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We have continued our study of chaos and coherence in dissipative partial differen-
tial equations that are "close" to being completely integrable. A review article has been
completed which discusses this subject in great detail. The title is "Whiskered Tori for
Integrable Pde's: Chaotic Behavior in Near Integrable Pde's" by David W. McLaughlin
and Edward A. Overman II. This discusses in detail the analytical theory and perturba-
tion theory for our study of chaos and coherence. It relates this theoretical work to our
computational experiments.

This paper is mainly concerned with studying the theory and application of the non-
linear Schr6dinger equation,

2iqt(x,t) + q,,,,(x,t) + 21q(x,t)12q(z,t) = 0.

This partial differential equation describes the evolution of the envelope, '(&, t), of a rapidly
oscillating wavetrain. It is applicable to many physical models, such as deep-water wave
theory and energy transport in many systems. One very practical application is in laser
optics. In fact, AT&T will be laying a fiber based on this nonlinear equation between the
United States and Asia in the late 1990's. The advantage of using a nonlinear fiber rather
than a linear fiber is that in a linear fiber a pulse will continue spreading out as it moves
down the fiber, and so many "repeaters" are needed to condense and amplify the pulse. In
a nonlinear fiber the nonlinearity can focus the pulse itself and prevent it from spreading
out.

This paper begins by discussing the possible behavior of the solutions of the nonlin-
ear Schr~dinger equation under weak perturbations. In the real world the mathematical
models of physical systems always involve some perturbations of the underlying NLS equa-
tion. Usually, the perturbation is treated as a small change in the unperturbed equation.
However, it is shown numerically that there is a wide range of possible responses under
weak perturbations. These range up to chaotic solutions, although the chaos itself is rather
low-Jimensional. This chaotic response is quite interesting because large-scale structures
are still present. The chaotic motion can be thought of as a localized structure which is
undergoing oscillations due to an underlying chaotic "bath".

Next, the analytical structure, that is, the inverse spectral transform, is developed in
order to be able to derive the solutions of the unperturbed NLS equation. In addition,
this theory is used to explain the regular and the chaotic motion of the perturbed NLS
equation. This theory includes the introduction of a Morse function which shows the

N underlying geometric structure of the NLS equation. It shows the saddle point structure of
o the constants of the motion and the Bcdklund transformations which are used to derive the
m homoclinic orbits. With this geometric picture it is easy to understand the chaotic motion

W_ in the perturbed NLS equation. In addition, this analytic and geometric structure is used to
U • show that the numerical calculations are behaving exactly as the theory predicts. It is rare

+hat dynamical systems theory can be used to help explain the chaotic response of a high-
___ cumension system, such as a partial differential equation. Because of the combination of
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analytical and geometrical understanding which has been developed for the NLS equation,
it is possible to do so here. Also, this combination of theory and numerics allows us to
understand the role of the homoclinic orbits in the onset of chaos.

Finally, a Melnikov analysis of a perturbed model system, which is a low-mode trun-
cation of the perturbed NLS equation, is described. At present, dynamical systems theory
can only be applied in low-dimensional models. This model system is four-dimensional and
so we use the known homoclinic structure of the NLS equation, which can be continued
down to this model system, to study the onset of chaos in the perturbed system. Much of
the analysis which is developed here is based on numerical work. In particular, the onset
of chaos is a singular perturbation problem and so the numerics has proved invaluable in
determining the "slow" and the "fast" variables. This is a novel application of Melnikov
and Shilnokov theory in order to understand the effect of the underlying homoclinic orbit
on the onset of chaos. This is the type of analysis that is necessary to extend dynamical
systems theory so that it is applicable to the high-dimensional systems that can be derived
from physical models.

A second paper has been completed which continues our attempts to use singular
perturbation theory to understand the onset of chaos. The title is "Homoclinic Orbits in a
Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perturbation
Study" by David W. McLaughlin, Edward A. Overman II, Stephen Wiggins, and Chuyu
Xiong. Our main advance is to study how homoclinic orbits, which exist in the completely
integrable model, can continue to exist in the dissipative system. Since this homoclinic
orbit seems to be the source of the chaos, this use of Melnikov and Shilnikov methods to
study the persistence of homoclinic orbits may prove invaluable in other systems.

This paper studies a mechanism for the onset of chaos in a two-mode ode which is ob-
tained from the driven, damped nonlinear Schr6dinger pde by mode truncation. We study,
both analytically and numerically, homoclinic orbits in this ode. We show how the homo-
clinic orbit in the perturbed ode arises from a specific homoclinic orbit both numerically
and analytically. We begin with a representation of certain invariant manifolds by fibers.
The existence of the homoclinic orbit then follows from a Melnikov argument combined
with methods from geometric singular perturbation theory. Next, these homoclinic orbits
are constructed numerically with a bifurcation code. These numerical studies find some
members of the family of homoclinic orbits where were predicted by the theory. Finally,
the existence of a chaotic symbol dynamics is established using a "Smale horseshoe".

A short paper which studies some analytical solutions which give rise to homoclinic
orbits is nearly complete. the title is "Novel Periodic Solutions of the Sine-Gordon Equation
and their Stability" by Gregory Forest, Edward A. Overman II, Peter Christiansen, Mads
Peter Sorensen, Randy Flesch, David W. McLaughlin, and Robert D. Parmentier.

A 50 minute talk was given on the subject of chaos, coherence, and homoclinic orbits at
the NATO conference, Future Directions of Nonlinear Dynamics in Physical and Biological
Systems at the Technical University of Denmark in July 1992.

Chuyu Xiong, who was supported by this and the previous AFOSR grant both as a
graduate student and an instructor, is now a post-doctoral student at the University of
Indiana. He is supported by Roger Temnam and is also working with Michael Jolley.
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