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SUMMARY

Mathematical modeling of medical resource requirements during military operations
requires analyzing the underlying relationships between Disease and Non-Battle Injury
(DNBI) rates and Wounded-In-Action (WIA) rates.

This analysis examines the underlying longitudinal aspects of WIA and DNBI incidence
rates among combat troops deployed to Okinawa, Korea and Vietnam.

DNBI and WIA data were extracted from Marine Corps unit diaries for a 150-day
period of the Korean War, a 90 day period of the Okinawa operation during World War II,
and a 123 day period of the war in Vietnam. The time series data were set up in a bivariate
autoregressive integrated moving average analysis.

All the univariate models are best represented with a moving average term. The
models for Okinawa and Korea fit in a AutoRegressive Integrated Moving Average
[ARIMA(0,1,2)] and the Vietnam models fit an ARIMA(0,1,1). The DNBI series had
significant predictive power from the WIA series on the same and following days.

Concluionl

This study demonstrates that WIA rates can be a useful predictor of DNBI rates when
using a bivariate ARIMA model. High levels of WIA incidence will affect DNBI rates the
immediate day and the following day. These results were consistent throughout the three
military conflicts examined and should prove indicative for future military campaigns.
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A Bivariate AutoRegressive Integrated Moving Average

Analysis of Combat Troop Casualty Rates

Military medical planners need accurate predictions of both wounded-in-action (WIA)

incidence and disease and non-battle injuries (DNBI) rates to determine the medical resources

necessary to support a combat operation. Although there is much unpredictability surrounding

these rates, this study will analyze WIA and DNBI rates from previous military operations and

determine if mathematical modeling is possible. An analysis of these rates can start within a

simple framework of a Poisson process. DNBI rates during a peacetime setting fit into a simple

Poisson process where the variance is constant throughout the time interval'. This framework,

however, becomes inadequate when explaining arrival rates during a military conflict2 . Casualty

admissions occur in batches and so a compound Poisson process was found to be more

representative. Additionally, combat intensity varies during a conflict and so the casualty arrival

rates will also have a non-stationary aspect throughout the conflict's time interval'. Batch

arrivals and non-stationary variance both violate simple queuing theory3 premises of 1) single

arrivals and 2) a stationary variance with interarrival times described by an exponential

distribution. These factors, therefore, suggest an alternative model be used.

The temporal nature of casualty occurrences indicate that a time series analysis may be

appropriate. An initial analysis could involve separate univariate studies of WIA and DNBI rates

from each conflict. However, the classical Box-Jenkins time series models4 are essentially devoid

of explanatory power because they only describe certain empirical characteristics (such as trend

or patterns) within a time series. Correlations between WIA and DNBI rates have been

documented previously3 . This research indicated that as battle intensity and casualties increase,

there are associated rises in DNBI admissions attributable to increased battle fatigue and a

lowering of immunological resistance levels among combat troops. To gain a better

understanding of the relationship between WIA and DNBI rates, the estimation of covariance

between the dependent variable (DNBI) and the explanatory variable (WIA) will be computed.

A bivariate time series analysis between DNBI and WIA rates is appropriate because covariate

analysis will be used to develop projections.

Historical data is available to study these daily relationships between the two series'. The
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current study will initially examine the daily rates from each of the three military conflicts and

look for trends within the series. Trends and patterns between each of the time series are also

analyzed for future explanatory and predictive purposes.

Method

DNBI and WIA rates from each of the three conflicts are analyzed with the use of a

bivariate AutoRegressive Integrated Moving Average (ARIMA) framework'. The two series

will be set into a model with the WIA rates predicting the DNBI rates. This is similar to a

linear regression function. The model will be in the form of a transfer function which will be

used to explain and/or predict the output series (the DNBI series). The WIA series can also

be used as a covariate to remove some of the noise (unexplained variation) of the DNBI

series. This will yield an initial function:

Yfi= f(Xt) + N,

where:

Yt is the DNBI series.

X, is the predictor WIA series.

f(X,) is the transfer function to be modeled.

N, is the white noise process.

This analysis then can be broken into three main parts which will be implemented on each of

the three different military conflicts'.

1. Examine the WIA and DNBI with time plots and then autocorrelation and

partial autocorrelation plots to determine the appropriate transfer function.

2. After specifying the transfer function, calculate the residuals N,.

3. Match an ARIMA model to the residuals and appraise the model.

The primary examination of the WIA and DNBI series is in the form of a Cross-

Correlation Function (CCF). This is a device to graphically and statistically show the

relationship between the predictor series (WIA) and the output series (DNBI). The series are

set up in a daily format and so the CCF will show specific correlations among the two series

on a daily basis with the appropriate direction and statistical significance. Prior to setting up
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the CCF, the individual series must be examined for autocorrelation (or linear trend) within

the series. This trend needs to be removed prior to setting up the CCF. The required

filtering is accomplished using a differencing technique where the first observation is

subtracted from the second, the second from the third and so on. This results in a new data

series which is stationary and free from drift or linear trend. Removing or filtering the

model of autocorrelation is the initial process of prewhitening. All of the series are non-

stationary with autocorrelation and so a differencing term of one is set up for each series.

This will yield:

w,= ( - B)dX, or: DNBIý. - DNBI,
zt =(I - B)'r Yt or: WLA,., - WI.A.

where:

wt is the first ordered differenced term for the WIA series.

zt is the first ordered differenced term for the DNBI series.

B is the ARIMA backshift operator.

d is the degree of differencing.

The backshift operator takes the series under study and shifts it back one time period. Taking

the DNBI series for example: DNBI3 would be the DNBI data for the 34th day and

B(DNBI34 ) would be the same as DNBI33. One of the main premises of time series analysis

is that there are trends or patterns within the series itself. The backshift operator notation

helps to explain these trends. A backshift operator of one lag can then be expressed as:

B(yj = Y.

Trends within series may go back farther than one period and usually do with an

exponentiated and decreasing effect which can then be shown as:

Sk(Y) = Ya

The term of (l-B)d is denoted by: v d A simple autoregressive function AR(p), depends only

on past values of the series which can be set up as:

7 = C 1 + ý 2z2 + ... , + at

where:

C is a constant.

7,4 are past values of the series.
Is
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*, are coefficients denoting the extent of lagged correlation.

a, is a normally distributed white noise process.

ARIMA models may also include a moving average process. 0 represents the moving

average term of the framework. This term shows the series can be described by a linear

function of a few past shocks. A simple moving average model can be shown to be:
A -g at -()I., - OPA2. - . -Oeq2

This is a moving average model of degree q or MA(q) where:

z4 is a weighted average of the uncorrelated residuals.

e are the coefficients.

at are the uncorrelated residuals.

Combining the AR(p) with the MA(q) results in:

S= C + (%z4 + ... + *p,) - (91a, + ... + OQasi) + a,

With the backshift operator the equation then is:
z, = C + (* ,S + ... + BPWz, + (I - OS - .. -O•q) + a,

Substituting V4y, for 7, yields:
(I - ,n - ... *FBI') v¢y, =C + (I - eB - ... eB') a

Since this notation is cumbersome, the AR(p) term:

(0 - B - ... *PBP) can be simplified to *B.

The moving average term MA(q):

(I - OIB - ... - OqBq) can be simplified to eB.

With all the appropriate substitutions, the general ARIMA model is then:

*B 4,=C+oBa,

The appropriate ARIMA model can then be fitted to the WIA series so that it may be

implemented into the transfer function. Making an initial assumption of no constant, the WIA

series can be set up as:
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0 (B)t

The inverse of the equation then yields the residuals:

These residuals are then used to prewhiten or filter the z7, which yields the prewbitened series

b(B)

The residuals (a.) and the prewhitened series b, can be put into a CCF that may be used to

determine the transfer function. The expanded from of the general transfer function is:

f ( - (U°+U3.B+U 2B2* ."9) Xa)

The '¶Y and 'S' parameters will be identified with the use of the CCF. The 'T' parameter

shows up as spikes in the CCF plot and the 'S' parameter reveals exponential decay of the

terms of the CCF. The transfer function is then set up as the explanatory/predictor variable in

the original equation of:
Yi= f(XW + Nt

This final model is then appraised for it's predictive/explanatory capabilities and is tested for

statistical significance.

Okinawa Model

The analysis starts with the series from the Okinawa conflict. An AutoCorrelation

Function plot (ACF) of the DNBI series indicates there is a spike at the first and the second

day. The Partial AutoCorrelation Function (PACF) shows similar results. This information

shows that a moving average parameter of order '2' is indicated. Because the series is non-
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stationary throughout the time interval, it is differenced once. This results in an

ARIMA(0,1,2) model. Results of this test show:
- _1

Parameter Variable Type Order Estimate Std. Error T-ratio

1 DNBI MA 1 0.2118 0.1041 2.03

2 DNBI MA 2 0.2153 0.1040 2.07

The residual mean square for this model is 2.83 and the t-ratios show that the parameters are

significant. The residuals were put into an ACF plot to determine if they were normally

distributed with no significant correlations. They were found to be a white noise process with

no significant correlations. The statistics and the plots then confirm the ARIMA(0,1,2) is

adequate for the univariate Okinawa DNBI time series. The equation then is:

vy, -= C + (I -0 1 B - ... 02B2) a,

The variance throughout the WIA time interval is non-stationary and so the time series

needs to be differenced. The ACF and PACF plots revealed that a moving average parameter

with order '2' is appropriate. The results for the univariate model are then:

Parameter Variable Type Order Estimate Std. Error T-ratio

1 WIA MA 1 0.3143 0.1039 3.03

2 WIA MA 2 0.2125 0.1035 2.05

The t-ratios indicate the parameters are significant and the residual mean square is 18.35.

The plot of the residuals does not produce a pure white noise process, but it is found to be

the best of all possible models as compared to other variations on the theme. This results in

the equation:

V9yt = (I - 91 B - %B2 ) at

With both the DNBI and WIA series adequately represented by ARIMA(0,1,2) models,

the WIA series can be used as a covariate in the transfer function. The cross correlation

function (CCF) between the two series indicates that there are strong correlations at days, 0,
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1, 4 and 6. These spikes (hereafter U, ) show that the WIA series is influencing the DNBI

series with the stated lag in days. This leads to the following model:

Parameter Variable Type Order Estimate Std. Error T-ratio

I DNBI MA 1 0.3108 0.1064 2.92

2 WIA U. -6 -0.1101 0.0273 -4.03

3 WIA U, 0 0.1324 0.0391 3.38

4 WIA U, 1 -0.1178 0.0410 -2.87

5 WIA U, 4 0.0924 0.0306 3.07

The U, terms were all significant and the original second order MA parameter was reduced to

a first order term. After the DNBI series was filtered with the WIA series to reduce the white

noise, the residual mean square was reduced from 2.83 to 2.43. This reduction of the residual

mean square from the univariate to the bivariate model allows more accurate modeling. The

final model for the transfer function is:

r,-,+u+uU,1,-01at

Korean Model

Throughout the 150 days that encompass the DNBI series, there is a marked tendency

for tempo swings. These varying intensity levels require that the series be smoothed. The

ACF and PACF plots exhibit characteristics associated with a moving average process.

Several preliminary models were set up and the resulting univariate model is thus:

Parameter Variable Type Order Estimate Std. Error T-ratio

1 DNBI MA 1 0.6747 0.0821 8.22

2 DNBI MA 2 0.1672 0.0834 2.01
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The initial residual mnean square is 4.54 and the associated parameters are statistically

significant. Plots of the residuals reveal that the process is indeed white noise and so the

ARIMA(0,l,2) model is accepted. The univariate DNBI model is:

'yt = (I - 91 B - (B 2)a

After differencing the WIA series and examining the ACF and PACF plots, the initial

model is set up below:

Pvaameter Variable Type Order Estimate Std. Error T-ratio

1 WIA MA 1 0.6174 0.0497 12.43

2 WIA MA 2 0.3756 0.0678 5.54

The resulting residuals form a white noise process and the t-ratios indicate statistical

significance. The residual mean square for the WIA ARIMA(0,1,2) model is 68.29. This

equation is expressed as:

vy, = (I -eB -eB) a,

The WIA model is then used to filter the DNBI model to reduce the amount of noise

within the series. The associated CCF plot indicates that there are U, terms at days "0" and

"1". The form of these terms demonstrates that there is an exponential decay identified. An

appropriate term (S,) is put into the model to accommodate this effect.

The final model is then:

Parameter Variable Type Order Estimate Std. Error T-ratio

I DNBI MA 1 0.9724 0.0197 49.26

2 WIA U, 0 0.0582 0.0113 5.16

3 WIA U. 1 -0.058 0.0111 -5.22

4 WIA S, 1 0.8088 0.063 12.83

The U. and Sr terms were all significant and the original second-order MA parameter was

reduced to a first order term. After the DNBI series was filtered with the WIA series to
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reduce the white noise, the residual mean square was reduced from 4.54 to 3.87. Adding the

WIA series as a covariate helped to reduce the amount of noise and so it is kept in the final

model. The transfer function can be expressed as:

I U-Sr 1-0B

The plotted residuals indicate a white noise process. The rteiduals of the WIA univariate

model were put into a CCF with the residuals of the transfer function and no significant

correlations were found. This model is accepted as the best available.

Vietnam Model

As was the case with the preceding military conflicts, the Vietnamese war was subject

to varying levels of fighting and the resulting series is non-stationary. Consequendy, a

differencing term of the first order was used. Examination of the ACF and PACF plots

demonstrate a moving average process. There is one initial spike in the ACF and a decaying

process with the PACF starting in the first or second day. After experimenting with several

alternatives, the following results are tabulated:

Parameter Variable Type Order Estimate Std. Error T-ratio

1 DNBI MA 1 0.9820 0.0156 62.87

The use of only one moving average parameter provided the lowest residual mean square of

3.83 and also residuals that were normally distributed as a white noise process. This simple

univariate model is stated as:
v~y, = (I - eIB) a,

The WIA series was modeled in the same way as the DNBI series. First order

differencing and a single moving average parameter result in:

Parameter Variable Type Order Estimate Std. Error T-ratio

[ WIA MA 1 0.9660 0.0221 43.64
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A second order moving average term was entered but was deemed inadequate. This model

produced the lowest residual mean square of 10.82 and the residuals were normally distributed

with zero mean and unit variance. The appropriate equation is:

v'y, = (I -eOB) a,

Using the residuals of the WIA model and the prewhiiened DNBI residuals , a CCF plot is

examined to find the 'U' and 'S' parameters. A single order moving average term is also used

to present the final model:

Parameter Variable Type Order Estimate Std. Error T-ratio

1 DNBI MA 1 0.9835 0.0065 151.44

2 WIA U. 0 0.1266 0.0532 2.38

3 WIA U. 1 -0.1245 0.0535 -2.33

Two spikes at day "0" and day "1" indicate that two U. are appropriate. The moving average

of order one is statistically significant with a very high t-ratio. The resulting residual mean

square is 3.66, while the original univariate was 3.82. While not a large decrease, both the U.

parameters are statistically significant. Further plots of the residuals reveal a white noise

process and the CCF between the predictor residuals and the transfer function residuals show

no correlations and so the model is accepted.

The final equation is then:

YetUo+Ui1+ .- B +at

Pooled Time Series Model

The three models have significant similarities. They all have differencing terms of 'I'

and a moving average parameter of order '1' or '2'. These similarities allow the idea of

pooling the series into one model and testing it's significance. Dummy variables were entered

into the pooled model to test for homogeneity of slope between the three military conflicts.

An analysis of covariance was also tested. Both tests revealed that pooling the data is

justified because there is homogeneity of slopes between the three military operations. With
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the pooled time series data, the best empirical model is then:

I |BI MA 1 .67 002I26
Parameter Variable Type Order Estimate Std. Error T-ratio

1 DNBI MA 1 0.6637 0.0522 12.69

2 DNBI MA 2 0.1131 0.0523 2.16

3 WIA U. 0 .0815 0.0169 4.79

All the variables are significant and the residual mean square is 4.01. The equation for the

pooled model is then:

=0(+ 01- 2B2 ) a

This study has attempted to explain and predict DNBI rates during a military conflict.

During a peacetime scenario, DNBI incidence follows a simple Poisson process with

interarrival times represented by an exponential distribution. However, during military

conflicts the DNBI rates change markedly. This study has shown that the level of conflict

significantly influences the level of disease and non-battle injuries sustained by the soldiers.

This in turn will influence the entire patient load that a military treatment facility handles.

When there is a peak in WIA incidence, there is an associated projected peak in DNBI

incidence.

Each of the three conflicts analyzed possessed significantly different operational

characteristics. However, they all exhibited very similar statistical traits. Each of the

univariate models were best represented by a moving average parameter of order one or two

and all had a differencing term of order one. A significant finding comes from the bivariate

models. Initial examination of the correlation between the series indicates that WIA has a

strong influence on the DNBI rates of the same day and declines thereafter. Depending on

which conflict is being analyzed, the correlations are evident up to seven or more days.
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Autocorrelation within each series must be removed to determine the true relationship

between WIA and DNBL Filtering the series reveals the correlations between DNBI and

WIA do not extend for multiple day periods. After the autocorrelation was filtered out and

the final transfer function was set up, it was determined that each of the models had leading

indicators at days "0" and day "1". This shows that while WIA incidence is a statistically

indicative variable in predicting DNBI, the casualty levels will influence DNBI only on the

same day and the day following. While there were several other significant terms within the

transfer function, the two leading daily indicators were present among all three conflicts.

DNBI rates cannot be forecast by a simple mean rate that remains constant. Even

during peacetime situations the arrival process is random, and, during military operations the

rates are further influenced by the exogenous forces of the ongoing battle. Examination of

the trends underlying casualty and disease rates during combat operations allows mathematical

modeling of medical admission incidence. The pooled time series model yields information

critical to modeling these admission rates. Pooling all the data into a single model allows a

generalized projection system to be set up. With different parameters specifying various

hypothetical combat scenarios, a forecasting tool to simulate WIA incidence can be

developed, which in turn will allow projections of DNBI incidence. Through these

simulations, not only can the overall patient load be anticipated, the size, frequency, and

distribution of peak patient loads can be determined. This data will allow planners to

program the resources needed for the expected patient load and to provide the capacity to

absorb the periodic influxes that are expected to occur.
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