~—

/v o - . o D e W S e N NS GE W o em e .

Old Dominion University Research Foundation

o9

AD_AZ78 319

. ERResaong g

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES MOSRTR: 94 0206

OLD DOMINION UNIVERSITY ABDTOved for publ 10 roy
NORFOLK, VIRGINIA 23529 distribution uny 1muwaaao
REACTING COMPRESSIBLE MIXING LAYERS: @
STRUCTURE AND STABILITY

By DTIC

ELECTE Boy
Chester Grosch, Principal Investigator APR2 1 1994 ‘-

F

Final Report
For the period October 31, 1993

Prepared for

Air Force Office of Scientific Research
Building 410/NM

Bolling AFB DC 20332

Under
Research Contract AFOSR-91-0250
Dr. Marc Q. Jacobs, Program Manager

This document bas besn approved 4-12040
B e el ‘ &Y mmﬂ|\||\\\l\l\i\\\||§\\\|\\||1\\||\

stribution 1s unai umted

October 1993 T IR R

94 4 20 119




B )
REPORT _OCUMENTATION PAGE N8 e 100 0123
LIRS S R L R AP At MRS M I A R I e A Lk Rl il Rt TULT My et t o Llie L erzatg ..
338 ~34m3 tRe Tyt 3 meacey 42 o L a 7 TrIrmgt A jenld lmmenty t L13eR Iy e T m, teer giie b bt
R TS L AN LRy MY K B IR 32 St S = o LI32T L VO Tt A0 L3 ey Ter, ey Dractarate b E ML I S o S R A TP R S LT YY)
Sa0s = 3mads S et ITI L mqein L d JJ0N0 4302 ar@t tma et s s ntymg emant yr3 A e Qaperanr  RegyTicr Pet et $702.3788) Aasr cztin 1 (0503
1. AGENCY USE ONLY (Leave blanx) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FINAL/O1 JUL 91 TO 30 JUN 93

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
STRUCTURE AND STABILITY OF REACTING
COMFRESSIBLE FREE SHEAR LAYERS
6. AUTHOR(S)

2304 /CS

AFOSR-91-0250
DR__GROSCH 61102F
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

OLD DOMINION UNIVERSITY M54 02 06

46TH STREET & COLLEY AVENUE

NORFOLD VA, 23508 A0SR 94— 91 67

9. SPONSGRING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
. AGENCY REPORT NUMBER
AFOSR/NM

110 DUNCAN AVE, SUTE B1l15 4 AFOSR-91-0250
BOLLING AFB DC 20332-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

The contract is in support of research on the structure and stability of reacting
compressible mixing layers. The research performed under this contract has
resulted in our learning a great deal about the structure and stability of reacting
compressible mixing layers.

14 SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR(SAME AS REPORT)
NSN 7540-01-280-5500 Stardard form 298 Rev 2-839)
;';.3“‘.“?.0 Dy 275 st i9.7%

4—




o @

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

REACTING COMPRESSIBLE MIXING LAYERS:

STRUCTURE AND STABILITY

By
Chester Grosch, Principal Investigator

Final Report
For the period October 31, 1993

Prepared for

Air Force Office of Scientific Research
Building 410/NM

Bolling AFB DC 20332

Under
Research Contract AFOSR-91-0250
Dr. Marc Q. Jacobs, Program Manager

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

October 1993

Accesion For l
NT!S CRA& Y
DT TAB O
Yyoannourted ]
Jsuhcavon
BY e
DiLtibuticn|

Availability Ccaes

7\:'.?5 andfor

Dist Special

Al |




REACTING COMPRESSIBLE MIXING LAYERS:
STRUCTURE AND STABILITY

C.E. Grosch

Old Dominion University
Norfolk, Virginia 23529

ABSTRACT

Understanding the structure and the stability characteristics of a reacting com-
pressible mixing layer is of fundamental importance. Also, this flow can regarded as the
simplest relevant model of the combustion process in the scramjet. The theory describ-
ing the structure and stability of this flow is reviewed. This includes the structure of
the mean flow and the combustion model, both of which determine the stability charac-
teristics. Among the subjects included in the review of the stability characteristics are:
the eigenvalue spectrum, convective Mach number, growth rates, and the tramsition
from convective to absolute instability. Comparisions to experimental and numerical
simulation results are made where possible.

1. Introduction

Understanding the stability characteristics of reacting compressible free shear flows
is of fundamental importance (Jackson, 1992) and may have pocsible usefulness in the
development of the scramjet engine (Beach, 1992). As discussed by Drummond and
Mukunda (1988), the scramjet combustor flow is complex but spatially developing and
reacting compressible mixing layers of fuel and oxidizer provide the simplest relevant
model. In modeling this flow it is assumed that initially the fuel and oxidizer (and any
non-reactive components) are in two unmixed co-flowing streams. Mixing of the two
gases takes place in the shear layer between the streams and combustion occurs when
there is both sufficient fuel and oxidizer present at the same point. The residence time
of the fuel and oxidizer in the combustion chamber can be very short; therefore, it is
extremely important that a high mixing rate be achieved so that complete combustion
is attained before the fuel is convected out of the engine. Mixing is enhanced when
the basic flow is unstable. Therefore knowledge of the flow’s stability characteristics
may improve the understanding of the mixing process in the scramjet and is also of
fundamental interest in its own right.

It has been realized for some time that the problem of a very short residence time
is compounded by the experimental observations that the mixing rates of shear lay-
ers decrease as the Mach number increases from zero (e.g., Brown and Roshko, 1974;
Chinzei, Masuya, Komuro, Murakami, and Kudou, 1986; Papamoschou and Roshko,
1986, 1988; and Clemens, 1992). Numerical simulations of non-reacting compressible
mixing layers (e.g., Guirguis, 1988; Lele, 1989; and Sandham and Reynolds, 1990) as well
as reacting compressible mixing layers (Drummond and Mukunda, 1988; Drummond,
Carpenter, Riggins, and Adams, 1989 for example) have also shown the same effect. It
can be surmised that the initial growth of the mixing layer, formed by two turbulent
boundary layers coming off a splitter plate, is entirely governed by entrainment due to
the turbulent flow already present in the boundary layers. The scale of this motion is




that of the turbulent boundary layers on the splitter plate. Further downstream invis-
cid Kelvin-Helmholtz instabilities, with scales much greater than that of the original
boundary layer, appear. These instability waves lead to the large “rollers” observed at
low Mach numbers. These, in turn, entrain fluid, pair, and evolve toward the large scale
structures which are observed further downstream. Observation and simulations sug-
gest that, while the initial entrainment continues, the long wavelength Kelvin-Helmholtz
instability is suppressed at higher Mach numbers. Because of this increased stability,
natural transition to turbulence may be delayed and occur at downstream distances
which are larger than practical combustor lengths resulting in incomplete combustion.

The dynamical processes governing reacting compressible flows are very complex,
involving strong interaction between the chemical and fluid dynamical effects. Apart
from from a full numerical simulation of the chemistry and compressible fluid dynamics,
including possibly turbulence modeling or large eddy simulation, any investigation of
these flows must involve considerable modeling. This will, of necessity, rely heavily on
the success achieved in modeling compressible non-reacting shear flows.

There is a very extensive literature dealing with stability and related topics for
incompressible mixing layers (see Ho and Huerre (1984) for a comprehensive review) but,
until quite recently, comparatively little dealing with even the non-reacting compressible
flow. Earlier work on this problem has been reviewed by Jackson and Grosch (1989)
as part of a comprehensive study of the stability of the non-reacting two dimensional
compressible mixing layer. This study was extended to include the effect of variation
in the thermodynamic properties on the stability characteristics (Jackson and Grosch,
1991) as well as the effect of three dimensionality of the mean flow due to skewing of
the fast and slow streams (Grosch and Jackson, 1991a).

The structure and stability of the reacting flow is, of course, determined in part by
the dynamics of the underlying non-reacting flow, in part by the reaction dynamics,
and in part by the interaction of these two. In order to understand the dynamics of the
reacting flow it is necessary to understand those of the non-reacting flow. Therefore in
each section the results for the reacting flow are compared to those of the non-reacting
flow.

In section 2 the structure of the mean flow is discussed. Section 3 contains a review
of what is known of the stability of the compressible reacting mixing layer including,
formulation of the problem (Section 3.1), the spectrum of the neutral waves (Section
3.2), the growth rates of unstable modes (Section 3.3), the convective Mach number
(Section 3.4), and convective/absolute instabilities (Section 3.5). Finally, Section 4
contains concluding remarks. -

2. Mean Flow: Ignition and Structure

A schematic of a reacting compressible mixing layer formed behind a splitter plate
is shown in Figure 1. This shows the three regimes of ignition, deflagration, and dif-
fusion flame (Linan and Crespo, 1976) which are expected to exist in this flow. The
ignition regime is a region where the combustible gases mix until, at some finite distance
downstream of the plate, a thermal explosion occurs and the gas is ignited. The sec-
ond regime is the deflagration region. After ignition, a pair of well-defined deflagration
waves (or “premixed flamelets”) emerge according to classical thermal explosion theory.
One of the flamelets is fuel-rich and the other is fuel-lean. There is excess fuel behind
the fuel-rich flamelet and excess oxidizer behind the fuel-lean flamelet. Concentration




gradients behind the flamelets drive the unburnt fuel and oxidizer towards the diffusion
flame where they are consumed. These waves penetrate the mixing layer until all of the
deficient reactant is consumed. Just downstream of the deflagration wave, a diffusion
flame regime exists where the mixing process is governed by diffusion in the direction
normal to the flame.

Theoretical analysis of the ignition and structure of the reacting compressible mixing
layer has been confined to steady two dimensional flows with a zero pressure gradient.
Further assuming that the Reynolds number is large but that the flow can be modeled
by a laminar flow, the basic equations are the equation of state for a perfect gas, the
compressible boundary layer equations with a heat source term in the energy equation
modeling the reaction, and the species mass fraction conservation equations.

1=pT, (1)

(pU)z + (pV)y = 0, (2)

p(UU: +VU,) = (uly)y, (3)

p(UT; + VT,) = Proi(uTy)y + (7 - I)le‘U: +69, (4)
p(UF;z + VFjy) = Se; (uFjy)y — Q- (8)

These equations are nondimensionalized by the freestream values T(o0), p(o0),
U(o0), Fi(o0) for the temperature, density, velocities and mass fractions, respectively,
with lengths referred to some characteristic length scale of the flow. The x axis is along
the direction of flow; the y axis is normal to the flow; U and V are the velocity compo-
nents in the x and y directions, respectively; p is the density; T is the temperature; and
{F;} are the mass fractions. The viscosity u is assumed to be a function of tempera-
ture. The nondimensional parameters are the Prandtl number Pr, the Schmidt number
Sc; = Pr Le;j for species j where Le; is the Lewis number for species j, the Mach number
M = U(o0)/a(o0), with a(oo) the sound speed at +oo, 4 the specific-heats ratio, and
B the heat release per unit mass fraction of the reactant. Finally, Q is the reaction
source term and {Q;} the species consumption rates. In the calculations of the mean
flow and the stability calculations various models for the thermodynamic properties
of the mean flow were used: (a) the Tanh model - the hyperbolic tangent profile for
the mean speed and the Crocco relation for the mean temperature, with the Chapman
viscosity-temperature relation and a Prandtl number of one; (b) the Lock model - the
Lock profile for the mean speed and the Crocco relation for the mean temperature,
with the Chapman viscosity-temperature relation and a Prandtl number of one; and
(c) the Sutherland model - the similarity solution for the coupled velocity and temper-
ature equations using the Sutherland viscosity temperature relation and arbitrary but
constant Prandtl number.

A key element in the calculation is the specification of the combustion model, ie the
form of Q. Grosch and Jackson (1991b) assumed a one step irreversible reaction of the
Arrhenius type between the fuel, F, (with mass fraction F7) and the oxidizer, O, (with
mass fraction F3).

F+0-P (6)
Taking
Q=DpFR Fe 27, (7)
3
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and
fH=0=0 (8)

with D the Damkohler number and the Zeldovich number Ze = E/RT,, where E is
the dimensional activation energy and R the universal gas constant. It is believed
that this model will yield correct qualitative results but that there can be quantitative
differences with the results of calculations using more accurate rate equation models. In
any compressible flow calculations it is also necessary to specify the property variations
with temperature and pressure. Because these authors used a simplified combustion
model they also chose to use simple property variations: the Prandt]l number constant
and equal to one and a linear variation of the viscosity coefficient with temperature.

An appropriate set of initial (in z) and boundary (in y) conditions for the flow
configuration of Figure 1 consistent with these equations is:

T=U=FR=1, F=0, (9)
forz=0,y>0,and z > 0, y — 0.

Fy(-o00) _

-1
“Fileo) =¢", (10)

T = fr, U=fy<1, F,=0, F=
forz =0, y<0and z >0, y — —oc. Here ¢ is the equivalence ratio. If ¢ = 1, the
mixture is stoichiometric, if ¢ > 1 it is fuel rich, and if ¢ < 1 it is fuel lean. If A7 is
less than one, the gas in the slow stream is relatively cold compared to that in the fast
stream, and if Pt is greater than one it is relatively hot.

Grosch and Jackson (1991b) solved these equations by (1) numerically marching
downstream in z (note that the equations are parabolic in x) and (2) by using a combi-
nation of large activation energy asymptotics and numerics to analyze the ignition and
diffusion flame regimes. The numerical solution of these equations was facilitated by first
transforming them into the incompressible form by means of the Howarth-Dorodnitzyn
transformation

1} " Yy
Y=["pty, V=pv+0 [ pa. (11)
4] 0

Solutions to the transformed equations were found by marching in z subject to the
initial and boundary conditions (9 and 10) and it was found that the velocity profile,
U, attained a self-similar form at a small value of z (Drummond and Mukunda, (1988)
found that the solution of the Navier-Stokes equations also became self similar at small
z). Because the solutions were self-similar, the independent variable Y was transformed
to the similarity variable for the chemically frozen heat conduction problem

}/
0-2\/;’

and all of the numerical calculations were carried out in the (z,7) variables.

The asymptotic analysis in the ignition regime was complicated by the necessity to
consider a number of different cases depending on the magnitude of the dimensionless
speed, By, and temperature, Br, of the slow stream, and the Mach number, M. The
cases analyzed were: (a) |1-07| € 1, [1~8y| € 1,and M = O(1), which is the case of
ignition with nearly equal free stream temperatures and speeds (previously studied by
Jackson and Hussaini (1988)); (b) |1 - 87| € 1, By < 1,and M < 1, corresponding to

(12)




ignition in a shear flow at nearly equal free stream temperatures at small Mach number;
and (¢c) fr >0, 0<fBy<1l,and M > 0.

The results are presented and compared in Figures 2 to 7. Figure 2 is a plot of
the maximum temperature in the shear layer as a function of the downstream position
at M = 0 and M = 2 for various values of Zeldovich number (Grosch and Jackson,
1991b). At z = 0 the temperature is that of the inert solution and for large z the
temperature is that of the diffusion flame. It is clear that for the smaller value value of
the Zeldovich number (Ze = 10) a well defined ignition point does not occur; instead at
both M = 0 and M = 2 theie is a smooth and gradual transition from the inert solution
at z = 0 to a diffusion flame. At the larger values of Ze there is a rapid transition
from the inert solution to the diffusion flame solution, with the curves steepening as
the Zeldovich number is increased. As the Zeldovich number increases, the solution
approaches the infinite Zeldovich solution (dashed line) obtained from the asymptotic
analysis for the ignition point and the diffusion flame. F.om this figure it is apparent that
the ignition regime also exists in supersonic flows. As the Mach number increases there
is a corresponding increase in the inert temperature at z = 0 due to viscous heating,
thus lessening the relative effect of combustion on the overall temperature field. Also
note that ignition occurs at a smaller value of = for the Mach 2 case as compared to
that at zero Mach number.

Figures 3 and 4 show the corresponding temperature and mass fraction profiles as
a function of position in the shear layer at various z locations for Mach numbers of
0 and 2, respectively. The rapid rise in the temperature (Figures 3a and 4a) over a
narrow range of z indicates ignition. The temperature peak shifts and the profile is
asymmetric due to the asymmetry in the velocity profile. The mass fraction profiles
show that there is a diffusion of F} from the 5 > 0 region into the < 0 region with
Fi =0only at n = —00. At larger z there is a small secondary maximum in the F}
distribution in ~3 < 7 < ~1 showing the presence of a premixed flamelet in this region.
As first pointed out by Linan and Crespo (1976), these arise because the mixture is not
stoichiometric in the premixed region. One of the reactants is consumed locally, leaving
behind an excess of the other reactant. These premixed flamelets are quite weak in
that the temperature rise associated with them is small. The distribution of F} is the
converse of that of F;.

The existence of the premixed flamelets and the diffusion flame is shown quite clearly
in Figure 5a, which shows the loci in the (z,7) plane of the maxima of € (the chemical
production term) for equal free stream temperatures (87 = 1.0). The adiabatic diffusion
flame temperature is 1.5 and is greater than the free stream temperature. As shown in
this figure, the position of the maximum decreases from about n = ~0.2 at z = 0 to
nearly n = —0.6 at r ~ 2.9. The maximum value of € increases along this curve. At
T &~ 2.9 ignition occurs and two maxima appear giving rise to the premixed flamelets.
Beyond the ignition point the premixed flamelets move outwards in the shear layer
until all of the deficient reactant is consumed. The appearance of the third maxima
just behind the ignition point marks the appearance of the diffusion flame. As z is
further increased, the diffusion flame becomes dominant and, as ¢ — oo, the diffusion
flame thins and approaches a flame sheet characterized by local chemical equilibrium
and described by the asymptotics. Figure 5b shows similar results for the same values
of the parameters except that f7 = 0.5 and 8 = 1.5. This case corresponds to unequal
freestream temperatures. The adiabatic flame temperature is again 1.5 and is larger
than either freestream temperature. The ignition point has moved into the region of




higher freestream temperature and the location of the diffusion flame is unchanged while
that of the premixed flamelets has changed. Figure 5¢ shows results for 57 = 0.5 and
B = 0.4. The adiabatic flame temperature in this case is'0.95 and is smaller than the
freestream temperature at +o00. In contrast to the two previous figures, there is no
well defined ignition point; the premixed fiame merges smoothly into the diffusion flame
whose location is unchanged. In addition, the premixed flamelets are absent. Finally,
it should be noted that the authors stated that the behaviour shown in Figure 5 also
was found for Mach numbers greater than zero. Detailed predictions of location of
the ignition point as a function of the flow parameters were also made via the large
Ze asymptotic analysis. The results showed that the ignition point moves toward the
origin as the Mach number is increased, in agreement with the numerical results.

From both the numerical and asymptotic results it is apparent that the ignition
regime exists in supersonic as well as subsonic and incompressible flows. As the Mach
number increases there is a corresponding increase in the inert temperature at z = 0
due to viscous heating, thus lessening the relative effect of combustion on the overall
temperature field. Also note that ignition occurs at a smaller value of z for the Mach 2
case as compared to that at zero Mach number.

The diffusion flame regime was analyzed by considering the limit of infinite Damkohler
number. Grosch and Jackson showed that solutions for the mean flow could be found
in terms of certain integrals of the velocity profile. In the case of Pr = Le = 1 this
solution reduced to the flame sheet solution (Jackson and Grosch, 1990b). When these
parameters are not unity it was necessary to evaluate the results numerically. The lo-
cation of the flame sheet as a function of S¢, for various values of By, the slow stream
nondimensional speed, ¢, the equivalence ratio, and Sc; is shown in Figure 6. As Sc;
or ¢ is increased the flame sheet moves into the slower moving stream, but as fy is
increased it moves into the faster stream.

3. Stability of the Reacting Compressible Mixing Layer

Rapidly growing broadband instabilities will generally enhance mixing and thus
promote rapid and complete combustion. The current state of knowledge of the stability
of the reacting compressible mixing layer is reviewed here. The topics reviewed include:
the spectrum of the neutral modes, the growth rates of the unstable modes, and the
convective Mach number. Finally, the recent results on the transition from convective
to absolute instability in this flow is reviewed.

3.1 Formulation of the Stability Problem

It is generally agreed that the stability of free shear layers, both incompressible and
compressible, is dominated by inviscid dynamics. Thus the governing equations for the
stability problem are the compressible Euler equations. In the reacting case the source
terms for the temperature and mass fractions must also be included if the combustion
is modeled by finite rate chemistry. In the flame sheet limit the perturbation does
not affect the heat release in the sheet, it merely wrinkles the sheet. Therefore, the
only effect the reaction has on the flow stability is through the change in the mean
temperature distribution from that of the non-reacting flow. With finite rate chemistry,
the perturbations not only wrinkle the combustion zone but also change the rate of heat
release in the reaction through changes in the temperature and mass fraction distribution
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within the combustion zone. The change in heat release then effects the temperature
and mass fraction distributions. This, in turn, affects the stability of the flow.

To date there have been very few studies of this problem (Jackson and Grosch,
1990b; Hu, Jackson, Lasseigne and Grosch, 1993; Shin and Ferziger, 1990 and 1991;
and Planche and Reynolds, 1991). The starting point for all of these studies is the
compressible Euler equations with the source terms those for a one step irreversible
reaction of the Arrhenius type (equations (6) - (8)). All of the published studies make
the parallel flow assumption in the derivation of the stability equations. However, it
is straightforward to apply a weakly nonparallel approach to this stability problem. In
this approach one obtains the paralle] flow equations as the first approximation and also
finds the next order correction to the growth rate.

The equation for the amplitude of the pressure perturbation is

m"-pRU /U -+ -K)T/T)II

- a?T[T - K2M? cos?8 (U - c))] N = 0, (13)
where
K, = 1/}, (14)
K2 =~ (v-1)(J2/ 1), (15)
e (8Qs - Q1 - Q)T
_ . 3—Q1-Q2
Si=1+i acos (U -c) ’ (16)
(1 +Q)T
fa=1 Yo cosh (U — c)’ (7)
_ 1 _(QiH + @ )T
Ja=1 1acos()T'(U—-c)’ (18)
an anN anN
= 3F Q= 35’ Q= T (19)
and
Hj =T+ ﬂF:h (20)

with the primes indicating differentiation with respect to the similarity variable ». Here
a is the wavenumber, 6 is the direction of propagation of the disturbance wave in
the (z — z) plane, ¢ = w/a is the complex phase speed and w is the frequency. For
spatial theory, w is required to be real and solutions are sought for which o is complex.
For temporal theory, « is assumed to be real and solutions are sought for which w is
complex. The amplification rates of the disturbances are then —a; or w;, respectively.
The disturbances are two dimensional for # = 0° and otherwise oblique.

If B = 0 it is easily seen that K} = K; = 1 and equation (13) reduces to the
compressible Rayleigh equation governing the stability of the non-reacting flow (Jackson
and Grosch, 1989). If a flame sheet model is used instead of a finite rate chemistry model
the reactjon is confined to a sheet of zero thickness and 8 = 0 outside of the sheet. Thus
the stability equation is again (13) with K'; = K2 = 1 and, of course, the appropriate
velocity and temperature distributions for the flame sheet model (Jackson and Grosch,
1990b; Hu, Jackson, Lasseigne, and Grosch, 1993).




The boundary conditions for II are obtained by considering the limiting form of (13)
as 1) — too which gives

I — ez (21)

where
A% = o?[1 - M%cos®8 (1 - ¢)?, (22)
A? = o?Br(Br - M3cos?d (By - ¢)?]. (23)

The values of the phase speed for which A} vanishes are
1

¢+ = 1= grspr (24)
_ Bz
c-=hv+ Mcosé’ (25)

where c,,. is the phase speed of a sonic disturbance in the fast stream and c_ is the phase
speed of a sonic disturbance in the slow stream. For

Mcosd = M, = li—‘/ﬁ (26)
1-Bu
¢4 are equal.

The nature of the disturbances for the stability problem can be illustrated by Figure
7 (Jackson and Grosch, 1989), which is a plot of ¢4 versus M for fr = 0.5, fy = 0, and
6 = 0°. These curves divide the phase speed-Mach number plane into four regions. If a
neutral disturbance exists with a Mach number and phase speed in region 1, it is subsonic
at both boundaries, and is classified as a subsonic neutral mode. In region 3, the neutral
disturbance is supersonic at both boundaries, and is classified as a supersonic-supersonic
neutral mode. In region 2, the neutral disturbance is subsonic in the fast stream and
supersonic in the slow stream, and is classified as a fast neutral mode. Finally, in region
4, the neutral disturbance is supersonic in the fast stream and subsonic in the slow
stream, and is classified as a slow neutral mode. For oblique modes (8 # 0°) the four
regions still exist and only the boundaries, as defined by the ¢4 curves in the phase speed
- Mach number plane, are changed from those of the two dimensional modes (Grosch and
Jackson, 1991a). Finally, it is important to note that the sonic speeds are independent
of the reaction since the far field is chemically frozen. Thus the classification scheme
does not depend on the reaction model used.

Because of causality there can be no incoming waves for an unbounded domain,
unless the flow is being driven by an external source. Assuming that this is not the
case, boundary conditions for an unbounded domain require that the far field solution
be outgoing waves. The appropriate boundary condition for outgoing waves in the fast
stream is,

I — el~8+7), | (27)

if ¢, > ¢4, and

I — el=in V=83, (28)

if ¢, < ¢4. For the slow stream the appropriate boundary condition for outgoing waves
is,




I — eld-), (29)

if ¢, <c_,and

I — el-inv=a1) (30)

ife, >c_.
For a bounded domain the boundary condition is that the pressure gradient normal
to the boundary is zero. Thus, on the boundaries

A-VI =0, (31)

with = the unit normal to the boundary.

3.2 The Spectrum of Neutral Waves

Both the non-reacting and reacting mixing layers have a complicated eigenvalue
spectrum. The first step in finding and analyzing this spectrum is to find the neutral
modes. For the subsonic modes, which lie in region 1 of the ¢, — M diagram, a theorem -
of Lees and Lin (1946) can be used. This result is derived from consideration of the
equation governing the normal velocity perturbation #. The disturbance equation for
the normal velocity component is (Jackson, 1992)

(Ee vy —efl(¢+a?) b =0, (32)
where
£=TNT - Ky M* (U = ¢}, (33)
H =~ [(1- K)(TT)dn, (34)
and
q={WU +(U-c)(1 - K))(T/THI /(U - o). (35)
Note that (32) has a singularity at U = c. Define
_d . ._,dU
S(n)= -d—n(T @) (36)

Let ¢ = U(#.), where 7. is a root of S(7). If ¢ lies in region 1 of the ¢, — M diagram
(Figure 7), then (Lees and Lin, 1946) ¢ = ¢y is the phase speed of a neutral mode
provided that a # 0. The corresponding neutral wave number and frequency must be
determined numerically. These modes are the regular subsonic neutral modes.

In addition to the neutral modes with ay # 0 there may exist neutral modes having
zero wavenumber. The phase speed of such modes do not satisfy (36) but can be found
by an asymptotic analysis of (13) in the limit o« — 0 (Hu, Jackson, Lasseigne, and
Grosch, 1993). The result of this analysis is, for M = gy = 0,

141ieB/2
NE TR (37)
" (h+ R)T' + J(AF)
—_ s 1+ 12 '+ 182
b= -/—oo (Fi+ BT - B(Ze - 1) AR, T d (38)

9




In the nonreactive case (8 = 0) this reduces to

_ Br+iBr (39)

N= T+l
which shows that the neutral phase speed is complex for ay = 0.

If ¢ lies in regions 2, 3, or 4 of the ¢, — M diagram, then ¢ does not correspond to the
phase speed of a true neutral mode. The phase speed of the neutral modes in these re-
gions must, in general, be found numerically. One exception is the supersonic-supersonic
neutral modes with a = 0 (Grosch, Jackson, Klein, Majda, and Papageorgiou, 1991). In
this case an expansion of the solution in powers of a, along the lines previously used by
Drazin and Howard (1962) and Blumen, Drazin and Billings (1975) in related studies,
yields an eigenvalue relation which is analytically tractable.

The leading-order term in the expansion is independent of the detailed form of U and
T, and only depends on the basic flow characteristics at infinity. This is to be expected
from physical arguments because the wavelength of the instability in the limit a — 0
is much larger than the length scale over which the undisturbed flow is non-uniform.
Setting the leading-order term in the expansion to zero yields an equation for ¢ = cy:

Br[M*(Bu — cn)? - Br](1 = en)* = [M3*(1 - en)? - 1}(By — en)*. (40)

This equation is identical to (5.3a) of Miles (1958) if his result is expressed in the
notation used here. Miles showed (in this notation) that:
[1) A single real root of (40) exists for

M > M. =(1+4Br)/(1 - Bu), (41)
with phase speed
en = (Bu + VBr)/(1 + VBr). (42)

This is classified as a constant speed supersonic-supersonic neutral mode lying in region
3 of the ¢, — M plane. It is independent of Mach number and corresponds to the phase
speed at which the sonic speeds in the two streams are equal. In this regime there is also
a pair of complex conjugate eigenvalues corresponding to one unstable and one stable
eigenmode. The associated instability is analogous to the classical Kelvin-Helmholtz
instability for subsonic vortex sheets (Artola and Majda, 1987). This instability disap-
pears as the Mach number increases.

[2] A double root first appears at

Mcr=(1+ B}/3)3/2/(1 - Bu), (43)
with phase speed
en = (Bu +B87°)/(1+ 8. (44)

There are three distinct real roots for M > Mcgr. One of these is the phase speed of
the constant speed supersonic-supersonic neutral mode while the other two roots must
be found numerically from (40). For the special case of fr = 1, these roots are given by

146y, 1

5 im[Mz(l ~ Bu)? + 4 - 4(M3(1 = By)? + DV, (45)

eN =
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The root which corresponds to the (+/-) sign is classified as a fast/slow supersonic-
supersonic neutral mode. Note that all three of these neutral modes lie in region 3.

The neutral phase speeds given above are exact for a = 0. In order to obtain the
higher order corrections for a # 0 the value of ¢ must also be expanded in powers of a.
When this was done it was found that the overall growth rate was O(a?). (Balsa and
Goldstein (1990) also found, numerically, the O(a?) growth rate for these modes.) It
was also found that the growth rate at O(a?) becomes singular at Mcgr. This singular
behaviour was studied by expansions about the singular value of M. A connection
between the regimes M, < M < Mcr and M > Mcpg was found and yielded the
transition from a stable/unstable pair of eigenmodes plus a supersonic neutral mode for
M < Mcg to three supersonic neutral modes for M > Mcpg.

The asymptotic expansion for the supersonic-supersonic modes gave the neutral
curves in region 3. The other regions of the ¢, — M diagram were also investigated
numerically using all three of the thermodynamic models (Grosch, et al, 1991). Rep-
resentative results are presented in Figure 8 for the case of the Tanh and Sutherland
profiles. Note the qualitatively similar results of these models. Plots of the phase speed
cy of the neutral modes as a function of the Mach number are shown in this figure.

In order to understand the variation of phase speed of the neutral modes with fr
and M it is important to recall (Jackson and Grosch, 1991) that, for each thermody-
namic model, there exists a transition value of 7, denoted by Gr. For Br = fr, the
neutral mode phase speed is independent of M in region 1. For A1 > (<) 1, ey is a
monotonically increasing (decreasing) function of M in region 1. The value of Br is 1.0,
0.57753, and 0.445 for the Tanh, Lock, and Sutherland (Pr = 1) profiles, respectively.
For all A1 there are two subsonic neutral modes, labeled in this figure by 1 and 2. Mode
1is that whose phase speed is found from the regularity condition (equation (36), above)
and mode 2 is found numerically as (a,w) — 0 with ¢ # 0. Because of the symmetry
of the Tanh velocity and temperature profiles, the phase speeds of these two modes are
identical at M = 0 for any 87 and also for all Mach numbers in region 1 when fr = 1.
In Figure 8a, At = 2 and is greater than the transition value for both models. Thus
as the Mach number is increased, mode 1 is transformed into a fast supersonic mode
(labeled 3 in Figure 8a) and mode 2 is transformed into a supersonic-supersonic mode.
Mode 4 is the slow supersonic mode which appears at M = M,. Mode 5 is the constant
speed supersonic-supersonic mode which also appears at M = M.. Modes 6 and 7 are
the fast and slow supersonic-supersonic modes which exist for M > Mc¢gr. Note that,
with 8 > fr, mode 2 merges with mode 7, the slow supersonic-supersonic mode, at
an M near Mcr. The phase speed curves of Figure 8h show the symmetry due to the
Tanh profiles when 81 = Br = 1. Modes 1 and 2 coincide in region 1 as do modes 2
and 5 for M. < M < Mcp in region 3. The phase speeds of modes 1 and 2 for the
Sutherland model do not coincide in region 1. The results shown in Figure 8c are for
Br=05< B} for the Tanh model but > G for the Sutherland model. Because of this,
mode 1 merges, with increasing Mach number, with mode 4, the slow supersonic mode,
at an M near Mcg for the Tanh model. However, for the Sutherland model, mode 1
still merges with mode 3, the fast supersonic mode as the Mach number increases.

Coalescence and switching of a pair of unstable modes was found by Grosch, et al
(1992) at other values of the parameters and for the other thermodynamic models. This
phenomena is not a feature solely due to the symmetry of the profiles of the Tanh mode]
at Or = 1. An example of coalescence and mode switching, with fr = 2, is shown in
Figure 9, for the Tanh model. This is a plot of w; versus w, (9a) and ¢, versus ¢; (9b) at
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two Mach numbers which closely bracket the mode switch. At M = 2.86 (dashed curve)
the fast supersonic mode has its neutral value on curve 2 of Figure 9 and its growth rate
goes to zero linearly with a. The slow supersonic mode has its neutral point on curve
5, the constant speed supersonic-supersonic neutral mode. Its growth rate goes to zero
quadratically with a. At M = 2.88 (solid curve) these two modes have switched. The
switching is most clear in Figure 9b.

The addition of the reaction further increases the complexity of the spectrum of
the disturbances. Consider first the flame sheet model. Because 7" is discontinuous
at the flame sheet for nonzero 8, S(n) will also be discontinuous at this point. It was
found (Jackson and Grosch, 1990b) that S can have a single root, two roots one of
which corresponds to 7 positive and the other negative, or two roots one of which is a
one-sided zero. The roots of S, which corresponds to phase speeds that are subsonic at
both boundaries, are the phase speeds of subsonic neutral modes. The one-sided zero
of S may or may not yield a phase speed of a peutral mode. Finally, for non-zero g,
there can also be singular neutral modes whose phase speeds are not given by roots of
S and are subsonic at the boundaries. If the phase speed corresponding to a zero of S
is supersonic at either or both boundaries it may or may not be that of a neutral mode.
This can only be determined numerically.

In order to illustrate the complexity, results for a typical case obtained using the
flame sheet model with a Tanh profile (Jackson and Grosch, 1990) are shown. The
phase speeds of the neutral modes for M = 0 and B1 = 2.0 are plotted as a function of
B with ¢ = 0.5, 1.0, 2.0 in Figure 10. There are both fast and slow subsonic neutral
modes. It was shown that, for the Tanh model with M = 0, fast waves only exist for

821~ fré (46)

with corresponding neutral phase speed

B + Bro
= T ITS 47
N =B+ 809 (#7)
while slow waves only exist for
B2Bro—-1 : (48)
with corresponding neutral phase speed
Br
= —_— 49
NET¥B+6r (49)

In addition, there are both fast and slow singular subsonic neutral modes, adjacent to
their corresponding regular neutral modes. The phase speeds of these singular modes are
independent of 3. These modes are labeled FSP (Flame Sheet Primary) and FSS (Flame
Sheet Secondary) in the figure. These singular modes have both zero wavenumber and
frequency.

An important question is the extent to which this mode structure is an artifact of (a)
the Tanh model and (b) the flame sheet model. At least a partial answer was provided
by Hu, Jackson, Lasseigne, and Grosch (1993). They compared the phase speeds of the
neutral modes at M = 0 using the finite rate model discussed in Section 2 and a flame
sheet model, both with Pr = 1 and a linear viscosity-temperature relation (the Lock
model). The phase speed of the singular modes with zero wavenumber was found by
using equations (38) or (39).
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Figures 11a,b are plots of S versus 7 for various values of the heat release parameter,
B, using the finite rate model. The slow stream has a speed Sy = 0 and temperature
Br = 0.5 and the equivalence ratio ¢ = 1. The results shown in Figure 11a were
obtained using the temperature distribution upstream of ignition while those of Figure
11b were obtained using the temperature distribution far downstream of ignition where
the temperature and mass fraction concentrations are close to those of the flame sheet.
The rate of heat release has a significant effect not only on the number of roots of 5,
but also on their values. When the heat release parameter is small (8 = 0.1), there
is a single root of S with 7. close to zero at both locations. With § = 1.5 there are
three roots of S at the downstream location, one at 7 & —0.5 and a double root close
to n = 0. A further increase in 3 to 2 results in a shift of the first root to more negative
values of n and a splitting of the double root into two distinct roots, one close to zero
and the other near 5 = 1. Qualitatively similar behavior is shown in Figure 11b at the
downstream location. '

The corresponding neutral phase speeds (indicated by boxes) obtained from the
roots of S are shown in Figure 11c and 11d for the upstream and downstream locations,
respectively, both for fr = 0.5 and 1le and {, again upstream and downstream of
ignition, with By = 1. These are shown as functions of the heat release parameter £.
The real part of the neutral phase speeds for the ay = 0 mode, found from (38), are
shown in these figures by inverted triangles. The flame sheet model results are shown
as dashed lines in these figures.

In the nonreactive case (3 = 0), there are two neutral modes with different phase
speeds which coincide at 8¢ = 0.57753 (Jackson and Grosch, 1990b). With G = 0.5
these are slow neutral modes. One of these neutral modes has a phase speed determined
by a root of S and the other member of this pair has a phase speed determined by (39).
With Br = 1, these neutral modes are fast modes since they have phase speeds greater
than 0.5. Again, one of these has a phase speed determined by a root of S and the other
member of this pair has a phase speed determined by (39).

When heat release is included (8 > 0) and the flame sheet model is used (denoted
by the dashed lines) there are, in general, four neutral modes: two are found from the
Lees and Lin condition, called modes 1 and 2; one is found from the zero wavenumber
asymptotics, called mode 3; and the remaining one, mode 4, is a mode with phase speed
ey = U(ny) where 74 is the location of the flame sheet. Mode 1 is a slow mode for
Br < 0.57753 and its phase speed is a decreasing function of 3 (Figures 11c,d); while
for fr > 0.57753, mode 1 is a fast mode whose phase speed is an increasing function
of B (Figures 11e,f). Mode 2 only exists for § > 0 and shows the opposite behavior of
mode 1. The third neutral mode, that with ay = 0, exists at # = 0 and has a phase
speed which is constant for all values of the heat release parameter, . Finally, the
fourth neutral mode appears at the same value of 8 as the second mode, has a phase
speed which is equal to U(ny) and is independent of 3. When both streams have the
same temperature, 1 = 1, the phase speeds of the third and fourth modes are equal.
These neutral curves separate stable from unstable regions with an unstable region lying
between modes 1 and 3 (called the slow branch) and another between modes 2 and 4
(called the fast branch).

As with the flame sheet model, there are also four neutral modes when using the
finite rate chemistry model. The phase speeds of modes 1, 2 and 4 are determined from
the Lees and Lin condition, and the third neutral mode is again the zero wavenumber
mode with phase speed determined from (38). The reason the fourth mode of the
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flame sheet model is not determined from (36) is that the Lees and Lin condition fails
to hold because S is discontinuous and the derivatives of the eigenfunctions become
discontinuous at the flame sheet position. For the finite rate chemistry model, the
phase speed of the fourth neutral mode approaches that given by mode 4 of the flame
sheet model, i.e., cy — U(ny), as z increases. The phase speeds of the neutral modes
1, 2, and 4 are indicated by boxes in Figures 11c-e, and the phase speed of the third
neutral mode is indicated by inverted triangles. Unlike the flame sheet model, the
neutral phase speeds for modes 3 and 4 are functions of the heat release parameter §
and the downstream position z.

The value of the phase speeds of all four neutral modes will depend critically on
whether the z location is upstream or downstream of ignition. In the region of ignition,
the temperature and mass fraction fields vary rapidly with position and consequently
the parallel flow approximation no longer holds. If z is sufficiently downstream of
the ignition point, neutral modes 2 and 4 are present. At z = 3 and with Sr = 0.5
(Figure 11c) the phase speeds of neutral mode three show large variations between
0.5 < B < 2. This is to be expected because ignition occurs in this region and the
parallel flow assumption fails. As # is increased past 2, the phase speeds of all four
neutral modes approach the phase speeds predicted by the flame sheet model. Similar
behavior is shown in Figure 11d at z = 10. The variations in the real part of the phase
speeds of the ay = 0 neutral mode appear smaller than at = 3 which is consistent
since the source term is proportional to z § and thus at larger z the ignition region
extends over a smaller range of .

These results indicate that the flame sheet is a good approximation to the the flow
and combustion field resulting from using finite rate chemistry to calculate the flame,
as least as far as is required for stability analysis. However, the finite rate chemistry
model used in these calculations is the one step irreversible model given by equations
(6) - (8). It is also important to determine how sensitive the results of the stability
calculations are to the details of finite rate chemistry model. It appears that almost
nothing has been done to address this problem.

The only results currently available are those of Hu (1992). He used the Birkan and
Law (1988) three step chain reaction model

F + Ry — 2R, (50)
O + Ry — 2R, (51)
Ri+ R+ M—=2P + M : (52)

where F, O, P and M are the fuel, oxidizer, product, an inert third body and R, and
R; are radicals. The first two reactions are irreversible, thermoneutral, high activation
energy branching reactions. The third reaction is a highly exothermic, zero activation
energy, three body termination reaction. Hu repeated the calculations of Grosch and
Jackson (1991b) for the mean velocity, temperature, and mass fraction distributions
with the Birkan-Law reaction replacing the one step irreversible reaction (. ,uation (6)).

This required having four equations for the mass fraction distributions, {F;} j =
1,2,3,4, one each for F, O, R; and Rj, respectively. The reaction rates, w;, for
equations (50) - (52) were modeled by

wy = Dy Fy F3 ¢2¢0-UT), (53)
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wy = Dy Fy Fy e2¢0-1/T), (54)

w3 = D3 F3 F4. (55)

Then in equations (4) and (5)
Q= W3, (56)
Q) = -wy, (57)
Q2 = —wy, (58)
Q3 = ~wy + 2w; — w3, (59)

and

Q4 = 2!01 - Wy — W3. (50)

Hu then used the calculated velocity and temperature distributions to calculate
S(n) (equation (36)) in order to find its roots and thus the phase speeds of the subsonic
neutral modes as a function of 8. His results for M = 0, fy = 0 and S = 0.5 are shown
in Figure 12, with 12a being a plot of S(7) for selected values of 3 and 12b being a plot
of the phase speeds of the neutral modes ¢y as a function of 8. These results should be -
compared to those of Figures 11b and 11f which are the equivalent results for the same
values of the parameters using the one step irreversible reaction. The general behavior
of the S(n) curves in Figure 12a is similar to that of Figure 11b. The agreement between
the cys of 11f and 12b is extremely good. On the basis of this very limited evidence, it
appears that the spectrum of the neutral modes may not be very sensitive to the details
of the chemistry model.

Figure 13 is a plot of the ¢y as a function of the Mach number for Br = 2, ¢ =1 and
various values of # > 0 using the flame sheet model. The structure of the neutral mode
spectrum at M = 0 is here extended into the range of non-zero Mach numbers. There
is an increase in the phase speed of the fast modes as J is increased. The phase speed
of the slow supersonic modes of region 4 decreases with increasing § and, for 8 > 1, a
singular subsonic neutral mode with ¢y = 0.5 appears in region 1. Correspondingly, for
B > 0, there also exists a singular subsonic neutral mode in region 1 associated with the
fast modes. Again the curves for the fast and slow neutral modes are each asymptotic
to a single curve for large M. As in other cases, an increase in S causes an increase
in the range of the phase speeds of the unstable waves and hence an increase in the
dispersion. Jackson and Grosch (1990b) also reported calculations of ¢y as a function
of the Mach number with fixed Sr and 8 for various values of ¢. It was reported that,
as the equivalence ratio ¢ increased, the phase speed of the slow mode was unchanged,
consistent with the Mach zero results (see equation (39)). The only effect was a change
in the critical value of the Mach number below which this neutral mode did not exist; the
smaller the value of ¢ the larger was the value of the critical Mach number. The phase
speed of the fast neutral modes was reported to decrease with increasing ¢. Finally,
it should be noted in Figure 13 that, at larger Mach numbers, the neutral modes have
quite different phase speeds. Consequently the associated unstable waves will also have
much different phase speeds. They will appear as fast and slow unstable waves.

3.3 Growth Rates

The spectrum of the neutral modes has been found to be rather complex and that
of the unstable modes is, of course, equally complex. Perhaps the most striking feature
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is the existence, at supersonic Mach numbers, of two bands of unstable modes; the
fast and slow unstable modes. For the non-reacting flow it has been shown (Jackson
and Grosch, 1991) that the growth rates are not very sensitive to the detailed shape of
the mean velocity and temperature profiles. This is shown by the results presented in
Figures 14 and 15.

These figures show the variation of the growth rate with the frequency of the distur-
bance, for both the fast and slow unstable supersonic modes with Sr = 2.0and M = 2.5
and M = 5.0 for the three thermodynamic models: Tanh, Lock and Sutherland. In both
cases the slow unstable supersonic modes exist in a very narrow range of frequencies
compared to that of the unstable fast supersonic modes. The shape of the —a; versus w
curves is similar for all of the models with the maximum growth rate of the fast modes
being substantially greater than that of the slow modes. This is a result of Sr of 2.0
being greater than the critical value, i1, as discussed in Section 3.2. The double maxi-
mum in the growth rate curves for the fast modes at M = 2.5 is quite characteristic. It
occurs because there is a mode switch, as discussed in the previous Section, at an near
value of 7.

Figure 16 shows the maximum growth rates versus Mach number with gr = 2.0,
again for the non-reacting flow. The general variation is similar for all of the thermo-
dynamic models. The maximum growth rate is largest at Mach zero and decreases by
a factor of 5 to 10 as the Mach number increases from zero to M, and approaches a
limiting value as the Mach number is further increased. The second group of unstable
modes, the slow supersonic modes, appear just below M,. The growth rate of the most
unstable of these modes first increases over a small range of Mach numbers and then
decreases, approaching a limiting value at larger values of the Mach number. These
results are typical of those found at other values of A1 (Jackson and Grosch, 1990b).

The effect on the stability of the non-reacting compressible mixing layer of a skewing
of the streams at £o00 has also been investigated (Grosch and Jackson, 1991a). The mean
flow at 400 has a magnitude of 1.0 and is at an angle ¥ with respect to that at —oo,
which has a magnitude Gyy. These parameters can be restricted to 0° < ¥ < 90° and
0 < By < cos y. The direction of propagation of the disturbance, 8, was also taken to
be non-zero.

The theorems of Rayleigh and Howard provide bounds on the phase speed and/or
growth rates of temporally growing disturbances in unstable, inviscid, incompressible
shear flows (see Drazin and Reid (1984) for a comprehensive review). Some of these
results have been extended by Chimonas (1970) so as to include compressibility. Similar
results were also obtained by Djorddjevic and Redekopp (1988). Chimonas’ results
were further extended by Grosch and Jackson to include crossflow, with the extension
applying to flows in a channel with boundaries at a finite distance or in an infinite
domain provided the disturbances are subsonic, and hence decay, at £o0o. The Lees
and Lin condition for the existence of a regular subsonic neutral mode was extended
to the case of crossflow. The definition of the convective Mach number (Jackson and
Grosch, 1990a) was also generalized. Finally it was shown that, at zero Mach number,
a generalization of Squire’s theorem could be found.

Results of calculations of the growth rates showed that a non-zero crossflow (¢ > 0)
combined with an obliquely propagating disturbance (6 > 0) could have an appreciable
effect. A typical result is shown in Figure 17 where ¥ is taken to be 10° and maximum
growth rates are shown for several values of §. A decrease in 6 from 80° results in
a decrease in the maximum value of the growth rate for low Mach numbers. For all
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values of 8 the trend in the maximum growth rate with Mach number is similar. For
the subsonic mode and its slow supersonic continuation the growth rates decrease by
a factor of five to ten with Mach number and then level off. The growth rates of the
fast supersonic modes, which appear at M,, increase slightly and then decrease with
increasing Mach number. The growth rate for = 80° is always greater than the growth
rates of the other cases. At M = 2, the growth rate of the § = 80° case is comparable
to the growth rate of the # = 0° case at M = 0.

It was further found, using a flame sheet model, that the addition of combustion
had important, and complex, effects on the flow stability (Jackson and Grosch, 1990b).
A set of typical results is shown in Figure 18. The maximum growth rate as a function
of M with Br = 2, = 1 and various values of the heat release parameter, 3 is plotted
in Figure 18a. Figure 18b contains similar results, but with g fixed at a value of 2 and
¢ = 0.5, 1.0, 2.0. The results in Figure 18a show that the maximum growth rates of the
slow modes are strictly increasing and those of the fast modes are strictly decreasing
with increasing 3 at zero Mach number. The results of Figure 18b show that increasing
¢ yields an increased in the growth rates of the fast modes while decreasing those of the
slow modes. However, the growth rates of both are independent of ¢ at higher Mach
number.

Finally, as will be discussed in more detail in Section 3.5, Jackson and Grosch
(1990b) found that the addition of heat from the reaction could cause a transition from
convective to absolute instability without any backflow.

3.4 The Convective Mach Number

In order to correlate experimental resuits, a number of experimentalists have used
a heuristically defined “convective Mach number”. This idea, first introduced by Bog-
danoff (1983) for compressible flows, has permeated much of the experimental work
on non-reacting compressible mixing layers. The convective Mach number, M, has
been used to correlate the reduction in growth rate (Papamoschou and Roshko, 1986,
1988) and the reduction in the Reynolds stresses (Elliott and Samimy, 1990; Samimy
and Elliot, 1990; Goebel and Dutton, 1991) which are observed to occur in this flow
as the Mach number is increased. Several different definitions of a convective Mach
number have been advanced. One approach is to define a Mach number in a moving
frame of reference which is fixed either to the large scale structures of the mixing layer
(Bogdanoff, 1983; Papamoschou and Roshko, 1986, 1988) or to the most unstable wave
(Zhuang, Kubota and Dimotakis, 1988). These definitions were for unbounded flows.
Tam and Hu (1988, 1991) have applied the same ideas to the non-reacting mixing layer
in a channel.

Jackson and Grosch (1990a) defined a convective Mach number in terms of a gener-
alization of the M, defined in equation (26). They argued that M, marked marked the
transition between two different flow regimes: if M < M, it is possible to have distur-
bancos which are subsonic in both streams but if M > M, only disturbances which are
supersonic in either or both streams are possible. They derived the equations of linear
stability theory for the flow of multispecies streams of gas and showed that the ¢4 can
be rewritten in terms of the mixture quantities as

¢y =1-1/M, (61)
c- = fu +1/My/B,/Bs, (62)
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where M is the mixture Mach number at » = +00 and §, and S, are defined in terms
of the mixture quantities at +oo by

B, = p(~c0)p(e0), (63)
and
B, = 2(=00)/7(s0). (64)

Thus Jackson and Grosch (1990a) defined a convective Mach number for a multi-species
gas as

M. = M(1 - Bu)/(1 + \/B+/B,). (65)

The other definitions of the the convective Mach number for a multispecies gas are (in
the notation used here): that of Bogdanoff (1983)

M. = M(1 - Bu)/(1+1/,JB,)8Y, (66)
Papa.mosc;hou and Roshko (1986, 1988)
M. = M(1- 80)/(1 +1/\/B,), (67)

and Zhuang, Kubota, and Dimotakis (1988)
M. = M1~ ¢;), (68)

where c,, is the phase speed of the most unstable mode from linear stability theory. For
a single species gas 3, = 1 and the definition of the convective Mach number of Jackson
and Grosch, Bogdanoff, and Papamoschou and Roshko are equal. For most multi-species
gases B, is close to one and all three definitions yield values of the convective Mach
number which are nearly equal. These definitions are for two dimensional disturbances
propagating in the direction of the mean flow. If the disturbances are oblique waves
propagating at an angle # to the mean flow direction, the definition of M. can be
generalized by replacing the free stream Mach number M by the effective Mach number
M cos#.

The convective Mach number definitions of Bogdanoff and Papamoschou and Roshko
are based on the speed of the large scale structures and that Zhuang, Kubota and
Dimotakis is based on the speed of the most unstable wave. Both concepts refer to
events within the mixing layer. The reaction may be expected to change the speed of
both the large scale structures and the most unstable wave. Thus the definitions of M,
should be different for a reacting as compared to a non-reacting flow. The definition
of Jackson and Grosch is based on the sonic speeds in the far field. The far field is
chemically frozen so their definition of M, is independent of the reaction.

Jackson and Grosch (1990b) plotted R, the maximum growth rate at an M, (nor-
malized by that at M. = 0) versus M, as obtained from the results of spatial stability
calculations for a non-reacting compressible mixing layer using the Tanh, Lock and
Sutherland models. In addition, the results inciluded the data for three values of the
dimensionless temperature of the slow stream, Sy = 0.5, 1, 2. They showed, that with
these scalings, the data collapsed onto essentially a single curve for M, < 1, and a
narrow band for M, > 1 with additional unstable modes appear around M, = 1. This
result is similar to that obtained by Ragah and Wu (1988) using a single thermodynamic
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model but not including the second supersonic modes and using Bogdanoff’s heuristic
definition of the convective Mach number.

Although the convective Mach number does correlate the results of stability calcu-
lations, its main use has been in correlating experimental results and, in this role, there
have been certain problems associated with its use for supersonic mixing layers. In the
interpretation of experimental results two convective Mach numbers are computed, one
using the difference in speed between the fast stream and the speed of the large scale
structures (the “fast” one) and the other using the difference in speed between the slow
stream and the speed of the large scale structures (the “slow” one). Assuming that there
is a stagnation point between each pair of structures, an argument based on isentropic
pressure matching leads to the result that the two convective Mach numbers should be
equal, or nearly so.

Figure 19 contains curves of the normalized maximum growth rate versus the ef-
fective convective Mach number for the Tanh model with 8r = 0.5 and By = 0 and
for the instability waves traveling at an angle  to the mean flow direction. These
curves are based on the numerical calculations of Jackson and Grosch (1989). Results
are shown for 6 = 0°,20°,40°,60°. For angles of propagation greater than 60° it was
found (Jackson and Grosch, 1989) that the maximum growth rate begins to decrease
with increasing angles of propagation. The data points shown in this figure are taken
from the experimental results of Papamoschou and Roshko (1988), Samimy and Elliot
(1990), Clemens and Mungal (1990), and Hall, Dimotakis and Rosemann (1991). The
data, taken from these papers, are summarized in Tables 1 through 4. The trends in
both the theoretical and experimental results are roughly similar although there is a
great deal of spread in the data and no single theoretical curve “fits” all of the data.

The results of some recent experiments have also cast doubt on the relevance of
the concept of a convective Mach number. The measurements of Papamoschou (1989)
yielded convection speeds which were very close to one or the other of the free stream
speeds. Thus the “fast” and “slow” convective Mach numbers were very different. In
another experiment (Hall, Dimotakis and Rosemann, 1991) large scale coherent struc-
tures were in general not seen in Schlieren photographs. However the presence of such
structures was inferred from the existence of traveling shock and expansion waves in
the low speed side of the flow. The inferred convection speeds of these structures were
reported to be much higher than would be predicted for the "fast” convective Mach
number. Samimy, Reeder, and Elliot (1992) reported measurements of the convective
speed, U, of individual structures in compressible mixing layers for two cases. In both
cases the fast stream was supersonic and the slow stream subsonic. These speeds were
obtained from the signals of a pair of pressure probes in the layer. Their paper contains
histograms of the measured U, at various positions in the mixing layer for two cases.
For case 1 the theoretical value of U, was 352 m/sec and for case 2 it was 428 m/sec,
both obtained from Bogdanoff’s definition of the convective Mach number. In both
cases the results of the measurements showed that there was not a single value of U,
but rather a wide range of values. On the centerline the mean of the distribution was
close to the theoretical value but the range was appreciable, about £40% of the mean.
Off the centerline, the mean was 5% to 10% lower than on the centerline and the range
was equally large (about 40%).

These experimental results suggest that the convective Mach number can be regarded
as an indication of the importance of compressibility effects but may not be very useful
beyond that. It is suggested that the observation of convection speeds very close to
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one or the other of the free stream speeds (Papamoschou, 1989) may be a reflection
of the existence of instability waves with both fast and slow phase speeds. Similarly,
the observations of Hall, Dimotakis and Rosemann (1991) could be a nonlinear form
of the fast instability waves which are subsonic in the fast stream and are supersonic
in the slow stream. Linear stability theory predicts that the disturbances are constant
amplitude outgoing waves in the slow stream and the nonlinear form of these might be
the shock-rarefaction wave pattern observed. It would be desirable to examine the data
in the light of this theory. Numerical experiments could probably provide a definitive
test of this hypothesis.

3.5 Convective/Absolute Instabilities

In the stability problem, the eigenvalue is a zero of the characteristic equation re-
lating the wavenumber a and the frequency w at fixed Mach number. Since a(w) has
a square root branch point singularity at a zero of the complex group velocity dw/da
(Briggs, 1964; Gaster, 1968), transition from convective to absolute instability occurs
when the zero lies on the real w axis. Therefore Jackson and Grosch (1990b), using
a flame sheet model, and Hu, Jackson, Lasseigne, and Grosch (1993), using finite rate
chemistry, choose w to be real, a to be complex, and carried out a numerical search for -
a zero of dw/da. It was shown by Jackson and Grosch (1990b) that the fast branch was
convectively unstable while the slow branch undergoes a transition from convective to
absolute instability.

Qualitatively similar behavior was found for both the flame sheet and finite rate
models; in particular (Hu, et al, 1993) a plot of a; versus a, as the real frequency w
varies continuously has (Figure 20) a saddle point for the speed of the slow stream, Gy,
between 0.014 and 0.016 showing the presence of a square root branch point singularity
due to a transition from convective to absolute instability. Figure 21 (Hu,et al, 1993)
shows the effect of varying the temperature at —oo, Ar, and the heat release parameter,
A3, on the boundary between the regions of convective and absolute instability in the
Bu — M plane. With § fixed, decreasing (7, that is cooling the flow at —oo, results
in an increase in the range of Sy for which the flow is absolutely unstable. Similarly,
increasing the heat release parameter, 8, with fixed temperature at —oo also increases
the range of Gy over which the flow is absolutely unstable. Although the range of Gy
over which the flow is absolutely unstable is largest for subsonic flow, sufficient cooling
at —oo and/or heat release can cause an absolute instability in supersonic mixing layers.

Similar calculations were made to determine how obliquely traveling disturbances
affects the convective/absolute instability transition. The results presented in Figure
22 (taken from those of Hu, et al, 1993) show that increasing the angle of propagation
with respect to the mean flow direction, 8, increases the range of 8y over which the
reacting flow is absolutely unstable, at least over the parameter ranges examined in their
study. This effect seems to be a purely kinematic one in that the wave propagating at
an oblique angle relative to the mean flow direction “sees” a flow with a lower Mach
number. This is evident from the scaling to an effective Mach number, M cosf, which
collapses all of the curves for the oblique disturbances onto essentially a single curve,
corresponding that for # = 0°, see Figure 23.

The results of Hu, et al (1993) show that, whatever the values of the other param-
eters, the reacting mixing layer will be convectively, rather than absolutely, unstable
at sufficiently large Mach number unless there is a backflow. It is easily shown that,
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for any 8 and ¢, if M is large enough the temperature distribution in the layer will
be approximated by that of a non-reacting flow and this requires a negative Sy for an
absolute instability. Thus large Mach numbers cause the flow to be convectively, rather
than absolutely, unstable. It was also found that cooling the slow stream (decreasing
Br) and increasing the heat release (increasing 8) both caused an increase in the range
of By and Mach number over which an absolute instability existed. These results sug-
gested that it was the magnitude of the temperature gradient induced by the flame
which must be large for the absolute instability to occur.

Hu, et al (1993) also used a complementary approach to investigate the transition
from convective to absolute instability, namely to examine the response, I(z,t), of the
flow to an impulse in space and time (see Huerre and Monkewitz 1985, and the references
cited therein). The impulse generates a wave packet in the (z,t) plane with the real
part of I the wave packet and its absolute value the envelope. An asymptotic expansion
of the impuise response for large time can be determined by the method of steepest
descent (Gaster, 1981, 1982) The leading term in the expansion is

I = (e iheen € (14067 (69).
where x
L= i(a'; - w(a®)). (70)

The value of a* was found from the requirement that the rays in the wave packet had
constant real values of the group velocity, Cy. This gave

I

dw
Cy = [I;]a-—*a' =1 (M)

Sets of {a*,w(a*)} pairs which satisfy this equation were then found.

Two, generally distinct, wave packets were found by Hu, et al: the first was made
up of the unstable modes of the slow branch, which are absolutely unstable in certain
parameter ranges, and the second was made up of the unstable modes of the fast branch
which are always convectively unstable. The real part of £, the temporal growth rate
along the rays, as found by Hu, et al is plotted in Figure 24 for both the fast and slow
unstable branches at M = 0 for various values of 8. As 8 increases, the maximum of
the real part of X for the slow branch decreases and the range of x/t for which the
real part of ¥ is positive decreases. For the fast branch, the maximum growth rate
increases by a small amount, and the range of unstable frequencies increases. Figure
24b is an enlargement of Figure 24a near x/t = 0. The real part of £ goes to zero
at x/t slightly above 0.03 for 8 = 0.5. For 8 = 1.38, it is zero at x/t = 0, and for
B = 4, it is zero at z/t = —0.035. The fact that the real part of ¥ is positive for a
range of negative values of z/t shows that the wave packet is traveling both upstream
and downstream and therefore that the flow is absolutely unstable. It is important to
note that the growth rates in the region of z/t < 0 are small compared to the maximum
growth rate. Consequently the upstream propagating portion of the wave packet grows
slowly compared to downstream propagating part.

The effect of increasing the Mach number on the temporal growth rate along the rays
is shown in Figure 25 where the variation of £ with z/t for = 4 and various Mach
numbers is shown. The temporal growth rates for the fast branch are only slightly
effected by the change in M from 0 to 0.8 with a small decrease in the maximum and
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the range of z/t over which it is positive. There is a much greater effect on the slow
branch. The peak value decreases by more than a factor of 2 as M increases to 0.8 and
the range of z/t over which this branch is unstable decreases. For M = 0.8 the slow
branch only has a positive growth rate for z/t > 0, indicating that there is no absolute
instability at this Mach number.

Typical wave packets, as computed by Hu, et al, resulting from the impulse with
M = 0.4 and B = 4 are shown at (a) t = 100 and (b) t = 500 in Figure 26. In each figure
there are a pair of wave packets: one is a fast packet containing the unstable modes
of the fast branch and the other a slow packet containing the unstable mode of the
slow branch. As the pair evolves in time, they move apart because of the substantial
differences in their group velocities. At t = 100 (26a) the slow packet is somewhat
larger than the fast packet and clearly exists in a region of z < 0, showing the absolute
instability. At t = 500 (26b) both packets have grown, spread, and moved apart. The
notation, X10, close to the slow packet means that the amplitude of the slow packet,
but not that of the fast packet, has been multiplied by a factor of 10 in order that it
be visible on this scale. In 26b the fast packet is much larger than the slow packet
because of its greater growth rate. The slow wave packet extends into the region z < 0,
but because of the scaling, it is difficult to see this on the figure. As time increases,
the slow packet will continue to grow, but at a much slower rate than the fast packet,
and spread both upstream and downstream. However the upstream propagation is very
slow. These results are for fr = 0.5. Hu, et al state that similar results were also found
at other values of 7.

These wave packet calculations showed that when the reacting shear layer is abso-
lutely unstable it is weakly unstable. That is, with increasing Mach number from zero
and a fixed rate of heat release, the absolute instability becomes progressively weaker in
that the range of negative z/t over which the growth rate is non-negative grows smaller
and the growth rate in this region and the speed of the upstream traveling waves also be-
comes smaller. Thus a wave packet will grow and spread throughout the entire domain,
but it may take a long time for this to happen.

4. Concluding Remarks

The results of the numerics and asymptotics show that the reacting compressible
mixing layer has a rather complex structure. In particular, the ignition point and the
location of the diffusion flame in the layer are sensitive to the parameters of the flow. All
of these results (numeric as well as asymptotic) were found while using the simplifying
assumptions of Pr = 1 and a linear viscosity-temperature relation. It is highly desirable
to determine to what extent these results are dependent on the simplifying assumptions
for the flow properties. Would the use of Pr = 0.72 and a Sutherland viscosity law, say,
result in qualitative changes in the results or merely quantitative ones? It is certainely
expected that there would be gquantitative changes in the results and it is desirable to
find out how large these would be.

The structure of the reacting compressible mixing layer has been studied using a
very simple model for the combustion process: fuel and oxidizer undergoing a one step
irreversible reaction. It is clear from calculations using more complex, and realistic,
combustion models (see for example the calculations of Birkan and Law (1988) for
counterflow flames) that these models can yield a richer and more complex structure
than that found for the one step irreversible model. It is desirable to re-do the analysis
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of the structure of the reacting compressible shear layer using at least one, and possibly
more, of the more realistic combustion models. Candidate models include the two step
reversible model of Rogers and Chinitz (1983), the three step irreversible model of
Birkan and Law (1988), and the three and two step models of Balakrishnan (1992).

The experimental results cited above suggest that the convective Mach number can
be regarded as an indication of the importance of compressibility effects but may not be
very useful beyond that. Carefully designed numerical experiments may be able to shed
additional light on the role of the convective Mach number. In particular, they could be
used to look for “structures” with convection speeds very close to one or the other of the
free stream speeds, as observed by Papamoschou (1989). One could test the hypothesis
that they are a reflection of the existence of instability waves with both fast and slow
phase speeds. Again, are Hall, Dimotakis and Rosemann (1991) observing a nonlinear
form of fast instability waves which are subsonic in the fast stream and supersonic in
the slow stream? Linear stability theory predicts that there are disturbances which are
constant amplitude outgoing waves in the slow stream. The nonlinear form of these
might be the shock-rarefaction wave pattern observed. Finally, numerical experiments
might be used to examine the nonlinear form of the absolutely unstable waves predicted
using linear theory. Very careful calculations would be required in order to minimize the
effects of numerical dissipation. The role of physical damping on the convective/absolute
transition also needs to be investigated.

Most of the theoretical studies of structure and stability have dealt with compressible
mixing layers. While this is a useful model, these studies should be extended to other
flow configurations, perhaps compressible jets.
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DATA FOR CONVECTIVE MACH NUMBER
GROWTH RATE CORRELLATION

Table 1 : Data of Papamoschou and Roshko, J. Fluid Mech. 197, 453,1988
Case [Gas1{Gas2 | M| Bv B B, 1 M. | Ratio
1 Ar Ar | 34(0.81(043| 1.00| 0.26 1.00
2 N, N, [311074]054]|1.00|0.34| 0.70
3 N; Ar 1 2810.75)180j1.19}039]| 0.71
4 N, Ar | 3210671120 1.19] 053} 0.50
5 He Ny | 1.71054(9.20(084|0.60| 0.22
6 Ar Ar|3110131024|1.00|0.89| 0.23
7 He Ny | 26)042)550) 084 1.03]| 0.28
8 He N;134/029]220)0.84}1.39] 0.18
9 He Ar3.1(0.04|240(1.001{ 1.81 0.23
Table 2 : Data of Samimy and Elliot, AIAA J. 28, 439, 1990
Case | Gas1 | Gas2| M, | M2 | Pu B, B M. | Ratio
1 Air Air | 1.80;0.51 1036|064 | 1.00 | 6.512( 0.96
2 Air Air 1 1961037 0.25}958] 1.00] 1.111} 0.65
Table 3 : Data of Clemens and Mungal, AIAA-90-1978
Case | Gas 1| Gas2 | My | M, | By B, B M. | Ratio
1 Air Air [ 1.64 | 091 |} 0.63 ] 0.77 | 1.00 | 0.284 % 0.59
2 Air Air | 1970471 0.2810.59 | 1.00{ 0.616 | 0.41
3 Air __ﬁ:r 215 0.3810.22 ]| 0.79 | 1.19 | 0.753 0.31
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Table 4 : Data of Hall, Dimotakis and Rosemann, AIAA-91-0629

Case [Gas1| Gas2| My | Ma| Bu| B,[ B, M.]Ratio

1 He Ar | 150]0.35|0.096 | 5.950 | 1.00 | 0.962 | 0.233

2 He Ny 11.4810.30 | 0.092 { 4.120 | 0.84 | 0.926 | 0.274

3 N, Nyt 146 0.29( 0.235( 0.713 | 1.00 | 0.511 | 0.570

4 Ny | 33% He | 1.48 | 0.44 ] 0.385 | 0.706 | 1.19 ] 0.396 | 0.630
67% Ar

5 N; 1 60% He | 1.48 | 0.42 | 0.445 ]| 0.484 | 1.19 | 0.320 | 0.680
40% Ar

6 N, | 75% He | 1.47 | 0.36 | 0.459 | 0.338 | 1.19 | 0.276 | 0.780
25% Ar

7 N, | 90% He | 1.48 1 0.28 | 0.469 [ 0.194 { 1.19 | 0.226 | 0.678
10% Ar

8 N, He}1.4810.23}0.510} 0.101 | 1.19} 0.164 | 0.660

9 Ar He | 1.50 | 0.23 } 0.636 | 0.058 | 1.00 | 0.106 | 0.597

10 N; | 33% He | 0.59 | 0.27 | 0.510 | 0.958 | 1.19 | 0.137 | 0.918
67% Ar

11 N, He | 0.65] 0.10 ] 0.462 | 0.132 | 1.19 | 0.087 | 0.907
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Figure 1. Schematic showing the reacting mixing layer, with the
adiabatic flame temperature greater than Ty and T.
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Figure 2. Plot of the maximum temperature in 7 versus z for
Bu=0,Br=pf=¢=1with(a) M =0,and (b) M = 2. In
both graphs the Zeldovich number increases from right to left with
Ze = 10, 30, 40, and 50. The dashed line corresponds to the solution
in the infinite Zeldovich limit.
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Figure 3. Plot of (a) temperature, (b) F; mass fraction, (c) F;
mass fraction versus nfor M = 0,08y =0,8r=8B=¢ =1, Ze = 30.
Here, the arrow denotes increasing z, with z = 1, 2, 2.5, 2.8, 2.9,
2.95,3,3.1, 3.2,3.3, 3.5, 4.




Figure 4. Plot of (a) temperature, (b) F} mass fraction, (c) F,
mass fraction versus nfor M = 2,8y = 0,87 =B =¢ =1, Ze = 30.
Here, the arrow denotes increasing z, with z = 0.5, 1, 1.2, 1.3, 1.4,
1.5,1.6,1.7,1.8,1.9, 2, 3.
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Figure 6. Plot of the flame location 7y versus S¢;: (a) fy = 0,
¢ =1 Sc2=.5,1,2;(b) By =0,¢ = 5,1, 2, Sco = .7; (¢)
Pu=0,.4,.8 ¢=.8 S2=.7
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Figure 7. Plots of the sonic speeds c; versus Mach number for

Br = 0.5, By = 0, and 8 = 0°.




Figure 8. Plots of the neutral phase speeds as a function of Mach
number for the Tanh model (left hand column) and Sutherland model
(right hand column). For both 8y = 0, # = 0° and (a) Br = 2.0,
(b) Br = 1.0, and (c) Br = 0.5. The neutral mode classification
is: (1) subsonic, ey # 0; (2) subsonic, ay = 0; (3) fast supersonic,
ay # 0; (4) slow supersonic, ay # 0; (5) constant speed supersonic-
supersonic, ay = 0; (6) fast supersonic-supersonic, ay = 0; and (7)
slow supersonic-: 1personic, ay = 0. The sonic curves are shown as
dashed.
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Figure 9. Plot of (a) w; versusw, and (b) ¢, versus ¢; with-8y = 0,
BT = 2.0 and (dashed) M = 2.86 and (solid) M = 2.88.
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Figure 10. (a) Plot of the neutral phase speeds ¢y versus 8 for
Br = 2,¢ =0.5,and M = 0. (b) Plot of the neutral phase speeds
cn versus 3 for Br = 2, ¢ = 1.0, and M = 0. (c) Plot of the neutral
phase speeds cy versus B for fr =2, ¢ =2.0,and M = 0.




Figure 11. Plot of S versus n for various values of 3, fy = 0,
Br=056¢=1, Ze =20, M =0at (a) z = 3 and (b) z = 10.
Plot of neutral phase speeds versus # with fr = 0.5 at (c) z = 3 and
(d) z = 10, and with Br = 1 at (e) z = 3 and (f) z = 10 for same
parameters as (a,b). Here - — — — —~ in (c-f) denotes the neutral
phase speeds obtained from the flame sheet model. The disturbances
are two dimensional with # = 0°. In all cases the one step irreversible
Arhenius reaction was used.
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Figure 12. Plot of S versus.n for various values of 8, By = O,

Br =10,¢ =1, 2Ze =20, M =0at z

= 10. Plot of neutral

phase speeds versus § with S = 1.0 at z = 10, and with the other
parameters unchanged. The disturbances are two dimensional with
6 = 0°. In this case the Birkan and Law (1988) reaction model was

used.







Figure 14. Plot of growth rates —a; of the fast and slow two
dimensional modes versus frequency for f7 = 2 and M = 2.5; fast
modes: (1) Tanh, (2) Lock, (3) Sutherland; slow modes: (4) Tanh,
(5) Lock, (6) Sutherland.

Figure 15. Plot of growth rates —a; of the fast and slow two
dimensional modes versus frequency for f7 = 2 and M = 5.0; fast
modes: (1) Tanh, (2) Lock, (3) Sutherland; slow modes: (4) Tanh,
(5) Lock, (6) Sutherland.
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Figure 16. Plot of maximum growth rates of the two dimen-
sional modes versus Mach number for Sr = 2.0; subsonic modes: (1)
Tanh, (2) Lock, (3) Sutherland; fast modes: (4) Taah, (5) Lock, (6)
Sutherland; slow modes: (7) Tanh, (8) Lock, (9) Sutherland.
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Figure 17. Plot of the maximum growth rates of the subsonic
modes and their slow supersonic continuation and some fast super-
sonic modes versus Mach number for 87 = 0.5, 8y = 0.25, ¥ = 10°,
and (a) 8 = 80°, (b) 6 = 60°, (c) 6 = 45°, (d) 6 = 0°, (e) § = —45°.




Figure 18. (2) Plot of the maximum growth rates of the fast and
slow modes versus Mach number for fr = 2,8 =0, 1, 2, 5, and
# = 1. (b) Plot of the maximum growth rates of the fast and slow
modes versus Mach number for 8 = 2, 8 = 2, and ¢ = 0.5, 1.0, 2.0.
In both, the flame sheet model was used.




Figure 19. Plots of the normalized maximum growth rate ver-
sus the effective convective Mach number for the Tanh model with
Br = 0.5 and By = 0 and with § = 0°, 20°, 40°, 60°. The exper-
imental results are the data of Papamoschou and Roshko (1988) e;
Samimy and Elliot (1990) O; Clemens and Mungal (1990) *; and
Hall, Dimotakis and Rosemann (1991) A.
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Figure 20. Plot of o; versus a, as w was varied for various values
of By at z = 10 showing the saddle point. Here § = 2, ¢ = 1,
Br = 05, Ze = 20 and M = 0. The mean flow was calculated
using the Lock model and the one step irreversible reaction. The
disturbances are two dimensional with § = 0°.
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Figure 21. Transition value of Sy from absolute to convective
instability for the flame sheet model as a function of M with ¢ = 1.
Results are shownfor: 0 fr = 0.5and § =2; 087 =0.13and 8 = 2;
and A 81 = 0.15 and 8 = 4. The disturbances are two dimensional
with 8 = 0°.
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Figure 22. Transition value of By from absolute to convective
instability for the flame sheet model as a function of M for ¢ = 1.
B = 2, fr = 0.15 for two dimensional and oblique disturbances with
0 = 0°, 45°, 60°, and 75°. '
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Figure 23. Transition value of Sy from absolute to convective
instability for the flame sheet model as a function of M cos d for
¢ = 1,8 = 2, Br = 0.15 for two dimensional and oblique disturbances
with 8 = 0°, 45°, 60°, and 75°. :
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Figure 24. (a) Plot of the real part of £ as a function of z/t for
various values of 8. (b) Enlargement of (a) in the region —-0.04 <
z/t < 0.08. Here M = 0, Br = 05, By = 0 and ¢ = 1. The
disturbances are two dimensional with § = 0°.




Figure 25. Plot of the real part of £ as a function of z/t for
various Mach numbers. Here 8 = 4, 87 = 0.5, By = 0 and ¢ = 1.
The disturbances are two dimensional with 8 = 0°.




Figure 26. Plot of the wave packets and envelopes for the fast and
slow modes as a function of z at (a) t = 100 and (b) t = 500. The
slow packet is absolutely unstable and the fast Packet convectively
unstable. Here § =4, M = 04, f7 = 0.5, fy = 0 and ¢ = 1. The
disturbances are two dimensional with 8 = 0°.




