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Abstract

Computer simulations were performed that used neural networks to synthesize
filters for optical correlators. The synthesized filters were designed to maintain
acceptable recognition performance for targets on cluttered backgrounds that were rotated
relative to initial (unsynthesized) filters. The most significant results employed new
stretch and hammer neural networks which train with guaranteed upper bounds on
computational effort and generalize with guaranteed lower bounds on smoothness and
stability. These results indicate good prospects for training neural networks to rapidly
synthesize filters for a wide range of target distortions. They also indicate possible
significant advantages compared to searching stored filters.
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1. INTRODUCTION

This section briefly considers the approach and rationale for correlation filter
synthesis using neural networks, key results obtained, and papers and presentations
produced during the course of the effort.

1.1  Approach and Rationale

The use of optical correlation for the recognition and location of objects (targets)
in noisy or cluttered images is well known (see, for example, Refs. 4, 5, and 7 and
sources cited in these papers). Briefly, in a typical real-time optical correlator an input
image is loaded onto an electrically addressed two-dimensional spatial light modulator
(SLM), which is an array (e.g., 128 by 128) of closely spaced active apertures. The
output from the input SLM is, for example, an array of binary coherent optical amplitudes
that represents the input image. A lens (or system of lenses) forms the Fourier transform
of this binary image at a second or filter SLM. The filter SLM consists of an array of
binary or ternary states, typically 0° and 180° phase shifts or these two phase shifts plus a
zero-amplitude state. The filter SLM states are determined by thresholding the conjugate
of the Fourier transform or spatial frequency pattern of a target. For example, if a given
spatial frequency complex number lies below the line of slope 45° through the origin in
the complex plane it is represented by the 0° state; otherwise it is represented by the 180°
state. Another lens or system of lenses forms the Fourier transform of the product of the
Fourier transform of the binary image and the array of filter SLM states. If targets having
the spatial frequencies represented in the filter SLM are present in the input image, then
the final Fourier transform plane has bright spots called correlation peaks at the target
locations.

Thus a correction peak indicates the presence of a target and specifies its location.
However, if the target is rotated or scaled relative to the filter, or if it undergoes any
distortion other than translation, then the correlation peak is degraded in amplitude
relative to false peaks due to clutter and noise. To address this issue adaptive correlators
that load updated filters into the filter SLM have been designed. For example, if the
target rotates relative to the initial filter the correlation peak decreases, and this change is
detected by a video camera. New filters corresponding to different target rotations are
then loaded onto the filter SLM until the correlation peak is restored. The success of this
adaptive feedback approach depends on the availability of a bank of stored filters




corresponding to many target rotations, scales, and other (more difficult) distortions such
as those due to aspect angle changes or partial occlusions. It also requires rapid searching
of the stored filter bank to find the filter that restores correlation peak degradation; search
times of less than 1/30 sec (which correspond to standard video frame rates) may be
required.

Correlation filter synthesis is an alternate and possibly more elegant approach to
avoiding correlation peak degradation due to target distortions, particularly distoriions
other than rotation and scale that may be difficult to exhaustively pre-compute. In this
approach (see Refs. 4 and 7 and sources cited therein) gray-level pixels from a region of
the original input image in the neighborhood of the target location identified by the
correlation peak are input to neural network processors (or possibly to fuzzy-logic or
genetic algorithm based systems). These processors are trained to produce as output the
filter for the current target (as rotated, scaled, or otherwise non-translationally distorted)
that yields the best possible correlation peak. There is typically one software-simulated
neural network for each filter parameter to be determined, and each network has all
target-neighborhood pixel gray levels as its input. Since trained neural networks may be
understood as "smart" data interpolators, the stored filter and the filter synthesis
approaches have much in common: in the former new filters are found by searching a
data bank consisting of the filters themselves; in the latter filters are formed from a
distributed data bank that contains neural network interaction strengths or weights.

1.2 Key Resuits and Outputs

Excellent computer simulation results were obtained using neural networks to
synthesize filters for optical correlators when the targets (including targets on cluttered
backgrounds) were rotated relative to the filters. The most significant results employed
new stretch and hammer neural networks which may constitute an important and
enduring advance because they train with guaranteed upperbounds on computational
effort and generalize with guaranteed lower bounds on smoothness and stability. These
results indicate good prospects for training neural networks to synthesize filters for a
wide range of target distortions. They also indicate possible significant advantages
compared to searching stored filters.

The technical effort on correlation filter synthesis using neural networks was
successful and productive. It supported, wholly or in part, research that produced:




. Four papers submitted to refereed journals (one published in Optics
Communications{1], one published in Applied Optics[2], and two under review
by IEEE Transactions on Neural Networks[3] and Neural Computation{9]).

o Two conference presentations (SPIE Critical Review, San Jose, November
1991[4] and SPIE OE/Aerospace Sensing, Orlando, April 1992[5]).

. Two Electro-optics Master's Theses[6,7] (one entirely on filter synthesis using
neural networks) and an Invention Disclosure[8] on stretch and hammer neural
networks.

2. TARGETS, BACKGROUNDS, AMND FILTERS

- This section discusses the targets, backgrounds, and filters used in computer
simulations to investigate correlation filters synthesized by neural networks.

2.1  Truck Targets and Clutter Backgrounds

Figure 1a shows a typical truck target and clutter background used for training
neural networks for filter synthesis, and Figure 1b shows a typical binarized truck and
background used for correlator input. Ref. 7 presents additional examples of targets and
backgrounds and describes the binarization procedure. All targets and backgrounds
originated from actual gray-level visible or infrared images.

2.2  BPOF and TPAF Filters

A filter with two phase states (typically 0° and 180°) is a binary phase only filter
(BPOF), and a filter with these two states plus the zero-amplitude state is a ternary phase
amplitude filter (TPAF). Figure 1c is a BPOF obtained from a binarized Fourier
transform of the truck in Figure 1a (which was defined to be at 0° rotation). The
binarization was performed using a threshold line angle (TLA, the angle between the
positive imaginary axis and a line through the origin) of 0°, which requires that complex
numbers in the positive half and negative half of the complex plane were represented by a
0° phase shifts and 180° phase shifts, respectively. Figure 1d is a TPAF obtained from
the BPOF by imposing a 10 to 60 pixel radius bandpass (i.e., all filter regions except the
annular region between these two radii were opaque) and by defining 9 by 9 binary
superpixels such that each superpixel had the same phases as the majority of its interior
pixels. It was necessary to define and use filter superpixels to reduce the number of




neural networks required for filter synthesis, thus limiting the computational effort.
Ref. 7 presents additional examples of BPOF and TPAF filters.

3. STRETCH AND HAMMER NEURAL NETWORKS

This section discusses the radial basis function neural network that was used to
obtain the most significant correlation filter synthesis results.

31 Boundson Computational Effort, Smoothness, and Stability

Stretch and hammer neural networks successfully address two common concerns
in using a neural network to solve a practical problem: (1) the time required to train the
neural network is often excessive, even for a supercomputer, and (2) the trained neural |
network often does not generalize effectively enough to solve the problem. For stretch
and hammer neural networks guaranteed bounds on computational effort ensure that the
maximum numerical precision and number of computational steps required for training
can be specified in advance of training. In addition, guaranteed bounds on smoothness
and stability, which can also be specified in advance of training, ensure that each neural
network output changes by no more than a specified value if the training data are changed
by a small amount.

As shown in Figure 2a, stretch and hammer neural networks are feedforward
architectures that have separate hidden neuron layers for stretching and hammering in
accordance with an easily visualized physical mode. The mean Xj of the training values
for each input x 1, x2, ..., X is subtracted from each input at the input neurons. A
standard principal components transformation then forms linear combinations of these
zero-mean inputs through coefficients (or neural network weights) ajk, where k=12,
..., n. The outputs uj, uy, ..., up of the stretch neurons are therefore linear transformations
of the original inputs that "stretch” these inputs to give them equal "importance”. Each
hammer neuron f; has as input all stretch neuron outputs and forms an n-dimensional
Gaussian radial basis function of these inputs centered on training point i with standard
deviation s;, where i = 1, 2, ..., m and m is the number of training points. Each hammer
neuron output is multiplied by a coefficient c;j to form an output neuron input. The output
neuron also has as input a bias bg and a linear combination, through coefficients by, by,
..., by, of the stretch neuron outputs. Thus the final output y consists of a bias term plus n
linear terms proportional to the principal-component-transformed inputs plus m nonlinear
terms each proportional to an n-dimensional Gaussian function of these inputs.




3.2  Training Procedures and Testing Resuits

As discussed in Refs. 2, 3, 5, 7, and 8, training the stretch and hammer neural
network consists of (1) transforming the inputs to principal components coordinates, thus
determining the weights X; and aj, (2) finding an a priori hypersurface such as a least
squares hyperplane through the training points, thus determining bg, by, b, ..., by,

(3) finding the Gaussian radial basis function standard deviations, thus determining the
weights s;, and (4) finding the Gaussian radial basis function coefficients cj. The training
points are interpolated because the number of basis function coefficients equals the
number of training points. The basis function standard deviations are chosen to be as
large as possible consistent with maintaining diagonal dominance for the simultaneous
lires- equations that must be solved to obtain the basis function coefficients. As shown
rigorously in Refs. 2, 3, and S, this choice insures that training example generalization is
maximally smooth and stable consistent with unique training in a predeterminable
number of steps.

Figure 2b compares stretch and hammer neural network and natural cubic spline
results for one-input training examples. The curves are comparable except for sparse
training example regions, where the stretch and hammer curve approaches the least
squares line. This behavior is desirable: cubic spline curves are the smoothest possible,
but they typically exhibit unrealistic deviations from the training examples for
extrapolation and prediction.

4. FILTER SYNTHESIS PROCEDURES

This section discusses the most successful procedures for obtaining inputs for
neural network correlation filter synthesis and for specifying outputs that reduce the
number of separate neurai networks required. Many other (less successful) procedures
are discussed in Ref. 7.

4.1 Input and Output Specification

The most significant neural network filter synthesis results used 600 separate
stretch and hammer neural networks, each with 31 inputs. Each input was the mean gray
level in one of 31 radial wedges covering a 9 by 9 pixel region centered on the target,
which was located by the correlation peak in a 128 x 128 pixel input scene. The output of
each neural network was one of the 600 binary 9 by 9 superpixels in a TPAF, where the




TPAF was superpixelated so that training could be accomplished in a few hours on
desktop computers.

42 Training Specification

As described in Ref. 7, there were 138 sets of training inputs: 46 with the truck
target rotated 0°, 2°, ..., 90° on a 66 (out of 256) gray level background, 46 with these
angles on a 142 gray level background, and 46 with these angles on a cluttered
background. For each set of training inputs the output for each of the 600 neural
networks was one of the binary superpixels in the TPAF for the truck on a blank (0 gray
level) background rotated by the training input angle.

S. FILTER SYNTHESIS RESULTS

This section discusses the most significant correlation peak to clutter-ratio resuits
for neural network filters synthesized using the procedures discussed above. Many other
results (less significant in terms of their practical potential for correlator systems) are
discussed in Ref. 7.

5.1 Correlation Peak to Clutter Ratio Plots

Significant filter synthesis results from Ref. 7 using stretch and hammer neural
networks are shown in Figure 3. Here correlation peak to clutter ratio (defined as the
highest peak in a 5 by 5 pixel target-centered grid divided by the highest peak in the
remainder of the 128 x 128 pixel region) is plotted versus in-plane target rotation angle
for three correlation filters: the best possible fiiter (i.e., the 9 by 9 superpixel TPAF from
the Fourier transform of the truck at the input rotation angle, where binarization of the
truck for the correlator input is selected for the best peak to clutter ratio), the fixed zero
degree filter (i.e., the best possible filter for the truck at a fixed 0° rotation angle), and the
filter synthesized by 600 stretch and hammer neural networks.

5.2  Evaluation of Synthesized Filters

Figure 3a shows results for a clutter background not used in training, and Figure
3b shows results for both a clutter background and target rotation angles not used in
training (1°, 3°, ..., 89°). Note, that the peak to clutter ratio for the fixed filter falls below
3 dB after less than 3° of target rotation, whereas the neural network synthesized filter




remains above 3 dB in Figure 3a and remains above 3 dB in Figure 3b except at two (of
the 89) testing angles.

As discussed in Ref. 7, 27 additional graphs similar to those shown in Figure 3
were produced for different input scene and target rotation angle sampling patterns,
different clutter backgrounds, peak to sidelobe instead of peak to clutter ratios, and
stanaard backpropagation (see, for example, R. P. Lippmann, "An Introduction to
Computing with Neural Nets," IEEE ASSP Mag., Vol. 4, pp. 4-22, 1987) instead of
stretch and hammer neural networks. One backpropagation neural network with the same
inputs, outputs, and training as the 600 stretch and hammer neural networks used to
produce the results shown in Figure 3 yielded better results (i.e., higher peak to clutter
ratios for the synthesized filters) than the stretch and hammer neural networks. However,
this backpropagation neural network (which had 32 inputs, 600 outputs, and 200 hidden-
layer neurons with 50- percent of the interconnections randomly removed) had
approximately 17 times more adjustable parameters available per output (although these
parameters were not all independent) than the stretch and hammer neural network, and its
superior performance may be attributed to this factor. Also, backpropagation neural
networks with approximately the same number of adjustable parameters (i.e., weights) as
the stretch and hammer neural networks (for which training convergence can be
guaranteed) did not converge in training. Finally, the one backpropagation neural
network that yielded better results required approximately 40 hours to train on a 486-class
33 MHz desktop computer, whereas the 600 stretch and hammer neural networks required
approximately three hours.

6. CONCLUSIONS AND PROSPECTS

The storage of only 102,000 (i.e., 600 times 138 + 31 + 1) parameters for all 600
stretch and hammer neural networks was shown to permit the synthesis of filters that
yielded peak to clutter ratios above 3 dB in more than 90 percent of the cases for both
clutter backgrounds and target rotation angles not used in training. This generally
acceptable performance is particularly significant in view of the fact that neural networks
may synthesize suitable filters for target tracking (but not in general for target detection,
since an initial correlation peak is required) much faster than "smart"” filter search
strategies. The synthesis of more than ten million filters per second may be feasible if
hardware rather than software simulated neural networks are employed. Stretch and
hammer and related basis function neural networks, because of their guaranteed upper
bounds on training computational effort and their guaranteed lower bounds on




generalization smoothness and stability, may be ideal for synthesizing filters for a wide
range of "difficult" target distortions, including aspect angle and obscuration distortions
for which training data may be limited. For these distortions the neural network synthesis
approach may have significant advantages compared to searching stored filters.

References

1.*  S.C. Gustafson, G. R. Little, and D. M. Simon, "Optical-Resonator-Based Neural
Network," Optics Communications, Vol. 85, pp. 311-314, 15 Sep 91.

2*  S.C. Gustafson, G. R. Little, J. S. Loémis, and T. S. Puterbaugh, "Optimal
Reconstruction of Missing-Pixel Images, Applied Optics, Vol. 31, pp. 6829-6830,
10 Nov 1992. :

3.*  S.C. Gustafson, G. R. Little, and J. S. Loomis, "Generalization with Guaranteed
Bounds on Computational Effort, Smoothness, and Stability," submitted to JEEE
Trans. Neural Networks, 13 Apr 92, invited to revise and resubmit.

4* D.L. Flannery and S. C. Gustafson, “Adaptive Optical Correlation Using Neural
Network Approaches, SPIE Critical Review CR-40-02, San Jose, CA, 4 Nov 91.

5% 8. C. Gustafson, G. R. Little, M. A. Manzardo, and T. S. Puterbaugh, "Stretch and
Hammer Neural Networks," Proc. SPIE Vol. 1710, pp. 43-52, Orlando, FL, 21
Apr 92.

6. E. G. Olczak, "Neural Networks for the Hybrid Adaptive Correlator,” Electro-
Optics M. S. Thesis, University of Dayton, Dayton, OH, Apr 91.

7.* M. A. Manzardo, "Optical Filter Synthesis Using Artificial Neural Networks,"
Electro-optics M. S. Thesis, University of Dayton, OH, Apr 92.

8. S. C. Gustafson, G. R. Little, J. S. Loomis, T. S. Puterbaugh, and P. G. Raeth,
“Stretch and Hammer Neural Network," Univ. of Dayton Invention Disclosure
No. 116, 8 Jul 91.

9.* 8. C. Gustafson, T. A. Rhoadarmer, J. S. Loomis, and G. R. Little, "Comparison
of Radial Basis Function and Cardinal Cubic Spline Interpolation,” submitted to
Neural Computation, 31 Mar 93, invited to revise and resubmit.

*A copy of this reference is attached.




Figure 1. (a) Typical truck target and clutter background used for neural network
training. (b) Typical binarized truck and background used for correlator
input. (c) BPOF from 0° TLA binarized Fourier transform of truck. (d)
TPAF from BPOF using 9 x 9 superpixels and 10-60 pixel radius
bandpass.
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(a) Specification of trained stretch and hammer neural network using
Gaussian radial basis functions. (b) Comparison of stretch and hammer
neural network and natural cubic spline results for one-input training
examples. '
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Optical-resonator-based neural network

Steven C. Gustafson, Gordon R. Little and Darrea M. Simon
Research Insutute. Universuy of Dayton, Dayton. O 45469, USA

Receyved 4 iune 1994

A neural network model based oo an optical resonasor is described and its pattern recoguition perforthance is investigated in
computer simulations.

This paper describes a neural network model in a form suitable for performing computer simulation ex-
periments and assessing possible optical impiementations [1]. The model is consistent with optical resonator
designs that may include dynamic holograms and thresholded phase conjugate mirrors {21, and it could be of
near-ierm value in the development of new pattern recognition algorithms,

In many all-optical computing architectures, dynamic holograms are envisioned for interconnection and stor-
age functions and nonlinear components, such as arrays of bistable optical devices or thresholded phase con-
jugate mirrors, are envisioned for decision operations. The necessary adaptation and feedback interactions be-
tween the interconnection and decision components are often achieved by incorporating these components in
linear or ring resonators {3-25].

A simple and general formulation of a neural network model consistent with such optical resonator designs
may be obtained by well-known methods in which plane wave amplitudes and phases are specified at discrete
times separated by the resonator period. In this formulation the mode{ inputs and outputs are complex-element
vectors, and a state vector and a hologram matrix evolve in time according 10 a set of coupled nonlinear dif-
ference equations that represent, in general, a high-order threshold logic {26]. The hologram matrix is a func-

Fig, 1. Neurai network model based on an optical resonator. The
parameters in the mode] equations sre defined as follows: &, in-
put vector of m compiex elements. #(t), internal vector of n com-
N N plex clements. w(¢) output vector of p complex elements. H (1),
hologram matnix of 7x# complex elements. . #(P], matnix op-
A v(t) 8 erator which repiaces elements of argument matnx P according
u ‘— - w(t) 10 one of two rules: (i) If the waves described by #(¢) have evenly
speced propagation directions, all elements of P are replaced by
sums along their diagonals. (ii) If the waves described by #(¢)

V{te1) s NH(MY)) + Au have pairwise unequally spaced propagation directions, only the
V() = Ay clements of P along the main disgonal are repiaced by their di-
W) = vy agonal sum. . ¢, nonlinear operator. A, B, complex-ciement ma-
tnces. £, 7, complex constanis. t, complex transpase. I, discrete
HWte?) s B « Y Miv(t)v(1)*] ume =0, 1,2, ..
12




tion of the outer product matrix of the evoiving state vector and has a form that depends on the hologram and
resonator geotmetry.

A diagram of the model and equations for the model are given in fig. 1. Note the term in the hologram matrix
equation proportional to the outer product matrix of the state vector with either (i) elements on each diagonal
or (ii) elements on the main diagonal replaced by their sum. This term may be readily derived for state vector
elements as plane waves with either (i) evenly spaced or (ii) pairwise unequally spaced propagation directions,
respectively.

For example. consider three plane waves with evenly spaced propagation directions -4, 6, and 8+ 4 that
record a diffraction pattern (i.e.. a hologram) having amplitude transmittance proportional to the squared
magnitude of the sum of the waves. Using ¢* to represent a plane wave with propagation direction 6, consider
the reconstruction of this hologram with waves having the same propagation directions but different complex
amplitudes. There are then seven output waves proportional to the terms of

[.v|el(O—Jl+y2el‘+y’e|(“J)] Ix'el(‘-.ﬂ+x2ei.+xlei(.01||2

= 110- 3419 T r- X X3 0 0 -
eHo-n X, X3+ X33 X x3 0
elto-n X, X7 4+ X3x3 +x3X3 X, X3 +x3x3 x,x3 »
=] e* X3 X5 +X3X3 X, X3 4+ X3X3 +X3x3 X, X3+ X3X3 y,] . (n
elora X3X] X2X7 +X3X3 x X3 +x:x3+x3x5 1Ly
elern 0 X3 X7 X3 X7 +X3X;
_e"" Jd)_ - 0 o X3 XT o

where x,, are the recording wave amplitudes, y., are the reconstructing wave amplitudes, and T indicates trans-
pose. From eq. (1) the three central output waves are proportional to the terms of

X, » eito=8
pT#[xx']y, wherex=|x;| y={ )| p=je” . 2)
X3 s eito+a)

where t is the complex transpose operator and .4 is an operator that replaces each diagonal with the sum of
the elements along that diagonal.

Some comments on the model are: (i) The hologram matrix is self-referenced in that no separate reference
beams (e.g., at different angles for different recordings) are involved. (ii) The hologram matrix could at least
approximately represent many forms of diffracting structures: thin or thick, amplitude or phase, static or dy-
namic, reflection or transmission. (iii) The nonlinear operator performs no interconnection operations because
it independently replaces each complex element of its argument by another complex element. (iv) The non-
linear operator may incorporate gain or phase conjugation to compensate for wide-angle scattering from the
hologram. (v) The nonlinear operator could approximate many types of components, including arrays of bist-
able optical devices and phase conjugate mirrors with thresholding and gain. (vi) The input and output ma-
trices A and B may represent input and output devices such as beam splitters.

The performance of the model as a pattern recognizer or associative memory for the exclusive-or function
was investigated in computer simulations. In this investigation v(¢) was a vector of three complex elements,
H(1) was a 3% 3 matrix of complex elements, .+  was an operator that replaced each element of its argument
vector by the element squared and divided by the resulting vector magnitude, .# was an operator that replaced
cach diagonal of its argument matrix with the sum of diagonal elements (as described in the exampie above
for equally spaced propagation directions), and A and B were 3 X3 identity matrices.

The model was trained on each of the four exclusive-or function patterns, where the orthogonal complex-
plane vectors (a+ia)/ﬁ and (-a+ia)/ﬁ represented | and 0, respectively. For training, the initial hol-

13




ogram matrix H(O) for each pattern was the 3 X 3 identity matrix, the first two clements of #(0) were the ex-
clusive-or function inputs, and the third element of #(0) was the exclusive-or function output. The model was
allowed to iterate for each pattern until H(¢) no longer changed with ¢ so that four training holograms were
generated. : :

The model was tested with H(0) set equal to the sum of the four training holograms and with the third
eiement of #(0) set equal to the complex-plane vector / (which is the unit magnitude vector that bisects the
angie between the vectors that represent | and 0). The model was allowed to iterate for each of the four ex-
clusive-or patterns. and for each case the final third element of r was determined. For appropriately selected
values of a, §. and 7. it was found that each of the four final third elements of ¢ had an angle in the complex
plane that more closely matched the angle representing a | (45°) if this was the correct exclusive-or function
output or 2 0 (135°) if this was the correct output.

The mean number of iterations required in the testing phase for the correct convergence of the third element
of ¢ for the combined four exclusive-or cases was investigated as a function of the parameters a, 8, and y. Con-
vergence was defined to occur when the third element complex-plane angle variation between iterations was
less than one part per million. It was found that the mean number of iterations for correct convergence in-
creased as a linear function of the logarithm of y over at least the range y=0.002 10 y= 100. Fig. 2 shows the
mean number of iterations for correct convergence versus @ and 2 for y=0.1. Note that correct convergence
occurs for a wide range of the model parameters. Fig. 3 shows the complex-plane angle of the final minus the
initial third element of » versus a for §20.8, y=0.1, and the four exclusive-or function cases. This angle is the
angle of the third element of the vector output of the nonlinear operator . ¢'in fig. 1. In fig. 3, a | output is
ideally 45° —90° +360°=315° and a 0 output is ideally 135 -90° =45°.

It may be concluded that the opticai-resonator-based neural network model can successfully recognize or
classify exclusive-or pattemns on which it has been trained for a wide range of model parameters. This result
is significant because exclusive-or (or inverse exclusive-or) patterns can not be classified using a linear model.
Thus a practical pattern classification algorithm based on the optical resonator model may be feasible. As-
suming that suitable optical materials and components become available, a long-term consequence could be
the development of hardware neural network pattern recognition systems based on optical resonator designs.

e
"~
0 -
2§ = \\__
22 2 ]
o
5& § 135
z” 9 ‘
53 : /
33 o]
< 451 \
*® 90 v -
: $ 10 18 a 20 25 30

Fig. 3. Complex-plane angie of the final minus the initial third
element of # versus a for §=0.8, y«0.1, and the four exclusive-
or function cases. The curves identified with open and closed
squares represent the cases (0.0)—(0) and (1.1)— (1) respec-
tively while the single curve identified with solid diamonds rep-
Fig. 2. Mean iterations for correct convergence versus a and 4 for resents the two cases (0.1) (1) and (1.0)~(1). Acceptable
7=0.1. No convergence (correct or incorrect) was obtained in operation, as defined by a 90° compiex-plane angle decision
the non-hatched region. boundary, is achieved for a < 23.
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A basis-function technique for reconstructing images with
mmmgpuelsudcxnbed. Thxstechmqueytdd:apumal
reconstructed image smoothness in that each basis-function
width is maximized consistent with an acceptable level of
computational effort.

Key words: Image reconstruction, image restoration.

The reconstruction of missing pixels in images is a problem
that arises in many contexts. Examples include the uni-
form-grid resampling of Earth-from-satellite images that
have undergone nonlinear geometric transformations to
remove motion effects.! the restoration of partially ob-
scured nonlinear image boundaries.? and the reconstruc-
tion of arbitrary-view images from selected-view data in
tomography.3¢ Typical approaches to the reconstruction
problem include the use of interpolation or approximation
techmques. such as bilinear interpolation or cubic B splines.
However. these techniques usually require that all pixeis be
located on a uniform grid. and they typically yield recon-
structed pixel values that are not consistent with known
image-formation processes, such as processes modeled by
the convolution of Gaussian functions with impuise func-
tions at the pixel locations.

Radial basis-function interpoiation and approximation
techniques avoid these limitations, but they typically
introduce two major concerns: (1) the specification of the
extent or the width of the basis functions after their form
has been selected consistent with known image-formation
processes and (2) the limitation of the levei of computa-
tional effort required tin both precision and number of
computational steps) to obtain the basis-function coeffi-
cients. particularly if the number of known pixeis is large.
As shown below. basis-function techniques can be designed
to address these concerns: after the form of the basis
functions has been selected consistent with a priori knowi-
edge, optimal reconstructed-image smoothness is achieved
in that each basis-function width is maximized consistent
with an acceptable level of computational effort. Maximiz-
ing basis-function widths may be related to the optimal
selecuon of smoothmg parameters in image restoration by

tion.®

A typical reconstruction task and an optimal tin the sense
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indicated above) interpolation approach are as follows.
An image has known pixel values 2, (gray level or binary) at
locations (x,,y,), with i = 1, 2,..., a, and unknown ti.e..
missing) pixel values z, at locations (z,, y,), withk = n + 1.
a+2...,n + m I[desally, small clusters of unknown
pixels are surrounded by large clusters of known noise-free
pixels so that interpolation is appropriate. The basis

- functions fi(z, y) = f,(x - x,, y — i, vi) are used to fit

z2x,y) = e filx,y) + c2fax, ) + - + e fulx, y) (1)

to the data z,(x;, y;), where for given (x, y) the magnitude
|fix,y)| increases monotonically as the positive width
perameter u; increases and as |fi(x, y)| approaches zero as
either jx - x;] or |y ~ y;| becomes large. If we desire, v,
may be the second moment of |f(x, )|, v; may be a constant
independent of i, and f(x, y)mnyequdf(r.,v.) with r, =
(& = yB + (y - y)3]¥% so that the basis functions are
radial. With the functional form of fi(x, y) specified, the v;

are obtained by solving the a2 independent nonlinear equa-
tion

ful- 2lfil=e i=1,2...,n, (@

=

where f, = fix,,y;),j = 1,2,..., r, and ¢ is a positive
constant that specifies dagreeofdngonnldomuneeof
the matrix F = (f;}; thus ¢, as discussed below, limits the
level of computational effort. The basis-function coeff-
cients ¢; are then determined by solving the n simultaneous
linear equations in n unknowns:

zj:clfu+c2f2j+..'+cnfqo j'l,?-....,n. (3)

Finally, the unknown pixel values z, are determined by
substituting the pixel locations (xy, y») for (x, y) in Eq. (1).
Since the number of pixels may be large, an assessment of
the computational effort involved in solving Eqs. (2) and (3)
is required. First, note that Eq. (2) specifies » indepen-
dent nonlinear equations in one positive variable, and thus
each of these equations may be solved separately by using
standard methods. Second, note that Eq. (3) specifies a
linear system, and thus the computational effort required
to obtain a solution depends on a condition number of the
matrix F. The two-norm condition number x;, which
equals the square root of the ratio of the largest to the
smallest eigenvalue of the product of F7 and F, typically
controis the required numerical precision and the number
of computational steps independent of the algorithm (itera-
tive or direct with iterative improvement) used to obtain a
solution.’ This condition number may be limited to an
acceptably small value by specifying a sufficiently large




value for ¢« in Eq. (2). A resul. Jbtained by Varah® who
used standard matrix norm notation, is III"“II. < le
Combining this result with thc expressions’ x; =
WF sl F-tly, IFle = max; §, |f;], and U Bl; <
va || Bll. for any n x n matrix B, and noting from Eq. (2)
that the second expression equals 26 ~ ¢, where ¢ = max
|fil, we may conclude that x; < n(2¢d ~ ¢)/e. Thus ¢ may
be used to limit x,, which, as indicated above, typically
controls the numaerical precision and the number of compu-
tational steps required to solve for the coefficients c;,
.€3, ..., ta. Significantly, the degree of diagonal domi-
nance of F may be adjusted to yield optimal interpolation
surface or reconstructed-image smoothness in that esch
basis-function width parameter v; is maximized consistent
with an acceptable level of computational effort.

locations. Forhammenngncahhownpixdbaﬁon
ares, which i

surface is deformed normal to the plane by an amount
proportional to its gray level.

Several comments on the hammering restoration tech-
nique follow. First, as indicated above, this technique is
applicable when the known pixels are not located on a
regular grid, in which case conventional techniques such as
cubic splines typically cannot be used. Second, although
Gaussian radial basis functions f;(r,, v;) = exp(—r32/2v;) are
consistent with many image formation processes, wavelet
basis functions® may also be appropriate. Third, although
well-known techniques such as two-dimensional polyno-
mial interpolation have been shown to exhibit singuiarities
for nonuniform sampling,!® it has been proved that for a
wide class of radial basis functions the matrix F is non-
singular without the constraints of Eq. (2) and regardless of
thevalue of v,.1! However, nonsingularity does not ensure
acceptably small matrix condition numbers: even for prov-
ably nonsingular matrices the level of computational effort
required to obtain basis-function coefficients is typically
unfeasible for sufficiently large matrices.1213 Fourth, the
hammering interpolation technique has a neural-network
interpretation in which the inputs x and y are connected to
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neurons that implement the basis functions, and the neu-
ron outputs pass through weighted connections to an
accumulator that forms the cutput 2. Training the neural
network invoives finding the connection weights and the
basis-function width parameters, and finding these param-
eters requires muitivariahle nonlinear optimization for
typical basis-function neural networks. However, the tech-
nique described above requires only univariate nonlinear
optimization to obtain the maximum basis-function width
parameters consistent with an acceptable level of computa-
tional effort.

This work was supported in part by the U. S. Air Force
Rome Laborstory, the Miami Vailey Research Institute,
and the Martin Marietta Corporation.
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GENERALIZATION WITH BOUNDS ON
COMPUTATIONAL EFFORT, SMOOTHNESS, AND STABILITY

Steven C. Gustafson, Gordon R. Little, and John S. Loomis,
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Dayton, OH 45469-0140

Abstract---Generalization is considered in the comiext of data interpolation,
extrapolation, and approximation. For interpolation using certain functional forms it is
shown thas upper bounds may be placed on required numerical precision and number of
computational steps, and it is also shown that lower bounds may be placed on certain
measures of interpolation smoothness and stability. These results are obtained for radial
or other basis function interpolation using a diagonal dominance criterion for the matrix
whose inverse determines the basis function coefficients. The diagonal dominance
criterion is particularly appropriate for applications where extrapolated values must
asymptotically approach an a priori function, and this criterion also provides a
Jjustifiable solution to the problem of selecting basis function parameters.

Generalization realized as data interpolation, extrapolation, or approximation may
be performed with upper bounds on computational effort and lower bounds on
smoothness and stability. Such generalization can be carried out for certain definitions of
the bounded quantities and, in particular, for interpolation using certain functional forms,
including forms that asymptotically approach an a priori function, as required for
applications such as image reconstruction.

As an example, consider data that consists of m input-output points (x;, y;), where
the inputs x; are length n vectors, the outputs y; are scalars, and i, j = 1, 2, ..., m. These
data points are to be interpolated and extrapolated using the function
f(x) = Zic; expl-(x - x;)%/0;2] obtained by convolving ¢;8(x - x;), which is an impulse
function centered on the jth data input vector, with exp(-x2/2;?), which is a Gaussian
radial basis function with standard deviation Gj, and summing the results for all j. For
interpolation the coefficients ¢; must be such that y; = f(x;), and thus they are obtained by
solving m simultaneous linear equations in m unknowns y;= ):chaij, where g =
expl-(x; - x;}*2012].
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The parameters o; may be selected such that the matrix A = [aij} is diagonally
dominant by a positive amount € for each column, i.c., so that € = g;; - Z;;a;; for all j.
Using standard matrix norm notation, it is well known that the eo-norm of A is [|Allee =
max;X;la;;| and that for anynxn matrix B the co-norm and the 2-norm are related by
IBll; £ Vo |Bllee. Also, it has been shown that the es-norm of A-l is IA-ll, < 1/e
[Varah, 1975]). Using a;; = 1, the above expressions indicate that the 2-norm condition
number of A is 3 = lAlLIIA-1) < n(2 - e)/fe.

The computational effort defined by the numerical precision and the number of
iterative-improvement computational steps required to obtain the c; has upper bounds
that increase with k5. Suppose that X' is the maximum acceptable 2-norm condition
number for A. Then smoothness defined by (j6;%/m)!/2 is maximized by selecting the
oj such that n(2 - e)/e = xz'. This selection requires the solution of m independent
nonlinear equations (one for each unknown oj). but the iterative-improvement solution of
the m simultaneous linear equations y; = Z;c;a;; asymtotically dominates the required
number of computational steps as m becomes large. Finally, stability defined by 1/r is
bounded by 1/re 2 [(x'ry)"! - 11/2 for 'ty < 1, where £ = [Ti(c;' - ¢)?/Zic;?] 12 is the
fractional root-mean-square coefficient change, ry = [Z;(y; - yp2/Ziy;2]1/2 is the
fractional root-mean-square data output change, and the c; change to ¢;' if the y; change
to y;' (Golub and Van Loan, 1989].

For this example, generalization is thus achieved with least upper bounds on
computational effort and greatest lower lpounds on smoothness and stability if the oj are
selected such that A has diagonal dominance € = 2n/(n + ¥'3). This example may be
modified to address approximation, multiple outputs, norms other than the 2-norm, other
definitions of computational effort, smoothness, and stability, and non-Gaussian or non-
radial basis functions provided that such functions decrease as any of their independent
variables increase.

In the same sense that thin plate spline interpolation has a "bending" model in
which an elastic plane is deformed into contact with the data points, the above example
has a "hammering” model in which a malleable plane is similarly deformed. In the
hammering model numerous small strikes are directed at each x; with Gaussian precision
expl-(x - x{)2/20;?] such that the plane is smoothly deformed into contact with the data
points. The hammering standard deviations ©; are selected such that the ratio of the
strike density at x; to the sum of strike densities at x;,; (i.c., the ratio of hits to misses) is
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at least 1/e = (n + x,)/(2n). Here x;' bounds (1) the numerical precision and number of
iterative-improvement computational steps required to determine the relative number of
strikes at each x;, (2) the stability with respect to changes in y; of this determination as
measured by 1/r;, and (3) the smoothness of the hammered surface as measured by the
root-mean-square of the o;.

The diagonal dominance criterion permits the acceptance of larger condition
numbers for A than criteria [Narcowich and Ward, 1991} that apply to other classes of
basis functions, ¢.g., radial basis functions that increase with radius. By some criteria
such radial functions interpolate more smoothly than basis functions that decrease with
radius, but the latter functions are appropriate for problems in which extrapolated values
must approach an a priori function with distance from the data inputs, as may be required
for image reconstruction applications [Gustafson et al., 1992). Also, in applications for
which the process that produced the data is unknown, generalization that smoothes the
data by convolution with a Gaussian or similar decreasing-with-radius function may be
justified. Finally, the diagonal dominance criterion provides a justifiable solution to the
problem of basis function parameter selection [Poggio and Girosi, 1990], ie., width
parameter such as o; are maximized such that the largest acceptable condition number is
not exceeded.
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NEURAL NETWORK APPROACHES
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Abstract

This paper reviews work on binary phase-only (BPOF) and temary phase-amplitude
(TPAF) correlation and highlights recent investigations of neural network approaches
for augmenting correlation-based hybrid (optical/electronic) automatic target
recognition systems. The theory and implementation of BPOF and TPAF correlation
using available spatial light modulators is reviewed, including recent advances in smart
TPAF formulations. Results showing the promise of neural networks for enhancing
correlation system operation in the areas of estimating distortion parameters, adapting
filters, and improving discrimination are presented and discussed.

1. INTRODUCTION

Coherent optical correlation and artificial neural network approaches have
independently shown promise for patiern recognition, including automatic target
recognition (ATR), which is an important military application area. This paper reviews
the concepts and progress of investigations that combine these two approaches and that
are motivated by the potential for retaining the strengths while bypassing the
weaknesses of each approach.

A leading candidate architecture for ATR using optical correlation is the hybrid
adaptive correlator (HAC) concept depicted in Figure 1. The HAC consists of a rapid
sequential (i.e., "real-time") correlation module imbedded in an overall electronic
system that controis the cycle of operation, including the selection of appropriate
correlation filters from a large bank of pre-computed "smart” (i.e., combining both
distortion-invariance and clutter discrimination) filters.

For any practical application scenario the number of filters is large, e.g., 1,000 or
more. Thus the problem of selecting the best filter subset from the bank at a particular
time is critical. This problem is not yet resolved even though current and projected
device technology supports correlation rates of 100 - 1000 input-filter pairs/sec. The
"filter strategy™ control problem limits practical designs because of the implied
workload for the electronic control system.

A salient advantage of the correlation approach is its inherent shift-invariant
response: the target need not be centered in the correlator input, and the location of the
correlation peak in the output plane provides a location estimate for the target in the
input plane.
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Neural network approaches clearly have the capability to perform the ATR
function, but their practical application is complexity-limited. From an information
theory perspective, the ATR problem can be viewed as a very complex input-output
relationship that must be learned with sufficient accuracy to provide statistically
acceptable target-nontarget discrimination. Statistical performance is emphasized here
because of the robust nature of realistic ATR scenes-—-a training set can at best be only
statistically representative of the world of all possible input scenes. So far this problem
description sounds well suited for neural network approaches and, in principle, these
approaches are ideal. However, ATR performance must be invariant to target shifts,
and when the additional complexity associated with this invariance is added to that
associated with robust sets of input scenes, the resulting overall complexity exceeds
levels that can be practically handled with current or near-ierm computational
resources, i.e., neural network training time is unacceptably long, and the size of the
network is too large either for simulation or for practical embodiment in a real-time
system.

This paper concentrates on neural network approaches that augment the HAC
concept. Three areas are considered:

1. Estimating target distortions relative to reference views.
2. Synthesizing new filters to follow dynamic target distortions.

3. Estimating confidence levels associated with correlation peaks to improve target-
nontarget discrimination.

Work performed in all three areas is reviewed in the context of BPOF and TPAF
correlation within the HAC concept. Two types of neural networks have been used in
this work, "standard” backpropagation and "new" locally linear and stretch and hammer
architectures developed at the University of Dayton. Background on BPOF and TPAF
correlation is presented below and is followed by a review of pertinent neural network
theory. Investigations in the three areas listed above are then discussed in turn,

2. CORRELATION WITH BPOF AND TPAF FILTERS

A recent review of optical correlation techniques was provided by Flannery and
Horner {1989 (a)]. A renewed surge of interest in optical correlation for practical
applications has been spurred by the recent development of the phase-only filter (POF)
concept [Homer,1984], rapidly followed by the development of discrete-modulation-
level BPOF and TPAF filters that support effective real-time implementation with
currently available spatial light modulators (SLM) [Ross, 1983; Psaltis, 1984; Flannery,
1986). These developments have made the HAC (Figure 1) a practical concept capable
of implementation using current technology.

The BPOF is defined with two phase modulation levels (usually 0 and 180 degrees,
corresponding to amplitudes of -1 and 1). It can be implemented with magneto-optic
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SLMs (MOSLM [Ross, 1983; Davis,1989)), ferro-electric liquid crystal (FLC) SLMs
(Johnson, 1990}, and deformable mirror device (DMD) SLMs [Florence, 1990).

The TPAF may be viewed as an important extension of the BPOF that includes one
additional modulation level: zero (ie., the signal light is blocked at the filter positions
or pixels having this level). In practice even the BPOF has zero-modulation levels due
to its limited region of support (e.g..finite SLM aperture). In the TPAF, clements are
set 10 zero anywhere in the filter region according to an algorithm that provides
(primarily) the benefit of improved target-nontarget discrimination. This improvement
is achieved by blocking spatial frequencies where nontargets are expected 1o have
relatively large spectral content [Flannery,1988 (a)).

The TPAF may be implemented in MOSLM devices using appropriate drive
techniques to access a third "mixed-magnetization® state [Kast,1989]). Theoretical and
experimental results amply demonstrate the improved discrimination (relative to BPOF
correlation) provided by the TPAF {Lindell, 1990;Flannery,1990;Flannery,1991].
Recent reports indicate good potential for implementing TPAF modulation in other
SLM devices (Juday, 1991]. Another approach is to cascade a binary amplitude SLM -
with a phase-modulating SLM, which is less attractive from an optical engineering
perspective. '

All the limited-modulation filters discussed above (POF, BPOF, and TPAF)
provide, in general, excellent correlation performance as characterized by sharper
correlation peaks, greater peak intensity (correlation efficiency), and improved
nontarget discrimination compared to the classic matched filter (which uses full
complex amplitude modulation).

The signal-to-noise performance of limited-modulation filters has been a subject of
great interest since intuition suggests that a price must be paid for restricting
modulation levels. The classic matched filter by definition provides the best SNR
(signal-to-noise ratio) for the case of additive Gaussian noise. However, the limited-
modulation filters have shown generally superior discrimination against actual scene
clutter [Homer, 1990). Analysis is complicated by the lack of accepted standardized
analytical models of practical clutter. Thus SNR or discrimination performance is
scene- dependent, and many results are either anecdotal or suspect because of the
limited robustness of test sets. Several theoretical treatments (limited by the
assumption of Gaussian white noise) have been reported [Dickey, 1988, 1989;
Kumar,1989,] but are not reviewed here. However, limited-modulation level filters
exhibit typical SNR reductions of 3 to 10 dB (decibels) relative to maiched filters for
the white noise case but frequently provide better discrimination against practical noise
patterns. Worth noting is a recent analytical treatment that derives tight bounds for
SNR degradations for various limited-modulation filters [Fam,1990). A summary of
the current situation is that the presumed SNR penalties for BPOF and TPAF
correlation are far outweighed by their advantages, which include the overwhelming
advantage of practical implementation with available SLM devices. An additional
practical advantage is the reduced amount of storage required for BPOF and TPAF
filters (e.g., one or two binary bits per pixel) relative to complex-valued filters (e.g., at
least 8 bits per pixel).
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Effective techniques for formulating smart BPOF and TPAF filters have been
developed and demonstrated in both simulations and experiments. A major design
component of these filters is the specification of the 2ero-state pattem that optimizes
SNR and/or other metrics, including peak intensity (or correlation efficiency)
(Flannery,1990,1991:Kumar,1991]. Distortion invariance is addressed by adjusting the
training-set weights of a composite in-class (target) image (Jared,1989(a); Flannery
1990,1991] or by direct iteration of the phase values of a POF pattern [Kallman,1987).
The threshold line angie (TLA) {Flannery,1988 (b);Fam,1988] is another design
clement of BPOF and TPAF formulations. It determines the relative weighting of odd
and even symmetry components of the target image in the filter response. Small but
significant improvements result from choosing an optimum TLA value.

4, very recent and important development in TPAF optimization is formulation
algorithms that address mixed-metric optimizations {[Kuman, 1991; Flannery, 1991},
i.c., compromises that simultaneously address two or more correlation performance
metrics. These algorithms are motivated by the observation that filters optimized with
regard only to SNR frequently have andesirable performance characteristics in other
respects, including correlation efficiency so low as to preclude practical implementation

- and broad correlation peaks that hamper location-estimate post-processing. These
undesirable characteristics are associated with very small support regions that result
from optimizing only for SNR, i.e., most of the filter area is set to the zero-modulation
state.

Results are presented here from a recent case study of TPAF smar filter
formulation using mixed metrics [Flannery,1991] to illustrate the state of the art in this
area. Figure 2 provides an example input scene of a tank on a bushy background and
the binary version of the scene as used in the study (to match the binary input capability
of the experimental correlator that uses MOSLM devices at both input and filter
planes). Sman TPAF filters were formulated to cover 20 degrees of in-plane target
rotation and 12% of in-plane target scale variation while rejecting the background
shown as well as three other backgrounds of diverse character. When the filter was
optimized only for SNR (i.e., background discrimination) it provided excellent
discrimination (averaging 8.75 dB over the four backgrounds), but the correlation
efficiency was so low that practical implementation in the experimental correlator was
marginal. With optimization to a mixed metric reflecting equal emphasis on both SNR
and peak intensity, the filter still provided excelleat background discrimination
(averaging 7.62 dB) and also provided over twice the peak intensity of the previous
filter, which was a practical level for the experimental correlator. Information
generated during filter design indicated that in this case the compromise filter provided
85% of the SNR of the best-SNR design and 85% of the peak intensity of the filter
designed for maximum peak response. Figure 3 shows simulated and experimental
correlation intensity plots for the compromise filter with the input of Figure 2(b).
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3. NEURAL NETWORK ARCHITECTURES

This section reviews neural network architectures and training algorithms used in
the work discussed here. Backpropagation (¢.g., Lippmann, 1987), locally linear
[Gustafson, 1991b], and stretch and hammer (Gustafson, 1991a} neural networks are
considered.

Backpropagation-trained neural network:

Feedforward neural networks with weights determined by the backpropagation
training are the most commonly used neural networks in engineering applications. It
has been shown in principle that with three neuron layers and with enough neurons in
the hidden layer (the layer not directly connected to either inputs or outputs) any
arbitrary input-output relationship may be leamed. The backpropagation algorithm is
equivalent to a gradient descent optimization in weight space with a least-square-error
goal. However, no general prescription for the various design elements is available;
and judicious initial choices and trial-and-error design iterations are the normal methods
for designing networks for particular applications. Accuracy of learning, interpolation,
and extrapolation relative to training set data are important performance parameters.
These parameters are affected by training set selection, training schedule, RMS error
goal, and network topography. A large body of common experience relating these
clements has evolved, and the results reported here were obtained using conventional
methods based on this experience.

Locally linear neural network:

As noted above, multilayer feedforward neural networks that use backpropagation
or similar training algorithms are by far the most common in engineering applications.
However, these neural networks have several limitations. First, they generally lack the
coordinate invariance property, according to which the testing output is unchanged if
the testing and training (or data) inputs are translated, rotated, or scaled. Second,
without excessive training they generally lack the data interpolation property, according
to which the testing output is the training output if the testing inputs are the training
inputs [Poggio and Girosi, 1990). Third, they generally lack the linear representation
property, according to which any testing point is on a linear surface if all training points
are on this surface. Finally, they generally lack the data bootstrapping property,
according to which the testing outputs have least squared error for any training points
that are transformed into testing points. In contrast, locally linear neural networks have
all of the above desirable characteristics. There are two steps in training: transforming
the inputs to invariant coordinates and finding a plane through each training point that
satisfies a bootstrapping property in that the plane predicts, with minimum squared
error, a specified number of training point nearest neighbors. In testing the plane
through the training point nearest to the testing point (in the transformed inputs) is used
to find the testing point output. Locally linear neural networks extend nearest neighbor
techniques because in training they find a plane (having as many dimensions as there
are inputs) through each training point that in general has non-zero siope.
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Streich and hammer neunl network:

Stretch and hammer neural networks also avoid the many limitations of
backpropagation training and use radial basis function methods to achieve advantages
in generalizing training examples. These advantages include (1) exact leaming, (2)
maximally smooth modeling of Gaussian deviations from linear relationships, (3)
identical outputs for arbitrary linear combination of inputs, and (4) training without
adjustable parameters in 2 predeterminable number of steps. Stretch and hammer
neural networks are feedforward architectures that have separate hidden neuron layers
for stretching and hammering in accordance with an easily visualized physical model.
Training consists of (1) transforming the inputs to principal component coordinates, (2)
finding the least squares hyperplane through the training points, (3) finding the
Gaussian radial basis function variances at the column diagonal dominance limit, and
(4) finding the Gaussian radial basis function coefficients. The Gaussian radial basis
function variances are chosen 10 be as large as possible consistent with maintaining
diagonal dominance for the simultaneous linear equations that must be solved to obtain
the basis function coefficients. This choice insures that training example generalization
is maximally smooth consistent with unique training in a predeterminable number of
steps.

4. DISTORTION PARAMETER ESTIMATION USING NEURAL NETWORKS

The problem addressed by the work reported in this section is as follows. Given a
starting condition consisting of correlation of an input target object with a matching
fileer, estimate distortion parameter(s) (¢.g., rotation angle and scale factor) as the input
object is distorted from the original view. The value of distortion parameter estimates
for use in a filter control strategy for a HAC is abvious.

The approach investigated for distortion parameter estimation in one study
[Gustafson,1990] involved sampling the shape of the correlation peak (the desired peak
in response to the target) to derive inputs for a backpropagation-trained neural network.
In-plarne target rotation was used as the distortion mechanism and thus the goal of the
network was to estimate the rotation angle relative to the initial view. A binary image
of an aircraft was used as the target, and 128x128 sample correlation simulations were
performed. Intensity samples were taken on a 5x5 pixel grid centered on the correlation
peak. These sampies vzre normalized to the central value, thus defining 24 inputs to
the neural network. "'l network was trained for 5-degree intervals of target rotation
with the filter held constant at the initial view. The neural network estimated in-plane
rotation to within +/-5 degrees over a range of -40 to +40 degrees from the initial view.

Another study [Gustafson,1991) applied the same approach to an IR truck target
image and used both backpropagation and locally linear neural networks. The
backpropagation network estimated rotation angle with errors less than 2 degrees,
whereas the LLN provided errors less than 0.35 degrees (see Figures 4 and 5).
Estimation was seriously degraded when realistic backgrounds were introduced in the
input scenes, presumably due to the resulting distortion of the correlation peak relative
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to the zero-background case. Training using background-distorted inputs did not reduce
this degradation 0 an acceptable level.

To reduce the degradation caused by backgrounds, a new sampling approach,
input-plane sampling, was introduced. In this approach (successful) correlation is used
10 establish a reference point (location estimate) for sampling the target intensity in the
input plane. Sampling was again based on a 5xS-pixel grid, but in general the sampling
pattern was chosen to keep most or all sampies on the target image (thus excluding
background effects). A study using the same truck target showed that rotation angle
could be predicted over the full rotation range of 360 degrees with errors well below
two degrees evea in the presence of clutter backgrounds (see Figure 6) {Olczak,1991)

Although perhaps not obvious, a boot-strapping assumption is implicit in the above
distortion-estimation approaches: good cosrelation must be maintained at all times.
The correctly-located correlation peak must be detectable (i.e., must exhibit a
sufficiently high peak-to-clutter ratio in the correlation plane) to enable proper location
of the sampling grid for either approach discussed above. The input-plane sampling
approach is generally superior because it provides samples that are less corrupted in
‘cases where there is a slight mis-match between filter and target but where good
correlation is still obtained.

Distortion parameter estimation using neural network approaches shows promise
for aiding HAC filter control strategy in tracking modes of operation (where successful
correlation has been achieved and must be maintained through rapid target evolution).
Current research is investigating issues such as sensitivity to sampling grid location
accuracy, optimization of sampling grid pattems, and extension to multiple distortion
dimensions,

. FILTER SYNTHESIS USING NEURAL NETWORK APPROACHES

This section reviews efforts that investigate the modification or synthesis of TPAF
filters using neural network approaches.

Filter amplitude states:

In an initial simulation study the bandpass of a BPOF was covered by four binary
(on-off) amplitude control rings driven by four neural network outputs (Flannery,1989
(b)). The inputs were the integrated power spectral densities in the input scene taken
over the same four spectral rings (readily available on a real-time basis in an optical
correlator system). The goal was to maximize correlation signal-to-noise for a target
imbedded in different noise samples by optimum control of the correlator bandpass.
This control may be viewed as setting zero-states in a TPAF on a very coarse
framework, The simulations were successful in that the neural network was easily
trained to provide near-optimum bandpass configurations for a variety of input noise
conditions.
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Filter phase states:

Two basic issues must be resolved to define a general filter synthesis approach:
(1) A filter representation or parameterization must be used that is consistent with the
number of available outputs in current neural network practice (which is limited in both
amuhuomandhadm:mplanenmms)md@)themmmthemukmunbe
specified.

To illustrate the first issue, consider the complete specification of a 128x128-pixel

. TPAE. In excess of 32,000 binary values must be determined, whereas the neural

network computation resources typically used support at most 600 outputs. Thus ways
to reduce the number of parameters used to represent a filier must be developed. One
approach is to impose a bandpass limit on the filter (one quarier of the full Nyquist
bandwidth) and to consider only BPOF filters with cosine (even) symmetry. Another
approach is 1o extend the bandpass to almost the full Nyquist interval by grouping
pixels in 3x3 super-pixels (called "nonapixels® hereafter), each controlled by a single
modulation value. The first approach severely smooths the filter impulse response,

" whereas the second approach limits the extent of the impulse respoase to about one
third of the input field of view.

‘The second issue, defining network inputs, may be addressed with the same two
sampling approaches already discussed in the context of distortion pammewr estimation
(correlation peak shape and input-plane sampling).

Steps taken during the course of investigations on filter synthesis at the University
of Dayton are summarized here. These investigations paralleled the distortion-
estimation investigations in the sense that input-plane sampling was found to be much
superior to sampling correlation peak. The quarter-Nyquist bandpass filters were
successfully synthesized but were of little practical vaiue due to their limited bandpass;
they exhibited insufficient discrimination against background clutter and non-target
vehicles (see Figure 7). Nonapixel filters were also successfully synthesized and
performed well [Olczak, 1991). For nonapixel filters the target extent was less than 40
pixels on a 128-pixel format, thus satisfying the constraint mentioned above.

Recent previously unreported results on the synthesis of nonapixel BPOFs using
input-plane sampling are shown in Figures 8, 9 and 10. Figure 8(a) is a typical input
image showing the 1arget truck and another vehicle superimposed on a clutter
background. Figure 8(b) is a nonapixel filter pattem for the truck. Figures 8(c) isa
correlation intensity pattern from a correlation simulation using this input and filier,
Figure 9 and 10 provides plots of filter péak-to-clutter performance over 360 degrees of
target rotation for synthesized nonapixel filters using backpropagation and stretch and
hammer neural networks, respectively. Data for two other filters also are plotted for
reference in Figure 9; the simple (single-view) BPOF and the best possible BPOF that
can be designed at each rotation angle. As is apparent in the plots, the performance of
the neural-synthesized filters approaches that of the best-possible filters to a satisfying
degree. These plots involve the target superimposed on one of several clutter
backgrounds; results with the other backgrounds were similar.
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The results seem impressive because the neural network provides filter information
equivalent to about 45 distinct single-view filters, which would require about 3.5 kB
(kilobytes) of digital storage (assuming about 600 binary bits/filter). Neural network
fileer synthesis also provides an implicit control mechanism bocause no indexing or
searching through a filter database is required. The only caveat is the same one
discussed in the review of distortion-estimation techniques, which is that this approach
is based on maintaining good correlation in a dynamic scenario (i.e., successfully
tracking the target) so that the location estimate derived from the correlation peak may
be used to accurately center the input-plane sampling grid.

An important question concerns the affect of target distortions not learned by the
network, e.g., scale changes. More generally, how can neural network filter synthesis
be extended to distortions involving two or more degrees of freedom, e.g., azimuth,
elevation, scale, etc.? The associated complexity growth may tend to drive the problem
outside bounds practically addressable by available neural network resources. This and
other issues similar to those mentioned for distortion estimation are under investigation,
asmwchmquuforneunlnetworksynﬂwsofﬂwwo—modnlmoupammqum
to form a full TPAF.

6. CORRELATION CONFIDENCE-LEVEL ESTIMAT!ON USING NEURAL
NETWORK APPROACHES

A correlation involving a target surrounded by clutter will result in a peak
corresponding to the target and other (hopefully smaller) peaks in response to clutter.
Normally the desired peak must exceed other peaks by some margin (e.g., 3 dB) for
correlation to be useful. If the clutter level in the input scene is gradually increased, a
point is reached where the filter is no longer useful by this standard. If the filterisa
distortion-invariant smart filter, it might be possible to substitute a more target-specific
filter which would furnish better discrimination. This approach is undesirable in
general because it implies a large storage bank of "more-specific” filters and because
there is an implied control problem (i.e., which of the many more-specified filters
corresponding to a single smart filter should be substituted?). Neural network
techniques that estimate confidence levels for correlation peaks are potential
approaches (o this problem. Note that if the original filter was already of the more-
specific variety, some augmentation of the correlation process is mandatory if useful
results are to be obtained.

The same two sampling techniques, correlation peak and input-plane, were
investigated as neural network inputs, and again input-plane sampling proved superior.
Recent previously unreported results are synopsized here to illustrate the potential of
this approach.

A set of terrain board images was provided by Martin Marietta, Strategic Systems,
Denver, Colorado. These 128x128-pixel images included three vehicle targets on a
cluttered background. The image set spanned elevations of 15 to 45 degrees and
azimuths of 0 t0 90 degrees. A matrix of 45 images covering this two-dimensional
distortion range was used for this study, including 30 for training and 1S for testing. All
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correlations were performed with a single BPOF constructed for the ceatral view in the
image matrix. Thus correlations were poor in response to the target for many of the
input images. For each correlation four correlation peaks were considered: one for each
of the three vehicles (including the target vehicle) and the highest peak in response to
input clutser.

The input-plane sampling mask consisted of eight spokes of even angular
distribution, each 16 pixels long. These 128 samples were augmented by 8 inputs
derived by applying & one-dimensional Roberts edge-location operator along each
spoke and finding the location of the strongest response. The network was trained 10
provide two complementary-logic outputs indicating whether the sampled object was »
target or not. These ontputs were algebraically combined to yield s confidence level.
Figure 11 is a histogram plot of the results of the trained network applied to the 15-
image (60-peak) test set. The a-priori target-10-nontarget ratio for these inputs is 1:3.
As can be seen, the network provided excellent separation of targets and nontargets
(i.e.. very useful confidence level outputs). Figure 12 shows correlation intensity plots
corresponding to perfect target-filter match (part a) and extreme target-filter mismatch
(part b). Other correlations are expected to fall between these extremes.

Current work is addressing more challenging images, variations of the input-plane
sampling mask, and the application of different types of neural network architectures to
this problem.

7. CONCLUSION

The work reviewed here has shown definite promise for the development of neural
network approaches that augment hybrid adaptive optical correlstion sysiems.
Although other approaches may be defined for the use of neural networks in automatic
target recognition, the approaches discussed here involve an advantageous combination
of the strengths of the two underlying technologies. In particular, these approaches
allow the two basic strengths of optical correlation (shape-dependent discrimination and
intrinsic location estimation) to be used to their full extent. Neursal network
sugmentation techniques, when incorporated with the HAC concept, should permit the
development of more efficient and powerful systems for addressing complex patten
recognition,
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Fig. 2. Gray scale (a) and binary (b) versions of exampic targel-on-backgxound scene.
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(b)

Fig. 3. Simulated () and experimenta! (b) correlation intensity for compromise filter.
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Fig. 8. Typical input image (a), corresponding neural-network-synthesized nonapixel
filter (b), and resulting correlation intensity (c).
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Abstract

Swetch and hammer neural networks use radial basis function methods to achieve advantages in
generalizing training cxamplcs.. These advantages include (1) exact learning, (2) maximally smooth
modeling of Gaussian deviations from linear relationships, (3) identical outputs for arbitrary linear
combination of inputs, and (4) training without adjustable parameters in a predeterminable number of
steps. Stretch and hammer neural networks are feedforward architectures that have separate hidden
neuron layers for stretching and hammering in accordance with an easily visualized physical model.
Training consists of (1) transforming the inputs to principal component coordinates, (2) finding the least
squares hyperplane through the training points, (3) finding the Gaussian radial basis function variances
at the column diagonal dominance limit, and (4) finding the Gaussian radial basis function coefficients.
The Gaussian radial basis function variances are chosen to be as large as possible consistent with
maintaining diagonal dominance for the simultaneous linear equations that must be solved to obtain the
basis function coefficients. This choice insures that training example generalization is maximally
smooth consistent with unique training in a predeterminable number of steps. Stretch and hammer
neural networks have been used successfully in several practical applications.

"1. Physical Model

In the same sense that thin plate spline interpolation has a "bending" model in which an elastic plane is
deformed into contact with the data points, stretch and hammer neural networks [Gustafson et al., 1991,
1992] have a physical model in which the data input plane is similarly deformed. In this model the
input plane is first stretched along orthogonal coordinates located in the plane so that the data inputs
(relative to their means) have equal variances and zero covariances. (This procedure is a principal
components transformation on the data inputs). Next a least squares hyperplane is found for the
transformed data. Finally, the data inputs in the stretched coordinates are projected onto the hyperplane
and hammered into contact with the data outputs using numerous small strikes so that the hyperplane is
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smoothly deformed. Hammering has (typically) Gaussian precision with variance such that the ratio of
strike density at each data input to the sum of strike densities at all other inputs, i.e., the ratio of hits to
misses, exceeds unity.

2. Advantages

It has been proved that if the number of training points is much greater than the number of inputs, the
stretch and hammer neural network places guaranteed upper limits on required numerical precision and
number of computational steps and that it also places guaranteed lower limits on certain measures of
intérpolation smoothness and stability [Gustafson et al. 1992]. Here smoothness as measured by the
s~ "est hammering standard deviation is maximized by selecting the largest value consistent with an

.able level of computational effort, and this value is obtained by setting the minimum ratio of hits
to misses equal to (x + 1)/(x - 1), where x is the largest acceptable 2-norm condition number of the
matrix F whose inverse determines the basis function coefficients. Also, stability as measured by the
reciprocal of the root mean square fractional change in the number of strikes at each data point is
bounded by s > [(xr)-! - 1]/2, where r is the fractional root mean square change in the data outputs (i.e.,
good stability implies that small data output changes yield small interpolation function changes).

Since the stretch and hammer neural network is an'interpolator and extrapolator (although modifications
to enforce additional smoothness at the expense of exact data fitting are possible), exact learning is
achieved. Also, since the hammering precision of radial basis functions is typically Gaussian with the
maximum practical standard deviation, the network provides maximally smooth modeling of Gaussian
deviations from linear relationships. Furthermore, since the data inputs are transformed by stretching to
principal component coordinates, the network provides identical outputs for arbitrary linear
combinations of inputs. Finally, training is achieved without adjustable parameters with- a
computational effort governed by x in terms of bounds on required numerical precision and number of
computational steps.
3. Training Procedure

Typical stretch and hammer neural network training consists of standard operations that yield the

mathematical specification outlinad in Figure 1 and detailed in the references [Gustafson et al. 1991,
1992]. First the data inputs x; and their means X, for all data points are expressed in principal

component coordinates u, where a, are the linear transformation coefficients (see Figure 1 for

notation). Next a least squares hyperplane is fitted to the data points, where b, is the hyperplane

intercept and b,, b,, ..., b, are the hyperplane slopes. Next the Gaussian radial basis function standard
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deviations s, are selected to be as large as possible consistent with maintaining acceptable diagonal
dominance for F whose elements are given by the radial Gaussian functions f; evaluated at the stretched
data inputs. Thus, each s, is selected such that (1+d,)/(1-d;) = x, where d, is the sum of the off-
diagonal elements of the jth column of F. Finally, the basis function coefficients ¢, are obtained by
solving m simultaneous linear equations in m unknowns.

4. Example Results

Figures 2, 3, and 4 show example results for the stretch and hammer neural network. Figure 2 compares
stretch and hammer and natural cubic spline interpolation for one input. Note that the curves. are
comparable except for sparse interpolation regions, where the stretch and hammer curve approaches the
least squares line. Figure 3 shows a least squares plane fitted and hammered to four two-input training
points with the two stretch (principal component) coordinates indicated, and Figure 4 shows these
training points in the stretched coordinates with a least square plane fitted and hammered in these
coordinates. Note that interpolation in the stretched coordinates is smoother than in the original
coordinates.

5. Practical Application

Figures 5 and 6 show practical application of the stretch and hammer neural network to an adaptive
optical correlation system designed to track targets in images [Flannery and Gustafson, 1991]. The
network synthesized binary phase Fourier plane filters using 31 samples of the target region in the input
scene. The network was trained to synthesize filters that maintain a high correlation peak to clutter ratio
for clutter backgrounds not used in training (Figure 5) and for such backgrounds plus target rotation
angles not used in training (Figure 6). Note the favorable comparison with the zero degree filter (a
fixed filter designed for zero degree rotation) and the best expected fiiter (the best fiiter that could have
been synthesized).
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Figure 1.  Specification of a trained swetch and hammer neural network using
Gaussian radial basis functions.
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Figure 3. A least squares plane fitted and hammered to four two-input training
examples with the two stretched (principal component) coordinates
indicated.
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ABSTRACT

OPTICAL FILTER SYNTHESIS USING ARTIFCIAL NEURAL
NETWORKS

Manzardo, Mark, August
University of Dayton, 1992

The feasibility of using neural networks to synthesize ﬁlters for a hybrid
adaptive correlatbr (HAC) was demonstrated. Inpﬁt scene binarization, filter
generation, filter encoding, input scene sampling, and target rotation were
considered in developing neural networks for target tracking. Neural networks
were trained using target-plus-background image samples as inputs and coded
filter values as outputs After learning, input image samples not included in
training were used to test the neural networks. The resulting coded filter
values were evaluated using computer-simulated optical correlation with‘
ternary phase amplitude filters (TPAF). Back;propagation and stretch and
hammer neural networks successfully synthesized filters for optical correlation,
and performance was adequate for tracking rotated targets on various

backgrounds. Typical correlation peak-to-clutter ratios were 3 to 9 dB for in-
plane target rotation angles of 0 to 90 degrees.

54




TABLE OF CONTENTS

1. INTRODUCTION

1.1. Hybrid adaptive correlator technology
1.2. Neural networks for HAC filter synthesis

2. HAC SYSTEM OPERATION

2.1, Steps in HAC operation

. 2.2. Neural networks in HAC operation
3. INPUT SCENE BINARIZATION

3.1. Binarization techniques
3.2. Edge-enhancement-and-threshold
binarization technique

4. FILTER ENCODING

4.1. Encoding requirements and techniques

4.2. Adopted encoding technique

5. INPUT SCENE SAMPLING

8.1. Sampling requirements and techniques

5.2. Adopted sampling technique for binary

correlator input images
6. NEURAL NETWORK DESIGNS

6.1. Neural network architecture and training

6.2. Back-propagation neural network

6.3. Stretch and hammer neural network

6.4. Comparison of stretch and hammer and
back-propagation

55




7. FILTER SYNTHESIS RESULTS
7.1. Correlation peak metrics ...

7.2. Back-propagation neural network results
(8 x § grid, peak-to-sidelobe)

7.3. Back-propagation neural network results
(9 x 9 grid, peak-to-clutter)

7.4. Back-propagation neural network results
(32 wedges, peak-to-clutter)

7.5. Stretch and hammer neural network results
(32 wedges, peak-to-clutter) '

7.6. Comparison of back-propagation and stretch
and hammer neural network results

8. SUMMARY AND CONCLUSION ..
APPENDIX “

BIBLIOGRAPHY

56




1. INTRODUCTION

1.1. Hybrid adaptive correlator technology
- Pattern recognition by optical correlation is accomplished by
intenﬁonhny modifying the spatial frequency spectrum of an image, and thus
it is a subset of Fourier optical signal processing. The VanderLugt correlator
introduced modern optical signal processing concepts [VanderLugt, 1963). The
correlation theorem in Fourier analysis states that the correlation of functions
f, and £, is
C(x,y) = F'(Fify(x,y)] FIfx.y)]
where F- is the Fourier transform operator
*. represents the complex conjugate
F- represents the inverse Fourier transform operator.
By using the properties of lenses and coherent light, the correlation function
can be produced at the Fourier transform plane of the sec';ond lens illustrated
in Figure 1.1. For patterh recognition f, is an input image and F, is the
conjugate Fourier transform of the target being searched for in the input scene.
In general F,, the correlator filter, is complex valued. The process of using the
actual amplitude and conjugate phase of a target as described above is called
matched filter or VanderLugt correlation. Using a matched filter requires
holographic recording [Goodman, 1968] which is not practical for real-time

pattern recognition. However, magneto-optic spatial light modulators
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(MOSLMs) can be used for real-time pattern recognition [Ross, 1983). These
devices are capable of modulating incident light using three states [Kast,
1989}, e.g., full amplitude with 0 degree phase shift, full amplitude with 180
degree phase shift, and zero amplitude.

Recent work has shown that in the area of image analysisphase_
information is more important than amplitude information [Oppenheim, 1981).
Computer correlation simulations using only phase information led to the
phase-only filter (POF') concept [Horner, 1984). A POF is advantageous because
it does not attenuate the amblitude of the optical beam. Phase only filtering
can produce correlation peaks many times more intense than simple matched-
filtering. Another typical advantage of phase only filtering is localization of the
correlation peak. A POF often yields a sharp peak whereas a matched filter
yields a wide peak [Flannery, 1989].

Modern real-time SLM devices do not allow the implementation of
complete phase modulation. A subset of the POF, namely the binary phase-only
filter (BPOF'), can be used with modern devices [Flannery, 1988]. A BPOF filter
requires only 1 bit for filter storage per pixel, whereas a continuous POF
requirés 4 or more bits. BPOF's are designed using a threshold line angle (TLA)
parameter [Flannery, 1988] described in Section 4.

A matched filter by definition performs best using signal-to-noise ratio
as a metric for the case of additive Gausian noise. However, POFs and BPOF's
have performed better than matched filters when used with real-world
backgrounds [Fielding, 1990). The use of BPOF techniques is motivated by
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possible immediate implementation using available electronically-addressed
spatial light modulators (SLMs) in the hybrid adaptive correlator (HAC)
system. BPOFs for optical correlation have been successfully implemented
[Psaltis, 1984]. The HAC system uses electronics and optics to preform patiem
recognition and is illustrated in Figure 2.1. The operation of this system is
further discussed in Section 2.

The scene mustbebina_rizedtobeimplementedinaHAC system using
MOSLMs. Binarization is accomplished using algonthms which edge-enhance
and then binarize the output by thresholding pixel values. Various binarized
scenes can be created by varying the threshold, including scenes that correlate
well with a particular filter. However, correlation performance is usually
compromised for other backgrounds. A discussion of techniques for binarizing
input scenes is presented in Section 3.

The filters considered in this research are 128 by 128 ternary phase
amplitude filters (TPAFs) consisting of a BPOF multiiplied by a bandpass
binary amplitude mask with a low _spaﬁal-frequency block radius of 10 pixels
and a high-spatial-frequency cut-off radius of 60 pixels, and they are encoded
to allow for neural network implementation. The BPOF filter part of a TPAF
is created by thresholding the real part of the Fourier transform of the target,
which implies a TLA of 0 degrees and thus a symmetric filter (so that storing
or encoding only one-half of the filter values is necessary). For a 128 by 128
image this thresholding strategy implies a need to sfpre 5400 separate filter

values, since values outside the 10-60 pixel radius bandpass are set to zero.
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Neural networks typically require excessive training time to learn this number
of values. A discussion of this concern is given in Section 4.

1.2. Neural networks for HAC filter synthesis

A large number of filters are needed to accommodate rotations, scale
changes, and other distortions in the input scene target. Instead of correlating
with each of these filters, a neural network can be used to synthesize the filter
for correlation as the input scene target distortions evolve. A consequent
reduction in processing time could enable feasibility for the HAC system for
real-time target recognition.

Originally, work conducted using neural networks for filter synthesis
used network inputs from the correlation peak. On low intensity backgrounds
this technique was successful, but for significantly cluttered backgrounds
neural network performance deteriorated, even for strong correlation peaks
[Olczak, 1991). However, the research reported here indicates that the use of
gray-level input plane intensity values centered on the location of the
correlation peak enables acceptable neural network filter synthesis. Studies on
the use of input plane samples for neural network inputs have been made
[Olczak, 1991]. For this technique to be successful, an appropriate region on
the input scene must be sampled. Using the location indicated by the
correlation peak assumes that a target has already been recognized, and hence
neural network filter synthesis is intended only for target tracking. However,

if the correlation peak or some other technique indicates the location of a blob-
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like object, then a neural network can be used to confirm that this object is or
is not a target. | |

The input scene must be sampled to produce the neural network inputs.
A variety of input scene sampling techniques were investigated. The simplest
consisted of 25 pixel values on a 5 x 5 grid centered on the target. To
incorporate more of the Mgmmd in the input samples, a 9 x 9 grid was
used, and two separate algorithms were employed to produce 25 or 31 input
values for the neural network. The choice of a sampling technique is important
for adequate neural network interpolation between samples. Sampling
techniques are discussed further in Section 5.

Two different types of neural networks were used as interpolators to
synthesize filters: the well known back-propagation neural network and a
recently developed "stretch and hammer” neural network. The general idea
was to input enough representative examples to train the neural networks to
approximate a desired input/ output behavior for filter synthesis. The - puts
are gray-level pixel values from the input scene to be binarized and coded for
the input plane SLM. The outputs are the\eoded values that characterize the
TPAF for the filter plane SLM. There are advantages to using the stretch and
hammer as well as the back-propagation neural network. These advantages
and an in-depth analysis of neural network design is presented in Section 6.

Successful neural network filter synthesis was accomplished using both
back-propagation and stretch and hammer neural networks. A variety of input/

output relationships were established. Testing of neural network performance
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was accomplished by varying input scene parameters that included in-plane
target rotation angle and target background type. The results are presented
and tabulated in Section 7.
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2. HAC SYSTEM OPERATION

The HAC is an electro-optical pattern recognition system that integrates
electronics and the computational power of lenses. From Fourier Optics it is
known that using a coherent light beam, a lens can transform an input 2-D
pattern into its Fourier spatial spectral components at the focal plane of the
lens. Each unique input object (target) has associated with it a unique Fourier
spectrum. By filtering the spectrum for a certain object in the image, it is
possible to recognize the presence of the object. This process is known as
pattern recognition by optical correlation, and can be implemented using the

optical set-up in Figure 2.1a.

2.1. Steps in HAC operation

The first step in the operation of the HAC system is the acquisition of
the input scenes. The images used in this research are gray-level visible and
infrared images originating from two sources: the University of Southern
California Image Procesging Institute Data Base (USC), and the United States
Army Center for Night Vision & Electro-Optics 1987 Multi-Sensor Field Test
(ARMY) (see Appendix for examples). These imag=s comprise a "test-world" for

research purposes.
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The second step in the operation of the HAC system is processing the
available input scenes. A computer is used to binarize the images and to
download the results to the input plane SLM. The binarization process is
discussed in Section 3. The binarized image is stored for later use in the
 process of optical corrﬂaﬁon by computer simulation.

The third step in the operation of the HAC system involves hybrid
electro-optical functions. As shown in Figure 2.1a, a HeNe laser beam
(wavelength 632.8nﬁ1) is expanded and collxmated toilluminate the input scene
SLM. The limited modulation capability of the SLM requires a binary image.
This SLM acts as a transparency so that the output is a pure amplitude
function encoding the binarized image. The first lens generates the Fourier
transform of this function at the filter plane SLM (in a time that equals the
input-filter plane distance divided by the speed of light). The computer
processor retrieves a filter from a previously stored bank of filters. The filters
are ternary phase amplitude filters (TPA¥s) and are further discussed in
Section 4. These filters modulate the phase using two phase states or block the
light complc.tely. The second SLM implements a filter by simple multiplication
with the Fourier transform of the input scene. If only the target is pfesent the
output of the filter SLM approximates a plane wave with a direction related
to the target position. The second lens produces the Fourier transform of the
output of the second SLM at the 2-D detector. If a target is present in the
input scene, then a plane wave is the output of the second SLM and a delta

function or bright spot appears on the detector at the target location.
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Step four of HAC system operation requires a decision process. The
output of the 2-D detector is processed using a peak-finding routine. If a peak
is found that is distinguishable from clutter, then target recognition is
accomplished; if no peak is found then the processor must download the next
ﬁlterﬁ'omt;hebankofﬂlterstotheﬁlterplaneSLM.Theprocess of steps 3 &
4 is carried out until either a target is recognized or all of the filters are
scanned with no recognition accomplished. There exist smart filtering

- strategies which do not require all filters to be scanned.

2.2. Neural networks in HAC operation

The process in step 3 can be simulated by computer using appropriate
digital image processing algorithms. The Fast Fourier Transform (FFT)
algorithm accomplishes the task of the first lens. This algorithm inputs the
stored real-valued binarized scene (created in step 2 of the HAC process) and
outputs the complex-valued Fourier transform of the scene. This complex-
valued function is then multiplied pixel-by-pixel with one of the filters from the
filter bank, a.nd the Inverse Fast Fourier Transform (FFTI) is then performed.
The squared modulus operation is performed on the FFTI output, which
simulates the 2-D detector recording (assuming that the 2-D detector responds
linearly with irradiance). This output is then processed as in étep 4 of the HAC
system. Once again the steps 3 & 4 are repeated until a target is recognized
or the bank of filters is ~xhausted.

Typically, extensive processing time is needed not only to scan through
the filters but also to search each output of the 2-D detector array for a
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eorielation peak. Figure 2.1b illustrates the concept of incorporating a neural
network processor in the HAC system to reduce the number of correlations
performed. The research performed here assumes that the location of a
potential target is kmown. The input scene is gray-level and at the disposal of
the neural processor, and following a consistent sampling technique using
these gray-level values a neural network can be used to synthesize a filter for
correlation in a short time. Only one filter is synthesized by the network, and
hence only one complete correlation is necessary to determine whether or not
a target is in the scene. Selection of the sampling technique is iml;ortant and
is discussed in Section 5. Selection of the neural network also affects the

results, and a discussion of appropriate neural networks is given in Section 6.
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Hybrid adaptive correlator (a) with a filter bank, (b) with a
neural processor.
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8. INPUT SCENE BINARIZATION

3.1. Binarization techniques

Two important image storage techniques are used in digital image
processing. The first method stores an image by coded variations in intensity,
which is accomplished by assigning one of many gray-level intensity values to
each pixel in the image. This type of coding is limited by the dynamic range of
the acquisition equipment or in some cases by the storage system. The pixels
in the images used in this research are assigned gray-level pixel values from
0 (black) to 255 (white). Each pixel requires one byte of storage space. For an
image of 128 by 128 pixels the required storage space is 16,384 bytes (not
including 124 bytes for the image file header). Many optical devices, such as
the MOSLMs, cannot represent a gray level image and hence a more restrictive
coding method must be employed. The second coding method thresholds each
pixel at some value between 0 and 255 so that the resulting image file is filled
with either 0’s (representing "off”) or 255’s (representing "on") at each pixel
location.

Gray-level images contain more target information and it would be
advantageous to keep the images in gray-level format for use in the optical
correlator. If this were possible the binarization prepro. 7 step would not

be necessary. The most important reason for binarizing images is due to
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restrictions on the SLMs used in the input and filter plane of the HAC system.
At each pixel location these devices either block the light completely, let the
light pass through unchanged, or phase shift the light by 180 degrees, and it
is not possible to download a gray-level image to such a device. The input
plane SLM creates a pure binary amplitude encoded image similar to the
coding that could be obtained by placing a mask with transparent and opaque
regions at the SLM location.

Studies on binarization techniques have been made [Johnson, 1991]. A
simple technique uses the original gray-level input image values and
thresholds on a value between 0 and 255. The binarized image has different
characteristics for different threshold values. A low threshold value tends to
transform a large number of the pixels to the 255 or "on" value and yields
"blob-like" binarized image characteristics. A high threshold value tends to
result in a binarized image with less information and, in some instances, too
little information to recognize at.. = Thus, a simple thresholding value for
binarization is not adequate fox implementation in the HAC system.
Histograms of pixel values for typical backgrounds and targets in Figures 3.1
through 3.5 show that the background and target pixel intensity distributions
commonly overlap. Thresholding at a particular value tends to emphasize the
background information as much as the target information. Thus another
approach which separates the pixel intensity distributions of the background

and target before binarization is needed.
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8.2. Edge-enhanced-and-threshold binarization technique

A successful binarization technique has been developed [Johnson, 1991].
In this technique the input image is edge enhanced before thresholding, as
described below. Edge enhancement is accomplished using a 2 x 2 square grid
of pixel values from the input image. The maximum difference of pixel
intensity within the grid is computed. This value replaces the upper left corner
value of the grid in the new edge-enhanced image. Histograms of pixel values
of backgrounds after edge enhancement illustrated in Figures 3.1 through 3.5
show a strong shift toward a low mtenmty distribution, which is helpful in
selecting a threshold level. Using statistics a threshold level can be chosen
such that a large portion of the background pixels can be set to zero while not
severely degrading the target. This level is selected using the expression

Threshold = mean + SDM » standard deviation,

where SDM is defined as the standard deviation multiplier. Appropriate
selection of the SDM yields improved results for optical correlation using the
peak-to-clutter ratio as a metric. An SDM of 1.8 as illustrated in Figure 3.6
was found to yield the best results using the peak-to-clutter ratio metric and
was used for the research reported here. The peak-to-clutter ratio is the ratio
in decibels of the energy in the target peak to the energy in the largest clutter
peak.
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Figure 3.1 (a) Truck target with histogram, (b) truck target after
edge enhancement with histogram.
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. Figure 3.2
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(a) Truck on city70 background with histogram, (b) truck on city70
background after edge enhancement with histogram.
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Figure 3.3 (a) Truck on trbk70 background with histogram, (b) truck on trbk70

background after edge enhancement with histogram.
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Figure 3.4 (a) Truck on newbk80 background with histogram, (b) truck on newbks0

background after edge enhancement with histogram.
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Figure 3.5 (a) Truck on bushy background with histogram, (b) truck on bushy

~ background after edge enhancement with histogram.
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Figure 3.6 Binarized tucks using an SDM of 1.8: (a) on city70 background, (b)
on trbk70 background, (c) on newbk80 background, (d) on bushy background.
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4. FILTER ENCODING

4.1. Encoding requirements and techniques

The HAC system uses a MOSLM at the correlator filter plane. Each
pixel in the SLM may be operated in three states: two states that rotate the
plane of polarization approximately + or - 6 degrees and one state that scatters
the light out of the system [Ross, 1983; Psaltis, 1984; Kast, 1989]. Light
incident on the filter plane represents the Fourier transform of the binarized
input image. Light passing through the input plane SLM is linearly polarized,
and light passing through the filter plane SLM is analyzed using an orthogonal
polarizer. Each of the two SLM states that rotate the plane of polarization
contains a component along the pass axis of the analyzer. There is a relative
phase shift of 180 degrees between the two states, and thus a relative
amplitude change is produced. In effect, the pixels set to one state pass the
Fourier transform without alteration, and the pixels set to the other state alter
the Fourier transform by a phase shift of 180 degrees or amplitude
multiplication of -1. The third state scatters most of the light out of the system
and thus can be represented by zero. Therefore, using polarized light, an SLM,
and an analyzer, it is possible to encode a fiiter with amplitudes of +1, -1, and
0 at each pixel location. The TPAF is defined by these values and thus consists

of a BPOF multiplied by a binary amplitude pattern.
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A TPAF filter for pattern recognition is generated by first taking the
Fourier transform of a target, which is accomplished using the FFT algorithm.
In general, the target has a complex-valued Fourier transform so that each
pixel value is represented by a point in the complex plane (e.g. a 128 by 128
image has 16,384 complex valued samples). Producing a BPOF from these
values requires choosing a line through the complex plane so that all pixel
values on one side of the line are assigned a phase of 0 degrees (amplitude
unchanged) and all values on the other side are assigned a phase of 180
degrees (amplitude multiplied by -1). The angle that this line makes with the
imaginary axis is the Threshold Line Angle (TLA) as illustra.ed in Figure 4.1
(Flannery, 1988]. Varying the TLA mak-s it possible to achieve improved
correlation performance [Flannery, 1989]. A TLA of 0 results in a cosine BPOF
that is symmetric and hence reduces the storage requirements of the system
by one-half, so that only 8192 values are needed to characterize the BPOF
portion of the filter. A TPAF filter is then created by multiplying the BPOF
filter by a 10-60 pixel radius bandpass amplitude pattern which sets those
pixels outside this band to the zero state. This bandpass was chosen to reduce

the number of necessary coded values needed to represent the filter.

4.2. Adopted encoding technique

The above procedure yields an excessive number of outputs for neural
network implementation, and an encoding technique is needed to reduce this
number. The bandpass or binary amplitude pattern for a 128 by 128 pixel filter

has a low-spatial-frequency block radius of 10 pixels and a high-spatial-
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frequency cut-off radius of 60 pixels. To further decrease the number of pixel
values, a superpizxel filter is produced by defining 3 x 3 superpixels and storing
only one value of +1 or -1 per superpixel. The use of a superpixel filter blurs
the impulse response of the filter, but the correlation performance is still
acceptable. A superpixel filter allows for compression of the number of stored
values from 8192 to 600, which is suitable for neural network implementation
on desktop computers. When the filters are used for correlation each of the 600
superpixel values is expanded to form the nine pixels it represents. Figure 4.2
illustrates a typical 128 by 128 BPOF and the reduced 10-60 bandpass
superpixel filter used for this research for a truck at 0 degree rotation.

The input scenes are binarized in accordance with the procedure
described in Section 3. This procedure uses a threshold value related to the
mean and standard deviation of the edge-enhanced input image, so that for
different backgrounds the target is binarized using different thresholds.
Variations in the target due to binarization must be accounted for when
creating a filter. By superimposing the target on different bgckgrounds and
examining the image after binarization, it is possible to create a binarized
target for filter generation that correlates well with a variety of backgrounds.
The approach taken here binarizes the target for filter generation using many
SDM multipliers. Each of these binarized targets is used to generate a filter,
and each of these filters is used in a computer simulated correlation with the

target superimposed on a variety of backgrounds.
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The SDM multipliers for filter generation varied from 3.0 to 5.0.
Different SDM multipliers were needed for filter generation because in this
process background information is not present. The binarization process was
repeated for each orientation of the target used in training a neural netv?ork
The pei'forménce of the filter generated for a particular SDM may be good for
a particular background but poor for another. By examining the peak-to-clutter
ratio for each SDM and each background, it was possible to choose an SDM
and generate a filter that had acceptable correlation performance for any of the
backgrounds illustrated in the Appendix.

The choice of the SDM for filter generation was important for acceptable
correlation performance and varied chaotically with rotation of the target. Thus
it was necessary to fix the SDM value for the input image for use in a real
system. The SDM value for the input image varied slightly from 1.5 to 2.1, but
the best results using peak-to-clutter as a metric were at 1.8. Table 4.1 shows
SDM values used for filter generation for target rotations from 0 to 90 degrees
and for an input image binarization SDM of 1.8 that produced the best
correlation performance. For 0 degree target rotation an SDM of 3.6 was used
to produce the binarized target illustrated in Figure 4.3. This target can be

compared to the binarized truck in the input scenes illustrated in Figure 3.6.

81




Angle SDM Angle SDM Angle SDM Angle SDM
0 3.6 2 4.0 4 4.8 6 4.4
8 4.4 10 4.2 12 4.4 14 3.8
16 4.6 i8 4.6 20 4.4 22 4.0
24 4.2 26 3.6 28 4.0 30 4.0
32 4.4 34 3.8 36 4.2 38 4.0
40 4.2 42 3.8 44 4.0 46 3.6
a8 4.6 50 3.8 52 4.0 54 4.4
56 3.8 58 3.6 60 3.8 62 3.6
64 4.0 66 3.6 68 4.2 70 3.8
72 3.8 74 3.8 76 4.4 78 3.6
80 4.4 82 4.0 84 4.6 86 3.6
88 4.6 90 4.4
Table 4.1 SDM values for filter generation using an input plane SDM of 1.8.
Imaginary
Axis
TLA
Real Axis
Figure 4.1 Mlustration of TLA binarization of Fourier transform.




Figure 4.2

(a)

(b)

(a) BPOF made from the binarized Fourier transform of a truck at
0 degree rotation, (b) the reduced 10-60 bandpass TPAF made from (a).
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Figure 4.3 Truck target binarized using a SDM of 3.6.
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8. INPUT SCENE SAMPLING

5.1. Sampling requirements and techniques |

To effectively train a neural network, suitable input and output
variables must be identified. The goal in this research is to simulate the
relationship between the input plane and the oi)t.imum filter for the optical
correlator. This relationship may be established by determining the orientation
of a target, creating an appropriate filter, and downloading the filter to the
filter plane SLM. This process may be too slow to be used successfully in the
HAC system. However, by choosing representative examples of input scenes it
is possible to train an artificial neural network to learn the input/ output
behavior, and this learning can be used in real time in the HAC system.

Neural network inputs for filter synthesis may be selected in many
ways. All neural network inputs for this research were obtained from the input
gray-level image. One sampling method, illustrated in Figure 5.1, used the
grai-level pixel values in a 5 x 5 grid centered on the target. All except the
center pixei value changed their values as the target was rotated, and on
average the fraction of off-target pixel values was 10-15 percent. The 25
intensity values were from the box regions indicated on the images and in the
illustration. For all backgrounds there was a discernable difference in each of

the 25 intensity values for each two degrees of rotation. In both cases
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illustrated, the upper right corner of the sampling grid extended into the
background, and pixel values on the background were constant. Using part of
the background for neural netwo:k inputs enabled the incorporation of noise.
The 5 x 5§ grid sampling technique allowed for successful filter synthesis using
back-propagation neural networks if gray-level images were used in the input
plane and TPAF's were used in the filter plane.

Unfortunately, gray-level input plane i.maées can not be implemented
using the SLMs described for the HAC system. A simple 5 x 5 pixel grid does
not adequately represent input/ output behavior for neural .network training
for filter synthesis with the binary input images that must be used in the HAC
system. Thus, for binary cbrrelator input plane images it is necessary to use

a different input plane sampling technique.

5.2. Adopted sampling technique for binary correlator input images

Two techniques were developed with the goal of training a neural
network to perform well independent of background.

One technique used a 9 x 9 sampling grid centered on the target and an
algorithm that reduced the 81 values in the grid to 25 values. This
transformation of 81 to 25 values is illustrated in Figure 5.2. The
transformation algorithm, which was designed to yield gradual but significant
pixel value changes as the target was rotated, proceeds as follows. For each
row of the 9 x 9 array the average deviation from the average row value is
computed. The same computation is performed for each column, diagonal

direction, and center 5 x 5 grid of values. The total number of values generated
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is thus 25 (9 rows + 9 columns + 6 diagonal directions + center 5 x 5 grid =
25). Examples of actual backgrounds with the Qampling grid superimposed are
illustrated in Figure 5.3. It was found that this sampling technique allows the
network to perform relatively independently of angle, but the techhique
degrades when tested with the target superimposed on different backgrounds
not included in the training set. . -
A second sampling technique was developed to address the degradation
- problem. This }tech.nique sections the 9 x 9 grid into 36 wedges and computes
the total intensity value in each wedge. The horizontal and vertical wedges
depend only on one row or column and are not used for inputs to the neural
network, thus avoiding the problem of the previous sampling technique where
all inputs depended on only one row or one column. The 32-value input plane
sampling technique is illustrated in Figure 5.4. It was found to be successful

for neural network interpolation independent of target background or noise.
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Figure 5.1

(a) "~ (b)

(c) (d)

A 5 x 5 pixel grid superpixel on (a) truck on city70 background
at a rotaticn of 0 degrees, (b) truck on city70 background at a
rotation of 20 degrees, (¢) truck on trbk70 background at a

rotation of 0 degrees, and (d) truck on trbk70 background at a
rotation of 20 degrees.
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Figure 5.2 9 x 9 pixel grid used to obtain 25 input values for neural network.
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(a)

(c)

Figure 5.3

\

(b)

(@)

A 9 x 9 pixel grid superpixel on (a) truck on city70 background
at a rotation of 0 degrees, (b) truck en city70 background at a
rotation of 20 degrees, (c) truck on trbk70 background at a
rotation of 0 degrees, and (d) truck on trbk70 background at a
rotation of 20 degrees.
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1 — Wedge not used for neural network inputs

Figure 5.4 Formation of 32 wedges for neural network inputs from a 9 x 9 pixel grid.
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6. NEURAL NETWORK DESIGNS

6.1 Neural network architecture and trami.ng

Neural computing attempts to use architectures and processing
techniques similar to those found in biological neural systems. Biological brains
store and learn infonhaﬁon using cells called neurons. Each neuron has
associated with it input dendrites and an output axon. The input dendrites
receive chemical stimuli through a synapse connection from many other
neurons by means of their respective axons. If enough total stimulus is
present, the neuron "fires” by releasing a signal along its axon. The strength
of this signal is determined by the incoming stimuli to the dendrites. The
reactions in biological brains are chemical, but they have électrical side effects
which can be measured. Learning is accomplished by adapting the strength of
the signal carried along the axon to other neurons. Memory is achieved by
storing the strengths or weights of the neuron interconnections. Modeling
neurons requires multiple variable inputs (to simulate the dendrites), a
transfer function (to simulate the neural firing threshold), and multiple
variable outputs (to simulate axon strengths connected to other neurons). By
interconnecting such model neurons it is possible to simulate processes similar
to those accomplished by biological brains. These processes are extremely

parallel and are unlike the typical Von Neuman processes which are the basis
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for modern digital computing. Digital computing is often slow and
inappropriate for solving problems sﬁch as hitting a moving ball with a bat or
backing up a 18 wheel semi-trailer truck to a loading dock.

In general, neural networks are used to establish input/ ouf.put
relationships that are not easily described by rules. If rules can be identified |
for mapping the input to the outpﬁt, then digital computing should be
applicable. Neural networks generate their own rules by learning from
examples. The neural networks employed here use supervised learning and

require adaptation of the neuron interconnection weights.

6.2. Back-propagation neural network

The back-propagation neural network illustrated in Figure 6.1 uses a
learning algorithm based on reducing the error between the actual output of
the network and the desired output. Error reduction is accomplished by
modifying the neuron interconnection weights. A back-propagation neural
network has at least three layers: an input layer, an output layer, and a
"hidden" layer typically not connected to any inputs or outputs. It is feed-
forward, which means that the outputs from any layer are never fed back to
previous layers. The back-propagation neural network uses delta-rule learning,
which is a gradient decent procedure that adjusts the interconnection weights
by ninimizing the sum of the squared differences between the actual neural
network output and the desired output. For an output layer of k neurons this

function is
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E- %zk: @y

where d, is the desired output of the k th neuron
¥, is the actual output of the k th neuron.
The back-propagation neural network uses supervised learning, which means
that d, is known. The value of y, is

Y =S @)

where f(v) is typically the sigmoidal transfer function

1
1+

fm =
The first derivative of this function is
o =M -l
A typical argument of this function is
2= X we ),
J

where w;, is the interconnection weight of the j th hidden neuron
to the k th output neuron

y; is the value of the j th hidden layer neuron.
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y, is given by
/i 'f(l)

where z is the sum of the weighted outputs of the input layer or

Q'Eiwm

where wy is the interconnection weight of the i th input neuron to
' the j th hidden neuron.
y; is the i th input.
Initially the interconnection weights are set to small random values. To
minimize the sum of squared differences between the actual neural network
outputs and the desired outputs, a delta weight is determined. For hidden-to-
output layer weights the change in weights as given in Figure 6.2 is
Awg =0 3,y
where N is a gain constant which controls the strength of the
weight change
3, is defined in Figure 6.2.

For input-to-hidden layer weights the change in weights as given in Figure 6.2

is

AWV = ﬂ{zk 5; W‘}f (zl) ¥

Figure 6.2 illustrates the gradient descent technique used to adjust the

interconnection weights. It is advantageous to increase the learning rate by
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adding a momentum term to the delta weights [Rumenhart 1986]. For hidden-
to-output layer weights the new delta weight with momentum is

Aw, (n+1) = 7 8,y +a Aw, (m)
where - n is the iteration number
a is the momentum constant, which controls the strength

of the weight change in terms of past weight changes.
For input-to-hidden layer weights the new delta weight with momentum is

Aw, (n+1) = q [Ek 3, w,} f@y +aAw, ()

Presenting enough representative examples of the known input/ output
behavior establishes the patterns used to interpolate or approximate the
outputs for inputs not used in training [Lipmann 1987). These patterns are

stored in the interconnection weights.
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6.3. Stretch and hammer neural network

The stretch and hammer neural network illustrated in Figure 6.3 is
designed to interpolate the training data by fitting a continuous hyper-function
of dimensionality equal to the number of inputs. This network is used for filter
synthesis as follows. First, the input space is "stretched" into the principal
compoﬁentspaee.Forthe 138 input vectors of 32 values each used to train the
network, a 138 X 32 training data matrix is formed and pre-multiplied by its

transpose:
( { {
2. (s 2 L) (mom . o))
58 .n||d 8 (mom .
22 % - ) B B e mn omp . omy)

where x} is the i th component of the j th training example with each
component scaled so that its mean (for all training examples) is8 zero. The

eigenvalues A,, A,, ..., Ay, of this matrix are obtained as the solutions of

mi-2 mi .. m)

S 2
det m m-d .. m

\"“;2 "‘:z - "‘g'l)
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Solving the simultaneous equations

m] M‘ oee M1 {u‘\ (u1\
1 2 2
mom e WS L e,

L] L)

sy m .. m3 ) \s2, )

for each eigenvalue yields each orthogonal 32-dimensional principal
components axis (with components u;), where each axis is scaled in units of its

eigenvalue. Next, a least squares hyper-plane is fit to these points using

(1 1 .. 1) (1 1 .. 1)

( { 1 3 2) /

z, ) 1w wy . 4 (b

d o el (3] [ akaf[f )
1 vor

I I N I I I P R | R I |

e \z‘”J ses 1 l z N u n \bn)

where u/ represent the inputs in the zero-mean principal component space, z,
are the outputs for these inputs, by is the intercept and the remaining b/’s are
the slopes of the 32-dimensional hyper-plane. The b, are determined by solving
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the above simultaneous equations. The least squares hyper-plane will not in
general match any of the outputs. To produce a perfgct match at the outputs,
a radial Gaussian "hammer” is used to deform the hyper-plane until it
intersects each utput value. This deformation is accomplished using the

following matrix algebra:

(@ ) (A A ~A%)(c)
& | | A - £%a

|@15e~2130)) fm fis = fu’:} 1)

where £ = exp{(-1/(28)][(u-u;' P+(u 2P+ 40w @) fori, j = 1, 2, ..., 138,
z', are the outputs given by the least squares hyper-plane, z are the known
training outputs, s, are the standard deviations of the radial Gaussians, and
¢, are the radial Gaussian hammer weights. The diagonal elements of this
matrix are unity, and the standard deviations of the Gaussian hammers are
selected such that the off-diagonal elements of each column add to a value
slightly less than unity. The ¢; may be obtained using Gaussian elimination,
singular value decomposition, or any of several other techniques for solving
simultaneous linear equations. The stretch and hammer neural network is

designed to exactly match every training output and to smoothly generalize for
all other outputs.
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6.4 Comparison of stretch and hammer and back-propagation

There are important differences in the architectures of the stretch and
hammer and the back-propagation neural networks. The stretch and hammer
neural network has a number of adjustable parameters that depends on the
number of training examples. The adjustable parameters for a back-
propagation neural network depend on the number of neurons employed. A
back-propagation neural network with k input neurons, m hidden layer
neurons, n output neurons, and no interlayer interconnections has km + mn
+ m + n adjustable parameters. A stretch and hammer neural network has n(k |
+ 1 + p) adjustable parameters, where p is the number of examples used for
training. A 31 input, 200 neuron hidden layer, 600 output back-propagation
neural network with 50% of the interconnections randomly removed, as was
used for this research, has

0.5 » (31 = 200 + 200 = 600 + 200 + 600) = 63,500

adjustable parameters. This value is independent of the number of training
examples. Using 138 traiuing examples, as was the case for this research, a
stretch and hammer neural network has

600 = (31 + 1 + 138) = 102,000
adjustable parameters.
To compare performance of the two networks, a simple exercise involving
rotation estimation rather than filter synthesis was carried out for which both
networks had the same number of adjustable parameters. A training set of 5

examples with one input and one output was used, and the back-propagation
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neural network had two hidden neurons. The number of adjustable parameters
for both neural networks was therefore

1s(1 + 1 +5) = (152 + 241 +2 + 1) =7,

The input was the average gray level value for one quadrant of a 9 x 9 pixel
grid, and the output was the in-plane angular rotation of the target. The
examples used for training were at rotation angles of 0, 8, 16, 24, and 30
degrees, and testing results were obtained at angles of 0, 1, ..., 30 degrees.
The back-propagation neural network resﬁlts varied as the learning
process progressed. This variation is illustrated in Figure 6.4, which shows the
best performance for an RMS training error of 3.5%. After training the stretch
and hammer neural network yielded approximately .5 degree average error for
testing angles. At 3.5% RMS training error, the back-propagation neural
network testing results approached those of the stretch and hammer neural
network as illustrated in Figure 6.5. When the back-propagation neural
network was allowed to continue training to an RMS training error of
approximately 0% , the results show a larger error for testing, although at the
training sxamples the error is near zero as illustrated in Figure 6.6. Thus the
back-propagation neural network does well at retrieving the training examples
but poorly at interpolating the testing examples. The stretch and hammer
neural network retrieves the training examples exactly by definition, and in
the above exercise interpolates better than the back-propagation neural

network for the testing examples.
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Hidden
layer

Y. e

Figure 6.1 (a) A back-propagation neural network with 31 inputs, 200
hidden-layer neurons, and 600 output neurons. (b) simple
processing element where w;; - weighted connections,

k - neuron number in current layer, j - neuron number of
previous layer.
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Figure 6.2 Gradient descent technique used to determine changes in the
interconnection weights.
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Figure 6.3 Stretch and hammer neural network with m examples and n
inputs.
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Figure 6.4 Comparison of average error (deg) for target rotation estimation.

The back-propagation neural network was trained to various RMS
training error values. The stretch and hammer neural network
average error for testing was approximately 0.5 degrees.
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Figure 6.5 Comparison of error (deg) for target rotation estimation for a
back-propagation RMS training error of 3.56% with stretch and |

hammer results.

106




Error (deg)

3.0

[ IA\
7 N\ L
\ 0N
L ./ \‘ : ’/ \
J'/ \. '/ \
15 —F \ . '
TN / \
9 :,' /, e s_‘ \‘ ‘/ \
.': ] “.\ / \
'l:./ kY ./ ............... «\:
o [ \ .
{ \ /‘" ) ~ \.‘\“ ; 9
VA ] Ve ]
\‘ o L v' /‘ \‘ bl '/ -
VT g \ /
\ / \ /
- A/ ,
1.5 I - 1 k~\.J
\l
—=——-—Back-propagation
-------- Stretch & Hammer
30 — P ~ — 3
° 10 20
in-piane rotation of truck
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7. FILTER SYNTHESIS RESULTS

The results of four neural network filter synthesis cases are discussed
in this section. The neural network outputs for each case are the 600 coc
filter values described in Section 4. The first case uses a back-propagatio.
neural network and 25 intensity values from a § x 5 target-centered pixel grid
as inputs. The second case uses a back-propagation neural network and 25
computed values from a 9 x 9 target-centered pixel grid as inputs as described
in Section 5. The third case uses a back-propagation neural network and 32
computed values from a 9 x 9 target-centered pixel grid as inputs as described
in Section 5. The fourth case uses a stretch and hammer neural network and
the same inputs as the third case. The networks were tested by varying one or
both of two input scene parameters: the angle of target rotation and the type
of cluttered background. For the gray-level correlator input scenes the angles
were offset by 2 degrees, and for the binarized correlator input scenes the
angles were offset by 1 degree. Varying the angle of rotation permitted
investigation of the performance of the network in interpolating between
training angles. Varying the type of background permitted investigation of the
robustness of the network. The goal was to train the network to ignore

background effects.
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7.1. Correlation peak metrics

Two correlation peak metrics were used to evaluate neural network
performance: a peak-to-sidelobe ratio and a peak-to-clutter ratio. A ratio of less
than 3 dB is inadequate for use in the HAC system. The correlation plane is
expected to exhibit a peak near the target center. For all cases considered here
the target was superimposed on the center of a background scene. For gray
level correlator input scenes a peak finding algorithm was used to locate peaks
in three regions of the correlation plape: region 1 was a target-centered 5 x 5
pixel grid, region 2 was a target-centered 15 x 15 pixel grid excluding region
1, and region 3 was the remaining area of the 128 by 128 pixel correlation
plane. For binary correlator input scenes a peak finding algorithm was used
to locate peaks in two regions of the correlation plane: region 1 was a target-
centered 5 x 5 pixel grid, and region 2/ was the remaining area of the
correlation plane. A peak-to-sidelobe ratio measurement was made for gray-
level correlator input scenes by comparing the highest peak in region 1 with
the highest peak in regio:i 2. A peak-to-clutter ratio measurement was made
by comparing the highest peak in region 1 with the highest peak in region 3
for gray-level correlator input scenes and with the highest peak in region 2/ for
binary correlator input scenes. Peak-to-sidelobe ratios were smaller than peak-

to-clutter ratios for the gray level input scenes.
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7.2. Back-propagation neural network results
(6 x § grid, peak-to-sidelobe)

Using gray level correlator inputs and a TPAF in the filter plane, a
back-propagation neural network with 25 inputs, 200 hidden neurons, and 600
outputs successfully synthesized filters. The hidden neurons had sigmoidal
transfer functions, and the output neurons had summation transfer functions.
The network was trained on a set of 180 input scenes of 128 by 128 pixels, 90
of which corresponded to the truck target rotated at angles of 0, 4, ..., 356
degrees on a uniform gray 127 intensity-level background. The remaining 90
scenes corresponded to the truck at angles of 0, 4, ..., 356 degrees on a city
background. A single filter was produced for each rotation angle as described
in Section 4. The filters were made from the binarized Fourier transform of the
truck on a gray-level background only. Thus, there were only 90 output filter
examples, one for each training rotation angle. Two backgrounds were used so
that the neural network could be trained to ignore pixel values that were not
on the target (i.e., that were background pixels).

Figures 7.1 through 7.5 show graphs of the peak-to sidelobe ratio (in d3)
versus target rotation (in degrees) for a variety of cases. These results are
summarized in Table 7.1. The inputs were the 25 intensity values from a
target-centered 5 x 5 pixel grid. The outputs were the 600 coded values used
to generate a 10-60 bandpass 3 x 3 superpixel TPAF. Since the peak-to-clutter
ratio was always higher than the peak-to-sidelobe ratio, network performance

assessment was based on the peak-to-sidelobe ratio.
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The "zero degree filter” curve shows that more than one fixed filter is
needed to accommodate target rotation. The filter for this curve was symmetric
and was constructed from the binarized Fourier transform of the truck on a
127 gray-level background at a rotation angle of zero degrees. Performanée for
this filter depends on the background. It is apparent from Figures 7.1 through
7.5 that the peak-to-sidelobe ratio decreases rapidly for only a few degrees of
rotation: target rotation by more than approximately 5 degrees decreases the
correlation peak to the noise level.

The "best expected filter from network” curve shows the upper limit for
the peak-to-sidelobe ratio because the trained-for filter is used to correlate with
the input scene. Figures 7.1 through 7.5 show that the peak-to-sidelobe ratio
varies as the target is rotated, but a relatively high value is typically
maintained.

The "filter synthesized by network" curve shows performance when the
filter synthesized by the network is used to correlate with the input scene.
Performance depends on variations in scene parameters used to test the
network and is summarized in Table 7.1.

In genezfal, when the neural network was tested for backgrounds used
in training, the network performed very well and almost matched the best
expected performance. When the angle of target rotation was offset by 2
degrees the network performance degraded slightly. However, for the city
background (which was used in training) the network performance was still

close to the best expected performance. For this case only one input parameter
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was varied, namely the rotation angle. As expected, when the background was
also varied the network performance degradation increased, but performance
was adequate for pattern recognition by optical correlation in all but 12 out of
270 testing cases. In these 12 cases the peak-to-sidelobe ratio was below the
3 dB line, which is not acceptable for use in the correlator.
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Background Angles of Comments

Gray 0,4,..,360 The performance of the network matches
the best expected performance almost
exactly.

City 0,4, ..., 360 The performance of the network matches
the best expected performance almost
exactly.

Testing-

City 2,6, ..,358 The general performance of the network
follows the best expected performance.
Performance drops below the 3 dB line
for rotation angles of 66, 242, 258, and

322 degrees.

Bushy 26,..,358 The performance of the network is
slightly degraded. Performance drops
below the 3 dB line for rotation angles
of 130 and 310 degrees.

Newbk80 2, 6, ..., 358 The newbk80 background camouflages
the truck and a reduction in the peak-to-
sidelobe ratio is expected. The overall
performance, however, indicates
acceptable peak-to-sidelobe ratios for
target recognition. Performance drops
below the 3 dB line for rotation angles
of 78, 96, 118, 122, 130, and 210

degrees.

Table 7.1 Shows the performance of a filter synthesized by a back-
propagation neural network using a 5 x 5 sampling grid and the
peak-to-sidelobe metric for a truck rotated on a variety of
backgrounds.
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Peak-sidelobe Ratio (dB)
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Figure 7.1 Filter synthesis results using a back-propagation neural network
for the truck on the gray background at truck rotation angles of
0, 4, ..., 360 degrees. The network was trained on both gray and
city backgrounds at truck rotation angles of 0, 4, ..., 360 degrees
using as inputs 25 intensity values from a target-centered 5 x 5
pixel grid.
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Peak-sidelobe Ratio (48)
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Figure 7.2 Filter synthesis results using a back-propagation neural network
for the truck on the city background at truck rotation angles of
0, 4, ..., 360 degrees. The network was trained on both gray and
city backgrounds at truck rotation angles of 0, 4, ..., 360 degrees
using as inputs 25 intensity values from a target-centered 5 x 5
pixel grid.
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Figure 7.3 Filter synthesis results using a back-propagation neural network