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A. Executive Summary and Introduction

This project covers two areas of research: one is on applications of wavelet transforms to

multiscale image processing, and the other is on parallel algorithms and architectures. We will

address first the wavelet transform applications.

In computer vision, the features contained in an image need to be characterized, extracted

and recognized in order to provide a final interpretation of the image. Various types of features
over a range of sizes appear with different contrast in an image which is usually contaminated

with noise and distortion during the imaging process. This often requires processing in different
scales, from coarse to fine, in order to obtain both global and local information. One often uses

a Gaussian filter to smooth an image prior to any extraction process, with different standard

derivations of the Gaussian taken as the scale values. This was advocated by Marr and Hildreth,

for example, using zero-crossings of the Laplacian of a Gaussian under various values of the

standard derivation(scale parameter) for edge detection. This approach allows for a scale space

with a continuous spectrum of the scale parameter; but a problem in using the Gaussian filter is

that it is difficult to locate edges at large scales. Work has been done following the introduction of

this approach to minimize the delocalization and integrate the information obtained at different

scales.

Wavelet theory provides a new multiscale approach for representation and characterization
of signals and images. One can select a suitable or an optimal wavelet and its associated scaling

function; their translations and dilations form two sets of basis functions which can be used to
represent any signal with finite energy, providing both time(space) and frequency localization.

An image can be decomposed into the so-called low-frequency components and high-frequency
components at successive scales, from which the original image can be reconstructed. Novel

applications can be and have been developed using this notion, e.g., image compression, noise

suppression, image enhancement, edge detection, segmentation, and texture analysis. This is

a rapidly emerging field as evidenced by the topical conferences held and the books published

during the past five years.

We have studied the localization property of wavelet-based edge detectors. It has been proven
that wavelet filters must be antisymmetric with repect to a non-zero axis of symmetry and

scaling filters are symmetric with repect to this axis which is 0.5 for the best edge localization.

In order to reduce the interaction between neighboring edges at larger scales, the scaling filter

should have the shortest possible support and yet still provide adequate smoothing. Toward

this goal, a non-orthogonal wavelet edge detector with four filter-coefficients has been studied

where the coefficient values were selected from the parameter space of the solutions to the four-

coefficient, two-scale dilation equation. Its experimental performance showed an improvement

over what were obtained by the refined regularization method and the first order regularization
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filter method which we developed earlier. It is comparable to the Mallat-Zhong edge detector

with a quadratic spline wavelet, it slightly reduces the edge interaction effect at the expense of

noise sensitivity.

The uncertainty constants, in reference to the time(space)-frequency localization, of various

Daubechies' and B-spline wavelets and their associated filters have been computed and compared.

Among the Daubechies' orthogonal wavelets, D12 has the smallest uncertainty constant, however,

the uncertainty constant of the discrete filter increases almost linearly with its order. For B-spline

wavelets as well as their discrete filters, their uncertainty constants are smaller and approach to

0.5 (the Gaussian case). Hence, if orthogonality is not required, a B-spline wavelet may be

prefered in signal decomposition for its very good time-frequency localization.

A modulated Daubechies' wavelet (D6) has been used in image texture segmentation,

providing both spatial frequency and orientation selectivity. The modulation is refered to

the scaling function modulation. In the 1-dimensional case, the modulated scaling function

is equivalent to a wavelet only if the modulation frequency is equal to x where the modulated

scaling filter is, in fact, a wavelet filter. Extent to the 2-dimensional case, the modulated filter is a

high-(or band-)pass filter centered at a pair of modulation frequencies with a specific orientation

in the 2-dimensional frequency plane. Four orientations, 900,45', 00 and -45*, and two scale

levels were used; these eight channels provide eight texture features for segmentation. Our

experiment on a cloud image showed a well localized texture border between the cyclone cloud

street and its background.

For recognition and identification of 2-dimensional or 3-dimensional objects, the object of

interest should be well segmented and efficiently represented such that the task of matching

the segmented object with those stored in the database can be greatly facilitated. We have

studied the object segmentation problem by examining its silhouette(or surface) at multiple

resolutions in piecewise linear(or planar) approximations by the use of wavelet transform. The

Harr wavelet is used in this study to generate a multiresolution surface decomposition. At each

resolution, silhouette pixels are classified into four edge categoties: vertical, horizotal, diagonal

and compound; compound edges are made up of edges from a combination of the first three

categories and hence will be assigned more than one particular orientation. In the 3-dimensinal

case, surface voxels are classified into nine orientations. The pixels thus labeled are combined

for all resolutions. The neighboring silhouette pixels with the identical label(sharing a common

orientation) are then grouped together for reducing the number of representation pixels termed

"dominant points". These dominant points can be used for object matching and recognition.

This method has been experimented on LADAR images of a military vehicle for possible use in

the automatic target recognition.

We have considered a biomedical image compression problem by using the variable rate vector

quantization for encoding Daubechies' wavelet transform coefficients. For archiving purpose, the
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information preserving compression is required, the achievable compression ratio is currently

limited to about 3-to-1. For communication purpose, however, some information loss may be

acceptable if the decompressed image is visually indistinguishable from its original by expert

radiologists. Although the original image can be completely reconstructed from its wavelet

transform, any quantization of wavelet transform coeffients constitutes a lossy scheme. It is

important to examine how much compression can be obtained while maintaining high fidelity

of the decompressed image for diagnostic applications. We experimented on a small set of

angiograms and NMR head images by using Daubechies' orthogonal wavelet transform D4 , 4 x 4

bolcks in vector quantization and a tree structured vector quantizer with varying depth. Our

preliminary result showed a 8.8-to-1 compression ratio with high fidelity decompression. This

can be improved by using a more regular wavelet and a larger set of training images.

Another application has been directed to the adaptive image halftoning. The gray information

at a pixel, including its gray value and gradient, is represented by the number, density and

distribution patterns of the set-on dots in a screen. Embedded within an equilateral quadrangular

support, an elliptic screen function is designed such that its orientation, elongation and size are

adaptive to the wavelet transform modulus, angle and the pixel gray level respectively. Our

simulation experiments demonstrated its potential for future development.

Our work on systolic architecture for pipelined processing of discrete wavelet transform

has led us to study the wavelet-based artificial neural network structures for dynamic system

identification. We have developed a method of utilizing Daubechies' orthogonal wavelet transform

to construct a three-layered artificial neural network for identification of stable linear dynamic

systems, time invariant or time varying. Special neurons in the middle layer have nonlinearities

characterized by Daubechies' orthogonal wavelets at successive scales and the scaling function

at the coarsest level. In our simulation study, the training time and accuracy were improved by

one order of magnitude when compared to that obtained by the conventional artificial neural

networks. By cascading this network to a special three-layered network for nonlinear function

approxiamtion where scaled cubic spline functions are used as radial basis functions in the hidden

neurons, a special four-layered feedforward network is constructed which is potentially useful for

on-line nonlinear system identification.

As images become larger and processing demands greater the role of parallel computing

becomes more important in image processing. Many important issues arise in this context and

we will summarize a few here. Given desirable or available parallel computing architectures we

need to determine how we should place images and image representations into the architecture

and in concert with this how we should implement in parallel the required image processing

algorithms. The development of parallel algorithms can be complicated by the simultaneity

inherent in multiple applications of operators over the whole image which can lead to greater

difficulty in algorithm verification. Thus, we need to develop verification methodologies to aid

5



algorithm designers in their search for acceptable parallel algorithms. Based on communication

constraints typical in most practical parallel architectures we usually try to identify algorithms
based as much as possible on operators with small local supports. Thus, research which helps
to identify such operators and limits on such operators can be of substantial aid to algorithm

designers. The work on parallel image processing reported here addresses questions bearing on
these areas of research interest. The target architectures of primary interest in our studies have
been 2D and 3D mesh architectures either with or without reconfigurability. These architectures

are in some sense the most practical for massive parallelism.

In order to utilize wavelet transform representations in parallel architectures, we need to
decide how we should place the various coefficients in the architectures. It is likely that wavelet

notions will find their place typically in low to medium level image processing applications where
mesh architectures are particularly well suited. So we have focussed primarily on the question

of how to embed wavelet transforms of 2D images into 2D meshes. We identified two key types
of embeddings: one which tends to keep particular detail images of the transform in contiguous
"blocks" of the mesh and the other which tends to distribute the different components of the

detail images (and the remaining lower resolution version of the image) such that all information
about given image region is as close together as possible. These embeddings are envisioned for
fine-grain realizations in massively parallel architectures where we have one wavelet coefficient

per processing element. We compare the time complexity achievable for the two embeddings for a
set of algorithms and algorithm classes including: wavelet decomposition, wavelet reconstruction,
a canonical class of operators with local support, and a canonical planning task. For each case we

consider a target 2D mesh target architecture with and without reconfigurability. In almost all
evaluations the distributed form of embedding produced superior time performance and for the

reconfigurable mesh architectures the distributed embedding produced essentially ideal results.
Further, we derived some evidence for an increased advantage for the distributed embedding
in the more coarse-grain realizations where more than one wavelet coefficient is placed at each
processing element. We have also considered the case where a 3D transform is embedded into a 3D
mesh using extensions of the two proposed embeddings and find that the distributed embedding

appears superiour for this case also. Thus, we believe we have identified an excellent (possibly

ideal) candidate for the embedding of 2D (3D) wavelet transforms into 2D (3D) meshes.

We have substantial interest in the 3D mesh architecture for both 2D and 3D image processing
as it appears to offer the most practical interconnection scheme for packaging massively parallel

architectures in 3-space. We have studied the embedding of 2D images into 3D meshes and
demonstrate a 2D-3D embedding (into a 3D mesh with certain reconfigurability capabilities)
which has dilation of one. This implies that any 2D algorithm can be run on the 3D mesh

without a time penalty. Of course, if we are processing 3D images the 3D mesh can offer obvious

advantages when we want to realize 3D parallel operators. We demonstrate the superiority
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of the 3D mesh for the transpose operation which requires a large amount of inter-processor

communication and is fundamental for solutions to the sorting problem. Finally, we report a
study on expected speedup for 3D meshes as compared to 2D mesh and binary hypercube which
indicates effective advantages for 3D mesh over 2D mesh for all cases considered and illustrates
for what size parallel machines the hypercube surpasses 3D mesh in expected performance. We

conclude that 3D mesh offers some substantial promise in parallel image processing of 2D and
3D images.

We have investigated particular 3D image processing algorithms in an effort to identify
potential applications for 3D mesh. We have investigated the apparently low level problem of 3D
shrinking to a residue. This problem in its 2D instance is fundamental in component counting
and connected component labeling. We developed the first correct (i.e., connectivity preserving)
approach to this problem using subfield notions. Unfortunately, in this study we had trouble
achieving convergence for all images which led us to a conjecture that one cannot in general find

a parallel 3D shrinking to a residue algorithm based on local operators. Although we have not
found a formal proof for our conjecture, the kinds of images (i.e., "chains") which form the basis
of our conjecture offer daunting challenges for anyone hoping to design a practical algorithm.
These observations have impacted on our concurrent study of parallel 3D connected component
labeling algorithms. Here we are studying algorithms built from extensions of successful 2D
approaches: including radix-based approaches; shrink-expand approaches (based on shrinking);
and mixtures of divide and conquer and propagation labeling. Our extensions of radix-based
methods to various 3D image spaces have far superior time complexity in reconfigurable 3D
meshes when the bus time delay can be modeled as much less than O(bus length). Several of
our other methods become competitive (or superior) when bus delay is treated as O(bus length).

Finally, we have considered the magnetic resonance imaging problem as a typical area where 3D
images are produced. We have begun to address the problem of brain region segmentation and
are developing methodologies for comparing the efficacy of different segmentation results.

In image processing we often are concerned with identifying the connected components of a

partially processed image as a fundamental step in region segmentation. Thus, there are needs
for classes of connectivity preserving (topology preserving) algorithms. Parallel implementations
of such algorithms offer sometimes difficult verification challenges and there is a related challenge
to identify the smallest possible supports for parallel operators as such small supports can

reduce communication overhead in parallel implementations. We have identified optimally small
supports for certain 2D connectivity preserving reduction operators, i.e., thinning and shrinking
to a residue. We have developed some approaches and tests for easing verification of parallel
2D reduction operators; parallel 2D reduction-augmentation operators; and 3D subfield-based
parallel reduction operators. This work offers algorithm designers relatively efficient tests for
proving connectivity preservation for these fundamental classes of parallel operators.
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Finally, we have considered some alternative architectures. We demonstrate a systolic
realization of a 1D wavelet transform in a systolic array which appears promising. Earlier in
the project we have investigated the application of compound graph interconnection networks

as augmentations of 2D mesh architectures. Certain of our networks offer time performance
close to hypercube but at a sul stantially reduced interconnection cost. One of our networks

is fundamentally more powerful than hypercube (while maintaining lower interconnection
cost) as it performs sorting and PRAM emulation in O(log(problem size)). Although these
theoretical results are quite promising, we feel that massively parallel architectures with fine
grain embeddings of images are most likely to be redized in practice with mesh forms of
interconnection. Thus, this work on highly interconnected architectures is most likely relevant

to networks with smaller numbers of more powerful processors and medium to coarse grain

realizations.
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B. Research Results

B.1 Applications of Wavelet Transform to Image Processing

We have studied the following problems on applications of wavelet transforms to multiscale
image processing: wavelet-based edge detection and localization, texture segmentation using a

modulated Daubechies' wavelet, and object segmentation with multiple resolutions in piecewise

linear approximations; they are discussed in Section B.1.a, Section B.L.c and Section B.L.d

respectively. Uncertainty constants of Daubechies' wavelets and B-spline wavelets and of their

filters are discussed in Section B.l.b. Biomedical image compression by using the variable rate
vector quantization of Daubechies' wavelet transform coefficients is discussed in Section B.L.e,

and the use of spline wavelet transform in the adaptive image halftoning is studied in Section

B.1.f. Furthermore, wavelet-based artificial neural networks developed for system identification
is described in Section B.1.g.

B.1.a Wavelet-Based Edge Detection and Localization

Detection of edges in noisy images requires an appropriate smoothing over various regions in

an image but preserving and extracting the edge information with high accuracy. The criteria
consist of reliable detection and accurate localization. The multiscale analysis provides a natural
approach to deal with the problems of various feature size and feature contrast. There are

generally two ways to study the multiscale edge detection. One is to reconstruct an adequate

intensity surface f from the noisy data d, using different scales over different spatial regions,
and then to extract the locations of its sharp changes. The other is to extract edges at multiple

scales and then integrate them in the finest resolution. We have investigated a space varying
regularization method for edge detection by m;:iimizing a membrane energy functional

E(f) = J1 j~ )2d~dy, +JjI A(X, Y,)(f.2 + 2~d"( -d //o + xd

where f. and fy denote the gradients of f along x and y directions, and A(x, y) is a regularization
parameter controlled spatially by a function of the smoothed error signal between the regularized

f and the data d. The control scheme is based on the idea that A(z, y) should be large in

continuous regions of f in order to filter out the noise, and should be small at discontinuities in

order to prevent significant smoothing across discontinuities. An iteratively refined regularization
algorithm has been developed to solve for the variational problem and to determine the edge

locations [GOL193]. We have also investigated an approach of multiscale edge detection by using

a set of first order regularization filters with different parameters Ai and a simple integration

scheme of taking union of edge pixels that exist at least for two successive scales [GOLI92]. The
1-D regularization filter h.(z; Ai) = -e-"i/, is derived from minimizing.the 1-D string energy
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functional where the regularization parameter A = A? has a fixed value. 2-D filtering is obtained

by performing the tensor product of two 1-D filtering. Edges at each scale are determined by
thresholding local maxima of the gradient of the filtered image. This method performs well if

filter parameters Ai's are appropriately chosen, but the problem is how to make such a choice.

Wavelet theory provides a multiscale approach for representation and characterization of
signals and images [MAZH92, MAHW92]. Mallat and Zhong developed a multiscale edge

detection process by determining wavelet modulus local maxima. They initially used a

cubic spline wavelet in their discrete dyadic wavelet transform [MALL89a]. More recently,
they constructed a compactly supported antisymmetric quadratic spline wavelet, which is the
derivative of a cubic spline smoothing function, and a symmetric quadratic scaling function,

leading to a four-coefficient scaling filter and two-coefficient wavelet filter in their multiscale
processing [MAZH92]. In this context, their multiscale edge detector and Canny's edge detector

[CANN86I in dyadic scales are functionally equivalent. From these multiscale edges, the original
image can be very closely reconstructed. By selecting important edges across the scale, they

developed a compact edge-based image compression method. From a pure edge detection
point of view, one would like to ensure not only a good performance of detection but also

accurate localization of edges which is very important to some high precision industrial inspection

problems as well as some medical image analysis problems. It is known that the detected edge

locations at large scales may be shifted away from the true edge location. We have studied
the localization property of wavelet-based edge detectors both analytically and experimentally

[SULI93a, KIKL92, KILI93]. Antisymmetry of wavelet filters and their support size have been

investigated with respect to the edge localization. Neighboring edges in close proximity interact
one another in the detector may cause displacements of detected edges at larger scales. We have

studied another non-orthogonal wavelet edge detector with four filter coefficients, a&, derived from

solutions to the four-coefficient dilation equation, for reducing the degree of edge interactions.

Axial Symmetry for Wavelet Filters:

Let O(x) be a wavelet and O(x) be its corresponding scaling function, and let g(n)

and h(n) be their associated high-pass filter and low-pass filter respectively. Furthermore,

let I(w), (w),G(w) and H(w) denote the Fourier transforms of O(x),4(x),g(n) and h(n)
respectively. Then b(w) = H(w/2)-P(w/2), 'P(w) = G(w/2)4(w/2), IH(w)J2 + IG(w)12 = 1,

H(O) = 1 and H(7r) = 0. The 1-D discrete wavelet transform can be computed recursively by

W'(n) = S •(n) *gi(n)

S'+1 (n) = S3 (n) * h,(n)

where "*" denotes convolution, Wj(n) and Sj(n) represent the coefficients of the dyadic wavelet
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transform at scale 2j, (j - 0,1,2,-- ,J), and g,(n) and hi(n) are generated by inserting 2j - 1

ueros between every pair of successive samples of g(n) and h(n) respectively. S0 (n) is set to be

the original signal (image). The inverse wavelet transform is given by

Sj-1 (n) = W'(n) * gi_j(-n) + Sj(n) * h 1 _1 (-n).

Let us discuss the types of symmetry that may be assigned to filters g(n) and h(n). As h(n) is a

low-pass filter, it can not be antisymmetric with respect to any axis since otherwise the sum over

index n would be zero contracting the requirment H(O) = 1. We consider only even-symmetry

of h(n) and antisymmetry of g(n), the latter is the case for edge detectors where local mixima

of wavelet transform modulus are used.

Let g(n) be antisymmetric with respect to a, i.e., g(n - a) = -g(a - n). The Fourier

transform of g(n - a) must be a pure image odd function, i.e.,

eOG(w) = iX(w)

with

X(w) = -X(-w).

G(w) must be a 2w-periodic function satisfying the condition IH(w)12 + IG(w)12 = 1. For real-

valued g(n) and h(n), G(w) may be written in the following form,

G(w) = ieiawX(w) = -ieiawSgn(w)E(w), for - w < w < w

where

E(w) = 1- IH(w)12

1. for O<w.<w
Sgn(w) 7 fr0<w<r

-1, for -7r<w<O

For a good edge detector, Ig(n)I and IG(w)I must be highly localized. Since IG(w)1 2 = IE(w)12,

the frequency domain localization of g(n) is not related to a. We need only to be concerned with

the spatial domain localization of g(n). In the general case, g(n) may have an infinite support

but the value of Ig(n - a)I must be sufficiently small when n is large. For a given small number

c > 0, there must exist a smallest integer K > 0 such that, for In - al >_ K, Jg(n - a)J < c.

Then the effective support of g(n) may be taken as 2K. This concept leads us to consider the

asymptotic convergence of Ig(n - a) I with respect to a. It is clear that the shape of g(n) does not

change if g(n) is shifted by an integer value. Without loss of generality, we may consider only

0 < a < 1. Let it be assumed that G(w) be differentiable in [0, 7] where the differentiablity at

each end point is specified in one direction only. Taking the inverse Fourier transform of G(w),
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we obtain

g(n) =f E(w)sin(n + a)wdw;

1
-r(n + a) [2 ;(-1)hE(k) + (-1)nE(4,)(1-- cosa•r)

where E(4,) denotes the mean value of E(w) in the interval w 4, 5 4 _ w&+i, (k = 0,1,.,n-1),

and E(4,) in the interval w,, < , < r. It can be shown (SULI93a] that as n --+ oo, regardless n
be even or odd,

c03air
lim g(n) = s+aw)

It is clear that the convergence of 1g(n - a)l is faster than - when a = 0.5 or a = -0.5.
n

As to the even-symmetry of h(n) with respect to -y, i.e., h(n - -y) = h('y - n), h(n) must be a

linear phase filter with H(w) = Ht(w)e"Yw for -w < w < 7r, where H(w) = fl(-w) is a real-valued

function. It has been shown that the order of convergence of Ih(n - -y)1 is at least 3 regardless

the choice of -, if the derivative of H(w) is 0 at w = 0 and w = ir. Hence, the axis of symmetry

of h(n) may be placed arbitrarily.

Based upon the above discussion, it is shown that the filter g(n) must be antisymmetric with

respect to either a = 0.5 or a = -0.5 in order to achieve the optimal edge localization. If the
filter h(n) is even-symmetric with respect to -y = 0.5 or -y = -0.5 corresponding, a displacement

aj between Wj(n) and Sj-'(n), or a displacement -y, between Sj(n) and Sj-'(n), is resulted in

the recursive computation of the discrete dyadic wavelet transform,

aj=2j-a -=0.5-2j-i, 7 =2j '-y=0.5-2j-.

This amount of shift should be compensated for in the localization of local maxima of wavelet

transform modulus. The detail discussion of the above-discussed symmetry properties can be

found in a submitted paper [SUIA93b].

A Non-orthogonal Wavelet Edge Detector with Four Filter Coefficients:

The shift compensation discussed above is based on the model of an isolated step edge. In

real situations, interaction of neighboring edges also introduce displacements of detected edges

at large scales. Edge interactions are mainly caused by the low-passed filter h(n). It is desirable

to limit this interaction by choosing a shortest possible support for h(n). In this case, a four-

coefficient filter gives the shortest support. We have considered a wavelet-based edge detector

with four filter-coefficients whose values are selected from solutions to the four-coefficient, two-

scale dilation equation with an attempt to examine and reduce the degree of its edge interaction

[KIL193J.
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A two-scale dilation equation [STRA89], in particular, a lattice two-scale dilation equation, is

a functional equation of the form

N

n---0

where 0: R -- R, cn's aie real-valued parameters, n and k are integers, and k > 2. When k = 2,

the solution of such a dilation equation yields a square integrable scaling iunction which can be

used to construct a dyadic wavelet. A basic assumption on the coefficients is

The existence, uniqueness, integrability and smoothness of such solutions under various

parameter values have been investigated [COLE92, DAUB91a, DAUB92a, LAWT91, LAWA92].

The lattice dilation equation may be solved for a compactly supported solution by applying an

iterative method. The coefficients cn's are related to the low-pass filter coefficients {h(n)} where

h(n) = cn/2. A wavelet O(x) can be constructed through the equation

(=) = 2g(n)0(2x - n)

where
g(n) = (-i) 1 h(l - n)

and {g(n)} are the filter coefficients of a high-pass filter.

Our goal is to select a wavelet and a scaling function such that the associated filter h(n)

provides an adequate smoothing but introduces minimal edge interaction. Hence, the four-

coefficient lattice dilation equation

3

0 =: E cno(2x - n)

with
cO +c =1, c1 +c 3 =1

is of particular interest. Colella and Heil discussed the characterization of continuous four-

coefficient scaling functions and wavelets, using (co, c3) as two independent parameters [COLE92].

Integrable solutions of ý(x) exist for (co, c3 ) to be on or inside the circle centered at (0.5, 0.5) in

the (co, cs)-plane with a radius of 1/v12:

(o -0.5) 2 + (c3 - 0.5)

Along the diagonal line c3 = co, the resulting scaling functions are symmetric. All points on the

circle, except the point (1, 1), yield orthogonal scaling functions and thus give rise to orthogonal

13



wavelets, so the circle is called the circle of orthogonality. Furthermore, co < 1 and c3 _< i inside

the circular region result in continuous scaling functions. The intersections of the circle and

the line passing through (0.5, 0) and (0, 0.5) gives the Daubechies scaling function D4 . The line

segment between (0.5, 0) and (0, 0.5) indicates differentiable solutions for 4(z). The point (1, 0)

gives the Haar scaling function and wavelet, and the points (0, 0) and (0, 1) produce translates

of the Haar wavelet.

We have chosen co = c3 = 0.1, thus c =c2 = 0.9, for obtaining a symmetric scaling function

supported in [0, 3]. The low-pass filter coefficients are given by {h(n)} = {0.05, 0.45,0.45, 0.05},

which provide a certain degree of four-point smoothing but dominated mainly by the middle two

filter coefficients, thus resulting in a minimal degree of edge interaction at larger scales. Let the

above-selected non-orthogonal scaling function be translated to the left by one unit so that it is

symmetric with respect to z = 0.5; the support region of O(x) becomes [-1, 2]. The constructed

wavelet O(x) is antisymmetric about x = 0.5 and is also compactly supported in [-1, 2]. The

scaling function and wavelet are shown in Figure 1. Filters {h(n)} and {g(n)} are all supported

in [-1, 21 and are symmetric and antisymmetric respectively about x = 0.5. They are listed in

Table 1, and the magnitude of their frequency responses H(w) and G(w) are shown in Figure 2.

Table 1: Filter coefficients for the chosen wavelet transform.

h(n) g(n) I(n)

-3 0.00125
-2 0.0225

-1 0.05 0.12375

0 0.45 -0.5 0.705

1 0.45 0.5 0.12375

2 0.05 0.0225

3 0.00125

For edge detection, no subsampling is used in the wavelet transform analysis. The discrete

wavelet transform of a function f(z) at scale 2', denoted by W'(k), is defined as the inner

product of the function with ikjk,

W'(k) =< f,Ojk >;

in this case, Ojbk = 2-j'(2-j(x - k)). It represents the gradient information at scale 2j. The

smoothed signal at scale 2i is given by

sJ(k) =< >

14
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Figure 1: The chosen scaling function and wavelet supported in [-1,2].

where Ok = 2-jo(2-j(x -- k)). For a discrete signal of N points, the wavelet transform at the

original sampling instants can be recursively computed by

2

Wj(k) = E g(n)Sj-'(k + 2j-'n)
n=-2

2

nL--I(k-- 0, 1,...,IN - 1; j = 1,2, ... ,IM; 2'-=N)

The original discrete signal is taken as S°(k).

Wavelet modulus maxima are determined to detect multiscale edges. For a single step edge,

the shift in the computed edge location due to the non-zero symmetry axes of both filters can

be compensated for at each scale by shifting back 0.5- 2j-i units in position for outputs of the

respective filters. Furthermore,. the original step edge will become a ramp edge at larger scales.

In order to locate the multiscale edge at the middle of the ramp, instead of at a change point, we

modified slightly the wavelet maxima detection scheme as follows. (1) Compute the successive

differences in wavelet values, IWj(k)I - I WJ(/ - 1)1; (2) keep track the positive change exceeding

a threshold; (3) assign a starting index for the position where the change (either positive or

negative) is within a small threshold; (4) assign an ending index for the position where the

difference takes a large negative value; and (5) locate the wavelet maximum at the mid point

between the starting index and the ending index.

A two-dimensional wavelet transform is obtained by using the tensor product of two one-

dimensional wavelet transforms, one in the horizontal direction and the~other in the vertical

15
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Figure 2: Frequency responses of H(w)(solid line), G(w)(dashed line) and L(w)(dotted line).

direction. Let an all-pass filter L(w) be defined as

L(w) = 1 + JH(w)1
2

2

The filter coefficients {l(n)} and the frequency response L(w) are also given in Table 1 and Figure

2 respectively. Let the rows of the smoothed image Sj-1 (k, 1) at scale 2j-i be first filtered by

G(w) filter, the columns of the resulting image be then filtered by L(w), and let this operation

be designated as filtering by LG to produce a wavelet image Hi(k, 1). Similarly, filtering by GL

results in another wavelet image Vj(k, 1). They are combined to give wavelet modulus Mj(k, 1)
and angle Aj(k, 1) at scale 2j,

M'(k, 1) = V/H(k, 1)12 + IVj(k, 1)12

A'(k, 1) = L (H'(k, 1), V'(k, 1))

the latter is quantized into 8 directional numbers, (0,1,..., 7), each encoding a 45' sector. Since

the edge direction is perpendicular to the wavelet angular direction, both Mj(k, 1) and Aj(k, 1) are

used for edge detection. Mj(k, 1) is scanned row-wise and column-wise to locate wavelet modulus

maxima H (k, 1) and V1.(k, 1) respectively. At each of such locations, HI(k, 1) is accepted if its

corresponding angle code is either 0 or 4 (horizontal direction), V,(k, 1) is accepted if its angle

code is either 2 or 6 (vertical direction), and either. H•(k, 1) or V1(k, 1) is accepted if its angle

code is 1, 3, 5 or 7 (diagonal direction). These wavelet modulus maxima are determined for edge

detection in multiple scales.
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This edge detector has been experimented on two sets of images: one is a set of test patterns
under various signal-to-noise ratios(SNR), and the other is a set of three natural images. The

test pattern is a bar image of 256 x 256 pixels containing four vertical bars of 5-, 10-, 15-, and

20-pixel widths respectively and 150-pixel length, as shown in Figure 3. The spacing between
bars and to the borders range from 35 pixels to 45 pixels. The background intensity is 75 and

the bar intensity is 175. A zero-mean Gaussian noise with standard deviation values of 10, 20,

32, and 50 was added to the synthetic image to result in SNR of 10 dB, 7 dB, 5 dB, and 3

dB respectively. Multiscale edges detected after wavelet modulus maxima were thresholded are

shown in Figure 3. We measured (1) P(AE/IE) which is the conditional probability of
detected (or assigned) edge, AE, given the true (or idea) edge, IE, (2) P(IE/AE) which is

conditional probability of the true edge given the detected edge, and (3) Error distance, which

is the root mean square distance between the detected edge pixel and the true edge pixel, i.e.,

Error distance = -1 j
Tai----

where n. is the total number of detected edge pixels and d, is the minimum distance between the

ith detected edge pixel and the correspoding true edge pixel. The measurements were limited

to the vertical edges of four bars, excluding corners and the horizontal edges. Also, only those

detected edges lying within a band of 16-pixel width around each true edge line were taken into
consideration. These performance measures at different scale levels are given in Table 2. For
the noise free case, edge localization was accurate except, at the scale level 4, the vertical edges

of the narrowest bar (of 5-pixel width) were detected at locations which are two pixels away
from their true positions. This was caused by edge interactions as the effective filter support

at this level became 32 pixels. For the noisy bar images with SNR of 5dB and up, the edge
detector performed well at scale levels 2 and 3; for the case of 3dB SNR, it performed well

only at scale level 3 where sufficient smoothing was available. Many noisy edge pixels were

obtained at scale level 1 for insufficient smoothing, hence, P(IE/AE) was low. At scale level 4,
noises compounded the problem of edge interactions, consequently, edges of the narrowest bar

were poorly detected and so were the corners. For comparisons, the performance measures of

the Mallat-Zhong quadratic spline wavelet edge detector are given in Table 3. In either case,
the performance shows an improvement over what were obtained by the refined regularization

method and the first order regularization filter method which we developed earlier.
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Figure 3: Edge maps of bar images(256 x 256) at four different scales; from left: noisefree, 10dB,
7dB, 5dB, and 3dB; from top: the original images, 1st, 2nd, 3rd, and 4th scale levels.
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Table 2: Performance evaluation of the non-orthogonal wavelet edge detector on bar images in

Figure 3.

Noisefree 10dB 7dB 5dB 3dB

P(AE/IE) 1.0000 1.0000 0.9898 0.8741 0.7259

Level 1 P(IE/AE) 1.0000 1.0000 0.6098 0.3685 0.2132

Err. Dist. 0.0000 0.0000 3.0012 3.8499 4.2346

P(AE/IE) 1.0000 1.0000 1.0000 0.9944 0.8843

Level 2 P(IE/AE) 1.0000 1.0000 0.9927 0.9315 0.8052

Err. Dist. 0.0000 0.0000 0.0858 0.5050 1.1502

P(AE/IE) 1.0000 1.0000 1.0000 1.0000 0.9861

Level 3 P(IE/AE) 1.0000 1.0000 1.0000 0.9945 0.9744

Err. Dist. 0.0000 0.0000 0.0000 0.1391 0.2549

P(AE/IE) 0.7500 0.7500 0.7500 0.7500 0.7500

Level 4 P(IE/AE) 0.7500 0.7500 0.7500 0.7479 0.7438

Err. Dist. 1.0000 1.0801 1.1627 1.1655 1.1113

Table 3: Performance evaluation of the Mallat-Zhong quadratic spline wavelet edge detector on

bar images in Figure 3.

Noisefree 10dB 7dB 5dB 3dB

P(AE/IE) 1.0000 1.0000 0.9944 0.8954 0.7278

Level 1 P(IE/AE) 1.0000 1.0000 0.6956 0.4300 0.2416

Err. Dist. 0.0000 0.0000 2.6085 3.6538 4.1590

P(AE/IE) 1.0000 1.0000 1.0000 0.9944 0.9213

Level 2 P(IE/AE) 1.0000 1.0000 1.0000 0.9844 0.8813

Err. Dist. 0.0000 0.0000 0.0000 0.1248 0.6222

P(AE/IE) 1.0000 1.0000 0.9778 0.9685 0.8917

Level 3 P(IE/AE) 1.0000 1.0000 0.9778 0.9685 0.8884

Err. Dist. 0.0000 0.0000 0.1491 0.1774 0.3632

P(AE/IE) 0.5000 0.5000 0.5000 0.5000 0.5093

Level 4 P(IE/AE) 0.5000 0.5000 0.5000 0.5000 0.5079

Err. Dist. 1.5811 1.5811 1.5811 1.5811 1.5545
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The edge detector was also experimented on three natural images: Lenna image, a house

image and an airport runway image. The detected edge maps were shown in Figure 4. Lenna's

facial features were more faithfully extracted in the edge map at scale level 2, as shown in the left

column of Figure 4. For the house image shown in the middle column of Figure 4, the prominent

linear edges were all detected at scale levels 2 and 3. For the runway image, the performance on

runway edge localization at scale level 2 was very good, in spite of the fact that each runway has

only 4 to 5 pixels in width, as shown in the right column in Figure 4.

The experimental results demonstrated that the edge localization performance is very good

at scale levels 2 and 3 for images contaminated with a moderate amount of noise. At scale

level 4, the detected edge location was shifted for thin objects of 5-pixel width due to the

interaction between neighboring edges, and the detection capability deteriorated under severe

noise corruptions. Note that the well-known Mallat-Zhong multiscale edge detector, based on a

quadratic spline wavelet, may also be interpreted from solutions of the four-coefficient dilation

* equation. Their symmetric scaling function corresponds to a solution obtained at (co, ca) = (0.25,

0.25) which lies at the intersection of the diagonal line and a line segment (between (0.5, 0) and

(0, 0.5)) for differentiability. Thus, it provides a differentiable wavelet and scaling function with

an optimum smoothing property for the given filter support size. Position shifts at large scales

due to edge interactions, however, are unavoidable. Our non-orthogonal wavelet with four filter

coefficients has been explored for its performance of reducing localization shift due to edge

interactions at the expense of noise sensitivity.

Additional processing is needed to integrate the multiscale edge information for obtaining a

further improved edge map; this remains to be a challenging problem. It would be desirable to

select edges at appropriate scales adaptive to different spatial regions, analogous to the refined
regularization but in the wavelet domain. The recent work on edge detection through nonlinear

diffusion ([PEMA90, SHAH91, CATT92, FOBA92, WHPI93]) suggests a plausible alternative to

formulate a space varying diffusion process in wavelet domain for detection of edges in multiple
scales. This work is currently in progress.
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Figure 4: Detected edge maps of three natural images at three different scales; from left:

Lenna(256 x 256), House(256 x 256), Runway(222 x 252); from top: the original images, 1st,

2nd, and 3rd scale levels.
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B.l.b Uncertainty Constants of Daubechies' and B-spline Wavelets

In the time-frequency analysis of signals, the ideal analyzing (window) function should have

the best time-frequency localization. It is well-known that we cannot obtain the most accurate

selectivity in both time and frequency at the same time, which is known as the Heisenberg

Uncertainty Principle (CHU192, MEYE93]. Let a function w(x) E L2(R) be a window function

such that

xw(x) E L 2 (R).

This condition implies that w(z) is also in L1(R), and thus its Fourier transform tb(w) is

continuous. Moreover, ib is in L2(R) by the Parseval identity [CHU192]. Let the center Y

and the radius A,. of the window function w(x) be defined by

T := • ffL XlW(X)12dX

and

T1 (f1oo(z _ y)2lw(z)I2dz)1/

respectively, where 11w112 denotes the norm induced by the inner product. The center 0 and

radius Ae of the Fourier transform tb(w) can be similarly defined. The Uncertainty Principle

states that

where equality is attained if and only if w(x) is a Gaussian or a modulated Gaussian by a

complex exponential function. The uncertainty constant of a window function is defined as the

value of A,.AO, which shows the degree of time-frequency localization. A modulated Gaussian

function, however, is not adequate to be used for wavelet decomposition; its integration over the

whole real line is not equal to zero, and thus it does not satisfy the admissibility condition of a

wavelet [DAUB92b, CHUI92]. Also a Gaussian function cannot be used as a scaling function.

Furthermore, by the Balian-Low theorem, there is no coherent type basis having good time-

frequency localization, regardless of orthogonality [DAUB91b]. The wavelet analysis should

provide a basis for L2(R), either orthonormal or nonorthogonal, which must be of non-Gaussian

or non-Gabor type of functions having fast decay at infinity in both time and frequency domains.

As discrete filters are used in dyadic wavelet decomposition of discrete-time signals,

characteristics of the discrete filters are important. The center f and the radius A. of a discrete

filter g (gn),,Z .are defined by
"n:=I1 F2- E nlg"12

Ig1 2 nEZ

22



S

and

A .=ll--- 1- Ii)21gnl2
119 112 nEZ

respectively, where jig112 = (LEZ Ig-I2)1/2. The transfer function (Fourier representation) G(w)
of the discrete filter g,, is given by

nEZ

The center W and the radius AG of the filter G(w) are determined by

I:= - f2 WIG(W)12d

and

AG : 11-3 ( .)2jG(W)j2dc)

respectively, where IG112 := (fo2- IG(w)12W) /2. The uncertainty constants of a wavelet filter
g is given by AAa. We have examined uncertainty constant of Daubechies wavelets, B-spline

wavelets and their corresponding discrete filters [KIML93]. Some interesting characteristics are
presented in the following.

Uncertainty Constants of Daubechies' Wavelets:

The Daubechies' wavelets are compactly supported and fully orthogonal, and thus they

provide effective decomposition and reconstruction algorithms. They also have a number of

vanishing moments, depending upon the support length and regularity of the wavelet. We have

computed the uncertainty constants for wavelets and scaling functions of Daubechies as shown

in Table 4 and Figure 5 (a) and (b), where Dm stands for the Daubechies' wavelet (or scaling

function) of index (order) m/2 corresponding to m scaling coefficients. It is noted that D12 has

the minimum uncertainty constant among the Daubechies' wavelets. On the other hand, the

minimum of uncertainty constants for the scaling functions occurs at 1)6 instead of D12. This

is consistent with the fact that a wavelet O(z) and its corresponding scaling function ý(z) are

related by the two-scale equation

4(2w) = G(w)#(w).

Table 5 lists the radii and uncertainty constants of the Daubechies' wavelet filter g,., which are

also shown in Figure 5(c). The uncertainty constant increases almost linearly as the filter size

increases.
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Table 4: Radii and uncertainty constants of Daubechies' wavelets.

(a) wavelets (b) scaling functions

D 4  0.3487 7.9234 2.7631 D 4  0.3130 3.7925 1.1872

Ds 0.4241 3.1789 1.3481 Ds 0.3634 2.2372 0.8130

D8  0.5005 1.9722 0.9871 De 0.4158 1.9796 0.8232

Dio 0.5761 1.5813 0.9110 Dio 0.4682 1.9284 0.9028

D 12  0.6506 1.3925 0.9059 D12  0.5203 1.8906 0.9836

D 14  0.7237 1.2881 0.9322 D14  0.5721 1.8696 1.0695

D 16  0.7956 1.2249 0.9746 D1 , 0.6235 1.8563 1.1574

Dig 0.8664 1.1831 1.0251 Dig 0.6746 1.8614 1.2556

D20  0.9362 1.1532 1.0796 D20  0.7253 1.8546 1.3450

Table 5: Radii and uncertainty constants of Daubechies' discrete filters.

Filter Ag AG Aq. AG

D14  0.5728 1.0333 0.5919
DA 0.6735 0.9938 0.6694

DA 0.7762 0.9731 0.7553

DLio 0.8781 0.9603 0.8432

D 12  0.9786 0.9516 0.9313

D14  1.0778 0.9454 1.0189

DI1 6  1.1757 0.9407 1.1059

Dig 1.2723 0.9370 1.1922

D20  1.3679 0.9340 1.2777
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Figure 5: Uncertainty constants for (a) Daubechies' wavelets, (b) Daubechies' scaling functions,
and (c) their corresponding highpass G filters. D12 has the minimum value in (a).
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Uncertainty Constants of B-Spline Wavelets:

The uncertainty constant of a Gaussian function is exactly equal to 0.5 which indicates

the best possible time-frequency localization. By computations, we found that the uncertainty
constants of B-spline functions are very close to the Gaussian case and converge to 0.5 very
rapidly; the uncertainty constant is 0.5038 for the quadratic B-spline scaling function and 0.5012

for the cubic B-spline scaling function. The uncertainty constants of B-spline wavelets are also
quite close to the Gaussian case, being 0.5302 for the quadratic B-spline wavelet and 0.5064 for
the cubic B-spline wavelet; the latter is already close to 0.5. As the order of B-spline is increased,

its uncertainty constant gradually approaches to 0.5.
Now let us consider the discrete filters for B-spline wavelets and the discrete Gaussian filters.

Their radii and uncertainty constants have been computed as shown in Table 6 and Figure 6 for
comparisons. The discrete Gaussian filters are obtained by discretizing the Gaussian function:

for a positive integer N,

where f is a normalized (area=1) Gaussian function, i.e., f(x):= exp(-2), and (gu)nEz

is truncated so that supp(gn) = [-N, NJ, giving a total of 2N + 1 filter coefficients. Note that

this support is equivalent to [-3u, +3a] for f(z) and covers most of the energy in a Gaussian.
Figure 6(b) shows some fluctuations of uncertainty constant of the discrete Gaussian filter of

small N, reflecting errors caused by insufficient sampling rate at low orders.
In contrast, B-spline wavelet filters do not show such fluctuations even with fewer number

of coefficients. This stability comes from the elegant two-scale relation of 0(2w) = H(w)O(w)
and the construction of the wavelet filter G from the low-pass filter H. Unlike in Daubechies'
wavelet filters, the uncertainty constants of B-spline wavelet filters are almost fixed at around

0.5 which is equivalent to the Gaussian case. Here the B-spline wavelet filters are constructed
by g, := (-1)"1-lhl.n where hn iq from the scaling coefficients of the two-scale dilation equation

of a B-spline function. Then G(w) = H(w + 7r)e-"0, hence the uncertainty constants (and also

radii) are the same for both filters H and G.

If we take another g filter, for example, g = {-0.5, 0.5}, for B-spline wavelets, then the

uncertainty constants of the wavelets are around 0.5744 for all orders with very small(< 1%)

variations that can only be seen for low order B-splines. This is not of our interests since the

time-frequency characteristics of wavelet filters are fixed and irrelevant to the B-spline order.

For this reason, we choose gn := (-1)n-1 h.l-, and observe the time-frequency localization effect

as the order of the filter is changed.
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Table 6: Radii and uncertainty constants of B-spline wavelet filters and discrete Gaussian filters.
(A B-spline of order 2 means a quadratic B-spline, and the filter length is equal to the order
number plus 2 for a B-spline wavelet filter and equal to 2N + 1 for a discrete Gaussian filter.)

(a) B-spline wavelet filters (b) Discrete Gaussian filters

Order Ag A0  A9• AG N A, AG A," AC
1 0.5774 0.8887 0.5131 2 0.4182 1.1064 0.4627
2 0.6708 0.7534 0.5054 3 0.7064 0.7076 0.4998

3 0.7559 0.6653 0.5029 4 0.9428 0.5303 0.5000
4 0.8333 0.6022 0.5018 5 1.1785 0.3125 0.3683
5 0.9045 0.5542 0.5013 6 1.4142 0.2926 0.4138
6 0.9707 0.5160 0.5009 7 1.6498 0.2712 0.4474
7 1.0328 0.4848 0.5007 8 1.8855 0.2652 0.5001
8 1.0914 0.4586 0.5005 9 2.1212 0.2284 0.4845
9 1.1471 0.4363 0.5004 10 2.3568 0.2090 0.4925
10 1.2002 0.4169 0.5004 11 2.5925 0.1916 0.4967

12 2.8282 0.1763 0.4987

13 3.0638 0.1630 0.4995

14 3.2995 0.1515 0.4999
15 3.5351 0.1414 0.5000
16 3.7708 0.1326 0.5001

17 4.0065 0.1248 0.5001
18 4.2421 0.1179 0.5001

19 4.4778 0.1117 0.5001
20 4.7134 0.1061 0.5001
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Figure 6: Uncertainty constants for (a)B-spline wavelet filters, (b)Discrete Gaussian fiters.

(The uncertainty constant of a function is the multiplication of the radius in time and the radius

in frequency.)

In summary, we have observed that the Daubechies' wavelet D12 has the best time-frequency

localization among Daubechies' wavelets of all orders. This may give a criterion in choosing a

Daubechies' wavelet for the continuous wavelet transform. However, the corresponding discrete
filters for the Daubechies' wavelets do not show such characteristics. Because the 2w-periodic

nature of the transfer function of a discrete filter, its frequency radius does not change much
when the filter order is changed and, thus, its uncertainty constant increases almost linearly as

the filter order increases. We need to consider a trade-off between regularity (smoothness), filter

length, and time-frequency localization.
On the other hand, in the B-spline case, the uncertainty constants of wavelet filters are very

close to that of the ideal Gaussian filter for almost all orders; there is no need to be concerned
with this factor when we choose a best B-spline wavelet. B-spline wavelets provide very good

time-frequency localization. If orthonormality is not required, a B-spline wavelet may be prefered

for wavelet decomposition since it is symmetric, very regular, and compactly supported.

B.I.c Texture Segmentation by Modulated Wavelets

Texture segmentation based on the multiresolution imformation is an improtant problem in

the low level image processing [UNSE89]. In human vision, there exists a preattentive visual

system that can easily detect different textures which have some obvious features in the

frequency domain [JULE83]. Gabor filter has been recognized as one that may exist in

the 2-dimensional visual cortical filtering process providing the optimunj.oint space/frequency
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resolution [DAUG85J. For practical applications, multichannel Gabor filters have been used

in texture analysis and segmentation providing localized spatial changes in frequency and

orientation [BOVI90, FARR9lJ. The tuning of their center frequencies and bandwidths requires,

however, substantial prior analysis and experimental decision. Wavelet theory provides an

efficient decomposition of signals and images giving both time(space) and frequency localization

[MALL89c, MALL89d, STRA89, DAUB88]. The standard wavelet transform focuses on the

successive decompositions in the low frequency region. But the dominant spatial frequencies
of textures are usually in the middle frequency region which is not necessarily focused on by

the standard wavelet decomposition. A tree-structured wavelet transform has been developed

[CHAN921 to extend the decomposition into the high frequency region. This approach is similar
to the wavelet packet method [WICK92a, COW192], which has recently been applied to texture

classification [LAIN92]. Both approaches are restricted in their orientation selectivity in the first

quadrant of the frequency plane and do not discriminate the textures of +0 and -8 orientations.

We have considered a multi-resolution decomposition approach based on a modulated "wavelet",

providing multichannel filters to cover both frequency and orientation regions in full [HSLI93].

Multiresolution Analysis:

Wavelet Transform provides a multiresolution decomposition of any signal with finite energy
into a set of frequency channels which have the same bandwidth on a logarithmic scale. This

property results in high resolution in the time domain for high frequency components and low

resolution in the time domain for low frequency components. This characteristic is similar to

what has been observed in the humman visual process [NACH75].

Let L2(R) be the function space of all finite energy signals f(x), Aj be an operator which

approximates a signal at resolution 2j, and Vi be the subspace of L2(R) which consists of all
possible signals at resolution 2j, where j E Z (a set of all integers). A multiresolution analysis is

a set of vector spaces (V,)jz that satisfy the following properties:

(1) A, is an orthogonal projection operator, which approximates a signal with minimum

distance error, on the space VI;

(2) Aj o Airf(x) =Aj(x);

(3) causality property 11+I C Vi, Vi E Z, which means that the approximation at a higher

resolution contains all the information in a lower resolution;

(4) The subspace 11j can be derived from any other subspace Vk by scaling all functions in Vk

by the ratio of their resolutions,

f (x) E Vi +-/(2(k-i) x) E V;
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(5) Ujez V = LV(R), fljEz Vj = 0.

Daubechies constructed her famous orthonormal bases of compactly supported wavelets. Let

O(z) be a scaling function, O,. = 2-iO(2-jz- n); O(z) be a wavelet and Ob,, = 2-iV(2-jz - n).

{e*,},Ez forms an orthonormal basis for Vi', {f},,Iz is the orthonormal compliment to Vi in

V,. 1 . The wavelet transform of f(w) at resolution 2' is given by W,(k) =< f(z),Obi(z) >=

Eg(n)S.j-(n + 2k) which is the high frequency component of f(z) at scale 2j. The low

frequency component is given by Sj(k) =< f(x),4ih(z) >= Eh(n)Sj1 -(n + 2k), where

h(n) =< O(z), 0(2x - n) > is a low-pass filter and g(n) =< O(x), #(2x - n) > is a high-

pass filter. For applications to 2-dimensional images, a tensor product of two one-dimensional

functions; @(z, y) = #(z)O(y), 'p1(z, y) = O(z)&(y), 1@2(X, y) = 4(z)O(yi), '' 3(z, y) = OWOW,
where $(z,y) is the 2-dimensional orthonormal scaling function, V(X,y), IF 2(m, y) and %F3 (z , y)

are three 2-dimensional wavelets. This is the standard pyramidal wavelet transform analysis.

Wavelet packet provides further decomposition of high frequency components. Both approaches

take care of orientations in the first quadrant of the frequency plane (w., w.). They do not,

however, discirminate textures in orientations +6 and -0.

Modulated "Wavelets" and Multichannels:

For analysis of textured images, it is desirable to have oriented wavelets covering

characteristics in one half of the frequency plane (w., w.). Let us consider first the modulated

scaling function in 1-dimensional case, 4(x)eiU', where U is a modulation frequency. Since

h(n) =< O(z), 0(2x - n) >, the modulated filter becomes

h(n)eiU" du' < O(x), 0(2x - n) >

< O9 (x), 0S(2x - e-u>

= < 4()e32 U, 4(2x - n)eU(2z-n) >

Modulating h(n) by U is equivalent to modulating O(z) by 2U in subspace Vo and modulating

0(2x) by U in subspace V-1. If U = r, the modulated h(n) is, in fact, the high-pass filter g(n)

and H(w - 1r) = G(w); in this case, the modulated O(x) is close to a wavelet. For other values

of U, the modulated h(n) is equivalent to a band-pass filter with center frequency at U. The

modulated O(z) will be a numerically acceptable "wavelet" if its infinite integral is sufficiently

small. Extend to the 2-dimensional case, modulation of a scaling function -(x, y) = O({)qS(y)

induces a corresponding modulated filter

g(k)(n,,m) = h(n)h(m)7(Ukn+Vkm•), k=1,2...

which is a high-(or band-) pass filter with the kth orientation. Without modulation,

g(0)(n,m) = h(n)h(m)
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which gives a low-pass filter. Modulating O(z, y) with frequency pair (Uk, V,) gives a modulated

"wavelet" (depending on the acceptable values of Uk and Vk) with the kth orientations,

%p(:.y) = q(Y)e() #"+•hII

The "wavelet" transform with the kth orientation at resolution 2i is given by

W,"fAZIY) =< f,'I# >= f *)

AP(z,y) = 2 - k'(2 -3z,2-2 y) and ICy) = '(-z,-y).

The transform may be interpreted as filtering the image f(z, y) with the band-pass filter

g9()(n, m) having an orientation selectivity,

Wf(,XY) = Eg(C)(n,m)Si_.(n + 2x,m + 2y)

SjfAX,) = 'g(O)(n,m)S_,(n + 2z,m + 2y)

We selected four orientations: 900,450,00, and -450, corresponding to k = 1,2,3 and 4. For
the first scale, the four center frequency pairs (Uk, Vk) are located at (0, w), ' ,), (w, 0) and

2 -72) along a circle of radius equal to i in the plane (w.,w.). Their frequency responses
are shown in Figure 7(b) as compared to those of Gabor filters shown in Figure 7(a). For IU&I =

VI =:�".; the wavelet condition is not well satisfied but we adopted the notion nevertheless. For
the successive scales, the fiter outputs are down-sampled; thus, each filter provides a frequency

channel whose output captures the high frequency information centered arround (A-r, •-2- ).

...................... ... ... ......... .. .....

(a) (b)

Figure 7: (a) Frequency responses of 2-dimensional Gabor filters modulated by w with 8
orientations; (b) frequency responses of modulated filters derived from modulated Daubechies

scaling function D6.

Texture Segmentation:

The multichannel amplitude responses are used as texture features. The original image data
are taken as So. To begin with the first scale (j = 1), channel outputs W(h?.n, in), (k = 1,2,13,4),
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and Sj(n, m) are computed down the scale until at a certainj - J where S,(n,m) becomes

insignificant. In our experimental study, Daubechies scaling function D6 and the corresponding

filter h(n) were used. Also, only the first two scales and eight features were considered. These
features designated by x= M2= = = 5 = W2,X 6 = W 2,X, =

and zs = W2. In an unsupervised mode, texture segmentation can be done by clustering data in

the selected feature space and assigning cluster index to each pixel to form segmented regions.

Texture segmentation with multi-channel measurements based on modulated "wavelets" has

been tested on three images. Figure 8(a) shows an image of Herringbone weave of 256 x 240

pixels. It contains seven strips of similar texture but with two different orientations. No

significant responses appeared in channels 1, 2, 3, 4, 5 and 7. At each pixel, the maximum

amplitude response appeared either at channel 6 (the texture with 450 orientation) or at channel

8 (with -45° orientation). Segmentation was obtained as shown in Figure 8(b). The border

between segmented neighboring texture regions has small fluctuations of from 1 to 3 pixels. The

orientation selective channels worked well for this type of texture discrimination.

Figure 9(a) shows an image (260x112) taken from a cut-away view of a cylindrical tube

formed by laminated copper sheets sandwiched with layers of coils. The measurements from all

eight channels were used in a clustering experiment with the K-means algorithm. Segmentation

of regions of two different textures was obtained through assignment to two clusters. Cluster

1 refers to the metal sheet surface, cluster 2 refers to the region with coil cross-sections. The

measurements from the high frequency channels (1 through 4) showed large variances, as given

in Table 7; the texture border was not accurately obtained as shown in Figure 9(b).
The third experiment was performed on a cloud image (360x300) shown in Figure 10(a)

which shows a part of a remotely sensed image of clouds over North Sea. The spread of the cold

air is shown on the left and cloud streets of a cyclon appears on the right. Segmentation was

done by clustering measurements of all eight channels into three clusters; the clustering result

is summarized in Table 8 and shown in Figure 10(b). The responses from the high frequency

channels obviously have more discriminating power. Cluster 2 (shown in grey) indicates the

region of cyclon cloud streets, cluster 3 (shown in black) indicates the cold air region , and

cluster 1 (shown in white) shows regions of between these two classes. The texture border of the

cyclon cloud street was quite well localized as shown in Figure 10(c).
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(a)

(b)

Figure 8: (a) The original textured image; (b) the result of texture segmentation.
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(a) (b)

Figure 9: (a) The original image of a cut-away view of a cylindrical tube; (b) the result of

texture segmentation based on k-means clustering with 200 iterations.
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Table 7: Clustering result on the tube image in Figure 9.

features duster I cluster 2

mean variance mean variance

xl 8.1 20.4 24.9 27.8
x2 9.1 10.3 21.7 28.1

x3 8.4 17.7 25.5 27.1

x4 11.3 22.5 28.8 33.4
x5 1.8 0.3 3.9 0.4

x6 1.9 0.2 3.7 0.6

x7 1.8 0.3 3.9 0.6
x8 2.3 0.4 4.9 1.0

Table 8: Clustering result on the cloud image in Figure 10.

features cluster 1 cluster 2 cluster 3

mean variance mean variance mean variance

xl 18.1 18.9 7.8 14.1 28.2 24.3
x2 19.5 13.6 12.5 11.7 27.5 25.8
x3 17.6 22.1 8.7 11.8 27.1 21.0
x4 20.6 13.7 12.6 8.9 26.4 18.0

x5 3.1 0.4 1.8 0.3 4.3 0.4
x6 3.4 0.2 2.4 0.2 4.7 0.5

x7 3.1 0.8 1.9 0.3 4.2 0.4
x8 3.8 0.4 2.5 0.4 4.8 0.3
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(a)

Figure 10: (a) The original cloud image showing a cyclon pattern; (b) the result of texture
segmentation based on k-menas clustering with 50 iterations; (c) the original image with an
overlay of the segmented texture boundary.
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(c)
Figure 10: (Continued)

B.1.d Linearization of Segmented Objects at Multiple Resolutions

In most 2D or 3D image pattern recognition schemes, the object of interest is first segmented
from the rest of the image. It is then compared to a database of objects and classified as the
object in the databa.e it most closely matches. Often each segmented object's silhouette is stored
as a binary image. The relationships among the pixels in the silhouette determine its shape and
ultimately its classification. Such a scheme may be used in the classification of military vehicles

[CHEN91b, LIL189].
Typically some method is used to reduce the otherwise large number of pixel-to-pixel
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comparisons needed to successfully classify the silhouette. If a complex structured silhouette

can be approximated by a small number of connected piecewise linear or planar segments, then

the number of comparisons and hence the number of computations can be reduced by several

orders of magnitude. The problem is how to construct such a linearization without losing the

discriminating features of the silhouette.

In this study, the number of selected pixel locations in the silhouette is reduced by combining

those pixels which share a common linear pattern (either vertical, horizontal, or diagonal) with

their neighbors [MIL193]. This reduction is accomplished by examining the silhouette under

multiple resolutions and classifying pixels as vertical, horizontal, or diagonal if they are part

of such a pattern. This is done at each resolution. The silhouette can be reconstructed using

these combined groups of pixels. The Haar wavelet is used to generate the multi-resolution

decomposition.

Haar Wavelet and Multi-Resolution Decomposition:

The Haar wavelet is well-known as being the orthogona" wavelet of the smallest support. Its

limitation is that it can only approximate piecewise constant functions without error. However,

in this case, the silhouettes can be considered as combinations of piecewise constant binary

waveforms so the Haar wavelet is appropriate to use for decomposition.

The filters associated with the Haar wavelet and its corresponding scaling function are given

respectively by h = ' [1 - 1] and I = ' [i 1]. These represent the coefficients of two

discrete FIR half-band filters, highpass and Iowpass respectively. When an input signal is

repeatedly convolved with these filters, the collection of output signals forms a collection of

multi-resolution decompositions. Among these decompositions is the one described in Mallat's

pyramid algorithm, where only the lowpass component at each level is further decomposed (see

Figure 11(a)) [MALL89b, STRA89]. Since the filters are half-band, 2:1 down-sampling can be

used at each stage to half the number of pixels in each output without losing signal information.

With each successive level, the pixel-to-pixel resolution decreases by a factor of 2, thus creating

the multiple resolutions.

Moving between levels on the pyramid may also be described by a single matrix multiplication

per pair of pixels. This matrix operator is given by A, = I ' ] ,the rows are just and

h. This matrix approach is shown in Figure 11(b). Note that A2 = I or A` = A 1. This means

that the same operation is performed to go either up or down a level on the pyramid.

The algorithm can be extended to operate on higher dimensional input signals such as 2D

and 3D binary images. This extension can be realized by considering the tensor products

l®1, l'h, h®l, and h®h for the 2D case and l®L®l, l®l®h, l®h®l, l®h®h, h®l®l, h®l®h, h®h®l,
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(a) Block diagram of one level of Mallat's 1D pyramid.
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(b) Matrix representation of one level of Mallat's 1D pyramid.

Figure 11: Mallat's 1D pyramidal decomposition.
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and h o h o h for the 3D case. For example,h®l= i ] [1 h =0 i '1]

andh ol oh= (_ol)oh =2ýq[ 1  -1 [1 -i] = -1 -] ' [ }
These matrices can also be thought of as the coefficients of 2D and 3D half-band FIR filters.

In the 2D case, the tensor products operate on 2 by 2 submatrices of the input image. The

outputs of each stage of decomposition are 4 matrices which are half the size of the input matrix

in each dimension. This follows since the down-sampling is now done in both the row and column

dimensions. Again, the total storage is the same. As in the ID case, moving between pyramid

levels can be achieved by a matrix multiplication. Consider the following matrix

1 1 : 1 1

1 -1 1 -1

A 2  2 ..................

1 1 i -1 -1

1 -1 "-1 1

This matrix is constructed by converting the tensor product matrices into row vectors via
[a =*- [a b c d J, where each row in A2 corresponds to a different tensor product.

Two things to observe about this matrix are: 1) A2 = I, 2) A2 has the same structure as

&[ 11]. One level of decomposition is shown in Figure 12(a). The frequency domain

decomposition is shown in Figure 12(b). The outputs of the 1D filters are interpreted to be
lowpass and highpass versions of the input. A similar interpretation can be given to the outputs

of the 2D case. Since I and h are lowpass and highpass, 1 ® h would be lowpass in the first

dimension and highpass in the second dimension. Let the row index of the matrix be the first

dimension. Then 1 ® h will. be sensitive to edges that are oriented columnwise ( or vertically ).
Likewise, h 0 1 will be sensitive to horizontal edges. The 1 ® l output can be considered as the

average intensity in each sub-image. Each pixel in the output is twice the average value of the

pixels in the input image that are used in the average. The factor of 2 comes from the I scale

factor in the definition of I and h.

The hAh output has two possible interpretations. If the edges are all aligned either vertically
or horizontally, then the h ® h output matrix will just show the ends or corners of the edges.

However, this output component will also be sensitive to diagonal edges, i.e., edges that are
neither vertical nor horizontal. Figure 13 shows the decomposition of two simple silhouettes of
a square and a diamond; the first is oriented along rows and columns, and the second is rotated
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(a) Matrix representation of one level of Mallat's 2D pyramid.

- WJx

4 3 4

2 1 2 -- Wy

4 3 4

1 l®l 2 - l®h 3 - h®l 4 - h®h

(b) Frequency domain decomposition of one level of 2D pyramid.

Figure 12: Mallat's 2D pyramidal decomposition.
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Figure 13: Haar wavelet decomposition of simple silhouejttes.
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45 degrees.

In the 3D case, the tensor products operate on 2 x 2 x 2 submatrices of the input matrix.

There are now eight 3D output matrices, with each matrix dimension being one half of each

input matrix dimension. So a 64 x 16 x 8 input decomposes into eight 32 x 8 x 4 output matrices.

Thus the total storage requirement is constant for all levels. Moving between levels on the 3D

pyramid can also be described by multiplication by the following matrix:

1 [ 1 1 " 1 1 1 1

1 -1 1 -1 :h1 -1 1 -1
1 1 -1 -1 : 1 1 -1 -1

1 -1 -1 1 : 1 --1 -1 1

1 1 1 1 : -1 -1 -1 -1

1 -1 1 -1 :-1 1 -1 1

1 1 -1 -1 :-1 -1 1 1

1 -1 -1 1 :-1 1 1 -1

Each row of this matrix is constructed by a 'flattening' of each tensor product

parttiond pater [ I j" The 3D frequency domain decomposition is shown in Figure

14(a). Interpretation of each output matrix follows from the 2D case. For example, the h ® 0 ® 1
output is a high-low-low fitered 3D image where the filter order is in correspondence with an

x-y-z Cartesian system. Thus the h ® 0 ® 1 output should be sensitive to sharp changes in the x

dimension only, i.e., y-z planes. Accordingly, the 1 ® h ® 1 output is sensitive to x-z planes and

the 1 ® 1 @ h output to x-y planes. The 1 ® 1 ® 1 component indicates the average intensity at

each previous level as in the 2D case.

If a 3D silhouette (meaning the surface of a 3D object) has edges which are parallel to the

Cartesian axes, a rectangular parallelepiped for example, then the outputs which are generated

from filters with only one lowpass component, namely, the 1 ® h ® h, h ® I ® h, and h ® h 9 1

outputs, will correspond to edges in 3-dimensional space parallel to the lowpass filter axes. Refer

to Figure 14(b) for the decomposition of a 3D cube. However, if the object has planes or edges

which do not align with the Cartesian system, then the outputs with only one lowpass component

will be sensitive to diagonal planes as shown in Figure 15.
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(a) Frequency domain decomposition of one level of 3D pyramid.
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Figure 14: 3D pyramidal decomposition.
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(b) Haar wavelet decomposition of a 3D cube (cube is oriented along the
Cartesian axes ).

Figure 14: (Continued).
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Figure 15: Possible 3D planar regions.
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2D Silhouette Linearization:

Pixels in a 2D silhouette will be classified as belonging to one of four edge categories: vertical,

horizontal, diagonal, or compound. Compound edges are made up of edges from a combination of

the first three categories and consequently will be assigned more than one particular orientation.

This labeling is done on each level of the multiresolution pyramid. Once the pixel labels have

been combined for all resolutions, those with identical labels can be grouped together.
The segmentation algorithm is broken into four stages; 1) pixel thresholding, 2) pixel labeling,

3) pixel label group reduction, 4) silhouette segmentation. These stages are described below.

1. For each resolution level and each non-zero pixel value, pN, at location y in the 10 1 image,

find the ratio of amplitudes of each corresponding pixel p,, p3, in the 10 h, h 0 1, h 0 h

images to P.. If 1211 > threshold, for any k=1,2,3, then save the value k in its respective

sub-array, else set this pixel to zero. The value of the threshold is chosen to be - for all

resolutions.

2. At each resolution and for each non-zero pixel in the 10 h, h 0 1, h 0 h sub-images, multiply

those pixels in the original silhouette which are elements of the sub-image support of the

non-zero pixel by one of four possible prime numbers 2,3,5,7. These primes correspond

to the vertical, horizontal, negative diagonal, and positive diagonal labels, which in turn

correspond to a non-zero Ioh pixel value, a non-zero h•1 pixel value, a negative hoh pixel

value, and a positive hO h pixel value. After all resolutions are considered, decompose each

silhouette pixel value into its product of primes 211 32 53 71. This is a unique decomposition

from the prime factorization theorem. The set of prime exponents {miI, i=_,: ...,4, represents

the number of times a pixel is assigned each orientation.

3. Several options are possible at this point to try to reduce the total number of segmented

pixel groups. Typically, the prime exponent set elements are converted to a binary form

by some thresholding operation. Then various combinations of morphological set erosion

and dilation between these sets is performed.

4. Group the silhouette pixels by creating a new set of 2D coordinates. A new 2D coordinate is

created at the midpoint of each pair of adjacent silhouette pixels that do not have identical

{xi} values. Remove from the set those coordinates which lie less than one pixel from their

nearest neighbors (these coordinates are part of the same segment boundary).

The above linearization algorithm is applied to two simple silhouettes, a square and a

diamond, shown in Figure 13. The pixels that pass the labeling threshold.re shaded. In Figure

48



13(b), from left to right, the second picture (or bottom of the pyramid) shows vertically and

horizontally labeled pixels, and the third picture, diagonally labeled pixels. To understand this,

it is necessary to view the original image as groups of 2 x 2 and 4 x 4 submatrices. If grouped

into 2 x 2 arrays, there are some groups in which the pixels are arranged in a purely vertical

or horizontal fashion. In the 4 x 4 groupings, the pixels are arranged somewhat diagonally. In

Figure 13(c), diagonal classifications are made on both levels of the pyramid since this silhouette

has diagonally oriented 2 x 2 and 4 x 4 groupings. Note that both the square and the diamond

are identical at the second pyramid level.

However, the classification process (step 1 in the algorithm) is highly dependent on the

location of the input edges with respect to the inherent partitioning performed at each multi-

resolution level. Figure 16 shows the decomposition of two silhouettes. The first (Figure 16(a)) is

similar to the square in Figure 13(b), and the second (Figure 16(b)) is similar to the diamond in

Figure 13(c). In Figure 16(a), the right edge of the square is classified as vertical on the bottom

two levels, and the top edge is labeled as diagonal on the bottom level, and as horizontal on

the next level. These classifications are expected when we view the image by 2 x 2 and 4 x 4

groupings. However, the bottom and left edges do not have a sufficient number of pixels in the

1 ® 1 bottom level, 2 x 2 windows. Only one pixel out of four is non-zero and it is not possible

to associate orientation with only one pixel. Hence this pixel has compound orientation and is

labeled in all bottom level subimages. The left edge is not labeled on the second pyramid level

because there is equal amplitude in the 1®& level 1, 2 x 2 window at the center of the left edge. At

this level, in this window, there is no edge. Also the bottom edge is split. If the silhouette were

shifted in the image one position to the right and down, with respect to the 2 x 2 windowing,

then the left and bottom edges would have better segmentation, but the top edge would then be

split. Figure 16(b) shows a similar situation happening with the diamond.

The linearization algorithm was applied to the silhouettes in Figures 13(b), (c), 16(a), and

(b). Figure 17 displays the resulting dominant points ( the original silhouette points are labeled

by '.'s and the dominant point by 'O's).

3D Surface Linearization:

The linearization of 3D objects is performed analogously to the classification of the 2D objects,

except that now there are six different outputs to compare for each non-zero pixel value in the

L ® I ® I image ( the h ® h ® h sub-images are not used.). The six sub-images will be sensitive

to nine different orientation planes (see Figure 15). Figure 18 shows the labeled pixels on the

bottom level of the pyramid for the cube shown in Figure 14(b).
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(a) Decomposition of variant of square.

Figure 16: Three-level decompositions of a square and a diamond.
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Figure 16: (Continued).
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Figure 17: Dominant points of simple silhouettes found by using Haar wavelet.
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1 0

First stage decomposition of cube (after thresholding). The 3D object is

presented in 2D fashion by slicing up the 'z' dimension. Only those outputs that

contain labeled pixels are shown ( 3 of a possible 7 ). The last three images contain

pixel magnitudes.

Figure 18: First stage decomposition of a cube.
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Classification Example Using Laser Radar Data:

The above linearization scheme has been experimented on silhouettes of a military vehicle
for possible applications to automatic target recognition. The data have been provided by the
LADAR sensor. The sensor simultaneously collects laser radar ambiguous fine range, amplitude,
and velocity information as well as infrared (IR) data. Figure 19(a) shows a silhouette of an
armored personnel carrier (APC) extracted from the "fused" laser radar data. The dominant
points, as determined by the linearization algorithm, are labeled by 'O's in Figure 19(b). The
algorithm greatly reduced the number of pixels that need to be saved, while preserving the general
shape of the APC. However, there are some dominant points that are missed, at the top center

and bottom right. This is due to the partitioning problem mentioned previously.

i ture Investigation:

What has been described here is a rudimentary basis to support the idea of using Haar
wavelets to assign different orientations to groups of pixels at multiple resolutions. These
assignments can be used to group pixels of common orientation together to reduce the number
of pixels at each resolution, hence reducing the number of pixels in the reconstructed silhouette.

Comparisons have yet to be made with other methods of reducing 2D and 3D silhouettes

[TEHC89, LEES93].
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(a) 2D APC silhouette at an angle of 25 dlegrees.

Figure 19: A 2D silhouette of an armored personnel carrier(APC) and the determined dominant
points.
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(b) Dominant points of 2D APC silhouette (at 25deg).

Figure 19: (Continued).
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B.1.e Image Compression by Variable Rate Vector Quantization of Wavelet
Transform Coefficients

The efficient multiresolution signal representation by wavelet transforms lends itself naturally

to a very attractive new approach to image compression [DEVO92, WICK92b]. The advantage

of the wavelet decomposition approach over the conventional subband coding is perhaps due

to the property of vanishing moments of wavelets and regularity condition of wavelet filters.

Orthogonal or biorthogonal wavelets are used in wavelet decompositions to suppress redundancy

IZETT90, LEWI92, ANTO92, HART93]. Wavelet transform coefficients are then quantized for

encoding. Coding may also be based on edges detected by wavelet transform modulus maxima

[MAZH91, MAZH92], and the error image resulted from reconstruction may be encoded with an

orthogonal wavelet transform [FRMA92]. Wavelet packets provide adapted subband bases from

which the best-basis can be chosen by minimizing an information cost function for the adapted

subband coding [WICK92a, WICK92b, COWI92, LICH93]. Wavelet transform coefficients may

be quantized with scalar quantization or a group of coefficients with an optimal bit allocation.

Vector quantization has been used by Antonini, et al. for biorthogonal wavelet transforms

[ANTO92] and by Liu, et al. for spline wavelet packets [LICH93]. All of these works have

shown very high compression ratio with good reconstruction quality.

We have been interested in exploring applications to medical image compression where

the quality of the decompressed images is of paramount importance. For archiving purpose,

the information preserving compression is often required; the achievable compression ratio is

currently limited to about 3:1 [LIG091]. For communication purpose, however, some information

loss may be accepted as long as the decompressed image is visually indistinguishable from its

original by a panel of expert radiologists. As quantization of wavelet transform coefficients

constitutes a lossy scheme, it is of special interest to examine how much compression can be

obtained while maintaining high fidelity of the decompressed images. This section presents

our study on image compression using the variable rate vector quantization of the Daubechies'

orthogonal wavelet transform.

Variable Rate Vector Quantization:

Vector quantization(VQ) is an extension of the scalar quantization to the multi-dimensional

case. A block of pixels, for example, 4 x 4 pixels, forming a vector of k(= 16) dimensions are

quantized together to one of N reproduction vectors, so that any possible correlation existing

among neighboring pixels may be better exploited than by quantizing each pixel individually.

A vector quantizer Q performs a mapping from a vector x in the k-dimensional space Rk into

a finite set C containing N points called codewords where C = {Y,2,. .Y . , YI} and y, E Rk

for all i - 1,2,.. .,N. Rk is partitioned into N regions or cells, Ri,(i. 1,2,...,N), where
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= {z E R"IQ(z) = y,}. The set C is termed the codebook. The rate of a vector quantizer

is r = (Log 2N)/k which gives a measure of the number of bits per vector component used to

represent an input vector. A codebook is designed for its optimal representation by training

through a set of images. It is optimal for a given bit rate if it minimizes the expected error or

distortion D = Ejd(:, y,)} between a source sequence and its representation. A widely used

distortion measure is the mean square error. The code vector yi associated with the partition

region R, may be determined as the centroid of the region Ri. The encoding is to select an

appropriately matched code vector y, to represent an input vector z; the index i of the code

vector is stored or transmitted. The decoder performs a table-lookup procedure and generates

the reproduction vector yj which is the quantized approximation of the original input vector.

A popular approach to vector quantization is called the tree structured vector quantization

where a sequence of binary search is performed for each input vector to determine the minimum

distortion between the input vector and one of N codewords in the codebook (corresponding to

N leaves in the binary tree). A binary tree search starts from the root of the tree. If the input

vector is closer to the left child, it transmits a 0 and descends to the left child. If it is closer to the

right child, it transmits a 1 and descends to the right child. Repeat the process with the selected

child node and continue until a leaf node is reached. Then the next input vector is taken, and

the process is repeated until the entire vector sequence is encoded. For a full balanced binary

tree, all the leaves lie at the same depth, L, where N = 2L, and an equal number of bits are

assigned to each reproduction vector. This is called the fixed rate vector quantization, and the

rate is L bits/vector.

The variable rate vector quantization is a generalization of the fixed rate vector quantization

by assigning more bits to more active regions, such as edge regions, in an image and fewer bits to

less active.regions, such as regions with uniform background. Hence, with the same average bit

rate, it is possible to reproduce better image quality by saving bits from the less active regions

and using them to encode in more detail the highly active regions. In this case, the binary tree is

unbalanced and has a varying depth for different leaves as illustrated in Figure 20. To design a

variable rate vector quantizer, an unbalanced tree may be obtained by pruning a large fixed rate
balanced tree, or it may be grown by splitting into two nodes the node which contributes the

most distortion at each step. The former requires a very large initial tree such that the pruned

subtree may result in low distortion at a given average rate. A large initial tree is expensive

to generate, it also requires a large amount of training data to avoid the empty cell problem at

the bottom of the tree. The latter can avoid the empty cell problem, and an unbalanced tree is

grown as one trades off the average depth of the tree for the average distortion [RIGR91]. The

tree is grown by splitting one node at a time. A good split is to achieve a large decrement in

node impurity or distortion. Let i(t) denote the impurity measure at node t, and s denote the

binary test, i.e., splitting node t into two nodes: left node tL and right node iR. The decrement

58



Figure 20: A tree stuctured vector quantizer with varying depth.

in node impurity after the split is given by

Ai(s, t) = i(t) - pr'i(tL.) - PRi(tR)

where PL is the proportion of the training samples in node t that goes to the left and PR is
the proportion that goes to the right. pL and PR can be computed by PL = p(tL)/p(t) and

PR = p(tR)/p(t) where p(t),p(tL) and p(tR) are the probabilities of training samples being in

nodes t, tr and tR respectively, and p(t) = p(tL) + p(tR). Ai(s, t) represents, in effect, the - ;o

of the change in distortion to the change in rate(depth). When growing a tree, we split the.

with the largest Ai(s, t) to get the maximum decrease in distortion for an increase in rate(dep:
Thus, the variable rate tree growing for codebook design can be summarized by the following

algorithm:

1. Generate an initial node by calculating the centroid of the training sequence.

2. Split the initial node by using the Linde-Buso-Gray algorithm [LIND80] to generate aleft

node(tL) and a right node(tR).

3. Design left(ti) and right(tR) nodes from a previous node t, i.e., consider the left and right

children from its parent.

4. Calculate Ai(s, t) for all children nodes.

5. Split the particular t with the largest Ai(s, t).

6. Repeat steps 3-5 until the desired average rate is achieved.
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Figure 21: Wavelet decomposition in frequency domain after two levels of decomposition.

Variable Rate VQ of Orthogonal Wavelet Transforms:

Let us consider the variable rate vector quantization of wavelet transforms of digital images.

Daubechies' compactly supported orthonormal wavelet transform is considered: orthogonality

for reducing the redundancy, and compact support for yielding a fast algorithm. In terms

of the tensor product of two 1-dimensional wavelet transforms applied first horizotally and

then vertically, a given image is decomposed, at the next resolution, into one low-frequency

subimage, 1i, and three decorrelated high-frequency subimages, ih, hi and hh, corresponding

respectively to the horizontal high frequency component, vertical high frequency component and

the component of high frequencies in both directions. The 1i subimage is further decomposed

into three subimages, U - th, I1 - hi and U - hh, and one coarse subimage Ui - U1 at the next

lower resolution, etc. as shown in Figure 21. Thus, for the wavelet pyramidal decomposition into
J resolution levels, there will be a total of 3J orientationaily detail subimages and one coarse

subimage. One may generate (3J+1) codebooks for encoding corresponding subimages. Since the
error introduced in vector quantization at each resolution level will add up in the decompression

and reconstruction stage, only a few levels of decomposition will be used in order to limit the

error accumulation and to achive the high quality of reconstruction. In our experimental study
described below, only two levels of decomposition were used. By pooling together vectors in

subimages of the same orientation but at different resolutions, three orientational codebooks are
generated through training for use in encoding high-frequency subimages of various resolution

levels. They yield better decompressed images when compared with what can be obtained by the
multi-resolution, multi-orientation codebooks; this is so because it is equivalent to introducing

more training vectors resulting in a better codebook for each orientation. The coarse subimage
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I1 - It is scalar quantised in this study.

Experimental Results:

We have performed experiments on encoding and decoding two types of medical images,

angiograns and MR. head images to examine the reconstruction quality and compression ratio

achieved with the variable rate vector quantization of orthogonal wavelet transforms [MINC93J.

Each image is of 256 x 256 pixels with 8-bit gray levels. Daubechies' orthogonal wavelet transform

D4 was used in image decompositions into two resolution levels, and 4 x 4 blocks were used in

the vector quantization. For each type of images, three codebooks, one for each orientation

(horisontal, vertical and diagonal), were designed for the desired bit rate. For angiograms, six

images were used in training; and for MRI head images, five images were used in training. In

each case, one test image was used. The overall quality of a decompressed image was measured

by the signal-to-noise ratio(SNR) given by

(.) ElC"X, )2
SNR = 10log1 o (1)2 (

n(1)2 ~

The experimental results are summarized in Table 9. Figure 22(a) shows an original angiogram

used in the test; at the encoding bit rate of 0.90 (compression ratio of 8.9:1), the reconstructed

angiogram with SNR of 39.69 is shown in Figure 22(b). Figure 23(a) shows an original MRI head

image; at the encoding bit rate of 0.91 (compression ratio of 8.8:1), the reconstructed MRI image

with SNR of 25.71 is shown in Figure 23(b). Visual examination of both reconstructed images

suggests a reconstruction of very high fidelity. The MRI head images have complex structures

of the brain and, hence, are less compressible. Our preliminary experimental work shows similar

or a slightly improved result in comparison to what has been reported by Riskin, et al [RISK90].

The reconstruction quality may be further improved by using a more regular wavelet and using

more training images. The acceptability for medical applications must be ultimately determined

by expert radiologists.

Table 9: Test results on Compression Ratio and Reconstruction SNR of an angiogram and a

MRI head image.

An " ram MRI Head Ima e
Rate CR SNR Rate IOR SNR

i.31 6.1:1 42.93 1.39 5.8:1 28.84

0.9 8.9:1 39.69 Q.91 8.8: 1  25.71
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(a) The original angiogram.

L r- ----------

(b) The reconstructed angiogram.

Figure 22: A test angiogram and the reconstructed angiogram obtained at the encoding rate of

0.90bpp and SNR=39.69.
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(a) The original MRI head image.

(b) The reconstructed MRI head.

Figure 23: A test MRI head image and the reconstructed image obtained at the encoding rate

of 0.91bpp and SNR=25.71.
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B.1.f Adaptive Image Halftoning based on Wavelet Transform

Image halftoning is a process to faithfully represent a multi-level picture on a bi-level physical
device. In recent years, high resolution monochrome computer terminals and hard-copy devices

such as laser printers have been developed, which physically reproduce an image in a binary
fashion, but give a gray level impression. There is an increasing demand to improve the halftoning
technique in publishing, telecommunication and computer industries [PAPP91]. Among various

halftoning approaches, the most frequently used one is called ordered dithering which may be
further classified into two classes. The first class uses dispersed-dots in a halftoned image, where
the number of dots set-on is proportional to the gray value for an input image of constant gray
value, and the dots are distributed spatially in the output such that the spectral energy of the
output is as high as possible. The second class of ordered dithering uses clustered-dots, where the
distribution of dots is designed in such a way that, at one half of the maximum gray value, the

output forms a checkerboard pattern of alternating black and white regions [STOF81, ULIC87].

Digital electronic screening uses a screen function, which simulates an obscure physical plate
with holes of pre-defined shape and spatial frequency, to the image to be rendered. The input

image is first preprocessed (up-sampled) to the same dimension as that of the output. The gray
scale image is then converted to an array of binary dots by comparing the normalized gray values

at each location with the screen function which serves as a threshold array. For a fixed spatial
frequency of the screen, which is determined by the physical display or printing device, the
halftoning process is completely controlled by the screen function. The digital halftoning using

this approach is implemented by considering an equilateral quadrangle of area q2/2 inscribed
inside a q x q square. The screen function is embedded in the quadrangle which serves as
its support and whose elements are labeled by integers from 1 to q2/2. Such a quadrangle is

appropriately tiled to cover the whole image. Let a square mask of q x q sequentially scans through
the entire up-sampled image. The output at any location covered by the mask is determined

by the following thresholding process: if the normalized gray value at that point is larger than
or equal to the labeled value of the corresponding point in the mask, value 1 is assigned to the

output; otherwise, value 0 is assigned.
The screen function is designed on the basis of constant gray values, so as to display the

average intensity at a local area as faithfully as possible. Presently, in many laser printers

and monochrome display devices, a single screen function is used regardless any possible r:!: T)

variation of local image intensity. It is satisfactory to represent the low spatial frequ.-.",y

information in continuous tone images. It is less effective, however, for regions where large
intensity variation is present, such as edge regions. Edge enhancement has been suggested by
placing a stripe of black dots along the edge of the darker region together with a neighboring

stripe of white dots around the lighter region [ANAS82]. Although edges are enhanced by using
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this approach, artifacts may be created in some regions of the image. We have developed a
screen function which is adaptive to the image intensity variation [ZHAN93, SUZH93]. Wavelet

transform is used for extracting information from the input image to control the screen function

to be used at different locations.

We have utilized the wavelet of Mallat and Zhong [MALL89a, MAZH921 where O(z) is a

symmetric cubic spline with compact support [-2,2] and 0(m) is also a cubic spline being

antisymmetric with respect to : = 0.25. The corresponding filter coefficients {h(k)}, {g(k)}

and {L(k)} are listed in Table 10. This wavelet 0b(m) is the first derivative of a certain smoothing
function O(z). The discrete wavelet transform of a function f(z) at the scale 2i represents the

sampled derivative of f(x) smoothed by a set of fiters where the last smoothing function is

0;(T) = 2-j/2O(2-jx - n). Let the discrete wavelet transform coefficients be computed without

subsampling. Let image rows of the (j - 1)hI smoothed image be first filtered by the high-pass
fiter G, the columns of the resulting image be then filtered by L; and let this operation be

designated as filtering by the separable filter LG to give a horizontally oriented high frequency

component image W1 . Similarly, filtering by GL results in a vertically oriented high frequency

component image W2. At each pixel, W1 and W2 are combined giving a magnitude

S= [(W,) 2 +

and an angle

c' = arg(W-) = tan-' (w
which represent the magnitude and direction of the local intensity variation in the image at the
jo, scale. Wj and o' provide an estimate of the gradient of the smoothed image at the jth

scale. They are used to control the screen function which will be discussed below. At edge pixels
where Wi is maximum, the screen function will be made to adapt to the edge information. We

chose j = 2 to ensure sufficient smoothing to reduce the noise effect in the gradient estimate.
In the following discussions, we drop the subscription j so that W and a refer to W2 and a 2

respectively.

Screen Function Design:

We follow the clustered-dot approach in the design of a screen function. The more
concentrated the dots are, the better visual effect of the grayness will be. The gray information

at a pixel, including gray value and its gradient, is represented by the number, density and

distribution pattern of the set-on dots. Let us consider that the distribution pattern is an ellipse

with minor axis b and major axis a at an orientation 0, as shown in Figure 24. Let the compression

index of the ellipse be designated by c = b/a. The screen function is defined by the elliptical
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Table 10: Filter Coefficients for Cubic Spline Wavelet

k h(k) g(k) 1(k)

-5 0 0 0

-4 0 0.00021 0.00003

-3 0 -0.00008 0.00727

-2 0.0625 -0.01643 0.03118

-1 0.25 -0.10873 0.06623

0 0.375 -0.59261 0.79113

1 0.25 0.59261 0.06623

2 0.062 0.10873 0.03118

3 0 0.01643 0.00727

4 0 0.00008 0.00003

5 0 -0.00021 0

Yy'

c--b/a

Figure 24: An elliptic model for screen function whose orientation, compression and size

parameters are adaptable to the wavelet transform magnitude, angle and pixel gray level

respectively.
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model within an equilateral quadrangular support. It is controlled by the estimated gradient
which reflects the local intensity variation. The orientation of the ellipse is controlled by

and the compression index c is controlled by the gradient magnitude such that it is more
compressed for larger gradient. In a region with uniform gray value or very small gradient,
c is made to approach to 1 so that the elliptic pattern becomes a circular pattern. On the other

hand, at an edge pixel, the maximum W occurs, c approaches to 0 and the highly elongated ellipse
tends to become a thin line segment depicting a sharp intensity variation across the edge. To

relate the estimated gradient magnitude W to the compression parameter c, we must normalize
W by a chosen maximum value W,.. in the image, so as to set

c= - -W., O<c<1

where w, = WIW,,. is the normalized wavelet magnitude, 0 < w,, < 1. The size of the ellipse

(that is, the number of points in the elliptical region) is in direct proportion to the pixel gray
value. In the limiting cases, either all points in the support region are set on giving the brightest
impression, or none of the points is set on giving the darkest impression. In general, the screen
function has larger elliptic patterns for higher gray levels. For pixels with higher gradient, it
is adapted to become more compressed and oriented in a direction orthogonal to the gradient

direction.
An ellipse centered at the origin is described by the following equation in the (z', y')-coordinate

axes shown in Figure 24,

a b
where the major axis of the ellipse lies on the x'-axis and the minor axis lies on the y'-axis.

Hence,

= 2 +Y 12 = c2z, 2 +y Y2

For a fixed value of c, a larger ellipse has larger values of b and a. All pixels on an ellipse of
fixed orientation and fixed compression index may be considered as having the same quadratic

"distance", denoted by d - b2V, to the center of the ellipse. A point on a larger ellipse (with larger b
value) is more distant from the center than any point on a smaller ellipse (of the same orientation

and same compression index). The rotational transformation between the (x, y)-coordinates and

(W', ')-coordinates shown in Figure 24 is given by

Y( -sin# cosin)
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Then

d =Pb2 = (c 2 cos2 9 + sin 2 9)X2 + (c 2 sin 2 a + cos 2 0)y2 - 2(1 - c2)(sin 0 cos O)zY

The elliptic screen function for a fixed oritntation and a fixed compression is defined over an

equilateral quadrangular support inside a q x q square matrix. Let q be chosen to be a power of 2,

for example, q = 8, 16, 32, etc., so the center of the ellipse (cluster center) is set at (.2 +0.5, 2 +0.5).

Within the support, each point is labeled in the increasing order accordiing to its "distance" (bP)

to the cluster center. If two points have the same "distance", they are resolved by assigning the

smaller label to the point which is scanned first.

The label runs from 1 to q2/2. The same labeled pattern in this quadrangle is tiled to fill

up the remaining corner regions of the q x q matrix. This labeled matrix serves as a threshold

array to be compared with the pixel gray value I which should be normalized to be within a

range of q2/2 units. If the input image has 256 possible gray values, the normalized gray value

should be (1/256) (q2/2). A point in the output image is set on if the normalized gray value is

greater than or equal to the labeled-value of the corresponding point in the threshold array. This

results in an elliptic cluster of a specific orientation and compression, as illustrated in Figure

25 (a) and (b). Figure 25 shows two different screen functions (q = 16) and their resulting

cluster patterns. The values of 0 and c in the screen function showr in Figure 25(a) are 450

and 1.0 respectivelly, while those values in Figure 25(b) are 300 and 0.4 respectively. . The

labeled arrays are shown in the left of both figures. The normalized gray value of the pixel under

consideration is 68 in each case, the resulting cluster patterns to represent these two pixels with

different gradient information are shown in the right part of Figure 25(a) and (b) respectivelly.

For a higher gray value, more distant points in the screen function will be set on, leading to a

larger elliptic cluster. This screen function, being adaptive to the magnitude and orientation of

the local gray level variation as estimated by the use of wavelet transform, can provide a halftone

image with enhanced visualization.

Experimental Result:

The proposed adaptive halftoning method was experimented on the Lenna image, the result

is shown in Figure 26(b). Figure 26(a) shows the original image consolidated to 256 x 256 pixels

with 8-bit gray levels. In order to reduce the computational cost in our experimental study, the

image pixels were classified into two classes according to the value of W. Those pixels in the

nearly uniform region with W < 1.0 were classfied into class I; those pixels in regions of significant

local intensity variation were classified into class II. A pre-computed screen function (with c = 1)

was applied to pixels of class I, and the adaptive screen function was applied to pixels of class

II. In this experiment, we set q = 8; the resultting halftone image shown in Figure 26(b) gave an
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Figure 25: Screen functions (on the left) and the corresponding cluster patterns (on the right):

(a) c = 1, 0 = 450, pixel gray value = 68; (b) c = 0.4, 0 = 30', pixel gray value=68.
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(a) (b)

Figure 26: An experimental result of the adaptive halftoning on the Lenna image: (a) the
original image(256 x 256 x 8-bit) and (b) the resulting halftone image (q=8).
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impression of only 32 gray levels, instead of 256 levels in the original image. The clarity of the

display was nevertheless achieved. A comparison was made with the halftone image generated
by the conventional single screen method (c = 1), a small degree of improvement in clarity was

observed in the hair region. Further improvement is under consideration on on optimal threshold

assignment for reducing contouring artifacts and aliasing.

B.1.g Artificial Neural Networks Based on Wavelet Transforms for System

Identification

Our work on systolic architecture for computing signal decomposition and signal reconstruction

[CHUA92] led us to explore the pipelined processing of discrete wavelet transforms in artificial

neural networks for on-line system identification. Although not an image processing problem,
this work is reported here to reflect another application of wavelet transforms.

Let us consider a class of separable nonlinear dynamic systems of Wiener-Volterra type which

is modeled by a linear dynamic component followed by a static nonlinearity. The input-output

relationship is governed by a functional mapping. Ths system identification problem is concerned
with identifying the characterestics of an unknown dynamic system, or functional mapping,

from measurements of its input and output. We have constructed three structured feedforward
artificial neural networks, based on wavelet transforms, for identifying 1) stable linear dynamic
systems, time invariant or time varying, 2) static nonlinear function approximation, and 3)

separable nonlinear dynamic systems respectively.

For a discrete-time linear dynamic system characterized by its time-varying impulse response
h(k, m), which denotes the impulse response at time k when the impulse input is applied at time

m, the system output y(k) is given by

k
y(k) = ;h(k, m)x(m)

M=O

where {z(m)} deniotes the input sequence. Let hk(k - m) = h(k, m), hk = [hf(k), hk(k -

1),... , hk(O)]T and x = [:(o),z(1),..., (k)]". Furthermore, let us consider wavelet transforms

of the input sequence x and the reversed impulse response sequence hk over a time interval

[O, N - 1] by using the Daubechies' orthonormal wavelet D4, for example, with low-pass filter
coefficients {c 1 , c2, c3 , c4} and high-pass filter coefficients {g1, g2, g3, g 4 }. The J-scale orthonormal

wavelet transform can be represented by a matrix operator Aj,

1 /J-

where
Al oAý/2, AN/2j-1

"•N2-1: 0 1 NN/2j_1
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Iq is a q x q identity matrix and

CI C2 c3 c4  0 0 ... 0 0 0 0

0 0 c1 C2 C3 c4 ... 0 0 0 0
. . . . . . . . . . .

0 0 0 0 0 0 ... cI C2 C3 C4

C3 C 4 0 0 0 0 ... 0 0 cI c2AN g1 92 g3 g4 0 0 ... 0 0 0 0

0 0 g 1 g 2 g 3 g4 ... 0 0 0 0

0 0 0 0 0 0 ... g1 g2 g3 g4

g93g4 0 0 0 0 ... 0 glg2

the latter expression is obtained on the hypothesis that the signal sequence is N-periodic, so

that Aj is a unitary matrix. Then
y(k)- =ii'x- (AJ.k)T AJX = wT. z

where z is a N x 1 vector containing wavelet transform coefficients of J scales of the input

sequence, and wz is a N x 1 vector containing the wavelet transform coefficients of J scales of

the reversed impulse response sequence. Based on the above-mentioned analysis, a three-layered

artificial neural network is constructed where N hidden neurons have nonlinearities characterized

by Daubechies orthogonal wavelet at successive scales and the scaling function at the coarest

level; these artificial neurons take input data {z(n)} with fixed connection weights are used

to perform the Daubechies' orthonormal wavelet transform of J scales on the windowed input

sequence {z(n)}. Only one set of connection weights {wj} leading to the output neurons are to

be tranied. The system inpulse response kernel is then obtained by taking the inverse wavelet

transform of the trained weights, which can be computed by

hk = W-g(Ck)

where

g = (4,0, dj~i, 0 •. , Oj,2-JN-1, 0J,0,... , i&J,2-JN-1, 0 1, .'i,,. . . , b1,N1/2-_1]

In practice, both input sequence and impulse response sequence are not N-periodic, the wrap-

around entries in the first few columns in matrix Al should be removed; hence, A3 will no

longer be unitary and the transform will introduce some errors in the first few terms of hk, i.e.,

the trailing terms in the impulse response sequence. For asymptotically stable systems, these

terms are usually very small in comparison to other terms in the sequence.
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Because the hidden neurons in this structure provide orthogonal channels to represent the

input signal characteristics, only those weights corresponding to changing characteristics of the

input-output data pairs need to be adjusted as successive blocks of N data pairs are brought

into training. This leads to great improvement in training time and accuracy by one order of

magnitude, when compared with the use of the conventional multilayered neural networks for

system identification.

Another three-layered feedforward neural network has been constructed for identification of a

nonlinear function where the scaled cubic spline functions are used as radial basis functions in the

special neurons in the hidden layer. The connection weights from the input to the hidden layer

are all fixed to be equal to one; only the connection weights from the hidden layer to the output

neurons are to be trained from the measured input-output data pairs {z, yj} which are first sorted
in an ascending order of the input variable x. The local maxima of the wavelet transform modulus

of the inpout-output data and their locations, zXs, are used to determine the required number

of special neurons and neuron bias -xzs at the given scale level. As more blocks of training data

become available, structures at finer scale levels will be determined and trained until a desired

approximation accuracy is obtained. By cascading this network to the network constructed

for linear system identification, s special structure of four-layered artificial neural network is

obtained for identification of a class of nonlinear dynamic systems. Simulation studies have

been performed to compare with the conventional multilayered networks for nonlinear system

identification. The performance improvements, both in training speed and in accuracy, make

this approach potentially useful for on-line dynamic system identification. The details of this

work are described in a paper which has been submitted for publication [HOL192].
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B.2 Parallel Image Processing

In this project we have considered several parallel architectures as targets for our parallel

algorithms: 2D mesh; 3D mesh; special purpose systolic arrays and special forms of compound

graph networks. For the mesh architectures we have considered both traditional and

reconfigurable mesh architectures. The 2D and 3D mesh architectures received the most

attention. For these architectures a variety of algorithms and algorithm classes have been

considered including wavelet transform based algorithms. In section B.2.b we have evaluated time

complexity of certain embeddings of wavelet transformed 2D images into 2D mesh architectures

for a variety of algorithm classes. In section B.2.c we have given special attention to the general

problem of embedding 2D meshes into 3D meshes. In section B.2.d we have addressed a variety

of issues relating to 3D image processing and the use of 3D meshes in parallel image processing

including: the embedding of 3D multiscale transforms into 3D mesh; a theoretical analysis of the

expected speedup when using 3D mesh; 3D shrinking to a residue algorithms including subfields

methodology; 3D connected component labeling algorithms; and the segementation problem

in magnetic resonance imaging. In section B.2.e we examine fundamental issues for parallel

reduction and reduction-augmentation operators in 2D and 3D image spaces including: the

identification of constraints on operator support size and shape and the identification of efficient

connectivity preservation tests. In section B.2.f we illustrate efficient wavelet decompositions

and reconstructions for 1D signals in special systolic arrays. Finally, in section B.2.g we explore

the potential for using graph compound networks to enhance the communication capability of

mesh architectures.

B.2.a Parallel Architectures

Maltiresolution image processing is typically a natural fit to pyramid computing architectures

[AHUJ84, BURT83, TANI83]. Wavelet forms of image representation for n x n images can

place a multiresolution representation into an n x n mesh architecture with one coefficient per

processing element (PE) [MALL89b]. Examples of such mesh architectures have been developed

[DUFF86, FOUN90], and are likely to be more readily available than pyramid architectures in

the future. Further, reconfigurable 2D meshes have been shown to emulate pyramid architectures

well [LIST91, CANT88, ALBA91, MARE91]. Thus, n x n mesh architectures with or without

reconfigurability appear to be desirable targets for 2D wavelet based algorithm development.

The 3D mesh architecture is becoming commercially available [JACK] and offers a more compact

packaging of large arrays, as compared to 2D mesh, which leads to several advantages [NOAK90].

The 3D mesh utilizes all three available spatial dimensions for interconnection and is in some

sense the ideal massively parallel architecture which satisfies typic SI constraints. This mesh

is particularly apt for processing 3D images and may also be usef. 'D image processing. The
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2D and 3D mesh architectures were the primary targets for parallel image processing research in

the project; although a few other special purpose architectures were considered.

The 2D mesh model (MESH2) used in this analysis includes 4-neighbors connections (as

illustrated in Figure 27a). The reconfigurable 2D mesh model (RMESH2) is illustrated in

Figure 27b where each position of the mesh is occupied by a PE (circle) and a switch (square).

Each PE is 4-connected to other PE's with a traditional mesh interconnection and its associated

switch handles interaction with separate row and column busses. (This model is similar in power

to the polymorphic torus described in [LIST91]) Typical switch settings allow busses to bypass

PE's achieving direct connections between distant PE's, multiple paths along any bus, etc. By

allowing for up to 4 independent connections between PE's and associated switches, the PE's

can utilize the row and column busses to form 4 direct connections with PE's along the same

row and column. With this model using the same embedding of the pyramid into the mesh as

in [CANT88], each pyramid level above the base is able to function independently with direct

connections to 4-neighbors within each pyramid level provided by segments of the row and column

busses. Applications explored so far utilize primarily the capability of dividing a given row or

column bus into sets of distinct busses.

(a) (b)

Figure 27: 2D mesh computing models: (a) MESH2 a 4 x 4 piece of a 2D mesh (b) RMESH2 a

4 x 4 piece of a reconfigurable mesh model. Circles represent PE's and squares represent switches.

The 3D mesh models, MESH3 and RMESH3, are the obvious extensions from the 2D case,

with 6-neighbor interconnections. In reconfigurable 3D mesh (RMESH3) applications we will

report the specific amount of reconfigurability required, e.g. say only within planes orthogonal

to a given axis.
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Certain special purpose architectures are considered. A systolic model is discussed in section

B.2.f which is composed of a set of ID arrays of special purpose PE's [CHUA92]. Certain forms

of compound graph interconnection networks are proposed to enhance mesh communication

capability [HAMD91a, HAMD91b] and are discussed in section B.2.g.

B.2.b Embeddings of Wavelet Tuansforms in 2D Mesh

In common applications wavelet transform decomposition initially effectively convolves four 2D

filters with the original image, A in Figure 28, producing four resulting images at 1/2 of the
resolution of A, i.e. A1,, D1, D D, . The new image A1 is contrived to be a 'low-pass filtered'

lower resolution version of the original image, A. The detail images IN represent difference

images which can be used to reconstruct A; but typically also represent useful image analysis

features. Successive iterations at levels i = 1, 2, ... of decomposition apply the four filters to the

lower resolution version of A, A&. Separable filters are typically used in the fundamental 2D
wavelet definition and the effective 2D filter convolutions are realized with separate 1D filters

along rows and columns. Results presented here will assume such separable fiters. A more

complete presentation is found in [HALL93c].
In order to efficiently utilize such wavelet transforms in parallel mesh architectures, we need to

identify where to place the wavelet transform coefficients into such meshes. This is the embedding

problem which we address in this section. Such embeddings will impact on the time complexity

achievable by various parallel algorithms typically by affecting the communication overhead

required to access elements in the support of operators used by the algorithms. In the following

we consider certain such embeddings into 2D meshes (with and without reconfigurability) and

evaluate the communication overhead for a variety of algorithm classes. We will demonstrate the

superiority of one of these embeddings for most evaluations.

A2 D2
A1  DI DI2 3

A D2 dD2

Figure 28: Wavelet transform decomposition and reconstruction where the original image A

has been taken to a level 2 representation. See the text.
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2D Mesh Embeddings:

Two particular embeddings are considered as illustrated in Figure 29. The original image

is thought of as level 0 with size n x n (n = 2") and successive levels, i = 1,2,..., refer to

the successively lower resolution image representations characteristic of the wavelet transform

[MALL89b]. In the embedding illustrated in Figure 29a (following [MALL89b]) the detail images

Dl, D? and D3 at level i of the multiscale transform and the lower resolution version of the

image, A., are concentrated into subblocks within the mesh. This embedding is denoted Block-

Concentrated (BC) and is illustrated to level 3 in Figure 29a. This BC embedding leaves

separate detail images and A. in contiguous blocks but at say level 3 in Figure 29a the four

components corresponding to a given local region in the image are separated substantially. Thus,

local operators which would use all components would encounter a communication overhead

getting access to these widely separated components. This problem grows worse at lower levels.

To counter this a second embedding has been developed, denoted Distributed (DIST), and is

illustrated in Figure 29b where the individual components of A., and the detail images at level

i (denoted a,, di, d2 and d?) are distributed uniformly over the mesh. The DIST embedding is

developed recursively, e.g. at level 0 2 x 2 regions of the original image are replaced with,

The level 1 individual components are thus distributed in this fashion:

a a, ...

a, d~i a, ' .d 2.

Level 2 is developed by replacing appropriate 2 x 2 regions of al's with

a2 &

and this process is continued recursively to the desired level, e.g. level 3 in Figure 29b. Specific

detail image components at level i(i > 0) corresponding to the same base image location are

mapped to PE's in the mesh which are 2' distance apart for the DIST case and 28-i+1 distance

apart for the BC case. (Distance is based on 4-adjacency which matches the connectivity assumed

for the 2D mesh models) Thus for processing requiring access to all four image components, BC
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has higher communication cost at lower levels and lower communication cost at higher levels

while the opposite holds for DIST.

A3D _ a3 d' d2 d? dx d• d• dID • D a / 21n • sd' d ' d' dx I' d '

D -2 D ' 3222 3

_ _2 _ _ __2 d ?1 di d d• d• d Ix d• d

3d d d? d, dl dl d, dl

D 1 1 1

d3 d dl d' d3, d' d2 dl

(a) (b)

Figure 29: Wavelet transform embeddings in a 2D mesh architecture: (a) Blotk-Concentrated

embedding (BC); (b) Distributed (DIST) bedding.

Time Performance Evaluations:

Time performance evaluations are performed for a variety of algorithm classes using the

following assumptions: (1) Only communication steps are considered which includes filter

coefficient broadcasts; (2) In one communication step a MESH2 PE can read one datum from

one of its row or column PE neighbors; (3) In one communication step an RMESH2 PE can

read one datum from one of its row or column PE neighbors or from one of the PE's which it

connects to on its row or column of switches; (4) In RMESH2 each reconfiguration of the switch

array costs one communication step; and (5) Filters in wavelet decomposition and reconstruction

algorithms are assumed separable. Numbers of communication steps are typically normalized

against the linear dimension n of the given n x n image.
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Wavelet Decompositions and Reconstructions:

First, time performance results are reported for algorithms which decompose a given image

into its wavelet transform and reconstruct the original image from its wavelet transform. The

decomposition process requires a set of linear convolutions along rows and columns of the mesh

with special data movements to place the results in the desired locations. The reconstruction

process requires the insertion of rows and columns of zeros in the mesh, row and column linear

convolutions, and data morements to restore image components to their original locations. The

convolution algorithm used in this analysis is similar to that in [RANK90] and filter coefficients

are broadcast from the master controller. The communication overhead is evaluated as the sum of

the communication steps (e.g. movements of data from PE to neighboring PE) plus the number

of coefficients broadcast to PE's. A linear convolution with a filter of size M has communication

overhead of typically 2M - 1 using these assumptions.

The communication overhead for decomposition and reconstruction can be expressed in closed

form, but the relative tradeoffs are easier to see with graphical presentation of communication

overhead for specific cases. (See [HALL93c] for more detail) Some typical decomposition

(reconstruction) results are illustrated in Figure 30 (Figure 31) for a linear filter size of 8. The

results are normalized by expressing number of communication steps as a multiple of the linear

dimension of the image, n. In Figure 30a and Figure 31a the wavelet transforms are computed

to a level where the lowest resolution image is the size of the filter, i.e. 8 x 8 for these results.

In Figure 30b and Figure 31b the transforms are performed only to 3 levels of resolution for

each image space size. In the former case more processing at higher levels of the multiresolution

structure is required than for the latter case. In multiresolution processing where only a few

levels of resolution are used the Figure 30b and Figure 31b data are more representative, but

where larger numbers of levels of resolution are required the Figure 30a and Figure 31a data are

more representative.

In Figure 30a and 31a examples, where higher level processing is required, for MESH2

mesh models DIST typically requires greater communication overhead than BC. But, for the

RMESH2 model DIST is able to fully utilize reconfigurability achieving time performance

essentially independent of image space size; whereas, BC performance cannot be improved by

reconfigurability. In the Figure 30b and 31b examples the processing is restricted to a fixed

number of levels and DIST performance typically is superior to that for BC for either mesh model

and for larger images DIST performance is close for either mesh model. Thus, where one can

avoid building a multiresolution representation with a large number of levels the DIST embedding

appears to offer superior promise as a time efficient wavelet transform embedding for regular or

reconfigurable mesh architectures; whereas, DIST is uniformly superior for reconfigurable models.
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(b)

Figure 30: Communication overhead required by wavelet decomposition: (a) taken to 8 x 8

lowest resolution, (b) taken for only 3 levels of resolution. (Filter size is 8)
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Figure 31: Communication overhead required by wavelet reconstruction: (a) taken from 8 x 8

lowest resolution and (b) working on images with only 3 levels of resolution. (Filter size is 8)
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General local operators:

We next consider a class of operators with small local support, e.g. m x m support. Such

operators might be used to compute arbitrary 2D inner products, local texture measures, etc. We

assume that these local functions are applied at various resolution levels in the wavelet transform

image representation as shown in Figure 32. We assume that the function is taken over all Di
and A. at the given resolution level i. Figure 33 illustrates communication overhead for BC and

DIST embeddings at different image resolutions. For MESH2 BC is ideal at the highest levels

(i.e. small r) while DIST is ideal at the lowe- ievels. DIST is able to fully utilize reconfigurability

and communication overhead is not a function of level in the transform.

A Canonical planning model:

A canonical "planning" task model is defined next. Here we imagine a top-down process on

a wavelet transform of an image which begins at some reasonably high level, k, in the transform.

The "plan" is envisioned as some datum per pixel estimate of the image space, e.g. a likelihood

of belonging to a given texture region; and is imagined to be computed as a local function, as

defined earlier.

1. First, at the top level an initial plan is developed and stored at PE's at this level, one

datum/PE;

2. In a typical iteration, i, the planning function is realized as a local function of A, and

the detail images and the previous plan, P,; and reconstruction is performed to the next highest

resolution image:

A -1 , Pj-1

This task is a mixture of local function evaluation, repositioning of intermediate results and

reconstruction.

Figure 34 reports communication overhead results for a planning task using a 5 x 5 local

function support and beginning at level k where Ah is 8 x 8. For MESH2 DTST is superior to BC

over all image instances considered. For RMESH2 DIST is able to fully utilize reconfigurability

and communication overhead is not a function of level in the transform.
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A, m Di

Figure 32: Local function model. Local function f has m x m supports in A and the detail

images at some level i in the transform. It places its results in the PE's holding A.

Communication Overhead
Normalized with 1024
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Figure 33: Communication overhead for 5 x 5 local function operator applied at different

resolutions of a 1024 x 1024 image.
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Figure 34: Communication overhead for top-down planning using a 5 x 5 local function support

beginning at the 8 x 8 image representation.

Mapping larger 2D images into smaller 2D meshes:

In practical applications the 2D mesh size will be fixed and for larger images we will typically

realize several pixels/PE. For this case we illustrate some results which compare communication

overhead for the two embeddings for the fundamental linear convolution operator. We assume

in this analysis that the original image is divided as symmetrically as possible among the PE's

of the mesh maintaining image topography. Thus, a 1024 x 1024 image is placed in a 128 x 128

PE array such that each PE realizes an 8 x 8 subimage of the original image. We will term

this the Sub-block multiple pixels mapping. One measure of mapping efficiency is the relative

balance of load we place at each PE - this is typically measured as the maximum number of

pixels realized by any PE in the mesh. BC load remains unchanged for all but the highest levels

of image representation while DIST load falls quickly for higher levels. (more detail is given in

[HALL93c]) The DIST load is optimally small in general for all levels. This optimal load balance

leads to substantial advantages for DIST. The convolution cost is a function of worse case PE

load and communication costs to obtain access to required neighboring pixels. BC maintains

good locality of required pixels, but is hampered by poor load balance and is substantially

inferior to DIST. Further, BC performance cannot be improved with reconfiguration. DIST has
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essentially minimal PE load, but pixel locality is lost for sufficiently high level. This degrades

DIST performance somewhat for MESH2 but for the RMESH2 model this lost locality in the

mesh can be ameliorated by reconfiguration. These results for linear convolution imply that the

DIST embedding is typically superior for wavelet decomposition and reconstruction when larger

images are processed by smaller meshes and this superiority increases as larger subimages are

realized at PE's. (These results readily extend to the 3D case considered in section B.2.d.)

We propose an alternative mapping to Sub-block which comes as a corollary to the discussion
on "Embedding 2D meshes into 3D meshes" details of which can be found in section B.2.c.

The alternative mapping (denoted TDFM) maps to the mesh from the larger image rectangular

blocks of pixels of the size of the smaller mesh. The mapping begins by taking the mesh-sized

block at the upper left corner of the image and maps it to the mesh. Then it maps all the other

blocks on top of the mesh in a snake-like manner. (More details are given in section B.2.c) This

TDFM mapping can be used in conjunction with the BC and DIST embeddings and improves
BC load balancing for MESH and RMESH models of computation and for DIST for MESH.

We will illustrate a simple multiple pixels/PE case where an 8 x 8 2D mesh will be embedded
on a 4 x 4 mesh as shown in Figure 35. Figures 36 and 37 show how the wavelet coefficients will
be distributed at level-3 for the BC and DIST cases respectively. Figure 36(a) shows that for BC

typically PE's each realize pixels within one level of the transform and as a consequence when

processing is being performed at levels greater than 0 many PE's are idle. Figure 37(a) shows

that DIST distributes pixels over levels in a well balanced manner. For the alternative TDFM

mapping Figure 36(b) shows that now BC PE's have a much better balance of wavelet coefficients

over levels resulting in typically many less idle PE's. Further, as illustrated in Figure 37(b) DIST

PE's when used with TDFM maintain their good balance.

Discussion:

The DIST embedding appears to be generally superior to the BC embedding for non-

reconfigurable meshes. For reconfigurable meshes BC is unable to utilize reconfigurability to
improve performance, while DIST is generally able to utilize reconfigurability well, frequently

achieving optimal performance. DIST appears to be an ideal solution to the 2D transform-2D
mesh wavelet embedding problem.
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11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37138

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64.65.66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

(a)

11,12,21,22 13,14,23,24 15,16,25,26 17,18,27,28

31,32,41,42 33,34,43,44 35,36,45,46 37,38,47,48

51,52,61,62 53,54,63,64 55,56,65,66 57,58,67,68

71,72,81,82 73,74,83,84 75,76,85,86 77,78,87,88

(b)

11,18,88,81 12,17,87,82 13,16,86,83 14,15,85,84

21,28,78,71 22,27,77,72 23,26,76,73 24,25,75,74

31,38,68,61 32,37,67,62 33,36,66,63 34,35,65,64

41,48,58,51 42,47,57,52 43,46,56,53 44,45,55,54

(c)

Figure 35: Multiple pixels/PE mapping of an 8 x 8 2D image to a 4 x 4 2D mesh (a) Original

Image; (b) Sub-block method; (c) TDFM method.

86



a4d4d244 d 4d 4,4 1 4 2,4 4404t4
4,4,4,4 4,4q,4,4 fc 4 .44 d444,4,d
4,4d,44 4,4 t dqd 4,~d

(a)

344,t4,4 d3,4,44, d24,t4,d, d'44,44
d2 4, 4,4,4 4,,4 444344
44,44 t4d , 4d &24,,4 4dd214414,,•,€ 4,4,&I,l,4,• t4,,,, •,,,

t4, 4, t,4 4, a,,d,4 14,4,4d,4 1 4,4,dt4,t

(b)

Figure 36: Distribution of the wavelet coefficients at level-3 on the 2D mesh (a) BC with the

Sub-block Method; (b) BC with the TDFM method.
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Figure 37: Distribution of the wavelet coefficients at level-3] on the 2D mesh (a) DIST with the
Sub-block method; (b) DIST with the TDFM method.
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B.2.c Embedding 2D Meshes into 3D meshes

We now want to explore the potential for 3D mesh architectures in computer vision applications.
First we consider the mapping of 2D meshes into 3D meshes. Embeddings of one architecture
onto another allow an algorithm designed for an architecture/graph G (guest) to be simulated on
another architecture/graph H (host). Such transformations make it possible to run an algorithm
already designed for (perhaps a non-existent) architecture on a currently available architecture.
We have studied such embeddings where a 2D mesh algorithm is embedded on a 3D mesh
architecture. We have mentioned that most parallel algorithm work has been done for 2D mesh
architectures. An embedding therefore will make it possible to automatically realize all the
algorithms developed so far for 2D mesh architectures on the 3D mesh. The success of such an
embedding can be measured by means of expansion, dilation, and congestion. Expansion is the
size of the host graph relative to the size of the guest graph. Dilation is the maximum "stretch"
of an edge of the guest graph on the host architecture. Congestion is the maximum number of
stretched paths sharing an edge in the host graph. Dilation and congestion reveal information
about the communication delay of the embedding. Expansion tells us how many processors are
active in the host embedding, i.e. the processor utilization. We have studied dilation-1 2D-3D
embeddings which tend to maximize the processor utilization while minimizing the dilation and
congestion. Therefore the communication cost of a 2D algorithm will be the same on the 3D

architecture.

The Two-Dimensional Flip (TDF) Embedding:

We propose a new 2D-3D mesh embedding termed the Two-Dimensional Flip (TDF)
embedding. We will assume that G and H are two mesh connected arrays of processors, such
that, G = g' x g2, H = hi x h2 x h3, and g, "g2 _• h, i-h2- h3. be considered.) We will also assume
that g= = = N112 , h• = h2 = h3 = N1/ 3 for simplicity. In other words the N112 x N'12 2D
mesh will be split into exactly N113, N1/ 3 x N1/3 sub-planes and will be stacked on top of each
other in the 3D mesh of size N113 x N113 x N1/3. However, it is desirable not to add any extra
overhead by the embedding. Therefore, we will provide good row connectivity and propose the
following mapping.

Split the 2D mesh into partitions that are the size of the 3D mesh's planes. Then order those
partitions in order to stack them on the 3D mesh's planes. Let k - h"/2 - N1 6 and P(ij) be the
partition number of size N1/ 3 x NO13 in the 2D mesh:
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P(I'I) P(I.2) ... P(Ihk..) P 1.h)

P(2,I) P(2 .2) ... P(2,k..1) P(2,k)

Now, embed the partitions, P(,,), into the the 3D mesh in the following order,

S... ( . (.,)
P~k..l~l) ''C P(k..1,k1l), ( kPC

(k-1,),P 12)) pC1,)

so that each partition in this sequence forms a plane in the 3D mesh, where the operators, FR,

Fc and F*, are such that, for a given arbitrary sized matrix, F, of size n x m,

FR { interchange i-th row with (n - i + 1)-th row for i = 1, L[2J1ý

FC { interchange j-th column with (m - j + 1)-th column forj 3 1, L2 1,

FCRF* =_ Fit = Fc•

Notice that row partitions are located at consecutive planes which means that connectivity is
preserved due to the snake-like placement of the partitions. Unfortunately this also means that

column partitions will be separated depending on which partition they reside. No extra overhead

is paid for 2D row convolutions but each shift operation in the column convolution takes 2k - 1
communication steps instead of 1. Thus, if only row-connectivity is required this is a dilation-1

embedding, otherwise it is dilation-{2N1 /s - 1).

Reconfigurable TDF (RTDF) Embeddings:

The substantial advantage of TDF embedding can be seen when the buses along each plane

of the 3D mesh architecture perpendicular to the planes in which the sequences are embedded

are reconfigurable. This is best illustrated with an example. We examine the embedding of an

8 x 8 2D mesh onto a 4 x 4 x 4 3D mesh (N = 64) as illustrated in Figure 38. The thick line that
connects 44 to 54 is the necessary reconfiguration to make this embedding a dilation-1 embedding

and it has to be repeated at consecutive planes to connect 43 to 53, 42 to 52, and 41 to 51.
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11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28 4
----- ----- ----- -- 88/87/86/85/ 84

31 32 33 34 35 36 37 38 5

41 42 43 44 45 46 47 48 5/
11 12 13 14 14/7

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68 1

71 72 73 74 75 76 77 78 31 32 33 34

81 8581 82 831 84 185186 87 8841 2 43 4//

Figure 38: TDF Embedding of an 8 x 8 2D mesh onto a 4 x 4 x 4 3D mesh

In general, this reconfiguration for a single plane is shown in Figure 39. The solid and dotted

lines show different paths of reconfiguration. Notice that the paths are non-conflicting, i.e.,

one can reconfigure the system to honor these connections once in the beginning and no further

overhead is spent for the rest of the algorithm. It has the disadvantage that the data at the outer

layers have to travel a distance which is a multiple of the size of the base mesh (4(N 1/s - 1)).

The embedding also works for nonsquare base meshes. Further, the connections could be custom

built into the architecture of the 3D mesh and activated upon a special controller request to

enable any 2D algorithm to be executed on the 3D mesh architecture with no extra overhead.

Since a single communication of the 2D mesh takes exactly one communication step on the 3D

dilation-1 embedding, any performance results for the 2D case are also applicable here. The

TDF embedding is not particularly efficient for the non-reconfigurable 3D mesh case suggesting

a strong motivation for this level of reconfigurability.

The TDF embedding can be viewed as an alternative mapping for larger 2D images onto

smaller 2D meshes. Imagine that rather than stacking each partition on the third dimension of a

3D mesh we collapse them to a base mesh where the PE's at the base emulate the corresponding

data on the partitions above them. For example, for the case of 8 x 8 into 4 x 4, the PE that

emulates the element 14 will also emulate 15, 85, and 84. (Figure 38) This has been addressed

in section B.2.b.
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Figure 39: Paths required from reconfiguration capability along a single plane for the RTDF

embedding

Convolution costs:

Consider the linear convolution costs where the filter is of size M. The communication
overheads are as follows:

Convolution along Rows Convolution along Columns

2D M + (M- 1) M+(M- 1)
TDF M + (M- 1) M + (2N/ 6 -_ 1)(M- 1)

RTDF M +-(M- 1) M +-(M- 1)

We see that extra overhead is required only for the operations involving communication along
the columns of the wavelet transform in the non-reconfigurable case. Row operations are the

same in the 3D mesh as a result of the embedding. If the extra overhead caused by the 2NWi 6 - 1

factor in column communication is small relative to the total cost then this embedding for a 3D
non-reconfigurable architecture is feasible.

T'ranspose costs:

Parallel image transpose is used extensively in image processing especially in algorithms that

require sorting. Transpose on a 2D mesh costs 2(N'/ 2 - 1) communication steps. On the other
hand, communication costs are reduced significantly if the 2D mesh is embedded into the 3D

mesh. Moreover, the transpose algorithm does not require the use of the reconfigurable buses.
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Let the sequence,

P(Iih-), PC pG )

P(2...1.), PC2h-~ ... P(k...,..), P0 21)

P~-. (kh- 1. 2)a -(kh-1k)I

(~k. I) P(h-1h)' ... ,) Pk'

denote the TDF embedding where each clement of the sequence is a partition in the 3D mesh.

Suppose that we are trying to transpose the following partitioned matrix given by,

P(2,I) P(2,2) ... P(2,...i) P(2.h) "(1I,2) P(2.2) .. (k-1,2) P(k,2 )

P(k-1,1) P(k....2) . P(k..1J...) P(k.1,k) P(1,k-l) P(21,I "(k-1,k-1) A-,k1)

Now if the transposed image is TDF-embedded, the TDF sequence becomes,

pT (TW C . p(T_ ,1 (p(Tk,)C

(P2 lk)), (1'(2,1,)), .(p)

(P4.2)) I (P(Th1 ,2))RI. (P(22))T , (P(12 ))T ,

"P(&-k,1)i (lP 12,-))T, ... _1k-,k-1

anotsince (that thisT seuec is F )'ad(' T ( y the same sequence whrblehepriinsaetsomsedih

orgna mbdin.Ths we hav reueRh rnps fte2Diaenotetasoeo
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the planes of the 3D mesh which can all be done at the same time in parallel. The only extra

cost is the reordering cost of the planes which is small compared to the rotation costs.

Algorithm Transpose for TDF embedded 2D images:

"* Transpose each plane in parallel, P(jj), (communication cost 2(N 1 /3 - 1))

"* Reorder planes. (communication cost N'1/(N' 1 6 - 1))

Figure 40 compares the communication overhead of a single parallel transpose executed on a 2D

mesh with respect to a TDF-embedded 2D mesh.

Discussion:

We have shown efficient 2D-3D embeddings which achieve dilation-1 for certain forms of

reconfigurable 3D meshes. This allows algorithm development work on 2D mesh architectures to

be readily realized on 3D meshes. Thus, a 3D mesh architecture can provide a host to both 2D and

3D applications with no extra communication cost in a heterogeneous processing environment.

We show that for strongly global classes of algorithms like the transpose a 3D mesh architecture

will run 2D applications faster than a 2D mesh.

Total Communication Overhead
300

2D
TDF rr-

250

200

150-

100-

50-

N=64 128 256 512 1024 2048 4096 8192 16384

Dimension of the image space

Figure 40: Communication Overhead Costs Transpose Costs for a Single Parallel Image

Transpose
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B.2.d 3D Mesh and 3D Image Issues and Applications

Embeddings of 3D Images and Transforms in 3D Mesh Architectures:

Certain of our 2D mesh results have been extended to the case where the target architecture

is a 3D mesh (with and without reconligurability). The 3D mesh models, MESH3 and RMESH3,

are the obvious extensions from the 2D case, with 6-neighbor interconnections. We are looking

for successful applications where we make minimal demands on reconfigurability. We extend the

BC and DIST 2D embeddings in the most obvious manner and denote these embeddings BC3 and

DIST3, as illustrated in Figure 41. (Here we assume a decomposition into A, and 7 detail images,

Di/.) The advantages identified for DIST in 2D cases tend to follow for 3D meshes. Whereas in
the 2D image case it might be reasonable to expect that a 2D mesh is available with size close

to image space size, in the 3D image case this is very unlikely to be the case. For example, a

large commercial 3D mesh currently has size 32 x 32 x 16, while a large 3D magnetic resonance
image could be 256 x 256 x 128. In this case if we wish to place the entire image in the mesh in

a regular manner we would be realizing an 8 x 8 x 8 subimage at each PE. Thus, the analysis

presented earlier on embedding larger 2D images into 2D meshes is quite appropriate to this case
and illustrates the substantial advantage of DIST3. For example, for a linear convolution along

one axis, the DIST3 relative performance advantage (as compared to BC3) improves over that

for DIST2 [HALL93c].

I / D4/ /4/4
D D5 D' D11r 41 d1l

D• /a2

D'/ j / d
/3

3 2 4 /

(a) (b)
Figure 41: Wavelet transform embeddings for 3D images into 3D mesh architectures: (a) BC3
- the 3D extension of BC; (b) DIST3 - the 3D extension of DIST.
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Expected Speedup for Three-Dimensional Mesh Architectures:

Next we will discuss the communication overhead of the 3D mesh architecture by means of

expected speedup analysis[SCHE91]. Amdahl's law, which gives a measure of expected speedup,

S, for an algorithm that has both serial and parallel components, can be written as,

s+p

+ p/N

where s is the time spent in serial parts of the problem and p is the time spent by a sequential

computer in those parts of the problem that can be divided among N processors of a parallel

processing machine. If . + p = 1 (expressed as fractions of total time) then,

N (1)
1+9(N-1)

which indicates that if j, the time spent in serial parts of the algorithm, is small the speedup

S approaches N. In other words if you spent 10% of your total time in serial operations the

maximum speedup you can achieve by parallelizing your algorithm is 10 even for very large

number of processors. (S ; 1/s for N large)

Another version of this equation is given by Gustafson where p is now the total time spent

by a parallel processing system in solving the problem,

_s +pN
s+p

which becomes,

S = N-.9(N- 1)

for . + p = 1. This is consistent with equation (1) for small a. We are primarily interested in the

communication overhead imposed by the interconnectin scheme of a parallel architecture. This

depends on the architecture as well as the implementation of the algorithm. In order to include

the effect of communication we will introduce the definition the communication overhead, c, to

the equations as the time spent communicating between processors relative to the total time

spent performing parallel computations. Thus c will be a function of the algorithm A and the

machine M, i.e. c = c(A, M).

Assume that the algorithm A needs to make z data transfers and p parallel computational
steps. Let pii be the probability that a particular communication step is a data transfer from

processor i to the processor j and tij be the time it takes to transfer data from processor i to .
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Therefore a measure of expected time for a single communication step is given as,

N N

E(t) E =jj

It is very likely that both t,, and pij are functions of the distance between the processors i andj.

Therefore it is reasonable to assume that the time it takes to send a message from one processor

to the other is proportional to the number of hops between them, i.e. tij = t(d4) = Kdc, where

K is a scaling factor. Also in a strongly global class algorithm[STOU86] all processors are equally

likely to to communicate, i.e. p,, = p(d4,) = 1I/N. This reduces E(t) to,

K Nv N

E(t)= E = Kd

where d is now the average distance between processors. Then an average fractional

communication overhead for the algorithm A and machine M can be written as,

c(A,M) = 'E(t) _ Kd (2)
p + xE(t) p + zKd

where the former is the ratio of communications time to total parallel processing and

communications time as mentioned before. If we normalize this equation with respect to the

number of processing steps then equation (2) becomes,

c(A, M) pd
1 + pd

where p = zK/p.
The following can be derived for a 2D mesh, 3D mesh and a hypercube,

2pN1/2

c(A, 2Dmesh) 3 + 2pN'/ 2

3 + 2,oN1/2

c(A, 3Dmesh) ; p

1 + pN113

p log 2N
c(A, hypercube) 2+ P1og 2N

2 + P10og 2N

This shows that as expected both 2D and 3D mesh architectures suffer from communication

overhead more than the hypercube but also that the 3D mesh is better than the 2D mesh. For

large values of N both overheads converge to 1. Figure 42 shows the communication overhead for

these architectures for reasonable values of N (64... 16K) as a function of p. Notice that for large

p (i.e. where number of data transfers is much larger than the number of parallel computational

steps) the communication overheads approach 1 even for reasonable values of N. But for smaller
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values of p there is a greater variety of behavior among the architectures. Hypercube shows
the effectiveness of it's interconnection scheme by requiring less communication overhead for
strongly-global classes of algorithms. However, 3D mesh performs significantly better than the
2D mesh for all cases.

Communication Overhead, c
1 A ..... A. At .. ..

0.9.... ... ..*-"A .. .. 0 ........ .....

0.8 .... ...... ................ '.....+ .
.. ... ..i .. .. .. ... .............. ...... ... ... .......... ..

. 0............ .. 0 o

0.7"- A 2D

0.6 - 0 3D

0.5- + Hypercube

0.4 -.

0.3 - -4-
0. - -. -A -- + - • - •

0.2

0.1

0
N=64 128 256 512 1024 2048 4096 8192 16384

Figure 42: Communication Overheads of 2D mesh, 3D mesh and Hypercube (p = 0.01 for solid
lines, p = 0.1 for dashed lines, p = 1 for dotted lines)

Now that we have a measure of the communication overhead c we will try to introduce that
into the speedup S so that we can see the effect of communication overhead on the overall
mapping of an algorithm A on the machine M. If the total time spent in parallel part of the
algorithm is denoted by pT then we can assume that c is the fraction of pT spent performing

communications, thus,

p =(1-c)pT.

Using the same formulation as above speedup S becomes,

S = (1 - c)N - s(N - 1 - c)

for Gustafson's formulations.

What is interesting in this formula is that both N, the number of PE's, and s, the serial part
of the algorithm, are now affected by the communication overhead c in the way they contribute
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to the speedup. Furthermore, if a is small an upper bound on the maximum expected speedup

can be determined by,

S < (1 - c)N.

A similar analysis can also be done for Amdahl's formulation which results in a similar type of

expression for the upper bound on the maximum expected speedup. The former indicates that

speedup may significantly reduce as a function of communication overhead. Using expressions

found above for the average fractional communication overheads we obtain the following,

3N 1.5N 1/2

3 + 2pN112 Np

N N

2 + plog 2N plog 2N

Figures 43, 44 and 45 compare the expected speedup as a function of p for an algorithm A

running on a machine M (2D mesh, 3D mesh, hypercube) with N PE's. As expected hypercube

gives better speedup results for larger values of p. Recall that larger p means the number data

transfers in the algorithm is much larger than the number of parallel computational steps. For

the case where p = 1 3D mesh performs slightly better than the hypercube up to 2048 PE's but

hypercube gets better for larger values of PE's. Although not shown here as p increases further

hypercube outperforms mesh architectures for all cases. However, as p decreases, which means

that as communication becomes less of a burden in the algorithm, hypercube looses its attraction

over the mesh architectures. As the expressions already suggested, the 3D mesh is substantially

better than the 2D mesh architecture for all cases. In particular when p < 0.1 the 3D mesh

begins to perform better than the hypercube for most cases considered. This suggests that the

3D mesh architecture is feasible and will perform better for that range of algorithms. Also notice

that the absolute value of the maximum speedup decreases as p increases which means that you

cannot expect more speedup by increasing the number of PE's when the algorithm requires a

substantial amount of data transfers.
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Figure 43: Maximum Expected Speedup of 2D mesh, 3Dmesh and Hypercube (p = 1)
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Figure 44: Maximum Expected Speedup of 2D mesh, 3D mesh and Hypercube (p = 0.1)
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Figure 45: Maximum Expected Speedup of 2D mesh, 3D mesh and Hypercube (p = 0.01)

We have given a measure of communication overhead to analyse and compare 2D and 3D
mesh architectures. Although cur main purpose was to give a basis for determining the feasibility
of the 3D mesh architecture, hypercube data was also included in the analysis as an example of

a communication efficient parallel architecture. For the classes of algorithms we have considered

the 3D mesh interconnection scheme gave substantially better results than its 2D counterpart and
even in some cases it promised to be a competitor to the hypercube. The analysis suggested that
there is a strong dependency of the algorithm to the architecture on which it will be executed,
which suggests that the algorithm needs to be machine-tuned for better performance.

31) Shrinking to a Residue:

The problem of shrinking the individual components of a binary image to single point residues
has been used to do component counting and labeling in 2D images. A solution to this problem
was presented over 2 decades ago for 3D images, [ARCE72] but this solution did not preserve the
connectivity of the foreground. (Certain distinct objects would be merged into one object by the
algorithm) We have developed new approaches to parallel 3D shrinking to a residue using subfields

methodology [HALK92] obtaining good parallel computation time and the first connectivity
preserving 3D parallel shrinking algorithms reported. We have also identified fundamental limits
on the realizability of parallel 3D shrinking algorithms using local operators [HALK92]. The use
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of subfields (i.e. partitions of the image space) where only part of the image space is altered in

one parallel iteration has been found to ease verification of connectivity preservation in 2D and

3D thinning and 2D shrinking and in 2D instances offers particularly fast parallel performances.

Thus, subfields methodology may offer a powerful tool in 3D parallel algorithm development

where the design of correct and fast parallel algorithms is particularly challenging. Shrinking

to a residue is typically defined for binary images composed of foreground (sets of ones) and

background (sets of zeros) regions. In shrinking we wish to reduce each foreground connected

component to a single point - termed a residue. This process entails preserving the connectivity

properties of the foreground but not the background, since cavities and holes are removed in the

process. An example is shown below for a 3 x 3 x 3 cube using the classical shrinker of Arcelli

and Levialdi. Succesive parallel iterations are given in row major order with the original image

in the upper left comer - labeled iteration 0.

0 1 2 3

4 5 6
Figure 46: Example of 3D Shrinking to a Residue

For 2D images parallel shrinking to a residue algorithms using operators with local support

are known which preserve connectivity and are provably convergent. In contrast we conjecture

that connectivity preserving 3D shrinking to a residue based on local operators cannot succeed
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for arbitrary images. For example, we believe that there is no parallel connectivity preserving

local shrinking operator which can shrink 2 unconnected closed curves which interleave (e.g.
as the links of a chain) to separate residues. This follows because a local operator cannot

in general determine whether or not two distinct curve segments in a local region are part of
interleaved dosed curves and cannot know whether or not to "unhook" the interleaved chains.

As a result we cannot in practice design a parallel shrinking algorithm which for arbitrary 3D
images simultaneously preserves connectivity and guarantees that all components of S are shrunk
to single point residues. Thus, convergence to a correct solution for two-subfields shrinking

algorithms is still an open question. Even if we cannot prove convergence in general for small
support operators it remains to be seen if convergence can be proved for constrained image

classes.

Several two-subfields shrinking algorithms have been implemented in parallel emulations
and have been tested on sets of artificial images. Our tests indicate that a member of this
class achieves an improvement in parallel computation time typically requiring 472-98% of the
iterations required by the original algorithm of Arcelli and Levialdi [ARCE72] while preserving
all connectivity properties. Convergence tends to fail for about 5% of our test cases and the

experimental investigation for more robust algorithms is on-going.
We conclude that two-subfields approaches appear to offer some promise in the design oi

parallel connectivity preserving 3D image processing algorithms. Open issues include: the

determination of image classes for which convergent shrinking algorithms can be designed and
the development of efficient computations for 3 x 3 x 3 local operators where table lookup is not
feasible.

3D Connected Component Labeling:

We have studied the problem of developing parallel algorithms for the labeling of components
in 3D images where the target architectures are the 3D mesh with and without reconfigurability

[CHAN93]. We summarize these results in this section. The labeling of connected components is a
fundamental step in image processing. In typical recognition tasks, images are given preliminary
segmentations which produce essentially binary images with foreground elements representing
particular regions of interest. Frequently we are interested in connected regions and in particular

the maximal connected regions. Component labeling algorithms identify each distinct such region
and assign a unique label to each element of that region.

There exist many methods in 2D, both sequential and parallel, to label components [ALNU91,

HARA92]. On an n x n 2D Mesh Connected Computer (MCC) with one pixel per processing
element (PE), the algorithms with the best asymptotic time complexity are the divide and
conquer technique [NASS80], and shrink-expand techniques [CYPH90,ALNU91] which are based
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on the classical Levialdi shrinking algorithm [LEVI72J. Both of these algorithms have an
O(n) worse case time complexity. But the divide and conquer technique has a rather large
constant of proportionality for time complexity and uses global broadcasting operations, while
the shrink-expand techniques have smaller constants and use small local operators. For these
reasons, shrink-expand techniques are considered to be the best practical solution on 2D mesh
architectures which are not reconfigurable.

It would be nice to be able to extend such notions to 3D images on 3D mesh architectures.
Unforturnately, the shrinking to a residue problem has not been solved for general 3D images
and as we indicated in the previous section may not be solvable with local operators. Thus, to
exploit these 2D shrink-expand approaches in 3D meshes, we will need to do apply them within
2D layers of the image.

When a reconfigurable 2D mesh architecture is available, there are very good component
labeling algorithms available [LIST91] which can produce O(log n) performance using radix-
based methods. Such performance is achievable when broadcasts on a bus can be claimed to be
0(1). But the worse case bus length is O(n 2) (for space filling curves like spirals) and the real bus
broadcast time could substantially increase the time complexity. For example, if 0(bus length)
broadcasting cost is assessed, the component labeling complexity becomes O(n' log n). We
show how to extend these radix-based methods to 3D images and meshes with appropriate
reconfigurability.

We have considered five distinct 3D component labeling algorithms. Algorithm 1 applies
shrink-expand labeling to 2D planes with merging operations between planes. Algorithm 2 uses
just merging steps with a form of dynamic broadcasting in a 3D form of divide and conquer.
Algorithm 3 uses another variant of the methods in Algorithm 2. Algorithm 4 uses a mixture
of shrink-expand approaches in planes with propagation labeling. Finally, Algorithm 5 is the
extension of 2D radix-based labeling to 3D.

We summarize worse case asymptotic computation time below:

Methods 3D Mesh without Reconfigurable Reconfigurable
reconifigurability 3D Mesh with 0(1) 3D Mesh with 0(bus length)

broadcast time broadcast time

Algorithm 1 O(n 2 logn) O( n 2logn) 0(n 3 logn)
Algorithm 2 O(n 2) O(n 2 ) O(n 3 )

Algorithm 3 O(n 2logn) O(n 2logn) O(n 3logn)
Algorithm 4 O(n 3 ) O(n 3) O(n 3)
Algorithm 5 not possible O(log n) O(n3 logn)

As expected radix-based approaches are preferable when the required reconfiguration is
available and the actual broadcast times on the (potentially quite long) .configured busses are
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not too high. When reconfiguration is not available, algorithm 2 shows the best asymptotic

performance. Both algorithm 2 and algorithm 4 could have superior worse case time complexity

if broadcast times are as bad as O(bus length). We have not shown that reconfiguration can

be used by algorithms 1-4 to im- rove worse case time, but reconfiguration can improve average

time performance for these algorithms. An average time analysis is under development.

Segmentation of Magnetic Resonance Images:

Magnetic resonance imaging (MRI) is one of the most significant advances in medical imaging.

[RAYA90, UDUP901 A multi-channel representation of head MRI images consists typically of

three categories: proton density(PD), Tl-weighted, and T2-weighted images. The head MRI

images are usually partitioned into the following regions: white matter, gray matter, CSF,

miscellaneous substances (such as tumor, bone, blood, etc.) and background. Our research

interest is to estimate different structures and to extract the structure of soft-tissue in the head

MRI images so that detailed classification of the substance regions can be generated.

Image segmentation on head MRI images can be divided into two major steps: one is brain

region extraction; the other is tissue classification. First of all, the brain region is extracted

from its surrounding bone(or skull) by using either an automatic segmentation algorithm or a

morphological operation. (RUSS921 Then, the tissue classification can be performed by using

three preprocessing techniques such as four-level quantization, refined regularization, and edge-

preserved smoothing followed by a region-based segmentation which is usually a pre-defined

threshold scheme. We will focus on the tissue classification problem in the following presentation.

It is more difficult to perform the tissue classification than the brain region extraction because

the boundaries among the white matter, the gray matter and the CSF are not clear and well-

defined. That is, the contrast among soft tissues is commonly weaker than that among hard

tissues. In order to overcome this problem, some techniques for tissue classification are involved:

* Histogram Equalization: Histogram equalization[GONZ87] is typically a contrast

enhancement process and is used to identify particular structures contained in the head

MRI images.

"* Four-level Quantization: In this approach, the thresholds To, T1, T2, and T3 are chosen

to give a quantized version of the head MRI image. The histogram of this quantized image

will contain four dominant peaks. Then, four distinct regions can be extracted by simply

picking up these four peaks to belong to various tissues in the head MRI images.

"* Refined Regularization: The technique of refined regularization was presented in

[POGG82], [GOKM90]. The technique of refined regularization is to minimize a so called

membrane function where two terms are included as a measure of closeness between solution
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and data and a measure of smoothness. A regularization parameter X is used to provide a

tradeoff between these two measures.

Edge-preserved Smoothing: The technique of edge-preserved smoothing was originally

presented in [CHEN91a, CHEN92]. Edge-preserved smoothing(or adaptive smoothing) is

designed to avoid the disadvantage of linear filtering which smooth edges as well as noise.

It is achieved by repeatly convolving the signal with a very small average mask weighted

by a measure of the signal continuity at each point.

Procedures of the tissue classification can be described as below:

N--"-I
1

. 11

The head MRI images after the brain region i:rtraction are called the segmented head MRI

images. In general, the boundaries among soft tissues in the segmented head MRI images are

still very fuzzy. Therefore, histogram equalization can be applied to the segmented head MRI

images to enhance the contrast among various tissues. That is, we not only get rid of the

bone part which originally surrounds the brain region but also stretch the signal levels among

various tissues in the brain region. After the histogram equalization, three various preprocessing
techniques, say four-level quantization, refined regularization and edge-preserved smoothing, are

utilized. These three techniques provide somewhat different descriptions about the boundaries

among the soft tissues. In fact, the four-level quantization doesn't actually smooth the signal.

But the refined regularization and the edge-preserved do smooth the signal in order to suppress

the noise. A final region-based segmentation can be applied to acquire the results of the tissue

classification. Generally speaking, the region-based segmentation using four-level quantization

is done by picking up the four dominant peaks which represent background, white matter, gray

matter and CSF respectively. The region-based segmentation using re~ned regularization or
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edge-preserved smoothing is done by applying the four-evel quantization on the resulting images
after the preprocessing. In the experiment, the three main tissues such as white matter, gray
matter and CSF are classified. Experimental results are given in Figure 47.

Four-level quantization Refined regularisation Edge-preserved smoothing

Gray

White

CSF
(a) (b) (c)

Figure 47: Results of tissue classification using (a) Four-level quantization (b) Refined
regularization (c) Edge-preserved smoothing.

It can be observed that the results using three various approaches are somewhat different
in visualization. Since the results using four-level quantization didn't deal with the noise, the
resulting regions which correspond to various tissues are not well-defined and clear. However,
the processes of the refined regularization and the edge-preserved smoothing tend to remove
the noise from the head MRI images. Therefore, they are better in visualization based on the
same region-based segmentation. However, it is not fair to say which approach provides the
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best segmentation results because the head MRI images contain too many complex patterns or
shapes. A solution for this is to build certain brain models which may be ideal then perturb them
so that performance evalup':on can be performed to compare the tissue classification algorithms.

We now consider the potential for improving performance evaluations using perturbation
models to create test images. Performance evaluations, or say quantitative evaluations, are
important for measuring how well an algorithm performs. In general, it is very difficult to evaluate
the performance or goodness of the tissue classification algorithms because ideal segmentation

results are not typically known. Therefore, we need to build suitable models which form test
images so as to provide a general study of the performance of various algorithms. We term
such models, perturbation models, which can be also related to noisy models. Perturbation, or
contrast adjustment, affects the sharpness and the quality of images. Usually, the perturbation
destroys the ability to define an edge in images. Therefore, an edge can no more easily seen
because the contrast is decreasing. Here, we are interested in certain perturbation models which
change objects or structures in images by using certain perturbation operators which happen

locally rather than globally.

Let us discuss how to build the perturbation models for gray-level images. Suppose we are
given a gray-level image as

f(X,y) where O<x <N.-1, O< y N, -1 (3)

Let us perturb the image to be an image f(z, y) using a perturbation operator as follow:

S= Of AY) (4)

Then,
AXY) = f(X, Y) + n(X, Y) (5)

where n(z, y) is the adding noise. In our experiments, Gaussian noise will be used. Let us

partition the whole image 12 into a structure of interest T and a non-structure of interest V",
then

f(XY) = f(x,Y)+ n(z, y) if (z,y) E T (6)
f(AY) if (X, y) E I'

Several prerequisite definitions are as follows:

"* Edge Pixel: In order to define edge pixels in gray-level images. An edge-based
segmentation algorithm(or edge detection) is necessary. A simple approximation such as
Sobel operator[GONZ87] can be utilized.

"* Near-Edge Pixel: A pixel p is a near-edge pixel if and only if p(can be either 0 or 1) is
8-adjacent to an edge or more edges or p is an edge pixel.
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All the near-edge pixels in the image are chosen to be the structure of interest TP. Therefore,
a number of Gaussian random numbers which equals to the number of near-edge pixels in the
image can be generated with various variances a. These Gaussian random numbers are added
to the original gray-level image to provide the perturbation models.

In the experiments, an ideal brain model which is given in Figure 48(a) was generated. The
corresponding intensities for the white matter, the gray matter and the CSF are 85, 125, and 165
respectively. Also, three ideal segmentation images each of which contains only one substance
can be generated. Then, the perturbation models are built by adding local Gaussian noise
with various a. Typical perturbation models using a = 10, a = 20, and a = 40 can be shown in
Figure 48(b), (c) and (d). It can be observed that the structure of near-edges in the perturbation
model is changed due to the effect of the adding Gaussian random noise. The larger the variance
a, the more noisy the perturbation models will become.

After the perturbation models are built, one can apply the tissue classification algorithms so as
to provide performance evaluations. Again, the four-level quantization, the refined regularization,
and the edge-preserved smoothing are applied to the perturbation models with various a to
yield segmentation results. Then, error measurements which are defined by counting number
of different pixels between the ideal segmentation image and the segmentation result by using
exclusive OR logical operations. Therefore, three error measurements for the white matter, the
gray matter and the CSF can be created. Also, total error measurements are defined by summing
up all the three error measurements. Experimental results are given in Figure 49. It can be
observed that the error measurements monotonically increase with respect to the variance or.
The errors caused by the four-level quantization increased much faster than the errors caused by
either the refined regularization or the edge-preserved smoothing. Therefore, the quantization
method is not robust when dealing with the noise even though it gives less errors when the
variance a is small. That is, the refined regularization or the edge-preserved smoothing yield
a better tradeoff when dealing with the noise. Usually, the contrast among soft tissues in real
human brain images is very fuzzy. That is, the differences between the edge and the noise in
real human brain is not well-separated and can be very hard to classify. A better tradeoff is to
choose the refined regularization for the segmentation purpose. This work is on-going with the
long-term goal of identifying useful 3D texture operators for MRI segmentation.
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(a) (b)

(C) (d)

Figure 48: Results of perturbation model for gray-level image (a) Ideal Model (b) Perturbation

model using a = 10, (c) Perturbation model using a = 20 (d) Perturbation model using a = 40.
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Figure 49: Error measurements of various algorithms for (a) White matter (b) Gray matter (c)

CSF (d) Total Error Measurements.
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B.2.e Topology Preservation for Parallei Algorithms

It is a fundamental goal in the application of parallel computing to make algorithms as fully

parallel as possible in order to utilize the potential of a large number of processors. To achieve

this one must develop a deep understanding of the communication demands and fundamental

nature (e.g. required support sizes, potential for fully parallel operation with limited supports,

sufficient conditions for correct operation etc.) of the particular algorithms under study. Often

in the processing of images we will want to transform binary images such that the topology

(sometimes understood as connectivity) of an image is not altered or is altered only in some

constrained way. Example algorithms are thinning [GUOH92], shrinking to a residue [GOKH90],

and algorithms like connected component labeling which make use of shrinking [CYPH90];

but, the problem of topology preservation is fundamental in more general contexts including

mathematical morphology approaches to image processing. [SERR82] It is well understood how

to preserve topology for sequential applications of 2D or 3D operators [KONG89]. Topology

preservation for parallel algorithms is less well understood in the community and published

algorithms frequently fail to preserve topology [GONG90b], [HALL92a], or are inadequately

proven. This can lead to serious failure in subsequent processing, revealing a need for greater

attention to these issues. The identification of good tests for connectivity preservation can aid in

developing useful design spaces which characterize classes of acceptable algorithms from which

designers can choose desirable instances. Support limit constraints can help designers focus on

the smallest acceptable operator supports. A few of our results on support limits for topology

preserving operators, characterization of design spaces, and topology preservation tests are given

in the following.

Fundamental Limits in 2D Thinning:

In [HALL93b] we examine fundamental limits on fully parallel 2D thinning operators. We

have shown that eleven-pixel supports are the smallest possible for an 8-4 image space and, in

particular, 3 x 3 supports are insufficient. Further, the possible locations for the eleven pixels are

tightly constrained. It is shown that the optimally small support of any fully parallel thinning

operator, 0, is composed of 11 pixels which include the pixel, p, under consideration by 0; the

eight neighbors of p (< w > in the illustration below); and two additional pixels satisfying one

of the following conditions (given with reference to the illustration below):

a. Exactly one pixel is drawn from the set {xi I i = 1,..., 6} and exactly one pixel is drawn

from the set {yj I i = 1,..., 6}; or

b. The two pixels are one of the following pairs: {Z1,ZX}, {z1, Y}, {z 2 , X3}, {z 2,y1}, {z 3, Y3},

{Z3 ,X 4 }, {Z4,,6}, or {Z4 ,Y4}.

The denoted region around p is illustrated below:
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The results in [HALL93b] can also be used to demonstrate that operators with the infinite

support p U < a > illustrated in Figure 50 (and its 90* rotation) cannot provide adequate fully

parallel thinning. Of course, any subset of this inadequate support is also inadequate; thus, a

very large class of inadequate supports has been identified.

3 S 39 3 3 3 3 3

3 a 3 3 3 .9

.53 . 3 3 3 .9 5 .3

S .5.5.83 a Sa
* 85s.5. p. .5.8.58.5.5*

.9S 3 5

** .5 .588738 ,5885.5

3 3 .5 .5.58 3

*53.5 .5.5 8888 ,5

Figure 50: An infinite set of pixels, p U < . >, which cannot be a support for any connectivity

preserving fully parallel thinning operator.

Design Spaces for 2D Connectivity Preserving Reduction Operators:

We have also characterized a robust class of connectivity preserving fully parallel thinning

algorithms [HALL93b] based on connectivity preservation tests developed in [HALL92b] and

[RONS88]. A typical fully parallel thinning operator would satisfy the following deletion

conditions (termed FPT):

a. p is 8-simple

b. p is not an endpoint
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There will be certain cases where p must be preserved from deletion in order to preserve
connectivity. Consider 4-adjacent 1's p and q both of which satisfy the FPT deletion conditions,

but which are not an 8-deletable set and should not both be deleted. We determine that the only
such cases are those shown in Figure 51, where pairs of adjacent pixels, {a, b}, are chosen to be

8-simple (i.e. a = 1 and b = 0 is not allowed) and the pixels labeled z can be either O's or l's.

Certain pairs of these conditions are mirror images or 1800 rotations of each other. Preservation
conditions must be added to the FPT deletion conditions to guarantee that at least one of p and
q is not deleted in each case. Finally, we must avoid the complete deletion of a 2 x 2 sqL
component of l's. These FPT preservation conditions reveal the design space for all connectiv,
preserving fully parallel thinning operators which satisfy the FPT deletion conditions.

a 0 lx a 0 lx 0 0 1 X 1 0 a x 1 0 a

b p q b b p q 0 0 p q 0 b p q b 0 p q b
x 1 0 a X 1 1 X 00 1 a 0 1 x X 1 1 X

(1) (2) (3) (4) (5)

X 1 0 0 X 1 1 X X 1 1 X X 1 1lX

0 p q 0 b p q 0 p q b 0 p q 0
X 10 0 a 0 1 x x 1 O a X 1 1 X

(6) (7) (8) (9)

Figure 51: Cases where the l's p and q are both FPT-deletable but fp, q} is not 8-deletable.
The 900 rotations of each illustrated case also satisfy these conditions. Pixels labeled z are 0 or
1; and either a = 0 or b = 1 in each adjacent pair a, b

These results apply naturally to any connectivity preserving reduction operator by removing

the endpoint condition from the FPT conditions. It is easy to show examples of algorithms
satisfying these conditions in which the preservation conditions are relatively simple. For

example:

Algorithm FPTN

The following parallel reduction operator is applied repeatedly. A pixel p = 1 is deleted if it

satisfies the FPT deletion conditions, and its neighborhood does not satisfy any of the following

conditions (or the 90' rotations of a-e):
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0

(a) (b) (c) (d) (e) (f)

where {c, d } contains at least one 0. The algorithm terminates when no deletions occur at an

iteration.
Condition (a) preserves p from deletion in cases (5), (6), and (8) (Figure 51); condition (b)
preserves q in cases (2), (3), and (7); conditions (c), (d) and (e) preserve q in cases (1), (4) and

(9), respectively; and condition (f) prevents deletion of the 2 x 2 square. This operator has an
optimally small eleven-point support.

Fundamental Limits in 2D Reduction-only Shrinking:

We can also apply reduction operators to the shrinking to a residue problem; but, we can
show that no local reduction-only shrinking operator, 0, can successfully shrink all images to
residues. In particular it can be shown that there exists no fully parallel connectivity preserving
reduction operator which can reduce a component in S with holes to a residue. Given this
we will restrict our attention to simply connected components in images. We can devise fully
parallel shrinking algorithms using operators, 0, with local supports; but, the supports must
be sufficiently large. Rosenfeld has shown that 3 x 3 supports are not adequate and has shown
certain adequate supports for 4-8 spaces [ROSE70]. For example, he has shown that the support

<.s > U p below

P

(or its 900 rotations) is required for fully parallel reduction-only shrinking operators in 4-8 spaces
and he demonstrates the existence of such an operator.

Similar arguments are used now to address the required support size for the 8-4 case. If we
assume the shrinking operator, 0, must delete exactly one 1 in each of the 2 pixel components:

a a b a a

6 b b
where a = b = 1. For example let l's denoted a be deleted by 0, then l's denoted b must not
be deleted by 0. If the support for 0 applied at p does not include < e > below:
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then 0 cannot delete p. But then we can create an irreducible image as an arc composed of all

non-8-simple points except for 2 endpoints each satisfying the above condition for p, e.g.
1111111

1 1

1 1

P P
No interior points can be deleted by 0 (as this would violate FM1) and the image is irreducible.
Similar arguments can be applied to each 2 pixel component and one can demonstrate that the
following 19 point support, p U < s >,

ssp~s
assaP

is necessary for any operator 0 which preserves b's in the two-pixel components above. There
are 16 distinct ways one can delete or preserve the a's and b's in the two-pixel components each
of which leads to a slightly different constraint on the support for 0. The minimum support size
is 19 points as illustrated above. Further, there exist operators using this support which will
correctly shrink all simply connected components in 8-4 spaces, e.g.:

Algorithm ROSHR

The following reduction operator is applied repeatedly. A pixel p=i is deleted if

a. C(p) = 1 and

b. Either of the following conditions is satisfied:

1. p2 = 0 or

2. NJ(p) contains exactly one 1;

c. Except, do not delete p for any of the following 4 conditions:

000 000 000
0100 0010 010 0000
00 p 0 0 P 00 0 P 0 0 lp 0

000 000 000 0000

The algorithm stops when the image space contains only residues.
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This is closely related to the classical parallel thinning algorithm in [ROSE75], but deletes only

north border 8-simple points and endpoints.

Designers of parallel algorithms typically wish to use operators with small support. These

results on support limitations illustrate to algorithm designers exactly how small their operator
supports can be and illustrate the relative "shape" of such supports.

Connectivity Preservation Tests for Parallel 2D Reduction-augmentation

Operators:

Reduction-augmentation operators transform binary images by taking certain foreground
pixels to the background (reduction) and certain background pixels to the foreground

(augmentation). Such operators have found application in parallel shrinking to a residue

algorithms [LEVI72,GOKH90] (which are in turn fundamental operators in certain connected

component labeling approaches [CYPH90,ALNU91] and as separate reduction and augmentation
operations in image smoothing (say using mathematical morphology operators [HARA921,

concavity filling [SKLA76], etc. The notion of a connected component as a fundamental region
(or object) in an image is frequently used in computer vision research. Thus, we are often

interested in operators which preserve connectivity (topology). Connectivity preservation tests
for reduction-only operators (and by symmetry augmentation-only operators) are well understood

and well developed for 2D images [RONS88,HALL92b]. But, it can be desirable to perform

reduction and augmentation operators simultaneously. For example, this would allow all PE's
in a 2D mesh with an image embedded one pixel/PE to be active in a given application of a

reduction-augmentation operator. Thus, there is some need to develop approaches for verifying

such connectivity preserving parallel operators. Simultaneous reduction and augmentation raises

some new issues beyond reduction-only approaches. For example, it is not as easy to be clear

about what it means to preserve connectivity as compared to reduction-only cases.

In this part of our work (reported more fully in [HALL94]) we have presented a new approach

for characterizing connectivity preservation properties for parallel reduction-augmentation
operators. From this special classes of reduction-augmentation operators have been defined

and tests are demonstrated for verifying these connectivity preservation properties for arbitrary

operators within these classes. The tests are illustrated with a proof of Levialdi's shr'uking to a

residue algorithm [LEVI72). A few results are summarized below.

It is not immediately obvious how to define connectivity preservation for a reduction-
augmentation operator. Consider, for example, what happens when the Levialdi shrinker

[LEVI72] is applied to the image
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a q

b

where a = b = c = 1 and q = 0. All of the l's are reduced by LEV and q is augmented to a 1.

Thus, the components {a, b) and {c) of l's have been completely reduced, and a new component

(q) has been created. How can we say that connectivity has been "preserved'? Of course, we

can allow the reduction of {c} since it is a residue; but we need to establish a basis on which we

can say that {q) is the successor component to {a, b}. In general we need to understand how we

relate augmented O's to the components of l's which existed when the augmentation occurred.

A simple way to do this is to imagine that components of l's are originally labeled with distinct

component labels. (This is a theoretical notion useful in evaluating algorithm correctness.) Then

we assign component labels to augmented 0's based on some rules. Similarly, if we are also

concerned about preservation of background connectivity, we would imagine an original labeling

of components of O's and utilize rules to assign component labels to reduced l's. Classes of rules

are developed here which encompass typical reduction-augmentation operators. Typically we

assign labels to altered pixels based on the labels of special sets of l's or O's in the neighborhood of

the altered pixel. We define the following special class of operators with restricted augmentation

condition:

Definition B..1 Operators which satisfy the following conditions are termed augmentation-

elementary:

1. For any given 0, q, we define a set of sets of 1 's, each defined over N&(q), at least one

of which is necessary to allow the augmentation of q. These sets of 1 's are termed the

augmentation sets. The set of augmentation sets is denoted RA(q) and each set in RA(q)

is denoted Ra(q). (We will leave out the superscript if there is no ambiguity.)

2. We require that each RV.(q) is m-connected and m-adjacent to q and each pair of /o(q) 's

is m-connected.

Thus, for augmentation-elementary operators the set of l's in RA(q) is m-connected in N*(q).

When we are concerned solely about foreground connectivity preservation (as in shrinking)

we only constrain the operators to be augmentation-elementary. Similar conditions restricting

reduction allow preservation of background connectivity also. Now we restate foreground

connectivity preservation conditions based on the new labeling metaphor:

FC1L. 0 must guarantee that l's bearing the same label are m-connected in S;

FC2L. 0 must guarantee that no foreground label becomes extinct;

FC3L. 0 must guarantee that l's carrying distinct labels are not m-connected in S;

FC4L. 0 must guarantee that no new label is generated.
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Now we state the main connectivity tests. Variable m refers to the foreground connectivity:
M- = 8 for 8-4 image spaces; m = 4 for 4-8 image spaces; and mn = 6 for hexagonal image spaces.
Variable k = 8 for rectangu'.r 8-4 and 4-8 spaces and k = 6 for hexagonal spaces. N,*(p) refers
to the m-neighbors of pixel p. The special class of augmentation-elementary operators defined
above guarantees FC4L, so we need not define a test for that condition.

FCIL Test: Whenever a 1, p, can be reduced by 0 and non-m-adjacent z,y belong to
N,•(p), where : and y are l's or O's augmentable by 0 (such that p belongs to or is m-
adjacent to an augmentation set of such 0's), then there is an m-path from x to y in N•(p)

containing l's not reduced by 0 or 0's augmented by 0. Such augmentable O's must carry
the same label as p.

FC2L Test 1: Whenever a 1, p, can be reduced by 0, there are pixels of N,ý(p) which

are l's not reduced by 0 or O's augmented by 0 carrying the label of p.

For operators which satisfy FCIL there is an alternative, possibly simpler, test for FC2L:

FC2L Test 2: Determine for each m-component, G, composed solely of mutually m-
adjacent l's that either one or more l's are not reduced or that there are augmentable

O's, q, m-adjacent to G such that R.(q) meets G or contains l's m-adjacent to G.

FC3L Test: FC3L is satisfied if both of the following conditions are satisfied:

1. Whenever a 0, q, is augmentable by 0 then any 1 in N,*(q) which is not reduced

by 0 carries the same label as q.

2. Whenever a 0, q, is augmentable by 0 then any other augmentable 0 in N,=(q) will

carry the same label as q.

Special classes of augmentation operators for which FC3L is even easier to confirm are given in
[HALL94].

The tests are all local in nature and the required case checking is of- small to moderate
complexity. These tests offer algorithm designers a convenient way to verify connectivity

preservation for prospective new reduction-augmentation operators. The restrictions due to
the special reduction-augmentation operator classes, for which the results apply, are typical of
those which appear in existing reduction-augmentation algorithms, so the tests are believed to
apply to robust classes of operators. The tests would be particularly useful for the design of

connectivity preserving algorithms for fine grain realizations in 2D mesh architectures.

3D Connectivity Preservation with Parallel Subfields Operators:

There is still much to do in characterizing parallel topology preserving algorithms for 3D

images. The existence of 3D meshes particularly increases interest in a coinplete understanding
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of topology preservation for 3D images undergoing transformation by parallel operators since
such architectures offer us the opportunity to process local operators fully in parallel. Sufficient

conditions for connectivity preservation have been derived for classes (particularly subfields
classes) of parallel reduction algorithms, where parallel operators only transform object pixels to
background pixels, and classes of reduction-augmentation algorithms, where parallel operators

can transform both object and background pixels. [HALK92], [HALL92c] These derived
conditions enable the characterization of "design spaces" [HALL93b] for such classes helping
algorithm designers focus on appropriate sets of conditions. We will summarize a few of the new
connectivity preservation tests in the following.

Subfields approaches have found some application in 3D image spaces as well as in 2D image
spaces. [HAFF84], [HALK92] We will find here that connectivity preservation is substantially
simplified with the use of subfields. We will consider two of the possible subfields definitions for
rectangular 3D image spaces, a two and a four subfields partition. Associate an index over the
range [0, n - 11 for each of the 3 orthogonal axes of the image space where the image space is of
size n x n x n. Our two-subfields partition (2SF) assigns voxels to subfields 1 or 2 in alternate
planes, along any given major axis, in the following manner:

1212 2121...

2121 1212...
1212 2121...

odd planes even planes

Note that an important characteristic of 2SF is that no pair of 6-adjacent voxels belongs to
the same subfield. Thus, since only one subfield of voxels can be changed within one parallel
iteration, we can.guarantee for 2SF that 6-adjacent voxels are not changing simultaneously.

Our four-subfields definition 4SF is defined similarly assigning voxels to subfields 1, 2, 3 or 4 in
alternate planes, along any given major axis, in the following manner:

1313 4242...
2424 3131 ...

1313 4242...
odd planes even planes

For 4SF only the eight 26-neighbors of p can change simultaneously with p.

Details of the notation can be found in [HALL92c]. We are considering binary image spaces
where voxel values are assigned from the binary set {0, 1}. The set S of l's is referred to as the

foreground, its complement, the set S' of O's, the background. Ni(p) refers to the set containing
p and its i-adjacent neighbors.
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We can characterize connectivity preservation (topology preservation) in a variety of ways.

We have focussed on the following characterization where a 3D reduction operator, 0, is said to

be connectivity preserving if all of the following properties are satisfied in each iteration:

Cl: 0 must not transform a 26-component of S into two or more distinct 26-components of S;

C2: 0 must not completely delete a 26-component of S;

C3: 0 must not merge distinct 6-components of S' into a single 6-component of S'; and

C4: 0 must not create a new 6-component in S'.

C5: 0 must not remove holes from S.

C6: 0 must not create holes in S.

We will use the following terms to help characterize 3D simple points, i.e. those points which
can be deleted while preserving connectivity.

NCIA(p) the number of 26-components of l's in N26 (p).

NCOzs(p) the number of 6-components of O's in N1 s(p) which are 6-adjacent to p.

We say that a 3D reduction operator, 0, belongs to Class-B if it only deletes l's, p, which
satisfy the following:

1. NC12e(p) = 1 and

2. NCOIs(p) = 1.

These Class-B conditions constitute the 3D simple point characterization given in [MALA92].

We find that the following conditions are sufficient to preserve connectivity properties C1 -

C4 for Class-B 2SF operators.

TCl-26: Given 2 l's, p and q, which are 18-adjacent but not 6-adjacent, p and q are not both

deleted in one iteration when any of the following conditions hold for these 2 x 2 x 2 cubes

(viewed along each of the 3 major axes):

ab p0 ef or ab Op ef

cd Oq gh cd qO gh

where {a, b, c, d} and {e, f, g, h} each contain at least one 1. Treating p and q symmetrically

there are 6 distinct cases for these conditions.

TC2-26: No 2, 3 or 4 voxel component composed solely of mutually 18-adjacent, but not 6-

adjacent, voxels can be completely reduced in 1 iteration.
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Operators would typically be designed to satisfy these two tests by preserving from deletion

certain l's, which otherwise would be reduced by a Class-B operator.

We find that the following condition is sufficient to preserve connectivity properties C1-C4

for Class-B 4SF operators:

T4SF-26: No 2-voxel component composed of 26-adjacent, but not 18-adjacent, voxels can be

completely reduced in 1 iteration. There are 4 such components.

Such operators need only preserve one 1 in each of the four 2-voxel test components. We offer

arguments in [HALL92c] claiming that C5 and C6 are also satisfied. Given this we see that almost

all Clasa-B 4SF operators are connectivity preserving and that little fuss is entailed in verifying

such operators. Subfields models of computation appear quite promising especially as we expect

that most 3D mesh applications will realize several voxels per PE which allows subfields models

to be realized without additional computational cost. This is achieved by guaranteeing that all

PE's hold voxels from each subfield so that there are no idle PE's in the mesh.

B.2.f Wavelet Transforms in Systolic Arrays

Systolic arrays can offer particularly good time performance for algorithms where the input

signals can be continuously applied while the array remains full and active. We have developed

particularly effective designs for the computation of wavelet decomposition and reconstruction

for 1D signals.[CHUA92] These designs will handle all orthonormal wavelet bases. Given a signal

window size of W = 2m, the systolic architecture is composed of m layers of ID arrays. The

maximum row length is p for row 0, where p is approximately 1/2 of the filters' support size. The

VLSI area complexity of the rows decreases by 1/2 for each successive row; thus, overall area

complexity is proportional to 2p. This is very close to optimal. For large input signal length, N,

the computation or reconstruction is completed in - N clock periods. Multiple signals can also

be pipelined through the systolic arrays with no degradation in computation time. These results

are very promising for 1D signals.

B.2.g Compound Graph Networks for Enhancing Mesh Architectures

Although the pyramid emulations discussed earlier are a very promising cost-effective approach,

pyramids have fundamental limitations when processing demands are strongly global [STOU86]

as for sorting or many Hough transform applications. In these cases the pyramid connectivity

(and that for the associated reconfigurable meshes emulating the pyramid) is inadequate slowing

performance to that comparable to a mesh alone. Thus, in applications where better time

performance is needed on strongly global tasks, networks with higher connectivity are desirable.

The well-known binary hypercube is a powerful highly connected network useful for stongly global
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computations, but is relatively expensive to build in large instances. Certain forms of graph

compounds have been identified which can produce performance approaching the hypercube but

with substantially reduced hardware cost. (or network degree) [HAMD91a, HAMD91b] These

graph compounds can be used to augment communication capability in a mesh to help achieve

higher performance.

The RGC network [HAMD91b] is a constant degree network which is envisioned as an

augmentation of a traditional 2-D mesh architecture. The RGC is formed by compounding a given

number of atom graphs with a complete interconnection and this compounding is done for any
desired number of levels. An example is illustrated in Figure 52 where the atom graph is a binary

hypercube. (referred to as an RGC-CUBE) Table 11 illustrates the comparative asymptotic

performance on various basic image processing algorithms (operating on an nxn image of size

N = n2 pixels) for two instances of an RGC-CUBE as compared to the 2-D mesh, pyramid,

Mesh of Trees (MOT) [NATH83] and Mesh with global mesh (MGM) [CARL88], [PRAS89J.
These results are not bad and RGC-CUBE appears to offer some potential in image processing,

but most of the algorithms studied do not fully utilize the full interconnection capability of the

RGC-CUBE.
The RCC class of interconnection networks is another form of complete graph compound,

but with substantially greater bandvidth and node degree which grows with network size.

[HAMD91a, HAMD91b] The RCC-CUBE instance in this class is able to efficiently emulate
binary hypercube and achieves time performance very close to hypercube on a variety of strongly

global algorithms, i.e. sorting and PRAM emulation, while maintaining a substantially lower

degree and hardware cost. The RCC-FULL instance [HAMD91b] is able to outperform binary
hypercube by perfoiming sorting and PRAM emulation in O(logN) time while still maintaining

a reduced node degree as compared to hypercube. These high connectivity networks appear to

be promising cost-effective alternatives to binary hypercube when strongly global problems must

be solved.
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Figure 52: A 64-node example of a 2-RGC-CUBE. Shaded nodes (PE's) are available for
expansion to higher level networks.
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Table 11: Asymptotic Time Complexities for Several Architectures for a Variety of F'undamental
Image Processing Algorithms
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