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ON THE KERNEL FUNCTION OF THE INTEGRAL EQUATION RELATING THE LIFT AND
DOWNWASH DISTRIBUTIONS OF OSCILLATING FINITE WINGS

IN SUBSONIC FLOW 1

By CHAnLzS E. WATKINS, HARRY L. RUNYAN, and DONALD S. WOOLSTON

SUMMARY applications of simple transformations or correction faCtors,

This report treats the kernel function of an integral equation such as the well-known Prandtl-Glauert factor for steady
that relates a known or prescribed dounwash distribution to an flow. This difficulty is associated with the fact that the time

unknown lift distribution for a harmonically oscillating finite required for signals arising at one point in the medium to

wing in compressible subsonic flow. The kernel function is reach other points gives rise not only to changes in magni-

reduced to a form that can be accurately evaluated by separating tudes of forces but also to additional phase lags between

the kernel function into two parts: a part in which the singular- instantaneous positions, velocities, and accelerations of the

ities are isolated and analytically expressed and a nonsingular wing and tile corresponding instantaneous forces associated

part which may be tabulated. The form of the kernel function with these quantities. In order to obtain results for the

for the sonic case (Mach number of 1) is treated separately. In compressible case, it therefore appears necessary to deal

addition, results for the special cases of Mfach number of 0 directly with the boundary-value problem for this case.

(incompressible case) and frequency of 0 (steady case) are given. The boundary-value problem for a two-dimensional wing
. The derivation of the integral equation which involves this in compressible flow has been successfully attacked from two

leernelfunction, originally performed elsewhere (see,for example, points of view. First, by consideration of an acceleration or

NACA Technical Memorandum 979), is reproduced as an pressure potential, Possio (ref. 13) reduced the problem to that

appendix. Another appendix gives the reduction of the form of of an integral equation relating a prescribed downwash dis-

the kernel function obtained herein for the three-dimensional tribution to an unknown lift distribution. The kernel of this

case to a known result of Possio for two-dimensional flow. A integral equation, which is a rather abstruse function, was

third appendix contains some remarks on the evaluation of the reduced to a form that, except at singular points, could be

kernel function, and a fourth appendix presents an alternate evaluated. Schwarz (ref. 14) later isolated and determined

form of expression for the kernel function. the analytic behavior of the singular points of Possio's results
and made fairly extensive tables of the kernel function.

INTRODUCTION These tabular values were used by various investigators

The analytical determination of air forces on oscillating (for examples, refs. 15 and 16) to obtain, by numerical
wings in subsonic flow has been a continuing problem for the procedures, initial tables of force and moment coefficients
past 30 years. Throughout the first and greater part of for oscillating wings in compressible subsonic flow.
this time, efforts were directed mainly toward the determina- The second successful approach to the solution of the
tion of forces on wings in incompressible flow. These efforts boundary-value problem for a two-dimensional wing (see
have led to important closed-form solutions for rigid wings refs. 17 to 19) is achieved by a transformation to elliptic
in two-dimensional flow (ref. 1), to solutions in terms of coordinates followed by a separation of variables that reduces
series of Legendre functions for distorting wings of circular the boundary-value problem from one in partial-differential
plan form (refs. 2 and 3), and to many approximate, yet equations to one in ordinary differential equations of the
useful, results for wings of elliptic, rectangular, and tri- Mathieu type. The solutions turn out as infinite series in
angular plan form (see, for example, refs. 4 to 12). terms of .Mathieu functions. Numerical results obtained

Although these results for incompressible flow play a recently by this procedure agree with results previously ob-
highly significant role in applications of unsteady aerody- tained by the numerical procedures using the kernel func-
namic theory, the advent of higher and higher speed aircraft tion (see, for example, ref. 20).
during the last 15 years has brought a growing need for With regard to boundary-value problems for finite wings
knowledge of the effect that the compressibility of air might in compressible flow, it appears that the procedure of sepa-
have on unsteady air forces, or for analytically derived un- ration of variables could be a feasible approach only for
steady air forces based on a compressible medium. The wings of viry special plan forms such as a circle or an ellipse.
transition to results for a compressible fluid from those for In any case, the development of the appropriate mathe-
an incompressible fluid is not likely to be accomplished by matical functions for a particular plan form would become

OSuPueda NACA TN 3131, 19M.
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2 REPORT 1234-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

highly involved. On the other hand, it appears that approxi- ANALYSIS

mate procedures similar to those used for two-dimensional INTEGRAL EQUATION AND ORIGINAL FORM OF KERNEL FUNCTION

wings might afford an approach to solutions of these prob- The main purpose of this analysis is to treat the kernel
lems which, though laborious, might be handled by routine function of an integral equation that relates a known or
numerical methods. prescribed downwash distribution to an unknown lift dis-

Tihe kenel function of the integral equation relating pres- tribution for a harmonically oscillating finite wing in corn-
sure and downwash for the three-dimensional case appears pressible subsonic flow. The integral equation referred to
as an improper integral. The purpose of this report is to can be obtained by employing the Prandtl acceleration
treat and discuss this kernel function. The improper integral potential to treat linearized boundary-value problems for
is reduceid to a form that can be accurately evaluated by poetatoratlnridbudryvuerbem fr

is taoscillating finite wings by means of doublet distributions.
numerical procedures. The form and order of all its singular- Derivation of this integral equation from the linearized
ities are determined and an expression for the kernel functionis eried n wichthesinulaitis ae iolaed.Speial boundary-value problem for a wing is a preliminary task
is derived in which the singularities are isolated. Special that has been done elsewhere (see, for example, ref. 21), but
forms of the kernel for the sonic case (M= 1), the incompres- it is reproduced herein as an appendix for the sake of com-
sible case (M=O), and the steady case (k=O) are presented. pleteness.
A series expansion in powers of the reduced-frequency param- In keeping with the concepts of linear theory, the wing is
eter k is developed.

The availability of the kernel in a form which can be considered a plane impenetrable surface S which lies nearly

rapidly evaluated, makes possible the use of numerical pro- in the xy-plane as indicated in sketch 1:

cedures, similar to those used in the two-dimensional case, 1

to obtain aerodynamic forces for finite wings.

SYMBOLS

c velocity of sound
00,,") Hankel functions of second kind of zero ,,4\

and first order, respectively
i0,11 modified Bessel functions of first kind of

zero and first order, respectively
is Bessel function of first kind of zero order V
K0•XK modified Bessel functions of second kind of WX

zero and first order, respectively
K(xo,y0) kernel function of integral equation
K'(Zopo) singular part of K(zo,yo)
k reduced-frequency parameter, lw/V
L4O modified Struve functions of zero and first

order, respectively
L(j,,j) unknown lift distribution
I reference length
M Mach number, V/c
p pressure P
r=y-,•-z2 Sketch I.
S region of zy-plane.occupied by wing
t time The z,y,z coordinate system and the surface S are assumed to
V forward velocity of wing move in the negative z-direction at a uniform velocity V.
r(z,y) amplitude function of prescribed downwasli, In terms of these coordinates, the integral equation may be

tV(Z,y,0 te) •(z-y) formally written as
21YA,17 Cartesian coordinates

yoffi 1 4r2

Euler's constant

•f =if--].x o2  where U(z,y) is the amplitude function of the prescribed
Svelocity potential downwash, K(zo,yo)--K(z--, y-,q) is the kernel function
÷ acceleration potential and physically represents the contribution to downwash at
p fluid density a field point (x,y) due to a pulsating pressure doublet of unit

circular frequency of oscillation strength located at any point (%,qi), and L (%,,V) is the unknown
ffi,/VI* lift distribution or local doublet strength.
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The kernel function may be mathematically defined by the In the first integral of these last two integrals, make tile
•// following improper integral eppression (see eq. (A12), substitution ,

appendix A): i/ '- -Tiv

K(. j)L im / f) 87 f Xo+. d\ (2) and in the second integral make the substitution

where M is Mach number, #=/i-M-, Z=w/1Vf,, w is the Then
circular frequency of oscillation, V is the velocity, and
A is the variable of integration. Evaluation of this integral e-iM.V4VT"rYj I',-rd__

constitutes a main difficulty in obtaining aerodynamic F-- J (, 0
coefficients for oscillating finite wings in compressible flow.
The present analysis is therefore devoted to reducing it to a i e-" ,,-
form that can be accurately evaluated by numerical pro- J(
cedures combined with the use of tables of certain tabulated
functions. The form and order of all its singularities are (It is of interest to note, in the expression on the left of eq.
determined, and an expression for the kernel function is (8), that X and r appear in the same manner. The roles of

derived in which the singularities are isolated. thets two quantities could, therefore, be interchanged in
the expression on the right.)

MMUCON OF THN3 INL Pn•MON With use of equation (8), the equation for FP can be

In considering the reduction of the kernel function written as
K(zo,y.), the integral involved can, for convenience, be - - --

written as the sum of two integrals, namely F1=f eiaA f e-- d-) -

W I f*P* 0 oAd , dv] (9) /

S(3) Changing the order of integration in each integral (which is
a legitimate step because the integrands involved satisfy

Therefore, the continuity conditions required for such operations) leads

~~)/ ~a f(,y)lm *-6(4 to the following expression for F1 :

where P'('=lm V( 1 +, 1 f a" dv r e-InMJ 0 (),-?Tý1?' A])
F , .f *X ( 5) M 3

d-rv e-a Jo (X A]. (10)

and e If0

Pf. A (6) The integrals within the brackets in equation (10) may be
(o W+r) evaluated from tables of Fourier or Laplace transforms as

and where r-= 0- - (see, for example, pair no. 55 of appendix III of ref. 23)

The integrals FP and F9 are treated separately in succeeding f. d-$ ,c (X +M-•) A__1_4-1
sections. The final forms are given in equations (15) and 0
(19), respectively. .A ,

Eivaluation of F1.- The integral P, can be converted to a 0 o-
form that can be more easily handled by writing

uIM -M4i1 Aso 
that

P Fl=fo 6- d-' [ -" d, (11)

and introducing the following relation (see p. 416 of ref. 22) W2

*GM4: I'. . e_' ,..,-r The first integral in equation (11) can be written as
JJO(TM ''~-~ TdT - ~ --"f o- " . " -- "Tz. /, f-

• •dr=/ a,"- if dr

-f J(X)' TdTor

irV" JO(TX) e-/M -- TdT (7) e" d-O (Ila)
j 0e, 'M-2 TS fi 10
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The first integral on the right of equation (I a) is given on Combining equations (12) and (13) gives the following
page 181 of reference 22 as expression for F1 :

where ko is the modified Bessel function of the second kind __ - M/0 e V(• )
of zero order. The second integral on the right of equation L4 V o- -/---V d] (14)
(11a) is given on page 338 of reference 22 as VI+

""i 1 By performing the differentiations indicated in equation (4),
6 2-2.)-=-"J there is obtained for the first part of equation (4) the follow-

where Io is the modified Bessel function of the first kind of ing expression:

zero order and o is the modified Struve function of zero . T'F W K _ )ir l\)1(w )]
order. Then, the first integral of equation (11) can be -ii --- -- VlIoI -- Ii Viyo -LivIYoli+
w ritten as • (15)

fe 0 d~K (Ar 1[o(AZr)-IW.Ar)I VJ 0~lf" 41+7 6''" 4 (15)

All terms of this expression other than the integral may
=Ko Q yo• e--'[ (f be evaluated at small intervals of yo from existing tables,

except at yo-- where the function is singular. The integral
is well behaved and can be accurately evaluated by numerical

4 y(12) or approximate procedures. The type and order of the
singularities at y0=0 are discussed in a later section.

Note that the end result indicated in equation (12) is in- Evaluation of F2.- In order to reduce the integral F3,
dependent of Mach number. The second integral in equa- equation (6), it is convenient to make the substitution
tion (11) may be written in another form as

fo r 6-,- so that X=r anih a (16)
drf "dr (13) -,*'7

f:2 -r + £J 41T? dTf (13 Fs-f", hi(hinb-MooiU) do (17)
This integral has not been reduced to closed form; however,
it is nonsingular and can be readily handled by numerical Noting that z appears only in r and performing the differen.
methods. tiations indicated in equation (4) yields

(sinh 6--M cosh 9) e'9"( (du O-Afewh 0) de- eo..i

- inh-
1

Zo~z er (a,._C0• )

= _01 1 ^ 6M-1G, )o w Y-0 1 0 [i cosh 9-(cosh 8-M sinh 0)] 6 evI11(u "nke~M msh dej
(zM1+ps' -eim~af141 j;o 1 snW1 

So cah9#IsI(il MUSS) do} (8

or, by reverting completely to Cartesian coordinates through like the integral remaining in equation (15), is nonsingular
equation (16), there is obtained and simple in form and can be readily evaluated by numerical

procedures.
,- " •Expression for the kernel in terms of nondimensional

+M, length variables.-Equations (15) and (19) can now be
-'-f-),.o {- -) combined to give a reduced form of the kernel function

K(Ao,yo). However, in application, the variables r4 and yo
are employed, for convenience, in nondimensional form.

I e-SO QI]-- z 6 (hm ý(M+O W) (19) This is accomplished by considering these variables in a
"J new sense to mean that they have been referred to some

chosen length I and by introducing the reduced-frequency
This expression vanishes, as it sbould, for r.= 0 and, like parameter k=lc/V. The variables will be used in this new

that in equation (15), has singularities at y,=0 which, also, sense throughout the remainder of the report. The kernel
will be handled in a later section. The integral that remains, can be written in terms of these nondimensional variables as
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K(zY ffe 6 (F,+F0)...0 2

XNEV o-i e o Ki(klyD)--• [Ia(kiyo)-L,(k yo,) +

M(i.+ )(k(•)'+•'(k/•)" - (z~SPk.)]+-

An alternate and perhaps more desirable form of expression
for the kernel function is given' in appendix D. 8,-/

Note that this expression for K(ro,•io) can be considered as
a function of only three parameters, namely, klyo; kz., and M. '0

To be more specific, the first two terms are functions only of Sketch 2.
klyoI; the next two terms are functions of klvoI and M; and Afe usiuigteeeprsin"o n oit /-~
the last two terms are functions of klyol, kzo, and M.Atesutitigheeepsiosfr adoino •

Equation (20) constitutes the principal result of this report. eqluation (20), the results may be written as
Some partial checks as to its correctnes are: (1) For k-0, ,I , e''" k, ceos Ik. cos 9
it reduces, as discussed subsequently, to the downwash of a K•e,9)' p-' co'• e. - K 1 k $ -
pressure doublet in steady flow and (2) an integration with

Sregard to the y-direction between the limits -- • to+ - iwk. coa9[ (kecse (Lj _ cs \
yields Poseio's result for the two-dimensional case. This 2 DI' --/ +I
integration is carried out in appendix B. Other special forms
of the kernel function for M= I, M=O, and k=0 are derived •' " • "" *-) / /.

kernel which is applicable for certain ranges of the parameters M /
Ijyot, kz,, and M is presented. In the section immediately *MgI
following, the orders and ftkls of the singlarties of the uLir--ih g* 'd-l

/ kern• function are dicaseu aiS ____

As previously indicated, the kernel function becomes singu-
lar or indeterminate at yo=0. The forms that the kernel With the use of the following series expressions for K1 (z) and
function takes when it becomes singular are of particular [It(z)--L,(z)] (which can be obtained from ref. 22--for K1.
importance in applications to lifting surface theory. It is see p. 80; for h|, see p. 77 ; and for L1 , see p. 329):

•/ therefore desirable to extract and treaE the singularities
separately. Ki(s)=&•+log e z j* z.

This extraction can be conveniently made by considering k )\'634
the value of K(z.,po), equation (20), at points on the semi-1 .8a. z. )
circumference of a small ellipse (see sketch 2), the polar 1--•, +-+---• t • • (23)
equation of which may be written as z'615

•=e ain# }where 7 is Euler's constant (T---0.5772137), and

- ce (21) a 2z' za 2z' a

M~yvrk-)A cc. 9 /(24
Mut•l•'•

where, because of the symmetry of K(zo,yo) with r to it is found that for vanishingly small values off the limiting
f., only the limits --f/2u /2 need be examined. Note value of the expression for K(,) in equation (22) is for
that in these equations values of 9 in the range --n/2ee<0 M<
correspond to field points ahead of or upstream from the o-fm'{ -S ketch k2.--sinG)

doublet position and values of 9 in the range 0< M;r/2, to K(an)d--
field points behind or downstream from the doublet position. reot -s 9) e 2riten as
SmIn particular, chr/2 orresponds to points directly behind or k=[r -l I. 'Vý] -I-0(K)) _

inrteswaeuorte doublet .ir steady 9 ---- )J+and (25) anitgainwt
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where 0(a) represents terms of order 0 for n " I. Expressed K-, " -?-+ 0 2yo1+ £_ ik
in terms of xo and y0, equation (25) becomes £o,Yo)=-- + "

_-, ___-__+'.__+__o_ _____ k xo-Mv'zo2+'yo k2 lo • -zo20).2 '}
K(zo,yo),- +o2 - , log ( )j (31)

lo 0/-Xo)_J_2 F 1r 1 or in terms of t and 9, introduced by equations (21),

2o g 2(1- 1 W _ 2 1. 772 5 0. ik- L --

_ -- (sin 0)

vw -1y ] 0') 2log k( -sn(32)2 2(l-M) (3)

Examination of equation (25) shows that the kernel function

K(,,e) has singularities with respect to #=Nfazc'J? as The term [K(x4,y 0 )--K'(xo,y1 1 )Jin equation (30)is a continuous
follows: function for all values of k, zo, and yo and for values of M in

tihe range of 0 ;SM 1. The term K' (o,yo) is discontinuous
_ ;i .• [J(9)+log , (27) at the doublet position (x0 =0, y0=0) and at all points in

or; 7; __the wake (.o>0,y0=0). It is to be noted, however, that

where, from equation (25), each term of K'(xo,yo) possesses a simple indefinite integral
with respect to Yo or with respect to i-=y-yo, a fact that

()( +sin •may be useful in some numerical applications. The manner
I-sin i in which these integrals are to be evaluated is indicated in

J....o 2(t--sM)f ______e_____ f (28) a subsequent section that deals with steady flow. The

fie)=log (I-sin) =glo2(1 k cos' 0 limiting values at y.=0 of [K(zo,yo)-K'(zA,ye)1 for both
22(-M( +sin 9) subsonic and sonic flow are given in appendix C together

Although of no particular significance in applications, it i with some remarks on evaluation of the kernel function.

of interest to note that the quantities f, and f2 each have TUBATMZNT OF THE•S ONC CAIM

minimum values (Ifiu.,.ff'u and If2j.,.=log a) at Because of its special nature, the borderline cue, M=1,
*=fi--2/2, which orresponds to points dirctly ahead of the between subsonic and supersonic flow deserves and requires

doublet position; and, as a increases from - v/2 to + .9, the separate treatment.
values of these quantities continuously increase from these As M--a1, the expression for the kernel function given in

minimum values to infinite quantities as follows: equation (20) becomes indeterminate. It is possible, how-
ever, to obtain conditional limiting values for the kernel byIr-, r+ (Yconsidering the integral F, equation (4), and breaking it into

h (L)i" ( 12if two integrals, F1 and F2, as was done for the general case.
2 --Cos. li -" , With regard to F&, its limiting value and the value of its

2 ~derivatives with respect to z at z=0- can be shown to be zero
a M 1-6. From the form of F, given by equation (14),

k6~ O(-li).m{ kI

Thus K(z 0,,y) is singular for 0=-r/2 even when the distance =Ks (2pvFP+z)-j[Io( 1yoI+_?
# from the doublet is not necessarily of zero order. This 2

implies that the doublet produces a wake of discontinuous "cos [ i-_ 1
downwash that extends downstream from the doublet LO Lf- -) d-t

position to infinity. \Voy+ ,r - d
With knowledge of the singularities involved in the kernel

function K(A,yo), an expression can be written in which the sin Lk A )

kernel is separated into a singular part and a nonsingular if dr (33)
part (as was done by Schwarz, ref. 14, for the two-dimen-
sional case) as follows But since (see ref. 22, p. 172)

K(z,, 1 o) m[K(ro,yo) --K'(o,Yo)+K'(z9o,Yo) (30) Coo Er d,=-Ko(r)

where K(zxp) is defined in equation (20) or (22) and + df - )
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and (see ref. 22, p. 332) Thus,

;f~f/ 
-3.- 

l r 
- dr (42)•f" ~ V"•,,•[oWnzon (33) 7-'= •g(Y42+ Z) Uo + T-+

Equation (42) may be written in terms of the integrals
i. may be concltded fromt equation (13) that involved in F, (see eqs. (34) and (:15)), namely,

lira , = lim('"FI)0 (.36) F_'= K. (k + i(k yW ;)

'Tlhe total contribution to K(x,,,y0 ) at .1= 1, tierefore, arises (43)

front tle linmit of F.,, equation (6), as [-1- . rite limiting Differentiating this result twice with respect to z and llien
form of F2 may he written in terms of nondimensional co- setting =() gives
ordinates as

();lr! =~k2 Ayo j)ep 
-2.rn F, = -, +d (3-1) ft k+ +

in approaching tile limit A1= 1 (from the subsonic side) in 2'oljyol)-L,(kjyo)-- (44)

equation (37), it is convenient to replace M by
Differentiating equation (41) twice with respect to z and

.[= 1--i setting z=O gives

where e is infinitesimally small so that ( ,Pz0=• k [1+. i f (45)• ~ ~ ~ ~ ~ ~ Y k•:_, A_2•:+j•Tj (

After performing an integration by parts and collecting
With this approximation, equation (37) may be written 53 terms, equation (45) may be written as

Z2F2
1 09 P[1'/ ~ i Fl .=,i-.[+ ] ii)Fm" d).r a -2--).

/M-i j l i - 9 k2U-t F -1 Jo /+2,ely2 + z2 )

F poi , -2 dX (for xo>0) (38) kyo ( ) dXj (46)

From physical considerations, the right side of equation (38) Equations (44) and (46) are combined to give ( )

is to be considered zero for x0 ;0. This is in keeping with rhen, in accordance with equation (4), there is obtained

results that would be obtained if the limit under consider- for K(xo,yo) -,.

ation were sought from theory of supersonic flow, .1>1. For 2,>O,

Trhe integral in equation (38) cannot be completely .k ,k. - [ Ivlot)--
expressed in terms of known functions. Furthermore, since { tJo, yo). ,•-(kjyoi)_2k1 1,[

it is singular at its lower limit, further treatment is required yI

to reduce it to a form such that its derivatives with respect 2 11 2 5-/k,--•)+
to z can be numerically evaluated. For this purpose the r]+YO YO
integral may be written as two integrals, namely i kp"ZQ •:,

(F,).,=F2'+F2" (39) PloS .d'x_ (47a)

where
wheeSx_# and, for x,)_go,

"" e dX (40) K(xo,y/o)i.m=0 (47b)

and L rThe integral appearing in equation (47a) is finite and

FI"•= e) - proper and can be evaluated by numerical procedures.-- .2-• ) dX (41)

TREATMENT OP THE STEADY AND) INCOMPRIESSIBLE CASES

'Ihe limits of integration in equation (40) are so chosen that It is of interest to consider the form of the kernel function
the integral in this equation can be reduced to a known form givet in equation (20) for some particular values of aond k.

byve main thetio substitutiotiuarvauenf f dkby making tile substitution In the following sections a discussion is given for the steady
r 2 (lase (k=O) and the incompressible case (.1=0). 'rie two-

x=4.-T+(yo2+:')-- or 7=•, dimensional ease is handled in appendix B.
39401-06---5--2
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Reduction of the kernel for * De case of steady flow.-, I k'" N ""A (.)order to obtain the reduvtii,ii, of lilt- kernel for tihe case of!/o, "y:,./X -)

steady flow, consider tthe ,xpanded form given ly equaIt ion
(26) As k-*0, there, retsults the followint expression l ' y selling ,r,,) ill ,'qualion 1:5).,i a formi is obtained whi( h

can be shown to agree with results deriveld Ib Ktissner for

, (48) the case .11=0.. ,,=0 (ref. :26)).
I 0 + 0 A SERIES EXPANSION WITH ESPECT TO "k"

wlit, It represents tlhe dIownwash of a pressure doublet for An approxinaution for tilt, fiuinctionk
steady flow. This result serves as a partial check as to IIK, I
correctness of the expression for K(xo.!lo) given hy N vitlatioK ,
(20). for small values of k can he olobained hyv making use of the

]Iy replacing !/o in equlationl (4S) by y-- and intlgratlil,, series exlansions for K, f(e. (:;)) and for (1,-L,) (eq. (24))
front -- 1 to I with respect to it, there is obtained and expanding all orthr (rers of K(2a., !!or (eq. (20)) inO a

e r + + 2( power series in terns of V After perforn t t hese expall-
K °yo) -L di "" ... x•-+ .... - -) J 01ions and collecting terms with respect to powers of k. Ihere

-- +)is obtained for .11<1
(49)

where the symbol indicates that a principal value or K ( --yo) +-{ ,., - .)+(•,) li• o N0" X'-- + 0l,," N r,"+0ly

finite part of the improper integral must be taken. (See.
for example, ref. 24 for a discussion of finite parts of such P.-, .
integrals.) This result corresponds to tile downwash pro- 2 -- #'(+"o-2;
duced by a simple horseshoe vortex two units wide. An
equivalent expression for incompressible flow is given, for log 2(
example, in reference 25, where in contrast to the present
notation, x. has been chosen as positive forward. (1 -:LIl).o0 +(2-; )

Reduction of the kernel for M=O.--ln order to erfect the i L[2 f 0+ -y
reduction of the kernel for the incompressible case, the
expressions for F,, equation (15), and F2, equation (18), will k r
be examined for the limit M-+-0: I00(iI I'2Jfz-20AP + 15--1202 )o--32.4,Pz02+

From equation (15)
4 (3M'+6.112- I )zo + 12,V (MA+2M'- I)xo*W

Ma..o-0z &2 {-ý K, (klyJol)--2-[1,(kjyol)--L•(kjyoj)]+i) (50) -t*:d+0/o=

g-.o

and front equation (18) 12/'i0o log 2(O1 -) .... oJ+p J+
62 E 2= ik 2'- • . . /

lim -6 J 11.1 Sinhd eikIou•oGabe d 5- 3600-• 1 l(1e ).o:o -+•'-
ae. z 19ol 0t

1-0

*iX0(1 WA3(53)r 3 i VOW _zo'

ye2vwo+yo2 NX1+y

Integrating by parts yields , , . ()
& 2li. beF2  ik ik, /k f !o+, - ht a s h olwn

i.v-o Jz yo Jo Y.o o " eo-"yo 2  For values of the parameters that ýatisfv the following
SI 0 (52) inequalities

Combining the results from F, and F2 gives for the kernel /co<
function (55)

a -( s 0 A', _ _ _ ( 5 5 ) ) <
K(zo,yo)m.o*=--- -•- K,(kiyol)- -- k

_-______ Y. 11(ik yoTjj

L,(kjyoj)j- 0 , /+ e- 2 equation (54) yields results that are correct to within about
o

2
ý 
1

o nn un umi•/y 2 percent.
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Correspondingly for .11=1, equation (47) can be expanded For values of the parameters that satisfy the following
to obtain inequality:

kx0- k,- 0<2,) (57)Se-,m /j 'm i• lk'x,,
It~xe yo):. = ] 2e 2 .z~ -K ~ o ,y ) . 1 - -- f,: i k X 0. +t -A" yo X1 equation (56) yields results that are correct to withit about

1k 2 percent.
k ., lyloi, 2ro 2o: ii yo.e 1 -'ONCLUDING REMARKS
9 1 i-- g 2�, -- ig- 2iyoi 2!I--2 2z-o . The main purpose of this report was to present the kernel

r ,:X'] function of the integral equation relating the downwash to
T _ -'e _ : the lift distribution in a form that can be computed. This
(1 2 4,/o2 4zo 4tol purpose has been achieved by the presentation of the koltel
k" k~y 4in a form given in equation (20). This equation has beenLo vyl-67Y0o-6ya log 2 _ 3r: i•- +2yo2  converted to a form more suitable for calculation by isolating

the singularities as shown in equations (30) and (31). The
, Ji,"l special case of AI= I is given in equations (47). The forms

Wo .g+yo, y'e 2"+ of the kernel function for other limiting cases, namely k=O
.oa+6yo 1 log + 2x-j and .11=0, are given in equations (48) and (53), respectively.

ro LANGLEY AERONAUTICAL L.,oi.roRY,
i os _ o3_ - +y i (56) NATIONAL ADVISORY COMMITT-ME FOR AERONAUTICS,

4L20ye(:+ 2 i6 124 20x6J LANGLEY FIELD, V.,., September 18. 1958.



APPENDIX A
DERIVATION OF THE INTEGRAL EQUATION THAT RELATES THE DOWNWASH AND LIFT FOR A FINITE WING BASED ON

REFERENCE 21

In keeping with the concepts of linear theory, the wing is The boundary-value problem for the wing may now be
considered as a nearly plane impenetrable surface. Let this expressed mathematically as follows: Under the assumption
surface S lie nearly in the xy-plane. as indicated in sketch I of harmonic motion the differential equation, equation (Al),
of the body of tile report., and let it anl the x. y, z coordinate becomes
system to which it is referred be assumed to move at a
uniform speed V in the negative x-direction. At the same a24_ I_

time, let each point of the wing be assumed to undergo i ýi +x •" a#•= (A6)

harmonic translations of small amplitude Z7.(x,y,t) at
circular frequency w and let c represent velocity of sound in In order to insure tangential flow at the wing surface, the
the medium. potential must satisfy the downwash condition

The problem for an oscillating wing consists in solving the
wave equation subject to certain boundary conditions. The )= V - + i. ,(x,y) (a7)

. wave equation in rectangular coordinates is 4)) 5

b4,,"• 2 i_,+ 62,_ 1Tra() (A)2 where Z and Z., are amplitudes of velocity and displacements,
-Y respectively, and are assumed to be known from the motion

/ ~of thle wing. At z=O, the pressure

The independent variable 4 in equation (Al) is regarded

herein as an acceleration potential; as such it is directly P( (Ag)
proportional to a perturbation pressure field and is related-
to a velocity potential • as follows:

must be zero at all points (x,y) off the wing. At all points
4 *.L, L( on the wing 4, is allowed to be discontinuous and the value

at (A2) of p at a given point is determined by the magnitude of the
discontinuity in 4, at the point. In the neighborhood of the

In order to complete the boundary-value problem for the trailing edge, p must go to zero, corresponding to the Kutta
wing, it is desirable to calculate the downwash w(x,11,,t) _ - condition.

One other condition, that 0 vanish far ahead of the wing,

associated with 4,. Assuming this downwash to be harmonic is inherently satisfied by the relation between o and 4, given
with regard to time implies that both potentials 0 and P are in equation (A5).
harmonic with regard to time and can be written, therefore, as

The potential 4,o at point (x. y, z) due to a harmonically
0(,y,z,t)e`'N ;(.z.y,z) pulsating doublet located in tie ry-plane at (J, ty, 0) that} "ze ( satisfies equation (A6) is

With these expressions for 0 and 4, equatiOn (A2) becomes ,+ -E)-•]

independent of time and reduces to an ordinary equation 4 0=( e(A9
with one independent variable, namely where

€----ic+ V - (A4) = (~)+(j-,)+
((M)

dwith respect to x to give and the factor A is a strength and dimensionality factor that
This equation can be integrated witmakes possible different uses and interpretations of the

__ potential 4o. If 4o is considered as an acceleration potential
V' () and substituted into equation (AM), there is obtained;-e"V-_F. ýOX'Y'z)e V dX (A5) corresp(n(ling velocity potential s which may be written as

where the lower limit of integration is chosen, for later , .vRiýw (Z-4 o/V
convenience, so as to satisfy the condition that e vanish - ( d) (0 '

i0 vanish V dx (AlO)as z-e*- 6Z
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where a>2 rzo e(_•••

w-ere (x,y)=.in A L (Q,7) e- 1( dr + rl A
R==-/X 2,s2+ (y--•)+•z2  A2(AI2)

Tassociated with 4', may be written a where S represents the surface of the wing and L(Q, 1,)

The do 5nwash - represents an unknown lift distribution or doublet strength
on S. Equation (A12) may be seen to correspond essentially

-A l-i. .e(' to equations (1) and (2).
ý -- Je A (All) If the distribution function L(Q, 1) in equation (A12) is~Z determined in accordance with the boundary conditions

discussed in the preceding paragraph, equation (A12) can
where zo=z--, w=cw/VA, and r=Q(--7 )-+z 2 . With the be considered as a complete solution to the boundary-value
use of this equation and the concept of solving linear problem for an oscillating finite wing in compressible flow.
boundary-value problems by means of superposition of It is also to be noted that equation (A12) can be considered
elementary solutions to the governing differential equation, to represent a solution to the so-called "indirect" problem,
the boundary-value problem under discussion can be written that is, that of finding the downwash distribution associated
as an integral equation, namely with a given lift distribution.

APPENDIX B

REDUCTION OF THE KERNEL FUNCTION FOR THREE-DIMENSIONAL FLOW TO THAT FOR TWO-DIMENSIONAL FLOW

The purpose of this appendix is to show that integration of where 11, is the unmodified Struve function of first order and
the kernel function K(xo,yo) from - co to + m with respect Y, is the Bessel function of the second kind of first order. In
to i=-y-Yo leads to a known result for two-dimensional flow. the limit as 6-o0 these expressions have the following values:
The kernel is first modified to a form that, for the present For the first . .sion in the bracket (see ref. 22, p. 329)
case, is easier to handle. Then, after performing an integra-
tion by parts on the modified kernel, the form of the kernel urn Ii,(8+ikiyol)=Hl(ikIyo))=-LI(kiyol) (B5)
for the two-dimensional case is given (eq. (B18)). In addi- i-c

tion, the special cases of =- I (eq. (B23)) and ••=0O (eq.
(B30)) are also shown. and for the second expression (see ref. 22, pp. 77 and 78)

The integration under consideration with respect to Q is
equivalent to an integration with respect to V0, namely lir Y,(a+ik yo) = -XiI,"'(ikyof) +iJ,(iklyDo)

,-7.Koyd1) K,(kiyol)--/(kiyol) (B6)

it is remarked in advance that since z has been made zero where I11 (' denotes the Hankel function of the first kind of

in the expression for K(ro,y0), equation (20), it is necessary first order. With the use of equations (13) to (B6), expres-

to employ the concept of "finite parts of infinite integrals" sion (B2) can be written as

when integrating this function across the singularities at M/ f
y,=O. Use of this concept gives the same results that -- 9C e kIvoll dr=k2  i- ' tr e_ ti*-I-o dr+
could be obtained by the more arduous task of performing
the integrations before setting z equal to zero. V. .

Modification of the kernel.-In order to effect the desired W ( I ° [I(k4voI)-Li(klvoI)J (B7)
modification of the expression for K(ro,y0) given by equation
(20), consider the first integral of the expression, namely Substituting this result into equation (20) of the text gives

the modified form of K(zo,y0) sought, namely-- f"s ! 1+,2 e-1-li'ol" dr (B2) ,.l1 lrol

This integral can be written as K(zoyo)-e 'k 1 e -

MZo+ 0 2+02Y0 2 e +
him- kf'( Vi71 evr('+skIo.`(,+lf ý+r efal'oIdr MyA1/j.'xo+9o

but according to page 331 of reference 22 k-jVNT+ 1A;eioI " -dr+Mij0  e

ff -wl--+- e-.,+,,ikol) d? 2(+.o) [H(+iklyol)- (B8)
Integration of modified kernel.-Since the expression for

Yj÷ +iklyoj)j (N4) K(zo,yo) is symmetrical with respect to yo, that is, K(r,,-yo) -
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K(xo, +Yo), the integration under consideration can he k" ' r (o-.

expressed as k .•tfV .i+ I'j

if K(xo,IyoI) dyo=21fo" K(xo,yo) dy. (B9) 
(B ci)

This expression vanishes at its upper limit yo= and is

where, on the right, the absolute-value signs on yo can be singular at its lower limit yo=0. However, by not making

dropped. z---0 in the derivation of K(zoyo) until after this stage is
reached, this singular value is canceled by other terms that

After performing an integration by parts by letting have otherwise been dropped. Thus, the expression (B113)
may be considered to be zero, which is the value of its finite

• e '°dy.; -., -- (B10) part. The integration under consideration is then reducedo Y.2yo I
and to the value of -- v du which is

- iko e"- . .+ .e i o+Rye + •_•-X0) 2+,

f ',+ iMWXyo+ 0 1y uMiEF) 0i f 1(X0:F-u~ _' +1y2

k-y - t-'-,fa-"•l°e-= (BII1) Ik ".(,M -•) _41 d, -+•"

or N+'o2+1z+yod J-V/2J di - -

"k=f el• dd 0d() -2 ,+ik M+

there is obtained for uvi r -'o 1,eku )

'T2+2yT1 I_+ Xe#j dx'+ l yJdfr ,,"+Wy+0'

'o e-4- ![, e +oLT v - d J d (B1 d 14)( 1 X,-u'ztiiilio)

ther Me The terms of this expression are treated separately in the

__________________________________________ next three equations:

First (see ref. 22, p. 180)

2f ~ ~ ~ ~ ~ P (d,+ fz*z-Mi~u~~kf~~o 8+1) -'~ ---~ dXs d

uv=2:t yo-0[Fy ,"%IL + *72  0 N'ýIftgyoll

k _ (B15)
tl L z.o

n hqond

2LJf dyof.,,, dv=2AVf,,,o,,' dy

--- 2ik log -u (B16)

and third (see ref. 22, p. 180)

2f," ,(b/ -'5 Tf%(14* 'v) lfc ice i" -A M+k .f r. (eD 2jM
2k' d •0J , e '" dy=2 k* | ° ri" _ d. M o e- --W -lleM •__o _ "

______ d+t=2k2  'd Jo do +alyo- J d + 1,2

(B17)
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Substituting the results in equations (B15) to (B17) into ikf" 4.-"',yejf -- £'l k

equation $114) gives Ir~. du)-t e2 dX

""f: f H•0 2k a (B2)
(OMkMIzoyl +L 0lo 10+k (~ 'I. -,s x~ i)

\ V A2 V,~o M 2ký- -&S -7

This result is a form of the expression for the kernel function
of Possio's integral equation relating pressure and downwash Finally, the kernel for the sonic case in two-dimensional flow
for a two-dimensional oscillating wing in subsonic compres- nsy te ken fs
sible flow. It checks the results given, for example, in may be written as
reference 27. if_

Reduction of kernel for M=l.-The kernel function for K@zo,yo)M..Ido--

M=- may be written as (see eq. (47a)) . I ','12"

2;W 2 2d B3
K(Z.,O).-I ==I e " K (k y,/

- + 2 • ('-*preiIt may be noted that the integrals in this equation are readily
+ 10- e2 expressible in terms of Fresnel inter &Is

es XQ.S) cos ildt

1(B9) and

The second integral appearing in this equation can be shown S(z)=f* sin .r
to cancel several of the terms so that the kernel becomes

Reduction of kernel for M=O.-For M=0 it is convenient
-. L_ i. .f. 2 d),] to modify the kernel function before integrating with respect

,y -'i -S~ i J - to yo. For this purpose use is made of the relation (see eq.
(B20) (B7)):

so that the kernel for the sonic case in two-dimensional flow K(ky"l)- rk [j kjyoI)-L(kjyoI)I
may be written as 1 -2- I

alesfif_:. K(r4,o)--, 1 dz.=fi-•--• ...•"(,0-• "T-J'"

~~ *f~dy $B21)(24iftsi2 A iY 6-w I and the relation

integrating equation (B21) by parts with respect to yo, re- 0 (125)
taining only finite parts of the integrated results, and making PI-O P .Y"•j'1A X (B )
use of the relation

S oh e nWith these relations the exprnssion for K(zv,/o),.-., equation

fu (53), can be written _s

.1df'aa+-2 {2) (126) ~
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But

,j" ikk. . . +Yo e', •k+ f" - -

i-V'""+ y %r+2-:(- yo' A-) (B27)

therefore, 
e A (-8 2

Integrating with respect to y1o gie ikf os kXd sink X dXA

IfK(zo,11o)m.. dyo= -~ 2 -tkzmf 6yo 2AI dy, d11
E

-- 0 - 1;0 ( O+xr 4wk /+ i { i ' -. +

2 J~0 -P--1kx T

e _ . dX) where Ci(kzo) and Si(kzo) denote, respectively, the "cosine-
. (J•-- -jA- d -d) integral" and "sine-integral" functions defined as follows:

(B329) C Z = -r o

Integrating each integral in equation (B29) and retaining Ci .

only finite parts yields

f K(zoY-)-ody.=s-2 
. e--ikf ----. 2 --

if j"am A) The results in the braces of equation (B30) check with results
given for this case in reference 14.

APPENDIX C

SOME REMARKS ON EVALUATION OF THE KERNEL by K'(zo,ye) and contains all the singularities. Obtaining
FUNCTION the value of (K--K') from the form of the expression given

Exact expressions for the kernel function K(zo,yo) are in equation (30), however, may be troublesome. This
given in equation (20) for 0 ;M<1 and in equation (47) particular value for y0=0, z0>0 can be obtained from the
for M= 1. Corresponding approximate forms are given in following limiting form:
equations (54) and (56).

Equations (20) and (47) are valid for any set of values of lim [K(zo,yo) -K'(zo,yo)]ffi- .d ik ( I+ --•--
M, k, ,, and yo. To calculate the value of the kernel from P&-4 2z.
these equations, it is necessary to evaluate numerically
the integrals which appear. Values of the other terms can ik I-2+M_ kZo'
be obtained by making use of existing tables. Extensive U is/ (•'+ V
tables of the Bedel functions K, and I1 may be found in
reference 28 and a table of the Struve function L, with second Ci l +- )+,Si (+-M--)]1 (CI)
and fourth differences for interpolation purposes may be 2 JJ
found in reference 29. Sample values of the kernel are
given in table I. where y denotes Euler'n constant (7-=0.577216) and Ci and

For certain ranges of values of M, k, zo, and y,, as indicated Si denote cosine-integral and sine-integral functions, re-
by equations (55) and (57), the kernel can be evaluated spectively. (These functions are tabulated in reference 30).
by making use of the power series expansions given by For At= 1, this expression reduces to
equation (54) for 0< M< 1 and equation (56) for M= 1.

The various expressions for K(zo•yo) become singular when . ,( )-•t f 2* 2 _

1@=y-A-O;0. In order to be able to evaluate the kernel l tzo re
in such circumstances, it has been separated into two parts
as shown in equation (30). One of these is denoted by --2-- o \(Si

anh )+ (C2)K(zo,y0) -- K'(zo,ya•) and is not singular; the other is denoted 2 (2"
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The kernel function is not singular for zo<0. For y,=O and integrate by parts by letting
and zo<O it may be written for A1< 1 as

P [Ci ( 14kiz ) i Si (klxo )+71} (C3) so that

The expression for K-K' for xo<0, y0-- may also be useful. 1
It is

ii V= ik 
kI!,eo

Sik (--M)\-0 This integration gives for G,:
Sk7_ -r! ~ /•l• C/\-T) \VM-l~ _ Ofi--° -ihB Ik•o klo3 .T' /0 i- (I -M) M(A--2*0' 21zo ))=- f' '0 Athvd

kkjyoj klyo) kjy-o j+ 15

Si/0 Subtracting G2 from G, (cqs. (D4) and (DO)) gives

* 11) 1 --

For M=1, K(--z•,o)=K(--o,yo)-K'(--z,yo)mO. - o ,=klP yoI M o' +•ky1 I - M0

Some results of evaluating the kernel and its nonsingular 1 (--se + C-M-/•o 7° 7P
prt are given as examples in table I. (In order to obtain
these results the required integrations were performed • - (z- 4j)
numerically by manual computing methods.) k -,0--10-717I *-610drd

APPENDIX D iMlyol+ + 1-+

ALTENATE FORK OF EQUATION (10) "k-yol M " • +M(--T-•-ze'

Subsequent to the derivation of equation (20) as given in i jf "e---- tdr
the text, it was found that the two integrals involved in this ,ki1 Jo
equation can be combined in a manner that leads to a more
conoise and, for many purposes, a more convenient form of Substituting this result into equation (20) of the text gives
expression for the kernel function. The purpose of this for K(zo,yo)
appendix is to derive this alternate form.

Consider first the integral K(zo,yo)= -{--• K,(fyoD-- [i(kfysD-L,(k~yoD]+
YjjkjyoI' -j2ktyo, 1~je)-t kyjj

k~yoI (kyo)z2&x(*0)'+(ky,)' 2 + >
and make the substitution o,

S(X-MNV+__(kVoc_)--klylr (D)2) kFO0(8

or- The integral in this equation is in general more amenable to
)xkityol(M•~-v) (D3) numerical evaluation than either of the two integrals appear-

This substitution gives for G, ing in equation (20). Furthermore, with this expression, it
t C•M•i is not necessary to consider the incompressible case as a

i "i J '-'( ( t e M• \ dv special case, since no trouble arises in setting M=0. Simi-
'M= ifJ:ý (A;, j larly, for the sonic case no trouble arises and this expression

P (.1W'~ _'6"1+gives 
for z0>O:

P, e-ikreAU~V.'L-, K O)A1i,)1- Fly - KjK(kjyoI)-

[-•( •ol)- ,( /oj)](k-- o)e -

Consider now the integral _ hr

G.-f ei01+ , d, (% Iik V + (Dg)

k7ol
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TABLE I.-VALUES OF THE KERNEL AND ITS NONSINGULAR PART AT M-0.7

re YO k KMruo) j(,Y)-K 0y

0 0. 125 0. 1 -63. 827569-+ 1. 112400i 0. 144529-. 007824i
.3 -G6& 801759+ 3. 290793i -. 003441-. 069879i
.5 -63. 513049+ & 4084654 -. 009423-. 192655i
.7 -63. 127659+ 7.466762i -. 018114-. 374807i

1.0 -62. 396691+ 10. 445693i -0. 35609--. 756548i

1. 5 .125 . I -126. 263912+ 19. 142811i .141754--. 028841i
.3 -114.855168+ 55. 631898i -0. 31317-. 056060i
.5 -91964383+ 86.829346i -. 123447-. 115703i
.7 -62 878740+109. 927026 - 283001-. 133318i1. 0 -- 8 792808-+-125. 223964i 5- 81313+. 02909i

o 6.0 .1 -. 019271+ .01639i -. 000039-. 0066994
'.3 +. 007493+ .020950M +. 007793--. 049064i
.5 +. 020861+ .001545i .036165-. 115145i
.7 +.009570- .01788M .095337-. 1812544

1.0 -. 018833- .006290i .305627--. 239670i

1.5 6. 0 .1 -. 027209+ .020038i -. 00905 -. 006215i
.3 +. 002452+ . 028186i -. 005415-. 041401i
.5 +. 021871+ .013305i -. 007432-. 1099204
.7 +. 022588- . 008980i -. 026790-. 232786i

1.0 -. 004786- . 022987i -. 190134-. 523276i
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