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Technical Report on AFOSR Grant 90-0156
Real-Time Adaptive Control of Mixing In a Plane Shear Layer

Ame J. Pearlstein, Principal Investigator
Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign
1206 West Green Street

Urbana, IL 61801

Summary
Work was conducted on two projects related to real-time control of shear flows. In the

first, two-dimensional unsteady simulations of the development of the wake behind a circular
cylinder Impulsively started into rotatory and rectilinear motion were performed. This
simulation code is now serving as a testbed for the development of open- and closed-loop
strategies for control of the lift/drag ratio as well as the suppression of vortex shedding. The
code has been checked by comparison to earlier computational and experimental work. In the
second project, a technique was developed to extract both velocity components in a two-
dimensional incompressible flow from measurements of a single scalar (temperature or
concentration), and all three velocity components in a three-dimensional incompressible flow
from measurements of two scalars. The technique is applicable to steady or unsteady, laminar
or turbulent flows. A key advantage over particle image velocimetry and other multi-point
techniques is that our method uses full-field optical measurements, so that spatial resolution
is not limited by particle size and loading restrictions.

1. Development of the Wake behind a Circular Cylinder Impulsively
Started Into Rotatory and Translational Motion
We (Chen, Ou & Pearlstein 1993) have completed a computational study of the temporal

development of two-dimensional Incompressible flow generated by a circular cylinder
impulsively started Into steady rotatory and rectilinear motion at Re - 200 (based on the
cylinder diameter 2a and the magnitude U of the rectilinear velocity). We have used an explicit
finite-difference/pseudo-spectral technique and a new Implementation of the Biot-Savart law
to Integrate a velocity/vorticity formulation of the Navier-Stokes equations. Results are
presented for the four angular/rectilinear speed ratios a-. a/U (where W is the angular
speed) considered experimentally by Coutanceau & M6nard (1985). For ax < 1, extension of
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the computations to larger dimensionless times than possible In the work of Coutanceau &

M6nard or considered computationally by Badr & Dennis (1985) allows for a more complete

discussion of the long-time development of the wake. We discuss several aspects of the vortex

kinematics and dynamics not revealed by the earlier work, in which vortex cores were

identified from frame-dependent streamline and streamfunction information, rather than from

the frame invariant vorticity distribution, as In the present work. Our results indicate that at

Re - 200, vortex shedding does indeed occur for a - 3.25 (and possibly for larger a), in

contrast to the conclusion of Coutanceau & M6nard. Moreover, the shedding process Is very

different from that associated with the usual Kdrmdn vortex street for a - 0. Specifically,

consecutive vortices can be shed from one side of the cylinder and be of the same sense, in

contrast to the nonrotating case, In which mirror-image vortices of opposite sense are shed

alternately from opposite sides of the cylinder.

The code Is now being used in the development of open- and closed loop strategies for

controlling the lift/drag ratio (Ou & Bums) and suppressing vortex shedding (Tsai, Bentsman

& Pearlstein). A copy of a paper published in J. Fluid Mech. is Included as Appendix A, and a

reprint is enclosed.

2. Determination of Two- and Three-Dimensional Incompressible Velocity
Fields from Measurements of Passive or Reactive Scalars

We have developed a technique for determining the velocity fields In two- and three-

dimensional incompressible flows from full-field measurements of one or two passive or

reactive scalars. Our technique is based on the recognition that if the transport equation(s) for

the scalar(s) Is (are) linear, then it (they) and the incompressible continuity equation

V.u=o, (1)

constitute two (three) linear equations In two (three) unknown velocity components. The

method Is fully described in Appendix B, which is a preprint of a manuscript submitted to

Physics of Fluids.

In n dimensions, we reduce (1) and n- scalar transport equations to n uncoupled linear

hyperbolic equations in the n velocity components. Given the scalar field data, solution of this /

systems is made unique by specification of appropriate boundary conditions. Boundary values E'

of the unknown velocity components, rather than the scalars are required. We note that only [,

spatial derivatives of the velocity components appear in these equations. Thus no initial data on

the velocity field are required. A desirable consequence of the fact that the hyperbolic -

Diat speciaI
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equations are not initial value problems is that errors in the determination of the velocity field

do not grow in time.

In two dimensions, the equations are singular at any point at which the gradient of the

scalar vanishes, and in three dimensions they are singular at points for which one or more

components of the cross product of the gradients of the scalars vanish. We have shown that

these singularities are completely removable (in the sense that the extracted velocity field Is

smooth and can be uniquely determined) unless the gradient of the scalar vanishes identically

over an area (in two dimensions) or the cross product of the gradients of the scalars vanishes

Identically over a volume (in three dimensions). In that case, the scalar field does not provide

* enough information to determine the velocity field, and any method necessarily fails.

We have also analyzed three methods which claim to extract the velocity field (for

Incompressible or compressible flows) from measurements of a single scalar. For one, the

"iterative inversion* technique (Dahm et al. 1992), it is shown that if convergence does occur,

then that result must be a consequence of spatial discretization, since in the limit of "full"

resolution, it can be proved that the proposed iteration cannot converge. For the second,

"variational" technique of Tokumaru & Dimotakis (1994) which seeks the "smoothest"

velocity field, we point out that although the correct flow is not always the smoothest one

consistent with the transport data, there are likely to be situations in which the correct

velocity field and the smoothest velocity field do not differ by very much. Finally, we show

that, for a second "variational" technique, the criteria imposed on the velocity field are not

satisfied unless either the flow is steady and inertial terms are negligible, or the viscous terms

can be written as the gradient of a scalar potential. Neither of these situations is likely to

obtain in flows of interest.

Finally, we have completed a two-dimensional proof-of-concept study (Carpenter 1993)

showing that the velocity field can be extracted from a computed scalar in a diverging channel

flow. The extracted velocity field is nonparallel, and fully two-dimensional. The results

clearly show that the solenoidal velocity field can be extracted from a single scalar in two

dimensions. A detailed study of the effects of noise and spatial resolution is underway.

Joint work with Professor An Glezer is underway to implement this method in the plane

mixing layer facility at Georgia Tech, with an eye toward real-time sensing and control.
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Development of the wake behind a circular
cylinder impulsively started into rotatory and

rectilinear motion
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The temporal development of two-dimensional viscous incompressible flow generated
by a circular cylinder impulsively started into steady rotatory and rectilinear motion at
Re = 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear
velocity) is studied computationally. We use an explicit finite-difference/pseudospectral
technique and a new implementation of the Biot-Savart law to integrate a
velocity/vorticity formulation of the Navier-Stokes equations. Results are presented
for the four angular: rectilinear speed ratios a = g2a/ U (where 0 is the angular speed)
considered experimentally by Coutanceau & Minard (1985). For a •< 1, extension of
the computations to dimensionless times larger than achieved either in the experimental
work or in the computations of Badr & Dennis (1985) allows for a more complete
discussion of the temporal development of the wake. Using the frame-invariant
vorticity distribution, we discuss several aspects of the vortex kinematics and dynamics
not revealed by the earlier work, in which vortex cores were identified from frame-
dependent streamline and streamfunction information. Consideration of the flow in the
absence of sidewalls confirms the artifactual nature of the trajectory of the first vortex
reported by Coutanceau & Menard for a = 3.25. For a greater than unity (the largest
value considered by Badr & Dennis), our results indicate that at Re = 200 shedding of
more than one vortex does indeed occur for a = 3.25 (and possibly for larger a), in
contrast to the conclusion of Coutanceau & Minard. Moreover, the shedding process
is very different from that associated with the usual Kirmin vortex street for a = 0.
Specifically, consecutive vortices can be shed from one side of the cylinder and be of
the same sense, in contrast to the non-rotating case, in which mirror-image vortices of
opposite sense are shed alternately from opposite sides of the cylinder. The results are
discussed in relation to the possibility of suppressing vortex shedding by open- or
closed-loop control of the rotation rate.

t Present Address: General Electric Aircraft Engines, 1 Neumann Way, Cincinnati, OH 45215,
USA.

: Present Address: Interdisciplinary Center for Applied Mathematics. Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061, USA.
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1. Introduction

Flow past a rotating circular cylinder is a prototypical problem in the study of
unsteady flow separation (Telionis 1981). It is also of considerable practical importance
in boundary-layer control on airfoils (cf. Tennant, Johnson & Krothapalli 1976 and
Modi, Mokhtarian & Yokomizo 1990), and in lift enhancement schemes employing the
Magnus effect (Swanson 1961). Rotation of all or part of a body may also have
applications in active or feedback control of vortex shedding, with important
consequences for wake modification and the reduction of flow-induced vibration.

In this work, we describe the development of the two-dimensional flow generated by
a circular cylinder of radius a started impulsively into combined steady rotatory and
rectilinear motion, with angular speed 0 about its axis and rectilinear speed U normal
to its generators. The fluid is taken to be at rest initially. The two parameters governing
the development of the flow are the Reynolds number, defined by Re = 2aU1v, where
v is the kinematic viscosity, and the ratio of rotatory to rectilinear speeds, defined by
a = Qa/U.

Experimental studies of the nominally two-dimensional flow past a circular cylinder
undergoing steady rotatory and rectilinear motion have been conducted by Prandtl
(Prandtl 1925; Prandtl & Tietjens 1934), Taneda (1977, 1980), Koromilas & Telionis
(1980), Diaz et al. (1983), Werli (1984), and Kimura, Tsutahara & Wang (1992). The
most detailed work is that of Coustanceau & Minard (1985) and Badr et al. (1990), in
which papers an excellent summary of earlier work can be found. On the basis of their
experiments (primarily at Re = 200, but including results for Re as high as 1000),
Coutanceau & Minard (1985) concluded that a (modified) Kfirmin vortex street

disappears completely for a greater than a certain limiting value aL. The value of aL has
been found to be not very dependent on the Reynolds number and to be about 2. For
a > aL no other eddy is created after E, (the first eddy formed) during the time of the
observations, so that the eddy street must have been destroyed.

They found this conclusion to be consistent with the earlier experimental work at
higher Re by Prandtl, Diaz et al., and Werli and proposed, as a simple physical
"explanation for the disappearance of the Kfirrrin vortex street at sufficiently high
values of a, that

for low values of a, eddies would be alternately shed on each side of the cylinder to form
a Binard-Kirmin street, as for the pure translation (a = 0). But the eddies on the side
moving in the direction of the rotation decrease progressively when a increases and then
disappear completely. Thus it was found that the Binard-Kdrmin structure begins to
deteriorate as soon as the peripheral velocity becomes greater than the free-stream
velocity (giving rise to a zigzag oscillating wake) and finally disappears for a > 2.5.

When one examines the evidence for these statements, one finds that it is not
overwhelmingly strong at lower values of Re, particularly for the critical value of a and
its dependence on Re. For Re = 9000 and several values of a, Diaz et al. (1983) made
hot-wire measurements of the streamwise velocity, and computed its autocorrelation.
They found that for a = 0 and 1, the velocity autocorrelations were very similar,
approximately periodic, and had local maxima separated by a time corresponding to
the nominal Strouhal frequency. For a = 1.5 and 2, the autocorrelation function was
progressively reduced. Diaz et al. (1983) did indeed conclude that 'for peripheral
velocities up to the value of the free-stream velocity, a distinct Kiirmin vortex activity
exists within the wake, whereas for greater peripheral velocities, the Kirmin activity
deteriorates and disappears for values in excess of twice the free-stream velocity.' On
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the other hand, for Re :, 3300 Werle (1984) noted that for values of a in excess of that
at which separation is eliminated, 'when the tangential velocity increases further, the
cylinder finally entrains an entire layer of relatively turbulent fluid in its rotation. More
or less periodic instabilities then appear.' From this. it is not clear whether vortex
shedding is really suppressed by rotation at Re ,• 3300. At Re = 101, Badr et al. (1990)
found experimentally and computationally that the second vortex was formed much
later for a = 2 than for a = 1, and was also much weaker. For a = 3. their experiments
and computations showed that the first two vortices formed were of the same
rotational sense, and that one of the vortices is shed downstream, while the other 'is
washed down to the frontal part of the cylinder and disappears'. For larger
dimensionless times, their two-dimensional computations show that no additional
vortices are formed, and the computed flow approaches a steady state. In their
experiments, 'three-dimensional and instability effects become more pronounced.
especially in the wake'. At the lower Re in the experiments of Coutanceau & Minard
(1985). the towing tank used allowed observations to be made over only a very limited
range of dimensionless time.

The issues of whether the Kirmin vortex street is destroyed and vortex shedding is
suppressed are of considerable practical interest -from the standpoint of wake
modification and the reduction of flow-induced vibration. In particular, it is of interest
to determine whether, for a given Re, there is a value of aL beyond which (two- or
three-dimensional) vortex shedding disappears. An additional factor tending to
complicate the experimental resolution of these issues is that in either a fixed reference
frame or one translating with the cylinder, the generation and shedding of vortices is
easily masked (Perry, Chong & Lira 1982) at large values of a by the high velocities
induced in the near wake by the rapidly rotating cylinder. Although experimental
techniques for measuring vorticity are under development for two- and three-
dimensional flows (cf. Klewicki & Falco 1991), the vorticity distribution frequently can
be determined conveniently by direct computation of the vorticity, which :s a frame-
invariant quantity.

To date, however, most of the theoretical studies have shed no light on the question
of whethek cylinder rotation can suppress vortex shedding. The analytical investigations
of flow past a rotating and translating circular cylinder (Krahn 1955; Glauert 1957 a, b;
Moore 1957; and Wood 1957) are based on steady boundary-layer theory, and are
hence inapplicable to investigation of the unsteady separated flow associated with
vortex shedding. The computational investigations of flow generated by a rotating and
translating cylinder reported by Ta Phuoc Loc (1975), Lyulka (1977), Townsend
(1980), Ingham (1983), Ingham & Tang (1990), and Tang & Ingham (1991) concern
only the steady flow with Re <, 30. Although Shkadova (1982) discussed a
computational algorithm for the unsteady flow, she presented only a single set of
streamlines for each of a few combinations of Re and a (Re = 20, 40, and 80 for
S= 0.2, and Re = 40 for a = 3). She did not discuss unsteady effects for the case of a
rotating and translating cylinder, and it is not clear whether the streamlines presented
for each combination of Re and a pertained to a computed steady flow, or to
instantaneous streamlines (at unspecified times) in an unsteady flow. In the earlier
work of Simuni (1967) concerning the flow generated by a cylinder accelerated
smoothly (rather than impulsively) into rotatory and rectilinear motion, the time-
dependence of the body motion was not clearly specified, nor was any information
provided about the time-dependence of the computed solution.

To the best of our knowledge, other than the experimental work of Coutanceau &
Minard (1985), Badr et al. (1990), and Kimura et al. (1992), the only investigations of
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vortex shedding by a steadily ro.ating and translating circular cylinder in the laminar
regime are the computationa: ouzdies of Badr & Dennis (1985), Badr. Dennis & Young
(1989), Badr et al. (1990), Kimura et al. (1992) and Chang & Chern (1992). Although
Badr and coworkers realized the importance of extending the computations to larger
a, their work for Re = 200 was limited to a < 1. and so shed no light on the conclusion
of Coutanceau & Menard (1985) cited above. The computational work of Kimura
et al., co•vring the Re range from approximately 400 to 10", uses a discrete vortex
method with the cylinder surface divided into only 14 segments. The smallest Re at
which these authors present results is at a poorly defined value near 400. for which they
indicate only that 'meandering' of the wake occurs for a < 1.8, and that for ., >, 2.6
'meandering disappears, but this value is not so definitive'. On the other hand.
although the extensive and well-resolved two-dimensional computations of Chang &
Chern support the authors' detailed description of different two-dimensional flow
regimes in the range 10' <Re < 10s, a < 2, they concern a range of Re and a in which.
on the basis of what is known of the non-rotating case (Williamson 1988). the two-
dimensionality of the flow is in doubt.

In the present work, for Re = 200, we present computations extending the range of
a to the highest value (3.25) studied experimentally by Coutanceau & Menard (1985).
After comparing our results at lower values of a to the previous work of Coutanceau
& Minard (1985) and Badr & Dennis (1985), we present results for the two largest
values of a (2.07 and 3.25) considered by the former authors. Ours is the first
computational investigation at Re = 200 for a > 1, and is significant in the light of the
earlier conclusions that vortex shedding is suppressed for a > 1 or a > 2.5. Our
computed results are in excellent agreement with the experiments of Coutanceau &
Minard (1985) for Re = 200 and a = 2.07. We then present strong evidence in support
of the hypothesis that rotation does not suppress vortex shedding for Re = 200 and
a = 3.25. This evidence, consisting of streamlines viewed from a reference frame
moving with a vortex, and of contours of constant vorticity, is of a type not
easily obtainable in the laboratory, and provides an important demonstration
of the capability of computational methods to resolve questions arising from
experiment.

In §2, we present the governing equations, along with a transformed version
appropriate for computations with a body-fitted time-dependent grid used for
a = 3.25. In §3, we briefly describe the numerical methods employed, including a new
implementation of the Biot-Savart law used to satisfy boundary conditions on the
vorticity at the cylinder and on the velocity in the far field. Section 4 discusses a
technique, more general than that employed in earlier studies, for determining the
initial flow (at i = 01). The main results, inluding comparison to the experiments of
Coutanceau & Minard (1985) and discussion of features of the flow not elucidated by
their work or earlier computations, are presented in § 5, followed by a more general
discussion in §6.

2. Governing equations
A non-rotating reference frame translating with the cylinder is used in this study. In

this frame, the fluid at infinity has a uniform velocity of magnitude U in the x-direction,
and the cylinder rotates in the counterclockwise direction with angular velocity ge•, as
shown in figure 1.

We use a velocity/vorticity formulation, consisting of the vorticity transport
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y

FiGut, I. Definition sketch.

equation and a vector Poisson equation for velocity. In two dimensions, the
dimensionless equations are (Wu 1975; Fasel 1976):

ato 2
VVt R - (1)

and V V- x (we), (2)

where we use the cylinder radius a as the lengthscale. and a/U as the timescale. The
velocity is normalized by U. Equation (2) is derived from the continuity equation

V. V = 0, (3)

the definition of vorticity for a two-dimensional flow

we, = V x V, (4)

and the vector identity

V x V x V = V(V- V)-V 2 V. (5)

where V = ue, + ve, is the velocity vector.
The dimensionless boundary conditions are

V = er at infinity (6)

and V = a( - e1 sin 0 + eY cos 0) on the cylinder surface. (7)

To allow for computation of the flow on a time-dependent grid, we write (1) and the
components of (2) in general body-fitted (f, 71)-coordinates as

I
to,= [xt(w• y - ( y.f) - )'t(W x, - W, x,) - yj(u(O)f + yv(uw),' - x,(vto)f + x•(v)']

2 2+- R-eP (&to -
2

ffitoq + ye~) + - -( Pto + Qw,), (8)

1uf- 2#u,, + y•u• + J 2(Pu4 + QUq) = J(O, x, - (01 xC), (9)

and a- 2flt'v +,v + J(Pvi + Qv,) = J(djy• - wd yg) (10)

I
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(Reddy & Thompson 1977) where
x+y, = x'xý+y,7 y•, y =

P =XX + 6y', Q =M +V (11)
and J = xO', -xyc (12)

is the Jacobian of the mapping between the (x, y)- and (6, I)-coordinate systems. Here,
subscripts denote partial differentiation. In (8) and in the computer code developed, we
have allowed the grid in the physical (x, ),)-space to be time-dependent. This introduces
additional terms associated with xt and y, into the governing equations in the
generalized coordinate system. In this work, the body-fitted grid is simply one of
cylindrical polar coordinates and is time-independent, except for a = 3.25 where the
grid is made time-dependent for 24 < t < 54. The grid is uniformly spaced in the
circumferential direction and is stretched in the radial direction, as described below.

3. Numerical methods
In this and other numerical simulations, it is necessary to confine the computation

to a finite spatial domain. As a result, (6) cannot be applied directly at the outer
perimeter of the computational domain. Various far-field boundary conditions,
including those derived from potential flow and Oseen expansions, have been adopted
in the past. The conditions imposed at the outer perimeter of the computational
domain have been found to strongly influence the accuracy of steady flow computations
in this unbounded geometry (Fornberg 1980; Ingham 1983; Ingham & Tang 1990). A
second difficulty, common to most simulations based on primitive variable (pres-
sure/velocity) or velocity/vorticity formulations, is that conditions on either the
pressure or vorticity are required at solid boundaries. In this work, both of these
difficulties are resolved by use of a new implementation of the Biot-Savart law briefly
described below. For further details, the reader is referred to the work of Wu and
coworkers (Wu & Thompson 1973; Wu 1976; Wang & Wu 1986), and Chen (1989).

The definition (4) allows determination of the vorticity field from a known velocity
field. Conversely, one can determine the velocity field from a known vorticity field via
the generalized Biot-Savart law, which in two dimensions can be written as

V(r ) r,t) ex(r-ro )dA- 22(t)ex (r-rr)dA+ V (13)

T' ff r-r.11 fir ffJB jr-r,1

(Payne 1958; Wu 1976), where the subscript 0 denotes the field point where the velocity
is evaluated, and V,, is the uniform flow at infinity. The first double integral in (13) is
evaluated numerically over the fluid domain D, while the second is evaluated
analytically over the solid body B. Here, we, is the vorticity at a point within the fluid,
and f2e, is the angular velocity of a point within B.

Equation (13) serves two purposes in this study. First, if the vorticity field &,(r, t) is
known and the domain D is large enough to contain all of the vorticity generated at
the solid boundary prior to time t, then the velocity on the perimeter of D can be
evaluated directly by numerical integration of (13). Second, by linking the velocity and
vorticity fields, (13) provides a basis for determining the vorticity on the solid
boundary. Applying (13) to points rb on the solid boundary, one obtains

f1 w(r. t)e.x(r-rb) dA_ -r -r1 r )dA+CV. (14)V(rTi) = -2- rbl d TA J J r - rI d V (
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f V. and the body motion V(rb, t) and Q2(t) are given, and the vorticity is known
.verywhere except on the solid boundary, then the only unknown in (14) is the
iorticity on the solid boundary. Therefore, one can solve (14) as a vector Fredholm
ntegral equation of the first kind to obtain the vorticity values at grid points on the
;olid boundary.

In this work, the numerical integration of (13) and (14) is performed over each
quadrilateral element in D using isoparametric representations commonly used in
finite-element computations. All variables are located at the intersections of grid lines,
namely corners of quadrilateral elements. The vorticity distribution over each
quadrilateral element is approximated by bilinear shape functions. Integration is then
performed over the [- 1, 1] x [- 1, 1] square in the isoparametric plane. When the field
point is far from the quadrilateral element, more efficient asymptotic formulae (Weston
& Liu 1982; Ting 1983) are employed. Further details are provided in Chen (1989).

In deriving the discretized forms of (8)-(10), second-order central differences are
used for all derivatives in the radial direction 1, while a pseudospectral transform
method (Orszag 1980; Zang, Wong & Hussaini 1982) is used to evaluate all derivatives
in the circumferential direction 4. The cross-derivative terms are approximated by
central differencing in I followed by pseudospectral transformtion in f. We use a fully
explicit method to advance the vorticity transport equation (8) in time to obtain the
vorticity values at the interior grid points. The vorticity on the outer perimeter of the
computational domain is obtained by extrapolation. At this stage, the vorticity on the
solid boundary lags by one time step. If this vorticity field were used to evaluate the
right-hand side of (14), the result would not satisfy the no-slip and no-penetration
conditions. The continuous generation of vorticity at the cylinder is properly simulated
in our computations by adding or subtracting vorticity at the boundary at each time
level in order to satisfy (14) identically.

It should be noted that the solution of (14) is not unique (Wu 1976; Taslim, Kinney
& Paolino 1984). To render the solution unique, Wu (1976) developed and imposed the
principle of vorticity conservation, which states that the total vorticity in the combined
fluid and solid regions must be zero at all times. A more general and robust procedure.
applicable to flows over single and multiple solid bodies, has been developed by Chen
(1989), and is used here.

The computational loop to advance the solution from one time level to the next
consists of the following steps:

(i) The discretized vorticity transport equation (8) is advanced explicitly to obtain
new vorticity values at all interior grid points, using a second-order rational
Runge-Kutta method (Wambecq 1978). In contrast to the three-step Adams-
Bashforth method used by previous authors, this allows a much larger time-step size
due to a less severe stability constraint.

(ii) Using known vorticity values at the interior grid points, the kinematic constraint
(14) is used to update the vorticity values on the solid boundary.

(iii) Using the updated vorticity field, the velocity at points on the outer perimeter
of the computational domain is evaluated from (13). Once velocity boundary values are
known, Poisson equations (9) and (10) are solved for the new velocity field. The
discretizations of (9) and (10) are 1 1-banded and block-diagonal in form, and are
solved by a preconditioned biconjugate gradient algorithm (Chen, Koniges & Anderson
1989).

The method outlined above is particularly well-suited for the initial development of
the flow generated by impulsively started bodies. This is so because the vorticity is
initially concentrated near the solid body, thus allowing the numerical simulation to be
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confined to a domain containing nearly all the vorticity. Since the velocity at the outer
perimeter of the computational domain is calculated via (13), imposition of
computational far-field velocity boundary conditions is avoided. The use of (13) in
calculating the far-field velocity would be numerically exact at time t if the
computational domain contained all the vorticity generated at the cylinder surface
prior to t. We note that, in the streamfunction/vorticity formulation, the stream-
function values on the outer perimeter of the computational domain can be
obtained similarly by using an integral constraint equation (Wu & Sampath 1976). We
also note that the velocity field can be obtained by applying (13) at every grid point.
This results in a point-by-point scheme which, unlike schemes using the Poisson
equations (9) and (10), does not require solution of large linear equation systems. This
approach was adopted in Wu's earlier work, and might be attractive on massively
parallel computers.

The size of the computational domain is chosen according to the time span
investigated. Here, we set the outer boundary of the computational domain to be a
circle of radius 24 for t < 24. For a = 3.25. the grid is made time-dependent for
24 < t < 54. We use 128 uniformly spaced and 120 stretched grid lines in the 19- and r-
directions, respectively. The stretching function of Vinokur (1983) is used to distribute
the circular grid lines on 1 < r < 24. This stretching allows grid points to be clustered
near one or both ends of the domain, or anywhere between, by adjusting two
parameters s. and s1. Here, s. and s, are the ratios of the spacing if N points were
distributed uniformly, to the actual spacings at the inner and outer boundaries,
respectively. For a = 0.5 and 1.0, we set s. = 5.0 and s, = 0.25. The grid spacings
adjacent to the cylinder and at the outer perimeter are 4 % and 75 % of the cylinder
radius, respectively. For a = 2.07 and 3.25, we set s, = 10.0 and s, = 0.25 to further
cluster circular grid lines near the cylinder, with grid spacings adjacent to the cylinder
and at the outer perimeter being 2 % and 76% of the cylinder radius, respectively. At
the end of the simulation, the vorticity magnitude on the outer perimeter is less than
10' for all cases except as noted, indicating that only a negligible fraction of the
vorticity has escaped the domain.

With the grid chosen for a s< 2.07, our method requires approximately 5 CPU
seconds per time step on a CRAY 2.

4. Determination of the initial flow
In most numerical simulations of flow over impulsively started bodies. the initial

flow field is taken to be the potential flow, since the vorticity at t = 0' is concentrated
on the body surface in the form of a vortex sheet. Perturbation solutions in which t is
the small parameter have also been used as initial conditions (Collins & Dennis 1973
for a = 0; Badr & Dennis 1985 for a * 0). Both approaches require special techniques
in order to obtain the initial flow field. In the present work, determination of the initial
flow field requires no special treatment. The same procedure used for determining the
boundary vorticity distribution satisfying the no-slip and no-penetration conditions is
applied. More specifically, (14) is solved for the unknown boundary vorticity at t = 0,
with the vorticity taken to be zero at every grid point away from the cylinder surface.
Once the boundary vorticity values are obtained, the initial velocity field is determined
by solving (9) and (10), with the velocity on the outer perimeter of the computational
domain determined by application of (13) to points on the outer perimeter. This
versatile procedure enables the numerical code to handle bodies of arbitrary shape
undergoing arbitrary rotational and translational motion.
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Errors in approximating the vorticity layer of infinitesimal thickness at I = 0- are
inherent to any computational scheme. However, as discussed by Lugt & Haussling
(1974), even in the worst case of a body set impulsively into motion, the duration of
these errors is confined to a very limited time close to t = 0. For the present algorithm.
this will be confirmed in §5 by comparison at small times of our numerical results to
the perturbation solution of Badr & Dennis (1985).

5. Results
In this section, numerical results for Re = 200 with a = 0.5, 1.0. 2.07. and 3.25 are

presented and discussed. The parameter values chosen allow comparison to the
experimental results of Coutanceau & Menard (1985) and permit a critical evaluation
of their conclusions regarding the suppression of vortex shedding by rotation.

Foi a = 0.5 and 1.0, excellent agreement of our computed streamlines with previous
experimental (Coutanceau & Minard 1985) and numerical (Badr & Dennis 1985)
results is obtained. For a = 2.07, for which no numerical results have been reported
previously, we obtain excellent agreement with experiment. For a = 3.25, the relatively
small disagreement between experiment and our computations is probably due to the
effects of three-dimensionality and sidewall boundary layers in the former (see §5.4).
For a = 0.5, 1.0, and 2.07, we continue the simulations to larger dimensionless times
(t = 24) than could be studied experimentally by Coutanceau & Menard (1985), so that
the nature of the wake development can be better discerned. For a = 3.25, we extend
our calculation to t = 54 to include shedding of the second and third vortices.

For the same values of a, we also present computations of the vorticity contours.
which we find useful for studying vortex shedding without the effects of 'masking*
associated with frame-dependent streamlines. We also present trajectories of the shed
vortices, computed from vorticity contours and from streamlines.

We note that the timescale adopted here is the same as that used by Badr & Dennis
(1985). Conversion of the dimensionless times of Coutanceau & Minard (1985) to
those herein requires multiplication of the former by a factor of two.

As discussed in §4, the solution procedure presented in §3 is applied at t = 0- to
obtain the initial flow field. Errors are present due to the inability of any numerical
scheme to resolve the infinitesimal vorticity layer at t = 01. To confine these errors to
small times near t = 0, small initial time steps are used for all cases. For the first 20 time
steps, At = 10-1 is used. This is followed by 28 steps with At = 10-3, which brings the
time level in 0.03. A constant At (10-' for a = 0.5 and 1.0; 2.5 x 10-' for a = 2.07 and
3.25) is taken for the rest of each simulation. The time-step size is not dictated by
the numerical stability constraint, but rather is chosen on the basis of accuracy
considerations. To demonstrate the accuracy of the initial flow field, we show in figure
2 (a-d) the variation of vorticity on the cylinder for four values of a at small times. The
numerical results are compared to the asymptotic formula

61 ,1);t 11a(2 1\ (4 \ (16\I 1 - 2 -+1 -+A) sinO+ (2.7844A_ ) atcos0

+ [6.5577A_4(1 +4 )]tsin 2,"' (15)

given by Badr & Dennis (1985), where

A = (8t/Re)i. (16)



458 Y.-M. Chen. Y.-R. Ou and A. J. Pearlstein

OB

0)50

0 90 180 270 360

0

5 0O

0

(WO-50

-]00 -

-00 ISo 27'0 ' 360
0

Fiouu 2(a. b). For caption see facing page.

We see that agreement with the asymptotic results improves as t increases. Better
agreement is achieved for a = 2.07 and 3.25 than for smaller a since a smaller time-step
size is used. These results demonstrate that errors are indeed confined to a very limited
time close to t = 0, as reported by Lugt & Haussling (1974).

5.1. Results for a = 0.5
In this subsection, we extend the a = 0.5 computations of Badr & Dennis (1985) to
larger dimensionless times than considered by them or in the experiments of
Coutanceau & Menard. The kinematics and dynamics of vortex shedding are discussed
using instantaneous streamlines in two different reference frames, as well as vortici.,
distributions. The streamfunction is computed from the velocity field by a least-squares
method described by Chen (1989).

Computations performed for 0 < t < 24 show that the results are in excellent
agreement with the experimental work of Coustanceau & Menard (1985) for
1 < t •< 13 and the computations of Badr & Dennis (1985) for 1 t < 12.
Figure 3 (a-j) shows a sequence of instantaneous computed streamlines for 8 < t < 24,
viewed from a non-rotating frame translating with the circular cylinder. We adopt the
notation used by Coutanceau & Minard (1985) in their discussion of the flow
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FIGURE 2. Evolution of the vorticity distribution on the surface of the cylinder at early times.
Re = 200. Symbols: asymptotic solution; 0, t.--0.05: 6, t = 0.1; 0>, t = 0.2. - , Numerical
solution. (a) a = 0.5, (b) a = 1.0, (c) a = 2.07, (d) a = 3.25.

development for t < 13, to which the reader is referred. We observe that the
coalescence of two 'intermediate' eddies E; and E' to form eddy E. at t ýý 12 (figure
3c, d) indeed repeats (at t ; 22; figure 3h, i) as predicted by Coutanceau & Minard
(1985). (The subscript here denotes the order of appearance of eddies after the
impulsive start.) The transposition of saddle points S2 and S; associated with eddies E.,
and E;, respectively, discussed by Coutanceau & M6nard (1985) and sketched by Badr
et al. (1986), is clearly shown in figure 3 (a, b). Also, a common boundary for E2 and
E', which was difficult to observe experimentally (Coutanceau & Minard 1985) due to
limitations of the flow visualization technique, does indeed exist, as shown in figure
3 (a). The common boundary soon becomes an 'alleyway' for fluid to pass through, as
shown in figure 3(b). As noted by Eaton (1987), existence of such an alleyway in an
unsteady flow does not imply that fluid is carried from one side of the wake to the
other.

As discussed by Perry et al. (1982), the streamlines are not invariant with respect to
a change in reference frame, and the vortex street can appear very differently in
different frames. To best observe the development of a vortex, the observer should
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This masking phenomenon was described by Coutanceau & M-nard as the opening up
of vortices and disappearance of closure points into a wave-like pattern, as sketched
in Lugt (1979). Since an attached vortex translates with the cylinder, it can be clearly
observed in a frame translating with the cylinder. However, after the vortex is shed. its
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FIGuRE 3. Instantaneous streamlines for Re = 200, - = 0.5 at various times, viewed from a non-
rotating frame translating with the cylinder. Streamlines with non-negative (including zero) and
negative streamfunction values (or) are shown by solid and dashed lines, respectively. At each time.
the cylinder is a streamline with t# - 0. The values of ýr plotted are 0, -0.01, ±0.02, -0.03. ±0.04.
±0.06, ±0.08, ±0.10, ±0.12, ±0.15, ±0.20. ±0.25, ±0.30, ±0.35, ±0.40, ±0.45, ±0.50, ±0.60.
±+0.70. ±-0.80. ± 1.00, with an increment of ±-0.2 thereafter. (a) t = 8.0, (b) 9.0, (c) 11.0. (d) 12.0.
(e) 14.0, (f) 16.0, (g) 18.0, (h) 20.0, (0 22.0, (j) 24.0.

core is, especially in the far wake, essentially stationary with respect to the free stream.
Therefore, it is generally easier to observe shed vortices in a frame fixed with the
undisturbed fluid. The instantaneous streamlines observed in such a frame are shown
at selected times in figure 4(a-c). As expected, the shed vortices are clearly
distinguishable. We note that two additional vortices are shed over an interval of about
10 dimensionless time units, and that the flow near the cylinder is very similar in figures
4(a) and 4(c). We further note that in a moving frame, the cylinder itself is not a
streamline, and the attached vortices in figure 4(a-c) are now masked by the velocity
field in the near wake of the cylinder. In a frame translating with the cylinder, however,
the shed vortices are hidden in the oscillating wake, as shown in figure 5(a-c) for the
values of t shown in figure 4(a-c).

At the same dimensionless times, figure 6(a-c) shows the corresponding vorticity
contours, which are invariant with respect to translation of the observer. Because
rotation divides the surface of the cylinder into 'downstream-moving' (nr < 6 < 21r)
and 'upstream-moving' (0 < 0 < n) parts, a basic symmetry of the vorticity field for
the non-rotating (a = 0) case (associated with the fact that for a T-periodic flow, the
relations u(r, 0, t) = u(r, - 0, 1 -T), v(r, 0, t) = - v(r, - 0, t - r) (17)

lead to w(r. 6, t) = -w(r, - 0, t- r), where 0 < r < T is a phase difference) is broken.
Nonetheless, the process is topologically similar to the a = 0 case, with the skiedding
of vortices of alternating rotational sense being associated with the thinning and
severance of elongated vorticity contours emanating from opposite sides of the
cylinder. As in the experiments of Diaz et al. (1983) at higher Re, cylinder rotation has
the effect of altering the initial trajectories of the shed vortices, although these are
expected to become parallel to the direction of cylinder translation as the vortices move
farther away from the rotating cylinder and are advected downstream. As in the
a = 0 case, vortices of opposite sense lie on opposite sides of a 'street', although the
rotation has clearly displaced the midline of the street upward.

Figure 7(a, b) shows that the computation of vortex core and saddle trajectories
using streamfunction values (in excellent agreement with the trajectories computed by
Coutanceau & Minard 1985 from experimental streamline data and shown in their
figure 4a) can differ significantly from those computed using the vorticity distribution.
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FtouRE 4. Instantaneous streamlines for Re 200, a 0.5, viewed from a frame fixed with the
undisturbed fluid. Dashed (solid) lines represent constant non-negative (negative) streamfunction
values with increments of A&ý ±0.1, including ilk = 0. (a) i = 12.0, (b) 17.0, (c) 22.0.

For example, at t: 7, the streamwise location of the core of the first vortex is at about
x/a - 3.3 as determined from the streamfunction (in a frame translating with the
cylinder), and a bit less than x/a = 2.5 as determined from the vorticity. This clearly
illustrates the effect of streamline masking on vortices moving with velocities
significantly different than that of the frame to which the motion is referred.
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Fiouii S. instantaneous streamlines for Re 200. a 0.5, viewed from the reference frame
described in figure 3. The plotting convention and contour levels are as in figure 3. (a) t-12.0, (b)
17.0, (c) 22.0.
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The trajectories of figure 7(b) also show that the vortex cores execute motions much
more complicated than would be inferred from the trajectories computed from
streamfunction values (figure 7a of the present work and figure 4a of Badr & Dennis
1985). Specifically. for the first vortex core. figure 7(b) shows that although the x-
component of the core velocity increases to nearly the free-stream value as the vortex
moves farther behind the cylinder, the * -component oscillates (being sometimes
negative) about a decidedly non-zero mean, to a distance at least 15 cylinder radii
downstream.

As a further check on the accuracy of our results, we show in figure 8 the temporal
evolution of profiles of the x-component of the velocity along the y'-axis below the
cylinder for t < 8. Very good quantitative agreement with experimental data taken
from Coutanceau & Menard (1985) is obtained near the cylinder. Farther away. there
is slightly more scatter in the experimental data. Our results along the positive v-axis
are graphically indistinguishable from those of Badr & Dennis (1985). obtained using
different numerical methods.

5.2. Results.for a = 1.0
For a = 1.0, we have computed streamlines analogous to those of figure 3(a-;) for
a = 0.5. Our results are indistinguishable from those of Badr & Dennis (1985) for the
range of t(I <, t <_ 12) covered in their work. For 14 < I < 24, figure 9(a-:f) shows
instantaneous streamlines viewed from a non-rotating frame translating with the
cylinder, beginning with the largest value of t considered in the experimental work of
Coutanceau & Menard (1985). Unlike the a = 0.5 case where the second eddy E.,
appears at i ; 2.0, here E2 and the third intermediate eddy E; form almost
simultaneously at t - 6.5, as shown in the earlier experimental and computational
work. During the next cycle of vortex formation, however, E 4 appears before E., is
formed, as seen in figure 9(b. c). In general, the increase in a tends to inhibit the
formation of the vortex at the downstream-moving side of the cylinder, as reported in
previous experiments (Diaz et al. 1983; Coutanceau & Minard 1985).

Figure 10(a-e) shows that the trajectories of the shed vortices for a, = 1.0 are
qualitatively similar to those for a = 0.5, except that the vortices shed from the
downstream-moving side now lie above the midline of symmetry (0 = 0). and due to
the counterclockwise fluid motion generated near the cylinder by its rotation. will
remain above the midline during their subsequent advection downstream. Otherwise.
the topology of the shedding process is altered relatively little, with vortices of
alternating sense being shed from opposite sides of the cylinder, and subsequently
being found on opposite sides of an. albeit distorted, 'street' as they are advected
downstream.

We have also computed the temporal evolution of profiles of the N- and Y-
components of the velocity along the x-axis in the wake of the cylinder fort 1< 8. Again.
good agreement with the experimental results of Coutanceau & Minard (1985) is
obtained.

5.3. Results for a = 2.07
As e increases, the vorticity layer generated at the upstream-moving side of the cylinder
intensifies, resulting in even larger radial derivatives. Consequently, it becomes more
difficult to maintain accuracy. as pointed out by Badr & Dennis (1985). We are able
to achieve accurate numerical results by using finer radial grid spacings near the
cylinder, as discussed in §3, and a smaller time-step size. as discussed at the beginning
of this section. Figure 11 (a-h) shows instantaneous streamlines in the near wake for
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FIGuRE 6. Equivorticity contours for Re = 200. x = 0.5. Dashed (solid) lines represent constant
positive (negative) vorticity values with a constant increment of +_0.5. with the magnitude of the
weakest contour level shown being 0.5. (a) t = 12.0, (b) 17.0, (c) 22.0.

3 •< t < 24, viewed from a non-rotating frame translating with the cylinder. As seen in
figure 12(a, b), our results are virtually identical to the flow visualizations of
Coutanceau & Minard (1985) for t < 9, the longest dimensionless time for which
experimental results are available. The sequence of figures 13 (a-d) for t -- 2, 4. 6. and
8 shows that as t increases the computed flow is also in excellent agreement with
experiment upstream of the cylinder, and becomes increasingly less symmetric about
the x-axis.

The excellent agreement between our two-dimensional computations and the flow
visualizations of Coutanceau & Minard (1985) in a single spanwise plane strongly
suggests that for t <, 9 the flow is quite two-dimensional, at least near the centre of the
span of the cylinder, and that sidewall boundary-layer effects are unimportant.

To better elucidate the vortex shedding process, we show in figure 14(a-f) the
vorticity contours for t < 24. As for smaller values of a, vortex shedding still occurs for
S= 2.07, with vortices of alternating rotational sense shed from opposite sides of the
cylinder. However, at this larger rotation rate the asymmetry of the process is clear.
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FIGuRE 7. Trajectories of the cores C, and closure points S, for Re = 200. a = 0.5 obtained from
(a) instantaneous streamlines, and (b) equivorticity contours.

and manifests itself in the considerably reduced strength of the vortices shed from the
downstream-moving side of the cylinder (relative to those for a = 0.5 shown in figure
6a-c, and relative to those of opposite rotational sense for a = 2.07), as well as in the
fact that the shed vortices seem to be forming a single file' line, rather than pairing off
(according to rotational sense) on opposite sides of a 'street'. The vortices shed from
the downstream-moving side of the cylinder are relatively weak because immediately
after the impulsive start, this part of the rotating boundary travels at about the same
speed as the adjacent fluid. The weak vorticity layer generated near 0 = 3ft (shown in
figure 2 c) is responsible for the weakness of the shed vortex.

Figure 15 shows that the trajectory of the vortex core C, determined from equi-
vorticity contours is again very different from the trajectory determined by Coutanceau
& Minard from streamline data (their figure 14). In particular, the velocity of the first
vortex core still has a considerable y-component until at least t = 24. This disagreement
may be due to either the fact that the earlier determination of the vortex core trajectory
was made from streamline data (discussed in § 5.1), or to the 'confining wall effect' in
the experimental work (discussed by Coutanceau & M~nard in conjunction with their
results for a = 3.25).
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5.4. Results for a = 3.25

For-y = 3.25. figure 16(a-d) shows instantaneous streamlines in the near wake for
t = 5, 9, 16, and 24, viewed from a non-rotating frame translating with the cylinder. In
the same reference frame. figure 17 (a-d) shows comparisons of the computed
streamlines to unpublished experimental results of Coutanceau & Menard centred
farther upstream. We note that the agreement (compare also figure 16b to figure 11 d
of Coutanceau & Menard 1985), is very good. However, at t = 9 (the largest
dimensionless time for which Coutanceau & Menard reported results) the com-
putational results differ perceptibly from the flow visualization of Coutanceau &
M~nard (1985). We believe that the differences result from three-dimensional and
sidewall boundary-layer effects in the experiments for large values of a at large time.
as discussed by Coutanceau & Menard (1985). Although for a = 0 the nominally two-
dimensional flow at Re = 200 is unstable with respect to three-dimensional
disturbances (Williamson 1988); no information regarding the effect of rotation on
stability appears to be available.

Computed vorticity contours are shown for 8 i< t < 54 in figure 18 (a-h). At t = 24,
figure 18(c) shows that the elongated vorticity contour has not yet been severed. To
investigate whether the vortex shedding process continues to larger t for this value of
a, we let the size of the computational domain grow linearly in time until t = 54 in
order to extend the computation. The same values of s. and s, in the stretching function
are used to distribute 120 circular grid lines between r = I and r = 1.5t-12. The
numerical solution at t = 54 is not as accurate as at smaller dimensionless times since
the vorticity at the outer perimeter (r -- 69) is not negligible (on the order of 10-1 or
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FIGURF 9. Instantaneous streamlines for Re= 200. a 1.0 at various times. viewed from the
reference frame described in figure 3. The plotting convention and streamfunction values are as in
figure3 (a) 140 (b) 165 (c) 175 (d) 18.0 (e) 20 f) 240.

smaller) at the end of the simulation Nonetheless we believe that our computation of
the vortex shedding in the near wake is qualitatively correct. even fort> 32 (at which
time the maximum of the absolute value of the vorticity on the outer boundary is still
less than 4 x 10-1).

Figure 18(e) shows that a second vortex is shed into the wake as for smaller a,
although shedding here occurs at a much later time. However, even in a reference frame
fixed with the undisturbed fluid, the weak second vortex is masked by the high velocity
induced in the near wake by the rapidly rotating cylinder. Therefore, for large a it is
not surprising that previous flow visualization experiments, including those performed
in a frame translating with the cylinder, have failed to reveal the shedding of a second
(weaker) vortex. Moreover, in the work of Coutanceau & M~nard (1985). experimental
limitations prevented continuation of the flow to the dimensionless time at which the
second vortex would have been shed. These difficulties have led to the erroneous
conclusions that for sa> 2.5 (or a > 1). no vortices are shed after the initial (strong)
starting vortex. and that the vortex street is completely destroyed.
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FIGURE 10. Equivorticity contours for Re 200. , = 1.0. Dashed (solid) lines represent constant
positive (negative) vorticity values with a constant increment of 0.5. with the magnitude of the
weakest contour level shown being 0.5. (a) t = 8.0, (b) 10.0. (c) 14.0. (d) 20.0, (e) 24.0.

To render the second vortex distinguishable using streamlines, we show in figure
19 (a) the streamlines at t = 32 in a reference frame moving with the core of the second
vortex. Experimentally, this would be a difficult task since a camera would have to
move with the vortex core velocity vector (u• e1 + ve •.) relative to the cylinder, which
is not known a priori. Numerically, this is achieved by simply subtracting
streamfunction values corresponding to the velocity of the vortex core from those in
an inertial reference frame fixed with the cylinder. The third vortex is clearly visible in
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FIGUitE 11. Instantaneous streamlines for Re = 200, a- 2.07 at various times, viewed from the
reference frame described in figure 3. In addition to those contour levels shown in figure 3.
V, = -0.17, -0.19, -0.21, -0.22, -0.23. -0.24 are also plotted. (a) t = 3.0, (b) 7.0, (c) 13.0, (d)
17.0. (e) 21.0, (f) 22.0, (g) 22.5, (h) 24.0.

a frame translating with its core (figure 19b), while the first vortex is still sufficiently
strong to be discernible in this reference frame (in which its core velocity is non-zero).

In contrast to the results presented above for smaller a, for a = 3.25 the third vortex
shed is of the same rotational sense as the second. This differs from the case Re = 10'
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(a)

(b) /

FIGURE 12. Comparison of computed (left) and experimental (right) instantaneous streamlines for
Re = 200. a = 2.07. The camera in the experiment and the reference frame in the computation
iranslate with the cylinder. (a) r= 5.0, (b) t = 9.0.

and a = 3 studied by Badr et al. (1990), in which the first two vortices formed are of
the same sense, but only one is shed. Moreover, in the two-dimensional computations
of Badr et al. (1990), only two vortices were formed, and the computed flow
approached a steady state. With respect to understanding the real flow, however, their
results must be regarded with caution, as the experiments of the same authors clearly
show that the flow is three-dimensional for Re = 10' and a = 3.

For a = 3.25 the trajectory in figure 20 shows that, in the mean, the first vortex
indeed continues to move upwards. in contrast to the result of Coutanceau & Minard
(their figure 14) in which the first vortex apparently moves back to the midline
(y = 0). Coutanceau & Minard ascribe this artifact to the effect of a confining (upper)
wall, a complication not present in our computations.

5.5. Temporal evolution of the lift and drag coefficients
Finilly, we present the temporal evolution of the lift and drag coefficients defined by

CL = L/pU2 a (18)

and CD = D/pU'a. (19)
where L and D are the lift and drag forces acting on the cylinder, respectively, and p
is the density of the fluid. Integrating the pressure and shear stresses over the surface
of the cylinder, we can express these in (r, 0)-coordinates as

CL M CLp+CLf = cos 0 dO (20)
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Fi~not 13. Comparison of computed (left) and experimental (right) instantaneous streamlines for
Re = 200. 2 = 2.07. Reference frame and camera motion are as described in figure 12. (a) t= 2.0, (b)
4.0, (d) 6.0. (-) 8.0.
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(a)

(b)

(c)

t i,

(e)

SI-

FIGuRE 14. Equivorticity contours for Re - 200, a = 2.07. Dashed (solid) lines represent constant
positive (negative) vorticity values with a constant increment of 0.5, with the magnitude of the
weakest contour level shown being 0.5. (a) t - 5.0, (b) 9.0, (c) 13.0, (d) 17.0, (e) 21.0, (f) 24.0.
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FIGURE 15. Trajectory of the core of the first vortex for Re = 200, a = 2.07
obtained from equivorticity contours.

(a) (b) 9,A60(2.

. ........

FIGURE 16. Instantaneous prand for Re t200, ,o3.25 at various times, viewed from thereference frame described in figure 3. The plotting convention is as in figure 3. The values of Vf plotted
are 0. ±+0. 1, ±+0.2, ±+0.3, ±+0.4, ±+0.5, ±+0.6, ±+0.7, ±+0.8, ±+0.9, ± 1.0, with an increment of ±+0.2
thereafter. (a) t =- 5.0, (b) 9.0, (c) 16.0, (d) 24.0.

and CD = CD1j, + CDf = 2e f-- [(6 sin 0 d09, (21)

where the subscripts p and f denote contributions due to the pressure and friction,

respectively, and the subscript b denotes quantities evaluated on the cylinder. We note
that (20) and (21) differ from the expressions given by Badr et al. (1989) by a sign. due
to a difference in the definition of vorticity. Figure 21 (a, b) shows the temporal
evolution of the lift and drag coefficients at various a for t < 24. Negative values of CL
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FiGURE 17. Comparison of computed (left) and experimental (right) instantaneous streamlines for
Re = 200, a - 3.25. Reference frame and camera motion are as described in figure 12. (a) t= 2.0, (b)
$.0. (c) 6.0, (d) 8.0.
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(a)
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(c) •

(d)
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(e)

o-I

(g) ,',
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FIGURE 18. Equivorticity contours for Re = 200, a = 3.25. Dashed (solid) lines represent constant
positive (negative) vorticity values with a constant increment of 0.5. with the magnitude of the
weakest contour level shown being 0.5. (a) I = 8.0, (b) 12.0, (c) 24.0, (d) 32.0, (e) 35.0, (f) 41.0, (g)
48.0, (h) 54.0.
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(a)

(b)

esIN

FiouRE 19. Instantaneous streamlines for Re 200, a 3.25: (a) 1 32.0. viewed from a frame
translating with the core of the second vortex; (b) t = 54.0, viewed from a frame translating with the
core of the third vortex. Dashed (solid) lines represent constant non-negative (negative)
streamfunction values with increments of A•k = 0.2, including & = 0. Note that in (b), eddy E, has
passed from the field of view.

correspond to a lift force in the negative y-direction. The time-periodic nature of CL
is well established for a = 0.5 and 1.0. At higher values of a, however, more time is
required for periodicity to be established, since the second and subsequent eddies form
and are shed much later, as discussed above. In figure 22(a, b), the pressure and skin
friction contributions to the lift and drag are shown separately for a = 1.0. Similarly
small viscous contributions to CL and CD are found for all other values of a
investigated. It is clear that lift and drag are largely due to the pressure force, consistent
with previous work showing that the Magnus effect is primarily an inviscid
phenomenon.

6. Discussion
Our computations of the temporal development of the flow generated by a circular
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FIGuuE 20. Trajectory of the core of the first vortex for Re - 200, a - 3.25 obtained from
equivorticity contours.

cylinder started impulsively from rest into steady rotatory and rectilinear motion at
Re = 200 show that, for the largest value of a (3.25) investigated by Coutanceau &
Menard (1985), vortex shedding continues after the first vortex is shed. contrary to
earlier conclusions. It is likely that these authors were led to conclude that vortex
shedding at Re = 200 is suppressed for a Z 2 because their experimental facility did not
allow for visualization of the flow for a long enough time. Even if that limitation had
been overcome, however, it is likely that their flow visualization technique (which
approximately yields instantaneous streamlines) would have failed to reveal the
presence of the second vortex, due to masking by the large velocities induced in the
near wake by the rapidly rotating cylinder.

We note that for a = 3.25 the time interval between the shedding of the first and
second vortices is much longer than the time required to shed the first. We conjecture
that for subsequent vortices, the interval between shedding of the 2nth and (2n + 1)th
vortices will be considerably shorter than the interval between shedding of the
(2n + l)th and (2n + 2)th.

We also observe that for a = 2.07 and 3.25 the second vortex (shed from the
downstream-moving side of the cylinder) is much smaller than the first, and conjecture
that, in general, the 2nth vortex shed will be significantly smaller than the (2n + I)th.
Unlike the non-rotating (a = 0) case, there is no requirement that the vortices shed
from opposite sides of the cylinder be of equal magnitude, or even that consecutive
vortices be shed alternately from opposite sides of the cylinder. In fact, there does not
appear to be any reason why vortices cannot be shed from a single (upstream-moving)
side of the cylinder.

From a more general standpoint, we can consider the computational and
experimental results in the broader context of three-dimensional flows. For this
purpose, it is useful to characterize the asymptotic stability of the flow in terms of a
translational Reynolds number defined by Ret = 2aU/v and a rotational Reynolds
number defined by Re, = 2aWl'/v, equivalent to Re and aRe, respectively. Thus,
uniform flow past a rotating circular cylinder can be considered in the (Ret,. Re,)-plane,
a quarter of which is shown in figure 23. From the computational results of Jackson
(1987) and Zebib (1987) and the experimental work cited therein, we know that
uniform steady two-dimensional flow past a non-rotating cylinder (Re, = 0) is stable
for Re, <• 45, at which point a supercritical Hopf bifurcation to a time-periodic two-
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.--IGU 21. Temporal evolution of (a) the lift and (b) drag coefficients for Re = 200 and various a for
0 4 t< 424; - , •,=f0.5; ....... a,= 1.0; ------ =2.07; a = 3.25.

dimensional oscillating wake flow occurs. On the other hand, for a circular cylinder
undergoing steady rotation only (Re, = 0), Walowit, Tsao & DiPrima (1964) have
shown that the steady purely azimuthal flow (V = efQa2/r) is linearly stable for
Re, •< 11, at which point it becomes unstable with respect to a steady axisymmetric
flow consisting of Taylor vortices.

We therefore conjecture that steady two-dimensional flows past a rotating circular
cylinder are stable with respect to infinitesimally small but otherwise arbitrary
disturbances in a region (I in figure 23) of the (Ret, Re,)-quarter-plane including the
origin. As the curve (shown schematically and referred to below as the 'stability
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FIouiia 22. Contributions of pressure and skin friction to (a) lift and (b) drag for Re =200 and
a= 1.0 for 0 < t < 24, -, skin friction;.....pressure; ------- total.

boundary') bounding Region I is crossed, we propose that for small a (note that a is
the slope of a line connecting the origin to a point in the quarter-plane) the ensuing
motion is time-periodic and two-dimensional, while for large a it is steady and three-
dimensional (axisymmetric in the limit Ret -- 0). It would thus appear that

(a) there exists at least one point on the stability boundary at which the nature of
the bifurcation from steady two-dimensional flow changes, and

(b) there exist two regions adjacent to I, in which an unsteady two-dimensional flow
should be realizable (Region II) and in which a steady three-dimensional flow should
be realizable (Region III).

Although it is known for Re, = 0 (Williamson 1988) and for Re, * 0 (Badr et al.
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Re, (3-D steady)

(2-D steady) (2-D unsteady)

S0 45

Re,
FIGURE 23 Schematic division of the (Re,, Re,)-quarter-plane. Two-dimensional steady solutions

are stable in region 1. Regions 11 and III are described in the text.

1990) that the unsteady two-dimensional flow becomes unstable with respect to
unsteady three-dimensional flows at sufficiently high Re,, the bifurcation structure
remains to be determined. Among the questions to be answered are

(i) If Regions 11 and III have a common boundary, how does a transition occur from
unsteady two-dimensional flow to steady three-dimensional flow?

(ii) If Regions II and III do not have a common boundary, what lies between them?
(iii) How does the bifurcation from steady two-dimensional flow change along the

stability boundary?
From the standpoint of controlling laminar two-dimensional vortex shedding from

a circular cylinder by using either 'active' control (a term that in the fluid mechanics
literature has come to mean a time-periodic, and frequently harmonic input. e.g.
2(t + T) = Q(t) or Q(t) = 1 sin 2nft) or feedback control, the present calculations

show that the nature of the vorticity field as well as the vortex shedding process can be
significantly altered by cylinder rotation. To the best of our knowledge, the only
investigations to dat, concerning the effect of a time-dependent rotation rate on the
shedding process are the experimental studies of Taneda (1977, 1978) and Tokumaru
& Dimotakis (1991), and the combined experimental and theoretical studies of
Okajima, Takata & Asanuma (1975), Mo (1989), and Wu, Mo & Vakili (1989).

The experimental work of Taneda (1978) for 30 < Re < 300 (including the range in
which Hopf bifurcation (Jackson 1987; Zebib 1987) of the steady two-dimensional
flow at Re ;t 45 leads to unsteady asymmetric two-dimensional solutions exhibiting
vortex shedding) shows that for sufficiently large values of the amplitude and frequency
of time-harmonic rotatory oscillations, vortex shedding (and indeed the formation of
attached vortices) can be eliminated. Moreover, Taneda's flow visualizations (see his
figure 3d) indicate that under certain circumstances, a flow can be generated that is
nearly symmetric about 0 = 0. This suggests that the flow can be driven to a symmetric
state, and provides reason to believe that it can be stabilized (in the control-theoretical
sense; cf. Kuo 1975) about a symmetric state in which no vortex shedding occurs.

The authors wish to warmly thank Dr M. Coutanceau for providing the experimental
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Abstract

Recently, several techniques have been proposed for the deternination of two- or three-dirnensional

velocity fields from measurements of one passive scalar. Here, we show that measurements of one

scalar and knowledge of the equation governing Its transport deternine a velocity field only up to an

additive vector field locally perpendicular to the gradient of the scalar field, but otherwise arbitrary. We

then discuss procedures for selecting a unique velocity field from among the uncountable infinity

consistent with the scalar transport data and equation. We show If that the Iterative procedure of Dahm at

al. (Phys. Fluids A 4, 2191-2206, 1992) for "solution" of a singular linear equation system (obtained using

only measurements of the scalar and the equation governing its transport) does in fact converge, that

outcome Is, at best, an artifact of spatial discretizatlon, and that as the resolution improves, the problem

becomes increasingly ill-conditioned, becoming ill-posed in the limit of perfect resolution. We then

develop a method for determining an n-dimensional (n - 2 or 3) solenoidal (divergence-free) velocity field

from measurements of n - 1 passive or reactive scalars. Finally, we show how the velocity field in an n-

dimensional compressible flow can be determined from measurements of density and n- I passive or

reactive scalars.



I. Introduction

Determination of the velocity field In any but the simplest flows is a central problem in experimental

and theoretical fluid mechanics. From an experimental standpoint, it has been possible for some time to

accurately determine the time dependence of one or more velocity components at one or a small number

of points, using hot-wire, hot-film, laser-Doppler (LDV), or other pointwise measurement techniques.

More recently, techniques have been developed for estimation of one or more velocity components

at more than one point, using single-point methods in a scanning or flying mode (e.g., flying hot-wire1 or

scanning LOV2). In "scanning" mode, data is typically acquired at one point at a time along a curve x,(t).

The data are thus neither full-field nor simultaneous, and are limited to one or at most two velocity

components.

In the last ten yeaws, several experimental techniques for estimating the velocity field have been

developed that take advantage of essentially Lagrangian descriptions of the flow. These techniques,

including particle image velocimetry (PIV) and its variants3-4, as well as photochemical, photochromic.

and luminescence methods 5S.6 in which fluid elements are marked (e.g., using laser-induced

photochemistry or Raman excitation of vibrational states), have in common that they attempt to follow the

trajectories of either neutrally buoyant small particles or "marked" fluid elements advected by the flow, In

order to Infer some or all of the components of the velocity field. For the particle-based techniques,

spatial resolution is limited by several factors, including the size of the particles that can be distinguished,

the number of particles that can be tracked from frame to frame without ambiguity, the volume fraction

and size of particles that can be added without seriously altering the flow, and the computational effort

required to process the data. Other limitations of particle-based techniques have recently been discussed

by Huang, Fiedler, and Wang7,8 . For the photochemical or luminescent techniques, only a fraction of the

volume of interest can be "tagged," because if all of the fluid is "marked," then none can be distinguished.

For either particle or marked fluid techniques, data at any time are acquired only at the current locations

of the particles or marked fluid elements. We refer to these velocity estimation techniques as being

"muU-point."
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Concurrently with development of multi-point velocimetry techniques, there has been a rapid

development of optical techniques for the "full-field" determination of temperature (e.g., by means of

Schlieren or liquid crystal techniques 9,10) or concentration (dyes by absorption, other species by

fluorescence or phosphorescence, e.g., laser-Induced fluorescence"1). Spatial resolution of these scalar

field measurements is limited only by the resolution of the optics. This type of data is routinely acquired at

high framing rates in planes by rapid scanning through a three-dimensional volume. Thus, in two

dimensions It is possible to obtain simultaneous full-field scalar data, while in three dimensions, the

simultaneity and full-field character of the data acquired is limited only by the scanning and framing rates.

We refer to this data as being simultaneous and full-field, subject to limitations on temporal resolution

imposed by framing rate, and, in three dimensions, limitations on spatial resolution in the third dimension

Imposed by scanning or framing rates.

Recently, techniques have been advanced12.13 for determining velocity fields from full-field (optical)

measurements of advected scalars. Such techniques have the potential to determine fully three-

dimensional velocity fields with excellent spatial resolution, a key advantage over PIV-type methods,

which are ultimately limited by particle size and loading constraints. In §11 we show that the velocity field

cannot be determined solely from measurements of a single advected scalar, and that in the published

"scalar imaging velocimetry" procedure of Dahm et al. 12 , the equations satisfied by the velocity field admit

an infinity of solutions, each of which is indeterminate by an additive arbitrary vector field locally

perpendicular to the gradient of the measured scalar field. In §111, we critically assess three techniques

that have been proposed for the selection of one solution from this uncountable set. In §IV we develop a

method for uniquely determining an n-dimensional (n - 2 or 3) solenoidal (divergence-free) velocity field

from measurements of n - 1 passive or reactive scalars, making explicit use of the solenoidal character of

the flow. In §V we show how the procedure can be extended to compressible flows for which the density

field can be measured. A discussion follows in §VI.



L. Nonuniqueness of Velocity Fields Determined Solely from Measurement of
One Scalar Field

Recently, Dahm et al.12 have proposed that, for a conserved passive scalar • whose distribution

evolves according to
S+ u.91; D•71; ,(1)

at

simultaneous full-field measurements of C suffice to determine the velocity field u. Their discussion

pertains specifically to three-dimensional flows ("four-dimensional vector velocity field measurements" in

the title and elsewhere refers to time as a fourth dimension). Furthermore, Dahm at al. claim that their

technique does not "explicitly require V - u = 0". From that and the claim that (1) and measurements of I

suffice to determine u, it would be logical to Infer that their technique is appicable to two- or three-

dimensional compressible as well as solenoidal (i.e., V u =O) velocity fields.

In fact, the method of Dahm et al., In which u, the component of u parallel to the gradient of the

scalar field (VQ), is determined from measurements of C and

u, DV= C jat (2)

and u itself is said to be determined from

tie =U ev; (3a)

and

V u1 1 =u . V +vu eu. v , (3b)

is inherently incapable of uniquely determining the component(s) of the velocity field perpendicular to uu.

To see this, we note that
A

uG =ul1ev•; + h(x,'t)e, (4)

is a velocity field satisfying (3a), where e1 is aM urit vector locally orthogonal to evý and h(x,t) is an

arbitraiy scalar function of position and time. Hence, the solutions of (3a,b) are neither discrete nor

countable. Furthermore, we note that (3b) can be rewritten as

vul =v (u • v)4 (5)
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from which it is apparent that (4) satisfies (3b) also. Hence, any velocity field determined by solving (3a,b)

alone (using measurements of Q) is necessarily nonunique, because an arbitrary vector field

perpendicular to VC can be added to give a different velocity field also satisfying (3a~b). This is because

the only relationship between the scalar field and the velocity field is (1), which allows no distinction to be

made between velocity fields of the form (4), so long as O. Is locally perpendicular to the gradient of the

scalar. Put another way, the component(s) (one in two dimensions and two In three dimensions) of the

velocity field that play(s) no part In advecting the scalar cannot be uniquely determined solely from

measurements of the scalar. This conclusion is Independent of the relative diffusivilies of momentum and

the scalar.

Thus, it Is clear that measurements of one passive scalar do not suffice to determine an arbitrary

velocity field. In the context of machine vision, where in (1) C and u represent the Image irradiance and

optical flow field, respectively, and D = 0 (corresponding to infinite Schmidt number or Prandtf number in

the present context), the Inherent Indeterminacy of a vector field obtained solely from measurements of

the scalar field that it advects Is well known14.15 , and Is referred to as the aperture problem or aperture

ambiguity. As discussed by Tokumaru and Dimotakis13 , one or more other "elements" (e.g., one or more

additional equations, minimization of some functional, etc.) is required in order to render u unique. As

discussed below, we note that the nature of the additional element(s) used to select a unique u

determines how well the selected u corresponds to the actual velocity field.

Alternatively, the claim 12 that (3b) has a unique solution for u because (3b) constitutes three linear

equations in three unknowns is easily seen to be false since the right-hand side of (3b) Is identical to the

right-hand side of (5), from which it is easily seen that (4) satisfies (5) (and hence 3b) for any h(x,t) so

long as the vector field e. is locally perpendicular to VC.

Ill. Selecting a Unique Velocity Field

The real Issue then, as recognized by Tokumaru and Dimotakis13, is how one goes about selecting

the correct u from among the uncountable infinity consistent with the scalar transport data and equation.

Clearly, any technique that sufficiently constrains the velocity field will select a unique u. Thus, rendering
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U unique Is not equivalent to selecting the correct u. In the following subsections, we discuss three

procedures that acconplish, or claim to accomplish, the selection of a unique u.

ILA The "tsratve Invermon" Approach

Dahm ot al. have claimed 12 that "solution! of (3b) by a particular iterative technique selects the

correct u (i.e., the velocity field that satisfies conservation of mass) from the infinity of other solutions of

(3a) and (3b). Specifically, in reference 12, (3b) Is discretzed and written as

b =A1 V(m)+ A2 v(m-l) (6)

al each time, where each element of the vector b Is an approximation to a component on the left-hand

side of (3b) at a point for which scalar data are available, the two terms on the right-hand side are

discretizations of the corresponding terms on the right-hand side of (3b), and v is a vector of unknown

velocity components at the disorete points. It was originally claimed12 that "Successive iterations based

on Eq. (7)" can be made until the velocity field u(k) converges to a self-consistent resur. In addition the

authors claim that *Stable, rapid, and accurate convergence is achieved'. The correctness of the

computed velocity field was attributed to the smallness of the second term In (6), from which it was said to

follow that the initial iterate (v(°)= AT'-b) was necessarily close to the correct solution of (3a,b).

In fact, from the indeterminacy of the solutions of the continuous problem (3ab), it follows that for a

faithful discretization

b =Av (7)

of (3b), the matrix A =Al+A 2 is either singular (exactly or numerically; the latter situation gives an Ill-

conditioned linear equation system, so the two possibilities are in practice equivalent) at any spatial

resolution, or is singular in the limit of infinite resolution, in which case the method necessarily breaks

down as the spatial resolution of the data improves indefinitely. Here we show that any claim that the

iteration (6) "converges" is inconsistent with the singularity of A. For general A, it can be verified by

direct substitution that the solution of

"equivalent to our (6)
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b -A1 v(m) + (A -AI)v(m-l) (8)

is

k-1

Since -

(Ij =1- B)-' (10)

j-0

if the infinite sum exists, we see that det(AA1) • 0 Is a necessary condition for the existence of a

"converged" formal solution

k- 1 r
v= -lim IA XI -AA'Jb=A'I-(l-A.' 1 )r'b= A71(AA' )-b . (11)

of (8). But A is singular, so no "converged solution of (8) exists, no matter how A is decomposed.

Thus, the meanings of the convergence claims made by Dahm et al.12 are not clear. With regard to the

statement 12 that "The ultimate level of improvement attainable through further iterations is, of course,

limited by numerical processing errors introduced by the discrete implementation of Eq. (7)", we note that

in the lirrit of infinite resolution and no noise, the matrix A is exactly singular, and the method necessarily

fails. If in fact "converged" results are produced at all, that would simply be an artifact of the

discretization. Moreover, since no solution of the continuous problem can be obtained by the Iterative

method described, any "solution" of the discrete problem obtained by this technique should be expected

to depend sensitively on both noise in the data and the details of the discretization.

III.B. The "Varlatlonal" Approach

More recently. it has been claimed that in three dimensions u can be determined from measurement

of a single scalar if one minimizes the positive semidefinite integral

E = f [-u. Vý-DV2W + #(V.u) 2 + ).(•:VU)i 'V , (12)

V
where the value of the exponent j is variously given as 1 or 2, and # and X are constant weighting

factors. This is an example of how an additional "element" can be used to select a unique u.
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It is clear that for X -0. r=, iniization of (12) is mathematically equivalent to satisfying (1) and

V e u = 0. In the following section, it is shown that this approach is correct for two-dimensional solenoidal

flows. For three-dimensional flows, (1) and Vou-=0 are insufficient to uniquely determine u. On the

other hand, for X. * 0, one must hope that minimization of (12) results in both satisfaction of (1) and

V • u = 0, as well as in minimization of the viscous dissipation. It has been claimed that the viscous

dissipation achieves a minimum in physically realized flows, and that minimization of E selects the correct

u.

In fact, the class of flows for which It can be shown that the viscous dissipation is minimized

(compared to all other kinematically admissible flows satisfying the same boundary conditions) is small

and rather uninteresting, it consists of those flows for which either

a) the flow is steady and the inertial terms vanish identically (Helmholtz1 s), or

b) the viscous terms are derivable from a single-valued scalar-potentiaJ (Rayleigh 17 ).

Furthermore, for sufficiently large X., It is likely that minimization of E will drive the dissipation to zero at

the expense of satisfying (1) and Ve.u=0.

it is clear that minimization of (12) cannot be expected to yield a correct u for compressible flow.

Neither condition a) nor b) obtains in the flows to which the method has been applied.

III.C. The "Smoothness" Approach

Tokumaru and Dimotakis 13 have recently developed an essentially Lagranglan technique that

considers situations for which
D(tl-to) << 1 ,(13)

where!f is the imaging resolution, and t1-to is the time interval between consecutive images of the

scalar field. They integrate (1) (with the diffusive term set to zero) to get

•R(x,t 1)]- C[(x,to)] = 0 , (14)

where the displacement field is denoted by 4(x,t), and the initial locations of the fluid elements are given

by t(xto) = x.
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Tokumaru and Dirnotakis render the velocity field unique by minimizing the integral (over the

measurement volume) of the sum of the squares of the left-hand side of (14) from zero, and a measure of

smoothness of the displacement field 4(x,t) and its spatial derivatives. This method requires solution of

a global linear equation system at each time in order to find a unique displacement field that minimizes

the error in (14) while maintaining its own smoothness. Since there is no physical requirement that the

'smoothest* velocity field be the correct one in any particular flow, one cannot a priori assume that this

technique yields the correct u. However, as pointed out by Hildreth t s in the machine vision context,

although the -velocity field of least variation is, in general, not the physically correct one, it is often

qualitatively similar. Tokumaru and Dimotakis 13 have applied their method to experimental data from

several carefully chosen flows in which they have created and imaged appropriate scalar distributions.

Their results for steady circular Couette flow (with a time-dependent scalar field) are excellent, while those

obtained using single two-dimensional slices of the three-dimensional transitional flow past a circular

cylinder are qualitatively reasonable.

IV. Unique Determination of n-dimenslonal Solenoidal Velocity Fields from
Measurements of n-1 Scalar Fields

In this section, we describe a technique employing full-field measurements of n -I scalars to

determine solenoidal (divergence-tree, or "incompressible") n-dimensional velocity fields. Our objective is

to develop a method that is "consistent*, by which we mean two things. First, the method should extract

the correct velocity field when there is sufficient scalar data to do so. Second, the error in the extracted

velocity field should go to zero as ihe spatial and temporal resolution of the scalar measurements

Improve. In general, these requirements dictate that the additional welement" used to render u unique be

satisfied exactly in the flow, and not implicit in the scalar transport equation. For two-dimensional flows,

we show that measurement of one scalar (temperature or concentration) suffices to uniquely deterrmne a

solenoidal velocity field, whereas for three-dimensional flows, measurements of two scalars (temperature

and concentration or two independent concentrations) having nonparallel gradients are required. Our

technique is in principle applicable to steady or unsteady, laminar or turbulent, two- or three-dimensional
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flows. Key features are that no velocity components need be measured, the number of measured scalars

required is one less than the spatial dimensionality,, and the method should give a velocity field that

faithfully approximates the correct u as the spatial or temporal resolution of the scalar measurements

improves. The computations are local In a sense made more precise below, and do not require solution

of a large linear (or nonlinear) equation system. For steady or time-periodic three-dimensional flows, the

two scalars need not be measured simultaneously.

Our technique is based on the recognition that If the transport equation(s) for the scalar(s) is (are)

linear In the velocity components, then it (they) and the so-called incompressible continuity equation

V.u=O, (15)

constitute two (three) linear equations in two (three) velocity components.

Our analysis will be presented in a Cartesian coordinate system. (Results for general curvilinear

coordinate systems will be presented in §IV for the compressible case.) In two dimensions, we present

the development in terms of an equation for transport of a single species (the concentration of which is

denoted by C) in a binary fluid. We allow for that species to react, with kinetics that are essentially

arbitrary so long as they are known and the rate of reaction depends solely on C. (In the development of

the three-dimensional analysis, we show how temperature-dependent kinetics can be accommodated.)

Under a broad range of conditions, the scalar equation for transport of C can be approximated by

+ u. VC =DV2 C + R(C), (16)

where D is the binary diffusion coefficient and V 2 is the two-dimensional Cartesian Laplacian. If

temperature is the passive scalar for which full-field measurements are available, then (16) will be

replaced by an energy equation, identical to (16) if D is replaced by K and the reaction rate R(C) is set to

zero. In two dimensions, (16) can be written as

aC + uIC + v2ý = DV2C+ R(C), (17)
at ax ay

which together with the two-dimensional form
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au +-v (8

of (15) constitute a pair of linear equations in u(xy,t) and v(x,y,t). Solving (17) for v and substituting Into

(18) yields

VCj x u ]j.ez=-[ J G 
(Y

while solution of (17) for u and substitution into (18) yields

v G

where

G = DVC- 2E + R(C). (20)
at

Equations (19a) and (19b) are two lnear, first-order, uncoupled equations for u and v.

In three dimensions we consider two scalars, at least one of which is a concentration variable. The

second scalar can be either temperature or another concentration. In what follows, we will take the

second scalar to be temperature, and assume that the thermal properties are temperature-Independent

and that the viscous dissipation heating term in the energy equation can be neglected. Only trivial

changes in the discussion are required if both scalars are concentrations. In (16), V2 is now the lull three-

dimensional Laplacian. The two transport equations are then

ac +u 2E + v 2E-+ w°2 = D V2C + R(T,C), (21a)

at ax ay az

and
aT +uaT + T + T = z (-AMH) ,Q,(1bar u- • w-• = V2T+LŽ!R(T,C),pcp(21b)
at Tx ay 5z PCp

which together with the three-dimensional version

+ & + = 0, (22)
ax aY az
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of (15) consttute three linear equations for u, v. and w. We note that any kinetic scheme (including one

with temperature-depedrent rates) can be accommodated, so long as the rate expression Is a known

expression of the form R(T.C).

Three linear, first-order equations

(VC x Vr). v(W/a) =[VT x V(H2/r) - VC x V(H,/a)J • ex (23a)

(VC x VT). v(v/y) =[VT x V(H/.Y) - VC x v( */y)], ey (23b)

(vC x Vr). v(w/8) = [VT x V(H4/8) - VC x V(HN/8)] • Oz (23c)

analogous to (19a) and (19b) can be derived from (21a.b) and (22), where

I 1 = DV2C - - + R(T,C), (24a)
at

Hz= V2T - LT + (-AH) R(TC), (24b)
at PCP

and

ac = r aCD aT (25a)"ayaz azay'

if-=-az x - (2ab)

and

8 a= (25c)
axay ayax

are the components of VC x VT.

Equations (19ab) or (23a-c) constitute systems of knear first-order uncoupled hyperbolic equations

in the velocity components u and v, and u, v, and w, respectively. Given the scalar field data, the solution

of these equation systems Is made unique by specification of appropriate boundary conditions. (As the

unknowns are components of the velocity, the required boundary conditions will Involve velocity
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components. rather than the transported scalars.) Equations (19a,b) or (23a-c) can then be Integrated

along characteristics. We note that in two dimensions, the characteristics are the same for (19a,b), and

that in three dimensions, the characterstics are the same for (23a-c). We note that no time derivatives of

the velocity components appear In (19a,b) or (23a-c), so that no initial data on the velocity field are

"required. A desirable consequence of the fact that (19ab) and (23a-c) are not initial value problems Is

that errors in the determirnation of the velocity field do not grow temporally.

In two dimensions, it Is clear that at any point at which either component of the gradient of the scalar

vanishes, (19a) or (19b) will have a singularity. In three dimensions, equations (23a), (23b), or (23c) will

be singular at points where a, y, or 8 vanish. From the standpoint of extracting velocity fields from

experimental scalar data, and more importantly, in order to wisely select boundary conditions, diltusivity

ratios, and other factors that affect the scalar field(s) from which the velocity field is to be extracted, it is

important to understand the nature of the singularities, and to develop techniques for dealing with them, if

possible.

First, we classify the singularities of (19a,b) and (23a-c). We first consider the two-dimensional

case. If exactly one component of the scalar gradient vanishes, then one component of u can be

determined from (19a) or (19b), and the other can be found from (18). For example, i 8C/Iax = 0, then

(19a) can be used to find u and (17) can be used to determine v from

SDV2 CaC/at (26)

In practice, it Is advantageous to Integrate (19a) and compute v from (26), and to compmar the values of u

and v at each point along the common characteristic to the values obtained by Integrating (19b) and using

DV 2 C- aC/at (7u= al (27)

Thus, when one gets close to a curve on which 4ax =0 for example, the results of the above two

procedures will begin to differ, and one can use the results obtained from (19b) and (26). That the scalar

field and solenoidal constraint still provide enough Information to determine u in this case is easily seen,
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since the general case can be rewritten in terms of local coordinates parallel and perpendicular to VC,

characterized by unit vectors ev; and ej. , such that the component of VC In the direction of e.L Is

zero.

When VC vanishes, it might seem from (17) that the scalar field provides no information about u.

This Is Indeed true If VC vanishes Identically in some area, In which case there Is insufficient information

to determine u In the Interior of that area. if, on the other hand, VC vanishes either at an Isolated point

(corresponding to the intersection of the curves along which a./ax = 0 and aC/ay =0 ) or along a curve,

then we can in fact determine u. In two dimensions, we begin by using index notation to rewrite (17) as

u = G i=1,2 . (28)

Taking the gradient of both sides of (28), we obtain

SJx- i=1,2. (29)
Naxjx axi

when the gradient of C vanishes. Thus, we have two (linearly independent) nonhomogeneous eq. ns

for the components of u. We find that

uGxCyy-GYCXY v = GyCXX-GXCXY (30a,b)

CxxCyy-c2 CxxCYY-C2

We note that (30a,b) can be obtained from (17) only if VC =O. That the solenoidal constraint Is not

required in order to specify the velocity field On tis cas is due to the fact that another constraint, namely

VC = O, obtains.

Thus, we see that unless VC vanishes identically over an area, "singularities" in (19a,b) are

"removable" in the sense that the velocity field can be uniquely determined at points or along curves

where one or both components of VC vanish.

In three dimensions, VC x VT plays the part of VC, and the vanishing of one or two components of

the cross product of the gradients of the scalars corresponds to a change to a local coordinate system
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with unit vectors parallel and tangential to the cross product. In that case, formulas analogous to (26) and

(27) can be derived for the components of u. If all three components of VC x VT vanish (i.e., the

gradients of C and T are parallel) In a volume, then the scalar transport equations and the solenoidal

constraint provide insufficient information for deternination of u in that volume. In the event that

VC x VT vanishes on a curve or on a surface, expressions for u, v, and w analogous to (30a.b) for the

two-dimensional case can be derived. The apparent singularity In (23a-c) is completely removable unless

VC x VT vanishes in a volume.

Finally, we note that one can easily show that characteristics originating on a boundary will emanate

into the flow (as opposed to remaining on the boundary) If the normal component of the scalar gradient (in

two dimensions) or the normal component of the cross product of the scalar gradients (in three

dimensions) is nonzero. In two dimensions, this point argues strongly for use of temperature as the

scalar, since most walls are impermeable to most species (i.e., no VC = 0). In three dimensions, a

nonisothermal wall through which the second scalar does not penetrate will be consistent with

n.(VC x VT) * O.

V. Unique Determination of n-dimensional Compressible Velocity Fields from

Measurements of Density and n-1 Other Scalar Fields

In this section, we show how the approach of §111 can be extended to deal with the case in which the

equation for conservation of mass is

S+ u•Vp+pV u=0 . (31)
at

We again use

+ u - VC = DVC + R(T,C) (32a)
at

and

PCV +u..VT V. kVT + .PE.v +u.Vp +(-AH)R(TC) (32b)
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where P is the thermal expansion coefficient, to eliminate two components of u before substituting into

the continuity equation [this mrne (31)1 to get a hype"ilic equation for the third component. Doing this

three times, we get, in general cuvlinear coordinates,

L. )-f + [VT XV($]V xV!P1) (33)

where L= VCx(vT+ rvp), r-(1-c/cv)/(p), hI , h2 and h3 aremetric coefficients, f =hlh2h3 ,

Hi Is as defined In §ill, and

H3= V. kVT" aT + (-4-H)R(T,C) (34)

PCp at PCp

In the compressible case, singularity corresponds to the vanishing of components of L, and the

approach is similar to that described in §111.

For a constant density fluld. cp= cv, and we recover the solenoidal results given In §fil.

VA Discusslon

Determination of an n-dimensional velocity field (n = 2 or 3) requires n "elements," each constituting

an independent constraint on the velocity components. In our approach, for a two-dimensional solenoidal

velocity field these are equations (17) and (18), where the derivatives of the scalar field in (17) are

obtained from experiment. In three dimensions, we take the three elements to be equations (21 ab) and

(22), where the scalar fields and their derivatives are obtained from experiment. For compressible flow,

one can use the continuity equation (31) and n - I of equations (32a) and (20b), where the density and

advected scalar(s) are obtained from experiment.

We note that, for solenoidal u, one modification of the approach presented above might be to

employ the same elements to compute one velocity component using the corresponding hyperbolic

equation, and to use the n - 1 transport equations (17, or 21 a,b), which are linear and algebraic in the

other components, to determine the remainder of the velocity field.
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A rather different set of n elements might be full-field measurements of n-r velocity components,

r - 1 transport equations, and a continuity equation.

In any case, the fact that n independent equations are required to determine n unknowns means that

a single transport equation along with measurement of the corresponding scalar field does not uniquely

determine a solenoidal velocity field In three dimensions, or a compressible velocity field in two

dimensions, let alone a compressible velocity field in three dimensions.

We note that the feasibility of our technique will depend in large part on one's ability to create scalar

distributions for which VC (in two dimensions) or VC x VT (in three dimensions) is not only not zero

everywhere in the Interior of an area (in two dimensions) or a volume (in three dimensions), but is also not

small (compared to the measurement sensitivity divided by the spatial resolution) In the interior of a

volume or area. This will, in general, require some care to be exercised in setting up the scalar field(s).

In addition to the choice of boundary conditions for the scalar, and some imited flexibilty In the choice of

diffusivities, one may also want to take advantage of the fact that, since the technique is applicable to

scalars whose transport is described by (16) in two dimensions and (19a,b) In three dimensions, one can

consider various "volumetric" methods for inftluencing the scalar fields, In which R(C) or R(TC) is replaced

or augmented by a spatially nonuniform "source term".

Rnally, we note that our technique is an ideal candidate for parallelization. The integration along

characteristics uses only local information along the characteristic, and does not Involve solution of a

"global" equation system, as is required by the witerative inversion" and "variational" approaches.

Moreover, integration along the characteristics is a process that can be parceled out on the basis of one

processor per characteristic. The fact that no large linear equation system need be solved (the

"variational technique" described in §ll.B. involves a linear equation system so large as to require iterative

solution), makes the process eminently suitable for real-time use.
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