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ON THE KERNEL FUNCTION OF THE INTEGRAL EQUATION RELATING THE LIFT AND
DOWNWASH DISTRIBUTIONS OF OSCILLATING FINITE WINGS
IN SUBSONIC FLOW '

By Cuanres E. Warkins, HArRy L. Runyan, and Dovarp 8. WoorstoN

SUMMARY

This report treats the kernel function of an integral equation
that relates a known or prescribed downwash distribution to an
unknown lift distribution for a harmonically oscillating finite
wing in compressible subsonic flow. The kernel function is
reduced to a form that can be accurately evaluated by separating
the kernel function into two parts: a part in which the singular-
ities are 1isolated and analytically expressed and a nonsingular
part which may be tabulated. The form of the kernel function
for the sonic case (Mach number of 1) is treated separately. In
addition, results for the special cases of Mach number of 0
(incompressible case) and frequency of 0 (steady case) are given.

. The derivation of the integral equation which involves this
kernel function, originally performed elsewhere (see, for example,
NACA Technical Memorandum 979), is reproduced as an
appendiz. Another appendix gives the reduction of the form of
the kernel function obtained herein for the three-dimensional
case to a known result of Possio for two-dimensional flow. A
third appendiz contains some remarks on the evaluation of the
kernel function, and a fourth appendiz presents an allernate
form of expression for the kernel function.

INTRODUCTION

The analytical determination of air forces on oscillating
wings in subsonic flow has been a continuing problem for the
past 30 years. Throughout the first and greater part of
this time, efforts were directed mainly toward the determina-
tion of forces on wings in incompressible flow. These efforts
have led to important closed-form solutions for rigid wings
in two-dimensional flow (ref. 1), to solutions in terms of
series of Legendre functions for distorting wings of circular
plan form (refs. 2 and 3), and to many approximate, yet
useful, results for wings of elliptic, rectangular, and tri-
angular plan form (see, for example, refs. 4 to 12).

Although these results for incompressible flow play a
highly significant role in applications of unsteady acrody-
namic theory, the advent of higher and higher speed aircraft
during the last 15 years has brought a growing need for
knowledge of the effect that the compressibility of air might
have on unsteady air forces, or for analytically derived un-
steady air forces based on a compressible medium. The
transition to results for a compressible fluid from those for
an incompressible fluid is not likely to be accomplished by

1 Sapersedes NACA TN 3131, 1954,
a'um—u

applications of simple transformations or correction fuctors,
such as the well-known Prandtl-Glauert factor for steady
flow. This difficulty is associated with the fact that the time
required for signals arising at one point in the medium to
reach other points gives rise not only to changes in magni-
tudes of forces but also to additional phase lags between
instantanecous positions, velocities, and accelerations of the
wing and the corresponding instantaneous forces associated
with these quantities. In order to obtain results for the
compressible case, it therefore appears necessary to deal
directly with the boundary-value problem for this case.

The boundary-value problem for a two-dimensional wing
in compressible flow has been successfully attacked from two
points of view. First, by consideration of an acceleration or
pressure potential, Possio (ref. 13) reduced the problem to that
of an integral cquation relating a prescribed downwash dis-
tribution to an unknown lift distribution. The kernel of this
integral cquation, which is a rather abstruse function, was
reduced to a form that, except at singular points, could be
evaluated. Schwarz (ref. 14) later isolated and determined
the analytic behavior of the singular points of Possio’s results
and made fairly cxtensive tables of the kernel function.
These tabular values were used by various investigators
(for examples, refs. 15 and 16) to obtain, by numerical
procedures, initial tables of force and moment cocfficients
for oscillating wings in compressible subsonic flow.

The second successful approach to the solution of the
boundary-value problem for & two-dimensional wing (see
refs. 17 to 19) is achieved by a transformation to elliptic
coordinates followed by a separation of variables that reduces
the boundary-value problem from one in partial-differential
equations to one in ordinary differential equations of the
Mathieu type. The solutions turn out as infinite series in
terms of Mathicu functions. Numerical results obtained
recently by this procedure agree with results previously ob-
tained by the numerical procedures using the kernel func-
tion (sce, for example, ref. 20).

With regard to boundary-value problems for finite wings
in compressible flow, it appears that the procedure of sepa-
ration of variables could be a feasible approach only for
wings of very special plan forms such as a circle or an ellipse.
In any case, the development of the appropriate mathe-
matical functions for a particular plan form would become
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highly involved. On the other hand, it appears that approxi-
mate procedures similar to those used for two-dimensional
wings might afford an approach to solutions of these prob-
lems which, though laborious, might be handled by routine
numerical methods.

The kernel function of the integral equation relating pres-
sure and downwash for the three-dimensional case appears
as an improper integral. The purpose of this report is to
treat and discuss this kernel function. The improper integral
is reduCed to a form that can be accurately evaluated by
numerical procedures. The form and order of all its singular-
ities are determined and an expression for the kernel function
is derived in which the singularities are isolated. Special
forms of the kernel for the sonic case (M=1), the incompres-
sible case (M=0), and the steady case (¥=0) are presented.
A series expansion in powers of the reduced-frequency param-
eter k is developed.

The availability of the kernel in a form which can be
rapidly evaluated. makes possible the use of numerical pro-
cedures, similar to those used in the two-dimensional case,
to obtain aerodynamic forces for finite wings.

SYMBOLS

¢ velocity of sound

Hy H\™ Hankel functions of second kind of zero
and first order, respectively

Io .1 modified Bessel functions of first kind of
zero and first order, respectively

Jo Bessel function of first kind of zero order

K. K, modified Bessel functions of second kind of
zero and first order, respectively

K(zo,10) kernel function of integral equation

K’ (zo,%0) singular part of K(zo,0)

k reduced-frequency parameter, lw/V

Lo Ly modified Struve functions of zero and ﬁrst.
order, respectively

L) unknown lift distribution

l reference length

M Mach number, V/e

P pressure

r=8yy’+2*

s region of zy-plane occupied by wing

t time

\ 4 forward velocity of wing

w(z,y) amplitude function of prescribed downwash,
w(z,y,t) =€*B(z,y)

2,92, Cartesian coordinates

Zo=z—%

Ye=y—1

B=y1-M*

¥ Euler’s constant

=z + 6%

¢ velocity potential

¥ acceleration potential

» fluid density

o circular frequency of oscillation

w=w/V

ANALYSIS
INTEGRAL EQUATION AND ORIGINAL FORM OF KERNEL FUNCTION

The main purpose of this analysis is to treat the kernel
function of an integral equation that relates a known or
prescribed downwash distribution to an unknown lift dis-
tribution for a harmonically oscillating finite wing in com-
pressible subsonic flow. The integral equation referred to
can be obtained by employing the Prandtl acceleration
potential to treat linearized boundary-value problems for
oscillating finite wings by means of doublet distributions.
Derivation of this integral equation from the linearized
boundary-value problem for a wing is a preliminary task
that has been done elsewhere (sce, for example, ref. 21), but
it is reproduced herein as an appendix for the sake of com-
pleteness.

In keeping with the concepts of linear theory, the wing is
considered & plane impenetrable surface S which lies nearly
in the zy-plane as indicated in sketch 1:

z
L
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N
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i

14

Sketch 1.

The z,y,z coordinate system and the surface S are assumed to
move in the negative z-direction at a uniform velocity V.

In terms of these coordinates, the integral equation may be
formally written as

wei=g | ;f L) K (2, 0k d )

where W(z,y) is the amplitude function of the prescribed
downwash, K(z,,yo)=K(z—¢, y—n) is the kernel function
and physically represents the contribution to downwash at
a field point (z,y) due to a pulsating pressure doublet of unit
strength located at any point (¢,1), and L (¢,7) is the unknown
lift distribution or lncal doublet strength.

451
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The kernel function may be mathematically defined by the
{. / following improper integral expression (see eq. (Al2),
appendix A):

A BB rry piSh- My RS IA)
K =li 2
Gw=lter " ) e

where M is Mach number, =1 —~M?, s=uw/V§*, w is the
circular frequency of oscillation, V' is the velocity, and
) is the variable of integration. Evaluation of this integral
constitutes a main difficulty in obtaining aerodynamic
coefficients for oscillating finite wings in compressible flow.
The present analysis is therefore devoted to reducing it to a
form that can be accurately evaluated by numerical pro-
cedures combined with the use of tables of certain tabulated
tunctions. The form and order of all its singularities are
‘determined, and an expression for the kernel function is
derived in which the singularities are isolated.

REDUCTION OF THE KERNEL FUNCTION

In considering the reduction of the kernel funmction
K(zo,y,), the integral involved can, for convenience, be
written as the sum of two integrals, namely

fw (A=A yA$+12 ® o~in(N+M/\+12
N “————%F’) & ®
Therefore,
) N T .
@/ K@ w=lm 567 (O=lim 553677 FA+F) @
where
F= " ‘——————":S;'T’g:-,m a ®
and
Fy= f‘o eG(X-Mm ®
and where r=Byyi+2.

The integrals F; and F; are treated separately in succeeding
sections. The final forms are ngen in equations (15) and
(19), respectively.

Evaluation of F;.—The integral F, can be converted to &
form that can be more easily handled by writing

= ° - ¢____-EMJA'¢?'
i R
and introducing the following relation (see p. 416 of ref. 22)
,-mvm f Ti-M&
TdT
R D T
> = Jo T dT~

DY IR )ﬁ

e”m

; f TN Sz T4T @

In the first integral of these last two integrals, make the

substitution i L
N .y i
and in the second integral make the substitution
= 4
VM —Ti=+ ¢,
Then
— NNy 24
e A EIFED i) %
—Wa- o [ Jo(kvfr'l'l‘luw‘ dr—- . L ‘/x/
M3 . 9
ij; e~ (AWM ’G’i_f’) dr @ /

(It is of interest to note, in the expression on the left of eq.
(8), that M and r appear in the same manuner. The roles of
thexs two quantities could, therefore, be interchanged in
the expression on the right.)

With use of equation (8), the equation for F; can be
written as

Fi= J; YN U;' e’ JO(W?TFif’B_*) dr— @/
i J; M8 gmir Jo(xﬁ"?_—'@ df] (9 @/ '

Changing the order of integration in each integral (which is
8 legitimate step because the integrands involved satisfy
the continuity conditions required for such openuonl) leads
to the following expression for Fi: ‘

Fe [ emarf [ '“Jo(kmdx]- .
iﬁ“e""dr [J;. e Jy (Xm d&]

The integrals within the brackets in equation (10) may be
evaluated from tables of Fourier or Laplace transforms as
(see, for example, pair no. 55 of appendix III of ref. 23)

[ =i -
[ o= a0 oy

@/

@/
4/

80 that

F - G-" d Me c"‘" d
|='J; '?T' = T— A ?____i_l_ﬁ T

The ﬁrs~t integral in equation (11) can be written as

S S ¢

f J#-aﬂa:"“f ety [ e@ed 1y

a1
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The first integral on the right of equation (11a) is given on
page 181 of reference 22 as

f 7 g cooh ¢ dg= Ky(Br)
o

where K, is the modified Bessel function of the second kind
of zero order. The second integral on the right of equation
(11a) is given on page 338 of reference 22 as

5[ ewsoms do=—33 [ g Etgiar)|

where I, is the modified Bessel function of the first kind of
zero order and L, is the modified Struve function of zero
order. Then, the first integral of equation (11) can be
written as

L. w/.—T’L;:—"—_ai dr=Ka(gr )"%i [Z(8r)— Lo(Bar)]
=K (i)~ [ 0 T?)-
L(3w )] @

Note that the end result indicated in equation (12) is in-

dependent of Mach number. The second integral in equa-

tion (11) may be written in another form as
fu/a - (5 v re)

| e e

This integral has not been reduced to closed form; however,
it is nonsingular and can be readily handled by numerical
methods.

d'r (13)

Combining equations (12) and (13) gives the following
expression for Fy:

F=ko(§wF7 )= 1 (5w F2)-

G

By performing the differentiations indicated in equation (4),
there is obtained for the first part of equation (4) the follow-

ing expression:
tim S5 = L (i)~ A (il )~ Lol |+
LW TR ST

1=002 Vgl

All terms of this expression other than the integral may
be evaluated at small intervals of y, from existing tables,
except at ¥o=0 where the function is singular. The integral
is well behaved and can be accurately evaluated by numerical
or approximate procedures. The type and order of the
singularities at y,=0 are discussed in a later section.

Evaluation of F,—In order to reduce the integral F,,
equation (6), it is convenient to make the substitution

A=r ginh ¢ (16)
so that '
-1’
F'=f * gtar (sih o—Al ook 0) Jp a7n

Noting that z appears only in r and performing the differen-
tiations indicated in equation (4) yields

_biff_") =Gﬂ f "nh-l‘_'%' (sinb 0—M cosh ) ¢ (sinh 8~ M cash 9) di———20 (& (o MSTPW)
37 Jueo Tl Yo'VZo' +Byo’
~1 2
— { W___z?.}____ J—— J_)—Al_p[ﬂ sinh ™ o [8* cosh §—(cosh §—M sinh 6)] ¢=1nl (siuh ¢~ ccun ) da}
o' v
. -1
—_— {%:_%i_,__‘] W [ 6= M) — o5 Mol — l:lw:ol om 7 coh § ¢ (k8- st dn} @18)

or, by reverting completely to Cartesian coordinates through
equation (16), there is obtained

(D’Fz) —_ {za &5 (- M FR)
sm0

o '*'JTIIyT,* A

c""""']—%‘?i f %o & (x-u:’ﬂ,, ) d)\} 19
00

This expression vanishes, as it should, for 2,=0 and, like
that in equation (15), has singularities at y,=0 which, also,
will be handled in a later section. The integral that remains,

like the integral remaining in equation (15), is nonsingular
and simple in form and can be readily evaluated by numerical
procedures.

Expression for the kernel in terms of nondimensional
length variables.—Equations (15) and (19) can now be
cambined to give a reduced form of the kernel function
K(xo,55). However, in application, the variables z, and y,
are employed, for convenience, in nondimensional form.
This is accomplished by considering these variables in a
new sense to mean that they have been referred to some
chosen length ! and by introducing the reduced-frequency
parameter k=1Iw/V. The variables will be used in this new
sense throughout the remainder of the report. The kernel
can be written in terms of these nondimensional variables as

-——
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Rezo.yd =" 2 (Fut Fluma

_k’,-....{_ﬁ K,(Iciyol)—y:——l—;ol[Ix(klyol)—Ln(’t!yo})l+

UI’

JLP_r’ e~ inlrdr—

Mkzo++/( E)’-{-Eﬁli@* ,[h’c—n\l\l—"‘!—_ﬁ(ln'l +

S Mgy ez F By
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An alternate and perhnps more desirable form of expression
for the kernel function is given'in appendix D.

Note that this expression for K(z,,3) can be considered as
a function of only three parameters, namely, kly,l, kz,, and M.
To be more specific, the first two terms are functions only of
klyol; the next two terms are functions of kly,| and A; and
the last two terms are functions of kly,l, kz,, and M.

Equation (20) constitutes the principal result of this report.
Some partial checks as to its correctness are: (1) For k=0,
it reduces, as discussed subsequently, to the downwash of a
pressure doublet in steady flow and (2) an integration with
regard to the y-direction between the limits — & to + «
yields Possio’s result for the two-dimensional case. This
integration is carried out in appendix B. Other special forms
of the kernel function for M=1, Md=0, and k=0 are derived
in subsequent sections. A power series expansion of the
kernel which is applicable for certain ranges of the parameters
klydl, kz,, and M is presented. In the section immediately
following, the orders an;lwg@u of the singularities of the
kerngl function are discussed.

DISCUSSION OF THE SINGULARITIES OF THE KERNEL FUNCTION

As previously indicated, the kernel function becomes singu-
lar or indeterminate at y,=0. The forms that the kernel
function takes when it becomes singular are of particular
importance in applications to lifting surface theory. It is
therefore desirable to extract and treaf) the singularities
separately.

This extraction can be conveniently made by considering
the value of K(z,,y,), equation (20), at points on the semi-
circumference of a small ellipse (see sketch 2), the polar
equation of which may be written as

Zo==¢ 8in §
- C08 0 }
w3
where, because of the symmetry of K(zo,y) with respect to
Yo, only the limits —x/2 S0S57/2 need be examined. Note
that in these equations values of 8 in the range —»/2 £6<0
correspond to field points ahead of or upstream from the
doublet position and values of 9 in the range 0<8 S /2, to
field points bebind or downstream from the doublet position.

In particular, 8=x/2 corresponds to points directly behind or
in the wake of the doublet.

@1)

s ~v/2

e e el ’O

S

~8:0
1Y B

faw/2

%o
Sketch 2.

After substituting these expressions for z, and 7, into X’
cquation (20), the results may be written as

Keo.0)= g::’-;::- ' { ke cog 0 K, (ke cos 0)
irlcczp cos @ [ I, (lce c;)s 0)_ L (lu cpos 0)] +
['n%'!—. en- (310 $-20) ik cos _““.. /., !
Sw——tw—ttF " H g U/
12 0-30)

t2s (s
sin fe ”

_P._';’”ﬂ.ﬁm‘xfl-i-_f’f(%')'dﬁ
% J;. -me;,—" a~M ATt 0 a} @2) @/

With the use of the following series expressions for X, (z) and
[I(2) —Ly(2)] (which can be obtained from ref. 22—for K|,
see . 80; for I, see p. 77; and for L,, see p. 329):

Ky(z)=(7+log ;) (§+%+ 3;‘4 + .. .).|.

1 /2,528, 32
GG ) @)
where v is Euler’s constant (y=0.5772157), and
z 22 2 22 &
[II(z)-Ll(z)] 2 3’_ T 16 45’T384T . (24)

i¢ is found that for vanishingly small values of ¢ the limiting
value of the expression for K(¢,0) in equation (22) is for
M<1

g theam? -8 ik B, kedl—sinb)
A bk =l

St (d4in ""i’%f)]““‘)} oy 7/
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where 0(¢") represents terms of order ¢* for n21. Expressed K’ 3 Zd T Byot+ 1o ik
in terms of x, and y,, equation (25) becomes (’°’y°)‘"—_ yovzo+ Bt NI TBYe
i e —(Zo+ VI FBYD) ik B rg—- Mz +8y’ K, kyzo'+B8y'—0)
K(:toyyo) B { YovZa+Bye NZoF B oF ——‘—.Vlo"i'ﬁ‘y’ —51 g — 21—=M) (31)
2 lo k(\/xo’+ﬁ’yo — 592_"[ _L or in terms of ¢ and 6, introduced by equations (21),
e PR N NN
3’ T +B'yo | kel —sin ) 32
2 '8 31—

Examination of equation (25) shows that the kernel function
K(¢8) has singularities with respect to e=yZ'+ By’ as

follows:
-l“(-f-); % —g [f:(6)+log ¢ @n
where, from equation (25),
g 81 +sin )
HO={=sn 9™ cos'6
(28)
k(1 —sin §) k cos®d

Ho=log SA=M) — %8 FT—M)i+sn0)

Although of no particular significance in applications, it is
of interest to note that the quantities f, and f; each have

minimum values (lfllnﬁl"g and |f2'lu=l°g _EM) at

0= -—x/2, which corresponds to points directly ahead of the
doublet position; and, as 6 increases from —=/2 to +=/2} the
values of these quantities continuously increase from these
minimum values to infinite quantities as follows:

[ (3)|=tim d [”5“‘2(2 )’)] 2;'!\

—llm

cos’

k cos? (—2~—6) - (29)

O] e ey

—lim log _IL-s’Iﬁj

Thus K(z,,y,) is singular for 0=x/2 even when the distance
¢ from the doublet is not necessarily of zero order. This
implies that the doublet produces a wake of discontinuous
downwash that extends downstream from the doublet
position to infinity.

With knowledge of the singularities involved in the kernel
function K(zo,5,), an expression can be written in which the
kernel is separated into a singular part and a nonsingular
part (as was done by Schwarz, ref. 14, for the two-dimen-
sional case) as follows

K(zo,y0) = [ K (2o,50) — K’ (20,30)] + K (2o, o) (30)
where K(z,,3,) is-defined in equation (20) or (22) and

o

The term [K(25,1,) — K’ (£0,3)] in equation (30) is & continuous
function for all values of &, z,, and y, and for values of M in
the range of 0 SM S1. The term K'(z,,0) is discontinuous
at the doublet position (z,=0, =0) and at all points in
the wake (£,>>0,y,=0). It is to be noted, however, that
each term of K’(z,,y,) possesses a simple indefinite integral
with respect to y, or with respect to n=y—1y,, & fact that
may be useful in some numerical applications. The manner
in which these integrals are to be evaluated is indicated in
a subsequent section that deals with steady flow. The
limiting values at y,=0 of (K(zo,y0)— K’(zo,¥0)] for both
subsonic and sonic flow are given in appendix C together
with some remarks on evaluation of the kernel function.

TREATMENT OF THE SONIC CASE

Because of its special nature, the borderline case, M=1,
between subsonic and supersonic flow deserves and requires
separate treatment.

As M—1, the expression for the kernel function given in
equation (20) becomes indeterminate. It is possible, how-
ever, to obtain conditional limiting values for the kernel by
considering the integral F, equation (4), and breaking it into
two integrals, F, and F,, as was done for the general case.

With regard to F,, its limiting value and the value of its
derivatives with respect to z at z=0 can be shown to be zero
as M—1. From the form of F, given by equation (14),

lim F, = lim{K, (‘g, v’ﬂ?—&-—z’)—ﬁ [ I (% iR )~

- Mg, ‘(v W)
L(pTa) |- [ "’}

"K"(Twﬂw)‘?[“(vm -
ol (5577) ]

“(%'W)] 'fo et
e
But since (see ref. 22, p. 172)
T8 Lr g — K1) 34)

o VTF7
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and (sce vef. 22, p. 332)

i f SILE o ()~ L) (43)
TR
it may be concluded from equation (33) that
. N 32F| _ .
i = () =0 0

The total contribution to K(x,,y) at M=1, therefove, arises
from the limit of F,, equation (6), as M—1. The limiting
form of F, may be written in terms of nondimensional co-
ordinates us
ik N —
ne ,—,[A-.\l INFE (S .‘)]

= —— d\ :
A=t e o0

i approaching the limit 1/=1 (from the subsonic side) in
equation (37), it is convenient to replace A by

M=1—¢
where ¢ is infinitesimally small so that
B=(1—M) (1+M)=¢2—¢) =2¢
With this approximation, equation (37) may be written as

n 's{k-mu .)[,.,.-(v-'-n-m }
= lim f o

VN +2eyo’ 4+ 25

lim F,
M-l

it
ne'z "“T") d\
-J; e

From physical considerations, the right side of equation (38)
is to be considered zero for z050. This is in keeping with
results that would be obtained if the limit under consider-
ation were sought from theory of supersonic flow, M >1.

(for z,>0) (38)

The integral in equation (38) cannot be completely
expressed in terms of known functions. Furthermore, since
it is singular at its lower limit, further treatment is required
to reduce it to a form such that its derivatives with respect
to z can be numerically cvaluated. For this purpose the
integral may be written as two integrals, namely

(F)ym=F'+F," (39)
where
G
Fye= f i (40)
and (o et
F"—Jm f’i___x-__ d\ (41)
P M

The limits of integration in cquation (40) are so chosen that
the integral in this equation can be reduced to a known form
by making the substitution

A=y Py’ +H)—r or -r——

394619—56——2

Yo +’3 k)

Thus,

F/=

- o re o—ilkJwti)e )
-J vvvvv -dr (42)
9y 7‘+(Ja’+ ) v yl+

Equation (42) may be written in teris of the integrals
involved in F; (sce eqs. (34) and (:35)), namely,

Fy=Ro(kvy'+7) "'!._)1 Uolk v yo! + =) — Lk y yo* = )]
(43)

Differentiating this result twice with respeet to z and then
setting =0 gives

()‘F
o l‘{ “yo| K (k|yol)=

T 3 _ . _g
2%l [11(‘|!Io|) L (klwl) ']}

Differentinting equation (41) twice with respect to z and
setting c=0 gives
] (45)

FEN k’[ ,.,4( %)
-—b?.)z-o_ Pyt Ef

After performing an integration by parts and collecting
terms, cquation (45) may be written as

oF, ” _© ; (m-120)
( b" [P Jo kz Yo z +
. (ke (N
/'f%./n’j drl© 0 dr 48)

Equations (44) and (46) are combined to give 9‘5) N

Then, in accordance with c¢quation (4), there is obtained
for K(Ios.’lo)u-li

For z,>0,

K(Io,.’lo)u-|=[—g e {—killl;f Kn(’ﬁ'l!lol)“:_,ézi" [Il(’flyol)"

27, 1 2 (=i
L:(’ClyoD—;] +kz',7—m e,(m "“)+

N J'k.te _(A_EE
TR .

and, for 7,50,

(47a)

K(2o,y0)ria1=0 (47b)
The integral appearing in equation (47a) is finite and
proper and can be evaluated by numerical procedures.

TREATMENT OF THE STEADY AND INCOMPRESSIBLE CASES

1t is of interest to consider the form of the kernel function
given in equation (20) for some particular values of M and &.
In the following sections & discussion is given for the steady
case (k=0) and the incompressible case (1/=0). The two-
dimensional case is handled in appendix B.
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Reduction of the kernel for ‘i.e case of steady flow.—In
order to obtain the reduction of the kernel for the case of
steady flow, consider the expanded form given by equation
(26).  \s k—0, there results the following expression

K(z.) .Io)t-.n-—‘lg( (48)

i - - ;"n S _..)
?Io W'y I o+ 8¢ Yo,
whi it represents the downwash of a pressure doublet for
steady flow. This resuit serves us a partial clicek as to the
correctness of the expression for K(r.y) given by cquation
(20).

By replaciug s in equation (48) by y—» and integrating
from —1 to | with respeet to g, there is obtained

Tot+ Iy +ﬂJ(J— l)' _Toty !o‘+ﬂ‘(,/+ 1)
fx("" Yohdn=— —[’ Toly—1) T+ ]
49)

where the symbol «e indicates that a principal value or

finite part of the improper integral must be taken. (See,
for example, ref. 24 for a discussion of finite parts of such
integrals.) ‘This result corresponds to the downwash pro-
duced by a simple horseshoe vortex two units wide. An
equivalent expression for incompressible flow is given, for
example, in reference 25, where in contrast to the present
notation, r, has been chosen as positive forward.

Reduction of the kernel for M=0.—In order to effeet the
reduction of the kernel for the incompressible case, the
expressions for F,, equation (15), and F;, cquation (18), will
be examined for the limit M—0:

From equation (15)

9—’-’-"="{ — K hlyo—5 U~ L kil 50

M-o 0z?

and from equation (18)

2 -
- bﬂ ba:} !:ll:| g el ginh @ eitirolsine ¢ J§—
0

Zo .
——— giks, (51
WY )

Integrating by parts yields
a;:;? lk 1k+—k_ f Vi + N ¢-n,[)‘__- o eikzo
,:.2 v’ iy &’ +.Io

(52)

Combining the results from F, and F, gives for the kernel
function

K(Zo,yo)u-o=e"-;j{ i K:(klyoD ol I[’l(k'yol)

Lyl 2 e BT

o .

N } VNt PECYT) (53)
" Ju
By setting £,=0 in equation 153), a form is obtained which
cant be shown to ngree with results derived by Kassner for
the case M =0, r,=0 (ref. (26)).

A SERIES EXPANSION WITH RESPECT TO k"

An approximation for the function
lK(-rn- UII)—KI(J'"- llo)l

for small values of & can he obtained by making use of the
series expansions for A, (eq. (23)) and for (1, ~L,) (eq. (24))
and expanding all other temes of K(r,yo) (0q. (20)) into a
power series in terrs of k. After performing these expan-
sions and collecting terms with respect to powers of &, there
is obtained for A<

—kin By £o° + B> + 1) ikg?
K(I N )zt > " — 3 SR ————
0 Yo 128t Yo'y T+ B \ Io*+ﬂ'yu1
"f[u_» D (v L)
e VI B Jo
# log KOs ’:(Tﬁ v _’")]+

-3 ‘I‘)Io +(2— 3 ‘[r)ﬁuyo

\ J’o’+ﬁ',lo +

e
Gﬁz 2A131’0+

(525" [(1') V82— 20ALE + 1568 — 128% )yo*— $2MP2 +

4@BM 163 = 1) 25+ 128 (M +2MP— ) zoye®
\ :o’-{-ﬁ‘yo

2 log k (Vfo +ﬁ Jo —J'o)

2=M) *bﬂ"'lo]'i"

128%:0

5606° UM 100~ 1)1’y £d* +ﬂ“Jo

fB'Jo

!Io

MR (5+M¥xd -1- —12;\1'8’1‘01/0’——

55‘(31\4’—1}%’{:}”-]-73’3/7]. .. } (54)

For values of the parameters that satisfy the following
inequalities

k

Yo <l

(55)
% (ro— M+ 2 TR <1

cquation (54) yiclds results that are correct to within about
2 percent.
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Correspondingly for M=1, equation (47) can be expanded
10 obtain

ik.l_\ ikry'
o—ikny 2T 2
K(Io' Yo)ie = ‘p“ - —;;.f -+ ik [ Io. +e—~]+

ikry'
2 i, 2
: [l‘v—logk‘y"'-i—log, L +J°e ]

Yo 2yt 20
kre'
éﬁ 3L lo 3ye* !/_ofi
[} [ '.. J+ 4r, 4!03 +
k klyol ., . Zo'
9‘6[9‘![0 “6'7?/0 —'Q)yo‘ lOg’ Jl)l 3flyoz + 2502—.
’ l}n
. 1 1 To | Yo!_Yo%e ?
. 3z +6y0° log |!Io|+ Ml +
thry
1 Io_s_ Lo’ uoyo _+_Jo +§IO'E_2 (56)
96 20‘!](;2 3 o l"l‘ 20106

For values of the parameters that satisfy the following
inequality:
o’
ltIu

kxo— <2 (57)
equation {36) yields results that are correet to within about

2 percent.
VONCLUDING REMARKS

The muin purpose of this report was to present the kernel
function of the integral equation relating the downwash to
the lift distribution in a form that can be computed. This
purpose has been achieved by the presentation of the kexnel
in a form given in equation (20). This equation has been
converted to a form more suitable for caleulation by isolating
the singularitics as shown in equations (30) and (31). The
specinl case of A{=1 is given in equations (47). The forms
of the kernel function for other limiting cases, namely k=0
and M=0, are given in equations (48) and (53), respectively.

LaNcuLey AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FieLp, Va., September 18, 1953.




APPENDIX A

DERIVATION OF THE INTEGRAL EQUATION THAT RELATES THE DOWNWASH AND LIFT FOR A FINITE WING BASED ON
REFERENCE 21

In keeping with the concepts of lincar theory, the wing is
considered as a nearly plane impenetrable surface. Let this
surface S lic nearly in the zy-plane, as indicated in sketch 1
of the body of the report, and let it and the . y, 2 coordinate
system to which it is referred be assumed to move at a
uniform speed V" in the negative r-direction. At the sameo
time, let each point of the wing be assumed to undergo
harmonic translations of small amplitude Z.(z,5¢) at
circular frequency w and let ¢ represent velocity of sound in
the medium.

The problem for an oscillating wing consists in solving the

wave equation subject to certain boundary conditions. The
- wave equation in rectangular coordinates is
azw az\‘, b!w , a)z _
/152’ ny’ azz (" a_t ¥y=0 (A1)

The independent variable ¢ in equation (A1) is regarded
herein as an acceleration potential; as such it is directly
proportional to a perturbation pressure field and is related
to a velocity potential ¢ as follows:

3¢ 0¢
y=gtv 32 (A2)

In order to complete the boundary-value problem for the
wing, it is desirable to calculate the downwash w(z,y,z,t)=g—:

associated with ¢. Assuming this downwash to be harmonic
with regard to time implies that both potentials ¢ and ¢ are
harmonic with regard to time and can be written, therefore, as

2,y z,t)=e' a(t.y’z)}

- (A3)
Wy, 2ty=el Ylayy,2)

With these expressions for ¢ and ¢, equation (A2) becomes

independent of time and reduces to an ordinary cquation

with one independent variable, namely

Fiva+ Vi (a9)

This equation can be integrated with respect to z to give

- P i
¢-TJ‘ \0()‘,% Z)C Vidn (A5)
where the lower limit of integration is chosen, for later
convenience, so as to satisfy the condition that ¢ vanish
a8 Z~>— @

10

The boundary-value problem for the wing may now be
cxpressed mathematically as follows: Under the assumption
of harmonic motion the differential equation, equation (A1),
becomes

a'."p al'p azw

o2+ 5y toz (48)

cl(V——-H )\P 0

In order to insure tangential flow at the wing surface, the
potential must satisfy the downwash condition

W(z.y) -_—_(g_:)"o=( v %-{-iw) Z.(z.y)

where i and Z,, are amplitudes of velocity and displacements,
respectively, and are assumed to be known from the motion
of the wing. At z=0, the pressure

A7)

p=—p(¥)se0 (A8)
must be zero at all points (r,y) off the wing. At all points
on the wing y is allowed to be discontinuous and the value
of p at a given point is determined by the magnitude of the
discontinuity in ¢ at the point. In the neighborhood of the
trailing cilge, p must go to zero, corresponding to the Kutta
condition.

One other condition, that ¢ vanish far ahead of the wing,
is inherently satisfied by the relation between ¢ and ¢ given
in equation (AS).

The potential ¢, ut point (z, y, z) due to & harmonically
pulsating doublet located in the ry-plane at (¢, 9, 0) that
satisfies cquation (A6) is

> ei.[:+¥ <x—e)—§]

%=A 0—2 ———-——R, (Ag)

where

R =\@E—8'+F (y—n)+62

and tho factor .1 is a strength and dimensionality factor that
makes possible different uses and interpretations of the
potential y,. If ¥, is considered as an acceleration potential
and substituted into equation (A5), there is obtained a
correspcnding velocity potential ¢, which may be written as

O w8 mer—g ""(‘+ +¥:£’
b=t e ¥ f e\ (AL0)

9/
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where

R=yN+g (y—n)'+52

_ e} . . .
The downwash —5%“ associated with ¢, may be written as

ai*’_.A &7 f plkan iN (Al1)

T NER

where ro=x—§, w=w/VB, and r=8y(y—n)}*+2*. With the
use of this cquation and the concept of solving linear
boundary-value problems by means of superposition of
elementary solutions to the governing differential equation,
the boundary-value problem under discussion can be written
as an integral equation, namely

5y gl (A— M NFF)

hary

Vv
B(z)=lim A f f LEn)e v didn a‘f T

(A12)

where S represents the surface of the wing and L, #)
represents an unknown lift distribution or doublet strength
on 8. Equation (A12) may be seen to correspond essentially
to equations (1) and (2).

If the distribution function L(§, %) in equation (A12) is
determined in accordance with the boundary conditions
discussed in the preceding paragraph, equation (A12) can
be considered us a complete solution to the boundary-value
problem for an oscillating finite wing in compressible flow.
It is also to be noted that equation (A12) can be considered
to represent a solution to the so-calied “indirect’” problem,
that is, that of finding the downwash distribution associated
with a given lift distribution.

APPENDIX B
REDUCTION OF THE KERNEL FUNCTION FOR THREE.DIMENSIONAL FLOW TO THAT FOR TWO-DIMENSIONAL FLOW

The purpose of this appendix is to show that integration of
the kernel function K(zyy,) from — o to 4+ o with respect
to n=y—1, leads to & known result for two-dimensional flow.
The kernel is first modified to a form that, for the present
case, is easier to handle. Then, after performing an integra-
tion by parts on the modified kernel, the form of the kernel
for the two-dimensional case is given (eq. (B18)). In addi-
tion, the special cases of A=1 (eq. (B23)) and M =0 (eq.
(B30)) are also shown.

The integration under consideration with respect to 9 is
equivalent to an integration with respect to ¥, namely

K @y—ndr=tf Kawdn @)

It is remarked in advance that since z has been made zero
in the expression for K(zo,3), equation (20), it is necessary
to employ the concept of “finite parts of infinite integrals”
when integrating this function across the singularities at
¥o=0. Use of this concept gives the same results that
could be obtained by the more arduous task of performing
the integrations before setting z equal to zero.

Modification of the kernel.—In order to effect the desired
modification of the expression for K(z,,y,) given by equation
(20), consider the first integral of the expression, namely

-8 fo 0 TF7 e wie s ®2)
This integral can be written as

lim—#* f .\[1‘4‘-7 ereHN dri it f " VT e-tidr dr
=0 ] M8

(B3)
but according to page 331 of reference 22

- - I 2 iklyol)—
ﬁ VIR ¢ drm g o (6 o)

Y3+ ikiyol)] (B9

where /1, is the unmodified Struve function of first order and
Y is the Bessel function of the second kind of first order. In
the limit as §—0 these expressions have the following values:
For the first .-~ -ssion in the bracket (see ref. 22, p. 329)

ugu.w+ik|yo|>=H.(«'Jc’|'yot>=—L.(kw.,n (BS)

and for the second expression (see ref. 22, pp. 77 and 78)

llm Y\ (+1klyol) = —1111‘”(*|on) + 1 (iklyol)
= Kx(k[./oD Li(klyol) (B6)

where H; ' denotes the Hankel function of the first kind of
first order. With the use of equations (B3) to (B6), expres-
sion (B2) can be written as

N, -
—k’f " 'Jl+ Tz E—Ikl'd' dfzsz "y!l+7z c‘“‘ldv df+
0 M/

g { e+ 5 e~ L) }B)

Substituting this result into equation (20) of the text gives
the modified form of K(zo,,) sought, namely

-, _iMRly,| _laky|
K(Io,yo)—g"— —%} TP+ luly ;¢ P —
Mzot+ 27+ Bys zo’-Hi’yo (z.—www)+

M!lo /2'02+ﬁ’
J ik (o % G-avoTom) ]
k"[w\u-#e i 47+W_£ B N
(B8)

Integration of modified kernel.—Since the expression for
K(zo,5,) is symmetrical with respect to ¥, that is, K(zy, —y) =
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K(xo,+0), the integration under consideration can be
expressed as

U Kol d=2t [ Ky dws  (B9)

where, on the right, the absolute-value signs on %, can be
dropped.

After performing an integration by parts by letting

e (B10)
and
ik
e 51 M T

M‘\‘- Ioi‘f'ﬁ’yoi
kwf' IF Pe-itw d; +"‘f H 0N 5By

chMzoyo

(rv=M 251 50p%)
d"={[<z EE R s

. 1 g N MVTTT)
————d\ {4 B12
k’y°fv1a41+# +k% o N HBY Yo (B12)
there is obtained for uvI

- - y Mg n
u,,.b=2°_‘_”°{_l[iy9, R

(ro- M J2éFBye)
M)"' +

G

First (see ref. 22, p. 180)

(&

(z.-u
\/ Zo"l"ﬁ’yo )

ikze
)dyo-%k f (I"I M cosh 0+1)

- . v s (tre 'f F I S o=
k’yo’f Vi ety ! Lf il +ﬂ')11 )‘:[ }
Mis MJo o=0

(B13)

This expression vanishes at its upper limit yo=« and is
singular at its lower limit yo=0. However, by not making
z—0 in the derivation of K(z,y) until after this stage is
reached, this singular value is canceled by other terms that
have otherwise been dropped. Thus, the expression (B13)
may be considered to be zero, which is the value of its finite
part. The integration under consideration is then reduced

to the value of -—J;. v du which is

"‘:‘o B8z kM,
—f vdu—2 {[(Ioz+ﬂzjoz)3/2+-roz+ﬁzy 2+

L2 PP o
vz + 8y

10 ot (= MANTER)
"’f RN
0 vrx!_*_ﬂlyoz

_get e (ikM + ) e o
[ Zo \Io"f‘ﬂ'yo

d)] dyo

(B14)

- 3-1%'
Mgyl 47

dr+4

e~ tkngr d £ 1) 8’-: (X-My W)
Y bl j; VN By,

The terms of this expression are treated separately in the
next three equations:

':,' jxef cosh 0

=Tk "'fu’[ 12 g o (RM 2ol | opr o (%DM 20l
s (M pe (55 i, ( # )] ®13)
second
- . ity - dr -
PR —_ e —1k¥yr
2k’J; dyoJ:w‘vll——'—_l_ fzd‘r 2k’_£mvl T ), ¢ ot dyo
dr
T tkj:\m Wite
=—2ik log 'A"f (B16)

and third (sce ref. 22, p. 180)

= (x My/\THgiy,1) ¥ MyATTn +ﬂ’lo

(123

2k’f f e D=2 f Fir f K "_?__
VN By ¢ VN Byt

Y 7 ‘2
—%’ f " H, "’(kM [xl)dx
0
(B17)

- M
ZPJ' ”d)‘f —Neosh.do
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ON THE KERNEL FUNCTION FOR FINITE WINGS IN BUBSONIC FLOW

Substituting the results in equations (B15) to (B17) into
equation (B14) gives

[ e (S ()

21 1
2 (L) ]+ 5 10 112+

0 52 o (RMIN }
By (S5)

This result is a form of the expression for the kernel function
of Possio’s integral equation relating pressure and downwash
for & two-dimensional oscillating wing in subsonic compres-
sible flow. It checks the results given, for example, in
reference 27.

Reduction of kernel for M=1.—The kernel function for
M=1 may be written as (see eq. (47a))

Rzt~ 0] gy Koo [ 5~
i 9!
L2 g & ()4
. T . VAR
o 5 )ir— B n""‘e?<"":_)dx}
®19)

The second integral appearing in this equation can be shown
to cancel several of the terms so that the kernel becomes

:(-59) dx]
(B20)

80 that the kernel for the sonic case in two-dimensional flow
may be written as

lf K(zo,Yo)u=18; =-—:(2e’ f_ _-—rdvo-

if eadxf ——,—dy.) (B21)
Integrating equation (B21) by parts with respect to 3, re-

taining only finite parts of the integrated results, and making
use of the relation

if” -Wdf=z@f emvorgrmiEt

ik (B18)

K(zomo)n-x-——p— —;e‘; * ’)——, f

ylelda
Pl dyom— _( zs.]
y -@-' W=7~ il I

(g

13

ikyy

- 1 i
e-T._dyo)—i f Rl FN
. )
ikt 1" . - _lityg?
1 =X ik
(_y—oe 2x]...-"—*_ Lo dy")}

21:\/; .- .,,(‘2"/'?__ =

it +
2
Wil 5 ‘“)
Finally, the kernel for the sonic case in two-dimensional flow
may be written as

U Kewgoumdgomt 2 e

B2 D
(»/-k?o”_ik‘/; i Te? d\] (B23)

It may be noted that the integrals in this equation are readily
expressible in terms of Fresnel integ als

ik
o

==

(B22)

* r
C(z)=j; cos 3dt
and
L 4
S()= f sin J #'dt
°
Reduction of kernel for M=0.—For M==0 it is convenient
to modify the kernel function before integrating with respect

to . For this purpose use is made of the relation (see eq.
B7):

k ! ixk
- K 1(klyeD—gr ] (Ll yol) = LaCklyol)]
T
[

=k’ ° Y
= ﬂ VIFF R ety (B24)

and the relation
1) e [ el (B20)

With these relations the exprission for K(zo,yo) w=e, €quation
(53), can be written as

,-wq_"_"__,_h L L

e ' %o
m%yﬂn)u-o=7— bl m ™

. ggf_:o e Ny CRE ) (B26)

x,

\¥
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But
j‘f,”f\/, f VYN et da= "'-'Wyo:'i'!/o s, ‘7‘ . Vyo:;-k’ e~Md\
- e - _iki/;ooz+yo? em..;.yo’\/ :T’o+—y§ ettr— f; @;f__;';:?ﬁ dX (B27)
, therefore, . .
¥/ K(@oyoumo=—"75 :,(y e d (B2 =—Feren (- J, e
Integrating with respect to y, gives " f" oosx kX Itk f sm)‘ 2% d)\)
%0 20

l _-K(?oyyo)u.odyo=—1-d s f f-:o_’+733’7 d\ dy,
e Gt ICRaY M-

=—%6_m|f.:o )" dk

= hfk (_21;“,*2: em e {Ci Ueza)+

{sea4]})

(B30)

where Ci(kz,) and Si(kz,) denote, respectively, the “‘cosine-

® - - k)
=—% P e_{‘_ dr— f c)‘—,- dx) integral” and “sine-integral’ functions defined as follows:
- fo
(B29) -
Ci = <t a
Integrating each integral in equation (B29) and retaining s ¢
only finite parts yields .
. g-in Si (z)gl_f. sint
lf K(Io,llo)u-od!lo==— e~ (————ik 5 - 2- ). ¢
ik J' e dx The results in the braces of equation (B30) check with results
n A given for this case in reference 14.
APPENDIX C

SOME REMARKS ON EVALUATION OF THE KERNEL
FUNCTION

Exact expressions for the kernel function K(z,y,) are
given in equation (20) for 0 SM<1 and in equation (47)
for M=1. Corresponding approximate forms are given in
equations (54) and (56).

Equations (20) and (47) are valid for any set of values of
M, k, z,, and % To calculate the value of the kernel from
these equations, it is nocessary to evaluate numerically
the integrals which appear. Values of the other terms can
be obtained by making use of existing tables. Extensive
tables of the Bessel functions K, and I, may be found in
reference 28 and a table of the Struve function L, with second
and fourth differences for interpolation purposes may be
found in reference 29. Sample values of the kernel are
given in table I.

For certain ranges of values of M, k, 2,, and y,, as indicated
by equations (55) and (57), the kernel can be evaluated
by making use of the power series expansions given by
equation (54) for 05 M<1 and equation (56) for M=1.

The various expressions for K(z,,y,) become singular when
Yo=y—n,2,%0. In order to be able to evaluate the kernel
in such circumstances, it has been separated into two parts
as shown in equation (30). One of these is denoted by
K(zo,y0) — K" (zo0.y0) and is not singular; the other is denoted

by K’(r,y.) and contains all the singularities. Obtaining .

the value of (K—K’) from the form of the expression given
in equation (30), however, may be troublesome. This
particular value for y,=0, z,>0 can be obtained from the
following limiting form:

- 2 h
EE) (K (z, o) — K'(Io,yo)] =e—;:s—° { (2%-{-“‘ (;:AI))‘W_
k’ 2 2+M M

o s (53]}

“where v denotes Euler's constant (y=0.577216) and Ci and

Si denote cosine-integral and sine-integral functions, re-
spectively. (These functions are tabulated in reference 30).
For M=1, this expression reduces to

& ik

lim (e o) =K zogol =" 2y

=l
% [B-mv—toa (B4 () +isi ("-2‘-“)—523]} (€2

—rr—tog (Fp)+ >

_

A
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The kernel function is not singular for z,<0. For y,=0
and 2,<0 it may be written for Af<1 as

1lc (1— \I)]

020 2.20!

hm K(—-Io,yo)———— { —-(l+M)lnl

Eloi(Hn)-isi(B)+5 ]} ©
The expression for K— K’ for £,<0, ;=0 may also be useful.
It is
VO lim (K= zayo) ~ K (— zoio)=" 3 ﬂ: ltc’:|_
N/ ik (l—M) -,%7
& & am)e
®/ e (E) o (M,
s (7547} €9

For M=1, K(—zo,y0)=K(—z0,y0)— K'(—0,s) mO0.

Some results of evaluating the kernel and its nonsingular
part are given as examples in table I. (In order to obtain
these results the required integrations were performed
numerically by manual computing methods.)

APPENDIX D
ALTERNATE FORM OF EQUATION (20)

. Subsequent to the derivation of equation (20) as given in
the text, it was found that the two integrals involved in this
equation can be combined in & manner that leads to a more
oconcise and, for many purposes, a more convenient form of
expression for the kernel function. The purpose of this
sppendix is to derive this alternate form.

Consider first the integral

G= ﬂi?f)—’ ko §- [x-ur_ﬂ
and make the substitution
| 3 O—M T REGT)=—Hlyale
A=klyol (MyI+7—1)
This substitution gives for G,

PR e (o= M)
'Wﬂ/o,

i TMEy?
it / i (R M)
74 Ay s

Consider now the integral
Y

D)

D2)

or.

D3)

‘h_r.. )c'“*"" dr
_.,-—.L']

4

oL

‘/ﬁ__f_, e~ttine dr

Gyme J; MO T3 e-tim g D5}

and intcgrate by parts by letting
U=y l?r:'

dp=e~isivir dy

so that
du= 217
\l+‘f"
v=m —ikl”v
This integration gives for G’,'
)Y w8 .
Gaom b 1 J‘ L
R o e o L D
Subtractmg @, from G, (cqs. (D4) and (D8)) gives
G G iMklld ulll“
=g A | MERt | T
S-CS o S fm JET-
7l Yawde Jixac art
(- Mo TFW)
md T —Gk{polr,
w Jor” T
b iMEyl+8 -GN 1 S a-MyR)
Fiwel ——‘Mmyor ¢ * tumy” +
(2= M i +09¢)
1 F" T Ripde
el Jo wewk dr ©n

Substituting this result into equation (20) of the text gives
for K (2o,30)

Koo 9= = L R bt LR~ L+
i kzo 3 (k=24 JERPTSERY +
kol (leyo)tvezo)*+8¥yo)?

P (R (- M)
L o .
T s} o

The integral in this equation is in general more amensble to
numerical evaluation than either of the two integrals appear-
ing in equation (20)., Furthermore, with this expression, it
is not necessary to consider the incompressible case as a
special case, since no trouble arises in setting M=0. Simi-
larly, for the sonic case no trouble arises and this expression
gives for z,>0:

G goua=Ets™ {—H;—ol Kkl —

‘l’_

k_';_o' J‘ aw (= x.) %’ e"‘"'l'dr}

D/

’

X
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TABLE 1.—VALUES OF THE KERNEL AND ITS NONSINGULAR PART AT M=0.7

% ¥ k K(ze,y0) K(zyys) — K’ (zai)
0 0.125 | 0.1 —63. 827560+ 1. 112400¢ 0. 144520~ 0078245
.3 —63. 801759+ 3. 200793¢ —. 003441 —. 060879:
.5 —63. 5130494 5. 408465; —. 009423 —. 192655¢
.7 —63. 127659+ 7. 466762; ~. 018114 —. 374807%
1.0 —62 306691+ 10, 445603; —. 035609 —. 7565484
1.5 L1258 .1 | —126 263912+ 19, 1428115 141754 —. 0288413
.3 | —114 855158+ 55 831808; ~. 031317—. 056060:
.5 —92 964383+ 86. 8293461 —. 123447—. 1157034
7 —82. 878740+ 109. 927026: —. 283001 —. 133318;
1.0 —8. 792808 125. 2239644 —. 581313 +. 022309;
0 80 .1 —. 0192714+ . 010639i —. 000039 —. 0066995
.3 +. 007493+ . 020050% +. 007793 —. 0490644
.5 +.020861+ . 001545 . 036165—. 1151454
.7 +.009570— . 017888; 005337—. 181254¢
1.0 —.018833— .006290i | - .305627—. 230670
1.5 | 60 .1 —. 027209+ . 020038; —. 00905 —. 006215¢
.3 +.0024524+ . 028186: —. 005415—. 041401
.5 +. 021871+ . 013305 —. 007432 —. 109920:
.7 +.022588— . 008080; —. 026790—. 232786¢
) —.004786— . 022987; —. 190134 —. 523376+
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