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Abstract

Computer simulations were performed that used neural networks to synthesize

filters for optical correlators. The synthesized filters were designed to maintain

acceptable recognition performance for targets on cluttered backgrounds that were rotated

relative to initial (unsynthesized) filters. The most significant results employed new
stretch and hammer neural networks which train with guaranteed upper bounds on

computational effort and generalize with guaranteed lower bounds on smoothness and
stability. These results indicate good prospects for training neural networks to rapidly

synthesize filters for a wide range of target distortions. They also indicate possible

significant advantages compared to searching stored filters.
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1. INTRODUCTION

This section briefly considers the approach and rationale for correlation filter

synthesis using neural networks, key results obtained, and papers and presentations

produced during the course of the effort.

1.1 Approach and Rationale

The use of optical correlation for the recognition and location of objects (targets)

in noisy or cluttered images is well known (see, for example, Refs. 4, 5, and 7 and

sources cited in these papers). Briefly, in a typical real-time optical correlator an input

image is loaded onto an electrically addressed two-dimensional spatial light modulator

(SLM), which is an array (e.g., 128 by 128) of closely spaced active apertures. The

output from the input SLM is, for example, an array of binary coherent optical amplitudes

that represents the input image. A lens (or system of lenses) forms the Fourier transform

of this binary image at a second or filter SLM. The filter SLM consists of an array of

binary or ternary states, typically 0* and 1800 phase shifts or these two phase shifts plus a

zero-amplitude state. The filter SLM states are determined by thresholding the conjugate

of the Fourier transform or spatial frequency pattern of a target. For example, if a given

spatial frequency complex number lies below the line of slope 450 through the origin in

the complex plane it is represented by the 0' state; otherwise it is represented by the 180'

state. Another lens or system of lenses forms the Fourier transform of the product of the

Fourier transform of the binary image and the array of filter SLM states. If targets having

the spatial frequencies represented in the filter SLM are present in the input image, then

the final Fourier transform plane has bright spots called correlation peaks at the target

locations.

Thus a correction peak indicates the presence of a target and specifies its location.

However, if the target is rotated or scaled relative to the filter, or if it undergoes any

distortion other than translation, then the correlation peak is degraded in amplitude

relative to false peaks due to clutter and noise. To address this issue adaptive correlators

that load updated filters into the filter SLM have been designed. For example, if the

target rotates relative to the initial filter the correlation peak decreases, and this change is

detected by a video camera. New filters corresponding to different target rotations are

then loaded onto the filter SLM until the correlation peak is restored. The success of this

adaptive feedback approach depends on the availability of a bank of stored filters
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corresponding to many target rotations, scales, and other (more difficult) distortions such

as those due to aspect angle changes or partial occlusions. It also requires rapid searching

of the stored filter bank to find the filter that restores correlation peak degradation; search

times of less than 1/30 sec (which correspond to standard video frame rates) may be

required.

Correlation filter synthesis is an alternate and possibly more elegant approach to

avoiding correlation peak degradation due to target distortions, particularly distoiiions

other than rotation and scale that may be difficult to exhaustively pre-compute. In this

approach (see Refs. 4 and 7 and sources cited therein) gray-level pixels from a region of

the original input image in the neighborhood of the target location identified by the

correlation peak are input to neural network processors (or possibly to fuzzy-logic or

genetic algorithm based systems). These processors are trained to produce as output the

filter for the current target (as rotated, scaled, or otherwise non-translationally distorted)

that yields the best possible correlation peak. There is typically one software-simulated

neural network for each filter parameter to be determined, and each network has all

target-neighborhood pixel gray levels as its input. Since trained neural networks may be

understood as "smart" data interpolators, the stored filter and the filter synthesis

approaches have much in common: in the former new filters are found by searching a

data bank consisting of the filters themselves; in the latter filters are formed from a

distributed data bank that contains neural network interaction strengths or weights.

1.2 Key Results and Outputs

Excellent computer simulation results were obtained using neural networks to

synthesize filters for optical correlators when the targets (including targets on cluttered

backgrounds) were rotated relative to the filters. The most significant results employed

new stretch and hammer neural networks which may constitute an important and

enduring advance because they train with guaranteed upperbounds on computational

effort and generalize with guaranteed lower bounds on smoothness and stability. These

results indicate good prospects for training neural networks to synthesize filters for a

wide range of target distortions. They also indicate possible significant advantages

compared to searching stored filters.

The technical effort on correlation filter synthesis using neural networks was

successful and productive. It supported, wholly or in part, research that produced:
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* Four papers submitted to refereed journals (one published in Optics

Communications[I], one published in Applied Optics[21, and two under review

by IEEE Transactions on Neural Networks[3] and Neural Computation[9]).

* Two conference presentations (SPIE Critical Review, San Jose, November

1991[41 and SPIE OE/Aerospace Sensing, Orlando, April 1992[5]).

* Two Electro-optics Master's Theses[6,7] (one entirely on filter synthesis using

neural networks) and an Invention Disclosure[8] on stretch and hammer neural

networks.

2. TARGETS, BACKGROUNDS, AN,,D FILTERS

This section discusses the targets, backgrounds, and filters used in computer

simulations to investigate correlation filters synthesized by neural networks.

2.1 Truck Targets and Clutter Backgrounds

Figure la shows a typical truck target and clutter background used for training

neural networks for filter synthesis, and Figure lb shows a typical binarized truck and

background used for correlator input. Ref. 7 presents additional examples of targets and

backgrounds and describes the binarization procedure. All targets and backgrounds

originated from actual gray-level visible or infrared images.

2.2 BPOF and TPAF Filters

A filter with two phase states (typically 00 and 1800) is a binary phase only filter

(BPOF), and a filter with these two states plus the zero-amplitude state is a ternary phase

amplitude filter (TPAF). Figure Ic is a BPOF obtained from a binarized Fourier

transform of the truck in Figure la (which was defined to be at 00 rotation). The

binarization was performed using a threshold line angle (TLA, the angle between the

positive imaginary axis and a line through the origin) of 00, which requires that complex

numbers in the positive half and negative half of the complex plane were represented by a

0° phase shifts and 180* phase shifts, respectively. Figure 1 d is a TPAF obtained from

the BPOF by imposing a 10 to 60 pixel radius bandpass (i.e., all filter regions except the

annular region between these two radii were opaque) and by defining 9 by 9 binary

superpixels such that each superpixel had the same phases as the majority of its interior

pixels. It was necessary to define and use filter superpixels to reduce the number of
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neural networks required for filter synthesis, thus limiting the computational effort.

Ref. 7 presents additional examples of BPOF and TPAF filters.

3. STRETCH AND HAMMER NEURAL NETWORKS

This section discusses the radial basis function neural network that was used to

obtain the most significant correlation filter synthesis results.

3.1 Bounds on Computational Effort, Smoothness, and Stability

Stretch and hammer neural networks successfully address two common concerns

in using a neural network to solve a practical problem: (1) the time required to train the

neural network is often excessive, even for a supercomputer, and (2) the trained neural

network often does not generalize effectively enough to solve the problem. For stretch

and hammer neural networks guaranteed bounds on computational effort ensure that the

maximum numerical precision and number of computational steps required for training

can be specified in advance of training. In addition, guaranteed bounds on smoothness

and stability, which can also be specified in advance of training, ensure that each neural

network output changes by no more than a specified value if the training data are changed

by a small amount.

As shown in Figure 2a, stretch and hammer neural networks are feedforward

architectures that have separate hidden neuron layers for stretching and hammering in

accordance with an easily visualized physical mode. The mean Xj of the training values

for each input xl, x2, ... xn is subtracted from each input at the input neurons. A

standard principal components transformation :hen forms linear combinations of these

zero-mean inputs through coefficients (or neural network weights) ajk, where j, k = 1, 2,

.... n. The outputs u I, u2, .... un of the stretch neurons are therefore linear transformations

of the original inputs that "stretch" these inputs to give them equal "importance". Each

hammer neuron fi has as input all stretch neuron outputs and forms an n-dimensional

Gaussian radial basis function of these inputs centered on training point i with standard

deviation si, where i = 1, 2, .... m and m is the number of training points. Each hammer

neuron output is multiplied by a coefficient ci to form an output neuron input. The output

neuron also has as input a bias b0 and a linear combination, through coefficients b 1, b2 ,

..., bn, of the stretch neuron outputs. Thus the final output y consists of a bias term plus n

linear terms proportional to the principal-component-transformed inputs plus m nonlinear

terms each proportional to an n-dimensional Gaussian function of these inputs.
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3.2 Training Procedures and Testing Results

As discussed in Refs. 2, 3, 5, 7, and 8, training the stretch and hammer neural

network consists of (1) transforming the inputs to principal components coordinates, thus

determining the weights Xj and ajk, (2) finding an a priori hypersurface such as a least

squares hyperplane through the training points, thus determining b0 , b 1, b2, ..., bn,

(3) finding the Gaussian radial basis function standard deviations, thus determining the

weights si, and (4) finding the Gaussian radial basis function coefficients ci. The training

points are interpolated because the number of basis function coefficients equals the

number of training points. The basis function standard deviations are chosen to be as

large as possible consistent with maintaining diagonal dominance for the simultaneous

,- equations that must be solved to obtain the basis function coefficients. As shown

rigorously in Refs. 2, 3, and 5, this choice insures that training example generalization is

maximally smooth and stable consistent with unique training in a predeterminable

number of steps.

Figure 2b compares stretch and hammer neural network and natural cubic spline

results for one-input training examples. The curves are comparable except for sparse

training example regions, where the stretch and hammer curve approaches the least

squares line. This behavior is desirable: cubic spline curves are the smoothest possible,

but they typically exhibit unrealistic deviations from the training examples for

extrapolation and prediction.

4. FILTER SYNTHESIS PROCEDURES

This section discusses the most successful procedures for obtaining inputs for

neural network correlation filter synthesis and for specifying outputs that reduce the

number of separate neural networks required. Many other (less successful) procedures

are discussed in Ref. 7.

4.1 Input and Output Specification

The most significant neural network filter synthesis results used 600 separate

stretch and hammer neural networks, each with 31 inputs. Each input was the mean gray

level in one of 31 radial wedges covering a 9 by 9 pixel region centered on the target,

which was located by the correlation peak in a 128 x 128 pixel input scene. The output of

each neural network was one of the 600 binary 9 by 9 superpixels in a TPAF, where the
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TPAF was superpixelated so that training could be accomplished in a few hours on

desktop computers.

4.2 Training Specification

As described in Ref. 7, there were 138 sets of training inputs: 46 with the truck

target rotated 00, 20, ... 90° on a 66 (out of 256) gray level background, 46 with these

angles on a 142 gray level background, and 46 with these angles on a cluttered

bat4ground. For each set of training inputs the output for each of the 600 neural

networks was one of the binary superpixels in the TPAF for the truck on a blank (0 gray

level) background rotated by the training input angle.

5. FILTER SYNTHESIS RESULTS

This section discusses the most significant correlation peak to clutter-ratio results

for neural network filters synthesized using the procedures discussed above. Many other

results (less significant in terms of their practical potential for correlator systems) are

discussed in Ref. 7.

5.1 Correlation Peak to Clutter Ratio Plots

Significant filter synthesis results from Ref. 7 using stretch and hammer neural

networks are shown in Figure 3. Here correlation peak to clutter ratio (defined as the

highest peak in a 5 by 5 pixel target-centered grid divided by the highest peak in the

remainder of the 128 x 128 pixel region) is plotted versus in-plane target rotation angle

for three correlation filters: the best possible filter (i.e., the 9 by 9 superpixel TPAF from

the Fourier transform of the truck at the input rotation angle, where binarization of the

truck for the correlator input is selected for the best peak to clutter ratio), the fixed zero

degree filter (i.e., the best possible filter for the truck at a fixed 0* rotation angle), and the

filter synthesized by 600 stretch and hammer neural networks.

5.2 Evaluation of Synthesized Filters

Figure 3a shows results for a clutter background not used in training, and Figure

3b shows results for both a clutter background and target rotation angles not used in
training (10, 30, .... 890). Note, that the peak to clutter ratio for the fixed filter falls below

3 dB after less than 30 of target rotation, whereas the neural network synthesized filter
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remains above 3 dB in Figure 3a and remains above 3 dB in Figure 3b except at two (of

the 89) testing angles.

As discussed in Ref. 7, 27 additional graphs similar to those shown in Figure 3

were produced for different input scene and target rotation angle sampling patterns,

different clutter backgrounds, peak to sidelobe instead of peak to clutter ratios, and
standard backpropagation (see, for example, R. P. Lippmann, "An Introduction to

Computing with Neural Nets," IEEE ASSP Mag., Vol. 4, pp. 4-22, 1987) instead of
stretch and hammer neural networks. One backpropagation neural network with the same
inputs, outputs, and training as the 600 stretch and hammer neural networks used to
produce the results shown in Figure 3 yielded better results (i.e., higher peak to clutter
ratios for the synthesized filters) than the stretch and hammer neural networks. However,

this backpropagation neural network (which had 32 inputs, 600 outputs, and 200 hidden-

layer neurons with 50- percent of the interconnections randomly removed) had

approximately 17 times more adjustable parameters available per output (although these
parameters were not all independent) than the stretch and hammer neural network, and its

superior performance may be attributed to this factor. Also, backpropagation neural
networks with approximately the same number of adjustable parameters (i.e., weights) as
the stretch and hammer neural networks (for which training convergence can be

guaranteed) did not converge in training. Finally, the one backpropagation neural
network that yielded better results required approximately 40 hours to train on a 486-class

33 MHz desktop computer, whereas the 600 stretch and hammer neural networks required

approximately three hours.

6. CONCLUSIONS AND PROSPECTS

The storage of only 102,000 (i.e., 600 times 138 + 31 + 1) parameters for all 600

stretch and hammer neural networks was shown to permit the synthesis of filters that
yielded peak to clutter ratios above 3 dB in more than 90 percent of the cases for both

clutter backgrounds and target rotation angles not used in training. This generally
acceptable performance is particularly significant in view of the fact that neural networks

may synthesize suitable filters for target tracking (but not in general for target detection,

since an initial correlation peak is required) much faster than "smart" filter search
strategies. The synthesis of more than ten million filters per second may be feasible if
hardware rather than software simulated neural networks are employed. Stretch and

hammer and related basis function neural networks, because of their guaranteed upper

bounds on training computational effort and their guaranteed lower bounds on

7



generalization smoothness and stability, may be ideal for synthesizing filters for a wide

range of "difficult" target distortions, including aspect angle and obscuration distortions

for which training data may be limited. For these distortions the neural network synthesis

approach may have significant advantages compared to searching stored filters.
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(a)(b

(c) (di)

Figure 1. (a) Typical truck target and clutter background used for neural network
training. (b) Typical binarized truck and background used for correlator
input. (c) EPOF from 0P TLA binarized Fourier transform of truck. (d)
TPAF from BPOF using 9 x 9 superpixels and 10-60 pixel radius
bandpass.
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Figure 2. (a) Specificanon of trained strech and hammer neural network using

neural network and natural cubic spline results for one-input training
examples.
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Figure 3. Correlation peak to clutter ratio versus in-plane trg•et rtatsion angle for
three correlation filters: best possible filter, fixed zero degree filter, and
filter synthesized by setceh and hammer neural networks, where
synteized fiter is for (a) clutter background not use in trainig and (b)
clutter background and rotaton angles not used in training.
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OPTICS CONMUNICATIONS, Vol. 85, pp. 311-314, 15 Sep 91

Optical-resonator-based neural network

Steven C. Gustafson, Gordon R. Litde and Daren M. Simon
,se$ck Iuiatte. L'aMvUey oi(Ddm Deaysu. ON 45469. &W

Receivedd 4une 1991

A neural network moe•l ba•d as an optd uesonator descIbed ad its paneri recoaitioa pelonmace is investipted to
compute simulations.

This paper describes a neural network model in a form suitable for performing computer simulation ex-
periments and assessing possible optical implementations ( 11. The model is consistent with optical resonator
designs that may include dynamic holograms and thresholded phase conjugate mirrors 121. and it could be of
near-trm value in the development of new pattern reognition algorithms.

In many all-optical computing architectures, dynamic holograms are envisioned for interconnection and stor-
age functions and nonlinear components, such as arrays of bistable optical devices or thresholded phase con-
jugate mirrors, are envisioned for decision operations. The necessary adaptation and feedback interactions be-
tween the interconnection and decision components are often achieved by incorporating these components in
linear or ring resonators (3-251.

A simple and general formulation of a neural network model consistent with such optical resonator designs
may be obtained by well-known methods in which plane wave amplitudes and phases ame specified at discrete
times separated by the resonator period. In this formulation the model inputs and outputs are complex-element
vectors, and a state vector and a hologram matrix evolve in time according to a set of coupled nonlinear dif-
ference equations that represent, in general, a high-order threshold logic (261. The hologram matrix is a func-

Fig. 1. Neural netwofk model basid on an optial risosaice. The
pe meters in the mode equauoam are defined as followi a. i•,-
Put vector of( m comtlex eletents. 00, internal vector ofn coan-

Nple elements. w(t ) output vector of p complex'emenis. H M,)
hoalonu mamo onx• compke Pet.0.(P. mans op

_ era)r which amplaceu elements of'atmemt mamn P -ccoring
W(t) Y)soaoftwo mie: (i) lffthevescdescnbedbyP(t) haveevely

spaced propapuon directions, all elements of P aft replaced by
sums along their disaoauds (ii) If the waves described by Plt)Vf t.1) a NP4t)Vi)l *, Abave pairwie unequally spaced propagation directions oaly the

V(0) a Au elements of P along ote wawn dialonal are p•lmd by their di.
WM a 8* qona sum..#. nonfinear operatw. A. X. complae-lemeat ma-trcies, A 7. co, ompl•e coansu . t. compes, transpse. j. discret
1(t0l0 a IWO . WMOv(I)v tume rmO. 1. 2.
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tion of the outer product matrix of the evolving state vector and has a form that depends on the hologram and
resonator geometry.

A diagram of the model and equations for the model are given in fig. I. Note the term in the hologram matrix
equation proportional to the outer product matrix of the state vector with either (i) elements on each diagonal
or (ii) elements on the main diagonal replaced by their sum. This term may be readily derived for state vector
elements as plane waves with either (i) evenly spaced or (ii) pairwise unequally spaced propagation directions.
respectively.

For example. consider three plane waves with evenly spaced propagation directions 9-J, 9. and 6+4 that
record a diffraction pattern (i.e.. a hologram) having amplitude transmittance proportional to the squared
magnitude of the sum of the waves. Using e' to represent a plane wave with propagation direction 0. consider
the reconstruction of this hologram with waves having the.same propagation directions but different complex
amplitudes. There are then seven output waves proportional to the terms of

[y, e0-g "+yV
4 )+y3e$(O÷J) I Iest-J) +x2 ei+xie +J)l 2

""e'T-3Ji" T xx1 0 0
e140-u' xx0 +x2x1 x1e 0
ell-J) xjxT +x2x; +x3x; xO3 x +Ix2 x; xjx; FY1

= eg x2x?+x 3 x; xsxI?+xx;+x2x; xi x1+x 2+X2[Y:J, (I)
x3x7 x2xT +xJx* xIxi +x 2X +x3 x 3

0 X3x*x1xT +x3x2
0 0 x3x*1

where x,, are the recording wave amplitudes, y,, are the reconstructing wave amplitudes, and T indicates trans-
pose. From eq. (I) the three central output waves are proportional to the terms of

pT .Nl~zt
J], where x=[Xj y,= y l PM r l, (2)

Lx1J LY31 Le "Js

where t is the complex transpose operator and .N is an operator that replaces each diagonal with the sum of
the elements along that diagonal.

Some comments on the model are: (i) The hologram matrix is self-referenced in that no separate reference
beams (e.g., at different angles for different recording%) are involved. (ii) The hologram matrix could at least
approximately represent many forms of diffracting structures: thin or thick, amplitude or phase, static or dy-
namic, reflection or transmission. (iii) The nonlinear operator performs no interconnection operations because
it independently replaces each complex element of its argument by another complex element. (iv) The non-
linear operator may incorporate pin or phase conjugation to compensate for wide-angle scattering from the
hologram. (v) The nonlinear operator could approximate many types of components. including arrays of bist-
able optical devices and phase conjugate mirrors with thresholding and gain. (vi) The input and output ma-
trices A and B may represent input and output devices such as beam splitters.

The performance of the model as a pattern recognizer or associative memory for the exclusive-or function
was investigated in computer simulations. In this investigation v(t) was a vector of three complex elements,
--H M) was a 3 x 3 matrix of complex elements,. f" was an operator that replaced each element of its argument
vector by the element squared and divided by the resulting vector magnitude, .A was an operator that replaced
each diagonal of its argument matrix with the sum of diagonal elements (as described in the example above
for equally spaced propagation directions), and A and B were 3 x 3 identity matrices.

The model was trained on each of the four exclusive-or function patterns, where the orthogonal complex-
plane vectors (a+ia)/./2 and (-a+ia)/./.2 represented I and 0, respectively. For training, the initial hol-
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ogram matrix H(0) for each pattern was the 3 x 3 identity matrix, the first two elements of r(O) were the ex.
clusive-or function inputs, and the third element of r(0) was the exclusive-or function output. The model was
allowed to iterate for each pattern until H(t) no longer changed with t so that four training holograms were
generated.

The model was tested with H (0) set equal to the sum of the four training holograms and with the third
element of r(0) set equal to the complex-plane vector I (which is the unit magnitude vector that bisects the
angle between the vectors that represent I and 0). The model was allowed to iterate for each of the fowr ex-
clusive-or patterns. and for each case the final third element of &, was determined. For appropriately selected
values of a, ft. and y. it was found that each of the four final third elements of r' had an angle in the complex
plane that moreclosely matched the angle representing a 1 (45") if this was the correct exclusive-or function
output or a 0 ( 135" ) if this was the correct output.

The mean number of iterations required in the testing phase for the correct convergence of the third element
of r for the combined four exclusive-or cases was investigated as a function of the parameters a,,3. and y. Con-
vergence was defined to occur when the third element complex-plane angle variation between iterations was
less than one part per million. It was found that the men number of iterations for correct convergence in-
creased as a linear function of the logarithm of y over at least the range ywO.002 to 7, 100. Fig. 2 shows the
mean number of iterations for correct convergence versus a and P for y,=0.1. Note that correct convergence
occurs for a wide range of the model parameters. Fig. 3 shows the complex-plane angle of the final minus the
initial third element of aversus a for $=0.8, ym.0.1, and the four exclusive-or function cases. This angle is the
angle of the third element of the vector output of the nonlinear operator . Vin fig. 1. In fig. 3, a I output is
ideally 45"-90" +3600=3150 and a 0 output is ideally 1350-900 =45*.

It may be concluded that the optical-resonator-based neural network model can successfully recognize or
classify exclusive-or patterns on which it has been trained for a wide range of model parameters. This result
is significant because exclusive-or (or inverse exclusive-r) patterns can not be classified using a linear model.
Thus a practical pattern classification algorithm based on the optical resonator model may be feasible. As-
suming that suitable optical materials and components become available, a long-term consequence could be
the development of hardware neural network pattern recognition systems based on optical resonator designs.

.........

S5 10 is 2 0 25 30

.4D ¶ o •Fil& 3. Complex-plane angle of the final minus the initial third

"4P'. element of P versus a for fta0.8, ys0.t,. and the four exclusive.
'="o,,or function cues. The curve identified with open and closed

% squares represent the cases (0,0) -,(0) and ( 1, 1 ) -,-(I) respec.
tivel/while the sinlle curve identified with soild diamonds rp

Fig. 2. Meanaiterations for comegtconvergence versus aand for resats; the two cams (0,10-0() and (I.0)-,(I). Acceptable
7w0. I. No convergence (€onfe or incorrect) was obtained in operti~on, as defined try a 90" complex-plane an*~ decision
the no•n-hatched rnlofn, boundlary. is ach~ieve for ar -c 25.
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Optimal reconstruction of missing-pixel images andiatd above) interpolation approach are as follows.
An mage has known poxl values Z, (gay level or binary) at

Steven C. Gustafoi, Godon Rt. Lit. John S. Loomis, and locations (z,,yj, with i - 1,2 .... n, and unknown (i.e..
Todd S. Puterbaugh mi.sing pixel values Az at locations (2h,, yJ, with k = n + 1.

The authors are with the Resme h Institute, University a.+ + 2.... n + m. Ideally, small dusters of unknown
of Dayton. Dayton, Ohio 45469. Piols are surrounded by larre clusters of known noiso-fir
Received 27 January 1992. PuOes so that interpolatmion a appropriate. The basis
0003-6935/92/326829-02$05.00/0. functio•if, y) - Mf( - X,, y -y, xv) are used to fit
o 1992 OpticalSocietyofAmerica. z(,y) - ctf 1(z,y) + c•f 2(x,y) + ... + *f.(x,y) (1)

A basis-functon technique for reconstructing image with

miss• g pixels i dacribed. This technique yields optimal to the data a•, y.), where for given (z, y) the magnitude
reconstructed image smoothnes in tht each ba•rig.u/ncti I f#, y) I inassais monotoically as the positive width
width is maxtwiud consistent with an acceptable kle Of parameter v, increaies and as f(x, y) I approaches zero as
copttoa fot eithe rz -zjj orlb'-yil becomes larg. If wedesire. v,

Key words: Image reonstructiOn, image restotion. may be the eecond moment of If.(x, y) 1, v.nmy be a constant
independent of i, and fi(x,y) may equal f,(r, V,) with r, .

The reonstr•ction of missing pixels in images is a problem ((Z - yd$ + (y - yA)i2 so that the basis functions are
that arises in many conxtm. Examples include the uni- radial. With the functional form of f(z, y) specified, the v,
form-grid resampling of Earth-from-satellite images that are obtained by solving the n independett nonlinear equs-
have undergone nonlinear geometric trasformagions to tion
remove motion effects.' the restoration of Partially ob-
scured nonlinear umage boundare. and the reconstrucn- 1 -. 1f1 " a, i , 1, 2 .... n, (2)
tion of arbitrary-view images from selecedview data in j

tomography.3-' Typical approaches to the reconstruction

problem include the use of interpolation or approximation where f, -(Z, (Yx), J j , 2 .... It. and # is a positive
techniques. such as bilinear interpolation or cubic B splines. constant that specifies the dogree of diagonal domimance of
However. these techniques usually require that all pixels be the matrix F - if,,; thus a. as discussed below, limits the
located on a uniform grid. and they typically, yield recon- level of computational effort The basis-function coeffi-
structed pixel values that are not consistent with known cients c, am then determined by solving the n simultaneous
image-formation processes, such as processes modeled by linear equations in n unknowns.
the convolution of Gaussian functions with impulse func-
tions at the pixel locations. zi-c f&+c2fa•+'+cafy, j.-1,2,. n. (3)

Radial basis-function interpolation and approximation
techniques avoid these limitations.5 but they typically Finally, the unknown pixel values zt are determined by
introduce two major concerns: (1) the specification of the substituting the pixel locations (zk, yb) for tz, y) in Eq. (1).
extent or the width of the basis functions after their form Since the number of pixels may be large, an assessment of
has been selected consistent with known imageformation the computational effort involved in solving EqL (2) and (3)
processes and (2) the limitation of the level of computa- is required. First, note that Eq. (2) specifies n indepen-
tional effort required tin both precision and number of dent nonlinear equations in one positive variable, and thus
computational steps) to obtain the basis-function coeffi, each of these equations may be solved separately by using
cients. particularly if the number of known pixels is large standard methods. Second, note that Eq. (3) specifies a
As shown below, basis-function techniques can be designed linear system, and thus the computational effort required
to address these concerns: after the form of the basis to obtain a solution depends on a condition number of the
functions has been selected consistent with a priori knowi- mati F. The two-norm condition number x2, which
edge, optimal reconstructed-image smoothness is achieved equals the square root of the ratio of the largest to the
in that each basis-function width is maximized consistent smallest eigenvalue of the product of Fr and F, typically
with an acceptable level of computational effort. Maximiz. contros the required numerical precision and the number
ing basis-function widths may be related to the optimal of computational steps independent of the algorithm (itera-
selection of smoothing parameters in image restoration by tive or direct with iterative improvement) used to obtain a
regularization.& solution.: This condition number may be limited to an

A typical reconstuction task and an optimal in the sense acceptably small value by specifying a sutficiently large
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value for a in Eq. (2). A resulk ,btained by Varah' who neurons that implement the basis functions, and the neu-
used standard mamx norm notaon, is liF-•i, :s 11-/. ron outputs pass through weighted connections to an
Combining this result with the expressions7 si - ascumulator that forms the output z. Training the neural
ilFuIIsi'P-l, IFII,. - max, I, Ifol, and HBOi: s networkinvolves findingtheconnection weights and the
4nn II BI 0, for any n x n mamx B. and noting from Eq. (2) basis-finction width parameters. and finding these param-
that the second presmon equals 26 - a where 6 - max stars requires multivariable nonlnear optumizaton for
Ifl, we may conclude that• : & n(24 - 0)/a. Thus ,may typical bsu-fnction euralnetworks. However. the tech-
be used to limit K, which, a indicated above, typically nique described above requires only univanate nonlinear
controls the numerical precision and the number of compu- optimization to obtain the maximum basis-function width
tational steps required to solve for the coefficients c,, parameters consistent with an acceptable level of computa-
cg .... , c.. Significantly, the degree of diagonal domi- tional effort.
nance of F may be adjusted to yield optimal interpolation
surface or reconnictd-image smoothness in that eah This work was supported in par by the U. S. Air Force
basis-function width parameter v, is maimmzd consistent Rome Laboratory, the Miami Valley Research Institute,
with an acceptable level of computational effort. and the Martin Marietta Corporation.

In the same sensm that thin-plate spline interpolation has
a bending model in which an elastic plane is deformed into
contact with the data points the basis-function mterpola- Rlftf"
tion technique described above has a hammering model in 1. I. Bernstein, "Dgial ima proinng for remote smung."
which a malleable plane is similarly deformed. In the IBM J. Res. DeveL. M,40-7(1976).

hammering model the locations of the known and unknown 2. D. Paijme and A. K. Jain. "A onmrol point theory for
pixels are marked on a malleable plane surface. Using a boundary reprsem aeian and matching " in Procoedmg of the
lr number of small strikes to smoothly deform the Itnainaol Confamm an Aoustics, Speech. and Signal
surface, we direct the hammering at the known piz-l froce (Institate of Electrical and Electron's Engineers.
locations. For hammering at each known pixel location New York. 195). 1851-18U4.
the number of strikes per unit area, which is proportional 3. I. Ravicbandran and F. C. Gouldin. "Reconsaruction of
to fz, y), depends on the distance from the known pixel smooth distributions from a Humted number of projectonus"
location. The dependence is such that the number of Appl. Opt. 27.4084-4097(198).
strikes per unit are at easch known pixel location is less (by 4. S. S. Cha and HL Sun, "Tomography for reconstructing
an amount proportional to a) than the sum of the number of continuous filids from ill-posed multdirectional interferomet-
strikes per unit area at all other known pixel locations (thus nc data." Appl. Opt. 29.251-258 (1990).
ensuring the diagonal dominance of F). Subject to this 5. T. Polio ad F. Girosi. "Networks for approximation and
dependence. the number of hammering strikes is adjusted learning" Proc. IEEE 7,.1481-1497 (1990).
so that each known pixel location on the malleable plane 6. A. M. Thompson. J. C. Brown. J. W. Kay. and D. M. Tittering-
surface is deformed normal to the plane by an amount ton, "A study ofmethods ofchoosizg the smoothingparameter
proportional to its gray level. in imag restoraton by regularization," IEEE TranL Paten

Several comments on the hammering restoration tech- Anal. Mach. Intel'. 13326-39 (1991).
nique follow. First, as indicated above, this technique is 7. G. H. Golub and C. F. VanLoan, Matrix Compatiaons. 2nd ed.
applicable when the known pizels are not located on a (Johs Hopkins U. Press. Baltimore. Md., 1989).
regular grid. in which case conventional techniques such as 8. J. M. Varah. "A lower bound for the smallet singular value of
cubic splines typically cannot be used. Second, although a matrix " I Alr Its AppL 11(3). 3-5 (1975).
Gaussian radial basis functions f(ri, vu) - exp(-r,//I2vj ar 9. S. G. Ma1a- "Multfrequency channel decomposition of im-
consistent with many image formation processes, wavelet ages and wavelet models," MEE Trans. Amust. Speech Signal
basis functions9 may also be appropriate. Third, although Pros. 37,2091-2110 (1989).
well-known techniques such as two-dimensional polyno- 10. A. 7-a-h and G. Ahtad. 'Two-dimensional polynomial
mua interpolation have been shown to exhibit singularities interpoliom from nonuniform samples," IEEE Trans. Aucost.
for nonuniform sampling,10 it has been proved that for a Speech Sinal Process. 40,169-180 (1992).
wide class of radial basis functions the matrix F is non- 11. C. A. Miacbelli "Interpolation of scattered data: distance
singular without the constraints of Eq. (2) and regardless of matrices and conditionally positive dehinit functions," Con-
thevalueofvh. 11 However. nonsingularity doss not ensure struct. Approx. 2.11-22(1986).
acceptably small matrix condition numbers: even for prov- 12. F. Girosi and T. Pogio, "Networks for learning" in Neural
ably nonsingular matrices the level of computational effort Nawo•s. P. AWtoet and V. Milntmovice, ads (Prentice-
required to obtain basis-function coefficients is typically Hall. New York. 1991). pp. 110-154.
unfeasible for sufficiently large matrices.1"1 Fourth, the 13. N. Dyn, "Interpolation of scattered data by radial functions,"
hammering interpolation technique has a neural-network in Top&c in Muituoarzae Appvommaoon, C. K. Chui and L L
interpretation in which the inputs z and y are connected to Schumaker. eds. (Academic. New York. 1987), pp. 47-61.
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GENERALIZATION WrFH BOUNDS ON
COMPUTATIONAL EFFORT, SMOOTHNESS, AND STABILITY

Steven C. Gustafson, Gordon R. Little, and John S. Loomis,
Research Institute, University of Dayton

Dayton, OH 45469-0140

Abstract---Generalization ai considered in the context of data interpolation,
extrapolation, and approximation. For interpolation usng certan functional forms it is

shown that upper bounds may be placed on required numerical precision and number of
computational steps, and it is also shown that lower bounds may be placed on certain
measures of interpolatkon smoothness and stability. These results are obtained for radial
or other basis function i.erpolaton using a diagonal dominance criterion for the matu
whose inverse determines the basis function coefficients. The diagonal dominance
criterion is particularly appropriate for applications where extrapolated values must
asymptotically approach an a priori function, and this criterion also provides a
justifiable solution to the problem of selecting basis function parameters.

Generlization realized as data interpolation, extrapolation, or approximation may
be performed with upper bounds on computational effort and lower bounds on
smoothness and stability. Such generalization can be carried out for certain definitions of
the bounded quantities and, in particular, for interpolation using certain functional forms,
including forms that asymptotically approach an a priori function, as required for
applications such as image reconstruction.

As an example, consider data that consists of m input-output points (xi, Yi), where
the inputs xi are length n vectors, the outputs y1 are scalars, and i, j = 1, 2, ..., m. These
data points are to be interpolated and extrapolated using the function
fAx) = ýjcj exp[-(x - xj)2/oj2] obtained by convolving cjS(x - xj), which is an impulse
function centered on the jth data input vector, with exp(-x2/2oj2), which is a Gaussian
radial basis function with standard deviation ;j, and summing the results for all j. For
interpolation the coefficients cj must be such that yj - f(xi), and thus they are obtained by
solving m simultaneous linear equations in m unknowns yi= 5.;-cja, wherm =

exp[-(xj - xj)2/2aI 2].
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The parameters aj may be selected such that the matrix A = aij is diagonally

dominant by a positive amount e for each column, Le., so that e -aii -.Zj1 aij for all j.

Using standard matrix norm notation, it is well known that the ---norm of A is IIAII.- =
maxiajI• and that for any n x n matrix B the o--norm and the 2-norm are related by

JIBI12 < 4n IIBII.. Also, it has been shown that the -norm of A-1 is IIA'-l.. S l/e
[Varah, 1975]. Using aii = 1, 'he above expressions indicate that the 2-norm condition

number of A is i 2 - IIAII 21A'It S n(2 - e)/I.

The computational effort defined by the numerical precision and the number of
iterative-improvement computational steps required to obtain the cj has upper bounds

that increase with x2. Suppose that icj2' is the maximum acceptable 2-norm condition

number for A. Then smoothness defined by (Zj.J2/m)'1/ is maximized by selecting the
oj such that n(2 - e)/e - K2'. This selection requires the solution of m independent
nonlinear equations (one for each unknown aj), but the iterative-improvement solution of

the m simultaneous linear equations yi - ZjCjaij asymtotically dominates the required

number of computational steps as m becomes large. Finally, stability defined by I/rc is

bounded by I/rc > [Wc2ry)-I - 1]/2 for i2yry < 1, where rc = [Li(i - ci)2/ Wci2- 11 is the

fractional root-mean-square coefficient change, ry = [7,i(Yi' - yi)2/Lyi 2]1 2 is the
fractional root-mean-square data output change, and the c, change to ci' if the yj change

to yi' (Golub and Van Loan, 1989].

For this example, generalization is thus achieved with least upper bounds on
computational effort and greatest lower bounds on smoothness and stability if the aj are

selected such that A has diagonal dominance e = 2n/(n + i'2). This example may be

modified to address approximation, multiple outputs, norms other than the 2-norm, other

definitions of computational effort, smoothness, and stability, and non-Gaussian or non-

radial basis functions provided that such functions decrease as any of their independent

variables increase.

In the same sense that thin plate spline interpolation has a "bending" model in
which an elastic plane is deformed into contact with the data points, the above example

has a "hammering" model in which a malleable plane is similarly deformed. In the

hammering model numerous small strikes ar directed at each x, with Gaussian precision

exp[-(x - xi)2/2coj 2] such that the plane is smoothly deformed into contact with the data
points. The hammering standard deviations a are selected such that the ratio of the

strike density at xi to the sum of strike densities at xjj (ie., the ratio of hits to misses) is
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at least l/z = (n + i'2)/(2n). Here ic2 bounds (1) the numerical precision and number of
iterative-imprvement computational steps required to determine the relative number of

strikes at each xi, (2) the stability with respect to changes in yi of this determination as

measured by 1/r, and (3) the smoothness of the hammered surface as measured by the

root-mean-square of the aj.

The diagonal dominance citerion permits the acceptance of larger condition
numbers for A than criteria [Nar•owich and Ward, 1991] that apply to other classes of
basis functions, e.g., radial basis functions that increase with radius. By some criteria
such radial functions interpolate more smoothly than basis functions that decrease with
radius, but the latter functions ar appropriate for problems in which extrapolated values
must approach an a priori function with distance from the data inputs, as may be required
for image reconstruction applications [Gustafson et al., 1992]. Also, in applications for
which the process that produced the data is unknown, generalization that smoothes the

data by convolution with a Gaussian or simila decreasing-with-radius function may be
justified. Finally, the diagonal dominance criterion provides a justifiable solution to the
problem of basis function parameter selection fPoggio and Girosi, 1990], Le., width
parameter such as oy are maximized such that the largest acceptable condition number is

not exceeded.
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ADAPTIVE OPTICAL CORRELATION USING
NEURAL NETWORK APPROACHES

David L. Flannmery and Steven C. Oustafson
Research Institute, University of Dayton

Dayton, Ohio 45469-0140

Abstract

This paper reviews work on binary phase-only (BPOF) and ternary phase-amplitude
(TPAF) correlation and highlights recent investigations of neural network approaches
for augmenting correlation-based hybrid (optical/electronic) automatic target
recognition systems. The theory and implementation of BPOF and TPAF correlation
using available spatial light modulators is reviewed, including recent advances in smart
TPAF formulations. Results showing the promise of neural networks for enhancing
correlation system operation in the areas of estimating distortion parameters, adapting
filters, and improving discrimination are presented and discussed.

1. INTRODUCTION

Coherent optical correlation and artificial neural network approaches have
independently shown promise for pattern recognition, including automatic target
recognition (ATR), which is an important military application area. This paper reviews
the concepts and progress of investigations that combine these two approaches and that
are motivated by the potential fbi retaining the strengths while bypassing the
weaknesses of each approach.

A leading candidate architecture for ATR using optical correlation is the hybrid
adaptive correlat (HAC) concept depicted in Figure 1. The HAC consists of a rapid
sequential (i.e., "real-time") correlation module imbedded in an overall electronic
system that controls the cycle of operation, including the selection of appropriate
correlation filters from a large bank of pre-computed "smat! (i.e., combining both
distortion-invariance and clutter discrimination) filters.

For any practical application scenario the number of filters is large, e.g., 1,000 or
more. Thus the problem of selecting the best filter subset from the bank at a particular
time is critical. This problem is not yet resolved even though current and projected
device technology supports correlation rates of 100 - 1000 input-filter pairs/sec. The
"filter strategy' control problem limits practical designs because of the implied
workload for the electronic control system.

A salient advantage of the correlation approach is its inherent shift-invariant
response: the target need not be centered in the correlator input, and the location of the
correlation peak in the output plane provides a location estimate for the target in the
input plane.
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Neural network approaches clearly have the capability to perform the ATR
function, but their practical application is complexity-limited. From an information
theory perspectve, the ATR problem can be viewed as a very complex input-output
relationship that must be leared with sufficient accuracy to provide saustically
acceptable target-nontarget discrimination. Statistical performance is emphasized here
because of the robust natue of reamisti AIR scenes-a training set can at best be only
statistically representative of the world of all possible input scenes. So far this problem
description sounds wenl suited for neural network approaches and, in principle, these
approaches are ideal. However, ATR performance must be invariant to target shifts.
and when the additional complexity associated with this invariance is added to that
associated with robust sets of input scenes, the resulting overall complexity exceeds
levels that can be practically handled with current or near-term computational
resources, i.e., neural network training time is unacceptably long, and the size of the
network is too large either for simulation or for practical embodiment in a real-time
system.

This paper concentrates on neural network approaches that augment the HAC

concept. Three areas are considemrd

I. Estimating target distortions relative to reference views.

2. Synthesizing new filte to follow dynamic target distortions.

3. Estimating confidence levels associated with correlation peaks to improve target-
nontarget discrimination.

Work performed in all three areas is reviewed in the context of BPOF and TPAF
correlation within the HAC concept. Two types of neural networks have been used in
this work, "standardw backpropagation and "new" locally linear and stretch and hammer
architectures developed at the Univemity of Dayton. Background on BPOP and TPAF
correlation is presented below and is followed by a review of pertinent neural network
theory. Investigations in the three areas listed above are then discussed in turn.

2. CORRELATION WITH BPOF AND TPAF FILTERS

A recent review of optical correlation techniques was provided by Flannery and
Homer [1989 (a)]. A renewed surge of interest in optical correlation for practical
applications has been spurred by the recent development of the phase-only filter (POF)
concept [Horner,1984], rapidly followed by the development of discrete-modulation-
level BPOF and TPAF fdters that support effective real-time implementation with
currently available spatial light modulators (SLM) [Ross, 1983; Psaltis, 1984; Flannery,
1986]. These developments have made the HAC (Figure 1) a practical concept capable
of implementation using current technology.

The BPOF is defined with two phase modulation levels (usually 0 and 180 degrees,
corresponding to amplitudes of -I and 1). It can be implemented with magneto-optic
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SLMs (MOSLM [Ross, 1983; Davis,1989D, feno-electric liquid crystal (PLC SLMs
(Johnson, 1990], and defmable miror device (DMD) SLMs (Florec, 1990].

The TPAP may be viewed au n importm extension of ahe BPOP that includes one
additional modulation level: zero (i.e., the signal light is blocked at the filter positions
or pixels having this level). In practice even the BPOF has zero-modulation levels due
to its limited region of support (e.gjinite SLM aperture). In the "PAF, elements are
set to zero anywhere in the filte region according to an algorithm that provides
(primarily) the benefit of improved target-nontarget discrimination. This improvement
is achieved by blocking spatial frequencies where nontargets are expected to have
relatively large spectral content [Flannery,1988 (a)).

The TAF may be implemented in MOSLM devices using appMopriate drive
techniques to access a third "mixed-magnetization state [Kast,1989]. Theoretical and
experimental results amply demonstrate the improved discrimination (relative to BPOF
colrelation) provided by the TPAF ULindell,1990Xlannery,1990;Flannery,1991].
Recent reports indicate good potential for implementing WPA? modulation in other
SLM devices (Juday, 1991]. Another approach is to cascade a binary amplitude SLM -

with a phase-modulating SLM, which is less attractive from an optical engineering
perspective.

All the limited-modulation filters discussed above (POF, BPOF, and TPA?)
provide, in general, excellent correlation performance as characterized by sharper
correlation peaks, greater peak intensity (correlation efficiency), and improved
nontarget discrimination compared to the classic matched filter (which uses full
complex amplitude modulation).

The signal-to-noise performance of limited-modulation filters has been a subject of
great interest since intuition suggests that a price must be paid for restricting
modulation levels. The classic matched filter by definition provides the best SNR
(signal-to-noise ratio) for the case of additive Gaussian noise. However, the limited-
modulation filters have shown generally superior discrimination against actual scene
clutter [Homer, 1990]. Analysis is complicated by the lack of accepted standardized
analytical models of practical clutter. Thus SNR or discrimination performance is
scene- dependent, and many results are either anecdotal or suspect because of the
limited robustness of test sets. Several theoretical treatments (limited by the
assumption of Gaussian white noise) have been reported (Dickey, 1988, 1989;
Kumar,1989,] but are not reviewed here. However, limited-modulation level filters
exhibit typical SNR reductions of 3 to 10 dB (decibels) relative to matched filters for
the white noise case but frequently provide better discrimination against practical noise
pauerns. Worth noting is a recent analytical treatment that derives tight bounds for
SNR degradations for various limited-modulation filters [Famr,1990]. A summary of
the current situation is that the presumed SNR penalties for BPOP and TPA?
correlation are far outweighed by their advantages, which include the overwhelming
advantage of practical implementation with available SLM devices. An additional
practical advantage is the reduced amount of storage required for BPOF and WPAF
filters (e.g., one or two binary bits per pixel) relative to complex-valued filters (e.g., at
least 8 bits per pixel).
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Effective tachaniques for formulating smart BPOP and WAP films have been
loped and demonsa in both imulatians and eperunts. A major desin

component of these filter is the specificadt of the zero-Oat pattern that optimiz
SNR and/or other metics, icluding peak intensity (or cornroau effcncy)

Mannery,1990,1991IKumar,1991l. Distoruon invariance is addressed by adjusting the
tminin-set weights of a composite in-cl.e (target) image (Jared•d,1 (a); Flannery
1990.1991] or by direct iteration of the phase values of a POP pattern [Kallman,1987J.
The threshold line angle (MIA) Mlannery,1988 (b)f n,1988] is another design
element of BPOF and TPAP formulatious. It determines the relative weighting of odd
and even symmetry components of the target image in the flWe rempona Small but
significant improvements result from choosing an optimum TLA value.

"•. very recent and important deveiopment in TpAF optimization is formulation
algorithms that address mixed-metic optimizations [Kuman, 1991; Flannery, 1991),
iL., compromises that simultaneously address two or more correlation perfomance
metrics. These algorithms are motivated by the observation that filters optimized with
regard only to SNR frequently have undesirable performance charlcteristics in other
respects, including correlation efficiency so low as to preclude practical implementation
and broad correlation peaks that hamper location-estmm post-processing. Thes
undesirable characteristics are associated with very small support regions that result
from optimizing only for SNR. i.e., most of the filter area is set to the zero-modulation
state.

Results am presented her from a recent case study of TPAF smart filter
formulation using mixed metrics [Flannery,1991] to illustate the state of the art in this
ame. Figure 2 provides an example input scene of a tank on a busby background and
the binary version of the scene as used in the study (to match the binary inpul capability
of the experimental correlator that uses MOSLM devices at both input and filter
planes). Smart TPA? filters were formulated to cover 20 degrees of in-plane tarug
rotation and 12% of in-plane target scale variation while rejecting the background
shown as well as three other backgrounds of diverse character. When the filter was
optimized only for SNR (i.e., background discrimination) it provided excellent
discrimination (averaging 8.75 dB over the four backgrounds), but the correlation
efficiency was so low that practical implementation in the experimental cotrelator was
marginal. With optimization to a mixed metric reflecting equal emphasis on both SNR
and peak intensity, the filter still provided excellent background discrimination
(averaging 7.62 dB) and also provided over twice the peak intensity of the previous
filter, which was a practical level for the experimental correlator. Information
generated during filter design indicated that in this case the compromise filter provided
85% of the SNR of the best-SNR design and 85% of the peak intensity of the filter
designed for maximum peak response. Figure 3 shows simulated and experimental
correlation intensity plots for the compromise filter with the input of Figure 2(b).

24



3. NEURAL NETWORK ARCHITECTURES

This section reviews neural network architectures and training algorithms used in
the work discussed here. g (e.g., Lippmaun. 1987). locally linear
[Gustafuon, 1991b], and stretch and hammer [Gustafom, 1991a] neural networks are
considered.

B ppation-trained neural network:

Feedforward neural networks with weights determined by the backpwpagation
training are the most commonly used neural networks in engineering applications. It
has been shown in principle that with three neuron layers and with enough neurons in
the hidden layer (the layer not directly connected to either inputs or outputs) any
arbitrary input-output relationship may be learned. The backpmopagtiou algorithm is
equivalent to a gradient descent optimization in weight space with a least-square-em
goal. However, no general prescription for the various design elements is available;
and judicious initial choices and trial-and-err design iterations are the normal methods
for designing networks for particular applications. Accuracy of learning, interpolation,
and extrapolation relative to training set data are important performance parameters.
These parameters are affected by training set selection, training schedule, RMS er
goal, and network topography. A large body of common experience relating these
elements has evolved, and the results reported here were obtained using conventional
methods based on this experience.

Locally linear neural network:

As noted above, multilayer feedforward neural networks that use backpopagation
or similar training algorithms are by far the most common in engineering applications.
However, these neural networks have several limitations. First, they generally lack the
coordinate invariance property, according to which the testing output is unchanged if
the testing and training (or data) inputs are translated, rotated, or scaled. Second,
without excessive training they generally lack the data interpolation property, according
to which die testing output is the training output if the testing inputs are the training
inputs (Poggio and Girosi, 1990]. Third, they generally lack the linear representation
property, according to which any testing point is on a linear surface if all training points
are on this surface. Finally, they generally lack the data bootstrapping property,
according to which the testing outputs have least squared error for any training points
that are transformed into testing points. In contrast, locally linear neural networks have
all of the above desirable characteristics. There are two steps in training- transforming
the inputs to invariant coordinates and finding a plane through each training point that
satisfies a bootstrapping property in that the plane predicts, with minimum squared
error, a specified number of training point nearest neighbors. In testing the plane
through the training point nearest to the testing point (in the transformed inputs) is used
to rind the testing point output. Locally linear neural networks extend nearest neighbor
techniques because in training they find a plane (having as many dimensions as there
are inputs) through each training point that in general has non-zero slope.
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Stretch and hammer neural network:

Stutch and hamumer neural networks also avoid the many limitations of
ackprgation maining and use radial basis function methods to achieve advantages

in generalizing maining examples. These advaUtages include (1) exact learning. (2)
maximally smooth modeling of Gaussian deviations hom linear relationships, (3)
identical outputs for arbitrary linear combination of inputs, and (4) aining without
adjustable parameters in a predezenn n almber of steps. Stretch and hammer
neural networks ae feedfoward architectures that have separate bidden neuron layers
for stretching and hammering in accordance with an easily visualized physical model.
Training consists of (1) transforming the inputs to principal component coordinates, (2)
finding the least squares hyperplane through the training points, (3) finding the
Gaussian radial basis function variances at the column diagonal dominance limit, and
(4) finding the Gaussian radial basis fuicdon coefficients. The Gaussian radial basis
function vadances are chosen to be as large as possible consistent with maintaining
diagonal dominance for the simultaneous linear equations that must be solved to obtain
the basis function coefficients. This choice insures that training example generalization
is maximally smooth consistent with unique training in a predeteminable number of
steps.

4. DISTORTION PARAMETER ESTIMATION USING NEURAL NETWORKS

The problem addressed by the work reportd in this section is as follows. Given a
starting condition consisting of correlation of an input target object with a matching
filter, estimate distortion parameter(s) (e~g., rotation angle and scale factor) as the input
object is distorted from the original view. The value of distortion parameter estimates
for use in a filter control strategy for a HAC is obvious.

The approach investigated for distortion parameter estimation in one study
[Gustafson,1990] involved sampling the shape of the correlation peak (the desired peak
in response to the target) to derive inputs for a an-trained neural network.
In-platie arget rotation was used as the distortion mechanism and thus the goal of the
network was to estimate the rotation angle relative to the initial view. A binary image
of an aircraft was used as the target, and 128x128 sample correlation simulations were
performed. lntmens samples were taken on a 5x5 pixel grid centered on the correlation
peak. These samiter -v= normalized to the central value, thus defining 24 inputs to
the neural network. '.lie network was trained for 5-degree intervals of target rotation
with the filter held constant at the initial view. The neural network estimated in-plane
rotation to within +4-5 degrees over a range of .40 to .40 degrees from the initial view.

Another study [Gustafson,1991] applied the same approach to an IR truck target
image and used both backpropagation and locally linear neural networks. The

Ibckpragation network estimated rotation angle with errors less than 2 degrees,
whereas the LLN provided errors less than 0.35 degrees (see Figures 4 and 5).
Estimation was seriously degraded when realistic backgrounds were introduced in the
input scenes, presumably due to the resulting distortion of the correlation peak relative
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to the zero-background casem Training using background-distorted inputs did not reduce
this degradation to an acceptable level.

To reduce the degraation cased by backgrounds, a new sampling approach,
input-phane sampling, was introduced. In this approach (successful) corehlation is used
to establish a reference point (location estimat) for sampling the Wtart intensity in the
input plane. Sampling was again based on a 5xW-pixel grid, but in general the sampling
pattern was chosen to keep most or all samples oan the target image (thus excluding
background effcts). A study using the same truck target showed that rotation angle
could be predicted over the full rotation range of 360 degrees with ers well below
two degrees even in the presence of clutter backgrounds (sw Figure 6) [Olczak, 199•

Although perhaps not obvious, a boot-strapping assumption is implicit in the above
distortion-estimaion approaches: good correlation must be maintained at all times.
The correctly-located correlation peak must be detectable (i.&., must exhibit a
sufficiently high peak-to-clutter ratio in the correlation plane) to enable¢proper location
of the sampling grid for either approach discussed above. The input-plane sampling
approach is generally superior because it provides samples that are less corrupted in
cases where there is a slight mis-match between filter and target but where good
correlation is still obtained.

Distortion paramee estimation using neural network approaches shows promise
for aiding HAC filter control strategy in tracking modes of operation (where successful
correlation has been achieved and must be maintained through rapid target evolution).
Current research is investigating issues such as sensitivity to sampling grid location
accuracy, optimization of sampling grid patterns, and extension to multiple distortion
dimensions.

5. FILTER SYNTHESIS USING NEURAL NETWORK APPROACHES

This section reviews efforts that investigate the modification or synthesis of TPAF
filters using neural network approaches.

Filter amplitude states:

In an initial simulation study the bandpass of a BPOF was covered by four binary
(on-off) amplitude control rings driven by four neural network outputs Mannery,1989
(b)]. The inputs were the integrated power spectral densities in the input scene taken
over the same four spectral rings (readily available on a real-time basis in an optical
correlator system). The goal was to maximize correlation signal-to-noise for a target
imbedded in different noise samples by optimum control of the correlator bandpass.
This control may be viewed as setting zero-states in a TPAF on a very coarse
framework. The simulations were successful in that the neural network was easily
trained to provide near-optimum bandpass configurations for a variety of input noise
conditions.
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Filter phase stame

Two basic issues must be resolved to defm ea general filter synthesis approach:
(1) A filter repeentaton or p-a-ame-eriation most be used that is consistent with the
number of available ouputs in curent neal network practice (which is limited in both
simulations and hardware implementations) and (2) the inpaus to the network must be
Rwfied.

To illustrate the first issue, consider the complete specification of a 12$x 128-pixel
TPAF. In excess of 32,000 binary values must be determined, whereas the neural
network computation resources typically used supprmt at most 600 outputs. Thus ways
to reduce the number of parameters used to reesnt a filter mum be developed. One
approach is to impose a batdpass limit on the filtr (one quarter of the full Nyquist
bandwidth) and to consider only BPOF filters with cosine (even) symmetry. Another
approach is to extend the bandpass to almost the full Nyquit innterval by grouping
pixels in 3x3 super-pixels (called "noapixels" hemrfter), each controlled by a single
modulation value. The fust approach severely smooths the filter impulse response,
whereas the second approach limits the extent of the impulse response to about one
third of the input field of view.

The second issue, defminig network inputs, may be addressed with the same two
sampling approaches already discussed in the context of distortion parameter estimation
(correlation peak shape and input-plane sampling).

Steps taken during the course of investigations on filter synthesis at the University
of Dayton are summarized ber These investigations paralleled the distortion.
estimation investigations in the sense that input-plane sampling was found to be much
superior to sampling correlation peak. The quarter-Nyquist bandpasa filters were
succ=sfully synthsized but were of little practical value due to their limited bandpass;
they exhibited insufficient discrimination against background clutter and non-target
vehicles (see Figure 7). Nonapixel filters wer also successfully synthesized and
performed well [Olczak, 1991). For nonapixel filters the target extent was less than 40
pixels on a 128-pixel format, thus satisfying the cornraint mentioned above.

Recent previously unreported results on the synthesis of nonapixel BPOFs using
input-plane sampling are shown in Figures 8, 9 and 10. Figure 8(a) is a typical input
image showing the target truck and another vehicle superimposed on a clutter
background. Figure 8(b) is a nonapixel filter pattern for the track. Figures 8(c) is a
correlation intensity patten from a correlation simulation using this input and filter.
Figure 9 and 10 provides plots of filter peak-to-clutter performance over 360 degrees of
target rotation for synthesized nonapixel filters using backptopagation and stretch and
hammer neural networks, respectively. Data for two other filters also ar plotted for
reference in Figure 9; the simple (single-view) BPOF and the best possible BPOF that
can be designed at each rotation angle. As is apparent in the plots, the performance of
the neural-synthesized filters approaches that of the best-possible filters to a satisfying
degree. These plots involve the target superimposed on one of several clutter
backgrounds; results with the other backgrounds were similar.
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The results seem impressive because the neural network provides filter informauon
equivalent to about 45 distinct single-view filters, which would require about 3.5 kB
(ilobytes) of digital Mapg (rasning about 600 binary btM erlte). Neural network
flm synthesis sso provides an implicit coudl mechanism becmse no indexing or
earching through a flht dambase is required. The only cavert is the same one

discussed in the review of -esaa techniques, which is that this approach
is based on maintaining good correlation in a dynamic scenario (.e. successfully
tracking the target) so that the location estimate derived from the correlation peak may
be used to accurately center the input-plane sampling grid.

An important question concerns the affect of target distortio not learned by the
network, e.&, scale changes. More generally, how can neural network filter synthesis
be extended to distortions involving two or morm degrees of fredom. e.g., azimuth,
elevation, scale, etc.? The associawd complexity growth may tend to drive the problem
outside bounds practically addressable by available neural network resources. This and
other issues similar to those mentioned for distortion estimation are under investigation.
as me techniques for neural network synthesis of the zero-modulation pattern required
to form a full IPAF.

6. CORRELATION CONFIDENCE-LEVEL ESTIMATION USING NEURAL
NETWORK APPROACHES

A correlation involving a target surrounded by cluter will result in a peak
corresponding to the target and other (hopefuly smaller) pks in reqonm to clutter.
Normally th desired peak must exceed other peaks by some margin (e.g.. 3 dB) for
correlation to be useful. If the clutte level in the input scene is gradually ireased, a
point is reached where the fller is no longer useful by this standard. If the filter is a
distortion-invariant smart filter, it might be possible to substitute a morm target-specific
filter which would furnish bete discrimination. This approach is undesirable in
general because it implies a large storage bank of 'more-specific" filters and because
there is an implied control problem (i.e., which of the many more-specified filters
corresponding to a single smart filter should be substituted?). Neural network
techniques that estimate confidence levels for cmrlation peaks are potential
approaches to this problem. Note that i the original filter was already of the more-
specific variety, some augmentation of the correlation process is mandatory if useful
results ae to be obtained.

The same two sampling techniques, correlation peak and input-plane, were
investigated as neural network inputs, and again input-plane sampling proved superior.
Recent previously unreported results are synopsized hem to illustrate the polential of
this approach.

A set of terrain board images was provided by Martin Marietta, Strategic Systems,
Denver, Colorado. These 128x128.pixel images included three vehicle targets on a
cluuered background. The image set spanned elevations of 15 to 45 degrees and
azimuths of 0 to 90 degrees. A matrix of 45 images covering this two-dimensional
distortion range was used for this study, including 30 for training and 1S for testing. All
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corrlauions were performed with a single BPOF constructed for the central view in the
image maum Thus correlaions were poor in response to the targt for may of the
input immages For mh correlation four correlation peaks were considered. one for each
ofthe three vehicles (including the target vehicle) and the highest peak in response to
inp cluttr.

The input-plame samupling mask consisted of eight spokes of evea angular
distribution, each 16 pixels long. These 128 samples were augmene by 8 inputs
derived by applying a one-dimensona Roberts edg-cation opmo along each
spoke and finding de location of dt saungas response•T. e network was mined to
provide two complementay-logic ouputs indicating whether the sampled object was a
target or not. These outputs were alg•eacanly combined to yield a confidence level.
FIPg 11 is a histogram plot of the results of theraied network applied to the 15-
image (60-peak) test mL The a-priori ge-to-nonarget ratio for these Inputs is 1:3.
As can be sen the network provided excellent separation of trget and noutargets
(ie.. very useful confidence level outputs). Figure 12 shows correlation intensity plots
corresponding to perfec target-filer match (pt a) and extreme target-flr mismatch
(pran b). Other correlations ar expected to fall between des extremes.

Current work is addressing more challenging images, variations of the input-plm
sampling mask, and the application of different types of neural network rchicurme to
this problem

7. CONCLUSION

The work reviewed her has shown defnt promise for the development of nanl
network approaches that augment hybrid adaptive optical correlatim sysrems.
Although other approaches may be defined for the use of neural networks in automatic
target recogniM, the approaches discussed here involve an advantageous combination
of the strengths of the two underlying technologies. In particular, these approaches
allow the two baic strengths of optical correlation (shape-dependent discrimination and
intrinsic location estimation) to be used to their full extent. Neural network
augmentation techniques, when incorporated with the HAC cocept, should permit the
development of more efficient anid powerful systems for addressing complex pattern
recognition.
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(a)

(b)
Fig. 2. Gray scale (a) and binary (b) versions of example target-on-background scene.
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(a)

(b)

Fig. 3. Simulated (a) and experimental (b) correlation intensity for compromise filter.
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Fig. 7. Peak height performance of every-pizel filter synthesized by back-propagation

neural network.
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((b)

Fig. 8. Typical input image (a). corresponding neural-nczwork-synthesiwjd nonapixel
filter (b), and resulting correlation intensity (c).
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Abstract

Stretch and hammer neural networks use radial basis function methods to achieve advantages in

generalizing training examples. These advantages include (1) exact learning, (2) maximally smooth

modeling of Gaussian deviations from linear relationships, (3) identical outputs for arbitrary linear

combination of inputs, and (4) training without adjustable parameters in a predeterminable number of

steps. Stretch and hammer neural networks are feedforward architectures that have separate hidden

neuron layers for stretching and hammering in accordance with an easily visualized physical model.

Training consists of (1) transforming the inputs to principal component coordinates, (2) finding the least

squares hyperplane through the training points, (3) finding the Gaussian radial basis function variances

at the column diagonal dominance limit, and (4) finding the Gaussian radial basis function coefficients.

The Gaussian radial basis function variances are chosen to be as large as possible consistent with

maintaining diagonal dominance for the simultaneous linear equations that must be solved to obtain the

basis function coefficients. This choice insures that training example generalization is maximally

smooth consistent with unique training in a predeterminable number of steps. Stretch and hammer

neural networks have been used successfully in several practical applications.

1. Physical Model

In the same sense that thin plate spline interpolation has a "bending" model in which an elastic plane is

deformed into contact with the data points, stretch and hammer neural networks [Gustafson et al., 1991,

1992] have a physical model in which the data input plane is similarly deformed. In this model the

input plane is first stretched along orthogonal coordinates located in the plane so that the data inputs

(relative to their means) have equal variances and zero covariances. (This procedure is a principal

components transformation on the data inputs). Next a least squares hyperplane is found for the

transformed data. Finally, the data inputs in the stretched coordinates are projected onto the hyperplane

and hammered into contact with the data outputs using numerous small strikes so that the hyperplane is
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smoothly deformed. Hammering has (typically) Gaussian precision with variance such that the ratio of

strike density at each data input to the sum of strike densities at all other inputs, i.e., the ratio of hits to

misses, exceeds unity.

2. Advantages

It has been proved that if the number of training points is much greater than the number of inputs, the

stretch and hammer neural network places guaranteed upper limits on required numerical precision and
number of computational steps and that it also places guaranteed lower limits on certain measures of
interpolation smoothness and stability [Gustafson et al. 1992]. Here smoothness as measured by the

sv- 'lest hammering standard deviation is maximized by selecting the largest value consistent with an

.able level of computational effort, and this value is obtained by setting the minimum ratio of hits
to misses equal to (K + 1)/(K - 1), where K is the largest acceptable 2-norm condition number of the
matrix F whose inverse determines the basis function coefficients. Also, stability as measured by the
reciprocal of the root mean square fractional change in the number of strikes at each data point is
bounded by s _.[(Kr)'-I 11/2, where r is the fractional root mean square change in the data outputs (i.e.,

good stability implies that small data output changes yield small interpolation function changes).

Since the stretch and hammer neural network is an interpolator and extrapolator (although modifications
to enforce additional smoothness at the expense of exact data fitting are possible), exact learning is
achieved. Also, since the hammering precision of radial basis functions is typically Gaussian with the
maximum practical standard deviation, the network provides maximally smooth modeling of Gaussian

deviations from linear relationships. Furthermore, since the data inputs are transformed by stretching to

principal component coordinates, the network provides identical outputs for arbitrary linear
combinations of inputs. Finally, training is achieved without adjustable parameters with a
computational effort governed by K in terms of bounds on required numerical precision and number of

computational steps.

3. Training Procedure

Typical stretch and hammer neural network training consists of standard operations that yield the
mathematical specification outlined in Figure I and detailed in the references [Gustafson et al. 1991,
19921. First the data inputs xi and their means 7i for all data points are expressed in principal

component coordinates u, where a, are the linear transformation coefficients (see Figure 1 for

notation). Next a least squares hyperplane is fitted to the data points, where b. is the hyperplane

intercept and b2, b2, ..... b. are the hyperplane slopes. Next the Gaussian radial basis function standard
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deviations s, are selected to be as large as possible consistent with maintaining acceptable diagonal

dominance for F whose elements are given by the radial Gaussian functions f, evaluated at the stretched

daam inputs. Thus, each s, is selected such that (1 + dj)/(1-dj) = K, where d, is the sum of the off-

diagonal elements of the jth column of F. Finally, the basis function coefficients c, are obtained by

solving m simultaneous linear equations in m unknowns.

4. Example Results

Figures 2, 3, and 4 show example results for the stretch and hammer neural network. Figure 2 compares

stretch and hammer and natural cubic spline interpolation for one input. Note that the curves are

comparable except for sparse interpolation regions, where the stretch and hammer curve approaches the
least squares line. Figure 3 shows a least squares plane fitted and hammered to four two-input training

points with the two stretch (principal component) coordinates indicated, and Figure 4 shows these

training points in the stretched coordinates with a least square plane fitted and hammered in these

coordinates. Note that interpolation in the stretched coordinates is smoother than in the original

coordinates.

5. Practical Application

Figures 5 and 6 show practical application of the stretch and hammer neural network to an adaptive

optical correlation system designed to track targets in images [Flannery and Gustafson, 19911. The

network synthesized binary phase Fourier plane filters using 31 samples of the target region in the input

scene. The network was trained to synthesize filters that maintain a high correlation peak to clutter ratio

for clutter backgrounds not used in training (Figure 5) and for such backgrounds plus target rotation

angles not used in training (Figure 6). Note the favorable comparison with the zero degree filter (a

fixed filter designed for zero degree rotation) and the best expected filter (the best filter that could have

been synthesized).
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Figure 3. A least squares plane fined and hammered to four two-input training

examples with the two stretched (principal component) coordinates
indicated.
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OPTICAL FILTER SYNTHESI USING ARTIFCIAL NEURAL
NETWORKS

ManzrdoMark- August
University of Dayton, 1992

The feasibility of using neural networks to synthesize filters for a hybrid

adaptive correlator (HAC) was demonstrated. Input scene binarization, filter

generation, filter encoding, input scene sampling, and target rotation were

considered in developing neural networks for target tracking. Neural networks

were trained using target-plus-background image samples as inputs and coded

filter values as outputs After learning, input image samples not included in

training were used to test the neural networks. The resulting coded filter

values were evaluated using computer-simulated optical correlation with

ternary phase amplitude filters (TPAF). Back-propagation and stretch and

hammer neural networks successfilly synthesized filters for optical correlation,

and performance was adequate for tracking rotated targets on various

backgrounds. Typical correlation peak-to-clutter ratios were 3 to 9 dB for in-

plane target rotation angles of 0 to 90 degrees.
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1 INTRODUCTION

1.1. Hybrid adaptive correlator technology

Pattern recognition by optical correlation is accomplished by

intentionally modifying the spatial frequency spectrum of an image, and thus

it is a subset of Fourier optical signal processing. The VanderLugt correlator

introduced modern optical signal processing concepts (VanderLugt., 1963]. The

correlation theorem in Fourier analysis states that the correlation of functions

f, and f is

C(xy) = F'(F~f1 (xy)] rlf 3 (xy)])

where F- is the Fourier transform operator
*- represents the complex conjugate

- represents the inverse Fourier transform operator.

By using the properties of lenses and coherent light, the correlation function

can be produced at the Fourier transform plane of the second lens illustrated

in Figure 1.1. For pattern recognition f, is an input image and F2 is the

conjugate Fourier transform of the target being searched for in the input scene.

In general F 2, the correlator filter, is complex valued. The process of using the

actual amplitude and conjugate phase of a target as described above is called

matched filter or VanderLugt correlation. Using a matched filter requires

holographic recording [Goodman, 1968] which is not practical for real-time

pattern recognition. However, magneto-optic spatial light modulators
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(MOSLMs) can be used for real-time pattern recognition [Ross, 1983]. These

devices are capable of modulatigincident light using three states [Kast,

1989], e.g., full amplitude with 0 degree phase shift, full amplitude with 180

degree phase shift, and zero amplitude.

Recent work has shown that in the area of image analysis phase

information is more important than amplitude information ppenheim, 1981].

Computer correlation smulations using only phase information led to the

phase-only filter (POP) concept [Homer, 1984]. A POP is advantageous because

it does not attenuate the amplitude of the optical beam. Phase only filtering

can produce correlation peaks many times more intense than simple matched-

filtering. Another typical advantage of phase only filtering is localization of the

correlation peak. A POF often yields a sharp peak whereas a matched filter

yields a wide peak (Flannery, 1989].

Modern real-time SLM devices do not allow the implementation of

complete phase modulation. A subset of the POF, namely the binary phase-only

filter (BPOF), can be used with modern devices DFlannery, 1988]. A BPOF filter

requires only 1 bit for filter storage per pixel, whereas a continuous POF

requires 4 or more bits. BPOFs are designed using a threshold line angle (TLA)

parameter [Flannery, 1988] described in Section 4.

A matched filter by definition performs best using signal-to-noise ratio

as a metric for the case of additive Gausian noise. However, POFs and BPOFs

have performed better than matched filters when used with real-world

backgrounds [Fielding, 1990]. The use of BPOF techniques is motivated by
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possible immediate implementation using available electronically-addressed

spatial light modulators (SLMs) in the hybrid adaptive correlator (HAC)

system. BPOFs for optical correlation have been successfully implemented

[Psaltis, 1984]. The HAC system uses electronics and optics to preform pattern

recognition and is illustrated in Figure 2.1. The operation of this system is

further discussed in Section 2.

The scene must be binarized to be implemented in a HAC system using

MOSLMs. Binarization is accomplished using algorithms which edge-enhance

and then binarize the output by thresholding pixel values. Various binarized

scenes can be created by varying the threshold, including scenes that correlate

well with a particular filter. However, correlation performance is usually

compromised for other backgrounds. A discussion of techniques for binarizing

input scenes is presented in Section 3.

The filters considered in this research are 128 by 128 ternary phase

amplitude filters (TPAFs) consisting of a BPOF multilplied by a bandpass

binary amplitude mask with a low spatial-frequency block radius of 10 pixels

and a high-spatial-frequency cut-off radius of 60 pixels, and they are encoded

to allow for neural network implementation. The BPOF filter part of a TPAF

is created by thresholding the real part of the Fourier transform of the target,

which implies a TLA of 0 degrees and thus a symmetric filter (so that storing

or encoding only one-half of the filter values is necessary). For a 128 by 128

image this thresholding strategy implies a need to store 5400 separate filter

values, since values outside the 10-60 pixel radius bandpass are set to zero.
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Neural networks typically require excessive training time to learn this number

of values. A discussion of this concern is given in Section 4.

1.2 Neural networks for HAC filter synthesis

A large number of filters are needed to ccommodlate rotations, scale

changes, and other distortions in the input scene target. Instead of correlating

with each of these filters, a neural network can be used to synthesize the filter

for correlation as the input scene target distortions evolve. A consequent

reduction in processing time could enable feasibility for the HAC system for

real-time target recognition.

Originally, work conducted using neural networks for filter synthesis

used network inputs from the correlation peak. On low intensity backgrounds

this technique was successful, but for significantly cluttered backgrounds

neural network performance deteriorated, even for strong correlation peaks

[Olczak, 1991]. However, the research reported here indicates that the use of

gray-level input plane intensity values centered on the location of the

correlation peak enables acceptable neural network filter synthesis. Studies on

the use of input plane samples for neural network inputs have been made

[Olczak, 1991]. For this technique to be succesaful, an appropriate region on

the input scene must be sampled. Using the location indicated by the

correlation peak assumes that a target has already been recognized, and hence

neural network filter synthesis is intended only for target tracking. However,

if the correlation peak or some other technique indicates the location of a blob-
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like object, then a neural network can be used to confirm that this object is or

is not a target.

The input scene must be sampled to produce the neural network inputs.

A variety of input scene sampling techniques were investigated. The simplest

consisted of 25 pixel values on a 5 x 5 grid centered on the target. To

incorporate more of the background in the input samples, a 9 x 9 grid was

used, and two separate algorithms were employed to produce 25 or 31 input

values for the neural network. The choice of a sampling technique is important

for adequate neural network interpolation between samples. Sampling

techniques are discussed further in Section 5.

Two different types of neural networks were used as interpolators to

synthesize filters: the well known back-propagation neural network and a

recently developed "stretch and hammer" neural network. The general idea

was to input enough representative examples to train the neural networks to

approximate a desired input/ output behavior for filter synthesis. The'- puts

are gray-level pixel values from the input scene to be binarized and coded for

the input plane SLM. The outputs are the coded values that characterize the

TPAF for the filter plane SLM. There are advantages to using the stretch and

hammer as well as the back-propagation neural network. These advantages

and an in-depth analysis of neural network design is presented in Section 6.

Successful neural network filter synthesis was accomplished using both

back-propagation and stretch and hammer neural networks. A variety ofinput

output relationships were established. Testing of neural network performance
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was accomplished by varying input scene parameters that included in-plane

target rotation angle and target background type. The results are presented

and tabulated in Section 7.
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L .HAC SYSTEM OPERATION

The HAC is an electro-optical pattern recognition system that integrates

electronics and the computational power of lenses. From Fourier Optics it is

known that using a coherent light beam, a lens can transform an input 2-D

pattern into its Fourier spatial spectral components at the focal plane of the

lens. Each unique input object (target) has associated with it a unique Fourier

spectrum. By filtering the spectrum for a certain object in the image, it is

possible to recognize the presence of the object. This process is known as

pattern recognition by optical correlation, and can be implemented using the

optical set-up in Figure 2.1a.

2.1. Steps in HAC operation

The first step in the operation of the HAC system is the acquisition of

the input scenes. The images used in this research are gray-level visible and

infraed images originating from two sources: the University of Southern

California Image Processing Institute Data Base (USC), and the United States

Army Center for Night Vision & Electro-Optics 1987 Multi-Sensor Field Test

(ARMY) (see Appendix for examples). These imagas comprise a "test-world" for

research purposes.
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The second step in the operation of the HAC system is processing the

available input scenes. A computer is used to binarize the images and to

download the results to the input plane SLM. The binarization process is

discussed in Section 3. The binarized image is stored for later use in the

process of optical correlation by computer simulation.

The third step in the operation of the HAC system involves hybrid

electro-optical functions. As shown in Figure 2.1a, a HeNe laser beam

(wavelength 632.8nm) is expanded and collimated to illuminate the input scene

SLM. The limited modulation capability of the SLM requires a binary image.

This SLM acts as a transparency so that the output is a pure amplitude

function encoding the binarized image. The first lens generates the Fourier

transform of this function at the filter plane SLM (in a time that equals the

input-filter plane distance divided by the speed of light). The computer

processor retrieves a filter from a previously stored bank of filters. The filters

are ternary phase amplitude filters (TPAFs) and are further discussed in

Section 4. These filters modulate the phase using two phase states or block the

light compltely. The second SLM implements a filter by simple multiplication

with the Fourier transform of the input scene. If only the target is present the

output of the filter SLM approximates a plane wave with a direction related

to the target position. The second lens produces the Fourier transform of the

output of the second SLM at the 2-D detector. If a target is present in the

input scene, then a plane wave is the output of the second SLM and a delta

function or bright spot appears on the detector at the target location.
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Step four of HAC system operation requires a decision process. The

output of the 2-D detector is processed using a peak-finding routine. If a peak

is found that is distinguishable from clutter, then target recognition is

accomplished; if no peak is found then the processor must download the next

filter from the bank of filters to the filter plane SLM. The process of steps 3 &

4 is carried out until either a target is recognized or all of the filters are

scanned with no recognition accomplished. There exist smart filtering

strategies which do not require all filters to be scanned.

2.2. Neural networks in HAC operation

The process in step 3 can be simulated by computer using appropriate

digital image processing algorithms. The Fast Fourier Transform (FFT)

algorithm accomplishes the task of the first lens. This algorithm inputs the

stored real-valued binarized scene (created in step 2 of the HAC process) and

outputs the complex-valued Fourier transform of the scene. This complex-

valued function is then multiplied pixel-by-pixel with one of the filters from the

filter bank, and the Inverse Fast Fourier Transform (FFII) is then performed.

The squared modulus operation is performed on the FFTI output, which

simulates the 2-D detector recording (assuming that the 2-D detector responds

linearly with irradiance). This output is then processed as in step 4 of the HAC

system. Once again the steps 3 & 4 are repeated until a target is recognized

or the bank of filters is -xhdausted.

Typically, extensive processing time is needed not only to scan through

the filters but also to search each output of the 2-D detector array for a
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correlation peak. Figure 2.1b illustrates the concept of incorporating a neural

network processor in the HAC system to reduce the number of correlations

performed. The research performed here assumes that the location of a

potential target is known. The input scene is gray-level and at the disposal of

the neural processor, and following a consistent sampling technique using

these gray-level values a neural network can be used to synthesize a filter for

correlation in a short time. Only one filter is synthesized by the network, and

hence only one complete correlation is necessary to determine whether or not

a target is in the scene. Selection of the sampling technique is important and

is discussed in Section 5. Selection of the neural network also affects the

results, and a discussion of appropriate neural networks is given in Section 6.
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8. INPUT SCENE BINARIUZATION

&.. Binarization techniques

Two important image storage techniques are used in digital image

processing. The first method stores an image by coded variations in intensity,

which is accomplished by assigning one of many gray-level intensity values to

each pixel in the image. This type of coding is limited by the dynamic range of

the acquisition equipment or in some cases by the storage system. The pixels

in the images used in this research are assigned gray-level pixel values from

0 (black) to 255 (white). Each pixel requires one byte of storage space. For an

image of 128 by 128 pixels the required storage space is 16,384 bytes (not

including 124 bytes for the image file header). Many optical devices, such as

the MOSLMs, cannot represent a gray level image and hence a more restrictive

coding method must be employed. The second coding method thresholds each

pixel at some value between 0 and 255 so that the resulting image file is filled

with either 0's (representing "off") or 255's (representing "on") at each pixel

location.

Gray-level images contain more target information and it would be

advantageous to keep the images in gray-level format for use in the optical

correlator. If this were possible the binarization prepro, step would not

be necessary. The most important reason for binarizing images is due to
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restrictions on the SIMs used in the input and filter plane of the HAC system.

At each pixel location these devices either block the light completely, let the

light pass through u ed, or phase shift the light by 180 degrees, and it

is not possible to download a gray-level image to such a device. The input

plane SIX creates a pure binary amplitude encoded image similar to the

coding that could be obtained by placing a mask with transparent and opaque

regions at the SLM location.

Studies on binarization techniques have been made [Johnson, 1991]. A

simple technique uses the original gray-level input image values and

thresholds on a value between 0 and 255. The binarized image has different

characteristics for different threshold values. A low threshold value tends to

transform a large number of the pixels to the 255 or "on" value and yields

"blob-like" binarized image characteristics. A high threshold value tends to

result in a binarized image with less information and, in some instances, too

little information to recognize a t, Thus, a simple thresholding value for

binarization is not adequate fox implementation in the HAC system.

Histograms of pixel values for typical backgrounds and targets in Figures 3.1

through 3.5 show that the background and target pixel intensity distributions

commonly overlap. Thresholding at a particular value-tends to emphasize the

background information as much as the target information. Thus another

approach which separates the pixel intensity distributions of the background

and target before binarization is needed.
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LI. Edg...nha ud.and-thr. hold binaizton teh ique

A successful binarization technique has been developed [Johnson, 1991].

In this technique the input image is edge enhanced before thresholding, as

described below. Edge enhancement is accomplished using a 2 x 2 square grid

of pixel values from the input i•Wg The maximum difference of pixel

intensity within the grid is computed. This value replaces the upper left corner

value of the grid in the new edgwenhanc image. Histograms of pixel values

of backgrounds after edge enhancement ilustrated in Figures 3.1 through 3.5

show a strong shift toward a low intensity distribution, which is helpful in

selecting a threshold level. Using statistics a threshold level can be chosen

such that a large portion of the background pixels can be set to zero while not

severely degrading the target. This level is selected usmg the expression

Thrmehold = mean + 3DM * standard devdion,

where SDM is defined as the standard deviation multiplier. Appropriate

selection of the SDM yields improved results for optical correlation using the

peak-to-clutter ratio as a metric. An SDM of 1.8 as illustrated in Figure 3.6

was found to yield the best results using the peak-to-clutter ratio metric and

was used for the research reported here. The peak-to-clutter ratio is the ratio

in decibels of the energy in the target peak to the energy in the largest clutter

peak.
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Figure 3.1 (a) Truck target with histogram, (b) truck target after
edge enhancement with histogram.
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(a)

(b)

Figure 3.2 (a) Truck on cityT0 backrund with histogram, (b) truck on cityT0
backgound after edge enhancement with histogram.
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Figure 3.3 (a) Truck on trbk70 background with histogram, (b) truck on trbk70

background after edge enhancement with histogram.
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Figure 3.4 (a) Track On Uewbk8O background with histogram, (b) truck on newbk8Obackground after edge enhancement with histogram.
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Figure 3.5 (a) Truck on bushy background with histogram, (b) truck on bushy
"background after edge enhancement with histogram.
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(a) (b)

(c) (d)

Figure 3.6 Binaried tucks using an SDM of 1.8: (a) on city7O background, (b)
on trbk7O background, (c) on newbk8O background, (d) on bushy background.
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4. FILTER ENCODING

4.1. Encoding requirements and te nque

The HAC system uses a MOSLM at the correlator filter plane. Each

pixel in the SLM may be operated in three states: two states that rotate the

plane of polarization approximately + or - 6 degrees and one state that scatters

the light out of the system (Ross, 1983; Psaltis, 1984; Kast, 1989]. Light

incident on the filter plane represents the Fourier transform of the binarized

input image. Light passing through the input plane SLM is linearly polarized,

and light passing through the filter plane SLM is analyzed using an orthogonal

polarizer. Each of the two SLM states that rotate the plane of polarization

contains a component along the pass axis of the analyzer. There is a relative

phase shift of 180 degrees between the two states, and thus a relative

amplitude change is produced. In effect, the pixels set to one state pass the

Fourier transform without alteration, and the pixels set to the other state alter

the Fourier transform by a phase shift of 180 degrees or amplitude

multiplication of -1. The third state scatters most of the light out of the system

and thus can be represented by zero. Therefore, using polarized light, an SLM,

and an analyzer, it is possible to encode a filter with amplitudes of +1, -1, and

0 at each pixel location. The TPAF is defined by these values and thus consists

of a BPOF multiplied by a binary amplitude pattern.
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A TPAF filter for pattern recognition is generated by first taking the

Fourier transform of a target, which is accomplished using the FFT algorithm.

In general, the target has a complex-valued Fourier transform so that each

pixel value is represented by a point in the complex plane (e.g. a 128 by 128

image has 16,384 complex valued samples). Producing a BPOF from these

values requires choosing a line through the complex plane so that all pixel

values on one side of the line are assigned a phase of 0 degrees (amplitude

unchanged) and all values on the other side are assigned a phase of 180

degrees (amplitude multiplied by -1). The angle that this line makes with the

imaginary axis is the Threshold Line Angle (TLA) as illustra~ed in Figure 4.1

[Flannery, 1988]. Varying the TLA mak-,s it possible to achieve improved

correlation performance [Flannery, 1989]. A TLA of 0 results in a cosine BPOF

that is symmetric and hence reduces the storage requirements of the system

by one-half, so that only 8192 values are needed to characterize the BPOF

portion of the filter. A TPAF filter is then created by multiplying the BPOF

filter by a 10-60 pixel radius bandpass amplitude pattern which sets those

pixels outside this band to the zero state. This bandpass was chosen to reduce

the number of necessary coded values needed to represent the filter.

4.Z. Adopted encoding technique

The above procedure yields an excessive number of outputs for neural

network implementation, and an encoding technique is needed to reduce this

number. The bandpass or binary amplitude pattern for a 128 by 128 pixel filter

has a low-spatial-frequency block radius of 10 pixels and a high-spatial-
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frequency cut-off radius of 60 pixels. To further decrease the number of pixel

values, a superpixel filter is produced by defining 3 x 3 superpixels and storing

only one value of +1 or -1 per superpixel. The use of a superpixel filter blurs

the impulse response of the filter, but the correlation performance is still

acceptable. A superpixel filter allows for compression of the number of stored

values from 8192 to 600, which is suitable for neural network implementation

on desktop computers. When the filters are used for correlation each of the 600

superpixel values is expanded to form the nine pixels it represents. Figure 4.2

illustrates a typical 128 by 128 BPOF and the reduced 10-60 bandpass

superpixel filter used for this research for a truck at 0 degree rotation.

The input scenes are binarized in accordance with the procedure

described in Section 3. This procedure uses a threshold value related to the

mean and standard deviation of the edge-enhanced input image, so that for

different backgrounds the target is binarized using different thresholds.

Variations in the target due to binarization must be accounted for when

creating a filter. By superimposing the target on different backgrounds and

examining the image after binarization, it is possible to create a binarized

target for filter generation that correlates well with a variety of backgrounds.

The approach taken here binarizes the target for filter generation using many

SDM multipliers. Each of these binarized targets is used to generate a filter,

and each of these filters is used in a computer simulated correlation with the

target superimposed on a variety of backgrounds.
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The SDM multipliers for filter generation varied from 3.0 to 5.0.

Different SDM multipliers were needed for filter generation because in this

process background information is not present. The binarization process was

repeated for each orientation of the target used in training a neural network.

The performance of the filter generated for a particular SDM may be good for

a particular background but poor for another. By examining the peak-to-clutter

ratio for each SDM and each background, it was possible to choose an SDM

and generate a filter that had acceptable correlation performance for any of the

backgrounds illustrated in the Appendix.

The choice of the SDM for filter generation was important for acceptable

correlation performance and varied chaotically with rotation of the target. Thus

it was necessary to fix the SDM value for the input image for use in a real

system. The SDM value for the input image varied slightly from 1.5 to 2.1, but

the best results using peak-to-clutter as a metric were at 1.8. Table 4.1 shows

SDM values used for filter generation for target rotations from 0 to 90 degrees

and for an input image binarization SDM of 1.8 that produced the best

correlation performance. For 0 degree target rotation an SDM of 3.6 was used

to produce the binarized target illustrated in Figure 4.3. This target can be

compared to the binarized truck in the input scenes illustrated in Figure 3.6.

81



Angle SDM Angle SDM Angle SDM Angle SDM

0 3.6 2 4.0 4 4.8 6 4.4
8 4.4 10 4.2 12 4.4 14 3.8
16 4.6 18 4.6 20 4.4 22 4.0
24 4.2 26 3.6 28 4.0 30 4.0
32 4.4 34 3.8 36 4.2 38 4.0
40 4.2 42 3.8 44 4.0 46 3.6
48 4.6 50 3.8 52 4.0 54 4.4
56 3.8 58 3.6 60 3.8 62 3.6
64 4.0 66 3.6 68 4.2 70 3.8
72 3.8 74 3.8 76 4.4 78 3.6
80 4.4 82 4.0 84 4.6 86 3.6
88 4.6 90 4.4

Table 4.1 SDM values for filter generation using an input plane SDM of 1.8.

Imaginary
Axis

TLA

+1

Real Axis

Figure 4.1 Illustration of TLA binarization of Fourier transform.
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(a)

(b)

Figure 4.2 (a) BPOF made from the binarized Fourier transform of a truck at
0 degree rotation, (b) the reduced 10-60 bandpass TPAF made from (a).
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Figure 4.3 Truck target binarized using a SDM of 3.6.
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5. INPUT SCENE SAMPLING

5.1. Sampling requirements and techniques

To effectively train a neural network, suitable input and output

variables must be identified. The goal in this research is to simulate the

relationship between the input plane and the optimum filter for the optical

correlator. This relationship may be established by determining the orientation

of a target, creating an appropriate filter, and downloading the filter to the

filter plane SLM. This process may be too slow to be used successfully in the

HAC system. However, by choosing representative examples of input scenes it

is possible to train an artificial neural network to learn the input/ output

behavior, and this learning can be used in real time in the HAC system.

Neural network inputs for filter synthesis may be selected in many

ways. All neural network inputs for this research were obtained from the input

gray-level image. One sampling method, illustrated in Figure 5.1, used the

gray-level pixel values in a 5 x 5 grid centered on the target. All except the

center pixel value changed their values as the target was rotated, and on

average the fraction of off-target pixel values was 10-15 percent. The 25

intensity values were from the box regions indicated on the images and in the

illustration. For all backgrounds there was a discernable difference in each of

the 25 intensity values for each two degrees of rotation. In both cases
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illustrated, the upper right corner of the sampling grid extended into the

background, and pixel values on the background were constant. Using part of

the background for neural netwock inputs enabled the incorporation of noise.

The 5 x 5 grid sampling technique allowed for successful filter synthesis using

back-propagation neural networks if gray-level images were used in the input

plane and TPAFs were used in the filter plane.

Unfortunately, gray-level input plime images can not be implemented

using the SLMs described for the HAC system. A simple 5 x 5 pixel grid does

not adequately represent input/ output behavior for neural network training

for filter synthesis with the binary input images that must be used in the HAC

system. Thus, for binary correlator input plane images it is necessary to use

a different input plane sampling technique.

5.2. Adopted sampling technique for binary correlator input images

Two techniques were developed with the goal of training a neural

network to perform well independent of background.

One technique used a 9 x 9 sampling grid centered on the target and an

algorithm that reduced the 81 values in the grid to 25 values. This

transformation of 81 to 25 values is illustrated in Figure 5.2. The

transformation algorithm, which was designed to yield gradual but significant

pixel value changes as the target was rotated, proceeds as follows. For each

row of the 9 x 9 array the average deviation from the average row value is

computed. The same computation is performed for each column, diagonal

direction, and center 5 x 5 grid of values. The total number of values generated
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is thus 25 (9 rows + 9 columns + 6 diagonal directions + center 5 x 5 grid.

25). Examples of actual backgrounds with the sampling grid superimposed are

illustrated in Figure 5.3. It was found that this sampling technique allows the

network to perform relatively independently of angle, but the technique

degrades when tested with the target superimposed on different backgrounds

not included in the training set.

A second sampling technique was developed to address the degradation

problem. This technique sections the 9 x 9 grid into 36 wedges and computes

the total intensity value in each wedge. The horizontal and vertical wedges

depend only on one row or column and are not used for inputs to the neural

network, thus avoiding the problem of the previous sampling technique where

all inputs depended on only one row or one column. The 32-value input plane

sampling technique is illustrated in Figure 5.4. It was found to be successful

for neural network interpolation independent of target background or noise.
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(a) (b)

(c) (d)

Figure 5.1 A 5 x 5 pixel grid superpixel on (a) truck on city70 background
at a rotation of 0 degrees, (b) truck on city70 background at a
rotation of 20 degrees, (c) truck on trbk70 background at a
rotation of 0 degrees, and (d) truck on trbk7O background at a
rotation of 20 degrees.
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, - Pixel used for positive slope diagonals

-Pixel used for negative slope diagonals

Pixel used for both positive and
negative slope diagonals

Figure 5.2 9 x 9 pixel grid used to obtain 25 input values for neural network
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(a) (b)

(C) (d)

Figure 5.3 A 9 x 9 pixel grid superpixel. on (a) truck on city70 background
at a rotation of 0 degrees, (b) truck nu city7o background at a
rotation of 20 degrees, (c) truck on trbk70 background at a
rotation of 0 degrees, and (d) truck on trbk7O background at a
rotation of 20 degrees.
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- Wedge not used for neural network inputs

Figure 5.4 Formation of 32 wedges for neural network inputs from a 9 x 9 pixel grid.
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6NEURAL NETWORK DESIGNS

6.1 Neural network architecture and training

Neural computing attempts to use architectures and processing

techniques similar to those found in biological neural systems. Biological brains

store and learn information using cells called neurons. Each neuron has

associated with it input dendrites and an output axon. The input dendrites

receive chemical stimuli through a synapse connection from many other

neurons by means of their respective axons. If enough total stimulus is

present, the neuron "fires" by releasing a signal along its axon. The strength

of this signal is determined by the incoming stimuli to the dendrites. The

reactions in biological brains are chemical, but they have electrical side effects

which can be measured. Learning is accomplished by adapting the strength of

the signal carried along the axon to other neurons. Memory is achieved by

storing the strengths or weights of the neuron interconnections. Modeling

neurons requires multiple variable inputs (to simulate the dendrites), a

transfer function (to simulate the neural firing threshold), and multiple

variable outputs (to simulate axon strengths connected to other neurons). By

interconnecting such model neurons it is possible to simulate processes similar

to those accomplished by biological brains. These processes are extremely

parallel and are unlike the typical Von Neuman processes which are the basis
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for modern digital computing. Digital computing is often slow and

inappropriate for solving problems such as hitting a moving ball with a bat or

backing up a 18 wheel semi-trailer truck to a loading dock.

In general, neural networks are used to establish input/ output

relationships that are not easily described by rules. If rules can be identified

for mapping the input to the output, then digital computing should be

applicable. Neural networks generate their own rules by learning from

examples. The neural networks employed here use supervised learning and

require adaptation of the neuron interconnection weights.

6.2. Back-propagation neural network

The back-propagation neural network illustrated in Figure 6.1 uses a

learning algorithm based on reducing the error between the actual output of

the network and the desired output. Error reduction is accomplished by

modifying the neuron interconnection weights. A back-propagation neural

network has at least three layers: an input layer, an output layer, and a

"hidden" layer typically not connected to any inputs or outputs. It is feed-

forward, which means that the outputs from any layer are never fed back to

previous layers. The back-propagation neural network uses delta-rule learning,

which is a gradient decent procedure that adjusts the interconnection weights

by nini *ing the sum of the squared differences between the actual neural

network output and the desired output. For an output layer of k neurons this

function is

93



E - ky

k

where dc is the desired output of the k th neuron

Ya is the actual output of the k th neuron.

The back-propagation neural network uses supervised learning, which means

that d1 is known. The value of y, is

YA -f(z

where f0v) is typically the sigmoidal transfer function
1 (v) = ____

I +e-V

The first derivative of this function is

f(v) = AV) [I - AV)].

A typical argument of this function is

where w• is the interconnection weight of the j th hidden neuron

to the k th output neuron

yj is the value of the j th hidden layer neuron.
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yj is given by

where zj is the sum of the weighted outputs of the input layer or

zi WO Yj

where wV is the interconnection weight of the i th input neuron to

the j th hidden neuron.

y5 is the i th input.

Initially the interconnection weights are set to small random values. To

minimize the sum of squared differences between the actual neural network

outputs and the desired outputs, a delta weight is determined. For hidden-to-

output layer weights the change in weights as given in Figure 6.2 is

Aw~ - I~ 8~Aw. • k YJ

where Ti is a gain constant which controls the strength of the

weight change

Sis defined in Figure 6.2.

For input-to-hidden layer weights the change in weights as given in Figure 6.2

is

Figure 6.2 illustrates the gradient descent technique used to adjust the

interconnection weights. It is advantageous to increase the learning rate by
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adding a momentum term to the delta weights [Rumenhart 1986]. For hidden-

to-output layer weights the new delta weight with momentum is

AwA (n÷l) a-, 8 y, + a Awj (n)

where n is the iteration number

a is the momentum constant, which controls the strength

of the weight change in terms of past weight changes.

For input-to-hidden layer weights the new delta weight with momentum is

Aw, (n+1) -,6 A (.? ,, + cg A-w (n)

Presenting enough representative examples of the known input/ output

behavior establishes the patterns used to interpolate or approximate the

outputs for inputs not used in training [Lipmann 1987]. These patterns are

stored in the interconnection weights.
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6A. Stretch and hammner neural network

The stretch and hammer neural network illustrated in Figure 6.3 is

designed to interpolate the training data by fitting a continuous hyper-function

of dimensionality equal to the number of inputs. This network is used for filter

synthesis as follows. First, the input space is "stretched" into the principal

component space. For the 138 input vectors of 32 values each used to train the

network, a 138 X 32 training data matrix is formed and pre-multiplied by its

transpose:

zoi.z l zlee 2 3lmz.~

where is the i th component of the j th training example with each

component scaled so that its mean (for all training examples) is zero. The

eigenvalues 1, 1, -, of this matrix are obtained as the solutions of

1 2 2U

doU -0.
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for each eigenvalue yields each orthogonal 3 i.4mensional principal

o nges (with components t), where each axis is scaled in units of its

eigenvalue. Next, a least squares hyper-plane is fit to these points using

1 2 3o

I 1  m1 .. 1  ... UuI

2 232

32~~ 32 323 1MUu 13kb)

where Aý represent the inputs in the zero-mean principal component space,

are the outputs for these inputs, b. is the intercept and the remainng ]n's are

the ilopes of the a2-dimensional hyper-plane. The ]i are determined by solving
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the above simultaneous equations. The least squares hyper-plane will not in

general match any of the outputs. To produce a perfect match at the outputs,

a radial Gaussian "hammer" is used to deform the hyper-plane until it

intrsects each utput value. This deformation is accomplished using the

following matrix algebra:

(ZI-Z,) I '/ t - " C,

where £ = ex[-1(2s)][(u 1-ut 1 +u-u)+...+u?'-un'} for i, j = 1, 2, ..., 138,

z /i are the outputs given by the least squares hyper-plane, z are the known

training outputs, si are the standard deviations of the radial Gaussians, and

c, are the radial Gaussian hammer weights. The diagonal elements of this

matrix are unity, and the standard deviations of the Gaussian hammers are

selected such that the off-diagonal elements of each column add to a value

slightly less than unity. The c1 may be obtained using Gaussian elimination,

singular value decomposition, or any of several other techniques for solving

simultaneous linear equations. The stretch and hammer neural network is

designed to exactly match every training output and to smoothly generalize for

all other outputs.
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&4 Comparison of stretch and h.mmer and back.propaation

There are important differences in the architectures of the stretch and

hamer and the back-propagation neural networks. The stretch and hammer

neural network has a number of adjustable parameters that depends on the

number of trai examples. The adjustable parameters for a back-

propagation neural network depend on the number of neurons employed. A

back-propagation neural network with k input neurons, m hidden layer

neurons, n output neurons, and no interlayer intons has km + mn

+ m + n adjustable parameters. A stretch and hammer neural network has n(k

+ 1 + p) adjustable parameters, where p is the number of examples used for

training. A 31 input, 200 neuron hidden layer, 600 output back-propagation

neural network with 50% of the interconnections randomly removed, as was

used for this research, has

0.5 * (31 .200 +200.60 *+200 +600) 63,5W0

adjustable parameters. This value is independent of the number of training

examples. Using 138 trai-in examples, as was the case for this research, a

stretch and hammer neural network has

600 * (31 + 1 + 138) - I02,000

adjustable parameters.

To compare performance of the two networks, a simple exercise involving

rotation estimation rather than filter synthesis was carried out for which both

networks had the same number of adjustable parameters. A training set of 5

examples with one input and one output was used, and the back-propagation
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neural network had two hidden neurons. The number of adjustable parameters

for both neural networks was therefore

1*(1 + 1 + 5) = (1*2 + 2*1 + 2 + 1) a 7.

The input was the average gray level value for one quadrant of a 9 x 9 pixel

grid, and the output was the in-plane angular rotation of the target. The

examples used for training were at rotation angles of 0, 8, 16, 24, and 30

degrees, and testing results were obtained at angles of 0, 1, ... , 30 degrees.

The back-propagation neural network results varied as the learning

process progressed. This variation is illustrated in Figure 6.4, which shows the

best performance for an RMS training error of 3.5%. After training the stretch

and hammer neural network yielded approximately .5 degree average error for

testing angles. At 3.5% RMS training error, the back-propagation neural

network testing results approached those of the stretch and hammer neural

network as illustrated in Figure 6.5. When the back-propagation neural

network was allowed to continue training to an RMS training error of

approximately 0%, the results show a larger error for testing, although at the

training examples the error is near zero as illustrated in Figure 6.6. Thus the

back-propagation neural network does well at retrieving the training examples

but poorly at interpolating the testing examples. The stretch and hammer

neural network retrieves the training examples exactly by definition, and in

the above exercise interpolates better than the back-propagation neural

network for the testing examples.

101



x[31 [3) x[3]
xz 2 X600

Output
buffer

Hidden 1o... 0

layer

Input .....
buffer

4111 AllAl
3  31

Y3 "•k ' Yk
Y2 2,k

Figure 6.1 (a) A back-propagation neural network with 31 inputs, 200
hidden-layer neurons, and 600 output neurons. (b) simple
processing element where wj - weighted connections,
k - neuron number in current layer, j - neuron number of
previous layer.
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Figure 6.2 Gradient descent technique used to determine changes in the

interconnection weights.
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Figure 6.3 Stretch and hammer neural network with m examples and n
inputs.
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Figure 6.4 Comparison of average error (deg) for target rotation estimation.
The back-propagation neural network was trained to various RMS
training error values. The stretch and hammer neural network
average error for testing was approximately 0.5 degrees.
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7. FILTER SYNTHESIS RESULTS

The results of four neural network filter synthesis cases are discussed

in this section. The neural network outputs for each case are the 600 coC

filter values described in Section 4. The first case uses a back-propagatio.•

neural network and 25 intensity values from a 5 x 5 target-centered pixel grid

as inputs. The second case uses a back-propagation neural network and 25

computed values from a 9 x 9 target-centered pixel grid as inputs as described

in Section 5. The third case uses a back-propagation neural network and 32

computed values from a 9 x 9 target-centered pixel grid as inputs as described

in Section 5. The fourth case uses a stretch and hammer neural network and

the same inputs as the third case. The networks were tested by varying one or

both of two input scene parameters: the angle of target rotation and the type

of cluttered background. For the gray-level correlator input scenes the angles

were offset by 2 degrees, and for the binarized correlator input scenes the

angles were offset by 1 degree. Varying the angle of rotation permitted

investigation of the performance of the network in interpolating between

training angles. Varying the type ofbackground permitted investigation of the

robustness of the network. The goal was to train the network to ignore

background effects.
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7.1. Correlation peak metrics

Two correlation peak metrics were used to evaluate neural network

performance: a peak-to-sidelobe ratio and a peak-to-clutter ratio. A ratio of less

than 3 dB is inadequate for use in the HAC system. The correlation plane is

expected to exhibit a peak near the target center. For all cases considered here

the target was superimposed on the center of a background scene. For gray

level correlator input scenes a peak finding algorithm was used to locate peaks

in three regions of the correlation plane: region 1 was a target-centered 5 x 5

pixel grid, region 2 was a target-centered 15 x 15 pixel grid excluding region

1, and region 3 was the remaining area of the 128 by 128 pixel correlation

plane. For binary correlator input scenes a peak finding algorithm was used

to locate peaks in two regions of the correlation plane: region 1 was a target-

centered 5 x 5 pixel grid, and region 21 was the remaining area of the

correlation plane. A peak-to-sidelobe ratio measurement was made for gray-

level correlator input scenes by comparing the highest peak in region 1 with

the highest peak in region 2. A peak-to-clutter ratio measurement was made

by comparing the highest peak in region 1 with the highest peak in region 3

for gray-level correlator input scenes and with the highest peak in region 2' for

binary correlator input scenes. Peak-to-sidelobe ratios were smaller than peak-

to-clutter ratios for the gray level input scenes.

109



7& Backpropagation neural network results

(5 x 5 grid, peak-to-sdelobe)

Using gray level correlator inputs and a TPAF in the filter plane, a

back-propagation neural network with 25 inputs, 200 hidden neurons, and 600

outputs successfully synthesized filters. The hidden neurons had sigmoidal

transfer functions, and the output neurons had summation transfer functions.

The network was trained on a set of 180 input scenes of 128 by 128 pixela, 90

of which corresponded to the truck target rotated at angles of 0, 4, ..., 356

degrees on a uniform gray 127 intensity-level background. The remaining 90

scenes corresponded to the truck at angles of 0, 4, ..., 356 degrees on a city

background. A single filter was produced for each rotation angle as described

in Section 4. The filters were made from the binarized Fourier transform of the

truck on a gray-level background only. Thus, there were only 90 output filter

examples, one for each training rotation angle. Two backgrounds were used so

that the neural network could be trained to ignore pixel values that were not

on the target (i.e., that were background pixels).

Figures 7.1 through 7.5 show graphs of the peak-to sidelobe ratio (in dB)

versus target rotation (in degrees) for a variety of cases. These results are

summarized in Table 7.1. The inputs were the 25 intensity values from a

target-centered 5 x 5 pixel grid. The outputs were the 600 coded values used

to generate a 10-60 bandpass 3 x 3 superpixel TPAF. Since the peak-to-clutter

ratio was always higher than the peak-to-sidelobe ratio, network performance

assessment was based on the peak-to-sidelobe ratio.
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The "zero degree filter" curve shows that more than one fixed filter is

needed to accommodate target rotation. The filter for this curve was symmetric

and was constructed from the binarized Fourier transform of the truck on a

127 gray-level background at a rotation angle of zero degrees. Performance for

this filter depends on the background. It is apparent from Figures 7.1 through

7.5 that the peak-to-sidelobe ratio decreases rapidly for only a few degrees of

rotation: target rotation by more than approximately 5 degrees decreases the

correlation peak to the noise level

The "best expected filter from network" curve shows the upper limit for

the peak-to-sidelobe ratio because the trained-for filter is used to correlate with

the input scene. Figures 7.1 through 7.5 show that the peak-to-sidelobe ratio

varies as the target is rotated, but a relatively high value is typically

maintained.

The "filter synthesized by network" curve shows performance when the

filter synthesized by the network is used to correlate with the input scene.

Performance depends on variations in scene parameters used to test the

network and is summarized in Table 7.1.

In general, when the neural network was tested for backgrounds used

in training, the network performed very well and almost matched the best

expected performance. When the angle of target rotation was offset by 2

degrees the network performance degraded slightly. However, for the city

background (which was used in training) the network performance was still

close to the best expected performance. For this case only one input parameter
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was varied, namely the rotation angle. As expected, when the background was

also varied the network performance degradation increased, but performance

was adequate for pattern recognition by optical correlation in all but 12 out of

270 testing cases. In these 12 cases the peak-to-sidelobe ratio was below the

3 dB line, which is not acceptable for use in the correlator.
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Background Angles of Comments
Rotation

Traning.
Gray 0, 4, ..., 360 The performance ofthe network matches

the best expected performance almost
exactly.

City 0,4, ..., 360 The perfa mance of the network matches
the best expected performance almost
exactly.

Testing-
City 2, 6, ..., 358 The general performance of the network

follows the best expected performance.
Performance drops below the 3 dB line
for rotation angles of 66, 242, 258, and
322 degrees.

Bushy 2, 6, ..., 358 The performance of the network is
slightly degraded. Performance drops
below the 3 dB line for rotation angles
of 130 and 310 degrees.

Newbk80 2, 6, ..., 358 The newbk80 background camouflages
the truck and a reduction in the peak-to-
sidelobe ratio is expected. The overall
performance, however, indicates
acceptable peak-to-sidelobe ratios for
target recognition. Performance drops
below the 3 dB line for rotation angles
of 78, 96, 118, 122, 130, and 210
degrees.

Table 7.1 Shows the performance of a filter synthesized by a back-
propagation neural network using a 5 x 5 sampling grid and the
peak-to-sidelobe metric for a truck rotated on a variety of
backgrounds.
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Figure 7.1 Filter synthesis results usin a back-propagation neural network
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usin as inputs 25 intensity values from a target-centered 5 x 5
pixel grid.
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Figure 7.4 Filter synthesis results using a back-propagation neural network
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using as inputs 25 intensity values from a target-centered 5 x 5
pixel grid.
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7.M. Back-propagation neural network results

(9 x 9 grid, peak-to clutter)

Using binarized correlator inputs and a TPAF in the filter plane, a back-

propagation neural network with 25 inputs (computed from the gray-level

input image), 200 hidden neurons, and 600 outputs successfully synthesized

filters. The neural network was trained on a set of 138 input scenes of 128 by

128 pixels, 46 of which corresponded to the truck rotated at angles of 0, 2,

90 degrees on a uniform gray 66 intensity-level background, 46 of which

corresponded to the truck rotated at angles of 0, 2, ... , 90 degrees on a uniform

gray 142 intensity-level background, and the remaining 46 of which

corresponded to the truck rotated at angles of 0, 2, ..., 90 degrees on a city

background. A single filter was produced for each rotation angle as described

in Section 4. The filters were made from the binarized Fourier transform of the

truck on a blank background only. Thus, there were only 46 output filter

examples, one for each training angle. Three backgrounds were used so that

the neural network could be trained to ignore pixel values that were not on the

target.

Figures 7.6 through 7.13 show graphs of the peak-to-clutter ratio (in dB)

versus target rotation (in degrees) for a variety of cases. These results are

summarized in Table 7.2. The inputs were 25 values from a target-centered 9

x 9 pixel grid as described in Section 5. The outputs were the 600 coded values

used to generate a 10-60 bandpass 3 x 3 superpixel TPAF. The "zero degree

filter", "best expected filter", and "filter synthesized by network" curves have
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the same meaning as in Section 7.2. Performance depends on variations in

scene parameters used to test the network and is summarized in Table 7.2.

When tested on the city70 background at angles of 0, 2, ..., 90 degrees

(which were used in training) the neural network performance almost matched

the best expected perfrmance. When different backgrounds were used at the

training rotation angles, the network performance degraded slightly. As

expected, at testing rotation angles (1, 3, ..., 89 degrees) the network

performance degradation increased. However, network performance was

adequate for pattern recognition (above the 3 dB line) by optical correlation in

all but 7 out of 318 testing cases.
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Background Angles of Comme-t.
Rotation

Training.
City7O 0,2, ..., 90 The performance ofthe network matches

the best expected performance almost
exactly.

Testing
City7O 1, 3, ..., 89 The general performance of the network

follows the best expected performance.
Pe.-ormance drops below the 3 dB line.
For target rotation angles of 25, 37, and
83 degrees.

Trbk7O 0,2, ..., 90 The general performance of the network
closely follows the best expected
performance.

Trbk7O 1, 3, ... , 89 The performance of the network is
adequate for pattern recognition.

Newbk80 0, 2, ..., 90 The general performance of the network
closely follows the best expected
performance.

Newbk80 1, 3, ..., 89 The general performance of the network
follows the best expected performance.
Performance drops below the 3 dB line
for a rotation angle of 25 degrees.

Bushy 0, 2, ..., 90 The general performance ofthe network
closely follows the best expected
performance. Performance drops below
the 3 dB line for a rotation angle of 66
degrees.

Bushy 1, 3, ... , 89 The general performance of'the network
closely follows the best expected
performance. Performance drops below
the 3 dB line for rotation angles of 65
and 81 degrees.

Table 7.2 Shows the performance of a filter synthesized by a back-
propagation neural network using a 9 x 9 sampling grid and the
peak-to-clutter metric for a truck rotated on a variety of
backgrounds.
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Figure 7.6 Filter synthesis results using a back-propagation neural network
for the truck on the city7O background at truck rotation angels of
09,2, ... ,9 90 degrees. The network was trained on 66 gray level,
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Figure 7.7 Filter synthesis results using a back-propagation neural network
for the truck on the city70 background at truck rotation angels of
1, 3, ... , 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 25 computed values from
a target-centered 9z•9 pixel grid.
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Figure 7.9 Filter synthesis results using a back-propagation neural network
for the truck on the trbk70 background at truck rotation angels
of 1, 3, ..., 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
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a target-centered 9 x 9 pixel grid.
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Figure 7.10 Filter synthesis results using a back-propagation neural network
for the truck on the newbk8O background at truck rotation angels
of 0, 2, ... , 90 degrees. The network was trained on 66 gray level,
142 gray level, and city7O backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 25 computed values from
a target-centered 9x•9 pixel grid.
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Figure 7.11 Filter synthesis results using a back-propagation neural network
for the truck on the newbk80 background at truck rotation angels
of 1, 3, ... , 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ..., 90 degrees using as inputs 25 computed values from
a target-centered 9 x 9 pixel grid.
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Figure 7.12 Filter synthesis results usn a back-propagation neural network
for the truck on the bushy background at truck rotation angels of
0, 2, ... , 90 degrees. The network was trained on 66 gray level,
142 gray level, and cityT0 backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 25 computed values from
a target-centered 9 x 9 pixel grid.
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Figure 7.13 Filter synthesis results using a back-propagation neural network
for the truck on the bushy background at truck rotation angels of
1, 3, ..., 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ..., 90 degrees using as inputs 25 computed values from
a target-centered 9 x 9 pixel grid.
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7.4. Back-propagation neural network results

(32 wedges, peaketo-clutter)

Using bina'ized correlator inputs and a TPAF in the filter plane, a back-

propagation neural network with 32 inputs (computed from the gray-level

input image), 200 hidden neurons, and 600 outputs successfiuly synthesized

filters. The neural network was trained on a set of 138 input scenes of 128 by

128 pixels, as described in Section 7.3.

The back-propagation neural network discussed in Section 7.3

successfully synthesized filters, but to produce filters that perform

independently of the input scene background, a different input sampling

technique was employed that used 32 values computed from wedges on a

target-centered 9 x 9 pixel grid as described in Section 5. Figures 7.14 through

7.21 show graphs of the peak-to-clutter ratio (in dB) versus target rotation (in

degrees) for a variety of cases. These results are summarized in Table 7.3. The

inputs were 32 values from a target-centered 9 x 9 pixel grid as described in

Section 5. The outputs were the 600 coded values used to generate a 10-60

bandpass 3 x 3 superpixel TPAF. The "zero degree filter", "best expected filter",

and "filter synthesized by network" curves have the same meaning as in

Section 7.2. Performance depends on variations in scene parameters used to

test the network and is summarized in Table 7.3.

When tested on the city7O background at angles of 0, 2,..., 90 degrees

(which were used in training) the neural network performance almost matched

the best expected performance. When different backgrounds are used at the

training angles the network performance degraded, but not as much as for the
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results discussed in Section 7.3. As expected, at testing rotation angles (1, 3,

.... 89 degrees) the network performance degradation increased. For the 32-

wedge sampling technique the network performed better comparec. with the

sampling technique discussed in Section 7.3 at interpolating the 600 coded

filter values for different input scene backgrounds but worse for testing angles.

However, the tietwork performance was adequate for pattern recognition

(above the 3 dB line) by optical correlation in all but 8 out of 318 testing cases.
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76

Background Angles of Comments
Rotation

Trah.g
City7O 0, 2, ..., 90 The perfom'ance ofthe network matches

the best expected performance almost
exactly.

Testing-
City7O 1, 3, ... , 89 The general performance ofthe network

follows the best expected performance.
Performance drops below the 3 dB line
for rotation angles of37 and 83 degrees.

Trbk7O 0,2, 90 The general performance of the network
follows the best expected performance
almost exactly.

Trbk7O 1, 3, ... , 89 The general performance of the network
follows the best expected performance
almost exactly.

Newbk80 012, ..., 90 The general performance ofthe network
follows the best expected performance.
Performance drops below the 3 dB line
for a rotation angle of 42 degrees.

Newbk80 1, 3, ..., 89 The general performance of the network
follows the best expected performance.
Performance drops below the 3 dB line
for rotation angles of 41 and 45 degrees.

Bushy 0, 2, ..., 90 The general performance of the network
follows the best expected performance.

Bushy 1, 3, ..., 89 The general performance of the network
follows the best expected performance.
Performance drops below the 3 dB line
for rotation angles of 45, 55, and 83
degrees.

Table 7.3 Shows the performance of a filter synthesized by a back-
propagation neural network using the 32 wedge sampling
technique and the peak-to-clutter metric for a truck rotated on a
variety of backgrounds.
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Figure 7.14 Filter synthesis results using a back-propagation neural network
for the truck on the city70 background at truck rotation angles of
0, 2, ... , 90 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 31 computed values from
a target-centered 9 x 9 pixel grid.
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Figure 7.15 Filter synthesis results using a back-propagation neural network
for the truck on the city70 background at truck rotation angles of
1, 3, ..., 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ..., 90 degrees using as inputs 31 computed values from
a target-centered 9 x 9 pixel grid.
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Figure 7.16 Filter synthesis results using a back-propagation neural network
for the truck on the trbk70 background at truck rotation angles
of 0, 2, ..., 90 degrees. The network was trained on 66 gray level,
142 gray level, and city7O backgrounds at truck rotation angles
of 0, 2, ..., 90 degrees using as inputs 31 computed values from
a target-centered 9 x 9 pixel grid.
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Figure 7.17 Filter synthesis results using a back-propagation neural network
for the truck on the trbk70 background at truck rotation angles
of 1, 3, ... , 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 31 computed values from
a target-centered 9zx9 pixel grid.
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Figure 7.18 Filter synthesis results using a back-propagation neural network
for the truck on the newbk80 background at truck rotation angles
of 0, 2, ... , 90 degrees. The network was trained on 66 gray level,
142 gray level, and cityT0 backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 31 •omputed values from

a target-centered 9 x 9 pixel grid.
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Figure 7.19 Filter synthesis results using a back-propagation neural network
for the truck on the newbk80 background at truck rotation angles
of 1, 3, ... , 89 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles

of 0, 2, ..., 90 degrees using as inputs 31 computed values from a
target-centered 9 z 9 pixel grid.
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Figure 7.20 Filter synthesis results using a back-propagation neural network
for the truck on the bushy background at truck rotation angles of
0, 2, ..., 90 degrees. The network was trained on 66 gray level,
142 gray level, and city70 backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 31 computed values from
a target-centered 9 x 9 pixel grid.
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Figure 7.21 Filter synthesis results using a back-propagation neural network
for the truck on the bushy background at truck rotation angles of
1,3, ... , 89 degrees. The network was trained on 66 gray level,
142 gray level, and city7o backgrounds at truck rotation angles
of 0, 2, ... , 90 degrees using as inputs 31 computed values from
a target-centered 9 x 9 pixel grid.
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7.A Stretch and hammer neural network results

(82 wedges, peak-to-clutter)

Using binarized correlator inputs and a TPAF in the filter plane, a

stretch and hbmmer neural network with 32 inputs (computed from the gray-

level input image) and 600 outputs successfully synthesized filters. The neural

network was trained on a set of 138 input scenes of 128 by 128 pixels as

described in Section 7.3.

The results discussed in Section 7.4 indicate performance independent

of the background, however, there was a slight degradation in performance at

angles not included in training. This effect is expected since the wedge

sampling technique is sensitive to rotation angles. For comparison, a stretch

and hammer neural network was trained using the same wedge inputs.

Figures 7.22 through 7.29 show graphs of the peak-to-clutter ratio (in dB)

versus target rotation (in degrees) for a variety of cases. These results are

summarized in Table 7.4. The inputs were 32 values from a target-centered 9

x 9 pixel grid as described in Section 5. The outputs were the 600 coded values

used to generate a 10-60 bandpass 3 x 3 superpixel TPAF. The "zero degree

filter", "best expected filter", and "filter synthesized by network" curves have

the same meaning as in Section 7.2. Performance depends on variations in

scene parameters used to test the network and therefore is summarized in

Table 7.4.

When tested on the city70 background at angles of 0, 2, ..., 90 degrees

(which were used in training) the neural network performance, by definition,

matched the best expected performance exactly. At training angles the network
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performane degraded slightly for the trbk7O background and more so for the

newbkSO and bushy backgrounds. At testing rotation angles (1, 3, ..., 89

degrees) the neural network performance was adequate for pattern recognition

(above the 3 dB line) by optical correlation in all but 42 out of 318 testing

cases.
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Background Angles of Comme-t.
Rotation

Trai.in.
City7O 0, 2, ..., 90 The pertbrnance of the network matches

the best expected performance exactly.
Testing-
City7O 1, 3, ..., 89 The performance of the network drops

below the 3 dB line in 8 out of 45 tests,
filters were successfully synthesized
approximately 80% of the time.

Trbk7O 0,2, ..., 90 The general performance of the network
follows the best expected performance.

Trbk7O 1, 3, ..., 89 The general performance of the network
is adequate for pattern recognition.
Performance drops below the 3 dB line
for rotation angles of 43 and 75 degrees.

Newbk80 0,2, ..., 90 The general performance of the network
is adequate for pattern recognition.
Performance drops below the 3 dB line
for rotation angles of 24, 40, 42, and 46
degrees.

Newbk80 1, 3, ..., 89 The performance of the network drops
below the 3 dB line in 8 out of 45 tests,
filters were successfully synthesized
approximately 80% of the time.

Bushy 0, 2, ..., 90 The performance of the network drops
below the 3 dB line in 8 out of 46 tests,
filters were successfully synthesized
-approximately 80% of the time.

Bushy 1, 3, ..., 89 The performance of the network drops
below the 3 dB line in 13 out of 45 tests,
filters were successfully synthesized
approximately 65% of the time.

Table 7.4 Shows the performance of a filter synthesized by a stretch and
hammer neural network using the 32 wedge sampling technique
and the peak-to-clutter metric for a truck on a variety of
backgrounds.
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Figure 7.22 Filter synthesis results using a stretch and hammer neural
network for the truck on the city70 I at truck rotation
angles of 0,-2,..., 90 degrees. The network was trained on 66 gray
level, 142 gray level, and city70 backgrounds at truck rotation
angles of 0, 2, ..., 90 degrees usin as inputs 31 computed values
from a target-centered 9 x 9 pixel grid.
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Figure 7.26 Filter synthesis results using a stretch and hammer neural
network for the truck on the newbkSO background at truck
rotation angles of 0, 2, ... , 90 degrees. The network was trained
on 66 gray level, 142 gray level, and city70 backgrounds at truck
rotation angles of 0, 2, ... , 90 degrees using as inputs 31 computed
values from a target-centered 9 x 9 pixel grid.
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Figure 7.27 Filter synthesis results using a stretch and hammer neural
network for the truck on the newbk80 background at truck
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rotation angles of 0,52, ... 90 degrees using as inputs 31 computed
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Figure 7.28 Filter synithesis results using a stretch and hammer neural
network for -the truck on the bushy background at truck rotation
angles of 0, 2, ... , 90 degrees. The network was trained on 66 gray
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angles of 0,2,..., 90 degrees using as inputs 31 computed values
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7.A Comparison of back-propagation and stretch and hammer neural

network results

Both the stretch and hammer neural network and the back-propagation

neural network perform a mapping form the input space to the output space.

The stretch and hammer neural network uses a deformed least squares plane

of dimensionality equal to the number of inputs to map the inputs to the

outputs. The back-propagation neural network also uses a function of

dimensionality equal to the number of inputs. However, this function is created

by reducing the sum of the squared differences between the network outputs

and the training outputs. This mapping function is deformed or altered by

changin the values of the inteonnectin weights.

The results show that the stretch and hammer neural network did not

perform as well as the back-propagation neural network using the same input/

output training set. However, the stretch and hammer neural network had a

total of 138 + 31 + 1 = 170 adjustable parameters for each output coded filter

value, whereas the back-propagation neural network had 0.5( 31 x 200 + 200

+ 1) = 3300.5 adjustable parameters for each such value. Thus the back-

propagation neural network had an advantage of approximately 17 times in

the number of adjustable parameters available for characterizing the rules for

mapping inputs to outputs. However, the 3300.5 adjustable parameters were

not independent because, as indicated in Section 6.4, the average number of

adjustable parameters per output for the back-propagation neural network was

63,500/600 = 105.8. Current software limits the number of adjustable
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parameters for the stretch and hammer neural network, but if this number

could be increased to 3300 it is reasonable to expect that this network would

have comparable or superior performance compared to the back-propagation

neural network.
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8. SUMMARY AND CONCLUSION

The feasibility of using neural networks to synthesize filters for a HAC

system was demonstrated. Both stretch and hammer and back-propagation

neural networks successfully synthesized filters. The stretch and hammer

neural network trained more rapidly and had the advantage of exact learning.

For the filter synthesis results obtained here the back-propagation neural

network performed better than the stretch and hammer neural network,

although the back-propagation neural network required approximately. 40

hours to train on a 486-class 33 MHz desktop computer, whereas the stretch

and hammer neural network required approxmately 3 hours. However,

training time and performance depended on the number of training examples

and the number of hidden neurons. In a simple test where these variables were

selected so that the number of independent adjustable parameters (or neural

network weights) were the same, the stretch and hammer neural network both

trained more rapidly and out-performed the back-propagation neural network.

A relatively new input scene binarization technique was used. This

technique involved edge-enhancement prior to thresholding to retain more

target information, thus providing a sufficient signal (target) to noise

(background) ratio for pattern recognition for a variety of cluttered

backgrounds.
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TPAF filters were used for correlation A filter was generated by

binarizing a target using the same technique as for input scene binarization,

performing a computer simulated Fourier transform on this binarized target

(using TLA = 0 degrees to create a symmetric cosine BPOF), averaging 3 x 3

pixel grids, and multiplying the resulting 3 x 3 superpixel BPOF by a 10-60

pixel radius bakdpass to create a TPAF with only 600 coded values. The neural

networks used in this research were trained to produce these 600 values as

outputs.

The training inputs to the neural networks were values determined from

the input scene. An input scene sampling strategy was developed that provided

a sufficient amount of representative information to the neural networks. A

variety of sampling strategies were analyzed. The strategy that most

successfully ignored background effects was a 32 wedge input scene sampling

technique. Sampling the input scene using target-centered sampling grids

implies previous knowledge of target position. This restriction limits the

applicability of filter synthesis to target tracking or target confirmation tasks.

Advances have been made in blob recognition which may enable neural

network filter synthesis to be used for target recognition. If after binarization

the center of a blob can be found (representing the center of the target in the

input scene), then it should be possible to use an input plane sampling gri(d L'.

neural network filter synthesis.

Pattern recognition by optical correlation relies on using the properties

of the Fourier spectrum of a target. Unfortunately, the Fourier spectrum varies
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when the target undergoes rotation, scale, aspect, or other distortions. A single

filter can successfully correlate only a limited range of these distortions. Thus

succesful correlation requires a large number of filters to accommodate all

possible orientations and scalings of a target This research shows how neural

network filter synthesis can accommodate in-plane rotation distortions. This

filter synthesis approach may be feasible for accommodating other distortions

if adequate input/ output training sets are used.

Using a larger filter bandpass should allow for improved neural network

filter synthesis performance, because more neural network outputs could be

employed. Correlation performance could also be improved by using every pixel

to synthesize filters. Using every pixel also would require nine times more

neural network outputs, but this increase could be accommodated by employing

more than one network to produce the coded filter values. Correlation

performance could also be improved by training a separate neural network to

learn a complex binary amplitude pattern of the TPAF filter.
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APPENDIX
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Figure A. 1 Truck image.
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Figure A.2 City7O background.
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Figure A.3 Trbk70 background.
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Figure A.4 Newbk8O background.
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Figure A.5 Bushy background.
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COMPARISON OF RADIAL BASIS FUNCTION
AND CARDINAL CUBIC SPLINE INTERPOLATION

Steven C. Gustafson, Troy A. Rhoadarmer, John S. Loomis,
and Gordon R. Little

University of Dayton, 300 College Park,
Dayton, Ohio 45469-0140

A key problem in the implementation of radial basis function neural networks (e.g.,
Moody and Darken, 1987) is the determination of basis function widths. A diagonal dominance
technique has been described (Gustafson, et aL 1992ab) and demonstrated (Gilbert and
Gustafson, 1993) that determines these widths by relating them to neural network stability, i.e.,
the widths are selected so that small changes in the training data yield small changes in the
neural network weights. Here this technique is investigated for one-variable (single-input)
functions by comparing Gaussian radial basis function interpolation with cardinal cubic spline
interpolation, which is the smoothest possible interpolation according to the least integrated
squared second derivative criterion required by regularization theory (e.g., Poggio and Girosi,
1990).

A Gaussian radial basis function neural network interpolates m training points (xi, yi)
using f(x) = ljcjexp[-(x - xj)2/aj2], where the cr are basis function widths and the cj are neural
network weights. Once the cj are determined the cj are found by solving m simultaneous linear

equations in m unknowns yj = Ijcjaij, where aij = exp[-(xj - xj)2/2aj2]. The diagonal dominance
technique selects the aj such that the matrix A = {aij} is diagonally dominant by an amount E for
each column, i.e., so that E = aii - -i;jaij for all j. It is well known that the oo-norm of A is 1IAIIo
= maxiyjlaijl and that the oc-norm and the 2-norm are related by IIAi 2 < 4M 11AII,. Also, it has
been shown that the oo-norm of A- 1 is IIA-1I11. l/e (Varah, 1975). Using aii = 1, the 2-norm
condition number of A is thus K2 = IIA1I2 IIA-11I2 < m(2 - e)/E. Finally, stability defimed by 1/rc is
bounded by 1/rc Z [(K2ry)-l - 1]12 for K2 ry < 1, where rc -- [,(ci, - ci)2/Xici 2] 1/2 is the fractional

root-mean-square coefficient change, ry = [T-(yi' - yi)2/7iyi2]1/2 is the fractional root-mean-
square data output change, and the ci change to ci' if the yj change to yi' (e.g., Golub and Van
Loan, 1989). Thus for positive e the diagonal dominance technique ensures a bound on neural
network stability. This technique (Gustafson, et al. 1992a) has been suggested for (Gustafson et

al., 1992b) and successfully demonstrated in (Gilbert and Gustafson1993) image processing
applications. For a specified e determination of the aj using the diagonal dominance technique
requires the solution of m independent nonlinear equations eac' one unknown, i.e., the
solution of E = aii - •,jaij for aj is required for all j.
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Figue la shows points between x = -3 and 3 for an impulse function at x - 0 that is
randomly sampled at 31 points, where the maximum and minimum points satisfy lx1 > 7. A
e 0 Gaussian radial basis function curve and a cardinal cubic spline curve that interpolate these
31 points are also shown, where the spline curve is cardinal because it is independent of the
(distant) end conditions. Figure lb is a plot of the root-mean-square difference between these
curves from x - -3 to 3 a a function ofe it indicas that z - -0.19 yields the optimum
agreement (a plot of maximum absolute difference has nearly the same minimum). Figure Ic is
a histogram of e values that yield the optimum agreement for many sets of 31 random training
points, where the x values are uniformly random and extend from x < -7 to x > 7 and where the
y values are uniformly random from 0 to 1 between x = -3 and 3 and are constant from the
minimum and maximum x within this range to x < -7 and x > 7, respectively.

These results indicate that Gaussian radial basis function neural networks should have
basis function widths determined by diagonal dominance with a positive e as close to =o as
acceptable neural network stability permits. Figure Ic indicates that such neural networks are
most likely to yield interpolation curves in optimal agreement with the maximum-smoothness
interpolation curves determined by regularization or spline methods. However, unlike these
methods, radial basis function techniques are readily applicable to neural networks with multiple
inputs and nonuniform training points.
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Figure 1. (a). Randomly sampled impulse function with e = 0 Gaussian radial basis
function (broken) and cardinal cubic spline (solid) interpolation curves. (b). Plot
of root-mean-square difference between these curves as a function of diagonal
dominance L. (c). Histogram of E values that yield minimum root-mean-square
differences between Gaussian radial basis function and cardinal cubic spline
interpolation curves for random taining points.
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