
' I i form Appruire
REPORT DOCUMENTATION PAGE oM6 No.0,1

I gl.tht.,. end '.-.t*'n4,j ith• 4.. I•C. f e nd cO.., t o,, lno~ a,,d ,e,*-. ife ,QIIUeVO.. O Jn,.'e,•tlW'. I,.nd €•,-etn• 'c•e dn. hA • I~do h •e,dq. , tl"ae 01 en1 OtUtl e.Ne .e I
.~nNlq..1. Sil ~O 1 ('IqO. 2 4019.6 0n tO d to~ 0

1
91C 0 4R M.4ftI kow IDo, e om. Pabttw" AAe. ed4 oeiIP dIS.Sl'~n C~~J

Final, 02.1/8 -3/ 1/9
AGENCY USE ONLY (Leave 'blnk) 2. REPORT DATE f3. REPORT TYPE AND DATES COVERED

• • -1 06/931 Final 021/0189-3/31/93

TITLE AND SUBTITLE S. FUNDING NUMBERS

Fautless Software Project G
N0014-89-JI 751

-ZAUTNOR(S)
William Howden

• PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) S. PERFORMING ORGANIZATION

REPORT NUMBER
The Regents of the University of California
University of California, San Diego N/A

Dept. of Computer Science & Engineering
9500 Gilman Dr., La Jolla, CA 92093-0114

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGI MONITORING
Office of Naval Research AGENCY REPORT NUMBER

James G. Smith, Code 1211 -- Scientific Officer
800 North Quincy Street (b)
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION IAVAILABILITY STATEMENI " 94-10875

13. ABSTRACT (Maximum 200 words)

Research has fbcused in three areas. The first is the development of a
general paradigm for informal program verification and understaading.
The second is the development of practical methods for the reconstruction
of functional specifications from code. The third is the development
of formal, statistical models for the evaluation of testing methods.

14. SUBJECT TERMS 15. NUMBER OF PAGES
real programs ahd systems, modularization, selectivity, 9
abstraction, QDA, Ada informal verification system, 16.PRICEcooE
faultless software

17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OFASSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-280.$SSO Standard Form 298 (Rev. 2-89)

Ppbftjbqd " AWIA Slt. In-itI

9 4 4 8 09 3 °s19'1
IIIIi Yu.

Principal investigator: William E. Howden
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J 1751
Reporting period: 1 Oct 92 - 30 Sep 93

Numerical productivity measures

Refereed papers submitted but not yet published 2
Refereed papers published 3
Unrefereed papers and articles 2
Books or parts thereof submitted but not yet published 0
Books or parts thereof published 0
Patents filed but not yet granted 0
Patents granted 0
Invited presentations 2
Contributed presentations 2
Honors received (program committee ISSTA) I
Prizes or rewards received 0
Promotions obtained 0
Graduate students supported 3

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 11
Justification

RY - -.........

Dist; ibution I

Availability Codes

Avail and Ior
Dist special

Principal investigator: William E. Howden 2
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J 1751
Reporting period: 1 Oct 92 - 30 Sep 93

Summary of technical results

Research has focused in three areas. The first is the development of a general paradigm
for informal program verification and understanding. The second is the development of
practical methods for the reconstruction of functional specifications from code. The third
is the development of formal, statistical models for the evaluation of testing methods.

Informal analysis paradigms

In the first area of research we have identified three dimensions along which it is possible
to simplify program analysis, and make it applicable to real programs and systems. They
are modularization, selectivity and abstraction. The first is the familiar technique of
"divide and conquer" in which analysis is carried out on a module-by-module basis, and
will not be discussed here.

Selectivity refers to the restriction of formal analysis methods to those properties of a
program, or steps in analysis, that are not obvious. Selectivity can result in informal
analysis if steps or properties are accepted as valid "by inspection". In the extreme case,
as in code reading and inspection, the entire process is informal. What is needed is a
paradigm in which the obvious parts are informal, and more formal analysis is given to
the less obvious parts.

Abstraction refers to the replacement of a detailed description of some property of a
program with a more abstract one in which the abstraction stands for the more detailed
property. In the formal approach, such abstractions would have some exogenous formal
definition. In an informal approach, undefined abstractions, in the form of undefined
predicates and relationships, are used. When these abstractions are associated with code,
they can be thought of as being informally defined by the code itself.

An informal approach to analysis has been developed in which selectivity is implemented
through the documentation of "working hypotheses". Abstraction is implemented
through the use of different kinds of abstract object properties and the use of "abstraction
rules". The latter describe relationships between objects and properties at different levels
of abstraction.

When informal analysis is used, an obvious question to consider concerns the
circumstances in which it may be invalid, resulting in an unsound proof of some property.
We have distinguished between two possibilities. One is that in which an abstract,
informal representation is internally inconsistent. In this case the abstraction is said to be
invalid. Steps can be taken to ensure that an informal abstraction is valid. The QDA
analysis system for the AV-8B avionics is used as an example in which abstractions are
prevented from being invalid through restrictions on the language for creating the
abstraction. The other way in which an unsoundness problem can occur is that in which
an abstraction is valid, but that there were errors in the abstraction creation process. We

Principal investigator: William E. Howden 3
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J1751
Reporting period: 1 Oct 92 - 30 Sep 93

identify features of an approach called "fail-safe" documentation that will avoid these
problems. In this approach, an analysis is carried out which may produce "false
negatives" but avoids "false positives", i.e. it may falsely report that some property is
invalid.

These results provide a good basis for our continued theoretical work on informal
analysis as well as for continued development of informal analysis technology.

Reengineering of functional specifications

The main idea in our approach to functional specifications (f-specs) generation is the use
of symbolic evaluation. It can be used to generate f-specs for program paths that consist
of a condition part that describes the input constraints for a path, and a function part that
describes the computations carried out on that path. An f-spec for an individual path is
called an f-spec component. The collection of components for a program is called its
program f-spec. Symbolic evaluation is an idea that has periodically reappeared since its
first appearance as a test data generation method in (W.E. Howden, Methodology for the
generation of program test data, IEEE Transactions on Computers, 1975). The method
is appealing, but practical considerations have prevented it from being of general use.

We have adopted a generalized approach to symbolic evaluation in which we generate f-
specs with respect to "operations of interest". These are functions or procedures that can
occur at any point in a program. Symbolic evaluation generates a description of the
context in which the operation occurs, and the symbolic values of its input parameters.

We have studied a set of programs in a full programming language to see if the
practicality problems of symbolic evaluation could be solved. Our results have been
positive, and we have developed a set of techniques that can be used to generate useful
symbolic evaluation functional specifications. The methods are: projection,
simplification, suppression, and modularization.

Projection is closely related to program slicing. In this approach we identify groups of
variables (or output data operations) that have the property that if we develop a functional
specification for them separately there will be a significant decrease in the total number
of functional specification components. We identify patterns in which projection will
have a large positive payoff and those in which the payoff could be negative. Heuristics
are suggested for choosing sub-optimal, but minimizing projections.

Simplification can take different forms. One kind of simplification is ordinary expression
simplification in which an f-spec would be generated and then re-write rules used to
simplify awkward or redundant expressions. Another approach that we have investigated
is "structural simplification". In this approach we look for certain common structural
patterns that allow us to simplify functional specifications before they are generated,
rather than after.

Principal investigator: William E. Howden 4
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J 1751
Reporting period: 1 Oct 92 - 30 Sep 93

Infeasible path detection can also be considered a simplification method. We incorporate
methods in our approach to prevent the generation of f-spec components having
inconsistent condition parts.

We consider the use of "cliches" in program reengineering to be a simplification method.
Cliche oriented methods attempt to simplify by recognizing common programming
design fragments such as "update a variable" or "sort a file". In some cases these ideas
correspond to what we have called structural simplifications. In other cases recognition is
more complicated. We recognize the difference between intenstional and extensional
patterns. The former, like structural simplification patterns, are well defined. The latter
are known primarily through example, and attempts to build algorithmic recognition
procedures have had modest results. Our approach is to generate simple, readable,
functional specifications that make the recognition of extensional patterns (by the
programmer/user) as easy as possible.

Projection involves looking at a program from different points of view. Simplification
involves methods to produce simpler, but equivalent, representations. Suppression
involves eliminating information from a representation with the goal of producing a
clearer picture of the remaining information. Several suppression methods have been
identified. One is index suppression. Suppose that a program contains a sequence of
program substructures that contain writes to a sequential file. We will not be able to
generate independent separate f-specs for the writes, because they are related through
their manipulation and use of the common file pointer. If the use of this pointer is
suppressed in the generation of the f-specs, then separate f-specs can be generated for
each write, showing the conditions under which it is executed independently of all the
other writes.

Other forms of suppression that have been developed include format suppression, data
item suppression and data and operator discrimination suppression. All are useful in
generating abstract specifications in which some aspect of a program's details are
eliminated.

Modularization is critical to the control of complexity in an f-spec. One approach that
has been suggested is to try to recognize "functional patterns" in code, and to identify
summarizing abstract functions that can then be used in place of that code, resulting in
simpler f-specs. Our approach has been, instead, to figure out how to used modularizing
abstractions already present in the code, i.e. a program's procedures and functions. The
idea is to identify those procedures that occur in the call chain to some "operation of
interest", such as a write operation, and then to also treat them as operations of interest in
generating higher level specs. The higher level f-specs show the conditions under, and
data with which, the operations are called. The approach has been successful, although it
required the development of additional methods for dealing with special modularization
problems.

One of the major problems in the use of symbolic evaluation has been to find some way
of generating specifications for programs that involve loops. We experimented with
several different possible methods, including the generation of closed forms for simple

Principal investigator: William E. Howden 5
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: NOO 14-89-J 1751
Reporting period: 1 Oct 92 - 30 Sep 93

cases, and came to the following conclusion. In the case of well structured programs
where loops are encapsulated in a programming construct, the best way is to treat loops as
procedures that are called in the context for the loop, and to use our modularization
procedures for representing the code in which the loop occurs. A modified form of our
specifications generation procedure is used to describe the behavior of the code in the
loop.

In the case of poorly structured loops we have developed a method in which an abstract
procedure or function is generated that stands for the computations performed between
the first and last iterations of the loop. This abstract procedure is then used, during
symbolic evaluation, to describe the effects of the loop.

One of the difficulties in carrying out research on symbolic evaluation has been the need
to develop a set of methods that can work together in an integrated fashion. Our
approach has been very empirical, involving the generation of dozens of examples of
applications of different ideas to real programs. It is only recently that we have
formulated the approach that is described here, and for which the results indicate that the
project will be successful. We are now preparing a report describing the above methods
in more detail, which will contain actual examples of the successful use of the methods.

Statistical models for evaluation of testing methods

A variety of different methods for testing have been proposed but there has been limited
success in discovering a formal basis for comparing their effectiveness. One approach
involves the use of variations on failure rate models to try to compare random and
partition oriented testing.

We re-examined the failure rate model and showed that it does give good results in
characterizing certain kinds of situations in which one would expect a partition oriented
strategy to be an improvement over simple random testing. We then distinguished
between what we call statistical and deterministic random testing. This distinction makes
it possible to prove that certain kinds of idealized testing patterns correspond to situations
in which one of random or partition testing would be superior to the other. We also
formalized several other results in the area.

Previous work involved the development of alternative si itistical models. We developed
a fault oriented model in which the "testability" of a piece of software rather than the
failure rate properties of its domain is used as the basis for analysis. This model makes it
possible to take into account testing situations in which the programmer is assumed to be
able to accurately choose data that will discover faults in certain kinds of fault classes.
We developed the fault rate model, and used it to characterize situations in which it is
effective to use a testing strategy that involves the decomposition of a program. The
concept of "decomposition" is general in our model, and can be both functional or logical.
A functional decomposition, for example, might isolate normal from boundary cases. A
logical decomposition might isolate the character string processing aspects of a program.
The basic idea in the testability approach is to use conditional probability models for

Principal investigator: William E. Howden fN
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J 1751
Reporting period: 1 Oct 92 - 30 Sep 93

predicting test effectiveness. This research is at an intermediate stage, and current
activities involve the application of the testability model to the evaluation of a variety of
actual testing methods.

Principal investigator: William E. Howden 7
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J1751
Reporting period: 1 Oct 92 - 30 Sep 93

Publications, presentations and reports

Refereed conference proceedings

W.E. Howden and Sue Pak, Problem Domain, Structural and Logical Abstractions in
Reverse Engineering, Proceedings, Conference on Software Maintenance, IEEE,
November, 1992, Orlando Florida.

W.E. Howden and Cheron Vail, An informal verification of a critical system.
Proceedings, Fifth International Conference on Software Engineering its Applications,
December, 1992, Toulouse, France.

W.E. Howden, Foundational issues in software testing and analysis, Proceedings, Fifth
International Conference on Software Quality, June, 1993.

Presentations

W.E. Howden, An informal approach to program verification and understanding,
Laboratoire d'Automaticque et d'Analyse des Systems, January, 1993, Toulouse, France.

Submitted papers

W.E. Howden and Bruce Wieand, A method for informal program analysis and its
application to a critical system, UCSD T.R., Computer Science and Engineering,
September, 1993.

W.E. Howden and Y. Huang, Analysis of testing methods using failure rate and
testability models, UCSD T.R. Computer Science and Engineering, June, 1993.

Technical Reports

W.E. Howden and G.M. Shi, Temporal event analysis and program understanding, UCSD
T.R., Computer Science and Engineering, April 1993.

W.E. Howden and Sue Pak, Structural abstraction methods for software reengineering,
UCSD T.R., Computer Science and Engineering, March, 1993.

Principal investigator: William E. Howden 8
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J 1751
Reporting period: 1 Oct 92 - 30 Sep 93

Research transitions and DOD interactions

A tool implementing the QDA methodology that was developed for the Naval Air
Warfare Center, and the results of its application to the AV-8B avionics, provided the
empirical data upon which the development of a paradigm and general methodology for
informal program analysis was based.

Principal investigator: William E. Howden 9
Institution: University of California at San Diego
Phone: 619 534 2723
Contract title: Faultless software project
Contract number: N0014-89-J1751
Reporting period: 1 Oct 92 - 30 Sep 93

Software and hardware prototypes

The paradigm and general methodology of the QDA approach is being used as the basis
for the development of an Ada informal verification system.

