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I ABSTRACT

The objective of this work has been to study the interaction between heat release and
mixing in compressible shear layers by analysis and computation, with an eye to finding
flow configurations that maximize the heat release per unit distance in the stream direction.

I The principal prediction is that heat release asymmetry across the layer can enhance mixing
over the non-heat release case, but the effect appears too small to yield practical benefits at
this time. Time-dependent, three-dimensional numerical simulations of a shear layer with
weak, steady heat release have shown that such heat release need not decrease mixing, but
the expected increases are also absent, or too small to be detected currently. However, the
original non-heat-release theory has been successfully extended to predict the mixing

I behavior of three-dimensional planar layers and round compressible jets. This bolsters
confidence in the generality of the principles underlying the analysis. Invoking a mixing
maximum principle, the extended theory gives a satisfactory analytic expression for mixing

i ratio when M, s 3. A variational formulation of the heat release problem with a functional
dependent on the square of streamline curvature has proved intractable.

NOMENCLATURE Accesion F-or

aý = speed of sound in reference frame of large stctures of layer NTMI SC&

a. = speed of sound in the free stream ,CA0

b parameter in expression for heat release, hf !..... ,
c = parameter in expression for beat release, hf 1 , -z; C atI t , .................
hf = enthalpy due to heat release in the shear layer I
m mixing rate rate. . .
M = non-dimensional mixing rate :.i•,tion /I~ ~m =• reference mixing rate ,aiiiit ,e,

reference incompressible mixing rate Avail a-dlor
= large structure convection velocity Dist Special

q.. = reference velocity
s reference surface area for mixing rate determination -

t - time
u streamwise perturbation velocity due to shear layer + faryv = normal perturbation velocity due to shear layer = #y - iv,,
x = streamwise coordinate
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y = coordinate transverse to the mixing layer
ID = parameter in expression for heat release, hf

= specific heat at constant volume
= perturbation energy

E.= energy entrained due to mixing
= reference energy

B,. = total energy
F = square of the streamline curvature, K2

I total (volume integrated) heat release per flow distance
K streamline curvature
Mc= convective Mach number of large structures in a shear layer

I = reference Mach number
K : = jet exit Mach number
RkE = rotational kinetic energy of a vortex
S = streamline ardengthST average layer temperature

. = reference temperature
Uo = reference velocity
V entrainment velocity
V = control volume in mixing analysis with no heat release
a parameter in odd component of heat release, hN
p2 1-M2, or 1-2
y - specific heat ratio
q = transverse source coordinate in Poisson equation integral solutionIY
e = helical angle of a helical jet vortex
p = fluid densityI *potential for irrotational part of perturbation velocity
I = stream function for solenoidal part of perturbation velocity

= vorticity
? streamwise source coordinate in Poisson equation integral solution
r vortex strength

I r 0  y 12 (w/U) dy,

A major problem in developing hypersonic aircraft is the design of an efficient
propulsion system. One of the most difficult aspects of propulsion design is to get the fuel
and air mixed sufficiently so that combustion is maximized inside the engine. At the mass
flux rates of fuel and air necessary to produce the design thrust, the fluid streams are
moving at high supersonic speeds. As the difference between the stream Mach numbers
increases, the mixing of the streams decreases, with a corresponding loss in combustion
efficiency. This mixing decrease correlates well with the "convective Mach number," which
is essentially a density weighted difference of the Mach numbers of the streams. If the
convective Mach number is unity, then experimental results1 show that the mixing is about

-
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25% of its value at a convective Mach number of zero. There is a considerable body of
literature on the causes of this deterioration in mixing, including experimental,
computational, and theoretical studies.

Earlier work' examined the mixing of supersonic shear layers, both theoretically and
computationally, with the conclusion that mixing is inhibited at higher convective Mach
numbers (Me) because energy that would be directly transmitted into mixing at M, = 0
instead goes into nonmixing gas compression. This compressibility effect is largely two-
dimensionaL, introducing three-dimensionality into the flow (streamwise vortices) reduces
but does not eliminate it for MC > .7. Comparison of experimental growth rates to the
theory in Reference 2 suggests that such changes in flow topology are occurring naturallyIfor high M, layers, and little else can be done. Without these changes mixing would be even
less than is measured.

Dismaying as these results are, it should be borne in mind that the ultimate goal is not
just mixing of inert species, but rather mixing of fuel and oxidant for combustion. The heat
release associated with combustion can be expected to modify the structure of the shear
layer, and this in turn affects its mixing rate. Thus it is appropriate to study the coupling of
mixing and heat release, for there may be interactions between them that could lead to more
efficient combustion than inert mixing results alone indicate.

I There have been a number of experimental studies,3,4 as well as some numerical
work,s 6 on the effect of heat release on low speed mixing layers (MI,2 < .35). All studies
conclude that heat release decreases the layer growth rate, except for the work of Keller and
Daily. This one experiment is distinguished by its use of hot combustion products in one
stream to ignite completely premixed fuel/air in the other stream. Other studies assume a

* msymmetric placement of unburnt fuel in one stream, oxidant in the other. Keller and Daly
are the only ones to report an increase in mixing layer growth rate with increased heat
release. Within the framework of the present analyses such asymmetries are demonstrated
to be mixing enhancers.

The previously developed theory2 for nonreacting shear layers produced an analytical
prediction of the reduced mixing observed in experiment. This prediction was made by
discarding previous arguments relating reduced mixing to reduced instability7' and
employing the insight that this phenomenon is explainable by considering wholly
irrotational compressibility effects. In the present work this analysis is extended to include
the effects of weak heat release and entropy generation with and without vorticity. The
theory is meant to be valid at high speeds (MQ - 0(1)), and this results in somewhat different
governing equations than appear in analysis of heat release in flows as Mc -# 0.9 The results
indicate that mixing rates can be either increased or decreased by proper tailoring of the
heat release profile across the layer.I
ELEMENTS OF THE THEORY FOR INERT MIXING

3 The physical configuration of a compressible free shear layer is shown in Figure 1,
where (o vorticity contours have been drawn from the results of two-dimensional direct
numerical simulations of this flow. Two parallel streams, initially separated by a splitter
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plate, and semi-infinite in directions transverse to the mean flow, mix at their interface. The
upper stream is characterized by pl, Up, a1, and the lower by p2 , U2, a2 (U1 a: U2 assumed).
Static pressures in the stream are matched at the trailing edge of the splitter plate so that no
expansion/compression waves contaminate the streamwise development of the flow. Initial
instability of this shear layer causes it to roll up into spanwise vortices which subsequently
pair due to a further spatial subharmonic instability. As the roil-up and growth of vortices
proceeds, the width of the shear layer grows downstream, and increasing amounts of fluid
are entrained from both sides. The growth rate of incompressible shear layers depends on
their velocity and density ratios. High speed shear layers, however, grow much more
slowly than their incompressible counterparts at the same velocity and density ratios.
Bogdanoff,' and later Papamoschou and Roshko,'° suggested that the effect of
compressibility on growth of a shear layer is characterized by Mach numbers M, i
measured relative to the convective speed Uc of the large structures.

* Thus
SU -U U -U.

U UC1  aC2 a 2

A relation between Mc and M., is obtained by assuming that the two streams have
equal static pressures, and bhat their stagnation values in the Uc reference frame are also
equal. If it is further assumed that the ratio of specific heats yj for each stream are equal,
then MC = Mc2 = Mc, and the convective velocity may be calculated as a sound speedI weighte avege

= a2U1 +a2 2  (2)-- ~~ U = 1 "+ a2(2II
The dominant feature of a mixing layer at lower values of MK is the existence of large

vortical structures. If these structures are regarded as characteristics of the flow, then an
analysis based on the behavior of these structures with increasing convective Mach number
should also reflect the behavior of the complete mixing layer with increasing M". The
theory of Reference 2 has three elements. The first is an expression for the energy within a
control volume circumscribing a portion of the turbulent shear layer, in terms of the mixing
rate (rate of increase of mass within the volume) and convective Mach number M,. In the
second element the mixing rate of an isolated vortex is shown to be proportional to the
square root of its energy, and this establishes a scaling between the mixing rate due to an
arbitrary vortex and that of a reference vortex, based on the ratio of their energies.
Identifying the energy and mixing rate of the control volume analysis with that of an
arbitrary vortex yields a relation between the nondimensionalized mixing in the shear layer
and the energy and mixing due to a reference, isolated vortex sitting in a uniform free
stream of Mach number Mc. The basic result can be written as

I
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Wm 2 2(R=3)(RKB)1 (3)

where m denotes non-dimensional mixing of the mixing layer, the subscript i indicates
values at MK=0, and mo denotes non-dimensional mixing associated with a reference vortex
in which the rotational kinetic energy (RKE) is (RKE).

Finally, in the third element of the theory the reference vortex is taken to be the bound
circulation of a lifting airfoil. Both the mixing and energy of this reference "vortex" can be
calculated analytically from solution of the Prandtl-Glauert equation with M. = Ml.

(1 - M•4#Xx + #YY = 0 (4)

The analytic prediction of the theory for themixing ratio at lower values of Mc O(Mc s 0.7)
(ratio of mixing m at Mc to mixing at M,=O, n4, holding density and velocity ratio constant)

s 1 U -( 1 23/2

2

Plotted as the solid line, the central character of this relation with respect to the
experimental scatter for Mc < .7 can be seen in Figure 2. A modification to this theory,
described in later sections, extends it to greater values of MK, by allowing for three-
dimensionality

The airfoil analogy and its solution by potential methods is a framework that embodies
several important physical effects relevant to mixing. Replacement of the shear layer by the
velocity difference across the airfoil reduces the mixing problem to the simplest terms:
given a horizontal velocity difference (whose integral over the chord is the bound
circulation of the airfoil), what is the vertical velocity (downwash, entrainment velocity) that
it induces? The answer to this question provided by a potential flow solution to the airfoil
problem necessarily implies that the predicted effects are irrotational. The quantitative
accuracy of Equation (2) in predicting observed mixing decreases strongly implies that both
the instability7A and vorticity redistribution" arguments simply miss the point. The

* physical explanation for the irrotational decrease of mixing is simpler: compressibility
directly attenuates the large structures' ability to deflect fluid away from the free streams
and into the mixing layer. In incompressible layers "pushing" on the free stream by the
entrainment velocity deflects fluid into the layer; in compressible layers "pushing" produces
fluid compression also and thus less deflection.

I
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U MIXING THEORY WITH HEAT RELEASE AND VORTICITY

The same three elements make up the theory for mixing with heat release as did the
theory for mixing without heat. However, the simple scaling relations that lead to Equation
(5) can no longer be obtained when heat release is included. Instead, the analysis results in a
general expression for the nondimensional mixing that can be made specific by assumption
of a particular her." release configuration.

The analysis is best understood in the context of the control volume and vortex model
depicted in Figures 3 and 4. The mixing per unit span of the vortex is defined by

m = Ii PlVldx (6)

I _Xi

where now the entrainment or downwash velocity v is assumed to have three components

V = Vpg + Vh + ve (7)

This decomposition looks ahead to the inhomogeneous Prandtl-Glauert equation that will
ultimately be solved for v, and which has homogeneous solution vp, and specific solutions
vh and v.r Then the mixing can be written

m = mpg + n + m (8)

where mh is the mixing due to heat release, nm is the mixing due to vorticity, and p is the
value using the Prandtl-Glauert equation.

Similar to the original analysis, 2 the control volume balance yields

: -u(1 + '" M2)t (9)

I where EH is the energy in the mixed region due to heat release and ES is the total energy in
the mixed region. One may also write for the isolated vortexI

A A 1/2

m =M (10)
Pg o A1/20

where E^ and (E, - EH) are the rotational kinetic energy of the Prandfl-Glauert vortex at the
reference condition and the current condition respectively. Using Equation (9) and
proceeding as in Reference 2 gives the equation

I
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I (s A A1/2(N -N (H-NJ1,

- o1/2 1/2 + M 1WI

where E. and EO are given by

I0
I C._- (•. 1 + ,,2,-1, U2,

and V is a normalizing volume derived from the control volume balance. See Reference 2
for details. 1/2

Equation (11) is quadratic in thus

I A AJ1/2 2 1/2
ME8-EN) 11 1/2

1/2 1~lj/2 * (77-~2 + 4h +4m07 (12)

and, het-ce, from Equations (9) and (11)

-2 2
n m=.{ m 1/(13
0 0 0

In order to recover the nonreactL~g result, the positive sign is taken. If the assumption is
made that

-2U~ th+ l a0  (14)
00* 0o

then Equation (14) gives the simple equation

i 0M = + 2 i + 2i is

I 0

I
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I The inert mixing theory produces just the first term on the right hand side of Equation (15),
and this leads immediately to Equation (3).

I To proceed further the entrainment velocity v must be solved for. This can be obtained
from a Poisson equation for the irrotatlonal part of the velocity field. The analysis leading to
this equation Is quasi-steady. While molecular mixing within the layer cannot be treated in
this manner, the entrainment process by which the layer grows can. In particular note that
the temporal rate of change of large structures within the layer is of the order of the
spreading rate, and this is small. The steady energy equation for specific enthalpy, h, of
fluid in the layer is given by

h+ (1/2)q2=h +h (16)

where h. is the stagnation enthalpy, hf is the heat release, and q is the magnitude of the total
fluid velocity.

If the inviscid momentum and energy equations are combined, the steady Crocco

equation results

v(h +J•q2) = vh+vhf= TV+qi (17)

where q is the velocity vector, T is temperature, S is entropy, and w is vorticity. But, h. is
taken to be a constant and thus

Vhf = TYS + qxw (18)

In the absence of any other generators of entropy the heat release appears as an increase of
entropy and vorticity. Now let the cartesian perturbation velocity components u and v be
written as

u = #+Vy; v = #y-V (19)

where 0 is the perturbation velocity potential and p is the stream funcbon given by

r= + Vyy = -W/U. (20)

From the energy equation the density, p, can be written in terms of the velocity and
entropy as

I(Y-l)h f V-1) 14 ý2
P + 2 + iC(1 - - )IV- exp(-(S-S )/R) (21)

2 2

The assumption of weak heat release and small entropy change

I
I
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(Y-1)hf S - SI -«

a 2R

allows this state equation to be linearized. When combined with the continuity equation

V• (pq) =0 (22)

I and eliminating second order terms in the perturbations (velocity, heat and entropy), a
Poisson equation for the perturbation potential results.

Ir xU~~~~ K1M), ~ L7 (23)

The right hand side of Equation (23) can be simplified by considering the two components
of the Crocco equation. At this order

(24)I (hf))" = T.Sy- U~w

Integrating the first of this pair, differentiating by y and comparing with the second shows
* that

hf =TS U (a dy (25)

Then defining

r = y2 j (i/U) dy (26)

3 the governing equations become
-(y-1) (..f•)x ~ , y 2 7(7

(1 _lM2), 2.+ + x r + mr(7
a 2 m oX

and Equation (20). The formal solution of the above equation is described in the following
section.

9
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i SOLUTION FOR THE ENTRAINMENT VELOCITY

The formal solution of the Poisson Equation (27) for the perturbation potential can be
found in any text on mathematical physics. It involves integration of the right hand side of
Equation (27), multiplied by the appropriate Green's function, over the spatial domain of the
problem. In the context of the nonreacting analysis this two-dimensional volume integral
was transformed into a line integral over the chord of a thin lifting airfoil whose bound
circulation was given by the velocity difference of the two streams of the mixing layer. Here
the same approach is taken, with the "source" function on the right hand side of Equation(27) assumed to be confined to the plane y=O. Using the integral equation analysis ofReference 12, a formal solution to Equation (27) can be written as

I v = vps + vh + vW (28)

where v denotes the value for the Prandtl Glauert equation (Equation (27) with the right
hand sidlegequated to zero). vh and v, are given by

Iv 1  L(If)
|0

o (29)

1 L(If)

0

IH where

LO is the operator on If given by

*L(If) = J x,1 f114 / dt (30)
0

SI(and

1 K ( ((hf (C4, W + b,(t, -W))d~d

I1 K+(31)

The kernel K is the two dimensional Green's function

i
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I for the upper half plane DI, and K --'- InI(x-?)2+ 0 1 
(32)

A , = heA.(v -Y(,/U..) (3)

The structure of the integrals in Equation (31) makes dear the possibilities for mixing
increase or decrease when heat release is present. Specifically, if N is even or A is odd in y,
then vh and v, are zero and the mixing is unaffected. On the other hand, if 1f is odd and A is
even then both additional velocities will be non-zero, and mixing can be increased or
decreased. vh can be either positive or negative dependent upon which side of the layer the
heat release is concentrated, while the sign of v depends upon a combination of streamline
curvature and vorticty whose physical interpretation is difficult to determine.

Some further simplifications of the expressions for entrainment velocity due to heat
release can be made if a particular mixing model, the vortex, is assumed. In Equation (29),
an airfoil analogy Is used and the chord of the airfoil is assumed to be unity. If the
dominant flow structure is a simple vortex centered at x. then this chord approaches zero,
or, in the case of the line integral in Equation (29)

lxi >> I1t (34)

Hence

I (X) = If (Xo) (35)

3 Also, then

1 1 L(Ifl) -f 1 (2f N)
"W -x-T d? .4 X (36) - ..

and the velocity vh is given by

""h Ifl(Xo) j 1-_--•f i d4 + If 1 (X) (37)

0

SThe mixing rate nt is then given by3
I

I -11-



U - II f(xO)I x--V ~j

+ I I X I f (x)dx 

(38)

In can be rewritten, using an integration by parts, as

II1x) = •- L j hf(?,) - hf(?.-?)Jd~dn (39)

I D,

INUMERICAL SIMULATIONS WITH STEADY HEAT RELEASE

After addition of an independently specifiable heat release term to the energy equation
in our Navier-Stokes simulations, the effect of steady, but spatially varying, heating on a
two-dimensional shear layer has been investigated. The heating profile is specified as a
shifted Gaussian:

a- e -- ((-)/(+o))2 (1+ax)

hf(x,y) = D (y-- (40)

I By varying D, b, a and c the intensity, displacement and spreading rate of the heating
profile can be adjusted in a parameter study. Because of the particular form chosen the total
heat release per unit distance in the flow direction is constant, consistent with linear growth
of a reacting shear layer. Previously reported experiment3 and simulations have left the
general impression that heating reduces shear layer growth, although there is one report4 to
the contrary. Although mixing rate increases due to heating asymmetry were not found in
the parameter study, neither were decreases in mixing detected. Figures 3 and 4 are typical
of the simulation results and display the spreading rates and temperature contours of an
KM=.4 layer with and without heating. Normalized temperature contours ( (T-T.)/T. ) are
shown only for the heated layer, since at the same contour resolution the unheated layer has
no perceptible variation. The parameter values for the heat release are D=.002, b=1., a=-2.
and c-.02. For these conditions the heat is released completely within the layer and the time
averaged temperature rise of the fluid within the turbulent part of the flow reaches a
centerline peak more than 30% greater than its unheated value. Yet the spreading rate,
measured by the vorticity thickness 6,, is essentially unaffected. Such cases have not been
analyzed in detail, but they indicate, along with the strong heat release cases reported in
Reference 4, that there can be heat release scenarios without decreased mixing.

1
I
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I AN ANALYTIC EXAMPLE OF HEAT RELEASE

Prompted by the anomalous results of the simulations an analytic heat release example
was solved to better understand the functional dependence of the entrainment velocity
upon heat release parameters. The field equation for the perturation velocity potential due3 to heat release h(x,y) is

-+ +* hr (x.y) (41)
~oc yy 2 2a 0x + 'X

The analysis begins with the expression for V, the velocity normal to the layer, gotten from a
y-differentiation of the expression for the potential # that solves the governing Poisson
equation. This is

I (1
(X, y) =0 (x, y) = 2 dq d~ (42)

2 2 222

Note the asymmetry of the kernel in Eq. (42); unless hN has some asymmetry in q withIrespect to the y-value of the field point, the uj integral evaluates to zero. Thus, for a given
heat release distribution Nf it is only its component odd with respect to y that is important
to the entrainment velocityV at y.

For simplicity, assume a separable form for h~t,q)

h hf(tQ) = Hf(V)0(q) (43)

where f(t), g(q), H > 0 and 1J' ht dqdt must be finte.

Then

ThnV(x,y) = (y-1)H [ f 0 I -q)g(q) dq dt (44)
2 r~2  t I ((x-t)2 + (Y_4~g) 2

I =_. 1=--

Now g(q) can be decomposed about any y into a sum of odd and even functions go(y-q) +
ge(y'-i). Only go contributes to the integral, and so Eq. (44) may be rewritten replacing g(q)
by go(y-q). To understand the subsequent behavior of V we choose a generic form for go(y-
q) that has properties appropriate for the odd component of a single maximum (in 17) heat
release profile. It is

I
I - 13-
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-2a b3 (y-q)(

This form has been chosen for its integration properties, its structural resemblance to the
odd component (about arbitrary y) of the function g(q) = 1/(I+b2 q2), and for its property
that as b-p.., go(y-q) -# -a6(y-q). The constant a controls the sign of the contribution of theI ~ ~heat release above mid below y. Substituting Eq. (45) into Eq1. (44 yields

-ab3 (,-l) H [ ,(Y-Q) 2
v(x,Y)=- 1,2 2. •2 [(x-g)2*(Y-Q)2] [1 + 0 (Y_-4)2], do 9 (46)

After a change of variable to z = y-q, and splitting the integrand into factors, the inner
integral can be evaluated to yield

V N Y =ab 2(y-1)H fItd?_(47)I(x = 2 2 2 [b(x_?-)+l] (27)

For f> 0, i.e., heat release increasing in the streamwise direction, the direction of the
entrainment velocity is controlled by the sign of a. This in turn characterizes whtther the
odd component of the heat release, at a given y, is negative above or below y. In either case,
the entrainment velocity goes from the positive portion of the odd component towards the
negative. This situation is depicted in Figure 5.

What is the general shape of g. for a single maximum heat release profile? One can
construct the answer graphically, but for

g(q)= 1_S1~+ Q

it can be demonstrated that for q' = 4-y

goW(q + y)= -2qy 2 (48)
[1 + (4. + y) ][i + (-Q. + y)

Thus, for positive y, the negative component of g. is above y, and the entrainment velocity
V is in that direction, away from the heat release. For y < 0 the negative portion is below y,
and once again the entrainment velocity is paw from the heat release. Thus, for increasing

1
I~- 14-
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I heat release downstream, fe > 0, entrainment Is decreased, but for fg < 0, decreasing heat
release downstream, entrainment is increased by beat release.

I The problem with the numerical simulations now becomes clearer. Despite the fact
that the assumed form of the heat release, Eq. (40), is not separable, the streamwise
derivative Qc) can be calculated, and is found to vary in sign with both x and y. However, it
appears to be uniformly negative for regions nearby the shear layer, which means the
entrainment velocities are towards the mixing. The magnitude of V expected in the

I simulations can be estimated from the analysis if one identifies Da.2/(y-1) in Eq. (40) with H
in Eq. (43), o•/2 with b in Eq. (45), and realizes from x-differentlation of Eq. (40) that

hf 1

If (1 + cx) 2

is the maximum value of the streamwise derivative for field points y on the edges of the
layer. Thus, h• -[-0, -.031 over the length of the layer and we estimate

I v - - a ( y-1) n

-22

(2) (.002)
SG 2(.4)

S- .00076 (49)

The heat release distribution induces entrainment velocities one to two orders of magnitude
smaller than the typical turbulent values of V" in the shear layer. Such effects, though real,
could easily be indistinguishable.

I EXTENSIONS TO INERT MIXING THEORY

Despite the apparent smallness of the heat release induced entrainment velocities, the
effects are believed to tbe real. The broad validity of the principles underlying the analysis
can be demonstrated by extending the inert mixing theory to three-dimensions and
comparing the predictions with experimental data. The way in which three-dimensional
effects can be incorporated in the theory for planer layers and circular jets is described in the
following paragraphs.I PLANAR SHEAR LAYERS

The theory developed in Ref. 2 is based on two main arguments: first that the energy
into an element of the mixing layer, ABCD in Figure 6, is conserved; secondly, that a
percentage (100% in two dimensions) of this energy is converted into rotational energy

I
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I
I associated with the dominant mixing mechanism, which is assumed to be a two-

dimensional vortex. This vortex is represented by the potential bound vortex associated
with a lifting wing and leads to a simple analytic result if the potential vortex can be
represented by the two-dimensional Prandtl Glauert equation

p2#$, + $. = 0 (50)

where 0 is a perturbation velocity potential and

p2 9= I- N (51)

The basic equations derived in Ref. 2 for the nondimensionalized mixing rate, m,
defined by

Im = m/P0oUs (52)

where po, Uo are the reference values of density and velocity respectively associated with
iM, and nM is the mixing role through a surface area s, are as follows: the energy entrained
in time t, E, is given by

B,ý = CýTfiz[1 + '-(+L4iýIp0 Uost (53)

where C, is the specific heat at constant volume, and T is the average temperature in the
mixing layer; this is Eq. (9) of Ref. I with the nondimensionalized mixing rate, m, and
instead of m the energy of the vortex E is given by Eq. (13) of Ref. Z, which is

M (54)

* 0

where the subscript "o" denotes a known reference state. Provided M is such that

I M 2 < < 2/(y - 1) (55)

it is shown in Ref. 2 that over the control volume V,

A

E = t" --IAq-dV (56)
v 2y

V

* and

3 J~tAq~vz C (1 + Y(Y U1 dV (57)
V V

I
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where M in Eq. (55) is the oncoming Mach number of a two-dimensional vortex and Aq2 In
Eq. (56) is the square of the perturbation velocity due to the vortex, superimposed as a
freestream of energy, E., and a velocity U., Eq. (53), (54), (56), and (57) are general relations
and are not restricted to t1yo dimensions. In the two-dimensignal theory it is assumed that
the energy of the vortex, E, is equal to the entrained energy Er If the vortex is inclined to
the oncoming stream, as sketched in Figure 7, then not all of the entrained energy is
converted into mixing since there will now be an energy flux in the "spanwise" directionU through the mixing layer. Hence

.y = qE8  (58)

i where q represents the fraction of entrained energy transformed into rotational energy.
Combining Eq. (53), (54), and (58) and solving for m gives

I 0
AI A

As in Ref. 2 E0 is nondimensionalized by E.oV, where

A [r y(V-1)iv= CTM+ (60)

to give

where V is the slowly growing control volume ABCD in Figure 6. If Uos in Eq. (59) is

chosen such that

UoSt= v (61)

I 
Then Eq. (59) gives

M a =) -- (62)

* o C j +LV1*2 1

The vortex model is the flow over a two-dimensional vortex by a freestream normal to
the vortex. In the frame of reference moving with the vortex, the mixed layer has a
temperature of T and the oncoming normal flow has a Mach number of MNcosg (see Figure
7). Consequently, the reference values, T. and IM.. are chosen to be as follows:

l rT.=T
M.= Mýcose (63)
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I ~q.. = q.•ose

where k is the convective velocity of the mixing layer and Eq. (29) now becomes

MO __1_+________ (64)

I 1)
0 C, + L2 cos10

It now remains to estimate the conversion factor, q. If

I then, to a first approximation (see Eq. (57))

(y-1) q2 (5

and consequently

4= rE-%/E, = cos~e (66)

I Hence the final result is

[1 + 1()1 ,2 2 (67)
0 2(__) d.coe 3@

From Eq. (56) and (57)

= I2v y v (68)I
where Aq is the nondimensionalized (by q.) velocity perturbation due to the vortex and V is
the nondimensional volume V. Hence,

i 0 RKS(69)

where RKE is the nondimensionalized rotational kinetic energy of the vortex. The mixing
can therefore be found in terms of the reference mixing mo and the reference RKE, (RIE)o.
SIfthe mixing is divided by its value at M = O, denoted by the subscript i (the usual method
of presenting mixing results), then

I
I
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-2 1,[,(RRZ 1 + 2 -y(-1 ,:l IM 91
a 0 oi~j2 a (70)

The first term in braces is the result found for two-dimensional vortices in Ref. 2, and by
using the Prandtl-Glauert equation, Eq. (50), it was shown that

-2 M2)312a0 (K)oi 1L (71)
-o1 -/2

Using the definition of M. from Eq. (63) then

I2 coo2J3/2  [1 + ,(y-1) 1 C 20
znC [2i~ se l( +____ (72)

l I Eq. (72) represents the mixing rate variation with M• and the unknown sweep angle, 9. It

remains now to determine the sweep angle.

I Simple differentiation of Eq. (72) shows that there are mixing maximum points when
I - I I

= 0

ae

It is suggested that these maximum points are the only situations that can exist in practice.
They occur, for y = 1.4, at

9=0
MCcosS = '0.662 (73)1•.777

I For MK < .662 only the unswept vortex is in equilibrium. If Me a .662, the vortex angle, 0, for

maximum mixing is given byI cos9 = .662/Mtc (74)

which gives two values of 9, namely

e 1 cos'O(.662/M I (75)

I
I
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I The third possibility, MccosS = 1.777, is not of present interest since the lowest possible
value of MK that satisfies this relation (Mc = 1.777) does not remotely satisfy Eq. (55). The
variation of m/mh with e for various Mach numbers is shown in Figure 8.

The question now arises as to when the swept modes actually appear in an experiment.
It is plausible to argue that a smooth transition from the unswept to the swept mode will
only occur when the mixing rate is the same for both modes, since this would not involve a
discontinuous energy entrainment. Consequently, it is suggested that until a value of
Mc = M; only the unswept mode is apparent, where MK is the value for which

- I~wpt(76)Im, unsvept t

and

is the maximum value
m1swept

I given by (for y= 1.4)

.21047

E-1 SOt 12 .05893 (77)

Eq. (76) is satisfied when

= .662

I Eq. (77) is shown as the dashed curve in Figure 2. The combined two-dimensional and
swept vortex analysis agree qualitatively with observed mixing decreases over a wide range
of Mc. Its quantitative predictions of mixing decrease run right through the center of the
data scatter almost until MK = 1, after which the theory seems to slightly underpredict the
observed rates. Note that the swept vortex analysis predicts a finite mixing rate for large Mc
and that this rate should be reached by K[ = 3. Thus, the invocation of a "mixing maximum"
principle within the context of previously described energy considerations accounts
qualitatively and, to a large extent, quantitatively for observed mixing decreases. The

I theory implies that the flattening of mixing rates for M > .66 should be associated with the
appearance of swept or symmetrically swept ribbed structures in the flow.

I ROUND JETS

Once again the mixing is assumed dominated by vortices. There are two types of
observed vortical structures in the round jet, namely axisymmetric and helical vortices. In
both cases the mixing is given by the integral

I
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I

IIpJV~dx (78)
-1

where v, is the radial velocity, x is the axial direction and 21 denotes a characteristic length
between vortical structures, as shown in Figure 9.

Axsymmetrtc Vortices

The velocity induced by an axisymmetric vortex ring, with radius ro is governed by the
Prandtl-Glauert equation

2xx +rr r +r•"•2*0 i0 79Ir
where e is the azimuthal angle, # is the perturbation velocity potential, Mc is the convective
Mach number, and 9 p=1-M (80)

For axisymmetric structures the azimuthal variation is zero. Using Eq. (79) for a ring vortex
gives the following formulae for the axial induced velocity, v., and the radial induced3 ~velocity, v,.

2x

r 1' 1 - r cos(e-e')]d9' 81
Vx =4nRJ- P 0 + ? + 1 - 2r coso(-00)]

I -r 2x x co, (e-9'))de"1

I~~~ vrV ' o[-+ r• + 1- 2r Cos.,,," (0-
where r is the strength of the vortex and r is the radius niondimensionalized by ro.

u Helical Vortices

The effective Mach number is normal to the vortex and hence if the angle of the helix is

e8 the effective Mach number is M, cos e8 and therefore

p2= - M2coS208 (83)

The induced velocities given by one rotation of the helix (0 -+ 0, 2ir) are as follows:I
I
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I
1iL"2 42 2 rco.,..0Hd, ' (4

S[Lc r2 + 1 - 2r COs(-)] (84)

2-r(1+u) 2x ((x-G')coa(6-G')/P + Psin(,'-9)]dG' (85)

Vr  = ro x0 L & + r + 2r co o(O-0')]

( ____ 2z [-(x-#Oelain(0-01)/p -jr + pcoe(6'-9)Jd9'
.4x,- L + r2 + 1 2r cos(e-0')]

where v* is the azimuthal velocity and

= tane (8?)

In the analysis above the angle of the helix is unknown, but fortunately some
experimental data is available from the acoustics studies reported by Seiner.3 The data
makes dear that several wavelengths or modes can exist simultaneously at certain values of
Mh. The jet Mach number, MN, can be crudely related to the convective Mach number MK by

Ný = 2K(88)

and the helical angle, 0,, can be related to the wave length by

p=tane A (89)
3s 2 xo

where A is the wavelength. Seiner reports that above a jet Mach number of 1.2 the vortical
structures are helical. It is assumed that the dominant source of noise is the vortices passing
a point in space.

The variation of p with Mc can be found from a simple linear fit to the data in Ref. 13
and by using Equations (88) and (89). Thus

I(1 + 4.4Mg) "low mode"

S= I (1.5 + 5.5M1) "intermediate mode" (90)

S . (1.75 + 6.2Mc) "high mode"

One of the most interesting features of these angles is that
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_ Iq 2

21 = 4 0.51 (91)

This implies that the Mach number normal to the vortical structure, MccosOs is less than
0.71. In other words, the oncoming flow is subsonic. In the two-dimensional studies
reported in Reference 2 shock waves occurred for Mach numbers above 0.78, implying that
for the round jet the structure switches from axisymmetric vortices to helical vortices to
avoid shock waves, a hypothesis first advanced in Ref. 2.

Mixing Calculation

The formulae for the velocities given above can now be used to compute the mixing
ratio given by Eq. (3). In these calculations the effect of a large number of axisymmetric
vortices or a large number of turns of the helical vortices are represented. There is a
problem with scaling the mixing rate, because the value of the incompressible mixing is not
clear from the Schadow et a114 data. Consequently, for comparison purposes, the following
assumptions are made.

(a) For Mc < 0.6 axisymmetric vortices are assumed to exist and the scaling of
the mixing is fixed to agree with Schadow et a114 data at M = 0.26.

I (b) For Mc > 0.6 helical vortices are assumed to exist. This figure is obtained
from information given by Seiner.'3 The scaling is fixed to match the data at
Mc =0.6.

Results from the computations are shown in Figure 10 and it may be seen that theory
agrees surprisingly well with the data. Also shown are two curves computed using the high
and low modes for the helical vortices: these are not tied to any experimental data points
and are scaled by the value a helical vortex model would give at M = 0.0. It can be seen
that mode switching produces little change in the mixing. The most promising avenue to
increase mixing is to switch from an axisymmetric structure to a helical structure at as low a
Mach number as possible.I
VARIATIONAL APPROACH TO HEAT RELEASE MAXIMIZATION

I The desire is to maximize the volumetric heat release H

H=x+L -h(#, x , #, x", " ... ?)dydx (92)

I X=Xo y=-•

subject to the constraint that the velocity field satisfy Eq. (41). The key here is to find
plausible models to link the specific heat release hf to the local velocity field (#, #x, **...).
Functionals have been defined dependent upon streamline length and/or some positive
definite function of the streamline curvature. These two qualtitities provide a

I
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I characterization of the length and wrinkledness of interfaces between reactants, and the
expectation was that the longer and more convoluted this interface, the greater the total
product formation and heat release. The variational problem involves finding a flow
configuration that balances streamline convolution against the diffusive or averaging
character of the potential flow constraint.

I The first problem to be dealt with is the description of the streamline length and
curvature in terms of the potential #. By writing the formal expressions for arclength and
curvature of the streamfunction V(x,y) in terms of u and v and then substituting the
appropriate expressions in terms of the potential C, one obtains the length element as

IS= [1+ ( @y #/ 4) 2 ] 1/2 (93)

fl and the curvature K as

S(1 # #-) 2 3/2

Since the streamline length is a positive definite quantity a possible relation between it and
heat release can be plausibly assumed. The curvature, on the other hand, may be negative,
and thus the heat release can be connected to it only through some positive valued function
of K. The magnitude of K is an obvious choice, but leads to analytical difficulties in
obtaining the appropriate Euler equation for the variational problem. Instead, it has been
assumed hK - l = F. The Euler equation for this functional is

I a F a a2

- F ,x -L F#, + .1 -0 (95)

I Expanding the x- and yý- partial derivatives gives

I-o,. xF. -2#,_ F # -#, F *_ + X F__. +

xxxx , yy,x,xy, •4x4x+ * 2 ] F #+ * *F#YY + # F

+ #(#' Y xx~yy IF#xyxy +*xy xyy,,, Xy y # *Y0X+ ~ ~ ~ F ,,, +xx*- o.*

I r#xAyy + **D ''Y - 0. (96)

Realizing that all of the partial derivatives of F with respect to Ox, Oy and #,y are rational
functions of these arguments, it is quickly clear that the resulting equation for 0 is high
order and strongly nonlinear( 6 1h order polynomials in Ox, etc.). No obvious simplifications
have been found to make the equation analytically tractable, and the strong nonlinearity
urges caution in numerical treatment.
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