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1. Introduction.

Examples of what we shall call an elementary periodic orbit abound in the
considerable literature [e.g. 1,2,3,4] related to the proof of Sarkovskii's the-
orem. Almost all such examples are of odd period. No formal definition
for all periods has been advanced. We define elementary periodic orbits,
give a systematic study, and establish that they are totally ordered. The
total ordering of the elementary periodic orbits provides the basis for the
proof of Theorem (SE), an extension of Sarkovskii's theorem that subsumes
Sarkovskii's theorem. The purpose of this note is to prove Theorem (SE).
It is stated in Section 3. and proved in the final Section 8.. Theorem (SE)
emphasizes the important role played by the elementary periodic orbits. The
simultaneous existence of these special orbits of all periods is a rule rather
than an exception. For example, if f has an elementary periodic orbit of
period n 3 2,4, then f 2 has elementary periods of all periods. Furthermore,
the existence of any elementary orbit of period n • 2,4 ensures the exis-
tence of infinitely many distinct periodic orbits of f. This is in contrast to
Sarkovskii's theorem which guarantees infinitely many periodic orbits only
when n $ 2"', m = 1,2,.-.. In addition, Theorem (SE) incorporates the
notion E(oo) as an infinite preorbit. This notion is directly related to the
notion of turbulence introduced by Block and Coppel [51 since E(oo) implies
that f 2 is necessarily turbulent.

2. Definitions and Notation.

Let f : R -+ R be continuous and xo E R. The orbit of xo under f is defined
as the set {x : x = fn(Xo), n = 0, 1,.. .}, where, for every positive integer
n, f" is the n-th iterate of f, fl = f, and f°(xo) = x0. We shall write
X, :=fn(xo) for a given x0 E R and call x1,x 2 ,... the successors of x0. A
preorbit of a given xo E R is any (finite or infinite) sequence x0, x-1, x-2....
such that f(x_,) = X-(,.-1) for all n for which x.n is defined. The points
x- 1 , x-2 ,.., in any such sequence are called predecessors of x0. A point co
is called critical if f(co) = co, i.e., a critical point of f is a fixed point of
f. A periodic point x0 of period p > 1 (p a positive integer) is a point for
which the relations fP(xo) = xo, fk(xo) # xo, 1 < k < p, hold. If x0 is a
periodic point of period p, its orbit is denoted by (xo, xj,..., xp- 1 ). We shall
denote the k-th iterate of xO under the function f't by x', k = 0, 1, .... Thus
X:(f)k(Xo) = Xmk, and, in particular, xm = xA = x0 for all nonnegative
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integers k and m.
Definition. A periodic orbit (10 , X1 ,. .., xln-1) of period n is called elementary
if

X2v <'- < X, < X2 < Xo <XI < X3 <" < X2k-1

or

X2v > >X4 > X2 >XO > XI>X3 >'> X2k-1.,

where v + 1 = k = 1 if n is even and v = - = k if n is odd.
An infinite preorbit (X0 , X-1, X-2 ,...) is called elemmntary if the inequalities

X-2 < X-4 < .. < Xo < ".< X-3 < X-I

or
X- 2 > X- 4 > > XO > > X- 3 > X- 1

hold.

Periodic orbits of period two or three are by definition elementary orbits.
We adopt the following notation : P(k), P(1), E(k), E(oo), mean that
f has a periodic orbit of period k, a fixed point, an elementary periodic
orbit of period k, an infinite elementary preorbit, respectively. Similarly,
Pm (k), Em (k), E(oo), m = 2,3,..., mean that the m-th iterate f m of f
has a periodic orbit of period k, an elementary periodic orbit of period k, an
infinite elementary preorbit, respectively.

3. Sarkovskii's Theorem and Theorem (SE).

Using the notation introduced in Section 2., Sarkovskii's theorem and its ex-
tension, Theorem (SE), read as follows.

Theorem (Sarkovskii). Let f : R -_l R be continuous. Then

P(3) =ý P(5) =:ý P(7) =ý-,.... =
P(2.-3) ::.P(2.-5) =:: P(2.-7)=.. ,
P(2• 2 3) P (22. 5) =ý. P(2 2. 7) •.

... ::: ... =0::
P(2 3) =; P(2 2) =* P(2) #. P(1).

Theorem (SE). Let f : R -- R be continuous. Then
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P(3) =* P(5) * ... *E(o0) ... =• E(8) = E(6) =0. E(4) * P(2) *P(1)

P(2.3) • P(2.5) E2... * E(o) 2 ... * E2(8) g E 2 (6) * E 2(4) • P(2 2) . P 2(1)

P(2 2 . 3)=. P(2 2 .5) ... = E22 (o0) = ... E22(8) • E22(6)= E22(4)* P(2 3) . p2'(1)

4 II It
P(23 .3)* P(2 3 . 5) = ... = ( E2(00) => ... =•£23(8) =• E23(6) E23(4)* P(2 4)* p23 (1)

4. Lemma F.

The following lemma states a condition that implies the existence of a pe-
riodic orbit. The formulation is a more specific version of a well-known
"Folk-Lemma".

Lemma F. Let f : R --+ R be continuous and L 1, L 2,..., L, compact inter-
vals such that

f (Li) :) L '+j, i = 1, 2,. .. , n - 1

and
f (L.) D Li.

If Li n Lj, i 3 j, is either empty or a singleton, then there is a point x0 E L1

with xi E Li+,, i = 1, 2,..., n - 1, and xo = Xn. Such an xo has period n if
n is odd and period n or a if n is even, but the period ! is possible only if
xi E Li+j nI L(-+i+,), i =- 0, 1, 2,..., -1.

Proof. We recall first two basic facts:
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(i) If f is continuous the inclusion f(I) D J for compact intervals I and
J implies the existence of a compact interval I' C I such that
f(W) = J.

(ii) If f is continuous the inclusion f(K) : K for a compact interval K
implies that f has a fixed point in K.

By (i) there are intervals L' E Li, i = 1,2,...,n such that f(L',) = L
and f(L') = L,+I, i = 1,2,...,n- 1. Since f'(L'1 ) = f(L',) = L1 D
we conclude by (ii) the existence of xo E L' C L, with xi E Li+,, i =
1,2,..., n- 1, and xo = xn. If n is odd, at least ½(n+ 1) of the L-intervals are
mutually disjoint. Since any period of xo, i.e., the number of distinct points
in the orbit of xo, is a divisor of n, xo has period n. If n is even and greater
than 2, at least !! of the L-intervals are mutually disjoint. Consequently, x0

2
has period n or n. If xo has period 2, then xi = x+i, i =0, 1,2,..., -1.
Since xi E Li+1 and zi = xn+i E Ln++i+, we have xi E Li+il "Ln++i+I, i -
0,1,2,..., - 1. This completes the proof.

2

5. The Hierarchy of the Elementary Orbits.

The following four propositions establish that the set of elementary orbits is
totally ordered with respect to the relation "implies".

Proposition 1. E(2n + 1) =:ý E(2n + 3), n = 1, 2, .

Proof. Let (XO, x1 , ... , x2,n) be an elementary (2n + 1)-periodic orbit and
assume without loss of generality that

X 2 n < X2n-2 < "'" < X4 < X2 < XO = X 2n+l < Xl < X 3 < " < X2n-3 < X2n-1-

As a consequence of the intermediate value property of f we conclude the
existence of a fixed point co and predecessors c- 1 and C-2 satisfying

X2n <: C-1 <• X2n-2 <• <: X2 <• XO <: CO <• X1 <: <: X2n_3 <C-2 < ,2n-1 (1

if n = 2,3,... and

X2 < C--1 < O < Co < C--2 < X1 (2)
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if n=.
If n > 3, define the intervals L1 = [xo,co], L2 = [co, x,], L3 = [x2 , Xo],

L2, = IX2,n-3,x-m,-11, L2m+l = IX2, X2m,-21, ... , L 2n = [X2n-3, C-21,

L2+1-- [c-l,x2n-21, L2n+ 2 =- [c- 2 , x2.-1], and L 2n+ 3 = [x2 ,c.C-11, m = 2,3,
... ,In - 1.

If n = 2, define the intervals L1 = [xo, co], L 2 = [co, x,], L3 = [x2, Xo1,

L4 = [X1,eC-21, Ls = [c-1,X 21, L6 = [c- 2, X], and Lr = [X4,C-11.
If n = 1, define the intervals L, = [xo, col, L 2 = [Co, c- 2 1, L3 = [c-1, sol,

L4 =-[C-2, X1), and L5 = [X2, c-.11
Lemma F implies now the existence of an elementary orbit of period 2n + 3
for n = 1,2, .... This completes the proof.
Remark. By choosing other L-intervals, it can be shown that there are two
distinct elementary orbits of period 2n + 3 for n = 1,2,....

Proposition 2. E(2n + 1) =o E(oo), n = 1,2,....

Proof. We may assume that the elementary (2n + 1)-periodic orbit E(2n + 1)
has the same orientation as the elementary (2n + 1)-periodic orbit in the proof
of Proposition 1, so that the inequalities (1) and (2) in Proposition 1. hold.
Referring to inequality (1), the inequalities f(X2n- 2 ) = X2n-j > C-2 and
f(x 2,, 4) =-X2.•-3 < c- 2 imply that there is a c-3 E (X2,.-2, x2,.-4). Referring
to the inequality (2), the inequalities f(xo) = x, > c- 2 and f(co) = CO < c. 2

imply a c- 3 E (xo, co). Hence, for n > 1, a fixed point co E (xo,xi) and
predecessors c- 1 , c- 2, c- 3 satisfying

c- 1 < c- 3 < CO < C-2

always exist. We now find c. 4 , c-5,... successively. f(c- 2) = c- 1 < c- 3 <

Co = f(cD) implies that there is a c- 4 E (co, c- 2 ), and from co = f(co) <
c-4 < f(c- 3) = c. 2 follows a c- 5 E (c-3, co). Repeating these arguments,
we conclude that (cO, c- 1 , c-2,...) is an elementary infinite preorbit. Hence,
E(2n + 1) =* E(oo) and the proof is complete.

Proposition 3. E(oo) =o E(2m), m = 1,2,....

Proof. Let (xO, x- 1, x-2.....) be an infinite preorbit satisfying

X--2 < X--4 < --6 < .. < X < .. < X--5 < X-3 < X-1

-" i Ill I i I I I I I I I I5



Define L2.. = [X_ 3 ,x-_I, L2m.._ = [X- 2,x-4], L2..-2 = [x- 5,ix- 3], L2M-3 =

Ix-4,X-61],..., L2 = [X-(2m+1),X-(2m-1)], and L, = [X-2,ZX-(2,,+2)]. Lemma
F implies now the existence of an elementary orbit of period 2m. This com-
pletes the proof.

Proposition 4. E(2m + 2) =; E(2m), m = 1, 2,....

Proof. If (x0 , X1,..., X2,m+1) is the elementary orbit of period 2m + 2, we
may assume that

X2,n <• ... < X2 < X0 < X1 < ""<• X2m+1.

If we let L1 = [x2,XO], L2 = [X1,X 31, L 3 = [X4, x 21, L4 = [x3, Xs],. .. , L2-I =

IX2m, X2--•], and L2m = [X2m,-1, X2.+11, Lemma F guarantees an elementary
orbit of period 2m and the proof is complete.
Remark. It can be shown that there exist two distinct elementary orbits of
period 2m for m = 3,4, ....
Summarizing the Propositions 1., 2., 3., and 4., we obtain the following The-
orem 1..

Theorem 1. (The total ordering of elementary orbits).

E (3) =:: E (5) =*. .- --. E (oo) =o .. - -=* E (8) =ý- E (6) =:ý- E (4) :• E (2) =0. E (1).

Remark. We notice that the total ordering of the periodic elementary orbits
is different from Sarkovskii's ordering.

6. The Relationship of P(n) to E(n).

Among the points of a periodic orbit P we denote by P+ the set of those
points x in P with f(x) > x and by P- the set of points in P with f(x) < x.
P+ and P- are nonempty for any periodic orbit P and we let m = m+ =

min P+, M+ = max P+, m- = min P-, M = M- = max P-. If we define
the "spans" of P, P+, and P- by span P = [m, M], span P+ =[m+, M+],
span P- = [m-, M-], then for any P one of the following cases occurs:

(a) span P+nf span P- 9 6
or

(b) span P+n span P- = 0.

6



If (a) occurs, then span P contains three disti-2ct "forced" fixed points,
one each in the intervals (m,m-), (m-,M+), and (M+,M). This situa-
tion ensures always the existence of a three-periodic orbit as follows from
the slightly more general Theorem 2. below. If case (b) occurs, only one
"forced" fixed point in the span of P is assured and, in general, no conclu-
sion for the existence of an elementary periodic orbit other than E(2) or E(4)
is possible. However, if the periodic orbit P is such that P+ n f(P+) 9 0
(or P- n f(P-) # 0), then an odd elementary periodic orbit is necessarily
present. This will be the case, for example, if the period of P is odd. This
fundamental situation is dealt with in Theorem 3.. It is this theorem and
its corollaries which provides one of the crucial steps from the hierarchy of
elementary orbits to Theorem (SE) and, hence, to Sarkovskii's theorem.

Theorem 2. If P is a periodic orbit of f such that its span contains two
fixed points separated by at least one point of the orbit, then f has a three-
periodic orbit.

Proof. Let In, M] be the span of P and co, do fixed points of f such
that

m < co < a < do < M,

where a is a point of the orbit. We may assume that the interval (Co, do)
contains only points x of the orbit with f(x) > x and the interval (do, M)
contains only points y of the orbit with f((y) < y. Let a be that point of the
orbit in (co, do) with the largest image f(a). Then there is a point b of the
orbit in the interval (do, f(a)] such that f(b) < co (otherwise, the orbit of a
would not contain m). Then L, = [Co, a], L2 = [a, do], and L3 = [do, b] define
a three-periodic orbit of f by Lemma F. This completes the proof.
Remark. It is worthwhile to analyze the hypothesis of this theorem somewhat
further and inquire about the nature of the fixed point co. Then it follows
that co gives rise to the existence of an infinite preorbit called an infinite
loop, a much stronger conclusion (see[6] for the notion of infinite loop and
its equivalence with the notion of turbulence [6]).

Theorem 3. Let P be a periodic orbit of period n > 3. If the spans of
P+ and P- are disjoint and f(P+) nl P+ # 0 (or f(P-) nl P- 5 0), then f

has an odd elementary orbit of period 2k + 1 < n.

7



Proof. We order the points in P+ in descending order, the points in P-
in ascending order as follows:

• X i+ < = x i•' << x1 <' <= Y1 < y2 <• ... <• yq,

where co is a critical point, p+q = n, and x'+1 denotes the largest point in P+
with the property f(x+'+) E P+. Thus i > 1. We let zI = x1, L1 = [z1, Col
and select successively unique points z2 E P-, z3 E P+ with z 3 < zI and
let L2 = [Co, z2], L3 = [z3,z'] as follows: z2 = max f(LI) n P-, z' =
min f(L 2) n P+. We note that z2 is well-defined as z' = x1 and f(x 1 ) E
P- ensures f(L 1 ) n P- 9 0 as well as y' < z2 < yq. Furthermore, z3 is
well-defined with z3 < z1 since y' E L2 ensures f(L 2) n P+ 9 0, and so
z3 < z 1 < x 1, but z3 = z' forces the orbit of x 1, that is P, to be contained
in L1 U L 2, whereas xi+1 V L1 U L 2, a contradiction. Hence z3 < z1. We
observe next that f(L 1 ) D L 2, f(L 2) D L3. If further z3 < Xi+1, we also have
f(L 3 ) D L1 and conclude a three-periodic orbit by lemma F (this happens,
for example, if z2 = yq). If however, z3 > x 41, we select successively unique
points z4 E P- with z2 < z4 and z5 E P+ with z5 < Z3 as follows: z4 =
max f(L 3) n P-, z5 =rain f (L 4) n P+. Letting L 4 = [z2 , z4], L 5 = [z5, z3),

we have f(LI) D L2, f(L 2) D L3 , f(L 3 ) D L4, and f(L 4) D Ls. If then
further z5 < xi+1, we also have f(L 5 ) D L1, and hence f has an elementary
periodic orbit of period five by lemma F. In the case z5 > xi+1, we continue
the selection process as shown for the first two stages. The process must end
with the selection of an odd number of points z1, z 2 ,.. , z2k+1 of the orbit
satisfying

xp<z 2k+l <x T i+ < z2k-1 < ... <z 3 x< z I c,1< Co <yI <Z2<Z4 < ... < z2k < yq,

in which case lemma F ensures that f has an elementary periodic orbit of
period 2k + 1 < n. This completes the proof.

Theorem 3. implies the following theorems as corollaries.

Theorem 4. P(2n + 1) =; E(2n + 1).

Theorem 5. If f has an odd period that is not elementary, P(2n + 1) #
E(2n + 1), then P(2n + 1) ; E(2k + 1) for some k with 1 < k < n.

8



As a consequence of this theorem we obtain the theorem that is known as
Stefan's theorem.

Theorem 6 (Stefan). If f has a periodic orbit of period 2n + I but no
periodic orbit of period 2k + 1, k < n, then P(2n + 1) = E(2n + 1).

Remark. Periodic orbits for which the hypotheses of theorems 2. and 3.
do not hold are even orbits for which P+ = f 2 (P+) holds and include all
elementary even periodic orbits.

7. The Propositions P2 (n) 4:ý P(2n) and P(4) =* E(4).

Proposition 5. P 2(n) 4• P(2n), n > 2.

Proof. P(2n) =o. P2 (n): Let (x0,X 1,.. .X,-1), XO = x2,, be any 2n-
periodic orbit of f. Then, setting x02 = x0, we note that (Xo, 1,..., n_l) is
an n-periodic orbit of f 2 . Hence, P(2n) =. P 2(n).
P 2 (n) =* P(2n): Let (X2,X2,... , X2_), Xo2 = x, be an n-periodic orbit of f 2.

Then, setting x0 = x01 we obtain the periodic orbit (Xo, X, 2,... ,X2n-1),

X= x2,, which has a period n'. n' is either 2n or a divisor of 2n. If
n' 2n, then n' must be an odd number n' > 3 (because an even n' forces
(oz2,. . .,._I), 42 = x•, to have period less than n). Thus f has a peri-
odic orbit of period 2n or a periodic orbit of period n' = 2k + 1 > 3. In the
latter case Theorems 4. and 1. guarantee that f has a 2n-periodic orbit since
P(n') = P(2k + 1) =• E(2k + 1) =• E(2m) for all k > 1 and m = 1,2,....
Hence, p 2(n) =o- P(2n). This completes the proof.

Corollary. P2 ' (n) 4* P(2mn), m = 1, 2,..., n = 2, 3,....

Proposition 6. P(4) =. E(4).

Proof. Of the six types of four-periodic orbits two are elementary. The

9



remaining four
(i) X4 = XO < X 1 < X2 < X3

(ii) X4 = Xo < X3 < X 2 < X1

(iii) X4 = Xo < Xl < X 3 < X2

(iv) X4 = Xo < X3 < X1 < X 2

define each three natural intervals that satisfy the conditions of Lemma F,
and, therefore, ensure the existence of a 3-periodic orbit, which, in turn,

implies an E(4) by Theorem 1.. These intervals are defined by

L, = [xo, xi], L2 = [X1,X2], L3 = [X2 ,Z3] in case (i),

L, = [X2, x], L2 = [X3, X21, L3 = [XO,Z3] in case (ii),

L, = [xo,xil, L 2 = [XI,x31, L3 = [X3, Z2] in case (iii).

In the last case, (iv), we notice first fixed points co E (X3 , x11 and do E [(1 , X 21

and then let L1 = [co, xi], L2 = [(x,do], and L3 = [do, x2]. This completes

the proof.
Since E 2 (2) #- P(4) • E(4) => E(2), we obtain the following important
corollary.

Corollary. E 2(2) #- E(2).

8. Principal Results.

If we consider the total ordering of the elementary orbits for the functions
f, f 2, ... , f 2-, f2-+1,..., then the implicationsE(6) =:P(6) =-P' (3) =*E2 (3)

and E 2(2) #- E(2) provide the linkage shown in the following result.

Theorem 7. Let f : R -* R be continuous. Then

10



E(3) E(5) => . E(oo) = >. = E(6) =• E(4) E(2) E(1)

E 2(3) : E 2 (5) =o ... E 2(oo) => ... = E2(6) > E2(4) = E2 (2) = E2(1)

"E2n(3) => E 2"(5) * .... E2 "(•) E 2"• * E2n'(6) E E2 "(4) => E 2 (2) = E2n(1)

"E 2+ 1 (3) =* E2+(5) = .. E "n+(oo) ... E2+ (6) E2"+(4) => E2n+ (2) = E2n+1 (1)

Since the implications P(2n + 1) i E(2n + 1), E(2) 4== P(2), and
P 2(n) 4=* P(2n), ensure the implications E 2n(2m + 1) .=* P((2m + 1)2n)
and E 2n (2) 4 P(2"+1 ), we obtain, as stated in Section 3., the following
extension of Sarkovskii's theorem.

Theorem (SE). Let f: R --- R be continuous. Then

P(3) =:* P(5) E(oo)= -.. * E(8) = E(6) =* E(4) => P(2) P(1)

P(2.3) * P(2.5) =.... = E2 (oo) = > ... E E 2 (8) E E2 (6) > E 2 (4) . P(2 2 ) = P2 (1)

P(22 .3) = P(22 .5) = ... = E22 (oo) ... * E•2 (8) = E22 (6) = E22 (4) = P(23) P22 (1)

P(2 3 . 3) = P(23 .5) . = E23 (oo) = -.- E2 3 (8) E23 (6) : E23 (4) * P(24) P23 (1)
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Sarkovskii's theorem follows now as a consequence of Theorem (SE) by
omitting all E-implications.
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