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Preface
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A bstract

This research proposes an analytical approach for assessing flow disturbance, or
"compromise," based on limited sampling of arc flow information in multi-commodity,
or multiple origin-destination (O-D), networks with failing arcs. There were three
objectives established for this research. The first objective was to bound the expected
flow, given the arcs fail with certain probabilities, which was accomplished by reviewing
current approaches for single-commodity networks and extending the results to the multi-
commodity case. The second objective was to determine the best placement of flow
monitors to obtain the most accurate estimates of O-D pair volumes. This was
accomplished using a multi-criteria approach for defining and evaluatiné all possible
monitor placement strategies satisfying monitor availability. The O-D pair volumes were
estimated using the /,-norm metric for varied levels of p. The final objective was to
define a compromise metric providing confident assessments on the occurrence of
"compromise.”" This was accomplished using simple regression techniques to generate
confidence intervals around the expected flow for each O-D pair. The approach proposed

in this research is provided as an initial look into “"compromise" assessment based on

limited network information.
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ASSESSING THE VULNERABILITY OF
MULTI-COMMODITY NETWORKS
WITH FAILING COMPONENTS

I Introduction

This chapter begins with a brief background on the study of vulnerability of
communication networks. Next, the research problem and objectives are stated, followed
by the assumptions which are carried throughout the study. Also, the scope of the
research is discussed, both for the current study as well as for potential follow-on efforts.

Finally, a brief outline of the different sections of this study is presented.

1.1  Background

Considerable research over the past several decades has been accomplished in the
ﬁeid of communication network design where the objective is the efficient design of
network structures maximizing transmission throughput at minimal cost {1, 8, 16, 37].
The level of research in this field does not appear to be dwindling given the increasing
complexity of global communication systems and the achieved efficiencies in large
network solution algorithms.

The efficiency of a communication network design can be assessed using various
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measures (e.g. throughput, cost, transmission delay, reliability, and vulnerability) [22, 25,
35]). Focusing on vulnerability measurement, researchers have generally defined
vulnerability as either the effort needed to disconnect a network [3, 6, 21] or "the effort
required to disrupt the maximum amount of traffic of the network by disconnecting a
minimum number of links" [19]. In essence, research has focused on developing efficient
analytical and simulation models to pin-point the weakest part (or "Achilles Heel") of a
network. Obvious beneficiaries of this research include communication carriers and the
military community who have used the results to better design functional, reliable, and
survivable communication networks. An important observation is that the research has
been primarily geared toward assisting designers of communication networks.
Vulnerability measurement of a communication network from a user perspective
appears somewhat less developed. The user perspective, as perceived for this study, is
interested in assessing the vulnerability of its transmissions within an operational
communication network. A potentially useful measure is the vulnerability of
communication transmissions to unexpected disruptions (e.g. unexpected rerouting or
tampering) [13]. Whereas the designer focuses on identifying and improving the weakest
link(s), the user (who must assume a more passive role given the network configuration
already includes the weak links) must focus on identifying transmission disruptions.
Given the apparent lack of a precedent in the literature, the following definition of
vulnerability is used throughout this study: vulnerability is a measure of risk of the
susceptibility of communication traffic (or flow), between a specified origin and

destination, to disruptions over and beyond "expected" disruptions due to carrier
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management of traffic. Any observed disruptions exceeding "expected" bounds define a

compromised network flow configuration.

1.2 Research Problem

Generally stated, the problem is one of determining if a user can assess the
vulnerability of its communications to disruptions. The approach is to pla limited
number of costly monitors at specific points within a network to monitor con.  ..ication
flow patterns, and based on sample measures of flow deviations (i.e. between expected
and observed flows) assess the vulnerability of the user's communications [13]. The
problem itself is twofold:

(1) separate the "unexpected” disturbance (i.e. the disturbance we want to detect)
from the existing, or built-in, disturbance due to normal operations; and

(2) determine the placement of monitors such that the sampled information
provides the most accurate representation of the network flow pattern.

The problem is further complicated in that network components (i.e. nodes and
links) are not totally reliable and will fail randomly, and multiple users within the same

network are competing for common assets which may lead to congestion and rerouting.

1.3 Research Objectives.
The following objectives are identified to examine and assess the feasibility of the

above stated problem:

Objective #1: Establish a steady-state flow through a multi-commodity

1-3




14

communication network with failing components that minimizes carrier costs and
satisfies user throughput demands. This steady-state system represents the
expected flow pattern in an uncompromised scenario.

Objective #2: Determine monitor placement strategies that maximize the
likelihood that the origin-destination (O-D) demands estimated from partial
sampling of network components accurately represent the actual O-D demands in
the original network.

Objective #3: Define a metric for determining if a flow disturbance, or
"compromise,” has occured, and evaluate the compromise assessment for varying

O-D estimation perspectives.

A ssumptions

The following assumptions are carried throughout this study:

» The basic network configuration is a multi-path network with multiple O-D
pairs (or commodities) representing the users of the system.

o The network structure assumes a circuit-switched design rather than a packet-
switched design; in other words, once a route is established it remains fixed or
dedicated.

e The routing algorithm that determines the path(s) taken by each O-D pair is a
simple minimum path algorithm (e.g. minimum distance).

» The flow control algorithm that limits traffic on arcs to avoid excessive

congestion is a function of constant arc capacities.
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. Flow disturbance, or "compromise,” is exhibited as an increase in flow
along a particular O-D pair's path(s) [13].

* Network components are either in a state of operation or failure with known
probabilities (given that nodes can be modeled as arcs, the problem is further

simplified by assuming all nodes are 100% reliable).

1.5  Scope of Research

1.5.1 Current Study. This study is partitioned into four distinct problems: first,
measure the expected flow pattern in a multi-commodity network subject to random arc
failures; second, determine the optimal location of flow monitors within the network
subject to conflicting objectives; third, measure the estimated O-D demands based on a
sampling or subset of arc flow observations; and fourth, define a measurement tool to
enable probabilistic assessments of flow "compromise." These problems can be solved
either analytically or by simulation. This study uses an analytical approach to solving
these problems using mathematical programming techniques. The zdvantages of this
approach are that an analytical solution can yield as useful a result as a more corsplicated
simulation, especially under the simplified assumptions of this study, and the feasibility
of the approach can be readily assessable from this analytic result.

The network structure itself represents a circuit-switched design rather than a
packet-switched design as assumed earlier. A circuit-switched network reduces a
significant amount of complexity by establishing virtual routes (fixed routes) and is the

more common network structure used by carriers for voice communication. A packet-
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switched network introduces a great deal more varability since transmission routing is

dynamic and is designed primarily for data communication.

15.2 Follow-on Studies. Evidently, the scope of the current study is at best
limited from a practical perspective given the simplifying assumptions. Its purpose,
nevertheless, is crucial for determining the overall feasibility of the stated approach.
Assuming the results of this study are favorable, the scope of the follow-on research can
be readily expanded to encompass the realities and complexities of real systems.

The next logical step is perhaps to either develop a more complex analytical model
or develop a discrete:event simulation model of a realistic communication network, based
on either a circuit-switched or packet-switched design. This model can be progressively
enhanced to incorporate (1) larger sized networks, (2) variable arc capacities as a function
of time, (3) continuous arc reliability functions (to mode! the more realistic case of partial
versus total failure), (4) preferential route assignments (based on some message priority
heurnistic), and (5) improved network performance measures based on (i) average traffic
loads every hour (rather than the limiting overall expected value used in this study), or

(11) each individual call (or entity) accessing the system.

1.6  Summary

This chapter presented an overview of the focus of this study. It included a brief
discussion on past studies of vulnerability measurement, a suggested interpretation of the
term vulnerability as used in this study, the problem statement, and the objectives of the

study. Also included were the assumptions which mainly served to simplify the problem
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so it could be handled using an analytical solution approach. Finally, the scope of the
research was presented for both the current study and for potential follow-on efforts.

Chapter II, Literature Review, presents a comprehensive review of the literature
as it regards the measurement of expected flow in multi-commodity networks with failing
arcs, the location of flow monitors based on potentially conflicting objectives, and O-D
demand estimation based on limited sampling of network flows.

Chapter III, Model Formulation, describes the different models developed to meet
the objectives stated in this chapter and presents an overall solution algorithm.

Chapter IV, Compromise Measurement, describes the compromise metric used to
assess flow disturbance.

Chapter V, Case Study, introduces the case network and applies the overall
solution algorithm to a set of possible monitor location strategies. This chapter also
evaluates the performance of these strategies in assessing compromise.

Chapter VI, Conclusions and Recommendations, provides a summary of the
approach and its conclusions, and recommends appropriate extensions for follow-on

efforts.
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II.  Literature Review

This chapter presents a review of the literature applicable to the estimation of flow
in stochastic networks and the assessment of compromise using multiple-criteria decision
making (MCDM) principles. First, we present notation along with a basic review of
network flow models. Next, we extend this review to networks with failing components
and present existing estimation methods. The next section provides an overview of
MCDM principles and demonstrates how they apply to monitor location problems.
Finally, we review current methods for estimating O-D demands from partial network

information.
2.1  Minimal Cost Network Flow Representation

2.1.1 Network Parameters. Let G(N, A) be a directed graph, or network, defined
by asetof nodes N, {i=1,2,.. ., m}, and aset of arcs 4 = {(i, j), (k, D), . . ., (s, N)}.
The network consists of m distinct nodes and » directed arcs collectively referred to as
network components. With each node i in G is associated an external flow parameter b,
which is positive, negative or zero depending on whether node i is, respectively, a source
(supply), sink (demand), or intermediate node. With each arc(i, j), directed from node i
to node j, is associated both a flow capacity parameter, u,, which constrains the maximum
feasible flow along arc(i, ]) and a unit flow cost parameter, c,.

In a telecommunication network the nodes may represent users and switching
centers within the network and the arcs may represent communication facilities such as
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access lines and trunks interconnecting the switching centers [33: 3). The external flow
parameter b may represent the total number of simultaneous calls, or flow units, input to
the system from a specific user node. The arc capacities may represent the maximum
number of simultaneous calls handled by each communication facility and expressed in
the same unit measurement as the external flow. Finally, the arc cost parameter may
represent various criteria. For instance, the cost function may be expressed as delay in
traversing an arc, as arc distance (e.g. miles), or as a communication facility usage
charge [35: 362]. Since it was assumed in the previous chapter that the flow routing
algorithm was based on the shortest path, arc costs will be expressed as distance

measures.

2.1.2 Network Flow Variables. The objective in a minimum cost network flow
problem (MCNFP) is to determine the optimal value of flow variables that satisfy both
the flow conservation and arc capacity constraints at minimal cost [4: 420]. The flow
variables can be expressed as either arc or path flow variables. The choice of modeling
either flow variable dictates the form of the incidence matrix H used to represent the
network structure. If; we use the arc flow convention we must represent the network in
a m x n node-arc incidence matrix where each element h, of H is defined as +1 if arc i
is directed af node k, -1 if arc i is directed from node k, and 0 otherwise. By constrast,
if we use the path flow convention we must represent the network as a n x p arc-path
incidence matrix where p represents the number of possible paths connecting the source

and sink nodes, and where each element A, of H is defined as +1 if arc i lies on path j,
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{/ =1,... p}, and O otherwise.

To assist in deciding which convention to use we make use of the assumption
stated in Chapter I that the system modeled 1s a voice network. In most cases, the
manner in which communication facilities, or arcs, are shared among users in ordinary
telephone calls is determined by the circuit switching technique. This technique
establishes a dedicated path through the network connecting the source (origin) node and
sink (destination) node for the entire duration of the call [33: 2-3; 35: 95-97]. This

process is one reason why the arc-path formulation for the MCNFP is used.

2.1.3 Network Flow Model In its simplest from the MCNFP is formulated as a
single-commodity flow model since only one type of flow is required between one origin
node and one destination node, or one origin-destination (O-D) pair. In many situations,
however, more elaborate flow models are required to capture the complexities of practical
networks. Examples include flowing multiple commodities, or flow types, along common
arcs, and modeling multiple origin and/or muitiple destination nodes. A comprehensive
review of multi-commodity, nonsimultaneous, and multiterminal network flow models is
presented in [25: 315-317]. The class of multi-commodity network flow models is of
particular interest in this research for it allows communication between many distinct O-D
pairs to occur simultaneously throughout the network.

The general deterministic minimum cost multi-commodity network flow

(MCMCNF) problem formulated on path flow variables is presented in Figure 2.1.




]

Figure 2.1. Deterministic MCMCNF Model
Objective Function
Minimize
k
z-3% ¥ "pf:
keK pept
subject to
Y f=b*  Vkek
pePt
Y Y Khsu  Vijed
kek ’GP.
j: 20 V keK , peP*
where A = set of directed arcs in the network

K = set of distinct O-D pairs (or commodities)
P = set of paths connecting O-D pair k
b = total flow input to the network by O-D pair k
¢ = path cost equal to the sum of all arc costs lying on

path p € P
S} = path flow on the p™ path of the set of candidate

paths P
h/* = 1if arc(i, j) lies on path p € P*; 0 otherwise
u, = flow capacity of arc(i, j)
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The objective function is similar to that of the MCNF problem (single-commodity)
except for the subset of paths which must be considered for each O-D pair. The first
constraint represents the set of flow conservation constraints ensuring the sum of the path
flow variables for each O-D pair equals the flow volume input to the network by the O-D
pair. The second constraint represents the set of arc capacity constraints ensuring the sum
of the path flow variables for all O-D pairs sharing a specific arc does not exceed the

arc's capacity.

2.1.4 Solution Algorithms. Unlike single-commodity network flow problems, the
capacitated MCMCI\fF problem does not have a completely special structure allowing it
to be solved efficiently using the network simplex method. It is characterized by its set
of "nice" constraints, represented by the flow conservation constraints partitioned into
block angular and :etwork structures, and "general” or "complicating” constraints,
represented by the arc capacity constraints. Problems with this structure can be solved
using the Dantzig-Wolfe decomposition algorithm [4: 320-349].

MCMCNF problems in the node-arc incidence matrix formulation can be solved
fairly efficiently using commercial software packages such as SAS Netflow, which uses
the Dantzig-Wolfe decomposition techniques, however, problems of this form which
model specific O-D pairs can yield very large linear programs resulting in potential
computational difficulties [15: 671]. Farvolden, et al [15], suggest the arc-path
formulation based on the observation that not all paths need be enumerated since a

smaller subset of paths will dominate the majority.




2.2  Network Models With Failing Components

2.2.1. Component Reliability. As described earlier, network components are
represented by nodes and arcs, which in this research are assumed to be in either a
complete state of operation or failure with probability r and (1 - 7) respectively [1: 1080,
37]. A network with this characteristic is sometimes referred to as a stochastic binary
system [3: 154; 34: 101]. For simplicity, and without loss of generality, we assume the
nodes are perfectly reliable. As demonstrated in [37: 10-11] a node subject to random
failure can be modeled as two nodes connected by a "dummy arc.”

It is further assumed that the arc failures are independent of each other [3, 34, 37]
yielding, for each path p € P* connecting a specific O-D pair k, a path survival probability
RP" represented by the product of the individual arc survival probabilities connected in
series from origin to destination [8, 33: 43}

R=1I1

e,

2.2.2 Expected Minimum Cost Network Flow. Determining the exact flow
through a network subject to random component failures, whether it be a minimum cost
or muximum flow, single- or multiple-commodity problem, “is classified as NP-hard
which simply means that the computational effort grows exponentially with the number
of stochastic components” [37]. Yim [37] describes the computational effort required to

compute the exact value of the expected maximum flow through a small, single-
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commodity network, which can be generalized for the MCMCNF problem. This example
clearly illustrates the computational complexity inherent to networks of interesting size.
The expected value of the MCMCNF problem formulated on path flow variables

is presented in Figure 2.2 [28: 766, 34: 8].

2.2.3 Solution Approaches. In this section we present a few approaches to
solving for the exact value of flow through a network. The form of the objective function
and network is not necessarily pertinent to this discussion.

Shier [34: 101-117] proposes an approximation to the exact value for a binary
system which "involves generating a relatively small number of [failure] states that
encompass a relatively large proportion of the total probability." The method is one of
"generating the [failure] states of a system in order of nonincreasing probability" such that
a "maximum coverage of the state space (in terms of probability) [is] obtained Afor a
specified number of generated states." For example, in a network consisting of 25 arcs
with equal survival probabilities at 0.90, Shier's method reduces the failure-state space to
be considered from 2% = 33,554,432 states to a mere 15,100 states (or 0.045 percent) to
achieve a specified coverage probability of 0.90. His results suggest that the proportion
of states needed to be evaluated significantly decreases as arc survivability rates increase;
for a communication network, it is common that arc survivability rates tend to unity [28,

34].




Figure 2.2. Expected Value of MCMCNF

Objective Function

E(MCMCNP) = Y Z(s)P(s)

S€S

where § = set representing all failure states s, {s =1, .., 2"},

where any given state represents a combination of

operating and failed arcs

= number of arcs having survival probability strictly

less than 1 (n’ < n)

Z(s) = objective function value of the deterministic
MCMCF problem when in state s

P(s) = probability of failure state s and is obtained as
follows:

I n I a-n

Ghed?  pea]

where A° = subset of arcs in A operating in state s
A7 = subset of arcs in A failed in state s




Based on the last observation that arc reliabilities tend to unity in practical
communication networks, a second approach assumes that it is highly unlikely that more
than one arc fail simultaneously, assuming they fail independently of each other [25].
Failure-state enumeration for this method is reduced to simply evaluating the n' + 1
combinations of failure states with at most one failed arc.

A third approach was implemented by Bailey [2] who actually simulated a single-
commodity, maximum flow network to obtain the expected value of the maximum flow.
Currently, an efficient solution algorithm for determining the exact value of the expected

flow, short of simulation, does not appear forthcoming [37: 13).

2.2.4 Bounds For The MCMCNF Problem. Prior research of binary systems has
mainly focused on the development of lower and upper bounds for the single-commodity,
maximum flow case (8, 28, 37, 38]. Aneja and Nair [1] did extend their work to
encompass multi-commodity networks, but the focus was to develop an algorithm to
compute the expected maximum flow. The common purpose of this prior research has
been the development of relatively tight bounds on the expected maximum flow through
a network irresepective of any demand constraints. Qur research, besides assuming a
minimum cost objective which can easily be transformed to a maximization problem, adds
complexity by requiring all demands between O-D pairs be satisfied. Essentially, the
model resembles a multi-commodity transportation problem; however, the addition of arc
reliabilities requires us to resort to bounding the expected minimum cost flow in the

network. Proposed bounds are presented in Chapter III.
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2.3 Multiple Criteria Decision Making

Most realistic decision problems can best be modeled as multiple criteria decisions
[14, 30, 39]. An important characteristic of these models is that the criteria, or stated
objectives of the decision maker (DM), are often in conflict. Given this conflict, it is
usually not possible to obtain a single optimal solution such that all criteria are
simultaneously optimized. More realistically, a compromise solution must be arrived at
which satisfies the DM's revealed preference structure. This preference structure can be
either stated up-front in the form of goals and solved independently of the DM, such as
goal programming, or it can be applied interactively where the DM can influence the:
direction of the solution algorithm to obtain the best solution [39].

These approaches have been used to solve a variety of multi-criteria decision
problems, the most prominent relevant to this course of study being facility location. The

next sections will illustrate the multi-criteria location problem in greater depth.

2.3.1 Multi-Criteria Location Problems. Location problems, generally referred to
as facility location problems, "concern the location of facilities to serve clients
economically” [26: 7). The problem is essentially one of determining the optimal
placcmaznt of facilities such that the cost of placing a facility at a specific site is
minimized while client demand for facility service is satisfied [26]. The decision variable
denoting facility location is modeled as a binary variable x, = 1 if a facility is located at
site #j (or in this context, arc (i, j), and x, = 0 otherwise. The demand variable, which is

not considered in our approach, is generally modeled as a non-negative, continuous variable.
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Examples of single-criteria locational problems are numerous. A recent study [5],
for example, focused on optimally locating "discretionary service facilities" (e.g. automatic
teller machines and gasoline service stations) so as to maximize the amount of intercepted
flow, or consumers. However, the extent of the research for locational decisions
involving multiple criteria appears somewhat less developed. According to some
researchers [29, 30] facility location problems are inherently multi-criteria problems where
a typical set of conflicting criteria would include cost (minimize) and service (maximize).

The general multi-criteria problem can be expressed mathematically as follows [29,
39]:

maximize f(x), i=1...q
subject to g(x)<0, j=1...m
where x € X and X represents the decision space, f(x) represents the criterion functions
and g(x) the constraints. Assuming the criterion functions are conflicting in nature, it
may be difficult, if not impossible, to obtain a single optimal solution to all criteria. In
this case, we search for the best possible solution, also referred to as efficient solutions
based on the Pareto preference concept of "more is better”, for each criterion function.
By definition, a decision x° is a Pareto optimal or efficient solution for the set of criteria

/, if there exists no x € X such that f(x) > f,(x°) for all i [29: 84; 39: 22].

2.3.2 Complexity of the 0-1 Multi-Criteria Problem. The difficulty in solving the
above problem when expressed in the context of a location problem is twofold: (1) given

the decision variables are binary 0-1 variables, as the number of possible sites (or arcs)
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increases, the complexity of the branch-and-bound enumeration algorithm grows
exponentially [S5: 203; 26: 114]; and (2) given that every feasible solution to the binary
problem is an extreme point [26: 457], "using parametric analysis of the convex
combination problem [is] of little use in the search for all efficient solutions" [29: 84].

The first difficulty indicates that this class of problems is considered NP-hard and,
as such, can be very difficult to solve for medium to large problems (or networks). The
fact that the number of possible solutions grows exponentially as problem size grows
linearly is a well-known characteristic of the binary problem and many solution
approaches have been proposed including implicit enumeration and cutting plane
algorithms [24: 41-55, 81-86; 26: 456-464].

The second difficulty is inherent to the multi-criteria binary problem. In the
general linear case, where the decision variables are continuous, we can apply Geoffrion's
results [18] to determine the complete set of properly efficient solutions (i.e. set of
efficient solutions minus the subset of improperly efficient solutions which allow
unbounded tradeoffs [39: 29]) by parametric analysis of the following problem with
respect to A:

maximize X, A, f(x)
subjectto xe X, A0
Ross and Soland [30: 313] note that the set of efficient and properly efficient solutions
are identical when either the solution set is finite or the criteria functions are linear and
the constraint set X is a linear polytope. For this research, then, we can generalize the

case to simply the set of efficient solutions.
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Continuing the discussion for the continuous variable case, parametric analysis of
the above problem implies that the efficient solutions can be obtained by maximizing
various convex combinations of the criterion functions. However, for the binary variable
case, the decision space is discrete and the convexity assumption no longer applies [29).
Therefore, to determine the set of efficient solutions for the binary multi-criteria problem

other solution approaches must be investigated.

2.3.3 Solution Approaches. Current solution approaches for the deterministic,
multi-criteria problem are classified as methods involving value functions, efficient
solution sets, and interactive algorithms [30: 308]. We introduce new notation in the
following discussion where Y represents the outcome space, y = f(x) represents the vector
of g criterion functions introduced earlier, and y' represents the outcome for decision, or

alternative, 1.

2.3.3.1 Value Functions. The use of value functions to solve the
multi-criteria location problem assumes prior knowledge of the DM's underlying
preference structure. A DM's value function, v(y), is defined such that the DM prefers
y' to y? if and only if v(y') > v(y?) [30: 312; 39: 96]. The optimal solution is obtained
from the following problem [30: 312]:
maximize v(f(x))

subjectto x € X

The difficulty with this approach is determining the value function v. Its
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construction is usually based on interviews with the DM and may require repeated

sessions to ensure a consistent model is developed [39: 122].

2.3.3.2 Efficient Frontier. The efficient frontier is defined as the
set of efficient solutions. Unlike the value function approach, the analyst needs little
information regarding the DM's preference structure to determine the efficient frontier
[30: 313]. In this case, it may be possible for the DM to determine the optimal solution
simply by choosing one from the set presented to him.

The difficulty with this approach, as discussed earlier, is the discreteness of the
feasible set. Rasmussen [29] presents a comparative study of solution methods used to
establish a complete, or even partial, set of efficient solutions for the binary, multi-criteria
problem. Yu [39] presents another set of solution methods using compromise
programming to obtain the set of compromise, or efficient, solutions. This latter approach

is implemented in this research and fully presented in Chapter III.

2.3.3.3 Interactive Algorithms. Interactive algorithms, unlike the

prior two approaches, involve the DM and analyst working together in breaking down the

solution space iteratively incorporating the DM's preferences. Ross and Soland [30: 313-

314) warn that although this type of approach can usually lead to a quicker solution, some

of the existing algorithms "will not, in practice, yield a final choice which is an efficient
solution.”

The obvious difficulty with this approach is having the luxury of a DM who will

interact with the analyst. An interactive approach was not considered for this research,
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therefore a description of algorithms will not be presented. Refer to [12, 14, 29: 84-92;
30: 317-318; 39: 325-333] for more information on interactive algorithms as applied to

multi-criteria problems.

2.4  Onigin-Destination Matrix Estimation

A typical problem which occurs frequently in urban planning is the estimation of
origin-destination (O-D) matrices based on limited information regarding the particular
transportation networks under consideration [10, 11, 17, 32]. Proposed O-D estimation
methods applied to transportation networks are extended in this research to simplified
communication networks given the inherent similarities in network structures and
parameters.

An O-D demand was defined earlier as the parameter b* representing the total
flow, or external flow, contributed to the network by O-D pair k. The O-D matrix, D, is
defined as the matrix representing the proportion of flow b* connecting O-D pair k on
specific arcs [32: 441] and is referred to in later chapters as a routing matrix. The
purpose of the estimation process, then, is to obtain an accurate estimate of the target
demands b for all O-D pairs, denoted as the vector F, using as little information as
possible from the underlying network [10: 1; 11: 27].

For the networks considered in this research, the only information available to the
analyst is flow totals on particular arcs, namely those arcs where flow monitors are
located. Some studies [10, 11] have considered introducing additional available

information into the estimation process, such as trip distribution and "turning movement"
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information, to increase estimation accuracy without increasing the need for more flow
sampling; although the results appear favorable, this additional information is not
assumed known in this research.

The O-D estimation problem can be represented mathematically as the set of linear
equations [10: 2]:

DF=V

where D is an n” x ¢ routing matrix, where n” is the number of arcs sampled (n” < n) and
t is the number of distinct O-D pairs. The entries of D, denoted as d,*, represent the
proportion of external flow b* routed along arc (i, /). Since the networks considered can
assume multi-path assignments for each O-D pair, the entries d,' can take any value
between 0 and 1. In addition, F is a ¢ x 1 vector representing the estimated demands, or
estimated external flows, for all O-D pairs where each element of the vector is denoted
as F*. Finally, V is a n” x 1 vector representing the observed flow totals on the sampled
arcs.

A survey of optimization methods for obtaining the estimated O-D matrix is
presented in [10, 11, 32]. The procedure, in general, is the inverse of obtaining the
minimum cost network flow. In other words, given V, which is usually the variable in
traditional network flow problems, the objective is to determine the estimated O-D
demands, F, which is usually a given parameter in network problems. The concept of
matrix inversion is the basis for the following optimization methods: Generalized Inverse,

Entropy Maximization, and L,-Norm Minimization.

2-16




2.4.1 Generalized Inverse Method. The generalized inverse method consists of
an objective formulated as a quadratic penalty function measuring the deviation between
the observed and estimated flow values on sampled arcs. The objective is minimized over
all sampled arcs resulting in a generalized least-squares estimator given by:

minimize X, (V, - X, d,* F* )’

A peculianity of this approach is presented in [10, 11] where the authors note that
the dot-product of F, given by Y, (F*)?, is minimized also, resulting in a set of equalized
O-D estimates, given by F* = X, F* / n", which does not necessarily minimize the least-

squares estimator.

2.4.2 Entropy Maximization Method. The entropy maximization method uses an
entropy penalty function which "has a theoretical justification based on principles of
information theory” [32: 449]. A simplified form of the entropy maximization
formulation is presented in Figure 2.3 [10: 4].

It is demonstrated in [23] that obtaining a satisfactory estimate of the O-D
demands is indeed difficult given the non-linearity and lack of strict concavity of the
objective function. In fact, a unique solution is not guaranteed. Further, it is shown that
for a given F,, = X F*, the entropy maximization method yields a set of equalized O-D

demand estimates identical to the generalized inverse method [10].
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Figure 2.3. Entropy Maximization Model

Objective Function

Maximize

Zoooy = — Y, F*QogF*-1)
k

subject to
Y d;Ft = v, V () ed
k

Ft >0 V kek
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2.4.3 L,-Norm Minimization Method. In [10] the authors propose an algorithm
to improve the O-D estimation process based on the class of /,-norm deviational measures.
Besides simplifying the computational aspect of the problem, the use of /,-norms allows
the analyst to model deviations between target demands, b*, and estimated demands, F*,
incorporating limited information regarding the DM's preference structure [39: 66-71).
The /,-norm formulation is presented in Figure 2.4 [10: 6-7; 39: 69]. The function np),
I < p <0, is interpreted as a regret function using distance measure to denote the level
of regret using F* instead of b*. The parameter A, represents weight values used to assess
varying levels of importance to specific O-D pairs. In the general case all weights are
equal. Finally, the exponent p is used to define the DM's risk preference. When p=1,
the regret function (1) mini.mizes the sum of the absolute deviations. When p = 2, (2)
is the least-squares solution similar in function to the generalized inverse approach. When
P = 0, (), also known as the Tchebyschev norm, minimizes the maximum deviation.

Results identified in [10: 7-8, 20-21) using the I -norm metric appear to indicate

that as p tends to o, for a fixed F,, the solution tends to represent an equalized set of

O-D estimates similar to results obtained using the two previous methods. However, the
authors demonstrate that the /_-norm, specifically, "'tracks' the [target] O-D values instead

of simply equalizing :lie grand sum [F,,] -- which is a highly desirable property” [10: 8].
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Figure 2.4. L,-Norm Minimization Models

Objective Functions

for1 <p < oo
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k

subject to
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25  Summary

Communication networks, factoring in simplifying assumptions regarding network
parameters, can be adequately modeled as multi-commodity networks. Therefore,
determining the optimal flow through a network satisfying all commodity demands at
minimum cost can be solved using a deterministic, multi-commodity, minimum cost
network flow model. However, when arcs are subject to failure, we must resort to
obtaining the expected flow through the network. Since obtaining a solution to this
problem is computationally infeasible, we must develop bounds on the expected flow
representing a range of feasible flows capturing the exact flow.

Once flow patterns are determined for both bounds we can determine an optimal
placement of flow monitors by applying multi-criteria decision making principles to
location modeling. Formulating the location problem as a weighted compromise program
gives us flexibility to evaluate various location strategies with regards to the a;:curacy of
the O-D estimates obtained and the compromise assessment itself.

Finally, having selected various location strategies, we formulate the O-D
estimation model as a range of /,-norm functions factoring in both the sampled arc flows

and the DM's preference structure.
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III. Model Formulation

This chapter presents a description of the modeling approach and associated
mathematical programs. First, we summarize the problem and the objectives the overall
model is designed to achieve. The next three sections describe the models developed:
network flow bounds, monitor location strategy, and O-D demand estimation models.
Next, we present a comprehensive step-by-step procedure which incorporates the above

models. Finally, we review the software package used in this research.

3.1  Problem Summary

The problem is stated from a user perspective where a particular user of a
communication network is interested in determining if its communication transmissions
have been "compromised” by outside inﬂuences.. For this research, a "compromise"
scenario is exhibited as an increase in flow along specific paths and modeled by
increasing a particular O-D pair's external flow. The user has the option of placing a
limited number of flow sampling monitors on arcs within the network with the purpose
of obtaining arc flow information to estimate O-D pair external flow values. O-D
estimation is initially performed for a network under "normal" conditions where the
estimates are used to establish a compromise measure. Subsequent O-D estimates are
obtained from periodic flow sampling and compared to the compromise measure to

determine if a "compromise" condition exists.

The overall model is designed to satisfy three specific objectives where each
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objective is represented by a specific sub-model. These objectives are summarized below:
(1) Gtven that arcs have reliability rates associated with them, define a lower and
upper bound on the expected minimum cost flow through a network satisfying all
user demands.
(2) Develop a monitor location model and present a strategy maximizing the
likelihood that the O-D demands estimated from partial sampling of network
components accurately represent the target O-D demands in the actual network.
(3) Develop an O-D demand estimation model and a corresponding compromise

metric.

3.2  Minimum Cost Multi-Commodity Network Flow Models

3.2.1 Deterministic and Expected Network Flow Models. The first phase of
modeling this problem is formulating the basic network model upon which all future
assessments will be made. In its simplest form the network is totally deterministic where
all network components are perfectly reliable. A mathematical model for the perfectly
reliable network is presented in Chapter II.

In our problem the network is defined as a binary system [34] in the sense that
an individual arc(i, j) can either be up or down with probability 7, or (1 - r, )
respectively. As mentioned earlier, solving for the exact minimum cost flow for networks
of interesting size when reliability is introduced can be very difficult. This difficulty is

illustrated in [37] and a corresponding mathematical model for the expected minimum

cost flow is presented in Chapter II.




3.2.2 Bounds for the Expected Network Flow. Although obtaining an exact value
for the expected flow may be computationally infeasible, it is possible to obtain lower and
upper bounds on the expected flow thus defining for each arc and O-D pair a range of
"expected” flow behavior. The bounds established for this research are partly based on
results forwarded by [1, 8] for the single-commodity maximum flow network. The
assertion for this research is that the bounds formulated below indeed capture the expected

flow. Some properties related to these bounds are presented in Appendix A.

3.2.2.1 Lower Bound Formulation. The lower bound on the expected flow
represents the best case from the user perspective where total cost is less than expected
cost. The objective function represents the total cost (or distance) of the system and is
formulated on arc-path decision variables fp". The network flow is subject to several
constraint sets. The first set of constraints requires all O-D pair demands to be satisfied
and is identical to the deterministic constraint set. The second set constrains maximum
arc utilization to the expected capacity of the arc, for all arcs. This aspect of the
formulation is adapted from [1, 8, 38] where expected capacity was used to establish an
upper bound on maximum flow in a single-commodity network. The final constraint set
establishes non-negativity requirements for the decision variables. The mathematical

model is presented in Figure 3.1.
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Figure 3.1. Lower Bound Network Flow Model
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where A = set of directed arcs in the network

K = set of distinct O-D pairs (or commodities)

P = set of paths connecting O-D pair &

b* = total flow input to the network by O-D pair k

cp" = path cost equal to sum of arc costs lying on path
peP

f,,‘t = path flow on the p* path of the set of candidate
paths P*

h'* =1 if arc(i, j) lies on path p € P, 0 otherwise
r; = reliability of arc(i, j)

u, = flow capacity of arc(i, j)

and where the expected arc capacity, e(u,), is equal to r; u;




3.2.2.2 Upper Bound Formulation. The upper bound on the expected flow
represents a worse case scenario from the user perspective where total cost is greater than
expected cost. The objective function represents the total cost (or distance) of the system
and is identical to the lower bound objective. The network flow is subject to several
constraint sets. The first set of constraints requires all O-D pair demands to be satisfied,
however, each path variable has an associated loss parameter if at least one arc in the path
is not totally reliable. This potential loss of flow may lead to an influx of slack external
flow at some or all O-D pair origin nodes. Consequently, system cost increases as slack
external flow increases. This aspect of the formulation is also adapted from [1, 8, 38]
where the loss parameter was used as an objective function coefficient to establish a lower
bound on maximum flow in a single-commodity network.
The second set constrains maximum arc utilization to the original capacity of the
arc, for all arcs, and is identical to the deterministic constraint set. The final constraint
set establishes non-negativity requirements for the decision variables. The mathematical

model is presented in Figure 3.2.

3.3 Multi-Criteria Monitor Location Model

Once the flow patterns are established for both bounds, the next step is to
determine which subset of arcs within the network will maximize the likelihood of
obtaining flow information from all users while deploying the least number of monitors.
This subproblem is modeled as a multi-criteria 0-1 integer program and solved using

compromise programming to obtain the best monitor location strategy common to both

3-5




Figure 3.2. Upper Bound Network Flow Model
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= set of directed arcs in the network

set of distinct O-D pairs (or commodities)

set of paths connecting O-D pair &k

= rehiability of path p for O-D pair k

= total flow input to the network by O-D pair k

= path cost equal to sum of arc costs lying on path
peP

= path flow on the p® path of the set of candidate
paths P*

= 1 if arc(i, j) lies on path p € P*; 0 otherwise

= flow capacity of arc(i, j)

and where path reliabilities are obtained as follows:

k
R, = I 7
Wes,
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network flow patterns (i.e. lower and upper bounds).

3.3.1 Critenia Functions. For this research we choose two criterion functions,
among many possible functions, to represent an arbitrary decision maker's (DM)
preferences regarding where the monitors should be placed in the network such that a
flow disturbance is intercepted. A basic assumption related to criterion selection is that
no prior knowledge is given regarding specific "hot spots" or particularly vulnerable arcs;
instead, we assume that a compromise flow is simply routed along the least costly path(s).
The two proposed criterion functions are described below and mathematically presented
in Figure 3.3: |

(1) Criterion Function 1 (CF1) - Maximize arc reliability to cost ratio,

v, = r,; / c,, where it is expected that the majority of the flow will traverse the arcs with

o
the greatest ratio. Note that v, increases for increasing r; or decreasing ¢, (¢, 2 1).

(2) Criterion Function 2 (CF2) - Maximize arc flow where we want to place
monitors on arcs with the maximum proportion of flow. CF2 may appear at first glance
to be equivalent to CF1, but it is possible for both critenia to conflict on certain arcs since
the second criteria, unlike the first criteria, is indirectly a function of arc capacities. In
other words, a highly reliable, low cost, and low capacity arc may lead to conflict
between both criteria.

The arc consideration parameter w, included in both criterion functions is

presented in Section 3.3.3.3, Location Model Simplifications.

3.3.2 Decision Space. The decision variable is modeled as a binary 0-1 variable,
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"v‘k" which takes on a value of 1 if a monitor is placed on arc(i, j) and 0 otherwise, and
where k’is an index denoting the possible combinations of users on arcs of the network.
This index will grow exponentially as the number of distinct O-D pairs increases, where

the maximum number of combinations contained within the set is

5y

by the binomial theorem [31: 10]. Fortunately, this number can be significantly reduced
by evaluating the network flow patterns and determining a routing table which identifies
the specific user combinations for each arc. Therefore, the maximum number of user
combinations is reduced to no greater than the number of active arcs (i.e. arcs carrying
flow) in the network.

The decision space X for this problem consists of four proposed constraints sets.
These sets are described below and mathematically presented in Figure 3.3:

(1) Redundancy Avoidance - This set of constraints limits the number of
monitors located on arcs where the user combinations are identical to no more than one
monitor. This is justified because locating two or more monitors covering the same
combination of users yields two or more redundant arc flow constraints in the O-D
estimation model (see section 3.4. O-D Demand Estimation Models).

(2) Monitor Goal - This is an equation which either constrains the decision to
fielding a maximum of M monitors or is relaxed to determine the maximum number of
monitors required.

(3) Minimum User Coverage - This set of constraints requires that every user,

3-8




Figure 3.3. Monitor Location Model For Each Network Bound

Criterion Functions
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or O-D pair, be accounted for by the monitor location strategy; in other words, we desire
flow information on all users of the network. This requirement may be relaxed if some
users are of no consequence in the assessment of compromise.

(4) Binary Requirement - The decision variable is constrained to either 0 or 1.
3.3.3 Solution Approach.

3.3.3.1 Compromise Programming. To solve this bi-criterion problem, we
use compromise programming techniques to obtain the best compromise solution to both
criterion functions. The objective function for the compromise program is commonly
refered to as a regret function r(y) where the objective is to minimize the "regret of using
y instead of obtaining the ideal point y*," which can be modeled as a distance measure
[39: 68]. Yu [39: 69] presents a class of /,-norms which can be used to model the DM's
preference structure with regards to the measurement of regret. Gershon [20: 245, 248]
presents a generalized version of the /,-norm introducing weights and normalization which
permit us to interpret and compare the compromise solutions obtained by a weighted
solution method [14: 164; 39] as weighted distances reflecting a percent shortfall from the
ideal solution. Using this method we can determine which monitor location strategy will
best achieve the DM's stated criteria. The compromise program for the monitor location
model is presented in Figure 3.4, where the regret function is generalized for 1 <p <

o0; however, in this research we only evaluate compromise solutions based on absolute

deviations ( p = 1).




Figure 3.4. Monitor Location Model Compromise Program

Compromise Function

I=1 y"

r0:0,p=1) = min 3 A{—" "‘]

subject to

where
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3.332 Anrc Selection Strategy. The above solution approach results in
possible monitor location strategies for each of the network bound configurations when
viewed separately. However, a realistic scenario requires a single overall placement of
monitors. In order to achieve this it is necessary to design a common monitor location
strategy to both network bounds. Two simple approaches come to mind for selecting a
common set of arcs: the first approach is to only place monitors on the common arcs
shared by both network bounds (i.e. the intersection of both sets), and the second
appro=ch is to place monitors on all the arcs selected in both bounds (i.e. the union of
both sets). The first approach is advantageous in that fewer arcs are likely to be selected,
which reduces the cost of placing monitors, however, it is possible that arc selection in
both bounds yield individual strategies sufficiently diverse that when considered together
yield no arc selection strategy at all. On the other hand, the second approach may appear
more costly yet guarantee a sufficient number of monitors are placed to colleét the flow
information required for O-D estimation. Further, if cost is a consideration, the value M
used to obtain the compromise solutions for each bound can be incrementally decreased
and evaluated. Given this flexibility, the second approach is used in this research.

The algorithm for the monitor location problem is summarized below:

Step 1: Solve for the compromise solution by minimizing n(y; p) for the lower
bound network flow.

Step 2: Repeat Step 1 for the upper bound network flow.

Step 3: Define an overall monitor location strategy as the union of the sets

obtained in Steps 1 and 2.
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We can extend this arc selection strategy to the situation where a maximum
number of monitors, say M', can be fielded. For example, if no more than 3 monitors can
be fielded (M'= 3), then Steps 1 and 2 above are run where M = 3, noting that y,*

{/ =1, 2} is also obtained for M = 3 to ensure consistency. In Step 3 a common strategy
is defined where the number of selected arcs ranges from 3 (best case) to 6 (worse case).
If the best case is achieved then stop; otherwise, if the number of selected arcs is greater
than the maximum requirement then either eliminate the additional arcs based on some
ranking scheme or repeat Steps 1 and 2 for M = 2, noting that y,* is also obtained for
M =2 Step 3 results in a common strategy of 2 to 4 arcs where either a strategy is
selected or the process continues until the number of common arcs is less than or equal

to M’

3.3.3.3 Location Model Simph‘ﬁcéﬁons. The monitor location model
considered in this research can be simplified by introducing an arc consideration

coefficient, w,, and modifying the compromise program objective function in Figure 3.4.

First, the arc consideration parameter, w,, is defined as a 0-1 objective function

coefficient which assumes the value 1 if an arc (i, j) has remaining capacity after an

optimal flow is obtained, and the value 0 otherwise (i.e. if the arc is at full capacity).

The reason this parameter is included in the model is particular to the earlier definition
of "compromise"” or flow disturbance: an increase in flow along a specific path or subset
of paths connecting an O-D pair. If an arc is expected to be 100% utilized in a normal

situation, then introducing a compromise flow will aiot affect the status of this arc.
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Therefore, considering it for possible placement of a monitor is not prosuctive. On the
other hand, if an arc is under-utilized then compromise flow may or may not manifest
itself on this arc and, therefore, this arc should be considered for possible monitor
placement. The parameter w; is obtained by computing the following expression for each
arc in 4:

"a-EE"‘?f:

k€K pept

If the above expression is positive, or greater than a specified tolerance, then w, = 1 and
arc(i, j) is considered; else if the expression equals zero, then w; = 0.

The next two simplifications occur in the formulation of the compromise program
objective function n(y; A, p) for p = 1. First, the function r as stated represents the
percent shortfall (when multiplied by 100) from the ideal solution (y,*, y,*). As
illustrated in Figure 3.5 (a), we can simplify the model by optimizing the function 7/
which represents the percent coverage (when multiplied by 100) of the ideal, and where
r=1-r

Second, a single parameter g, for fixed weights A, is calculated for each arc,
which consolidates both criteria function coefficients and restates the objective function
in terms of a single variable, x,,"'. The parameter @, can also be evaluated as the function
a/M) for varying weights and is illustrated in Figure 3.5 (b). The revised monitor

location compromise model is presented in Figure 3.6.
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Figure 3.5 (a). Simplification Of Compromise Program Objective Function

Compromise Function Reformulation for p = 1 and A fixed:

] .
r=minZA b/
I-1 w

=)

1=l o \y,

g
r=1-max2).,;y-':
/]

=1

where the function to be optimized is 7

r o= d Y
=max ¥ A=
= \y
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Figure 3.5 (b). Simplification Of Compromise Program Objective Function
Coefficients

Expanding the bi-criteria function r':

'Y k'
PR AL Y Wil
r’ = max |A, LY ARMERE P W £
N ¥

»

AV l;f &
r/ = max Yow| ¥+ iy
L/ B4 Y2

we obtain the simplified function for variable A

ay(l) = wv(ilﬁ + MJ

Y; y;
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Figure 3.6. Revised Monitor Location Model Compromise Program

Compromise Function
/
r'»iA,p=1) = max ¥ av(l)x:
W]
subject to

xeX

A€EA

where X = decision space for monitor placement
A = decision space for criterion weighting
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3.4  Origin-Destination Demand Estimation Models

The final model is designed to estimate the O-D demands, or external flows, input
to the network by sampling flow information on the arcs where the monitors are fielded.
This estimation process is initially conducted for both network bounds assuming the flow
represents "normal” flow through the system. The O-D estimates are then used in
defining a compromise metric, or confidence interval for "normal" flow behavior,
presented in Chapter IV. This estimation process is repeated in subsequent time periods
to obtain new O-D estimates which are used to assess "compromise" by comparing the

new estimates to the established confidence interval.

3.4.1 L,-Norm Minimization Model. This subproblem is modeled using the class
of I -norm deviational measures presented in Chapter II. The general L, model where p
1s bounded by 1 and infinity, and where each O-D pair is weighted, is provided in Figure
3.7. For this research we only investigate the effects of estimating O-D demands for

p = 1, 2 and infinity.

3.4.2 Goal Programming Solution Approach. The general /-norm model is
operationalized as a goal program due to possible numerical problems when optimizing
absolute value functions using General Algebraic Modeling System (GAMS) software
(reference Section 3.6 for discussion of software) [7: 92]. The revised model is as
presented in {39: 84-89] where the absolute value functions are eliminated by introducing

non-negative deviational variables, dp* and dm*, for each O-D pair k. The goal program
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Figure 3.7. Generalized L,-Norm Minimization Model

Objective Functions

Minimize (for 1 < p < )

1
o) - [ 1o
k

Minimize (for p = 0)

subject to
where §
bk
d,.j"
F
V.

y

K=) = max |F*-p¥|
k

Y d;Ft-, V (€S
k

Ft20 220

set of arcs selected for monitor placement

target O-D demand for user &

proportion of user k flow on arc(i, j), obtained from
routing matrix

= estimated O-D demand for user k

observed flow on arc (i, j)
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using equal weights for all O-D pairs is represented in Figures 3.8 (a) and (b)

3.5  Solution Algorithm

This section presents an algorithm for solving the problem under consideration
which incorporates the models presented above. The algorithm first evaluates a network
under "normal” conditions to establish a monitor location strategy and develop a
compromise metric (presented in Chapter IV, Compromise Measurement) which defines
a threshold for "normal” O-D demand variation based on O-D estimates. The algorithm
then evaluates the same network under "compromise" conditions where revised O-D
estimates are compa;ed to previously established thresholds to assess compromise. The
algorithm is summarized below as a sequence of steps:

Step 1: Once the network parameters (i.e. O-D pair target demands, arc

reliabilities, capacities and costs, and possible path sets) are defined for the

"normal” scenario, solve for the optimal minimum expected cost for each

network bound which satisfies all O-D demands. Define a routing matrix

representing the proportion of user flow on each arc for both bounds.

Step 2: Using the arc flow values obtained in Step 1, solve for a common

monitor location strategy to both network bounds for specified M and fixed

weighting of criterion functions (reference arc selection algorithm in Section

3.33.2).

Step 3: Using the arc flow values for the specific arcs having monitors, obtain the

O-D demand estimates for p = 1, 2 and 0.
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Figure 3.8 (a) O-D Estimation Goal Programming Model (1 < p < )

Objective Function

Minimize

Kp) = Y (dm* + dp"y

k

subject to
Fk_,,dmk_dpk___bk Vk

Y d;Ft=v, V (€S
k

Ft 20 Vk
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Figure 3.8 (b) O-D Estimation Goal Programming Model ( p = %)

Objective Function

Minimize
=) = W

subject to
W-dm*-dp*20 Vk
F* +dm* - dp* = b* Vk

Y d;Ft=v, vV (i)€S
k

FfE >0 Vk
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Step 4: Based on the O-D estimates in Step 3, define the compromise metric for
each level of p (see Chapter IV).

Step S: Create a "compromise” scenario by introducing an increase in flow at an
arbitrary O-D pair and repeat Step 1 to obtain the revised arc flow values for each
network bound.

Step 6: Using the arc flow values for the specific arcs having monitors, obtain the

revised O-D demand estimates for p = 1, 2 and % as in Step 3.

Step 7: Compare results in Step 6 to the compromise metric defined in Step 4.

36 Software

The solution algorithm is programmed primarily using GAMS. GAMS is a
commercially available software package that provides a high-level language simplifying
the development and solution of large-scale and complex models. The development of
a model is performed independently of the solution algorithm, which allows for quick and
easy modifications. The solution is obtained through accompanying solvers such as
MINOS 5 (linear an_d non-linear programs) and ZOOM (mixed-integer programs) [7: 3,

105]. GAMS Version 2.20 is the VMS version used for this research.

3.7  Summary
This chapter reviewed the various mathematical models used in this research.
They include lower and upper bounds on the expected minimum cost network flow, a

compromise monitor location solution based on multiple criteria, and O-D estimates based
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on the class of L,-norm functions. Also presented was a step-by-step algorithm for
solving the problem of compromise assessment for a given network, where the
compromise metric itself is developed in the next chapter. Finally, the software tool used

for programming the various models was identified.
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V. Compromise Measurement

This chapter presents a modeling approach for developing a compromise metric
(Step 4 of the solution algorithm in Chapter III) used for assessing flow disturbance, or
"compromise.” The problem of compromise measurement is first presented followed by
a description of the modeling approach, which identifies the assumed regression model,
the different sources of potential variability, and the compromise metric itself. A final
section is included which presents an alternative method for assessing "compromise”

where the O-D sample size is small and the normality assumption may not hold.

4.1 The Measurement Problem

This aspect of the modeling approach is considered separately given the
importance of the measurement problem. The original problem assumes that
"compromise" occurs randomly from the user perspective and therefore the assessment of
"compromise” from only partial information of a network involves uncertainty. For this
reason we develop a compromise metric as a means of determining if a "compromise" has
occurred and locating the specific O-D pair contributing to the apparent flow increase.
This metric is defined in terms of confidence intervals to allow us to express our
assessment of "compromise” as a confidence statement. The intervals themselves are a
function of the expected variability due to "normal" network behavior (i.e. the expected
flow pattern under "normal" conditions) which we assume can be readily obtained.

The use of confidence intervals to bound O-D flows assumes the O-D flows are
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normally distributed. We use the law of large numbers to justify this assumption where

in more realistic networks we would expect the number of O-D pairs to be on the order

of n’ for fully connected networks, where n represents the number of nodes [31: 31].
A numerical example of the measurement problem is presented as part of the case

study in Chapter V, Section 5.4.1, Step 4.

4.2  Modeling A pproach

The model proposed in this section is used to explain the vanability due to flow
differences in both network bounds and to construct appropriate confidence bounds around
"normal” flow beha\;ior. The O-D pairs in each network bound are characterized by the
specific paths selected and the flow values on the arcs along those paths. To understand
the flow behavior between both bounds, we analyze the sources of variance, namely the
path selection differences and the arc flow differences.

To understand this variance we develop a statistical relation between the dependent
variable ¥ and the independent variable X of the form

Y = fiX)

where Y = (Y, ,Y,,..,7Y,)is a vector of O-D pair volumes represented as the
difference of the lower bound from the upper bound O-D external flow, and
X=X,,X,,..,X,)is avector of path differences representing the number of distinct
path selection differences between the lower and upper bound network flow patterns for
each O-D pair.

The variable Y, could be modeled as the O-D pair external flows for lower bound
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(b*.5) and upper bound (b*;) separately, but is consolidated as a deviation measure
(b*yp - b*.p) for simplicity. Further, ¥, is assumed to be normally distributed, as stated
earlier, with mean E(Y,) and equal variance ¢ for all k.

The independent variable X, is selected to help explain the potential variability in
Y, due to path selection preferences in both network bounds. The proposed model
presented in the next section accounts for this variability. The arc flow variance,
however, is not accounted for by this model and is therefore used to construct the

confidence bounds.

4.2.1 Regression Model. 1t is assumed that a simple first-order model, linear in
the regression parameters and the independent variable, adequately describes the

relationship between ¥ and X, and is of the form

Y, =B+ B X + g
where 3, and B, are the regression parameters, and €, represents the deviation of ¥, from
its mean value E(Y,) and is normally distributed with mean E(g,) = 0 and variance
o’{e,} =0’ [27: 31]. See [27: 38-43] for a discussion of methods to obtain the estimated

regression function:

f,k = by + b X,
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4.2.2 Analysis of Variance.

4.2.2.1 Sum of Squares. The analysis of variance approach to regression
analysis is useful in understanding the sources of variability in the model. As presented
in [27: 87 - 93], the total variation in the observations, or O-D deviations, is measured
as the total sum of squares, SSTO, which is composed of the sum of the regression sum

of squares, SSR, and the error sum of squares, SSE, where

SSTO = ¥ (¥, - VP,

k=1 t

t
SSR = ¥ (¥, - ¥)
k=1
where SSR represents the squared deviation of the fitted regression around the overall

mean, and
' LY
SSE = E &, - Yk)2
k=1
where SSE represents the variation of the O-D deviations around the fitted regression line.

4.2.2.2 Mean Squares. The associated mean squares for SSR and SSE,

when divided by their respective degrees of freedom, are as follows [27: 91]:

MSR = 5_?3 - SSR
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where MSR now represents the total variation in the model explained by the estimated
regression function. In other words, MSR denotes the variability due to different path
selections explained by the model. The variance of interest, however, is MSE which
represents the unexplained error and will be used to help build the subsequent confidence

intervals.

4.2.2.3 O-D Estimation Error. A third source of vanability not accounted
for by the analysis of variance approach is the error due to O-D estimation: the deviation
between the target, b*, and estimated, F*, O-D pair external flow for each network bound.
Similarly, this variance can be expressed as the deviation between the target O-D
deviation, Y*, and the estimated O-D deviation, D,, where D, = (F,; - F,;). This

variance, also referred to as an accuracy measure [9: 370], is denoted as MSE,,, where:

} 4
E (Dk - k)z
MSE_ = X!

ot t

4.2.3 Compromise Metric. There are 2 forms of the compromise metric proposed

for this research: individual confidence intervals ("individual metric") for each O-D pair

and an overall joint confidence interval ("joint metric").




4.2.3.1 Individual O-D Confidence Intervals. Constructing a confidence

interval around each O-D pair serves the dual purpose of identifying a "compromise" and

its source. The objective is to estimate for each O-D pair the mean O-D deviation

denoted as E(Y,) for specific k. Since this value is generally not known, we use the point
estimator ¥, defined in the earlier regression model for specific .X,.

An initial confidence interval for E(Y,) is developed using the t distribution (not

to confuse with the scalar 7 used to denote the number of O-D pairs) [27: 77-78). The

1 - a confidence limits are:

Y, + t(1-a/2;t-2)s,
where

"
s;=MSEl+ X, - X"

' £ Y X-X?
k

A final confidence interval for E(Y,) incorporates the mean error due to the O-D

estimation process and is of the form:

¥, + (t(l -a/2;t-2)s;y + ‘/‘157[§Em)

4.2.3.2 Joint Confidence Interval. A joint metric is considered to assess
the sensitivity of the model to mean O-D volumes with no expectation of being able to

determine the specific source of compromise. The joint metric is of the form:
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Y+ (t(l-a/z;:-z),l MfE + ,/HSE:]

where the mean of the O-D pair deviations Y, is equivalent to the mean of the fitted O-D

pair deviations ¥, [27: 49].

4.3  Altemative Compromise Metric

An alternative method for assessing "compromise” is proposed in this section as
an extension of this research. The method, as described by Upton and Fingleton [36: 170- -
75), uses the Moran statistic / to determine if correlation exists between the values of
each O-D pair. A set of O-D pairs is considered correlated if their exists a connection
or similarity between the values of each O-D pair.

This method is useful for the case where the number of locations, or O-D pairs,
considered is small. Although the distribution of / is assumed approximately normally
distributed for a large number of sampled locations, the method allows for probabilistic
assessments of the observed statistic / for smaller sample sizes [36: 171].

The stated hypotheses for this test are:

Null Hypothesis: No correlation present (i.e. no similarty exists between the

source and destination node flow values for each O-D pair)

Alternative Hypothesis: Correlations present (i.e. a similarity does exist between

the source and destination node flow values for each O-D pair)

In the context of our research, it is proposed that rejecting the null hypothesis is
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equivalent to stating that no "compromise" has occurred given that the deviation between
source and destination flows for each O-D pair is sufficiently close to be deemed similar.
On the contrary, failing to reject the null hypothesis indicates that the deviations are
sufficiently large to be deemed unsimilar. This last statement suggests that a possible
"compromise" has occurred given that a "compromise” scenario is exhibited as an increase
in flow at a particular O-D pair's source node.

The test statistic / is presented below in the authors' original notation and related
to the context of our research. Note that i denotes the source node and j denotes the

destination node. .

'Z _,2 Wy(xg "x-)(xj '5)

n
So E (x, "-'E)2
i

I =

where n = number of locations, or nodes, sampled = 2¢

x, = value of flows at source nodes = D,’

value of flows at destination nodes = D,/ = 0 given that flow demands are

=
I

unchanged from lower to upper bound

x = average of all node values x, and x,

W, = matrix representing the O-D pairs where W, =1 if nodes i and j denote an
O-D pair, and W, = 0 otherwise

S,=2. 2, W, (i#))

Furthermore, we define the matrix of elements Y . where




Yy = (‘g 'i)(xj-i)

Given the lack of appropriate probability tables for small sample size problems,
we make use of this proposed method which defines the cumulative distribution function
(CDF) for I as a reference curve against which observed values of the test statistic / can
be compared to assess the significance of the observation. The CDF for / is obtained
using a randomization process of the matrix Y where (1) the x, and x; values assume the
estimated O-D deviations in the "normal” scenario, and (2) »! Y matrices are obtained by
random permutations of the n rows and n columns [36: 152]. It is under this
randomization process that the authors claim the distribution of 7 to be approximately
normally distributed with specified mean and variance [36: 171]. The CDF for I is
defined by solving / for each specific random matrix Y and obtaining a frequency count
of the number of Y matrices resulting in a specific / value. The resulting CDF is a
frequency distribution of 7 in the "normal” scenario.

To assess "c: mise,” we would compute the / statistic where x, and x; assume
the estimated deviations in a "compromise" scenario. To assess the significance of the
resulting / value we compare it to the CDF for I. If the observed value is extreme (e.g.
only in a few occasions is the observed value equalled or exceeded) then we would
conclude that correlation is present; in other words, we would conclude that
"compromise" has not occurred with certain significance. Contrarily, if the observed

value is exceeded by a specified percentage of observations, then we would conclude that
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"compromise” has occurred.

44  Summary

This chapter reviewed the proposed metric for determining if a "compromise”
situation exists based on the comparison of estimated O-D external flow values to pre-
established confidence intervals encompassing "normal” network behavior. This chapter
also presented, as an extension, an alternative test statistic for measuring "compromise"”
for small O-D sample sizes. The next chapter applies the models presented in Chapter
III to a test case network and provides, as part of this case network, a numerical example

of the method presented in this chapter.
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V. Case Study

This chapter applies the solution algorithm presented in Chapter III to a test case
network. The first section briefly restates the research objectives and includes a
description of the case network and all related network parameters. The second section
illustrates Step 1 of the solution algorithm presented in Section 3.5, where a lower and
upper bound network flow pattern is obtained. The third section illustrates Step 2,
monitor location strategy, and describes the two sets of experiments to be conducted. The

final two sections illustrate the remaining five steps for both experiments.

5.1  Network Description
The purpose of this chapter is to apply the solution algorithm on a case network
and analyze its performance, keeping in mind the stated research objectives of Chapter

I which are summarized below:

Objective #1: Obtain a network flow that bounds the expected minimum cost
network flow.

Obijective #2: Obtain a monitor location strategy that maximizes the accuracy of
estimating the true O-D external ﬂows in both "normal" and "compromised"
network configurations.

Objective #3: Define the compromise metric and evaluate the compromise

assessment based on O-D estimation preferences for p = 1, 2, and .
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The case network is a three-commodity (or user) network with multiple unreliable
arcs as defined in Figure 5.1. The network arc parameters, O-D parameters, and O-D path
sets for the original "normal” configuration are provided in Tables 5.1, 5.2, and 53,
respectively. Note that the arc notation (i, j) used in the previous models is simplified
from this point on to the single arc index i (refer to Figure 5.1).

Table 5.1 Network Arc Parameters

i | from to r u, c,
2 e SN SR S S—
1 1 2 1 7 2
2 1 4 95 5 1
3 3 2 1 5 2
4 2 5 1 10 3
5 3 6 98 4 1
6 5 6 98 8 3
7 6 5 1 4 3
8 4 5 3 10 2
9 5 4 8 5 2
10 4 7 1 3 1
11 7 4 1 5 1
12 5 8 1 9 3
13 6 9 1 10 3
14 8 9 98 9 2
15 7 8 95 6 2
16 8 7 95 4 2
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Figure 5.1 Three-Commodity Case Network
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Table 5.2 Network O-D Pair Demands

O-D Pair Node Demand
k Pair bt
1 a9 8
2 3,7 6
3 7,9 5

Table 5.3 O-D Pair Path Sets

k| p Arcs R} ¢
e |
| I 1-4-6-13 98 11
2 1-4-12-14 .98 10
3 2-8-6-13 6517 9
4 2-8-12-14 6517 8
2 1S 3-4-9-10 8 8
6 3-4-12-16 95 10
7 5-7-9-10 784 7
8 5-7-12-16 931 9
3 |9 11-8-6-13 686 9
10 15-14 931 4

5.2  Network Bounds

In this section the results are presented for Step 1 of the solution algorithm as
stated below:

Step 1: Obtain the optimal minimum cost network flow for both bounds
representing the "normal” scenario. The GAMS models for both bounds are included in

Appendices B.1 and B.2, and the optimal flow patterns displayed in Appendix B.3. The




optimal objective function values are Z,,* = 144.76 and Z,* = 169.2. The resulting
target O-D path flows and external flows are summarized in Tables 5.4 and 5.5.

Table 5.4 Path Flows f,' for both Network Bounds

k|p | £,@B) [ £ (UB)
I Q 3371
2 3.25 3.629
3 4.18 1.749
4 57 0
2 |s 0 0
6 2.08 2.86
7 3 3
8 92 1
3 [o 0 0
10 5 5.371

Table 5.5 Target O-D External Flow

k b* (LB) b* (UB)

1 8 8749
2 6 6.86
3 5 5.371

From the flow patterns in Appendix B.3, we can develop the flow routing matrix
for each network bound representing the proportion of user flow on each arc. This matrix

is shown below in Table 5.6 for both bounds:
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Table 5.6 Flow Routing Matrix

Lower Bound Upper Bound

k=2 k=3
] 0.80 - -
2 0.20 - -
3 - 0.42 -
4 041 0.35 - l 0.80 0.42 -
5 - 0.65 - - 0.58 -
6 0.52 - - 0.59 - .
7 - 0.65 - - 0.58 -
8 0.59 - - 0.20 - -
9 - 0.50 - - 0.44 -
10 - 0.50 - - 0.44 -
11 n/a n/a n/a n/a n/a n/a
12 0.48 0.50 - } 0.42 0.56 -
13 0.52 - - 0.59 - -
14 0.48 - 1.00 0.42 - 1.00
15 - - 1.00 - - 1.00
16 - 0.50 - - 0.56 -

5.3 Monitor Location Strategies
In this section the results are presented for Step 2 of the solution algorithm:
Step 2: Obtain a common monitor location strategy to both bounds for specified
M. For this case network we set M = 2 to ensure a worse case strategy of no more than
four arcs. We also propose to explore the set of compromise solutions which are also

efficient in both network bounds.

3.3.1 Set of Efficient Solutions. Obtaining the set of efficient solutions allows
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us to investigate different location strategies for various weighting of the two criterion
functions. By incrementally varying the criteria weights, we obtain a set of efficient
solutions (i.e. strategies) for each bound. The common strategies are thus defined as the
union of the efficient solutions, or strategies, and are presented in Table 5.7.

Table 5.7 Set of Efficient Solutions (both Bounds)

Weights Bound Strategy Common Strategy, S
p————
A, < 0.189 Lower Bound I {12, 15}
Upper Bound II {4, 15} {4, 12, 15}
A, >0.189 Lower Bound II {5, 14}
Upper Bound | (4,15} (4,5, 14,15}

For M = 2 the optimal values for criterion function 1 are y,* = 1.47 (lower bound)
and y,* = 1.487 (upper bound), and for criterion function 2 y,* = 0.808 (lower bound)
and y,* = 1.632 (upper bound). The lower bound network yielded two distinct efficient
solutions whereas the upper bound efficient solution is unique. The GAMS location

models for both bounds are included in Appendices C.1 and C.2.

5.3.2 Experimental Design. Two separate experiments are conducted based on
the common strategies identified above, which exhaustively evaluate all possible 3-arc and
2-arc combinations. The first experiment assumes three monitors are fielded (or 20%
sampling of active arcs) and investigates the performance of each 3-arc strategy. The
second experiment extends the investigation to all possible 2-arc strategies (or 13.33%
sampling of active arcs). The possible location strategies for Experiments #1 and #2 are

presented in Figure 5.2 (a) and (b).
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Figure 5.2 Experimental Design

(a) Experiment #1

Efficient Set
Al<.189 Al>.189
A2 > 811 A2 < 811
S=1{4,12, 15} §={4,5, 14, 15}
S1=¢4, 12,15} S2={4,5, 14} S$4={4, 14, 15}

(b) Experiment #2
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|
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S10 = {4, 14}
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{4, 15}

|

S11 = {5, 14}

S12 = {5, 15}

I
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The next two sections explore the results for all strategies within each experiment.

To illustrate the remaining steps of the solution algorithm, the first strategy for

Experiment #1 is developed in greater detail. All subsequent strategies are presented in

summary form.

5.4  Experiment #1

5.4.1 Location Strategy S1. Strategy S1 consists of three monitors placed on arcs
{4, 12, 15}.

Step 3: Obtain the O-D pair extemal flow estimates for both bounds representing
the "normal” scenario for p = 1, 2 and infinity. First, we note that since we are sampling
from three arcs, the constraint set for the O-D estimation model is fully determined (i.e.
3x3) therefore the O-D estimates are unique for all p > 1. When we sample from 2-arc
strategies the relationships for different norm exponents become more evident. The
constraint set is defined by the arc flow values and the routing matrix for the specific arcs
sampled as illustrated for S1 in Table 5.8 for both bounds.

Table 5.8 O-D Estimation Constraint Set for S1

Lower Bound, df Upper Bound, d*
"He=1r=2{k=3] " Ja=1k=2]k=3| "
B
=ﬁ| 041 Q.35 - 5.33 II 0.80 042 - 9.86
12 § o048 0.50 ; 682 || 042 0.56 . 7.489
15 Il - - 1.00 5 II - 1.00 5.371

The GAMS O-D estimation model for S1 is included in Appendix D.1 and the
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resulting estimates are in Appendix D.2.

Step 4. Define the compromise metric. Using the approach proposed in Chapter
IV, we define individual and joint confidence intervals around each O-D pair's expected
flow and overall mean flow for the "normal” scenario. In the general case where we have
a large number of O-D pairs, a DM would be interested in assessing "compromise” with
a certain degree of confidence. This confidence is reflected in our confidence intervals
using the appropriate t-statistic from look-up tables. In this case study, however, given
the small sample size we simply use a scaling factor of two to conservatively widen our
intervals. As a result, confidence statements related to this case study are inappropriate
and the results themselves inconclusive, however, the goal is to gain sufficient insight
to assess the performance of the different metrics. An alternative approach was proposed
in Chapter IV which may allow for probabilistic assessments of "compromise" for small
samples. The applicability of this approach is left as an extension of this research.

Initial confidence intervals are developed based on the target flows. As presented
in Chapter IV, we define the variables ¥, = (b5 - b*,5) = (0.749, 0.86, 0.371) and X,
= (2, 0, 0), where user 1 (k = 1) has two distinctly different path selections, and users 2
and 3 (k = 2 and 3) have none. Using classical regression methods, we fit a simple linear
model with regression coefficients B, = 0.616 and B, = 0.067. Partitioning the sum of
squares, we obtain an SSE = MSE = 0.12, which is used to calculate the variance term
for the fitted value ¥,. The results for the initial confidence intervals (i.e. not including

the O-D estimation error) are presented in Appendix D.3. Note that these intervals remain

fixed for all strategies.




These intervals are slightly widened upon introducing the O-D estimation error
denoted as MSE,,,. First, we define for strategy S1 the deviational variable
D, = (F'ys - F*,;) = (1.235, 0.384, 0.371) which represents the deviation in the O-D
estimates for the "normal” scenario. The error is then computed as the mean squared
deviation of the O-D estimated deviation D, and the O-D target deviation Y,. This error
is added to the confidence bounds defined earlier to obtain the individual and joint metrics
(see Appendix D.2), which are summarized below in Table 5.9:

Table 5.9 Compromise Metrics for S1

Individual Confidence Intervals (Cls) Joint

Strategy =1 k=2 k=3 Cls

S1 = {4, 12, 15} ll (-.335, 1.833) (-.266, 1.497) (--266, 1.497) (-.132, 1.452)

Note that the individual intervals for users 2 and 3 are identical since both users have no

path selection differences between lower and upper bound, whereas user 1 has two distinct
path differences.

Step 5: Introduce a "compromise” scenario. For this case network we define
"compromise” as a single flow unit increase in the first O-D pair's demand (k = 1), from
8 to 9 units. To obtain the revised arc flow values we solve the network bound models
in Appendices B.1 and B.2 with the revised O-D demand parameter. The "compromise"
network patterns are included in Appendix B.3 where the thicker arcs represent the
“compromised” paths for both bounds. This step is unchanged for all other strategies.

Step 6: Obtain the revised O-D pair external flow estimates for both bounds
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representing the "compromise” scenario for p = 1, 2 and infinity. Similarly to the process
in Step 3, we solve the O-D estimation model in Appendix D.1 with appropriate changes
to affected arcs. For this strategy, and all subsequent strategies, the only affected arc is
i = 4 in the lower bound pattern where V', increases from 5.33 to 6.33 units. The revised
O-D estimates are included in Appendix D.2.

Step 7. Assess compromise. This final step requires the comparison of the
revised O-D estimates to the previously established confidence intervals. Since the
confidence intervals bound the expected deviation of upper to lower bound flow, the
"compromise" estimates need to be similarly expressed as deviation measures. These
results are included in Appendix D.2 and summarized in Table 5.10.

Table 5.10 "Compromise” Estimates for S1

Strategy Il k=1 k=2 k=3

S1 ][ -1.568 811 371

From these results we would conclude that, from an individual user basis, user 1

is the source of "compromise,” whereas from a joint user basis, we would conclude that
no "compromise” has occurred. Note that an actual confidence statement would be
inappropriate as stated earlier.

5.4.2 Summary Results. The results for the remaining four strategies, namely
Steps 3, 4, 6 and 7, are included in Appendices E.1 through E.4. The overall results for
Experiment #1 (i.e. confidence intervals and "compromise" values) are presented in Table

5.11. Table 5.12 summarizes the results by displaying for the individual confidence
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Table 5.11 Experiment #1 Summary Results

Efficient
Solutions

Strategy

Individual Confidence Intervals

S1 = {4, 12, 15}

| (-335, 1.833)

k=2

(-.266, 1.497)

(-.266, 1.497)

k=3

Joint
Cls

(-.132, 1.452)

-1.568 811 371 -.129
$2=1{4,5 14} | (-017,.1.515) | (052, 1.179) (.052, 1.179) : (.186.1134)
: -1.587 .866 1.464 .248
83 = (4, 5, 15} (-.002, 1.5) (067, 1.164) (067, 1.164) (201, 1.119)
-1.587 866 3N -117
> 189 ,
4 = {4, 14, 15} § (-093, 1.591) | (-024, 1.255) | (-024, 1.255) { (11, 1.21)
682 -1.745 371 : -.231
!
S5={5 14,15} J| (019, 1479 (088, 1.143) (088, 1.143) (.222, 1.098)
682 866 37 64
Table 5.12 Experiment #1 Summary Results (cont)
Efficient Individual Joint
Solutions Strategy Cls Cls
r
A, < .189 S1=144,12, 153 k=1 NO
S2 = {4, 5, 14} k=1&3 NO
S3=1{4,5,15 k=1 ES
A, > .189 ¢ ' Y
S4 = {4, 14, 15} k=2 YES
SS = {5, 14, 15} None NO




intervals the source(s) of potential "compromise”, and for the joint confidence intervals,
whether a "compromise" has occurred ("YES") or not ("NO").

The key questions to be answered in this experiment are (1) how well the location
model performs in selecting the more susceptible arcs to "compromise,” and (2) how
accurate the proposed compromise metrics perform in assessing "compromise” and its
source in a network known to be compromised.

Of the candidate arcs selected for monitor placement, only i = 4 incurred an
increase in flow. In other words, of the six arcs carrying the increased flow between both
bounds (see Appendix B.3), our location model managed to select only one, resulting in -
a 16.7% selection rate for this particular network. It is not necessarily the intention of
this research to construct a more accurate location model, however the apparent weakness
is acknowledged and discussed in the recommendations section of the final chapter.

Of the five strategies considered in this experiment, four contain i = 4 and are
therefore of interest. Strategy S5 does not contain i = 4 and does not detect
"compromise,” which is an expected result. The first four strategies (S1 - S4) do detect
a source of "compromise” when the compromise metric is defined as the individual
metric. S1 through S3 correctly identify user 1 as a potential source of "compromise"”
whereas S4 = {4, 14, 15} flatly identifies the wrong source. The reason for this error is
that arcs i = 14 and 15 fix users 1 and 3 to "normal" flow levels forcing user 2 to
compensate for the flow increase on i = 4. S2 = {4, 5, 14}, which identifies user 1, also
identifies user 3. This uncertainty is caused by user 2 being fixed to "normal" levels on

i =S forcing user 1 to account for the flow increase on i = 4. It also forces user 3 to
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compensate for user 1's increase to maintain the arc constraint equality on i = 14.

The individual metric approach yields three of five strategies correctly identifying
user 1 as a potential source of "compromise.” The key charactenistic of the three
successful strategies is that none of the arc constraint sets fix user 1 to a "normal” level,
unlike S4. This observation suggests that better prediction capabilities may be achieved
from a combination of arc samples serving a multitude of varied users concurrently, and
from sampling a greater number of "compromised" arcs where the objective is to isolate
the single user common to all "compromised” arcs.

The joint metric approach to assessing "compromise” yields mixed results. When
i = 4 was not included (i.e. S5), the assessment consistently agreed with the individual
assessment. However, when i = 4 was included only two of the four remaining strategies
yielded a correct assessment. Note, however, that the mean compromise estimates for S1
and S2 are relatively close to the lower confidence bound which suggests that a more
rigorous approach (i.e. larger sample size) may lead to a more favorable result.

Overall, it is difficult to make a distinction between the performance of both
metrics given the size of the O-D sample; however, we can observe for this case that the
joint metric is less sensitive to detecting "compromise” and the individual metric provides
the added benefit of identifying the potential source. So, for 3-arc strategies the
individual metric provides potentially greater insight into the true behavior of the network

and should be the preferred metric.
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55  Expeniment #2

This experiment investigates the performance of all 2-arc combinations resulting
in nine separate strategies of which one is redundant. The results for the eight strategies,
namely Steps 3, 4, 6 and 7, are included in Appendices F.1 through F.8. The compromise
metrics and "compromise” values for all strategies and p-values are displayed in Table
5.13 and summarized, as in Experiment #1, in Table 5.14.

Having addressed the location model limitations, the key question to be answered
in this experiment is how accurate the compromise metrics perform in assessing
"compromise” and its source as a function of the norm exponent p.

Of the eight strategies considered four contain i = 4 (i.e. $6, S7, S9 and S10). The
remaining four strategies do not contain i = 4 and do not detect "compromise," which is
an expected result. Of the four strategies of interest, two (i.e. S6 and S9) only cover two
of the three users and therefore provide no insight on the effects of p on assessment
accuracy. In both S6 and S9, user 3 is not covered leading to results similar to removing
user 3 and its flow from the network. The estimates are therefore unique for all p > 1.
The results for S7 and S10 are discussed next for both metrics at each level of p.

When p = 1, the deviational norm assumes a totally compensatory preference
structure: the /,-norm objective, which views all criteria (i.e. the deviation between each
O-D's target and estimated volume) on an equal basis, minimizes the overall deviation by
emphasizing a single criteria's loss with an equivalent gain spread over the remaining
criteria. In other words, the /,-norm models the preference structure of a DM bent on

identifying a single source. This result is clearly evident for S7 and S10 using the
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Table 5.14 Experiment #2 Summary Results (cont)

Efficient Individual I Joint
Solutions Strategy P Cls Cls
S6 = {4, 12} 1,2, k=1 NO
1 k=1 YES
MEAB 572 415y 2 k=1&2 YES
®© k=1&2 YES
S8 = {12, 15} 1,2, © none NO
S9 = {4, 5} 1,2, o k=1 YES
1 k=2 YES
S10 = {4, 14} 2 k=1&2 YES

A, > 189
© k=1&2 YES
S11 = {5, 14} 1,2, 0 none NO
S12 = {5, 15} 1,2, none NO
SI13=1414,15} | 1,2, none NO




individual metric where S7 singles out user 1 and S10 user 2. Whether one user or
another is identified in this process is very dependent on the combination of users on the
arcs sampled and where the actual "compromise" occurs. For instance, the distinction
between S7 and S10 leading to conflicting assessments is that for S10 = {4, 14}, user 1
is common to both a "compromised" arc (i = 4) and a "normal" arc (i = 14), while user
2 1s singled out on i = 4. For S7 = {4, 15}, this is not the case. Also, note that the joint
metric in this case is consistent with the individual metric assessments.

When p = 2, the deviational norm assumes a preference structure resembling the
least-squares method: the /,-norm objective minimizes the sum of the squared deviations.
The DM in this case is not necessarily focused on identifying a single source, but rather
desires to minimize the potential contribution of O-Ds with relatively small deviations to
help single out the potential source(s). For this case network using the individual metnc
the two sources identified for S7 and S10 are users 1 and 2, both common to i = 4. The
most noticeable change from p = 1 to 2 is the interaction effect between user 1 and 2,
which causes the "compromise" values to significantly converge or equalize. The joint
metric again consistently agrees with the individual metric.

When p = o0, the deviational norm assumes a totally noncompensatory preference

structure: the /_-norm objective emphasizes the largest, dominating deviation. The DM
in this case is interested in minimizing the maximum deviation regardless of the O-D
generating the deviation. This process ignores the remaining O-Ds which results in a

system attaining an equilibrium state. The changes in the "compromise” values from
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P = 2 to o are relatively small. The individual metric maintains users 1 and 2 as potental

sources and the joint metric concurs that a "compromise” has occurred. In fact, in both
strategies user 1 tends to be the furthest from its respective lower confidence bounds
which may be considered relevant information in some ranking scheme to isolate a single
source.

Ignoring the strategies not including i = 4, which consistently assess no
"compromise” and are likely to be a testament of the weakness of the location model
rather than the compromise metrics, the four strategies of interest yield the following
results:

(a) for p = 1: three of four strategies using the individual metric correctly
identify user 1 as the definite source, and three of four strategies using the joint metric
concur that a "compromise” has occurred,

(b) for p > 2: four of four strategies using the individual metric correctly identify
user 1 as a potential source, and three of four strategies using the joint metric concur that
a "compromise" has occurred.

These results indicate that (1) a possible tradeoff exists between the number of strategies
accurately identifying the potential source and the number of sources to be considered,
and (2) the individual metric is as sensitive to "compromise" detection as the joint metric.

Introducing risk preference it would appear from the results that a DM with a
totally compensatory risk preference structure would be the least conservative. In other

words, the risk of incorrectly assessing the source of "compromise" is increased, yet the
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decision itself is limited to fewer (in this case only one) candidates. As a DM tends
toward a total noncompensatory risk preference structure (p — ), the DM becomes more

conservative. In other words, the risk of incorrectly assessing the potential source is
reduced, however, at the expense of sorting through more candidate sources which
introduces additional uncertainty and risk.

The final observations involve O-D estimation errors and their effects on
"compromise"” assessment. In general, and not surprising given the small size of the
network, the estimation process applied to the "normal" scenario produced very accurate
estimates with the exception of a couple strategies that, although producing relatively
accurate estimates, affected the final assessment.

In Experiment #1, the estimation error, denoted as MSE_, was negligible for
strategies S2 through S5 (all < 0.023); however, for S1 = {4, 12, 15}, MSE_, = 0.154
primarily caused by O-D estimation error in the lower bound estimates. The outcome
using the individual metric was unaffected by the error, however the outcome was
particularly sensitive using the joint metric. In this case, a "compromise" was not
identified when it should have teen, and more accurate estimates would have yielded the
correct result.

In Experiment #2, we observe a similar result. With the exception of strategy
S6 = {4, 12} for p > 1, the estimation error was consistently less than 0.004. The error
for S6 was 0.154 for the same reason as S1 and results in the same outcome.

Overall, we can observe that the estimation error in the "normal” scenario appears

5-22




to decrease in Experiment #2 where we are sampling from fewer arcs (see Figure 5.3).
This is explained by the reduction of the arc constraint set which permits the O-D
estimation model to achieve a better solution. We note that a possible tradeoff exists for
this situation where the DM must tradeoff between sampling from fewer arcs, which
improves the "normal" O-D estimates and tightens the interval bounds, and sampling from
more arcs, which increases the probability of intercepting a "compromised” arc.

In the "compromise" scenario we observe a similar trend. However, it is noted
that an increase in the "compromise" estimation error (i.e. the average squared deviation
between the "compromise" O-D estimates and the target O-Ds) denotes an increased
sensitivity of the arc sampling strategy to detecting "compromise,” and is therefore
desirable. From Figure 5.3,‘it appears that a larger number of arcs sampled leads to this
desired property. This observation supports our intuition that a larger number of sampled
arcs should provide a more complete picture of the true state of the network.

Finally, evaluating the effects of changes in the /,-norm exponent p, we observe
that the estimation model, for Experiment #2, is more sensitive to detecting "compromise”
(i.e. greater "compromise" estimation error) as the model tends toward total compensation,
or p = 1 (see Figure 5.4). This supports the earlier observation that the /,-norm tends to
single out an individual source. Given the results for p = 1 yield potential inaccurate
"compromise" assessments, it appears a tradeoff may exist between an increase in model
sensitivity (i.e. greater | "compromise" estimation error) and model accuracy (i.e.

identifying the correct source).
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Figure 5.3 O-D Estimation Error as a Function of Number of Arcs Sampled
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V1 Conclusions and Recommendations

This chapter presents the summary of the research approach, its conclusions, and

recommendations for future research.
6.1 Summary

The goal of this research was to develop an analytical model for assessing the
vulnerability of a multi-commodity, or multi-user, network subject to arc failures. Given
that a network achieved a "compromised” state by increasing the flow along a particular
O-D pair's path(s), the proposed method for assessing vulnerability was to strategically
field flow sensing monitors along specific arcs of the network and to use the sampled
information to help construct an image of the original network. More speciﬁcally, the
image sought was an estimate of the O-D pair volumes input to the network since a
"compromised” network would exhibit an increase in O-D volume. The overall objective
was to evaluate whether or not the model was capable of accurately assessing
“compromise” (with certain confidence), and if so, determine if it could identify the O-D
pair source.

The approach consisted of developing a sequence of three separate models and a
compromise metric used to make the final assessment. The first model involved bounding
the flow through the network given that arcs failed totally with certain probabilities. It

is known from prior research that solving for the exact flow in such a network can be




intractable given the large number of possible failure states that would need to evaluated
separately. Therefore, the first model establishes a lower and upper bound on the exact,
or expected, flow through the network by solving simpler linear programs. The second
model consisted of locating the specific arcs on which to place the flow monitors subject
to possibly conflicting criteria and a predefined number of monitors. This model was
formulated as a weighted compromise program to obtain the set of efficient solutions, or
the set of possible monitor location strategies. The third model consisted of estimating
the O-D pair volumes based on the limited arc sampling information. This model was

formulated using /,-norm objective functions and solved for p = 1, 2 and . The

estimates for the "normal” case were used to help define the compromise metrics and the
estimates for the "compromise" case were used to evaluate the status of the network with
respect to the compromise metrics. The compromise metrics were defined as both
individual confidence intervals (for each O-D pair) and joint confidence intervals (average
of all O-D pairs) around the expected flow (in this case, the deviation of upper to lower
O-D volume) in a "normal” network. A "compromise” situation was established if the
"compromise” estimates breached the interval bounds.

The performance of the proposed metrics was evaluated using 2 distinct
experiments consisting of the set of all 3-arc and 2-arc monitor location strategies
analyzed for each level of the norm exponent p. Although the case network used in this
research was small, important observations were made that would need to be confirmed

with more rigorous experimentation.
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6.2 Conclusions

Although it would be premature to draw any concrete conclusions from this
research, we were able to put forth several key observations.

First, it was noted that the performance of the location model in selecting
susceptible arcs was questionable even though it identified a "compromised” arc. The
original objectives of this research did not encompass the development of a location
model that accurately selected susceptible arcs. However, it is our contention that a more
accurate location model would provide a better assessment of "compromise” by helping
to single out the 0-15 pair common to all "compromised” arcs. Furthermore, an accurate
location model may reduce the need for more monitors.

Second, it was observed that the "compromise" assessments differed as a function
of p. Relating the assessments to a DM's risk preference structure, it was proposed that
a conservative DM's preference structure could best be modeled using a totally
noncompensatory approach to O-D estimation, whereas a DM willing to accept more risk
would have a preference structure totally compensatory in nature. It was also shown that
the latter preference structure was more sensitive to detecting "compromise" based on the
increased "compromise” estimation error. Although not foolproof, this proposition (if
shown to apply in larger and more realistic networks) could provide invaluable
information to a DM based on his or her's revealed preference structure.

Third, it was observed that the "normal” and "compromise” estimation error

generally decreased as the number of arcs sampled decreased. This led to the observation
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that a DM may need to reach a compromise in the number of monitors fielded given that
fewer monitors increased estimation accuracy of the "normal" scenario yet decreased (1)
the probability of selecting a susceptible arc, and (2) the sensitivity of the estimation
model in detecting "compromise." This tradeoff is critical given the current location
model capabiliti 5, yet may be overcome with a more accurate location model.

Finally, it was determined for the network used that no perceptible difference
existed in the accuracy of the individual and joint metrics, although the individual metric
provided additional information regarding the actual source of the "compromise.” It is
expected that an individual metric would generally be preferred given the added insight

it provides the DM in assessing the source of "compromise.”

6.3 Recommendations

The following recommendations are proposed for future research:

1. Assuming the models and simplifying assumptions are unchanged, more
nigorous experiments could be conducted to include (1) small sample testing using the
proposed Moran statistic /, and (2) larger networks with significantly more O-D pairs.
This work would assess the validity of the observations made in this research.

2. A better understanding of the relationships between the lower and upper bounds
and the expected value of the minimum cost flow in multi-commodity networks with
failing components should be achieved. Prior research has extensively studied the single-
commodity, maximum flow case, yet multi-commodity networks appear to have been

generally ignored. Furthermore, we believe the lower bound proposed in this research

6-4




provides a relatively tight bound on the expected value. However, the appropriateness of
the proposed upper bound remains unanswered.

3. The development of a more accurate location model should be attempted.
Depending on the definition of "compromise," the location model criteria, of which there
may be many appropriate formulations depending on the DM's objectives, should account
for how the "compromise” flow will exhibit itself. For example, in this research we
assumed "compromise" flow to be an increase in "normal" flow routed along a particular
path(s) according to the pre-established routing algorithm (i.e. minimum cost routing).
Therefore, to increase the probability of interception, the criteria should account for the
knowledge we possess regarding the routing algorithm, namely the cost of arcs and paths
in the network.

4. The definition of "compromise” can be extended to include various other forms
of interest such as (1) the rerouting of flow along unexpected or undesirable paths, (2) the
increase of flow along a particular arc versus a path, and (3) the unexpected loss of flow
along a particular arc or path.

5. A more complex analytical model can be developed for either circuit-switched
or packet-switched communicziion networks. Some ideas for this extension were

previously mentioned in Chapter I, Section 1.5.2.
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Appendix A. Properties of Network Flow Bounds

Some properties regarding the relationship between the network bound models
presented in Chapter III and the expected minimum cost are identified below in Properties
1 through 4. The claim for this research is that the lower and upper bound network
models envelop the true or expected network cost. In other words,

Z*<Z*<Zyy<Zy*
where Z * is the optimal mimimum network cost when no arcs are subject to failure. For
simplicity, the arc index i is used instead of (i, j) where each arc is assigned a single

identifying number.

Property 1: The optimal minimum cost, multi-commodity flow in a fully reliable
network, Z *, is less than or equal to the lower bound minimum cost, multi-commodity
flow in a network subject to arc failures, Z, ,*, where individual arc capacities, u,, are set
to their expected arc capacities, e(u,), where e(u;) = r, u, :
Z*<Z,*

The minimum cost operator will route the maximum flow along arcs with least cost
limited only by arc capacities. However, unlike the totally reliable network where all arcs
are assumed 100% reliable, the lower bound network further limits the amount of flow
traversing any arc with reliability strictly less than 1.0. For any preferred arc i with least
cost having reliability less than or equal to 1.0, f; (,) > f, (e(u,)), where f, () represents

the optimal flow on arc i subject to arc capacity constraint (). Therefore, in order to
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satisfy the demand constraints, the lower bound minimum cost operator will reroute at
least as much flow along less preferred, or more costly, arcs than the totally reliable

network, which demonstrates the above relationship.

Property 2: The optimal minimum cost, multi-commodity flow in the lower bound
network configuration, Z,3*, is less than or equal to the expected minimum cost, multi-
commodity flow, Z, :
Zip* < Zyy
It has been shown for the single-commodity, maximum flow network that the optimal
maximum flow when using expected arc capacities yields a total flow greater than or
equal to the expected value of the maximum flow [1, 8, 28, 38]. In other words, the
expected flow when at least one of the random arc capacities, U, is set to its expected
capacity, e(w,), is greater than or equal to the expected flow when all arc capacities remain
random variables. The general relationship is given by the following inequality:
E{MaxFlow(e(s)), e(u,), . . ., e(u,), . . ., e(u, ), U, .., U,)} 2
E {MaxFlow(e(u,), e(u,), . . ., e(u,,), e(u,,,), . . ., eu,,), Uy, .. ., U, .., U}

Generalizing this relationship to the minimum cost, single- or multi-commodity case, it
is important to note that the minimum cost objective is similar to the maximum flow
objective above in that the minimum cost operator forces the maximum amount of flow
over the least costly arcs. If at least one of the preferred arcs has reliability strictly less
than 1.0, then by the relation above, the amount of flow traversing this arc when its

capacity is set to its expected capacity is greater than or equal to the expected flow
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traversing this arc. The difference in flow on a particular arc between the lower bound
and expected value is rerouted along arcs of equal or higher cost. It follows that the
expected system cost is greater than or equal to the deterministic, lower bound system
cost. The general relationship in this case becomes:

E{Z g(e(u), e(uy), . . ., &(w,), . . ., eu,,), U, .., U,)} <

E{Zgy(e(u)), e(u,), . . ., e(u,.), e(u,,y), - . ., e(u,,.), Uy, .., U, .., UL}

Property 3: The optimal minimum cost, multi-commodity flow in the upper bound
network configuration, Zz*, where path flows are subject to loss dependent on path
reliability rates, is greater than or equal to the expected minimum cost, multi-commodity
flow, Z, :
Zoy<Zyp*

For this relationship to be true, it must also be true that Z,z* < Z;;;*. We show this latter
relationship first.

(i) For any particular path through a network (say, the path with least cost) the
following property applies to the lower and upper bound path flow:

LB: f,1s < min(e(u,))
UB: f,ys < min(u;)

for all i lying on path p. To meet the demand, b, a new flow, f,., along path p’not equal
to p, at equal or higher cost, is included (assuming £, < b) to satisfy the following demand

inequalities:




LB: f,;p 2 b - min(e(x))
UB: fyup 2 b - R, min(u)

where R, is the loss parameter for path p. Now, note that R, < min(r;), for i lying on p.
This implies that R,min(#)) < min(e(#,)) = min(7; »). This, in turn, implies that
Jyup 2 fyin- Therefore, we can expect that at least as much flow will be routed along
more costly paths in the upper bound configuration as in the lower bound configuration,
which shows the relationship Z, ;* < Z,;*. In fact, for a path p where more than one arc
has reliability strictly less than 1.0, R, is strictly less than min(r), thus, Z;p* < Z;p*.

(it) To demonstrate that Z, < Z,;* we use a specific example to show where the
relationship does hold. However, it is not advisable to generalize this result to all
networks since no definitive relationship was found. The example network is a two -
commodity network, represented in Figure A.l, where all but two arcs are perfectly
reliable, resulting in 2* = 4 possible failure states to examine to determine the expected
cost. To ensure that both commodity demands are satisfied in the expected value case
(where when an arc fails, it fails totally), all unreliable arcs must have a backup arc. For
this example, the backup arcs are perfectly reliable and have unlimited capacity, denoted
as (*). All arcs, except the two backup arcs, have a unit flow cost of 1; the backup arcs
have a cost of m, where m is strictly greater than 1 (the objective is to send as much flow
as possible over the primary arcs). The overall objective is to determine if the above
properties hold for all m > 1. This example network is first evaluated to determine the
lower and upper bound costs; then, the expected cost is assessed.

The example network arc parameters, O-D demands and path sets are displayed
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Figure A.1 Two-Commodity Example Network




in Tables A.1, 2, and 3 respectively.

Table A.1 Network Arc Parameters

i lrlulc
1 |1 ]4]1
2191211
319151]1
4 [1]1 {1
51113 }1
6 |1 {* |m
711 |*|m

Table A.2 O-D Demands

k | b nodes
12| a9
213 3,2

Table A.3 O-D Path Sets

k|p arcs | R}

1 {1 ]1-2-3 81 3

2 | 1-2-7 9 2+m

3 |1-6-3 .9 2+m

4 | 1-6-7 1 1+2m
2 |5 |3-4-1 .9 3 ]

6 | 3-5 .9 2

7 | 7-4-1 1 2+m

8 |75 1 1+m
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The lower and upper bound network costs are obtained by solving the linear
programs shown in Figures 3.1 and 3.2. The path flows for each bound are displayed
below in Tables A4 and A S:

Table A.4 O-D Path Flows (Lower Bound)

klp| £t cost
111 {18 54

2 40 0

3 1}o0 0

4 12 2+4m
215 ]o 0

6 |27 5.4

710 0

813 3+3m

2= 113+ .7m

klp | ff cost
1}j1]2 6

210 0

3]0 0

4 | .32 32+.64m
2 s5ijo 0

6 |3 6

7 ].33 66 + 33 m

8 |10 0

Zy* = 12.98 + 97 m
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To obtain the expected cost we must evaluate the set of failure states S where
s =1 .. 4 represents the possible combinations of operating and failed arcs, and P(s) the
corresponding state probability. The expected value model is presented in Figure 2.2.
The four possible failure states are displayed in Figure A.2 and the results summarized
in Table A.6.

Table A.6 Expected Value Summary Results

s | P(s) Z(s)

1 | .81 12

2 |.09 10+2m

3 1.09 7+5m

4 | .01 5+7m
Z,, = 11.3+.7m

The results for this example indicate that the lower bound cost and the expected
cost are equivalent for all m, but the upper bound cost is strictly greater than both. To
fur_ther investigate this relationship, the two-commodity network was modified to include
three unreliable and three backup arcs, resulting in 2° = 8 possible failure states.
Specifically, arc i = 5 was assigned a reliability of 0.9 and arc i = 8 was included as the
backup. The total number of paths was increased to 10 (4 for k =1 and 6 for k =2). The
details of this extension are not included in this appendix; however, the overall results

for both bounds and expected value are summarized in Table A.7.

A-8




Figure A.2 Network Failure State Configurations

s=1 s=2
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Table A.7 Extended Example Summary Results

Z,* = 11.6+.7m
Zgy = 11.19+ 9 m
Z*= | 1242+188m

The relationships for both examples are illustrated in Figures A.3 and A.4 where
it appears that the above properties hold; in fact, it appears that the lower bound model

is a tighter bound on the expected value.

Property 4: Tightness of Bounds.

For all arcs where reliability is strictly less than 1.0, as arc reliability increases
toward 1.0 the bounds on the minimum cost flow converge on the totally reliable
minimum cost. For communication networks, where arc reliabilities generally tend toward
unity [28], this behavior is expected. Conversely, if the arc reliabilities decrease, then the
bounds progressively widen. The obvious case, where r, = 1 for all i, is that:

Z* =23 =Zgy=Zy?*
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Figure A.3 Linear Relationship of Objective Functions (2 Failing Arcs)
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Figure A.4 Linear Relationship of Objective Functions (3 Failing Arcs)

35 T T T T

0 -
l&m) 25 -l
o
ub(m) 20 - -
-+

15+ -

10 l ] | I

0 2 4 6 10




Appendix B. Network Bounds

B.l]  GAMS Model for Lower Bound Network Flow

GAMS 2.20 VAX VMS 3-JAN-1994
THREE-USER COMMUNICATION NETWORK (LOWER BOUND)

3
4 SETS

5 I arcs /1 * 16/
6 K O-D pairs / USER1 * USER3/
7 P paths / PATH1 * PATH10/;
8

9 PARAMETERS

10 B{K) 0-D pair volumes

11 / USER1 8

12 USER2 6

13 USER3 5 /

14

15 C(I) arc costs

16 /1 2

17 2 1

18 3 2

19 4 3

20 5 1

21 6 3

22 7 3

23 8 2

24 9 2

25 10 1

26 11 1

27 12 3

2 1 3

29 14 2

30 15 2

31 16 2/

32

33 U(1) arc capacities

34 /1 7

35 2 5

36 3 5

37 4 10

38 5 4

39 6 8

40 7 4

41 8 10

42 9 5

43 10 3

44 11 S

45 12 9

46 13 10

47 14 9

48 15 6

49 16 4/

50




51 R(I) arc reliabilities

52 /1 1

53 2 .95

54 3 1

55 4 1

56 5 .98

57 6 .98

58 7 1

59 8 .7

60 9 8

6l 10 1

62 11 1

63 12 1

64 13 1

65 14 .98

66 15 .95

67 .16 .95 / ;

68

69 TABLE D(P,K) path-user assignment matrix

70 USER1 USER2 USER3

71 PATH1 1

72 PATH2 1

73 PATH3 1

74 PATH4 1

75 PATHS 1

7€ PATHG6 1

77 PATH7 1

78 PATHS 1

75 PATHS i

80 PATH10 1

81

2 TABLE A(P,K,I) path-arc incidence matrix by user

83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
84 PATH1.USER1 1 1 1 1

85 PATH2.USER1 1 1 1 1
86 PATH3.USER1 1 1 1 1

87 PATH4 .USER1 1 1 1 1
88 PATHS.USER2 1 1 1 1

89 PATH6.USER2 1 1 1 1
90 PATH7.USER2 1 1 1 1

91 PATH8 .USER2 1 1 1 1
92 PATH9.USER3 1 1 1 1

93 PATH10.USER3 1 1;
94

95 PARAMETER EU(I) expected arc capacities ;

96

gg EU(I) = R(I) * U(I) ;

99 PARAMETER CP{P,K) path costs;
100
101 Cp(P,K) = SUM(I, D(P,K) * A(P,K,I) * C(I)) ;
102
103 VARIABLES
104 F(P,K) amount of flow on path p from user k
105 Z total costs (in equivalent miles) ;
106
107 POSITIVE VARIABLE F ;
108
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109 EQUATIONS

110 COST define objective function

111 VOLUME (K) satisfy O-D pair volume demands

112 CAPACITY (I) satisfy arc capacity constraints ;

113

114 COST .. Z =E= SUM(K, SUM(P, CP(P,K) * D(P,K) * F(P,K))) :
115

116 VOLUME (K) .. sum(», D(P,K) * F(P,K)) =E= B(K) :

117

118 CAPACITY(I) .. SUM((K,P), A(P,K,I) ~ F(P,K)) =L= EU(I}) ;
119

120 MODEL NK3LB /ALL/ ;

121

122 SOLVE NK3LB USING LP MINIMIZING Z ;

123

124 DISPLAY F.L;

125

126 PARAMETER FARC (I) arc flows;

127

128 FARC(I) = SUM(P, SUM(K, A{(P,K,I) * F.L(P,K))}):

129

130 DISPLAY FARC;

131

132 PARAMETER ROUTE (I, K) routing matrix;

1A

134 ROUTE (I,K) = (SUM(P, A(P,K,I) * F.L(P,K))) / B(K);

135

136 DISPLAY ROUTE;

137

138 PARAMETER BI(I,K) arc-user assignment matrix;

139

140 BI{I.K) = 1${suM{(P, A(P,K,I) * F.L(P,K)) GT 0);

141

142 DISPLAY BI;

143

144 PARAMETER PROP (1) proportion of flow on arc i for users k of i;
145

%46 PROP(I) = FARC{(I) / (SUM(KS(BI(I,K) NE 0}, BI(I,K) * B(K))):
47

148 DISPLAY PROP;




B.2  GAMS Model for Upper Bound Network Flow

GAMS 2.20 VAX VMS 3-JAN-1994
THREE-USER COMMUNICATION NETWORK (UPPER BOUND)

3
4 SETS
5 1 arcs /1 * 16/
6 K O-D pairs / USER1 * USER3/
7 P paths / PATH1 * PATH10/:;
8
9 PARAMETERS
10 B (K) O-D pair volumes
11 / USER1 8§
12 USER2 6
13 USER3 5 /
14
15 C(I) arc costs
16 /1 2
17 2 1
18 3 2
19 4 3
20 5 1
21 6 3
22 7 3
23 8 2
24 9 2
28 101
26 11 1
27 12 3
28 13 3
2 14 2
30 15 2
31 16 2/
32
33 U(I) arc capacities
34 /1 7
35 2 5
36 3 5
37 4 10
38 5 4
39 6 8
40 7 4
41 8 10
42 9 5
43 10 3
44 11 5
45 12 9
46 13 10
47 14 9
48 15 6
49 16 4/
50
51 R(I) arc reliabilities
52 /1 1
53 2 .95
54 3 i
55 4 1
56 5 .98
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57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
1nN2

iV

104
105
106
107
108
109
110
111
112
113
114
115
116

6 .98
7 1

8 .7
9 .8
10 1
11 1
12 1
13 1
14 .98
15 .95
16 .95/

RP(P) path reliabilities
/ PATH1 .98
PATH2 .98
PATH3 .6517
PATH4 .6517
PATHS .8
PATH6 .95
PATH7 .784
PATHS8 .931
PATHY .686
PATH10 .931 / ;
TABLE D(P,K) path-user assignment matrix
USER1 USER2 USER3
PATH1 1
PATH2 1
PATH3 1
PATH4 1
PATHS
PATH6
PATH7
PATHS
PATHSY 1
PATH10 )

[

TABLE A(P,K,I)

PATH1.USER1 1 1

PATH2 .USER1 1

PATH3.USER1 1 1 1
PATH4 .USER1 1 1
PATHS5.USER2
PATH6.USER2
PATH7.USER2
PATH8.USER2
PATH9.USER3 1 1 1
PATH10.USER3

=

R ]
=
—
—

PARAMETER CP(P,K) path costs;
CpP(P,K) = SUM(I, D(P,K) * A(P,K,I) * C(I))
VARIABLES
F(P,K) amount of flow on path p from user k
2 total costs (in equivalent miles) ;

POSITIVE VARIABLE F ;
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path-arc incidence matrix by user
3 4 5 6 7 8 9 10 11 12

1
1

15

16




117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

a4

145
146
147
148
149
150
151
152
153
154
155
156
157
158
139
160
16l
162

EQUATIONS
COST define objective function
VOLUME (K} satisfy 0O-D pair volume demands
CAPACITY(I) satisfy arc capacity constraints ;
COST .. Z =E= SUM(K, SUM(P, CP(P,K) * D(P,K) * F(P,K})) ;
VOLUME (K) .. SUM(P, RP(P) * D(P,K) * F(P,K)) =E= B(K) ;
CAPACITY(I) .. SUM((K,P), A(P,K,I) * F{(P,K)) =L= U(I) :

MODEL NK3UB /ALL/ ;
SOLVE NK3UB USING LP MINIMIZING 2 ;
DISPLAY F.L;
PARAMETER FARC(I) arc flows;
FARC (I} = SUM(P, SUM(K, A(P,K,I) * F.L(P,K))):
DISPLAY FARC;
PARAMETER BU (K) reviged O-D demands;
BU(K) = SUM(P, F.L(P,K));
DISPLAY BU;
PARAMETER ROUTE (I,K) routing matrix;
ROUTE (I1,K) = (SUM(P, A(P,K,I} * F.L(P,K}))) / BU(K);
DISPLAY ROUTE;
PARAMETER BI (I, K) arc-user assignment matrix;
BI(I,K) = 1$(SUM(P, A(P,K,I) * F.L(P,K)) GT 0);
DISPLAY BI;
PARAMETER PROP (I} proportion of flow on arc i for users k of i:
PROP(I) = FARC(I) / (SUM(KS(BI(I,K) NE 0), BI(I,K) * BU(K))):
DISPLAY PROP;




B.3  Optimal Flow Pattems

The optimal arc flow values for both the lower and upper bound networks in both
the "normal” and "compromise” scenarios are illustrated in Figures B.1 and B.2. Note

that the thicker arcs in the "compromise" scenarios denote the "compromise” arcs.
P




Figure B.1 Lower Bound Network Flow Patterns

"Normal” Scenario
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Figure B.2 Upper Bound Network Flow Patterns

"Normal" Scenario
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Appendix C. Monitor Location Models

C.1  GAMS Model for Lower Bound Monitor Placement

GAMS 2.20 VAX VMS 24-JAN-1994
THREE-USER COMMUNICATION NETWORK - LOCATION MODEL, N-SET (LOWER BOUND)
4 SETS
5 I arcs /1 * 16/
6 K O-D pairs / USER1 * USER3/
7 KP k' set /1, 2, 3, 4, 5/

8 PAIR(K,KP) k in k' / USER1.1, USER1.4, USER1.5,
g USER2.2, USER2.4,
10 USER3.3, USER3.5 /

11 J weight index /1 * 11/ ;
12

13 PARAMETERS

14 C(I) arc costs

15 /1 2

16 2 1

30 - 16 2/

31

32 U(I) arc capacities
33 /1 7

34 2 5

48 16 4 /

49

50 R{I} arc reliabilities
51 /1 1

52 2 .95

66 16 .95/

67

68 FARC(I) arc flow values
69 /1 3.25

70 2 4.75

71 3 2.08

72 4 5.33

73 5 3.92

74 6 4.18

75 7 3.92

76 8 4.75

77 9 3

78 10 3

79 11 5

80 12 6.82

81 13 4.18

82 14 8.82

83 15 5

84 16 3 /




83
86
87
88
89
90
91
g2
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
i1l

112
i1

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131

+oa

132
133
134
135
136
137
138
139
140
141
142
143
144

PROP (1) /arc flow proportions

1 .406
2 .594
3 .347
4 .381
5 .653
6 .522
7 .653
8 .594
9 .5
10 .5
11 0

12 .487
13 .522
14 .678
15 1

le .5 /

NSET (*) effecient solutions for varying weights ;

TABLE E(I,KP) arc-user coverage assignment matrix

1 2 3 4
1 1
2 1
3 1
4 i
5 1
6 1
7 1
8 1
9 1
10 1
11
12 1
13 1
14 1
15 1
16 1 ;
PARAMETER WA (I) remaining arc capacities ;
WA(I) = U(I) - FARC(I) ;
PARAMETER W(I) arc consideration;

W{I) = 1$(WA{(I) GT 0) ;

PARAMETER V(I) arc reliability to cost ratio;
V(I) = R(I) / C(I) :

SCALAR M number of monitors;
M=2;

SCALAR WEIGHT ;

WEIGHT = 0.0 ;
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145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

11
f

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188

189
100

Fa V]

191
192
193
194
195
196
197
198
199
200
201
202
203

VARIABLES
X(I,KP} binary monitor location decision variable
1

Y criterion function 1
Y2 criterion function 2
Y compromise function (Y1 and Y2) ;

BINARY VARIABLE X ;

EQUATIONS

CF1 objective function (CFl only)

CF2 objective function (CF2 only)

REDUND (KP) redundancy avoidance constraints

GOAL number of available monitors

COVER (K) minimum user coverage constraints ;
CFl .. Y1 =E= SUM(I, SUM(KP, E{(I,KP)*W(I)*V(I)*X(I,KP)))
CF2 .. Y2 =E= SUM(I, SUM(KP, E(I,KP)*W(I)*PROP(I)*X(I,KP)))
REDUND(KP) .. SUM(I, E(I,KP)*X(I,KP)) =L=1 ;
GOAL .. SUM(I, SUM(KP, E(I,KP)*X(I,KP))) =E= M ;
COVER(K) .. SUM (PAIR(K,KP), SUM(I, E(I,KP)*X(I,KP))) =G= 1 ;

MODEL OPTCF1 /CFl, REDUND, GOAL, COVER/ ;
MODEL OPTCF2 /CF2, REDUND, GOAL, COVER/ :

SOLVE OPTCFl1 USING MIP MAXIMIZING Y1 ;
SOLVE OPTCF2 USING MIP MAXIMIZING Y2 ;

DISPLAY "CFl1 AT OPTIMUM", Y1.L;
DISPLAY "CFZ2 AT OPTIMUM", Y2.L;

PARAMETER ALPHA (I) compromise coefficient ;

ALPHA(I) = W(I)*(((WEIGHT*V(I))/Y1.L) + (((1 -
WEIGHT) *PROP(I))/Y2.L)) ;

EQUATION
Cs compromise solution (CFl1 and CF2) ;

cs .. Y =E= SUM(I, SUM(KP, E(I,KP)*ALPHA(I}*X(I,KP)));

MODEL COMPSOL /CS, REDUND, GOAL, COVER/ ;

SOLVE COMPSQL USING MIP MAXIMIZING Y ;

NSET('1') = Y.L

SCALAR SHORT percent shortfall from ideal solution ;
SHORT = (1 - Y.L) * 100 ;

DISPLAY "PERCENT SHORTFALL FOR WEIGHT =", WEIGHT, SHORT ;

DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L ;

WEIGHT = 0.1 ;
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204 PARAMETER ALPHA(I) compromise coefficient ;
205

206 ALPHA(I) = W({I)*(((WEIGHT*V(I))/Y1.L) + (((1 -
WEIGHT)*PROP(I})/Y2.L)) :

207

208 SOLVE COMPSOL USING MIP MAXIMIZING Y ;

209

210 NSET('2') = Y.L

211

212 SCALAR SHORT percent shortfall from ideal solution ;

213

214 SHORT = (1 - Y.L) * 100 ;

215

216 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;

217

218 DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L :

219

220 WEIGHT = 0.2 ;

221

222 PARAMETER ALPHA(I) compromise coetficient ;

223

224 ALPHA(I) = W(I)*(((WEIGHT*V(I))/Y1l.L) + (((1 -
WEIGHT) *PROP(I))/Y2.L)) ;

225

226 SOLVE COMPSOL USING MIP MAXIMIZING Y ;

227

228 NSET{'3') = Y.L

229

230 SCALAR SHORT percent shortfall from ideal scolution ;

231

232 SHORT = (1 - Y.L) * 100 ;-

233

234 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;

235

236 DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L ;

364 WEIGHT = 1.0 ;

365

366 PARAMETER ALPHA(I) compromise coefficient ;

367

368 ALPHA(I) = W(I)*({((WEIGHT*V(I))/Y1l.L) + (((1 -
WEIGHT)*PROP(I))/Y2.L)) ;

369

370 SOLVE COMPSOL USING MIP MAXIMIZING Y ;

371

372 NSET('11') = Y.L

373

374 SCALAR SHORT percent shortfall from ideal solution ;

375 '

376 SHORT = (1 - Y.L) * 100 ;

377

378 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;

379

gg? DISPLAY "MONITOR LOCATION STRATEGY (LOWER BOUND)", X.L :

382 DISPLAY NSET ;
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C.2  GAMS Model for Upper Bound Monitor Placement

GAMS 2.20 VAX MS

THREE-USER COMMUNICATION NETWORK - LOCATION MODEL, N-SET (UPPER BOUND)

24-JAN-1994

4 SETS

5 I arcs /1 * 16/

6 K 0-D pairs / USER1 * USER3/
7 Kp k' set /1, 2, 3, 4, 5/
8 PAIR(K,KP) k in k' / USER1.1, USER1.4, USER1.5,
9 USER2.2, USER2.4,
10 USER3.3, USER3.5 /
11 J weight index /1 * 11/ ;

12

13 PARAMETERS

14 C(I) arc costs

15 /1 2

le 2 1

30 . 16 2/

31
32 U(I) arc capacities

33 /1 7
34 2 5
48 16 4 /
49
50 R(I) arc reliabilities

51 /1 1

52 2 .95

66 16 .95 /

67

68 FARC(I) arc flow values

69 /1 7
70 2 1.749
71 3 2.86
72 4 9.8¢
73 5 4

74 6 5.12
75 7 4
76 8 1.749

77 9 3
78 10 3
79 11 5
80 12 7.489
81 13 5.12
82 14 9
83 15 5.371

84 16 3.8¢6 /
85
86 PROP(I) arc flow proportions
87 1 .8
88 2 .2
89 3 .417
90 4 .632

C-5




91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
116
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

NSET (*)

TABLE E(I,KP)

PARAMETER WA (I}

WA (I)

PARAMETER W(I)
W(I)
PARAMETER V(I)

V(I)

SCALAR WEIGHT

5 .583
6 .585
7 .583
8 .2

9 .437
10 .437
11 0

12 .48
13 .585
14 .637
15 1

16 .563 /

effecient solutions for varying weights ;

arc-user coverage assignment matrix
1 2 3 4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 ;
remaining arc capacities ;
= U(I) - FARC(I) :
arc consideration;
= 1$(WA(I} GT 0) ;

arc reliability to cost ratio;

R(I} / C(I)

NUmoer ¢I mMonitor s,
:2 .
’

;

WEIGHT = 0.0 ;

VARIABLES
X (I,KP)
Y1l

Y2
Y

binary monitor location decision variable
criterion function 1

criterion function 2

compromise function (Y1l and Y2) ;
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151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
L

178
17

180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
186
197
198
199
200
201
202
203
204
205
206

207
208

BINARY VARIABLE X ;

EQUATIONS

CFl objective function (CFl only)

CF2 objective function (CF2 only)

REDUND (KP) redundancy avoidance constraints

GOAL number of available monitors

COVER (K) minimum user coverage constraints ;
CFl .. Yl =E= SUM(I, SUM(KP, E(I,KP)*W(I)*V(I)*X(I,KP))) :
CF2 .. Y2 =E= SUM(I, SUM(KP, E(I,KP)*W(I}*PROP(I)*X(I,KP)))
REDUND(KP) .. SUM(I, E(I,KP)*X(I,KP)) =L= 1 ;
GOAL .. SUM(I, SUM(KP, E(I,KP)*X(I,KP))) =E=M ;
COVER(K) .. SUM(PAIR(K,KP), SUM(I, E(I,KP)*X(I,KP)}) =G=

MODEL OPTCF1 /CFl, REDUND, GOAL, COVER/ ;
MODEL OPTCF2 /CF2, REDUND, GOAL, COVER/ ;

SOLVE OPTCF1 USING MIP MAXIMIZING Y1 ;
SOLVE OPTCF2 USING MIP MAXIMIZING Y2 ;

DISPLAY "CFl1 AT OPTIMUM", Y1.L;
DISPLAY "CF2 AT OPTIMUM", YZ2.L:

PARAMETER ALPHA (I) compromise coefficient :

ALPHA(I) = W(I)* (((WEIGHT*V(I))/Y1.L) + (((1 ~-
WEIGHT) *PROP(I)}/Y2.L)) :

EQUATION
Cs compromise solution (CFl and CF2) ;

cs .. Y =E= SUM(I, SUM(KP, E(I,KP)*ALPHA(I)*X(I,KP)));
MODEL COMPSOL /CS, REDUND, GOAL, COVER/ ;

SOLVE COMPSOL USING MIP MAXIMIZING Y ;

NSET('1') = Y.L

SCALAR SHORT percent shortfall from ideal solution ;

SHORT = /1 - Y
(W23 [y i

Jia

L) * 100

DISPLAY "PERCENT SHORTFALL FOR WEIGHT =", WEIGHT, SHORT ;
DISPLAY "MONITOR LOCATION STRATEGY (UPPER BOUND)", X.L ;
WEIGHT = 0.1 ;

PARAMETER ALPHA(I) compromise coefficient ;

ALPHA(I) = W(I)*(((WEIGHT*V(I))/Y1l.L) + (((1 -
WEIGHT)*PROP(I))/Y2.L)) ;

SOLVE COMPSOL USING MIP MAXIMIZING Y ;
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209

210 NSET('2') = Y.L

211

212 SCALAR SHCRT percent shortfall from ideal solution ;

213

214 SHORT = (1 - Y.L) * 100 ;

215

216 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;

217

218 DISPLAY "MONITOR LOCATION STRATEGY (UPPER BOUND)", X.L ;

364 WEIGHT = 1.0 ;

365

366 PARAMETER ALPHA (I) compromise coefficient ;

367

368 ALPHA(I) = W(I)*({(WEIGHT*V(I1})/Y1.L) + (((1 -
WEIGHT) *PROP(I))/Y2.L})) ;

369

370 SOLVE COMPSOL USING MIP MAXIMIZING Y ;

371

372 NSET('11') = Y.L

373

374 SCALAR SHORT percent shortfall from ideal solution ;

375

376 SHORT = (1 - Y.L) * 100 ;

27"

211

378 DISPLAY "PERCENT SHORTFALL FOR WEIGHT 1 =", WEIGHT, SHORT ;

379

380 DISPLAY "MONITOR LOCATION STRATEGY (UPPER BOUND)", X.L ;

381

382 DISPLAY NSET ;
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Appendix D. Algorithm Results for Strategy S1

D.1  GAMS O-D Estimation Model (Both Bounds)

GAMS 2.20 VAX VMS 26-JAN-1994
THREE-USER COMMUNICATION NETWORK - O-D ESTIMATION MODEL (LB & UB)

4 SETS

5 S selected arcs (monitors) /4, 12, 15/

6 K O-D pairs / USER1 * USER3/

7 B network bounds / L, U/

8 P norm exponents / pl, p2, pn / ;

9

10 PARAMETERS

11 BL (K) 0-D pair external flow (lower bound)
12 / USER1 8

13 USER2 6

14 USER3 5 /

15

16 BU (K) 0-D pair external flow (upper bound)
17 / USER1 8.749

18 USER2 6.86
%9 USER3 5.371 /

0
21 FARCL (S) observed flow on selected arcs (LB)
22 / 4 5.33
23 12 6.82
24 15 5 /

25

26 FARCU (S) observed flow on selected arcs (UB)
27 / 4 9.86

2 12 7.489

29 15 5.371 /

30

g% F(*,*,*) 0O-D estimate report ;

33 TABLE GL(S,K) routing matrix for selected arcs (LB)
34 USER1 USERZ2 USER3

35 4 .41 .35

36 12 .48 .50

37 15 1;

38

39 TABLE GU({S,K) routing matrix for selected arcs (UB)
40 USER! USER2 USER3

41 4 .8 .42

42 12 .42 .56

43 15 1 ;

44

45 VARIABLES

46 FL (K) 0-D demand estimates for pair k (LB)
47 FU (K) O-D demand estimates for pair k (UB)
48 DM (K) deviational measure (minus)

49 DP (K) deviational measure (plus)

50 D(K) sum of deviational measures

51 \'4 variable used in p=infinity
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592

-l

53
54
55
56
57
58
59
60

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

17
i

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100

101

1NN
IRy

103
104
105
106
107
108

109

1 D= € i
y! P=1 function

Y2 p=2 function
YN p=infinity function ;

POSITIVE VARIABLES FL, FU, DM, DP, D, V ;

EQUATIONS
R1 P=1 norm
R2 p=2 norm
RN p=infinity norm
DEV (K) sum of deviational variables
GOALI1 (K) constraint for p (inf)
GOAL2L (K) constraint for p (1 2 inf) LB
GOAL2U (K) constraint for p (1 2 inf) UB
ARCL (S) arc flow counts (LB)
ARCU(S) arc flow counts (UB) ;
R1 .. Yl =E= SUM(K, (DM(K) + DP(K))) ;
R2 .. Y2 =E= SUM(K, (DM(K)**2 + 2*DM(K)*DP(K) + DP(K)**2))
RN .. YN =E=V ;
GOAL1 (K) .. V - DM(K) - DP(K) =G= 0 ;
GOAL2L(K) .. FL(K) + DM(K) - DP(X) =E= BL(K)
GOAL2U(K) .. FU(K) + DM(K) - DP(K) =E= BU(K) :
ARCL(S) .. SUM(K, GL(S,K) * FL{(K)) =E= FARCL(S) ;
ARCU(S) .. SUM (K, GU(S,K) * FU(K)) =E= FARCU(S) ;

MODEL P1LB /R1, GOAL2L, ARCL/ ;
SOLVE P1LB USING LP MINIMIZING Y1 ;
F(K,'L','pl') = FL.L(K) ;

MODEL P2LB /R2, GOAL2L, ARCL/ ;
SOLVE P2LB USING NLP MINIMIZING Y2 ;
F(K,'L','p2') = FL.L(K) :

MODEL PNLB /RN, GOAL1l, GOAL2L, ARCL/ ;
SOLVE PNLB USING LP MINIMIZING YN ;
F(K,'L','pn') = FL.L(K) ;

MODEL P1UB /R1, GOAL2U, ARCU/ ;
SOLVE P1UB USING LP MINIMIZING Y1 ;
F(K,'U",'pl') = FU.L(K) ;

MODEL P2UB /R2, GOAL2U, ARCU/
[alaYhtan] ko) IT\YTIIYHI

SOLVE P2UB USING NLP MINIMIZ

F(K,'U','p2') = FU.L(K) :

;
I\ ol 2o BN
No 12 ,

MODEL PNUB /RN, GOALl, GOAL2U, ARCU/ ;
SOLVE PNUB USING LP MINIMIZING YN ;
F(K,'U','pn’) = FU.L(K) ;

DISPLAY 'O-D ESTIMATES', F;
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D.2  Strategy Sl

Experiment #1, Strategy S1 = (4, 12, 15)
- relaxed equality constraints for compromise estimates

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
Target: "Normal" Estimates: "Compromise” Estimates:
8 8.749) 7.514 8.749 10.317 8.749
b=|6 6.86} Fy =|6427 6811 Fc=| 6 6811
\s s3m/ \ s s3n/ | s s3n/
Deviations:
Y =b by l)Nk :FNk,ZbFNk,l DCk:FCk,z—FCk,l
{ 0.749 | /1.235 \‘ [-1.568}
{
Y=|086 | Dy = 0384 Do=|0811)
0371 / 1037 \o3n
Z (D N Y‘) 2
Estimation Emmor, MSE o (o o - k MSE ., =0.154
. . t
Compromise Metrics:

Individual Confidence Interval for E(Y;):

_ L f \
ELCL, =Yhat - 2 52 m:k-q’MSEm;

EUCL, - Yhat - ‘2. a2 Yhat, - MSE o, |

0.335 {0.749 | [1.833}
ELCL=|-0266 Yhat=|0616, EUCL= 1497
i . i {
-0.266. 10.616; 1.497/
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Compromise Estimates:
1.568) So, only O-D Pair k = 1 is outside its respective confidence

De= \ 0811  jnterval. Conclude that User 1 is the
10371, source of compromise.

Joint Confidence Interval for E(Y):

JLCL = Ybar- (2- JM-tSE+ JMsE ,ﬁ>

JUCL =Ybar+(2~ )M—SE--Q- fMSE”t
ioN ot

JLCL =-0.132  Ybar =0.66 JUCL =1.452

Compromise Mean Estimate:
Dbar (- ‘=mean ( D C)

Here, however, can not conclude that a compromise has

Dbar c= -0.129
occured.
Graph:
2 )
’ T T T | T T T 7
Y
k
*3 L5 . -
Vhoty o
Ybar
e . -
Dy X
o %
Ec, 0 TTTTTTTTTTETETTTT IO
""" [0 o -
EUCL, [
JLCL
- B 4
we °C
-5 ] | 1 | ] ] 1
-1 0.5 0 0.5 1 1.5 2 25 3
%,




D.3  Initial Compromise Metric (Target Data Only)

ORIGIN=1
Bounds (1 =LB; 2 =UB) # of O-D Pairs O-D Index
1=1.2 t:=3 k=1.1
8 8749
Target O-D External Flows, b%: b =|6 6.86
\S 5371
Deviations, Y}:
0.749\
Yk =bk'2— bk,l Y=K0.86 )
0371
Regression Model:
. 2
Independent Variable, X;:  _{,
\o/

Xbar =mean(X) Xbar =0.667

Ybar =mean(Y) Ybar =0.66

Regression Parameters:

3 11X, Xbar) (Y, - Yiar) ]
k

bl = ) bl =0067
D (X Xber
k
Fitted Line: , .
/0.749\
Yhat =bo-b; X~ Yhat=| 0616
ko.ens,
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Analysis of Variance:
Sum of Squares: Mean Squares:
- 2 -
SSTO -Z(Yk- Yoar) SSTO =0.131
k
- / \ 2 - _SSR _
SSR =) (Yhat - Yar)>  $SR=0012 MSR === MSR=0012
k
_ 2 _ _SSE ~
SSE -g(vk_ Yhat ) SSE=0.12 MSE = MSE=012

Compromise Metrics (Target Data Only):

Individual Confidence Interval for E(Y;), where we scale the intervals by a factor of :

[ y v2 ] [0.12)
1 (X - Xbar)® | 1
2 =MSE | — + ——— | 2 =10.06
. }t Z(xrx"“)2| b \0.06/)
{ k J

LCLk = Yhatk - 2-M‘s2 Yhatk UCLk = Yhatk-f- 2 |52 Yhm.k

A
v \j

10.057" 10.749" [1.441}
LcL='0127! Yhat=|0616] uUCL=|1.105!
L0127/ 10,616/ \ 1105/

Joint Confidence Interval for E(Y), where we scale the intervals by a factor of 2

. —
JLCL - Ybar- 2. 'MSE JUCL = Ybar - 2. |MSE

Lt N

JLCL =0.261 Ybar=066 JUCL =1.059




Graph:

L5

1
1 I | { 3
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4
e
X
1 | 1
-1 0 1 2




Appendix E. Experiment #1 Results

E.l1 Strategy S2

Experiment #1, Strategy S2 = (4, S, 14)

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i =1.2 t =3 k=1.t
O-D External Flows: p=1,2 and inf
Target: "Normal” Estimates: "Compromise" Estimates:
/s 8.749\ /7.852 8.704\ /10.291 8.704
b = l6 6.86 FN = \6.031 6.897, Fe ‘=\ 6.031 6.897
\s 5371/ |5.051 5344/ | 3.88 5344/
Deviations:
Y, =b . -b Dy =FN -F Do =F~ -F
Eok2 Tkl Ne NG TN GG G
{’ 0.749 1 0.852} [-1.587
Y=\086 | Dy = 0866 | Dc=| 0366 |
0371/ 10293/ | 1.464/
Z S/D N Yk\} 2
o N T
Estimation Error, MSE,: MSE , - k t MSE _, =0.006
Compromise Metrics:
Individual Confidence Interval for E(Y}):
. _ [, p— _ {
ELCL, = Yhat, - |2 52 yigy ~ MSE o EUCL, = Yhat + f\z-N{sz Yhat + yMSE m)
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fo.on\ /0.749\ [1515:
ELCL=/0052. Yhat=|0616; EUCL=) 1179
\o.osz / 0.616/ 1.179;

Compromise Estimates:

f“*’\‘ So, both O-D Pairs k = 1 and 3 are outside their respective
D =10866,  confidence intervals. Conclude that either one or both are
\1464/  contributing sources of compromise.

Joint Confidence Interval for E(Y):

’ MSE_ = \
JLCL - Vbar- (2 ME . MsE \ JUCL = Ybar+ |2 [MSE | [MSE o |
'\.’ t N / At N est)

JLCL =0.186 Ybar = 0.66 JUCL =1.134

Compromise Mean Estimate:

Dbar - =mean{D ¢

Here, however, can not conclude that a compromise has

Dbar (- =0.248
occured.




E.2 Strategy S3

Experiment #1, Strategy S3 = (4, 5, 15)

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
O-DExtgmalFlows: p=1,2 and inf
Target: "Normal" Estimates: "Compromise” Estimates:
8 8.749 7.852 8.704 (10.291 8.704)
b=[6 686 Fy =|6.031 6897 Fc = 6031 6897
\s 537/ | s s3n/ | s s3n/
Deviations:
Yty DNk.:FNk,Zika,l Dck.:FCk,z_FCk.l
[0.749) [0.852) [-1.587)
Y={o.ss ‘ DN={0.866! D =| 0866
\0.371 | 10371/ \0.371 |
Z D Nk - Yk\'- 2
. . \ !
Estimation Error, MSE ., MSE ., - k MSE o, =0.004
t
- Compromise Metrics:

Individual Confidence Interval for E(Y}):

S : !
ELCLk =Yhatk- {2‘_552 Yhatk - ‘:‘!MSE “‘,’

\

EUCL, - Yhat - 2 52 Yhat, ~ MSE ;|

-0.002 j0.749 15 4
[ | ] | ! i
ELCL =! 0.067 Yhat={ 0616 EUCL=| 1.164
t j * ;‘
10.067 \o.616/ L1164/
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Compromise Estimates:

[1387) 8o, only O-D Pair k = 1 is outside its respective confidence
De= \ 0.866 | interval. Conclude that User 1 is the contributing source of

0371/  compromise.

Joint Confidence Interval for E(Y):
[ aQE \

JLCL = Ybar - ‘\2[MS - |MSE o

m

t

e |
= 7-! . !———4-
TUCL = Yoar - {2 | =5 [MSE o

m

JLCL =0.201 Ybar =0.66 JUCL =1.119

Compromise Mean Estimate:

Dbar  =mean{D .
Here, can also conclude that a compromise has

Dbar - =-0.117 ocoted
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E.3  Strategy S4
Experiment #1, Strategy S4 = (4, 14, 15)

ORIGIN=1

Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
O-D External Flows: p=1,2and inf
Target: "Normal" Estimates: "Compromise” Estimates:
/s 8749\ /7 958 8.64 /7958 864\
k(’ 686} Fy - l5906 7.018 Fc = l8763 7018)
\S 5.371 5 537 5 537
Deviations:
Yo b PN :FNk.2‘FNk,I Pc, =FCk,2—FCk,1
0.749! /0.682! 10.682 !
Y=|086 Dy={ 1112 Dc= -1.745)
0.371 10371 0.371
. _ \2
o Z s U
Estimation Error, MSE ., MSE ., - k MSE ., =0.023
t
Compromise Metrics:
Individual Confidence Interval for E(Y}):
ELCL, =Yhat, - '\2~ 82 Yhat, - MSE g
BUCL, = Yhat, - ‘2 1s2 ypyy - . MSE m}\,
[-0.093 [0.749\ [1.591}
ELCL =-0.024 = { 0616 EUCL=|1255
\ L
-0.024; | 0.616 | 1.255
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Compromise Estimates:

0.682 So, only O-D Pair k = 2 is outside its respective confidence
D¢ =-1.745 ) interval. Conclude that User 2 is the contributing source of
0.371 compromise.

Joint Confidence Interval for E(Y):

neL -vour_ |2 MO IMSE o,

T

JUCL - Ybar + {2- !ﬂfi /MSEm\,
VN /

JLCL =0.11 Ybar =0.66 JUCL =1.21
Compromise Mean Estimate:

Dbﬂl‘C :mean<DC;

Dbar - =-0.231 Here, c;m also conclude that a compromise has
occured.
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E.4 Strategy S5

Experiment #1, Strategy S5 = (5, 14, 15)

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
Target: "Normal” Estimates: "Compromise” Estimates:
8 8.749! /7.958 8.64 7958 8.64 |
b=16 686 Fy = 16031 6.897} Fe =16.031 6.897!
s 5371, \ 5 5371 5 5.371/
Deviations:
Yo Bty DN CFN PN De, *Fe, ,"Fc
[0.749 [0.682 \ { 0.682 \
Y=| 086 } Dy= 0866 DC=.\0.866.
0371 10371/ 10371 ,}
/ 2
Z (\ D N~ Yk?
Estimation Error, MSE ., MSE o, = k. MSE , =0.002
. . t
Compromise Metrics:

Individual Confidence Interval for E(Y}):

1

/ H — \
ELCL, =Yhat, - (2 52 yhay - IMSE .|

[0.019° [0.749 /1.479)
ELCL =: 0088  Yhat={0616: EUCL=! 1143,
¢ | It H i
10.088 10.616; 11.143]
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Compromise Estimates:

0.682 So, no O-D Pairs are outside their respective confidence

D¢= \ 0.866 } interval. Conclude that no compromise exists.
0.371

i

Joint Confidence Interval for E(Y):

JLCL =0.222 Ybar =0.66 JUCL =1.098

Compromise Mean Estimate:

Dbar ¢~ :mean(DC;

Here, can not conclude that a compromise has

occured.




Appendix F. Experiment #2 Results

F.1 Strategy S6

Experiment #2, Strategy S6 = (4, 12)
- relaxed equality constraints for compromise estimates (LB only)

ORIGIN=1

Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
O-D External Flows: p=1,2 and inf
Target: "Normal" Estimates: "Compromise" Estimates:
[8 8.749\ [1.514 8.749) [10.317 8.749)
b :(6 686 |  Fy -|6427 681l Fo=| 6 6811
5 5_371/ s s3m \ 5 5.371)
Deviations:

Y =b, _-b D =F -F D =F -F
k k2 k.l Nk Nk,2 Nk,l Ck Ck’2 Ck’l

/ 0.749 | [1.235 ;’—l.568\
!
Y={086 | Dy=| 0384’ D¢ =081
\o37n/ L0371 Y
Z’/DN - Yk\iz
L W T
Estimation Error, MSE ,: MSE , - k t MSE ., =0.154
Compromise Metrics:

Individual Confidence Interval for E(Y}):

[ f \
ELCL, =Yhat - {2 s2 - IMSE | EUCL, =Yh +(2' s2 + IMSE ]
k o s Yhmk J st/‘ Lk at, \ J Yhatk N S at/
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[0.335) 0.749 [1.833)
F_LCL-H.zss) Y\m-(o.sls) EUCL =| 1.497 )

{-0.266/ \0.616/ 11497/

Compromise Estimates:
(_' '568\ So, only O-D Pair k = 1 is outside its respective confidence
D C =

0811  jinterval. Conclude that User 1 is the source of
l0371/  compromise.

Joint Confidence Interval for E(Y):
MSE |
JLCL =Ybar- {2 (—— + [MSE
( {70 T )

JUCL:=Ybar+(2- }@E+N/MSE \
N ot

JLCL =-0.132  Ybar =0.66 JUCL =1.452

Compromise Mean Estimate:
Dbar - =mean/D ¢

Dbar ¢ =-0.129 Here, }:;)wever, can not conclude that a compromise has
occured.
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F.2 Strategy S7

Experiment #2, Strategy S7 = (4, 15)
ORIGIN=1

p=1.3 lp-norm exponents (where 3 = infinity)
t=3 # of O-D Pairs
k=1.t O-DIndex

O-D External Flows: "Normal” Estimates:

Target: Lower Bound Upper Bound
8 s.749\ /7.878 7.929 7.934 /8.723 8.729 s.732\
b=i6 6.86} Flby=! 6 594 5934 Fuby =/ 686 685 6.843
\5 537 5 5 5 5371 5371 5371/

"Compromise" Estimates:
10317 934 925 8.723 8.729 8.732|
Flbc =| 6 7144 725 Fubp'=| 686 685 6.843}
5 5 5 5371 5371 5.371]
Deviations:

Y, =b, .- b D =Fub - Flb D =Fub - Flb
kK k2 k1 Nk’p Nk,p Nk’p Ck’p Ck’p Ck,p

0.749\\ /0845 08  0.798| ~1.594 -0.611 -0.518
Y=|086 | DN=1086 091 0909 Dc={086 -0.294 -0.407
; !
\0.371/ 10371 0371 0371/ 10.371 0371 0371/
Estimation Error, MSE ;: Z Dy - Y\
~. Np K [0.0031 \
- - !
MSE et - , MSE ., = .\ 0.0017 5
. . 0.0016;
Compromise Metrics:

Individual Confidence Interval for E(Y}):

. [y, 3
ELCL, , =Yhat, - (2 52 ypgy = MSE o \

[
| Euey, =Yhatk+(2-N"52Yhatk+ JMSE et |

p/
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0.002 0016 0017 0.749 1.496 1482 1481\
ELCL =| 0.071 0.085 0.086 | Yhat= o.slcj EUCL=i1.16 1.146 1.145!

0.071 0.085 0.086 0.616 | 1.16 1146 1.145/
Compromise Estimates:
p=1. ELCL DCU EUCL, |
0.002 -1.594 1.496 User 1 is the source of
0.071 ‘ 0.86 1.16 compromise
|0.071 0.371 1.16
=2 ELcL,, P°cC EUC
P . \2 k.2 .2
0.016 -0.611 1.482 Users 1 and/or 2 are the sources
0.085 -0.294 1.146 of compromise
[0.085 0.371 1.146
=inf ELCL_, °C EUCL
p . k.3 k3 3
0.017 -0.518 1.481 Users 1 and/or 2 are the sources
0.086 -0.407 1.145 of compromise
0.086 0.371 1.145
Joint Confidence Interval for E(Y):
[ sE ) P M s
— H | - !
JLCL, =Ybar- (2. /=== [MSE ot ) JUCL = Ybar + “.2}!7 MSE .,
[0205} [1118]
JLCL=:0219 .  Ybar=066 JUCL =| 1.101}
10221/ | 1.099/

Compromise Mean Estimates:

D
C, \
; k.p [01211 " Here, can conclude for each level of p
Dbarc =-————  Dbarc=|-0178|  that a compromise has occured.
p t |
\-0.185
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F.3  Strategy S8

Experiment #2, Strategy S8 = (12, 15)

ORIGIN=1
p=1.3 lp-norm exponents (where 3 = infinity)
t=3 # of O-D Pairs
k=1.t O-DIndex
O-D External Flows: "Normal" Estimates:
Target: Lower Bound Upper Bound
8 8749 / 8 798 798 /8.749 8.726 8.72]\
b =16 686 J Fib =\5.96 5979 598 } Fub =‘6.811 6.829 6.832 }
\s 5.371) s s 5 \5.371 5371 5371
"Compromise" Estimates:
/ 8 798 7.98 /8.749 8.726 8.721|
Flb - ={5.96 5979 5.98} Fub - =|6.811 6829 6.832
\ 5 5 s / 5371 5371 5371
Deviations:
Y, =b__-b D =Fuby - Flb D =Fub~ - Flb
k k2 Tk N Nep Nep Cp Cep Cep
0.749'\ l-' 0.749 0.746 0.741} 10749 0.746 0.741)
Y={086 | Dy=10851 085 0852 DC=( 0.851 0.85 o.ssz\
0371/ 10371 0371 0371/ 0371 0371 037/
Estimation Error, MSE ;. J \2 . -
Z‘DNkp‘Yk; 270100 |
k0 \ -
MSE o = , MSE ot =| 3.6333-10°°
p
| 4266710 |

Compromise Metrics:

Individual Confidence Interval for E(Y}):

[ i
ELCLk,p = Yhatk - (\2.,\‘; s2 Yhatk + A\!{N(SE 5tp>

F-5
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0.052 0.051 0.051) 10.749\ /1.446 1.447 1.447!

|
ELCL =| 0.121 012 0.12 | Yhat={ 0.616 EUCL=-\1.H 1111 l.lll‘g
!

0.121 012 0.12 0.616 L1l LI oy
Compromise Estimates:
p=1. Ec, °¢, Evcr,
[o.0s2]  Jo.749 1.446 No compromise
0.121 {0.851 1.11
[o-121 [0.371 1.11
=9. D¢
p=2. ELCL, K2 EUCL_,
) 0.051 0.746 1.447 No compromise
0.12 0.85 1.111
0.i2 0371 1111
- D¢
P= inf: ELCLR'3 3 EUCLk.3
0.051 0.741 1.447 No compromise
0.12 0.852 1111 '
0.12 0371 1.111
Joint Confidence Interval for E(Y):
[ IMSE [ MSE o)
JLCL =Ybar- 2 ,——+ MSE . | JUCL_ =Ybar+ |2 ——+ MSE g |
P VAt b P Ve e o/
| 0.256 1.064'
JLCL= 0255’ Ybar=066 JUCL=| 1065 ‘,
lo2s4 | 1.066,
Compromise Mean Estimates:
ZD Cep /0.657!
Dbar = -'f-t__ Dbar - = | 0.656 | No compromise
P | 0.655/
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F.4 Strategy S9

Experiment #2, Strategy S9 = (4, 5)

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
Target: "Normal" Estimates: "Compromise" Estimates:
/s 8.749/ /7 852 8.704 10291 8.704
b=l6 6.86\ Fy =16.031 6.897 Fc=| 6031 6897
\s 5371/ \'s s3n 5 531/
Deviations:
Y, =b, .- b Dy =Fy -F Do =Fr -F
kT2 Tkl NN, TTN G G S
0.749 | [0.852\ [-1.587)
Y=|086 Dy !oses} Do =| 03866
0.371 ‘\ 0.371/ 0.371
2
2PN
Estimation Error, MSE,: | - k MSE o, =0.004
. t
Compromise Metrics:
Individual Confidence Interval for E(Y}):
f
ELCL, = Yhat, - ( 2 V,!sz Yhat ~ - MSE &’) EUCL, = Yhat, - ( 2 Ms2 Yhat, " » MSE )
~0.002 [0.749 / L5 :,‘
ELCL =, 0067  Yhat=: 0.616 | EUCL—| 1164 |
10.067 10616 | 1.164/




Compromise Estimates:

[1:587 S0, only O-D Pair k = 1 is outside its respective confidence
0.866 interval. Conclude that User 1 is the source of
0371/  compromise.

DC=

Joint Confidence Interval for E(Y):

JLCL ‘= Ybar - (2- ,[“Ttsi + /MSEm}

N N

[ e \
JUCL = Ybar + HM_!SE + [MSE m/}

JLCL =0.201 Ybar =0.66 JUCL =1.119

Compromise Mean Estimate:

Dbar c- mean(D C.}

Here, can conclude that a compromise has

Dbar - =-0.117
occured.
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F.5 Strategy S10

Experiment #2, Strategy S10 = (4, 14)

3 Ip-norm exponents (where 3 = infinity)

"Normal” Estimates:

Lower Bound

7.958 7.932 7.934\
Flby =15.906 5.937 5.934
S 5013 5.012

Upper Bound

{8.724 8.726 8.717!
Fuby =686 6856 6873
5336 5.335 5339/

"Compromise” Estimates:

[ 8 9218 9.25|
i

18.714 7.287 725)
l498 4395 438

Fle =

Dy

=Fub
k.p Nk

- Flb
Nk,p

10.766 0.794 0.783\
Dy = 0954 0919 0.939},
10336 0322 0327]

Dy -Y\2
zk: Nk'p k!

t

MSE

est -~
p

ORIGIN=1
p=1.
t =3 # of O-D Pairs
k=1.t O-D Index
O-D External Flows:
Target:
'8 8749\
b = (6 6.86 \
\5 537
Deviations:
Yy =b - b
0.749\
Y= 0 86 \
\ 0371
Estimation Error, MSE
Compromise Metrics:

Individual Confidence Interval for E(Y}):

ELCL k.p

thtk— 2 Sthatk

\
MSE est )
P

F-9

[8.724 8726 8.7117\
6.836 6.856 6.873)
5336 5.335 5.339

Fllbc:

DC :Fubckp

- Flb
k,p Ck,p

10.724 0492 —0.533!
Dc= !—1.854 -0.431 0.377
10356 094 0959/

/0.0035

|

MSE o, =| 0.0026 |
| 0.0031

EUCL, , = Yhat, + ( ZJQ Yhat * Jmse “',)




-0.001 0.006 0.002 '\\ 0.749 / 1499 1492 1496 \‘
E.LCL=i 0.068 0.075 0.071}' Yhat=t 0.616, EUCL=[ 1.163 1.156 1.16 .
| 0.068 0.075 0.071' \0.616/ \ 1.163 1.156 1.16 '
Compromise Estimates:
D
p=1. ELCL,, "~ EUCL, ,
-0.001 0.724 1.499 User 2 is the source of
0.068 -1.854 1.163 compromjse
0.068 0.356 1.163
D¢
p= 2: ELCLk 2 x,2 EUCL, 2
0.006 -0.492 1.492 Users 1 and/or 2 are the sources
0.075 -0.431 1.156 Of compromjsg
0.075 0.94 1.156
—inf D¢
P= inf' ELCLk 3 k.3 EUC 3
0.002 -0.533 1.496 Users 1 and/or 2 are the sources
0.071 -0.377 1.16 ofcompromisc .
0.071 0.959 1.16
Joint Confidence Interval for E(Y):
I/ I[MSE ! {/ Iy \\
JLCL ) =Ybar- (2. ,——~ .+ MSE g, | JUCL_ = Yoar- |2 M3 fusE
P ot N sty P \ Aot N p}
/oAzoz}l /1.118\
JLCL=. 0209  Ybar=066 JUCL=, L1I1
. 0.205 ISRILE

Compromise Mean Estimates:
2p
C
k.p
k

t

/-0.258)
Dbar (~ = ' 0.006 |

DbarC =
P \o.o16;
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F.6 Strategy Sl
Experiment #2, Strategy S11 = (5, 14)

ORIGIN=1
p =1.3 lp-norm exponents (where 3 = infinity)
t =3 # of O-D Pairs
k =1.t O-D Index
O-D External Flows: "Normal” Estimates:
Target: Lower Bound Upper Bound
8 8.749' 8 7992 8 8749 8733 s.ns\
b =6 686 Flby =[6.031 6.031 6.031 Fub ) =|6.897 6.897 6.897 }
\S 5.371; 14.98 4.984 4.98} 5.325 5.332 5.334;
"Compromise” Estimates:
( 8 7992 8 \ 8.749 8.733 8.728\
Flb - =16.031 6.031 6.031’ Fub - =16.897 6.897 6.897
\4.98 4984 498 | 15.325 5.332 5.334)
Deviations:
Y, = -b D ‘=Fub - Flb D =Fub - Flb
kK k2 Okl Nk’p Nk'p Nk'p Ck'p Ck,p Ck’p
/0.749\ [0.749 0741 0728} 10.749 0.741 0.728‘.t
Y=:086 } DN=iO.866 0.866 0.866 DC={0.866 0.866 0.866!1
\0.371, 10345 0.348 0354/ 10.345 0348 0354
Estimation Error, MSE,: ; 12 s
Z.\D N~ ] 2373310 |
MSE o, = — : MSE o, =/ 2.0967°107 |
p 1

| 2553310 ¢

i
J

Compromise Metrics:

Individual Confidence Interval for E(Y,):

: \ [ N \
ELCL =Yhat - {2~ is2 - ,[MSE J EUC = Yhat + (2- |s2 MSE
k.p %1252 Yhat ~ est | Lo v 1% /5% Yhat + \/ est |
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[0.042 0043 0041} [0.749} [1.456 1455 1.457°
ELCL-(o.m 0.112 0.111)Yhn-!o.616} EUCL=| 112 1119 112

o1 0112 o111/ \0.616/ SRR IR P
Compromise Estimates:
p=1: ELcL, °C,  EUCL
0042]  [0.749 1.456 No compromise
0.111 [0.866 112
0.111 E).345 1.12
— . D¢
p=2: ELCL, k2 EUCL, ,
) 0043  [o0.7a41 1.455 No compromise
0.112 0.866 1.119
B.uz 0.348 1.119
= inf D¢
p=inf. ELCL_, k.3 EUCL, ,
0.041 0.728 1.457 No compromise
fo111 0.866 1.12
0.111 0.354 1.12
Joint Confidence Interval for E(Y):
’/ Y— l‘l I lr— \‘
MCL =Yoar- 2 /MSE_ ivep JUCL = Yoar- |2 MSE _ ivse |
P '\,\ ._“' t N pl |4 '\ \“ t '\J €s p,}
[0.245" [ 1075}
JLCL=, 0246 Ybar=066 JUCL=| 1074
10245 11.075
Compromise Mean Estimates:
Z D Cep 0653 ‘\ _
Dbarc = Dbarg=| 0.652 | No compromise
t ‘
? 0.649
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F.7 Strategy Si12

Experiment #2, Strategy S12 = (5, 15)

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i=1.2 t=3 k=1.t
O-D External Flows: p=1,2 and inf
Target: "Normal" Estimates: "Compromise” Estimates:
/s 8.749, [ 8 8.749\ / 8 s.749\
b=l6 68|  Fy-= 6031 6897 Fc =/6031 6897
\5 5371/ \ 5 537 ,’ \ 5 53N }
Deviations:
Vi TP by DNk‘:FNkJ*FNk,I DCk :FCk,2_FCk,l
0.749 0.749 | /0.749 \
| ! |
Y=086 | Dy = 0866 D, =) 0.866
( | N 1 j C /
lo3n/ 10371 0371

2
Z/DNK— Y,)
] k v ¢

t

Estimation Error, MSE ., _ -5
€s MSE MSE%t =1.2-10

est
Compromise Metrics:

Individual Confidence Interval for E(Y,):

\

/ : : ','
ELCL, =Vhat, - (2 52 ypye ~ /MSE g

/ ' ; \
EUCL, = Yhat, - |2 's2 ypy - MSE est)

l/ 0.054 " i0.749 ‘/' 1.444
| |

ELCL=.0.123  Yhat= 0616 EUCL=|1108 ]
10123 10616/ | 1.108/
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Compromise Estimates:

0.749)
De= 0.866) No compromise.
037

—

Joint Confidence Interval for E(Y):
MSE |
J T + MSE St)
JMSE p—
= - j—— + . /MSE
JUCL = Ybar + (2 I + est

‘JLCL =0.257 Ybar =0.66 JUCL =1.063

JLCL := Ybar - <2-

Compromise Mean Estimate:

Dbar (- = 0.662 Here, can not conclude that a compromise has
occured.
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F.8 Strategy S13

Experiment #2, Strategy S13 = (14, 15)

ORIGIN=1
Bounds # of O-D Pairs O-D Index
i=1.2 t'=3 k=1.t
O-D External Flows: p=1,2and inf
Target: “Normal" Estimates: "Compromise” Estimates:
$.749 7.958 8.64 7958 8.64
b=|6 686 Fy=| 6 686 Fc=| 6 686
\s 537/ \ s s3n| \'s 537/
Deviations:
Y, =b, .- b Dy =Fyn -F D =Fc -F
ko k2 Tkl NN TN, G G TG,
0.749 / 0.682 \ 0.682
Y=|o086 | Dy=036 i Dc=|086
0.371] 10371 0.371/
2
L 2 SR
Estimation Error, MSE MSE ., - k MSE ., =0.001
. : t
Compromise Metrics:
Individual Confidence Interval for E(Y,):
{ ! i .
ELCL, =Yhat, - 2 52 Yhat, = /MSE ey
EUCL, = Yhat - '2 52 Vhat - . /MSE -t
AN K. . /
[0.019. [ 0.749 \.1 {i 1.479;
ELCL = 0.088 Yhat= 0616/ EUCL=| 1.143
: | | | i
10.088, 10,616/ 11.143
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Compromise Estimates:

0.682
Dc=|086 No compromise.
0371

Joint Confidence Interval for E(Y):

year |2 MSE_ s

JLCL = Ybar \2J_t‘+ MSE o,
—

JUCL =Ybar+(2-njg+ /Msast)

JLCL =0.222 Ybar =0.66 JUCL =1.098

Compromise Mean Estimate:

Dbar ¢ = mean./\D C":

Here, can not conclude that a compromise has

Dbar ¢ =0.638
occured.
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