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LAMINAR BOUNDARY LAYER ON CONE IN SUPERSONIC FLOW AT LARGE ANGLE
OF ATTACK'

By FrangpiNn K. Moork

SUMMARY

The laminar boundary-layer flow about a eirenlar cone at
large angles of attack to « supersonic stream has been analyzed
in the plane of symmetry by a method applicable in general to
the flow about conical bodies.

At the bottom of the cone, velocity profiles were obtained show-
ing the expected tendency of the boundary layer to become thinner
on the under side of the cone as the anyle of attack is increased.

At the top of the cone, the analysis failed to yield unique
solutions, except for small angles of attack. Beyond a certain
eritical angle of attack, boundary-layer flow does not exist in
the plane of symmetry, thus indicating separation. This
critical angle (s presented as a function of Mach number and
cone rerter angle.

INTRODUCTION

The supersonic aerodynamies of pointed bodies has con-
siderable current interest in connection with the design of
aireraft and missile fuselages. An important feature of the
flow about such bodies is the behavior of the boundary layer
and, in particular, the flow separation which may occur along
the low-pressure side of the body due to angle of attack,
The present report will consider the development of the lami-
nar boundary layer on the surface of a right circular cone at
an angle of attack to a supersonic stream (see fig. 1). The
conical configuration may be considered an idealization of
the nose portion of a supersonie aircraft fuselage.

Outside a thin boundary laver on a cone, the nonviscous
supersonic flow (upon which the boundary laver itself de-
pends) is *‘conical” in the sense that physical quantities

Parabolic
boundary
loyer -~

\
Shock wave
Figrre 1.—Come at angle of attack to supersonic streain,

(such as veloeity and pressure) are constant along any ray
proceeding from the cone apex. The deseription of this
outer tlow, contained in references 1 to 3 and elucidated in
reference 4, is considered adequate for the purposes of this
report, but subjeet to restrictions which will be discussed
subsequently.

In figure 2 is shown qualitatively the ctreumferential
pressure distribution on the cone surface predicted for var-
ious angles of attack (see ref. 43, These pressure distribu-
tions depend only on the character of the nouviscous flow
bevond the boundary layver, on the assumption that the
boundary layer is extremely thin.  When the angle of attack
1s very small, the pressure deereases monotonieally from
the bottom of the cone around to the top. For larger
angles of attack there appears a region near the top of the
cone wherein the pressure gradient reverses and the pressure
increases toward the top.  As the angle of attack is furthe
increased, this region becomes greater in extent,

Pressure

(o)

(b)
(o) r O L
L4 L 4

("

Moderate a. T

Large o.

(a) Small a.
-~ Pressure distribution around econe for various ranges of
angle of attack.

Frevre 2.

As a consequence of the conical nature of the nonviscous
flow, it is shown in references 5 and 6 that the laminar
boundary layer has parabolic similarity along generators of
the cone; that is, veloeity, pressure, and density inside the
boundary layer are constant along any parabola (see fig. 1)
drawn in any one meridional plane (plane passing through
the body axis).  Of course, circumnferential variation of these
quantities is to be expeeted when the cone is at angle of
attack.

In reference 7 the effect of angle of attack on (he laminar
boundary layer is analyzed, in the limit of very small angle
of attack, with the result that the boundary laver tends to be
thicker ou the top of thu cone than on the bottom (lig. 3(a)).

V Supersedes NACA TN 2844, “Laminar Boundary Layer on Cone in Supersonic Flow at Large Angle of Attack” by Franklin K. Moore, 1952,
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‘.o )

(0) (b) (c)
{a) Small a. by Moderate a. (¢) Large a.
Fravre 3.-—Cross-sectional views of boundary laver on cone at various
angles of attack,

This is to be expected since the fluid near the base of the
boundary laver has low inertia, i1s therefore inclined to
follow the direction of the circumferential pressure gradient
more closely than is the outer flow, and thus tends to drain
away from beneath the cone and accumulate near the top.
No separation is encountered because, for small angle of
attack, the pressure gradient is alwayvs favorable (tig. 2(a)).

For larger angles of attack, when the pressure gradient
reverses direction near the top of the cone (fig. 2(b)). experi-
ment indicates the formation of boundary-layer “‘lobes”

/ +--Total-head tube

4 I \ : ‘
T

0
Angle of ottack, a, deg

A\

Ratio of measured total head to free-stream
static pressure
®

]
(b) | i

(a) Test configuration,
(b) Variation of total head with angle of attack.

Ficvre 4,—Variation with angle of attack of total head measured in
boundary layer of cone. M, 3.095; ©, 7.5°,

(ig. 3¢b)).  When the angle of attack is further increased.
the lobe pattern finally breaks away from the body to form
a vortex street (fig. 3(e)).

Recently (ref. %), at the Lewis laboratory a brief experi-
ment was carried out in which a total-head probe was placed
near the surface at the top of a cone and pointed toward
the cone apex (fig. 4()). The cone was mounted in a
supersonie wind tunnel, and the probe was used to measire
the total head in the boundary laver at a fixed height above
the surface as the angle of attack was varied by rotating
the cone in the meridional plane containing the probe.
Figure 4(b) shows the result of this test.
indicated total head as the angle of attack was increased
from negative to positive values may be interpreted to
mean an increase in boundarv-laver thickness at the top
of the cone. Bevond a certain ungle of attack, this tend-
eney reverses, and the boundary layver apparently becomes
thinner as the angle of attack is inercased.
sible indication of the tendeney to form lobes, as iHusteated
in figure 3(b).

In the present report of rescarch conducted during the
summer of 1952 at the NACA Lewis Inboratory, the laminar
boundary laver in the meridional plane of svmmetry of the
flow is analyzed for large angles of attack in order to provide
velocity profiles on the bottom of the cone and to provide

The deercase in

This is a pos-

a certain degree of insight into the question of separation
on the top.
SOLUTION OF BOUNDARY-LAYER EQUATIONS IN PLANE OF
SYMMETRY
BOUNDARY-LAYER EQUATIONS IN PLANE OF SYMMETRY

In rveference 7, it is shown that the dimensionless laminar-
boundary-layer equations for supersonic flow over a etreular
cone are

9

1 ) 2L
(745,707 et e | Py et (e 20 0

1 2 2
[f+ P @ +%Bw] )‘)‘—38‘%&]“’_‘

2 2 p'le)
S ah— g, b p‘" +2em=0 (1)
TH (=T +u+uw? (l¢)
P*';’.,_7 eT (1)

Equations (1a) and (1b) are momentum equations, equation
(1¢) is an energy balance, and equation (1d) is the equation
of state. A complete list of svmbols is provided in appendix
A. The functions f(\,¢) and g(\,¢) are related to the two-
component vector potential discussed in reference 6 and are
defined according to the relations

'Il:fx
(2)

w =g
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in a manper such as to satisfy the continumty equation
wentically.
The coordinate X has been formed as follows:

=" AN 172 .
A=,3 I:(\Pr.) Jo pll][].l 3)

The coordinate ¢ is the angle between the vertieal plane of
svmmetry of the flow and any meridional plane of the body
(fig. 1). Equations (1) and (3) imply that parabolic simi-
tarity of the Blasius type exists in meridional planes. As
pointed out in references 5 and 6. this conclusion of parabolie
similarity applies for the boundary luver on any smooth
conically symmetric body in supersonic flow (for example, a
cone of elliptic cross section).

In reference 7, all quantities are made dimensionless by
referring them to the properties of the nonviscous flow at
the outer edge of the boundary layver when the cone is at
zero angle of attack. In the present report it will be con-
venient to use a different reference condition (subscript r)
which will be defined subsequently.  The following quan-
tities on the left are to be identified with the dimensionless
groups on the right:

RN TR 3
p~p/p,
T~2e,Tu? > 4

p~pou}t

ray~pater Cup,poit,yy;Cu, )

where the coustant ¢ arises from the assumption of the
temperature-viscosity relation of Chapman and Rubesin
(ref. 9):

—=C (5a)

with (" being defined as follows, in order to match equation
(5n) to the Sutherland formula at the cone surface (denoted
by <ubsecript w):

c E( T.{)% T,,l +S8/7, (5b)

T / Tr + ‘g/ ]‘r

The quantity S may be taken as equal to (216° R)2¢, /0,2
The following additional physical assumptions are em-
bodied in equations (1):
() .\ thin boundary layer across which the static pressure
ix constant
(b) Prandtl number of 1 and constant ratio of specific
heats v
(e) No heat transfer through the surface
From equation (1¢), since the case of Prandt! number of 1
and no heat transfer is considered. 7, in equation (5b) may
be taken equal to the dimensionless siream stagnation
temperature,
The boundary conditions on the functions f(A ) and g(\.)
are: At the outer edge of the boundary layer, the u and w

.

velocity  components should take on the corresponding
nonviscous values

file, @) uyly) ()

oo, ¢) = (g (61
At the cone surface, the u and w veloeities should vanish
Ai(0,0) = aa(0,¢) =0 (6¢)

and the normal veloeity  should vanish. 1t i <hown in
reference 6 that this lust requirement is et if

f(0,0) =g(0,p) =0 (6d)

Equations (1), involving two independent variables, would
be quite difficult to solve in general. However, a certain
amount of information ean be obtained by restricting con-
sideration to the plane of symuetry, thus yvielding a tractable
set of ordinary equations involving X ax the only independent
variable,

In the plane of symmetry (e=0.7), w=gy=1.
w=f\ is even about the plane of symmetry and may be
expected to be regular there, fi,=0. The pressure and
the density are also even, and therefore p/(¢) vanishes at
¢==0,7. Thus, in the plane of symmetry, equation (la:
reduces to the following equation:

Becnuse

2
(,l“f‘.;g ﬂ¢)fu + 2 fum 0 (7a)

Every term in equation (Ih) vanishes at the plane of sym-
metry; and, therefore, in order to obtain a meaningful
equation, it is necessary first to differentiate equation (1h)
with respect to ¢ and then drop terms which vanish at

¢e=0.r. This procedure yields the following result:

2 2 2

2 4 2 p'(p)
(f+30 A’w) ng—:;o(ﬂM’)'_& gw,fx—;w !

200 ==0 (Th)

Equation (1¢) becomes
T+ h)3=T+u’ (7e)

Equations (7) may be considered a set of ordinary differ-
ential equations for the functions f(A0) and g, (A0, or

foum) and g O\ m), depending on whether the solution ix

required at the hottom or the top of the cone.  According
to equations (2), the result f(\0 or #) may be differentiated
with respect to X to give the profile of meridional veloeity u
in the plane of symmetry. The form assumed by the eir-
cumferential velocity profile # as ¢—0 or = is given hy
2o (M0 or 7) in the sense that, at a small angular distance d¢
away from the plane of symmetry, w=ga do.

The houndary conditions (eqs. (6)) become, in the plane
of symmetry,

N(o,0o0r m)=1u,(0 or =)
gor (@ ,0 or m)=1u,,(0 or ) R)
AH000r t)=gun(0.00or m)=7(0,00rx)=g, (0.0 0or x)=0

In view of the first of equations (8) and of equation (7e¢), it is
convenient to specify the reference condition (subscript r)
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to be that existing at the outer edge of the houndary layer,
for the particolar angle of attack under consideration,
evaluated at either ¢=0 or ¢=, depending on whether the
analvsis pertains to the bottom or top of the cone.

Because the pressure is assumed constant across the
houndary layer, equations (1d) and (7e) and the assumption

of constant. pressure across the houndary laver (p=p))
provide that
IS 1 ,
s =14 [1—(fi)? 9
o Tl + 71 [ (fk) ] ( )
From conventions (4), 7= ( ) 1%, For conveuience,
the following definitions are made:
36
L0 orm=" kyn (100)
2
k =34 wy (0 or ) (10b)

Equation (9 and definitions (10) are introduced into equa-
tions (7o) and (7b), and a value of p”’ (0 or =) is assigned con-
sistent with the nonviscous equations at the outer edge of
the boundary laver (p’ (0 or x) may conveniently he ob-
tained from equations (1h) and (6) by setting gpa=gan=0
when A= o).

The following pair of simultaneous ordinary differential
equations then results:

(S+k9 s 42f=0 (11a)

(kDY 29—k W2 Y
(k+§>{1+71,1[1-—(,f’)2]}:0 (11b)

and houndary conditions (8) beeome

flo)=¢(o)=1 {12a)
fri)==¢'(0)=0 (12h)
JO)Y=y¢ (=0 (12¢)

Two parameters appear: &, which depends essentially on
angle of attack, and 7y, which is essentially dependent on
Mach number.  If the angle of aitack (and hence k) is zero
or nearly zero, equations (11) become precisely those con-
sidered in reference 7 and may be solved quite readily, since
equation (11b) hecomes linear and the solution of equation
(11a) 1s well known as the Blasius function.  When  differs
substantially from zero (moderate or large angle of attack),
equations (11) are both nonlinear und the solutions are
interdependent.  For any particular case, when only the
stream Mach number, cone vertex angle, and angle of attack
are specified, the parameters £ and 71 must be obtained by
recourse to a theory of the outer nonviscous flow,

OUTER NONVISCOUS FLOW

In references 1 to 3, the results of a theory of nonviscous
supersonic flow about circular cones at angle of attack are

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

tabulated.  The ease of zero angle of attack (ref. 1) s
solved exactly in the sense that no assumption of small
vertex angle is made.  The equations are then expanded in
powers of angle of attack with the use of the zero-angle-of-
attack solution as the first approximation. Terms lincar in
angle of attack are presented in reference 2, and terins pro-
portional to the square of angle of attack are presented in
reference 3. Reference 4 clurifies the application of the
theory to the computation of flow conditions at the cone
surface.

There are two objections to the use of this theory in the
present application:

(1) Neglect of terms in the expansion bevond that in-
volving the square of angle of attack may lead 1o an insufhi-
clently accurate representation of the flow at the large angles
of attack which are of interest. Unfortunately, no non-
viscous theory is available that treats the effect of angle of
attack with greater precision. In reference 4,
of the theoretical and experimental pressure distributions is
presented for a cone of semivertex angle of 10°, at a Mach
number of 2, and of an angle of attack of 12.2°. The agree-
nrent shown 1s very good, especially sinee the angle of attack
is sufficient]ly large that the pressure distribution ix of the
tvpe shown n figure 2(b).

(2) In reference 10, Ferri points out that the method of
expansion used jn references 2 and 3 is improper near the
cone surface and leads to an erroncous form of the entropy
distribution around the cone.  Therefore, the theory cannot
be applied if the vertex angle, the angle of attuek. or the
Mach number is so large that the flow may not he considered
essentially isentropic.  In reference 7, an argument is pre-
sented to the effect that in the limit of infinitesimal angle of
attack the presenee of a boundary layer ensures that the
error in entropy distribution is of no conscquence even for
large cone vertex angles. That argument in no way applies
to the present analysis because the angles of attack con-
sidered are not infinitesimal. For the purposes of this
report, the use of references 2 and 3 in their present form is
justified only in cases for which isentropic flow may be
assumed.

According to reference 4, the velocity components at the
cone surface are, using the notation of references 1 to 3 for
quantities tabulated therein,

L comparison

ul(‘p) I+a-- cos ¢+
u., 1r U, Ir 1 o
53 c9+.)+( éicot()—{—i)cosl’ga]—}-...
(13)
u/l(‘P) /’Ll,,___. _= in 2
7 ausm e+ a? [ 7 cscO = cot 9] sin 20+ ... (14)

The pressure and density are

(4 (SO)

p + \1+

1+a 00S¢+a2 ~cot o+

(Z+3 1‘\22—%%.:01; e) cos 2 |[+. .. (5
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1 1
s g-tat | 2 TP+ 2 eot 0+
p 2 2

. ror

. - £
%:4_'1) .\[-__‘]) : cot () (Ob ..‘p:l-l— (16)

The barred quantities are those pertaining to the case of
zero angle of attack.  From cquations (10b), (13), and (14),

FLOW AT LARGE ANGLE OF ATTACK

or, approximately,

‘*2 iw, 1 ! a I,'l.' -
"‘.;[*eﬁ'“ (\05"'9-' ¢ u 29‘7!)]“*"" e

The plus or minus sign refers to ¢ 0 or =, respeetively,
= ¥ A

g (1L _\1—6 ‘) A
> :{:a + 7687 8 i From conventions (41, equations (133, (t3, and 16, and
ko= - + ..
38 L, U M . - Y1
l+ta ﬂ'+a‘ (1 et the result of reference 1othat 17 -7 b—-u% -0 7 A,
Wy | U . 2 o
o e w Eepte (e ) traltar (2424 )
| R Y A W (u, 2P i -1 1= n
I T 1—w\#7) pop 11— Du 1» -’v T
\ 1 = __))
+ a + P 515 P —1 1w
or, approximately,
1 n ( ?ln II) P P2 Po P2 W r (& n s ﬂJ n ¢ l
= 1 2(1+% ) Sl b e (C-D )R [ (%)
T, 1— { ia( +p 1) I: +p » D D 11— a\p p +u'+/r 7 $+
In figure 5 are shown £ and 1'7} as functions of o for a cone | 1.2
of semivertex angle of 7.5° and a stream Mach number of |
3.1. From the tabulations of reference 2, it may be inferred -
that under these conditions the isentropic assumption leads |
to errors of less than I percent in quantities proportional | 08
to the angle of attack. }
SOLUTION OF EQUATIONS AT ¢=0 F
. . 04
Equations (11) have been solved, subject to boundary | Parameter
conditions (12), at ¢ =0, and various angles of attack for a ! - L ]
cone of semivertex angle of 7.5° and a strearm Mach number l ~——/n
of 3.1 for which the values of & and 17, are given in figure 5 E 0
The computations were carried out by Dr. Lynn Albers of the | L
Lewis Iaboratory and are described in appendix B, The AN
resulting boundary-layer profiles of meridional velocity w and . \
gradient of circumferential veloeity du/d¢ are shown in figure -04 ~N “‘
6. The curves for =0 are obtained from reference 7. The \ !
profiles show clearly that, as the angle of attack is increased, l
the boundary layer becomes thinner on the bottom of the -08 22
. - w .
cone, and the shear stress at the wall incereases. |
Skin friction.——The meridional and circumferential com- N -
ponents of the viscous shear stress at the bottom of the cone L Nt T
surface may be written in coefficient form as follows: -1.2 S e \~ 18
[(‘v, ] ~ »1 071 = A;F‘~-~ = l/T,
sle=0™ O'/ v 0 \“\0\
‘7‘“u -16 == T \\ L4
[Crloms=0 :
ol 1 - 1
Te =_. " ( ) 2.05 2 4 6 8 0'°
O¢ =0 lp u aJ OSO u=3 Angle of attack, o, deg
2 v Frevre 5.-—Variation of parameters k£ and 1/7) with angle of attack.
.. . . . . M. 3.1; 0, 7.5°
where the quantities on the right are in dimensional form.
Application of equations (1d), (2), (3), (4), (5), and (10a) [€1,),.,=0 (19b)
vields
B ¢ R.FoC
2ol rlemo=2F"(0 N el 3eky
36 (Crle-a=21"(0) (19a) 30| ou |, = 30k¥0) (19¢)
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Velocity ratios i I ’
— e o g
A/ dp oV - { ; i
== uzuy of F'(A) - 1 1
a ] ; |
K} (degq) ke !
(4] &
T X <
17 -
_ / \\ ]
1.2 F
© @
~ r-\ \ 5
= 4.3 <
3 R ~ | | ¢
é‘l.o 12.0 \.§ g
3 1201 -ZF" T -
> - P =]
: 6'0“'%{,/: - 4~ ]
c 7 //’ 7 §
: / / 7 1 :
Ss L /83 | 7 2
- A 77 /
.6; /1,77 4
£ / ,’/’ 0,/
- ’r 77 //
z / i / 0 4 ) 12
2.6 1/.‘/’ A Angle of ottack, «, deg
/ ’
_> / /// // () Fiavre 7.—-Meridional and circumfercotial snin-friction coetlicients at
§ I g | 0° ]4.3%°160° 12.0° | e=0. M. 3.1;0.75.
s / 14 o_1lo._ lo._lo. o
$ / '/ 8 | .265| .385| 413 | 474
Ea A7 1.6 | .517] .210| .78 | .821 | —
g s 2.4 | .729{ .904| 929 .966 6
S 11/ 1’ 3.2 | .876] .979] .987| .996
g 1 /’ 4.0 | 956 ]
= /V / ¥ ()
S o 2 0 0 _To_To 0 —]
sy 8 | .902) 942 954} 952
F: ,l/// I .6 |1.2921.165[1.143|1.088 ;
| VX4 2.4 |1.325)1.0091.072|1 029 | _]| “ 1 |
1/ 3.2 [1.205[1.029(1.016 |1.004 € \ »
4.0 [1.0891005 |nx~ 4 ‘ ;
0 | 2 3 3 5 > \ | {
Dimensionless coordinate, A a4 : i
FicUre 6.—Velocity profiles at ¢=0. M, 3.1; 0, 7.5°. g |
L i i
where i \ : i
wmz *
R,=Ph% g \\
B1 2 )
k3 i !
Variation of these skin-friction coefficients with angle of a | |
attack is shown in figure 7 for a particular case. |
Displacement thickness.—In reference 11 it is shown that :
the displacement thickness A for a cone at angle of attack is
the solution of the equation ‘
|
3 0 0 4 8 12
§0P1U1(A'—5z)+5¢;[lel(A"5o)]=0 (20) Angle of attack, a, deg
where Ficure 8.—Displacement thickness at ¢=0. M, 3.1; 0, 7.5°
© °
8= f (1—:7 dyl
0 1 . . . . -
l (21) | where k is defined in equation (10b). From equations (5)
® and (9), with &, defined in terms of a Reynolds number,
3, = f (1—1’3’— dy ’
’ 0 W,
R = 1tds
At ¢=0, w;==0 and equation (20) may be solved directly * P
5,4 ks CR, (° 1 2
A= 0 2 R, = 1— "+ (1— <) | dr 23a
T4E (22) w=y 5, |1 (1= (232)
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Using equations (10) and applving 'Hospital's rule to
evaluate at =0 the limit of the ratio w/w, appearing in
equation (21) vield

Ia’s,::\'/".f’f [‘_‘V“LTll (l—f"")]«lx (23h)

Thercefore,
JE RN Sl O PP S P |
VR, II.V—J; Vi-+k f—y¢H)+0 _f),:l-}—Tl (i f \]s I\

(23¢)

Figure 8 shows the variation of displacement thickness with
angle of attack for a particular case and again illustrates the
expeeted progressive shift of the boundary layer from bottom
to top as the angle of attack is decreased.

LIMITATIONS OF METHOD AT ¢=x

Except for quite small angles of attack, equations (11)
cannot be solved at the top of the cone (¢==). Over part
of the range of angle of attack, the solutions are indetermi-
nate; and, bevond a certain angle of attuck, the solutions
do not exist at all.  These properties of equations (11) will
be demonstrated and discussed in the following paragraphs.

Asymptotic forms of equations. -The difficulties just
mentioned may best be inferred from the asvmptotic forms
of equations (11) at large .. From equation (12a) it is clear
that, for large A, f and ¢ may be written as follows:

f=At FN)
Y=A+¥(N)

where F/ (@ )=y¢'( o )=0. Substitution inte equations (11)
vields the asvmptotic forms for large A

(14+RNF742F""=0 (24a)

(1+ k)N + 2977~ 2 (’t+;> vl [‘ +} (”3))]
(24b)

Indeterminate solutions. -(‘onsideration will now be given
to the problem of obtaining the complementary solution of
equation (24b). Defining a new dependent variable

Gzel:‘;k)‘z\l"
vields the equation
o 5, 7 (VRN .
G — 4k+12+< : )x](,-o (25)

This is essentially Weber’'s equation (ref. 12, paragraph
16.5), and the asymptotic solutions are

L kR0

RISV N eE
SO

k+1/3

ST
2

0y
-

268671 —083

7

Thus, the asymptotie complementary <olutions of equation
24h) are

(2623

126

Beeause it s required that ¥ies 00 <olution 126h. i
rejected when A7-—1 3.
retained, and an additional andetermined constant appears
When £72-0 (at the bottom of the coner, the complete soln-
tion of equations (11 exists and s unique, and solution
(26b) is to be rejected in forming the asvmpiotie solution.
Therefore, if solution (26h) and the associated constant must
be retained when A< --1 3,
solution for A< — 1 3 cannot be unique,
has been verified by numerical integration of equations 11,
as deseribed in appendix B.

This indeterminacy arises because essential information

If k<. - 1 3. both solutions may he

it s clear that the complete
Thi= ndeterminues

has been lost by specializing the equations to apply only in
the plane of svmmetry. When the equations are so written,
it is implied that the boundarv-laver development in the
plane of syvmmetry is affected only by conditions in that
plane.  The lateral region of influence of points on the hody
in the plane of svmmetry grows parabolically (the <haded
regions in sketehes (a) and (b)), according to the law of
molecnlar diffusion, when, as in the present instance. there
is no pressure gradient in the strean divection.  Fluid enters
the boundary laver from the outer stream.  If the fhud then
moves laterally (because of the angle of attack) out of the
region of influence of the plane of svmmetry, as shown in
sketeh (), the flow is uniquely determined by outer stream
conditions in the plane of symmetry.  Clearly, this is the
case when g=2m and ais small. and when ¢ 0 and o has any
positive value.  When ¢g=m. except for small angles of
attack, the lateral motion of the finid i inward relative to
the region of influence, as shown in sketel (b, This fluid
then brings into the region of influence of the plane of sym-
metry inform.tion concerning houndary-layer development
as it proceeds around the cone from the bottom.
7 may not uniquely

Conse-
quently, outer stream conditions at ¢
determine the boundary-laver characteristies at ¢ x, and
indeterminate solntions of equations {11) may be anticipated.

(c)
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The condition k= — ' specities un angle of attack such that,
at ¢~ x, the outer flow streamlines are just tangent to the
parabolic vegion of influence. This stitement may  be
proved as follows: From definition (10b), if & — %, then

Wy, = =820 Near p=w (see sketeh (), wy=wey de-
Wy, Thus, when A= —Y%, wiu;- 2. From this last

equation and the geometrical properties of parabolas, it may
be inferred that the streamlines are parabolas with focus at
the cone apex. Therefore, the situation shown in sketeh
() applies if #C—% and equations (11) have ne unique
solution.

It is noteworthy that the mathematieal nature of the
indeterminacy <o far deseribed is quite similar to that whieh
characterizes solutions of the Falkner-Skan equation for the
plane boundary layer when the outer flow veloeity is pro-
portional to ™" (« being the streamwise coordinate and m a
positive number).  Hartree (ref. 13) has treated this prob-
lem in detail and finds an “extra’ asymptotie solution similar
to equation (26h), decreasing with distanee away from the
surface according to a power law. This extra solution s
rejected by Hartree on the ground that an unrealistically
thick boundary layer would be predieted if the solution
were retained.

A thorough study of the asymptotie nature of equations
(1) might lead to a similar conelusion in the present problem.
However, in the present problem, the mathematical difficulty
goes deeper; when A2 —14 numerical integration failed to
give unigue results, even though solution (26h) is certainly
to be rejected.  Thus, the condition &> — % is not sufficient,
but rather only necessary for uniqueness.

Inspection of the profiles shown in figure 6 for a= A =0 indi-
cates that, for 0>>£> —1;, the streamlines within the bound-
ary layer may be expected to ineline more sharply toward
the plane ¢== than do the streamlines near the edge of the
boundary layer and thus may bring information from beneath
the cone even though the outer ones do not.  Therefore, the
necessary condition for uniquer~ss would be (see egs. (2)
and (10a)):

we\ 3 (VN _8
(u)m_z“ 0”2

or,
(279)

k> -%//G_:)m

Figure 6 indicates that perhaps the maximum value of ¢/ /f’
is to be found at A:=0, in which case eriterion (27a) would
become

1 7(0) -
k>—g 10
ZT3y0) (27h)
Nonexistence.—The solution of equation (24a) is

Free & M

The requirement that F/'(®)=0 is met only if k>—1. If
k<-—1, no solution of equation (24a) exists which satisfies

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the boundary conditions, and, therefore, the Prandtlbor dary -
laver equations fail to deseribe the fHow. This was first
pointed out by Haves in reference 50 The Prandtl equations
differ from the exact equations essentiafly in that o thin
bhoundary laver is assumed.  Thus, if £< 1. the boundary
laver cannot be regarded as thin. [t way be noted that
cquaton (227 implies that, as & -1,
thickness approaches infinity,

Any boundary laver grows by the entrainment of lad at
That is, fluid particios aequire vorticity by

the displacement

its onter cdge.
entry into the boundary layver.
occur - fluid particles cannot leave the boundary laver, thus

The reverse process ciatinoet
losing their vorticity,  In the case under considerntion, 1
will be shown that when &< -1, the <treanlines at the oater
edge of the boundary Taver would proceed ontward relative
to the boundury laver, if the boundary layver were to retain
parabolic similarity.
impossibie, the Prandtl equations fail to vield a solution.
From reference 1, the normal velocity at the onter edee

Beeause such a situation is phvsieall

of the boundary laverat ¢ wis

o~ g?},-}-!/t - A ((3)/;/‘ )

where £ is a somewhat arbitrary definition of the onter edee
ory
of the boundary laver and ( )
: oy,
of the outer nonviscous flow. The equation of continity
for the outer flow, evaluated at the surfaee of the conein the

= obtained from anafvsis

plane of symmetry, may be written

", 1 oy Qry ’
it v - 9
P +0J‘ d¢ +( oy )br . 0 (2

With equations (28) and (29, combined. the flow inclination
at the outer edge of the boundary laver s

voo0A b 1 ow

= (3N
W or u; Og¢

The Prandtl (thin) boundary Iayer may he expected to exist
only if

9’1\51
or” u,
or, with equation (30) introduced  if

1 o, r 9 .
fu; d¢ >_[1 +/l—A or h A):, (31

If parabolic similarity is assumed (k and A cach proportional
to y7), inequality (31) becomes

1 ow. 3
u, O¢ 2
or, from equation (10h),
A>—1
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SEPARATION
The critical condition &= —1 might be expected to be of

physical as well as analytical significance beeause some sort
of catastrophic thickening of the boundary layver is implied.
In particular. this critical condition may reasonably  be
supposed to be conneeted with the phenomenon of laminar
separation.  In order to explore this possibility, it is first
necessary to deseribe qualitaavely what is meant by sepura-
tion in three-dimensional boundarv-laver flow.  Diffienlty
has been encountered in establishing a satisfactory qualitative
criterion for three-dimensional separation (see, for example,
ref. 5. Therefore, in the subsequent  paragraphs, the
general problem of three-dimensional separation will be
discussed, and then the particular ease of the cone at angle
of attack will be considered.

GENERAL CONSIDERATIONS

Plane flow. In plane flow, separation is customarily
identiticd by the appearance of reverse flow (sketeh (dy).
In order o generalize this concept to three-dimensional
flow. 1t is necessary to consider the separated region as a
whole.  In plane 5w, the separation point of sketeh (d)
might be regarded as the forward boundary of a vortex
sheet embedded, or eneapsulated, within a region bounded
by the body and a stream surface meeting the body (sketch
terr. Sketeh (e) shows separation followed by reattach-
ment.  Of course, the sort of separation of greatest engineer-
ing importance occurs when such an embedded vortex sheet
rolls up to form a large concentrated vortex, or is shed as a
vortex street, with the consequence that the outer flow is
greatly disturbed and a large pressure effeet (form drag)
OCeurs,

s é

7.
~ Separation point

/%4

<-Vortex shee?
(d) (e)

If a boundary-layer solution of the type shown in sketeh
(r' were obtained, the vortex sheet would be completely
embedded in a thin boundary layer, and would presumably
tend to remain flat against the body (leaving out of account
possible effects of laminar instability). However, if the
theoretically predicted vortex sheet extends downstream
into a region where the thin boundary-layer equations do
not apply (that is, where the solution “blows up” predicting
an infinitely thick boundary layer), then in that region the
vortex sheet would not be constrained to lie flat and the
rolling-up process would occur.

The foregoing discussion seems to provide the proper
description of what occurs behind a bluff body: A complete
solution of the thin laminar boundary-layer equations for
the flow over a cylinder would probably yield a streamline

— Vortex sheels

pattern of the form shown in sketelh oy, The boundary
laver would be predicted to gain mass flow by entrainment
as 1t proceeds around the body, until 1t reaches the viemiry
of the rear stagnation point.  There, the mass low contained
in the boundary layver must finally leave the body and proceed
downstream.  The boundary Iaver therefore cannot remain
theoretically thin, but rather must approach infinite thick-
ness i violation of the Prandd assumptions. In o this
region, then, the aft boundaries of the pair of vortex sheets
are free to roll up into concentrated vortices, thus distorting
the outer flow in such a way that the rolling-up process
engulfs most of the region which wounld otherwise be occupied
by a flat vortex sheet. The leading edge of the sheet.
however, is still constrained to lie flat against the body.
Three-dimensional flow. The foregoing deseription of
plane separation may be generalized to three-dimensional
flow as follows: A separated region on a three-dimensional
body consists of a vortex sheet embedded between the body
surface and a stream surface attached to the body i a closed
curve, as shown in sketeh (), which 15 a view of the body

from above. The arrows indicate possible directions of

Separated
region




10 REPORT 1132

resultant shear stress at the surface and outside the separated
region. The situation shown in the sketeh would corvespond
to separation and reattachment in plane flow. If somewhere
within or at the boundary of the separated region the theo-
retical boundarv-layer solution would a priori be expeeted
to blow up, then the vortex system within the separated
region is free to roll up into a more or less vigorous system of
vortices.

Thus. thin-boundary-layer theory can be used to obtain
the following information concerning laminar separation:

(1) The solution may establish the existence of a vortex
sheet which is embedded in a flat bubble on the surface and
which could adhere to the surface and vemain part of a thin
boundary laver, provided that the Prandtl equations are
valid everywhere in the separated region.

(2) The solution might predict the boundary laver to go
to infinite thickness somewhere in the separated region.  If
this happens, then the separated region is free to roll up, thus
providing a vigorous wake (which, of course, is not amenable
to boundary-layer theory).

For flow about a plane body. the boundary-layver solution
is not needed for predicting the breakdown of the Prandtl
assumptions.  Physical considerations suthice to establish
where (at stagnation point of outer flow) and when (alwayvs)
the breakdown occurs.  In three-dimensional flow this is not
ahvays so elear. and at least certain features of the solution
are required to be known.  In order that the boundary-layer
equations be applicable, the solution must be such that the
houndary layer entrains fluid (that is, flow streamlines enter,
but do not leave, the boundary layer at its outer edge). In
a Cartesian svstem, where A(r.2) is the outer edge of the
boundary layer. this requirenient may be written as

why 4wk, >0, 8 (32)

Equations (32) and (28) may be combined with the equation
of continuity in the form

or
" ol.:/'),=‘,~'—l(mun,+(p,u-,),1

to vield

o
or {th —-A)PIUII'*’(?:' [k —pyr >0

or, in vector notation,
div [(h—A)p1q:] >0 (33)

where A is the displacement thickness, and L is the velocity
vector in the outer flow evaluated at the body surface.

In many cases, circumstances may be found for which
inequality (33) cannot be satisfied. For example, for plane
incompressible flow about a evlinder and, as is customary,
with » and r defined parailel to the surface, inequality (33)
may be written

d l’ul

— (h—4a) —

de ™ . drx
h—a 7

‘NATIONAL ADVISBORY COMMITTEE FOR AERONAUTICS

As the rear stagnation point of the outer flow ix approuched,
i, tends to zero, while —du, dr remains finite and positive,
Therefore, since A—A by definition must be greater than
zero, d(h—2A)'dr must approach infinity i clenr violation
of the boundaryv-layer assumptions,

SEPARATION ON CONE AT ANGLE OF ATTACK

In the previous discussion, it was concluded that separation
involving a strong vortex pattern oceurs if a tentative
boundary-tayver solution predicts an embedded vortex sheer
coupled with a local breakdown of the assumption of a thin
boundary layer. In the case of the eene, inequality (33,
may be used to prediet the circumstances under which the
houndary layver may not be regarded as thin: When the fact
of parabolic similarity is introduced (h—23  proportional
to —yr), inequality (33) becomes
_ ”'l.c_':i B,

*Q (h--3)
Qe <

3
h—A - wy (34

This inequality indieates infinite  boundarv-layver thick-
ness only when wy = 0 and, even then, only if wy, ix negative
(which is true at the top of the cone, ¢ 7) and larger in
magnitude than 36u,. This is true only for angles of attack
larger than that for which k-~ —1 (by eq. (10bh. When
the angle of attack is smaller than this eritieal value, the
right member of inequality (34) is always negative, and
O(h—2)/d¢ may be considered to vanish by =vimetry
at ¢-== without violating inequality (343,

The foregoing result may be explained on physieal grounds
as follows: As the boundary layer proeeeds around the cone.
it entrains fluid which it then conveys toward the top
(svmmetrieaily, from both sides of the cone). In the plane
evlinder ense, the fuid similarly conveved must finally
erupt from the boundary laver when the stagnation point
is reached.  However, on the cone, the boundary layer grows
parabolically along generators; and. henee, if the crosstlow
15 not too strong (small angle of attack). the fluid brought
to the top may simply become part of the growing boundary
layer. For larger angles of attack. the boundavy layer
cannot grow at a rate suflicient to absorb the additional
fluid, and eruption occurs with the consequent breakdown
of the thin-boundary-layer assumptions.

Accordingly, it is proposed that when the angle of attack
is less than that for which & - —1, a thin boundary layver
may cover the cone (fig. 3(a)). For larger angles of attack,
any vortex sheet present will voll up to form attached lobes
(fig. 3(b)); for still larger angles of attack, a vortex street
is produced.

Thus, when £</—1 (angle of attack greater than that for
which k=1), strong viscous cross forces (viscous lift) on the
cone may be expeeted.  These forees are discussed by Allen
and Perkins in reference 14, Of course, a weakness of the
present analysis s that no indication is given as to the
strength of the rolled-up vortex system beeause, when k= —1,
the presence of an embedded vortex sheet over the top part
of the cone has not been established, It secems likely that
such a vortex sheet does exist because a rather strong adverse
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pressure gradient (fig. 2(b)) always exists when k=—1. In
fact. it may be shown (most conveniently by evaluating eq.
(7a) at A=) that an adverse pressure gradient exists
when k< —2/3.

Equations (13), (14), and (10b) give the critical angle of
attack corresponding to A= —1. This angle is presented as
a function of stream Mach number and vertex angle.  Figure
9 shows the results of such a calculation. The critical angle
of attack is given as a ratio of angle of attack to semivertex
angle for convenience.  The results suggest that, in general,
separation involving lobes occurs later (in terms of relative
angle of attack «/0) for the smaller vertex angles, particu-
larly at higher Mach numbers.  Figure 9 indicates the pos-
sibility of rather profound qualitative differences in the
flows at high Mach number about cones of different vertex
angles.

The foregoing interpretation of the eritical condition
k= —1 is supported by the experimental result shown in
figure 4. From figure 5, k=—1 when «=6.2°, under the
conditions of the test. Figure 4(b) shows the measured
total head rising us the angle of attack is inereased beyond
6.2°,  Possibly this effeet is caused by the induced field of
the svmmetrical pair of vortex lobes sweeping away the
thick boundary layer between, thus reestablishing a thin
boundary layer at the top of the cone.

It may be of interest to note that if similarity also holds
for the turbulent boundary layer on a cone, and the similarity
law is nearly linear (rather than parabolic as in the laminar
case), separation would first appear at a higher angle of
attack than in laminar flow. In fact, equations (10b) and
(31) or (33) would yield the criterion k= —4/3.

For the boundary layer produced by supersonic flow over
any smooth conically symmetric body in supersonic tlow
(such as a cone of elliptic cross section), inequality (33) and
the condition of parabolic boundary-layer similarity may be
used to find & criterion equivalent to £= —1 for the maximum
angle of attack consistent with a thin boundary layver.

CONCLUSIONS

The laminar boundary-layer flow about a circulur cone ut
large angles of attack to a supersonic stream has been ana-
Iyzed in the plane of symmetry with the following resul(s:

1. At the bottom of the cone, profiles of meridional ve-
locity and of the gradient of circumferential velocity were
determined and showed the expected tendency of the bound-
ary layer to become thinner on the underside of the cone as
the angle of attack is increased.

2. At the top of the cone, except for very small angles of
attack, the analyvsis (which is restricted to the plane of sym-
metry) failed for the following reasons:

(n) For angles of attack greater than some rather small
value, the boundary laver brings information from beneath
the cone into the vicinity of the plane of symmetry at the top.
Therefore, the analysis, which deals only with the plane of
symmetry, vielded indeterminate solutions.

(b) For angles of attack greater than some angle (roughly
of the order of the cone semivertex angle), no boundary-
layer solution is possible.  The characteristies of the outer
flow and the known parabolic similarity of the boundary
layer would together imply that, bevond this critical angle,
there would be a component of flow leaving the boundary
layer. This is physically impossible, since a boundary layver
always entrains fluid. Thus, beyond the eritical angle of
attack, no solution can exist for equations which presume a
thin boundary layer.

For three-dimensional flow it is proposed that a separated
region be regarded as a vortex sheet embedded in the bound-
ary layer, remaining flat against the body if the assumption
of a thin boundary laver is valid throughout the region. 1f,
however, the boundary-laver assumptions break down any-
where in the separated region, it is inferred that the vortex
sheet may roll up to form strong vortices which may either
remain attached or be shed as a vortex street.

On the cone, therefore, the critical angle of attack bevond
which no boundary-laver solution is possible at the top of
the cone represents the maximum angle of attack for which
the boundary laver is everywhere thin or, alternatively, the
minimum angle of attack for which major disruption of the
flow may be expected because of the formation of strong
vortex lobes. Bevond this angle of attack, strong viscous
cross forces may be anticipated.

A similar eriterion could easily be obtained for the bound-
ary layer on any smooth conically symmetrie body in super-
sonic flow.

The assumption of a suitable similarity law suffices to es-
tablish a similar criterion if the boundary layer on a conical
body is turbulent.

L.ewis FrLicar PropuLsioN LLABORATORY
NatioNaL Apvisory COMMITTEE FOR AERONAUTICS
CLevELAND, Outo, September 15, 1952
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APPENDIX A
SYMBOLS
1e following svmbols are used in this report: 2% ratio of specific heats
The foll ¢ symbol lin tl t tio of specific |
C constant appearing in temperature-viscosity | A displacement surface height
relation (eq. (5a)) [ mass-flow defect associated with meridional
e component of skin-friction coefficient in velocity profile (eq. (21))
r-direction 8, mass-flow  defect associated with eircum-
re component of skin-friction coefficient in ferential profile (eq. (21))
¢-direction o semivertex angle of cone
¢, specific heat at constant pressure 0 sine of semivertex angle of cone
FO\ function appearing in asvmptotic representa- | A dimensionless variable (eq. (3))
tion of f (eqs. (24)) M coefficient of viscosity
f\e) funection related to meridional velocity u by | » density
eq. (2) @ angular coordinate around cone
g\ @) function related to circumferential velocity | w(2) function appearing in asymptotic representa-
w by eq. (2) tion of ¥ (eqs. (24))
h height of outer edge of b'()“"dl"'.‘: Inyer ) Y(\) function related to civcumferential velocity
k related to (tlrcumfo.rcnt'ml gradient of cir- w in plane of symmetry by equation (10u)
vumfclroelntml veloeity in plane of symmetry Subseripts:
(eq. (10b)) mar maximuim
M Mach number . .
. r reference  condition, nonviscous flow at
statie pressure . .
. surface, at ¢=0 or g=x, whichever is
Q velocity vector at outer edge of boundary o
= laver appropriate
: swaluation outer edge bo v laver
R Reynolds number, pyu,2/m 1 ¢ at er edge of boundary laver

z
Ry, I, In’aw Revnolds numbers, p,u,A/ny, pu,8,/u,,

pthd,/uy, respectively

T abselute static temperature

u meridional component of veloeity

v component of velocity normal to surface

w circumferential velocity component

x coordinate along generators of cone

y coordinate normal to surface

a angle of attack (positive as shown in fig, 1)

(alternatively, nonviscous flow at surface)
Subscript notation for partial differentiation

has been used

Superseripts:

’ Primes denote ordinary differentiation with
respect to A or g

- Bar over quantity indicates evaluation of
nonviscous flow at surface when cone is
at zero angle of attack

APPENDIX B
NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

By Ly~NN ALBERS

The two simultaneous nonlinear ordinary differential
equations (11a) and (11b) together with boundary conditions
(12) constitute a two-point boundary-value problem. The
method of numerical solution used applies directly only to
problems for which all boundary conditions are specified at
a single initial point (the origin, in the present case). Each
numerical integration was therefore performed starting with
boundary conditions (12a) and (12b) and a tentative speci-
fication of '7(0) and ¢’/ (0). In each case, such integration
was carried out for a suflicient variety of conditions f'/(0)
and ¢’ (0) so that the correct set of initial conditions yielding
the proper behavior at A= » (boundary condition (12a))
could be inferred to the desired degree of accuracy.

Integration was performed according to the following basic
scheme: With the value of f///(A) and ¢//'(\) given at five
closely spaced values of A, fourth-degree polynomials may be

passed through the two sets of values of f” and ¢’”’.  Then,
if £, 7, /7, . ¢, and ¢"" are known at the fifth point, the
polynomial representations of /77 and "’/ may be integrated
to yield f, ', f", ¢, ¥'. and ¢'" at the next (sixth) point.
These quantities may then be substituted into differential
equations (11) to yield 7 and ¢’*” at the sixth point. In
this way, the solution may be extended one step at a time, in
each step by use of the solution at the five previous points.
In order to begin this procedure, the solution must first be
found at five points starting at the origin and must be subject
to boundary conditions (12b) and (12¢) and the tentative
selection of f/(0) and ¥"*(0).

This preliminary calculation was done in the following
manner: "//(0) was calculated directly from equations (11)
and (12) and was used as an initial estimate of f'’” at the next
four points. Given f(0), f/(0), and f’(0), the values of f, f’,
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and f’ were computed at the second point by integrating a
fourth-degree polynomial passed through the five values of

£’ In a similar manner, ¢, ¢/, and ¢’/ at the second point

were found. Direct substitution into equations (11) then
vields improved estimates for f”’/ and ¢’’’ at the second point
and thus an improved polynomial representation of these
functions which may be used to obtain values of £, f', 1", ¥,
¢/, and ¢’ at the second point, and so forth, until improved
values have been obtained at the fifth point. This procedure
was repeated in an iterative manner until convergence was
obtained at each of the five initial points.

All caleulations were performed on the 1BM Card Pro-
grammed Electronic Calculator. Results are considered
correct to four significant figures,
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