOCATION STRATEGY (UPPER BOUND)", X.L ;

364 WEIGHT = 1.0 ;
365
366 PARAMETER ALPHA(I) compromise coefficient ;
367
368 ALPHA(I) = W(I)*(((WEIGHT*V(I))/YI.L) + (((1 -

WEIGHT)*PROP(I))/Y2.L)) ;
369
370 SOLVE COMPSOL USING MIP MAXIMIZING Y
371
372 NSET('lI') = Y.L
373
374 SCALAR SHORqT percent shortfall from ideal solution
375
376 SHORT - (1 - Y.L) * 100

378 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 -", WEIGHT, SHORT ;
379
380 DISPLAY "MONITOR LOCATION STRATEGY (UPPER BOUND)", X.L
381
382 DISPLAY NSET
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Appendix D. Algonthm Results for Straegy SI

D.] GAMS O-D Estimaion Model (Both Bounds)

GAMS 2.20 VAX VMS 26-JAN-1994
THREE-USER COMMUNICATION NETWORK - O-D ESTIMATION MODEL (LB & UB)

4 SETS
5 S selected arcs (monitors) /4, 12, 15/
6 K O-D pairs / USER1 * USER3/
7 B network bounds / L, U /
8 P norm exponents / pl, p2, pn / ;
9

10 PARAMETERS
11 BL(K) O-D pair external flow (lower bound)
12 / USER1 8
13 USER2 6
14 USER3 5 /
15
16 BU(K) O-D pair external flow (upper bound)
17 / USER1 8.749
18 USER2 6.86
19 USER3 5.371 I
20
21 FARCL(S) observed flow on selected arcs (LB)
22 / 4 5.33
23 12 6.82
24 15 5 /
25
26 FARCU(S) observed flow on selected arcs (UB)
27 / 4 9.86
28 12 7.489
29 15 5.371 /
- U
31 F(*,*,*) O-D estimate report ;
32
33 TABLE GL(S,K) routing matrix for selected arcs (LB)
34 USER1 USER2 USER3
35 4 .41 .35
36 12 .48 .50
37 15 1
38
39 TABLE GU(S,K) routing matrix for selected arcs (UB)
40 USERI USER2 USER3
41 4 .8 .42
42 12 .42 .56
43 15 1 ;
44
45 VARIABLES
46 FL(K) O-D demand estimates for pair k (LB)
47 FU(K) O-D demand estimates for pair k (UB)
48 DM(K) deviational measure (minus)
49 DP(K) deviational measure (plus)
50 D(K) sum of deviational measures
51 V variable used in p=infinity
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V I D=1 f'ivi,.44s'.

53 Y2 p=2 function
54 YN p=infinity function ;
55
56 POSITIVE VARIABLES FL, FU, DM, DP, D, V ;
57
58 EQUATIONS
59 Ri P=1 norm
60 R2 p=2 norm
61 RN p=infinity norm
62 DEV(K) sum of deviational variables
63 GOAL1 (K) constraint for p (inf)
64 GOAL2L(K) constraint for p (1 2 inf) LB
65 GOAL2U(K) constraint for p (1 2 inf) UB
66 ARCL (S) arc flow counts (LB)
67 ARCU(S) arc flow counts (UB) ;
68
69 Ri .. Y1 =E= SUM(K, (DM(K) + DP(K))) ;
70
71 R2 .. Y2 =E= SUM(K, (DM(K)**2 + 2*DM(K)*DP(K) + DP(K)**2)) ;
72
73 RN.. YN =E=V ;
74
75 GOAL1(K) .. V - DM(K) - DP(K) =G= 0 ;
76
77 GOAL=2L(K) .. FL(K) + DM(K) - DP(K) =E= BL(K) ;
78
79 GOAL2U(K) .. FU(K) + DM(K) - DP(K) =E= BU(K) ;
80
81 ARCL(S) .. SUM(K, GL(S,K) * FL(K)) =E= FARCL(S) ;
82
83 ARCU(S) .. SUM(K, GU(S,K) * FT(K)) =E= FARCU(S) ;
84
85 MODEL PILB /R1, GOAL2L, ARCL/ ;
86 SOLVE P1LB USING LP MINIMIZING Y1 ;
87 F(K,'L','pI') = FL.L(K) ;
88
89 MODEL P2LB /R2, GOAL2L, ARCL/ ;
90 SOLVE P2LB USING NLP MINIMIZING Y2 ;
91 F(K,'L','p2') = FL.L(K) ;
92
93 MODEL PNLB /RN, GOAL1, GOAL2L, ARCL/
94 SOLVE PNLB USING LP MINIMIZING YN
95q F(K,'L','pn') = FL.L(K)
96
97 MODEL PlUB /RI, GOAL2U, ARCU/ ;
98 SOLVE PlUB USING LP MINIMIZING Y1 ;
99 F(K,'Ul,'pl') = FU.L(K) ;

100
101 MODEL P2UB /R2, GOAL2U, ARCU/ ;
102 SOLVE P2UB USING NLP MINIMIZING -2

103 F(K,'U','p2') = FU.L(K)
104
105 MODEL PNUB /RN, GOAL1, GOAL2U, ARCU/ ;
106 SOLVE PNUB USING LP MINIMIZING YN
107 F(K,'U','pn') = FU.L(K)
108
109 DISPLAY 'O-D ESTIMATES', F;
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D.2 Strategy SI

Experiment #1, Strategy SI = (4, 12, 15)
- relaxed equality constraints for compromise estimates

ORiIN-- I

Bounds # of O-D Pairs O-D Index
i -L..2 t =3 k zl..t

O-D External Flows: 2a

Target: "Normal" Estimates: "Compromise" Estimates:

/ 8.749\ý /7.514 8,749 / C = 10.317 8.749\

b :6 6.86 t FN 6.427 6.8111 FC 6 6.8111

\5 5.371; ! 5 5.371/ 5 5.371/

Deviations:
k, FI D FN = C~ F c

Yk =bk,2- bk,l DNk Nk,2 k,1 Dck Ck,2 - FCk, 1

0.749 1.235\ /-1.568C

Y=0.86 D 0.384 DC 0.811

0.371 0.371 0O.371

Estimation Error, MSEest: MSE est = MSE e =0. 154

Compromise Metrics:

Individual Confidence Interval for E(Yk):
/ . F - - \

ELCLk Ybatk - 2. ,s2 Yhatký - MSE est!

EUCLk = Yhak 2 Yha - .NME est

i-0.335 / 0.749\ /1.833
ELCL= -0.266, Yhat= 0.616 EUCL= 1.4971

ý-0.266, 0.616! 1.9
3 1.497 /

D-3



Compromise Estimates:

ft 1.568\l So, only O-D Pair k = 1 is outside its respective confidence
DC= 0..811) interval. Conclude that User I is the

t0.3711 source of compromise.

Joint Confidence Interval for E(Y):

JLCL = Ybar- 2! '
t -4 est~

JUCL =Ybar+(2- MSE÷ )

_ N t

JLCL =-0.132 Ybar = 0.66 JUCL =1.452

Compromise Mean Estimate:

Dbar C =man(DC)

Dbar = -0.129 Here, however, can not conclude that a compromise has
occured.

Graph:

2 I II I 3

Yk
x 1.5

Yhatk

DNk

ELCLk

- 0.5

EUCLk

JLCL

0
JUCL

-o.5 I I I I I
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Xk
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D.3 Initial Compromise Metric (Target Data Only)

ORIGN•- I

Bounds (I = LB; 2 = UB) # of O-D Pairs O-D Index
i= L. 2 t:=3 k =I..t

Target O-D External Flows, M: b= 6 6.86
\5 5.3711

Deviations, Yk:
/ 0.749\

Yk: bk, 2 bk, I Y=\0.86

0.371

Regression Model:

Independent Variable, Xk: o 0

Xbar = mean(X) Xbar = 0.667

Ybar =mean(Y) Ybar =0.66

Regression Parameters:

~'E;Xk Xbar) Yk - baj

b, = Xk Xbar,2 b =0.067

k

b 0 =Ybar - b.Xbar b 0 =0.616

Fitted Line: 0.749

Yhatk =bo-bI.Xk Yhat= 0.616

0.616
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Analysis of Variance:

Sum of Squares: Mean Squares:

SSTO (yk- _ybar 2 SSTO =0.131

k

SSR :Z Yhatk- ybar\2 SSR = 0.012 MSR -SSR MSR=0.012

k

SSE -- (Yk- Yha) SSE--O.12 MS- SSE MSE =0.12
t- 2

k

Compromise Metrics (Target Data Only):

Individual Confidence Interval for E(Yk), where we scale the intervals by a factor of:

1 \2 1 /O.12\
SMSE.1 - Xbar) I"IS=Xk 2  s2 Yhat= 0.06s2•=~ ~ 0.0•.• •) o6/

k

LCLk= Yhatk - 2 s. 2yha.k UC.. = Yhat. -t- 2. 1 s2 yh

' 0.057 10.749', 1.441
=0.127 Yhat- 0.616 UCL= 1.105

o0.127: ,0.616, 1.i105

Joint Confidence Interval for E(1), where we scale the intervals by a factor of 2

JLCL =Ybar- 2. IMSE JUCL = Ybar •- 2. /MSE
x t 4 t

JLCL = 0.261 Ybar = 0.66 JUCL = 1.059
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Graph:
1.5II
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-1 0 1 2

Xk
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Appendix E. Experiment #1 Results

E. I Strategy S2

Experiment # 1, Strategy S2 = (4, 5, 14)

ORIGIN-= I

Bounds # of O-D Pairs O-D Index
i =1..2 t =3 k =I..t

O-D External Flows: p = l, 2and inf

Target: "Normal" Estimates: "Compromise" Estimates:

/8 8.749 /7.852 8.704 /10.291 8.704t

b = 6 6.86 FN =6.031 6.897 FC =(6.031 6.897

\5 5.371/ \5.051 5.344/ 3.88 5.344/

Deviations:
-, , D N F -=~Fc -Fc

Yk =b k2 bk, DNk FNk,2 FNk, I DCk Ck,2 k,1

/0.749' /0.852\ !-1.587\

Y 0.86 D N 0866 ~ DCf 0.8661
,0.371!/! 0.293 /1.464.1

Z'D N- ~k)
Estimation Error, MSEest: MSE est k MSE est = 0.006k

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk = Yhat - (2. s2 - (MSE2 ets2 atMSE
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L=/.OI71 0.7491 1.515

ELCL=00.052 Yhat 0.616 EUCL= 1.179,

k0.0521 0.616 1.179

Compromise Estimates:

So, both O-D Pairs k = 1 and 3 are outside their respective

= confidence intervals. Conclude that either one or both are

1.464 / contributing sources of compromise.

Joint Confidence Interval for E(F):

JLCL = - ,--, FCL = + 2. +%ieK.t + t MS~

JLCL - 0. 186 Ybar - 0.66 JUCL - 1. 134

Compromise Mean Estimate:

DbarC mean:DC

Dbar = 0.248 Here, however, can not conclude that a compromise has
occured.
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E.2 Straegy S3

Experiment#l, Strategy S3 =(4, 5, 15)

ORIGJN = I

Bounds # of O-D Pairs O-D Index

i-=i..2 t =3 k =L..t

O-D External Flows: p = 1, 2 and inf

Target: "Normal" Estimates: "Compromise" Estimates:

s 8.749/ /7.852 8.704 (10.291 8.704\

b 16 6.861 FN :6.031 6.897j FC 16.031 6.8971

\5 5.371/ 5 5.371! 5 5.371/

Deviations:
-k =kb N FN -F Fc F - FCk

Yk bk,2 bk, DNk k,2 Nk,Il DCk=FCk,2 kI

I0.749\ 1 0.852 /-1.587\

Y= 1 0.86 DN- 0.866( DC= 0.866(

0.371 0.371 0.371

,'DN y,,2

Estimation Error, MSEes: MSE est - k MSE est "0.004
t

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLkzha 2 .sy MS I

k = i% S h% .MSE esti

EUCLk = Yhatk - !2 s 2 Yhatk - MSE
-• !2..:S2Yhat. .MSEest

1-0.002 0.749 1.
ELCL =0.067 Yhat -0.616 EUCL= 1.1641

0.067\ 0.616/ 1.164,
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Compromise Estimates:

)j-1.587'\ So, only O-D Pair k = I is outside its respective confidence

DC =0.- interval. Conclude that User 1 is the contributing source of
0.371 / compromise.

Joint Confidence Interval for E(Y):

JLCL =Ybar-'.' i2 MSE /MSE
t st

jMSE E
JUCL =Ybar, ;2- 4IMSS.. . ÷ M S estj

JLCL =0.201 Ybar = 0.66 JUCL =1.119

Compromise Mean Estimate:

DbarC zmean(DC'

Dbc = -0. 117 Here, can also conclude that a compromise has
occured.
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E.3 Srategy S4

Experimentt#1, Strategy S4 =(4, 14, 15)

ORIGIN m1

Bounds # of O-D Pairs O-D Index

i =1..2 t =3 k =L..t

O-D External Flows:

Target: "Normal" Estimates: "Compromise" Estimates:

18 8.749\ /7.958 8 .64) /7.958 8.64
b = j6 6.86) FN =)5.906 708FC =)8.763 7.018)

\5 5.371; \ 5 5.371/ 5 5.371/

Deviations:
k,2- kI DN =FN - FN DCk =FC FCz• bk -bk Dk k,2 k,I k ,k2 Ok,1

/0. 749' 0.682' 0.682'
Y 0.86 DN~ 11112) D C =-1.745~

0.371 / 0.371/ 0.371/

= k

Estimation Error, MSEest: MSE est =MSE est 0.023

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk =Yhatk-2 - 2. yhak -;MS t

EUCI. = Yhatkm - 2. ,s2 yhatk - ý., MSE

/-0.093 / 0.749 /1,591

ELCL= =-0.024, Yhat =0.616 EUCL= 1.255

1-0.024; 0.616 j1.255
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Compromise Estimates:

0.682 So, only O-D Pair k = 2 is outside its respective confidence

DC = -1.745 interval. Conclude that User 2 is the contributing source of

/ 0 .3 7 1  compromise.

Joint Confidence Interval for E(Y):

JLCL = Ybar - (2. FhE.MSE

4 -- jMEE

JUCL =Ybar+ 12.f . \SE /

JLCL =-0.11 Ybar =0.66 JUCL =.21

Compromise Mean Estimate:

Dbarc : mean'D C

DbarC =-0.231 Here, can also conclude that a compromise has
occured.
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E. 4 Strategy SS

Experiment #1, Strategy S5 = (5, 14, 15)

ORIGIN=-=

Bounds # of O-D Pairs O-D Index
i =1L..2 t =3 k = L..t

O-D External Flows: 12 and inf

Target: "Normal" Estimates: "Compromise" Estimates:

8 8.749\ 17.958 8.64 7958 8,64

b = 6 6.86 FN = 6.03I 6.897 FC =6.031 6.897

, 5.371/ 1 5 717

Deviations:
rkbk,-bk, DN =FN -FN Dc Fc -Fc

k.2 - k k,2 Nk, I Dck k,2 k,I

I/o749\oi
Y~0.746' 110 .6 8 2 \ 1b0.682'

6 D= o.866 DC- 0.866.

0.371 0.371! 0.371~

Estimation Error, MSEest: MSE est MSE est 0.002
t

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk Yhatk - i2.2 s2 yha .MSE est

EUCLk Yhak- 2 s2 ha MSE 'at

(0.019, 0.749 1 1.479

ELCL - 0.088 Yhat = 0.616 EUCL = 1.143

\0.088 0.616 1. 143 1
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Compromise Estimates:

(0.682 So, no O-D Pairs are outside their respective confidence

Dc 0.866 interval. Conclude that no compromise exists.

0.371)

Joint Confidence Interval for E(Y):

JLCL = Thar - (2* iMSE V,~i est)

JUCL = [IMSE + MSE}

JLCL = 0.222 Ybar = 0.66 JUCL =1.098

Compromise Mean Estimate:

DbarC =mean(DC,

Dbar c = 0.64 Here, can not conclude that a compromise has
occured.
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Appendix F. Experiment #2 Results

F. I Strategy S6

Experiment #2, Strategy S6 = (4, 12)
- relaxed equality constraints for compromise estimates (LB only)

ORGIN=-1

Bounds # of O-D Pairs O-D Index
i =1..2 t =3 k =l..t

O-D External Flows:
p = 1, 2and inf

Target: "Normal" Estimates: "Compromise" Estimates:

/8 8.749\ /7.514 8.749\ /10.317 8.749\
b 66.86/ F 647 6. 811) FC = 6 68111S5.371 FN 5 5.3711 5 5.371

Deviations:
Yk:k,2- k, l DNk =FN FN D Fc F

Nb -b k k,2- k, I Dk :FCk,2- Ck,I

0. 749' 1.235" li-1.568i

Y 0.86 DN= 0.384D Dc 0.8111
0.371 / 0.371 0.3711

1, N k- Y '

Estimation Error, MSEest: MSE est k MSE est= 0.154

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk z Yhat1, 2. s2 Yh - FMSE e) EUCL-k Ybaý S2.yh MSest)
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/-0.335\ 0.749\ 1.833\
ELCL= - O.2661 YhatI0.616~ EUCL-I1.497~

/-o.266/ 0.m616 1.4971/

Compromise Estimates:

(-1.568\ So, only O-D Pair k = I is outside its respective confidence
D C = | 0.811 interval. Conclude that User I is the source of

/ 0.371] compromise.

Joint Confidence Interval for E(Y):

JLCL =- Ybar- (2. ý +E M -E)
±MS MSEý1

JUCL:=Ybar± 2. MsSE

t N"/M es)

JLCL = -0.132 Ybar = 0.66 JUCL =1.452

Compromise Mean Estimate:

Db C man (D C';

Here, however, can not conclude that a compromise hasDbar c = -0. 1 29 o c r d
occured.
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F,2 Strategy S7

Experiment #2, Strategy S7 = (4, 15)

ORIGI-- I

p 1.. 3 lp-norm exponents (where 3 = infinity)
t= 3 # of O-D Pairs
k =..t O-D Index

O-D External Flows: "Normal" Estimates:

Target: Lower Bound Upper Bound

/8 8.749 7.878 7.929 7.934 8.723 8.729 8.732
b = 16 6.86 Fb 1 6 5.94 5.934J FubN =56.86 6.85 6.7431

5.371) 5 5 5 5.371 5.371 5.371/

"Compromise" Estimates:

S10.317 9.34 9.25 (8.723 8.729 8.732\

FIbc 6 7.144 7.25 Fubc = 6.86 6.85 6.8431

5 5 5.37 1 5.371 5.371/

Deviations:

Yk =bk,2- bk,I DN =FubN - FIbN DC =Fubc - FlbCk,p k,p k,p kp k,p k,p

1 0.749\ )0.845 0.8 0.*798 1-ý1.594 -0.611 -0.518\
Y)0.86 DN 0.86 0.91 0.909) Dc C 0.86 -0.294 -0.407)

0.371/ i0.371 0.371 0.371 0.371 0.371 0.371,

Estimation Error, MSEest: ZDNp- Y) 2

MSEest k MSEest= 0.0017

Compromise Metrics: t 0.0016

Individual Confidence Interval for E(Yk):

ELCLkp = (Yhatk- 12 s2. MSE est EUCLkP = Yhatk+ (2-s2- -MSE et)
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o0.002 0.016 0.017 o , 0.749\ / 1.496 1.482 1.481
ELCL= 0.071 0.085 0.086 Yhat= 0.616 1EUCL-- .16 1.146 1.145

0.071 0.085 0.0861 0.616! 1.16 1.146 1.145!

Compromise Estimates:

p=I: DLCL DUCkCJI
0.0 1.594 146 User 1 is the source of

.071 [.8j [.16 compromise
[0.EO 031 1W1

2: ELCLk 2  C EUCL 2

S [ ofoUsers I and/or 2 are the sources
10091 -02 1.4 of compromise

p inf- ELCL,, DCk,3  EUCL 3
007 3 0.518 1.481 Users I and/or 2 are the sources

0086 40 14 of compromise

Joint Confidence Interval for E(Y):

_ - . / _ .
]LCL =Ybar- -y 2-MSE- " S JUCL =Ybar 2 MSE

A.! t 'i p! P e

0.205 1./ .115,

JLCL =0.219 Ybar=0.66 JUCL=j 1 .101
0.221, 1.099'

Compromise Mean Estimates:

E /-O 121\
k Here, can conclude for each level of pDbar C Dbar C = 1-0.178 that a compromise has occured.

P t \-O.1tsi
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F. 3 Strategy S8

Experiment #2, Strategy S8 = (12, 15)

ORIGIN - I

p= I.. 3 lp-norm exponents (where 3 infinity)

t =3 # of O-D Pairs

k =]..t O-D Index

O-D External Flows: "Normal" Estimates:

Target: Lower Bound Upper Bound

/8 8.749 8 7.98 7.98\ (8.749 8.726 8.721\

b = 16 6.86 Fib N = 5.96 5.979 5. 9 8  Fub N =6.811 6.829 6.832

\5 5.371, 5 5 55.371 5.371 5.371

"Compromise" Estimates:

8 7.98 7.98 /8.*749 8.726 8.721'

Fib C 1 5.96 5.979 5.98 Fub C = 6.811 6.829 6.832

t 5 5 5 s5.371 5.371 5.371/

Deviations:

Yk =bk. 2 - bk. I D Nk,p = Fub Nkp - Fib Nk,p F k,p- Fib Ck,p

0/.749 /0.749 0.746 0.741 0.749 0.746 0.741\

D=O 8 I0.85 0.8521DC= 01851 0.85 0.852

.3711 0.371 0.371 0.371 /0.371 0.371 0.371

Estimation Error, MSEest: E N \2 •2-
k~ 2.7-10-5

MSEst k MSE est= 3.6333-106-
P IL 4.2667-16-5

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk,p = Yhatk- 2. is2 Yhatk1<MSE t EUCL,-,p fhatk' 2. s 2 ybay ,s)
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0.052 0.051 0.051 10.749• 1.446 1.447 4744

1LL 0. 121 02 0.2 Yht 0.616 EUCL= 1.11 1.111 1.111:

0.121 0.12 0.12 /0.616/ 1.11 1.111 1.111l

Compromise Estimates:

p=l: ELCLI DCk,I C

5 0No compromise

p 2 : ELCL 2  Dck,2 EUCk 2

0746 1.447 No compromise
SS3 1.111

p infr ELCik 3  D C k3  EUCh13
00No compromise

Joint Confidence Interval for E(Y):

/ MSE 1--/-MS
JLCL Ybar 2 -MSE JUCL Ybar I2" MSE

J,2 • 1 MSEM esSPtp

1 0.256 '1.064

JLCL = 0.255 Ybar=0.66 JUCL-={1.065\

0.254 1.066 !

Compromise Mean Estimates:

E D C k'p /0.657'

Dbar C k Dbar C= 0.656 No compromise
P t\0.655)
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F.4 Strategy S9

Experiment #2, Strategy S9 = (4, 5)

ORIGIN =-1

Bounds # of O-D Pairs O-D Index

i :I..2 t =3 k-=L.t

-DExternaFlows:p = 1, 2 and inf

Target: "Normal" Estimates: "Compromise" Estimates:

'8879 7.852 8.704ý (10.291 8.704

b =6 6.86 ý F N = 6.031 6.897i F -C 6.031 6.897

\5 5.371/1 5 5.371/ 5 5.371/

Deviations:

Yk :bk,2- bk, I DNkF, F N k,2 -FI DC C,2 Fckl

0.749 1-0.852\-i

Y D0N D 0.866 D 0.866

\0.371, 0.371 (0.371

(D Nk- Yk) 2

Estimation Error, MSEest: MSE est k MSE est =0.004
t

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk Yhatk- (2-s2 Yhak - MSE t EUCk - (2- Yhk MSE

i-0-002. (0.749 / 1.5
ELCL= 0.067 Yhat =0616 EUCL= 1.164

\0.067 1 0.6161 1.164;
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Compromise Estimates:

/i.5s87\ So, only O-D Pair k = 1 is outside its respective confidence
DC = 0.866) interval. Conclude that User I is the source of

0.371/ compromise.

Joint Confidence Interval for E(Y):

JLCL Ybar- (2- -- , F }

JUCL =Ybar + 2- MSE

JLCL =0.201 Ybar =0.66 JUCL =1.119

Compromise Mean Estimate:

Dbar C =mean(DC)

Dbr = -0.117 Here, can conclude that a compromise has
occured.
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F5 StrategySlO

Experiment #2, Strategy S10 = (4, 14)

ORIOIN = I

p= L1. 3 lp-norm exponents (where 3 = infinity)
t = 3 # of O-D Pairs

k= I.. t O-D Index

O-D External Flows: "Normal" Estimates:

Target: Lower Bound Upper Bound

Fi N (88797.958 7.932 7.9341\ N 8.724 8.726 8.717'
b =(6 6.86 FibN 15.906 5.937 5.934 Fub N |6.86 6.856 6.873

ý55.371 /5 5.013 5 .012! 5.336 5.3 5.39Sl , ,.O.339/

"Compromise" Estimates:

/ 8 9.218 9.25\ /8.724 8.726 8.717\

FibC 18.714 7.287 7.25 Fubc = 6.86 6.856 6.873

14.98 4.395 4.38/ 5.336 5.335 5.339/

Deviations:

Yk bk, 2 - bk, I DN =Fub - FibNkp DCk.p =Fub - Fib kp

0.7491 .0.766 0.794 0.783\ /0.724 -0.492 -0.5331

=0.86 DN= 0.954 0.919 0.939 DC -- 1.854 -0.431 -0.377

0.371 ~ 0.336 0.322 0.327 / 0.356 0.94 0.959/

Estimation Error, MSEM,: y,'D ,p- g\.2 .0035

MSE est MEest--002
0.0031

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLkP = Yhat - 2. s 2 Yhat( et EUCLrp: Yhatk + 2-. ys +MSE
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f-0.001 0.006 0 o002 o.04.7 / 1.499 1492 1.4%
ELCL= 0.068 0.075 0.071 Yh== 0.616 EUCL= 1.163 1.156 116

06 0.0750016 1.163 1.156 1.16

Compromise Estimates:

p= 1: ELCkI DC kI EUCLI

0. 1k 0.[24 1499 User 2 is the source of
-185 ' [.163 compromise

p =2: ELCLk, 2 D k,2 UC 2

.0492 492 Users 1 and/or 2 are the sources
Ii75 0.431 1.156 of compromise

pinf. ELCk D c k3  EUCIk

00 0.533 Users 1 and/or 2 are the sources
-0.37J ] of compromise •

Joint Confidence Interval for E(Y):

JLCL :Ybar- '2. ,E + IMSEst JUCL :Ybar - ý2 iMSE MsE

0.202

JLCL= 0.209 Ybar=0.66 JUCL=/ 1.111
0.205 \1.115

Compromise Mean Estimates:

XD C' !-o.21-1
Dbar b C 0 0.06 k Only p = 2 and infinity detectp t t 0.016 potential compromise
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F.6 Strategy S I)

Experiment #2, Strategy SII = (5, 14)

ORIGIN I

p 1.. 3 Ip-nonn exponents (where 3 = infinity)

t = 3 # of O-D Pairs

k =1..t O-D Index

O-D External Flows: "Normal" Estimates:

Target: Lower Bound Upper Bound

(8 8.749) ( 7.992 S8.749 8.733 8.728\

\5 5.371 4.98 4.984 4.98 / 5.325 5.332 5.3341

"Compromise" Estimates:

/ 8 7.992 8 /8.749 8.733 8.7281
F '8 =631601.31 FubIC = 6.897 6.897 6.897

4.98 4.984 4.98 ;5.325 5.332 5.334/

Deviations:
Yk bk,2- bk,1 DN =FubN - FibN Dc Fub C - FibC

b -bk,p Nk,p k,p Dk,p k, Ck,p

I0.749\ r0.749 0.741 0.728 i0.749 0.741 0.728\

y- 0.86 DNj 0.866 0.866 0.866 D 0.866 0.866 0.866

0.371 0. 3ý C3. 0.345 0.348 0.354/

Estimation Error, MSEest: D~ _ k 2,,37 3 I I
E .\ ,p Yi !2.3733.10-

MSE est MSE est= 2.0967"10-
p t L 2.5533.10-4

Compromise Metrics: L

Individual Confidence Interval for E(Yk):

E2.'s2y.- IMSE EUCL, Y /ha k--(2 2 ek,p '~est /,sya ,,M etPELCLk ~ yYE- 2 ;s2 t F- 1t I
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10.042 0.043 0.041 /0.749\ 1.456 1.455 1.457
ELCLH 0. 111 0. 112 0.1111 Yha~t- 0.616) EUCL- 1. 12 1.119 1.12

\O.iii 0.112 0.111/ 0.6161 1.12 1.119 1.12

Compromise Estimates:

p= 1: ELC DC EUC,

0 k.4 0.7 1.45 No compromise

p=2: ELCLk, 2  DCk, EUCI-k,2
M M M No compromise

p =inf- ELCLk, D rk. EUCL1  3k,3 k,3

01.457 No compromise

Joint Confidence Interval for E(Y):

JLCL ~Ybar - 2 .___ -MSE JUC'L Ybar2.-~ ;MSE /S
P IMSESE :

"t eStp; P N- estt

(0.2451 1.075

ILCL= 0.246 Ybar-0.66 JUCL= 1.074!

0.245 1.075

Compromise Mean Estimates:

ED Ck,P 0.653 N

Dbar _ Dbar C 0.652 No compromise
D Cp 0.64911
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F. 7 Strateg S12

Experiment #2, Strategy S12 = (5, 15)

ORIGIN -1

Bounds # of O-D Pairs O-D Index

i =1. 2 t =3 k = .. t

O-D External Flows: p=1,2andinf

Target: "Normal" Estimates: "Compromise" Estimates:

=/8 8. 749, / 8 8.749\ /8 8.749 ý
b =6 6.86 F - FC =ý6.O31 6.897,

.75.371 ,5 5.371

Deviations:
k =bk,2 -bk, I DNk =FN -FN F c

k,2 k, l k Ck,2 - k,I

0o.749 /0.749\ /'0.749\

Y 0.86 DN = 0.866 DC= 0. 866

0.371/ \0.371 0.371!

Estimation Error, MSEest: MSE est k MSE est =.2-10-5

Compromise Metrics:

Individual Confidence Interval for E(Yk):

ELCLk = Yhat - 2 s2Yhak - ,,"MSE est)

EUCLk = Yhak - 2. s2 yhak -. iMSE

/0.054 ,, 0.749\ /1.444

ELCL= 0.123 Yhat-- 0.616, EUCL= 1.1081

0.123 0.616F 1. 108
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Compromise Estimates:

/0.749

DC. 0.866 No compromise.
0.371

Joint Confidence Interval for E(Y):

JLCL = Ybar - (2./ ý t -MSEest

JUCL = Ybar+( 2 .FMýSE +MSE est)

JLCL =0.257 Ybar =0.66 JUCL =1.063

Compromise Mean Estimate:

Dbarc -mean(DC'

Dbar c = 0. 662 Here, can not conclude that a compromise has
occured.
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F.8 StrategyS13

Experiment #2, Strategy S13 = (14, 15)

ORIGIN- I

Bounds # of O-D Pairs O-D Index
i=1..2 t=3 k =L..t

O-D External Flows: p=12ad if

Target: 'Normal" Estimates: "Compromise" Estimates:

/8 ~. 49\ 7.958 8.64 (7.958 8.64
b =66 6.869 FN = 6.86 FC 6= 6.86

\5 5.371! 5 5.3711 5 5.371!

Deviations:

Yk bk, 2 - bk, l DNk =FNk,2- FNk, DCk F Ck,2 - Fc k,

/o0.749 o 0.682 /0.682
Y .6jD N 0.6ýDC 0.86

0.371 /0.371 / 0.371 i

EZ(DN - k 2
Estimation Error, MSE~t: MSE t k MSE t = 0.001

Compromise Metrics: 
t

Individual Confidence Interval for E(Yk):

ELCLk = Yhak- s2 Yhat ,MSEst)

EUCL, =Yhatk - 2S 2 Yha ,- -MSE eti

/0.019, 0.749\ 1.479

ELCL =i 0.088 Yhat= 0.616 EUCL =1.143

\0.088, 0.616,' 1.143
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Compromise Estimates:

/0.682
D C 0.86 No compromise.

0.371

Joint Confidence Interval for E(Y):

JLCL =•Y•- r -ý2 t -MSE s)

JUCL =Ybar +(2.j MSE± MSE est)

JLCL = 0.222 Ybar = 0.66 JUCL =1.098

Compromise Mean Estimate:

DbaC =mean(DC':

Dbar c = 0.638 Here, can not conclude that a compromise has
occured.
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