" REPOR’

NCUGNG SUGQESIIONS 107 rEUCINY this burd
VA 222024302, ang 1o the Oftice o) Mana,

AD-A
llllllJHlfHIllIIIIINIIIHIIIIHJIIIIIIWI

1. AGENCY USE ONLY (Lesve blank)

2. REPORT DATE
April 1994

[Form Approved - .
OMB No. 0704-0188

or

9 data * \g and

mwm&mawmmumwunm

atong and Reports, 1215 Jelterson Devis Highway, Sule 1204, Asingion,

v OC 20503,

3. REPORT TYPE AND DATES COVERED
Special Technical

4. TITLE AND SUBTITLE

Simulating Fail-Stop in Asynchronous Distributed

Systems

NAG2-593

6. AUTHOR(S)

Laura Sabel, and Keith Marzullo

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Computer Science

Cornell University

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR 94-1413

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA/ISTO

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED / ,»

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

PLEASE SEE PAGE 1

14. SUBJECT TERMS

15. NUMBER OF PAGES
24

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF
ABSTRACT
UNLIMITED

NSN 7540-01-280-5500

Standarg Form 208 (Rev. 2-89)
Prescrided by ANS! 8\, Z39-18
298-102

N
P 1

. - |

: 2

S > |

| - .,

! D;d !
2 -

i oy »

S e

Simulating Fa

synchronous D

- ~BestAvailable Copy -~ -
A iibiLlS{e

L

P - o 8 - : e ¥ S P NN

- Best
Available
Copy

Cimulating Fail-Stop in
Asynchronous Distributed Systems*

Laura Sabel**
Keith Marzullo

TR 94-1413
March 1994

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

s g =TI B
PTIC GUALYTS Baioa- 2391

* This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames grant number NAG 2-593, and by grants from IBM and
Siemens. The views, opinions, and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense position,
policy, or decision.

** This author is also supported by an AT&T PhD Scholarship.

Simulating Fail-Stop in Asynchronous Distributed Systems”

Laura S. Sabel! Keith Marzullo
Cornell University University of California, San Diego
Department of Computer Science Department of Computer Science
10 March 1994
Abstract

The fail-stop failure model appears frequently in the distributed systems literature. How-
ever, in an asynchronous distributed system, the fail-stop model cannot be implemented. In
particular, it is impossible to reliably detect crash failures in an asynchronous system.

In this paper, we show that it is possible to specify and implement a failure model that is
indistinguishable from the fail-stop model from the point of view of any process within an
asynchronous system. We give necessary conditions for a failure model to be indistinguishable
from the fail-stop model, and derive lower bounds on the amount of process replication needed
to implement such a failure model. We present a simple one-round protocol for implementing
one such failure model, which we call simulated fail-stop.

1 Introduction

The fail-stop failure model appears frequently in the distributed systems literature. The fail-stop
model makes two assumptions about the failure behavior of processes: processes fail only by
permanently crashing, and when a process crashes, surviving processes will eventually detect
that failure. The fail-stop model is appealing because it makes distributed algorithms easier to
formulate: fail-stop failures are easy to tolerate.

For example, suppose that a set of processes {1, 2, ..., n} wish to solve the election problem: at any
point, no more than one process of the set can be the leader, and as long as all processes do not fail,
it is always the case that there will eventually be a leader. Assuming a fail-stop failure model leads
to a very simple solution. Each process maintains a local copy of thelist (1,2, ..., n), and the first
element of this list denotes the leader. When process ¢ detects the failure of process j, i removes j
froms its local copy of the list. When i finds itself the first element of its list, i knows that it is the
leader. Since a process becomes the head of the list only when all lower-numbered processes have
failed, there is no more than one leader at any time; and, as long as a process eventually detects
the failure of the lower-numbered processes, it will eventually become the leader.

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant
number NAG 2-593, and by grants from IBM and Siemens. The views, opinions, and findings contained in this report
are those of the authors and should not be construed as an official Department of Defense position, policy, or decision.

!This author is also supported by an AT&T PhD Scholarship.

1 DIIC QUALITY Lilsaloabwd 3

_

A serious limitation of assuming a fail-stop failure model is that it is often an unrealistic
assumption. In particular, in an asynchronous distributed system (i.e., a system with no shared
memory, arbitrary message delivery times, no global clock, and arbitrary process speeds), the
fail-stop model cannot be implemented. This is because it is impossible to reliably detect crash
failures in an asynchronous system (see Theorem 1).

On the other hand, there are systems (e.g., ISIS [B]87]) that provide crash-failure detection with-
out making synchrony assumptions. They do this by allowing failures to be detected erroneously,
e.g., by using timeouts and gossip messages (IRB91)) to attain agreement among a set of processes
that a process p has failed even though that process p may not have crashed. Hence, they provide
a failure model that resembles fail-stop in some ways but is not strictly fail-stop.

In this paper, we present a failure model, called simulated fail-stop, that is internally indistin-
guishable from fail-stop, meaning that under this model, no process in the system can determine
that it is not running in a system in which the fail-stop assumption holds. We give a set of con-
ditions that are necessary in order for any model to be indistinguishable from fail-stop, and we
prove that simulated fail-stop is indistinguishable from fail-stop. We give lower bounds on the
number of processes needed for a one-round implementation of the simulated fail-stop model to
tolerate ¢ failures, and show that these bounds hold for any model that is indistinguishable from
fail-stop. Finally, we show that the bounds are tight by giving a protocol that attains them.

The paper is organized as follows. Section 2 describes the system model used throughout
the paper, including notation, definitions, and a formal logic used to describe system properties.
Section 3 specifies the fail-stop and simulated fail-stop models, introduces the notion of indistin-
guishability of failure models, and proves that certain conditions are necessary and /or sufficient
for a failure model to be indistinguishable from fail-stop. Section 4 gives lower bounds on the
number of processes needed to tolerate ¢ failures for one-round failure detection protocols imple-
menting the simulated fail-stop model, and shows that these bounds hold for any model that is
indistinguishable from fail-stop. Section 5 shows that these lower bounds are tight by presenting
a protocol that meets them. Section 6 concludes the paper and discusses the work that remains to
be done on this topic.

2 System Model

We consider a distributed system consisting of a set of n processes P = {1,2,...,n}. A process
fails by simply stopping execution (crashing), and a failed process does not recover. The system
is asynchronous, meaning that the rate of execution of any process with respect to any other is
unbounded and there are no physical clocks. Between any two processes ¢ and j there exist two
unidirectional FIFO channels: C;; from ¢ to j and C;; from j to :. Processes communicate only
by sending and receiving messages over these channels. The channels are nonfaulty: they do
not lose, generate, or garble messages. Message delivery time is unbounded. We assume for

2

_—

simplicity that channels have infinite buffers and that all messages m are unique (they can easily
be made so by including in m its source and a sequence number). The state of a channel is the
sequence of messages that have been sent along the channel but not received along the channel.

A process is defined by a set of states, one of which is denoted the initial state. The state of
a process i consists of the values of all internal variables of the process, plus the values of n + 1
additional boolean variables that are defined as follows:

o crash;. This variable is initially false and can become true at any time. Once crash; becomes
true, the state of i does not change further. (This models the failure of :.)

e Vj € P: failed;(j). This variable is initially false for all values of j, and becomes true when
detects the crash of process j. Once failed;(;j) becomes true, it remains true forever. Exactly
when failed;(;) becomes true with respect to when crash; becomes true is discussed in this

paper.

A global state of the system is a set of process and channel states. An initial global state is the
global state in which each process state is an initial state and each channel state is the empty
sequence.

An event ¢ is a function that maps global states to global states. An event e applied to a global
state L yields a new global state X’ that differs from ¥ in the local state of exactly one process i
and the state of at most one channel incident on :. We say in this case that ¢ is an event of i, and
that e changes the state of i.

If an event e of process i changes the state of C; ; for some j, then we call ¢ a send event. A send
event changes the state of a channel by appending a message m to the sequence of messages on
that channel. If e changes the state of C;; for some j, then we call e a receive event. A receive event
changes the state of a channel by removing a message from the head of the sequence of messages
on that channel.

We define events, runs, and predicates formally in Appendix A.1. Informally, send, receive,
crash, and failure detection events are defined as follows:

e send;(j, m) denotes the event whereby process i sends the message m to process j.

e recv;(j, m) denotes the event whereby process i receives the message m from process j.

For
e crash; denotes the event whereby crash; becomes true. t 4
ad
o failed,(j) denotes the event whereby failed;(;) becomes true. ’ a
"
——

Definition 1 Arunofthesystemisaninfinite sequence of global states of the system: r = (Lo, 1, %2,...),
where I is an initial global state and there exists a sequence of events (¢q, €1, €2, .. .) such that foralli > 0, -
Zip1 = e(Z0). T

Definition 2 Given any run r = (L9, £1, £, .. .), the history of r, denoted H,, is the sequence of events
(ep, €1, €2,...) such that forall i > 0, X, 41 = €;(L;).

Note that for any run r, X, is uniquely determined. Furthermore, r can be constructed from a
history M, and the initial global state .

Throughout this paper, we use the notation H, = (---¢;---€; - - € ---). This denotes that },
is of the form (z; e;; y; €;; z; ex; w), where ¢;, €, and e, are events, z, y, and z are finite sequences of
events, and w is an infinite sequence of events.

We specify properties of systems using predicate logic over global states and linear-time
temporal logic over (infinite) suffixes of runs [Pne77]. Wedefine the boolean predicates SEND;(7, m)
and RECV;(j, m) as follows.

e Vi, j, m: SEND;(j, m) and RECV,(j, m) are false in an initial giobal state.

o send;(j,m)(Z) = SEND;(j, m). That is, SEND;(j, m) becomes true when send;(j, m) has oc-
curred.

o recvi(j, m)(Z) = RECV;(j, m). That is, RECV;(j, m) becomes true when recv;(j, m) has oc-
curred.

Furthermore, both SEND;(j, m) and RECV;(j, m) are stable by definition: once such a predicate
becomes true in a run, it remains true for the remainder of the run. ({ICL85])
We define the boolean predicates CRASH; and FAILED;(j) as follows. Let I be a global state.

e ¥ = CRASH; if and only if crash; is truein X.
e Vj: T |= FAILED;(j) if and only if failed;(j) is truein L.

Note that both CRASH; and FAILED;() are stable by assumption: once these local variables become
true in the local state of i, they remain true thereafter.

Let s = (Zg, £1, T, . ..) be a suffix of a run, let © be a predicate, and let P be a temporal logic
formula.

o (s,k) = piff Tk = o
o (k)= 0PI 2 k: (s,) =P
o (8,k) = 0OPiffVj> k: (s,j) =P

Furthermore, we abbreviate (r,0) = Pasr = P.
We define the failed-before relation as follows:

Definition 3 If r = QFAILED;(¢) in some run r, we say that i failed before j in r.

4

‘:—

Note that it is possible that both CRASH; and CRASH; hold in some global state yet neither i failed
before j nor j failed before i.

We use a version of the happens before relation of [Lam78). Given two events ¢; and ¢;, define
ey — €3 (read “e; happens before e;”) in some history H, if one of the three following conditions
holds:

1. €1 and e; are of the same process, and either e; = €3 or e; precedes e; in H,;
2. e = send;(j, m) for some value of 1, j, and m, and e; = recv;(i, m);
3. there exists an event e such thate; — eand ¢ — e3.

The happens-before relation as defined here is the same a- that given in [Lam78], except that
our relation is reflexive. This is for notational convenience. Note that for all e; # €3, 1 — €3
implies that e; precedes e; in H,. The converse does not hold, however.

Let r be arun. Let 7; be the sequence of states of i in r, with repeated states removed (i.e., so
that adjacent states are distinct). If z and y are runs, then we say that run z is isomorphic to run y
with respect to process i, denoted z =; y, if and only if z; = y;. In other words, z =; y if and only
if runs r and y are indistinguishable to process i. Similarly, rg for ¢ C P is the sequence of states
of processes i € Q in r with repeated states removed, and z =q y if and only if zg = yg. (See
[CM86] for a detailed discussion of the ramifications of indistinguishability of runs.)

3 Specification of Failure Models

A failure model describes the manner in which the components of a system can fail. For our
purposes, a failure model constrains how crash events and failed events can occur with respect to
each other. We give these constraints as a set of properties and define the failure model as the set
of runs that satisfy these properties.

3.1 The Fail-Stop Failure Model

The minimal set of fail-stop assumptions found in the literature is that in any infinite run of the
system, a process’s failure is eventually detected by all processes that don’t crash, and that there
are no false detections of failure. These two conditions specify the failure model defined in [Sch84).
Hence, we adopt this as the definition of the fail-stop failure model.

Formally, the two fail-stop conditions are:

FS1: Vr,i: r = O(CRASH; = Vj: {(CRASH; V FAILED;(1)))
FS2: Vr,i,j: r |= O(FAILED;(#)=>CRASH;)
We denote with FS the set of runs satisfying properties FS1 and FS2.

5

Theorem 1 In an asynchronous system in which crash failures are possible, properties FS1 and FS2 are
impossible to implement.

Proof: In [CT91], an algorithm is given for solving Consensus with a Strong Failure Detector. A
Strong Failure Detector is shown to be strictly weaker than a Perfect Failure Detector, implying
that a Perfect Failure Detector can also be used to solve Consensus. A solution to Consensus
contradicts the result of [FLP85]); therefore, a Perfect Failure Detector cannot be constructed.

A Perfect Failure Detector is defined in [CT91] as a failure detector satisfying Strong Com-
pleteness and Strong Accuracy. These two properties are identical to FS1 and FS2. Therefore,
implementing FS is equivalent to implementing a Perfect Failure Detector, and is therefore im-

possible. o

32 Indistinguishable Failure Models

A process determines which event to execute based on its state and the messages that it has
received. A run r is isomorphic to a run r’ with respect to a process i if i executes the same events
in both r and r’. We know that the two runs are isomorphic with respect to i if i starts in the same
initial state in both runs, receives the same messages in the same order in both runs, and makes
the same nondeterministic choices (if any) in both runs. Consider a run r of a system. If r is not
in FS but is isomorphic with respect to : to a run ¢ in FS, then the events i executes are the same
as if it were running in a system satisfying the fail-stop assumptions. Hence, if r =p 7/, then no
process in P can determine that r is not in FS.

Definition 4 A failure model M is indistinguishable from the fail-stop model if for any run r € M, there
exists a run v/ € FS such that ~ =p 1 (that is, r is indistinguishable from v’ to every process in P).

Consider the election protocol described in Section 1. If a run of this protocol is in a failure
model M that is indistinguishable from, but not identical to FS, then there may be more than one
leader in some global state, but no process will be able to determine this. Thus, internally the
execution is the same as if there were only one leader at a time.

Recall that the reason that FS can not be implemented in an asynchronous system is because
the crash of a process cannot be reliably detected. A failure model M that can be implemented
and is indistinguishable from FS must be weaker than FS. However, it cannot be too weak; at the
very least, a process i must not be able to determine that some process j executes an event after
i detects that j has crashed. Furthermore, if a process detects the failure of i then i must crash
at some point, and process crashes must have been able to occur in some total order. Hence, the
following three conditions are necessary for indistinguishability from FS.

Condition 1 For all runs r, if r = QFAILED;(j), then r = QCRASH;.

6

Condition 2 The failed-before relation must beacyclic. That is, for all runs r and for all k, there cannot exist
processes 21,22, ..., T, suchthat r |= FAILED;,(Z2) AFAILED,,(Z3)A- - -AFAILED;, _,(Zx)AFAILED,,(Z;).

Condition 3 For all runs r, there cannot be an event e of process j such that failed;(j) — e in M,.

Theorem 2 If failure model M is indistinguishable from FS, then all runs of M satisfy Conditions 1-3.

Proof:

Condition 1 In order for two runs to be isomorphic, their histories must contain the same events.
For every run r that satisfies FS, failed.(j) € M, =crash; € H,. Therefore, the same must be
true of every run that satisfies M. o

Condition 2 For contradiction, suppose that there is some run r of M such that r does not satisfy
Condition 2. We show that there is no run r’ satisfying FS that is isomorphic to r with respect
to P.

If r does not satisfy Condition 2, then there is some set of processes {zg, z1, . . ., zx} such that
H, = (--- failedzy(z1) - - - failed, (z2)--...---failed,, (zk)---failed (zo)---). Forany run
' satisfying FS, H,. must contain crash,, for all 0 < i < k. Furthermore, crash;, must occur
before failed, (z:) and failed, (z:g1) must occur before crash,; where © and © are — and +
modulo £ + 1 respectively. By transitivity, this leads to circular constraints on ¥,.: crash,
must occur before failed,, (zq), which must occur before crash,,, which must occur before
failed“_, (), . . ., crash;, must occur before failedzo(n), which must occur before crash,,. It
is impossible to satisfy all of these ordering constraints in a valid run. Therefore, there is no
run r’ isomorphic to r that satisfies FS. a

Condition 3 For contradiction, suppose that there is some run r of M such that r does not satisfy
Condition 3. We will show that there is no run ' satisfying FS that is isomorphic to r with
respect to P.

If r does not satisfy Condition 3, then M, = (-- - failed,(j) - - - send;(k, mg) - - - recv;(¢, m;) - - -
e; - --), where send;(k,m;) — recv;j({,m;). For any r’ isomorphic to r, H,» must maintain
the order of failed,(5), send;(k, m;), and recv;(¢,m;) in order to satisfy the happens-before
relation. However, for r’ to satisfy FS, crash; must occur before failed,(j) in H,+. This means
that in H,., crash; must occur before recv;(£, m;), which contradicts the definition of crash;.
Therefore, there is no run ' isomorphic to r that satisfies FS. u}

We have shown that Conditions 1, 2, and 3 are necessary for a failure model to be indistin-
guishable from fail-stop. However, these conditions are not sufficient.

Theorem 3 There exists a run r that satisfies Conditions 1-3 such that -3r’ : v’ =p r At/ € FS.

7

Proof: Let r be the following run:
failed (z); send,,(a, m,); recva(y, ma); crash,; failed,(a); sendy(z, m.); recv. (b, m;); crash - - -
For any r’ isomorphic to r, v e have the following ordering constraints on H,:
o failed (z) — send,(a,m,) — recv,(y, m,) — crash,
o failed,(a) — send(z, m;) — recv,(b, ms) — crash.
® crasi; must oocur before failed (z)
e crash, must occur before failed,(a)

It is impossible to satisfy all of these ordering constraints in a valid run. Therefore, there is no
run r isomorphic to r that satisfies FS. (n

Theorem 3 implies that a failure model M that satisfies Conditions 1-3 may not be indistin-
guishable from FS. In the next section, we give a set of conditions that are sufficient, though not

all are necessary.

33 Simulated Fail-Stop

We give four properties that comprise a model that is indistinguishable from fail-stop. We call
this model the simulated fail-stop model (sFS).

To construct conditions for the sFS model, we weaken one of the conditions of the fail-stop
model. Weakening FS1 yields a model in which some failures may be undetected. Under such a
model, it could be impossible for a system to make progress. Therefore, we follow [CT91,CHT92,
RB91) and weaken FS2. This yields a model in which nonexistent failures may be detected.

FS1 is a liveness property. In a real system, it would be be implemented using timeouts: each
process would periodically send a message to every other process. If process i were not to receive
a message from process j within some predetermined length of time, then i would (perhaps
erroneously) detect the failure of ;. We assume for the remainder of this paper that there is some
mechanism provided by the underlying system to implement FS1.

We replace FS2 with the following four conditions:

sFS2a: Vr,14, j: r |= O(FAILED;(j) = OCRASH;)

This condition states that if process i detects that process j has crashed, then eventually j will crash
even if i’s detection was erroneous. In conjunction with FS1, this condition implies Condition 1:
if failed,(j) occurs in H,, then crash; occurs in H,.

sFS2b : The failed-before relation is always acyclic.

8

sFS1: Fs1

sFS2a: r = O(FAILED;(j) = QCRASH;)

sFS2b: The failed-before relation is acyclic.

sFS2c: r = D-FAILED;(1)

sFS2d: r = D[FAILED,(j) A —~SEND;(k, m) =
O((SEND;(k, m) A RECV(#, m)) = FAILEDi(7)))

Figure 1: Simulated Fail-Stop Conditions
This is Condition 2.
sFS2c¢: Vr,i: r = O-FAILED;(1)

This condition states that a process never detects its own failure. That is, failed,(i) does not occur
inX,.

sFS2d : Vr, i, j,k: r |= D[FAILED,(j) A ~SEND;(k, m) =
O((SEND;(k, m) A RECV(i, m)) => FAILEDx(j))]

This condition states that once ¢ detects the failure of j, then any subsequent messages sent by i
to any process k will not be received until k has also detected the failure of j. That is, if send;(k, m)
occurs after failed,(j) in H,, then failed, (j) occurs before recvx(i, m) in M, .

Properties sFS2¢ and sFS2d together imply Condition 3, as shown in the following lemma.

Lemma 4 If sFS2c and sFS2d hold in a run r, then there cannot be an event e of process j such that
faﬂed,(]) —ein'M,.

Proof: Consider any run r. If i = j, then the lemma is trivially true, because from sFS2c, failed, (i)
does not appear in H,. Assume that i # j. For contradiction, let ¢ be an event of j such that
failed,(j) — e in H,. Since failed,(j) and e are of different processes, from the definition of the
happens-before relation there is a sequence of events failed(j) — send;(k1, my,) — recvy, (i, my,) —
sendy, (k2, my,) — « - - — recvj(ky, My,,,) — e. From sFS2d, each process in this chain, induding j,
must have detected the failure of j by the time it receives its message. Therefore, failed (7) must
occur in ,, which contradicts sFS2c. o

The sFS conditions are summarized in Figure 1.
Theorem 5 The simulated faii-stop model (sFS) is indistinguishable from the fail-stop model (FS).

9

v——

The full proof of this theorem is given in Appendix A.2. An outline of the proof is given below.

Consider a run r that satisfies FS1 and sFS2a-d but violates FS2. Then, there exists at least one
pair of processes i and j such that r = ((FAILED;(i) A ~CRASH;). For each such pair, by sFS2a,
r = OCRASH;. Therefore, H, = (-- -failed; (i) - - -crash; - - -). It can be shown that an event e can
be moved within #,, resulting in #,. such that r’ =p r, as long as the happens-before relation is
maintained in 7,/. We show in Appendix A.2 that —'(fniledj(i) — crash;), and that therefore, crash;
and all events e between failed;(i) and crash; in H, such that e — crash; can be moved to precede
failed,(1) in H,.. Thus, if r satisfies sFS2a-d, then the eventsin H, can be rearranged so that crash;
pmcedwfniledj(i) forall i, j in H,..

4 Lower Bounds

The simulated fail-stop properties (FS1, sFS2a-d) put restrictions on the way in which failures are
detected. Implementing these properties requires that processes follow a protocol for detecting
failures. In this section, we give lower bounds on message complexity and replication for failure
detection protocols implementing sFS.

A one-round protocol for detecting a failure is one in which each process i exchanges one round of
messages with other processes before executing failed,(j). Any protocol simpler than a one-round
protocol would allow at least one process to unilaterally detect the failure of some other process.
Such a protocol, however, would limit which processes another process could dete.: as faulty.
For example, suppose that process i can unilaterally decide that process ; has failed. Process i
can execute failed,(j) concurrently with any event of process j, and so process j can never execute
failed, (). Hence, we will consider the class of one-round protocols in order to determine message
and replication complexity.

We say that a process i initiates a failure detection protocol when it “suspects” the failure
of another process j (e.g, due to a timeout at a lower level). In the first half of the round,
process ¢ sends a message to all other processes; in the second half of the round, processes send
an acknowledgement message to i. We call the first message SUSP; ; and the acknowledgement
message ACK.SUSP; ;. Upon completion of the failure detection protocol, i will execute either crash;
or failed;(j) for some j # i.

A one-round protocol that implements sFS must avoid cycles in the failed-before relation since
all runs in sFS satisfy sFS2b. Implementing sFS2b requires that in any run there is at least one
process that participates in all failure detections. To see why this is so, consider the problem of
avoiding cycles involving exactly two processes. Suppose that process a suspects the failure of
process b. Before a can execute failed, (b), the failure detection protocol must ensure that failed, (a)
has not been executed and that failed, (a) will not be executed in the future.

The failure detection protocol cannot require a to communicate with b directly, because b may
have indeed crashed. Therefore, the protocol must require a to receive information from, and

10

distribute information to, other processes. In particular, a must receive information from enough
other processes to be sure that failed,(a) has not been executed, and a must distribute information
to enough other processes to be sure that if failed () is executed, then failed,(a) will not be executed
in the future.

The relevant information that ¢ must disseminate is that a suspects the failure of b. In order
for a to know that this information has been received by other processes, it must receive messages
from other processes acknowledging that the failure of is suspected.

Definition 5 The quorum set Q;; of failed;(;) is the set of processes from which i has received acknowl-
edgement messages relating to its suspicion of j's crash. Formally, Q;; = {k € P : SEND;(k,SUSP; ;) A
RECV;(k, ACK.SUSP; ;)}.

The set Q,; must be large enough to ensure that b, after hearing from Q;,, will not execute
failed,(a). In particular, the sets Q,; and @;, must have a non-null intersection.

We call this property the Witness Property (W), because the quorum sets for any two failure
detections must have at least one process (the witness) in common. It can be shown that the same
property must hold in order to avoid cycles of any size. The Witness Property can be stated
formally as follows:

W () Qi#0
vi.j FAILED(5)

That is, there is some process w that is in the quorum set of all failure detections. Note
that this is a stronger condition than what is necessary, for example, in the update of replicated
variables [Gif79] in which only each pair of quorum sets must intersect.

Theorem 6 (Vr: r |= OsFS2b) = (Vr: r = OW).

It was argued above that (r = OsFS2b) = (r = OW) if only cydles of size two are possible.
The full proof of the theorem is given in Appendix A.3.

Since sFS2b (Condition 2) is necessary for indistinguishability from FS (see Section 3.2), The-
orem 6 implies that W is necessary for any one-round protocol that implements a failure model
indistinguishable from FS. Let ¢ be the maximum number of crashes in any run, including those
that arise from erroneous suspicions. The necessity of the Witness Property places a constraint on
t as a function of n and on the number of messages that a process must wait for before detecting
a failure.

The simplest way to ensure that JV holds in a one-round protocol is to require a process to wait
for responses from every other process, except for those that are suspected to have failed, before
detecting a failure. If there is always at least one process that never fails, nor is suspected of failing,
then this process will be a witness to every failure detection that is executed. This implementation
only requires that ¢ < n. However, if n is large and ¢ is small, then each failure detection requires
a process to wait for many messages, which in practice could take a long time.

11

An alternative implementation is to require a process to wait for a fixed, predetermined number
of responses before detecting a failure. This approach reduces the size of the quorum for which a
process must wait, but it places a stronger restriction on the number of failures that can occur.

Theorem 7 If the size of the quorum set is a fixed and equal size for each failure detection, then to guarantee
that r = OW when failures are possible, the size of each quorum set must be strictly greater than n(131).

Proof: We assume that in any run, no more than ¢ failures will occur. Therefore, the largest possible
cycle in a run satisfying (simulated) fail-stop involves ¢ processes. We must guarantee that any ¢
quorum sets Q1 - - - Q; have a nonempty intersection.

Let the size of a quorum be z. Let y = n — z. Suppose y = [}]. Then there is a set
of ¢ quorum sets such that Vie P: 3j: i ¢ Q;. In particular, let @, = P — {1,2,...,¥},
Q=P-{y+1,y+2,...,2}, -, Q=P—-{n-y+1n- y‘+2,...,n}. By construction,

each process is not a member of at least one quorum. Therefore, () @i = 0. Clearly, such a set of
=1
quorum sets can also be constructed if y > [}]. Therefore, we must have y < [}].

T=n-y > z>n—[%]

t—n
= z>[nt]

n(t-1)
|

=> z>|

Therefore, the size of a quorum must be an integer strictly greater than n(31). u]

Corollary 8 If the minimum quorum size is used in a one-round protocol for failure detection, then it must
be the case that n > 1.

Proof: In a one-round protocol, the size of the quorum is equal to the number of ACK.SUSP; ;
messages that process ¢ must receive before executing failed,(j). Since i is in its own quorum,
must wait for |#(£51)] messages before detecting ;j’s failure. In order for the one-round protocol
to make progress, at least this many other processes must remain alive. Therefore, we have

otz (0] = a-t2n-fl2n- (3
t< |13

t’gt[-’}]gn

$ 4+ 4 U

izsn

12

5 Upper Bounds |

We give a simple one-round protocol that implements sFS2a-d. We assume that a failure can be
suspected spontaneously (e.g., due to a timeout), but that no more than ¢ failures are suspected in
any run. In this protocol, SUSP; ; = ACK.SUSP; ; = “j failed”.

¢ When process i suspects the failure of process j, i sends the message “; failed” to all processes
(including itself). Process i waits for messages of the form “; failed” from other processes
and takes no other action except for acknowledging “z failed” messages until it completes
the protocol or crashes.

¢ When process i has received messages of the form “; failed” from more than n(-‘-j—‘) processes
(including itself), : executes failed ().

¢ When process z receives a message of the form “z failed”, z executes crash;.

¢ When process z receives a message of the form “y failed”, z suspects the failure of y.
We will argue informally that this protocol implements the simulated fail-stop properties.

sFS2a: Process i cannot execute failed;(j) without sending a message of the form “; failed” to all
other processes, including j. Since channels are nonfaulty, ; will eventually receive such a
message, upon which j will crash.

sFS2b: The full proof is given in Appendix A.4. We give an outline of the proof for cycles of length
2. Suppose that the protocol generates a run r such that r |= ¢(FAILED;(j) A FAILED;(¢)). By
Theorem 7, r |= OW holds. Therefore, there is some witness w such that ¢ received “; failed”
from w and j received “i failed” from w. Process w sends these messages to all processes. If
w sends “j failed” before it sends “i failed”, then process j will receive “; failed” and crash
before it can execute failed,(i). Similarly, if w sends “i failed” before it sends “j failed”, then
process i will receive “i failed” and crash before it can execute failed;(j). Therefore, it is not
possible for both failed;(j) and failed, (i) to be executed in a run.

sFS2c: Process i cannot execute failed,(i) without receiving at least one message of the form “i
failed”. Upon receiving such a message, i crashes. Therefore, failed(i) is never executed.

sFS2d: Since channels are FIFO, any message m sent by i to k after failed,(j) is executed must be

received after the message “j failed”. Upon receiving “; failed” from i, process k suspects

the failure of j and initiates the failure detection protocol. Process k¥ does not receive m

. until either crash, or failed,(j) is executed. Therefore, message m is not received by & unless
failed,(j) has been executed.

13

6 Discussion

In Section 3.2, we showed that Conditions 1, 2, and 3 are necessary for any failure model to be
indistinguishable from the fail-stop model. In Section 4, we showed that the Witness Property
is necessary for any one-round protocol implementing Condition 2. We then showed that the
Witness Property imposes lower bounds on the number of messages that must be received before
a failure can be detected and on the number of failures that can be tolerated in a system.

We gave a protocol in Section 5 to demonstrate that these bounds are tight. This protocol,
however, was derived from conditions that are not necessary for indistinguishability. There may
be a failure model weaker than sFS that is indistinguishable from FS. However, such a failure
model is subject to the same bounds on ¢ as sFS, and so we do not expect such a failure model to
be substantially more interesting than sFS.

The bounds on ¢ arise from sFS2b. A failure model satisfying only the other sFS assumptions
would not require a process to wait for any messages before detecting a failure: the other sFS
properties can be implemented simply by having process i broadcast a message “; failed” after
suspecting ;j’s failure and before unilaterally executing failed;(j). Such a failure model would, of
course, be distinguishable from FS, but if a collection of processes are insensitive to cyclic failures,
then they could be run in this cheaper simulated failure model. We do not know of any protocols
in the literature that are insensitive to cyclic failure detection, however.

As an example of sensitivity to sFS2b, consider the problem of determining the last process to
fail ([Ske85]). Solving this problem requires that processes record information about the failures
that they detect (that is, their view of the failed-before relation). Then, when processes are
recovering after a total failure, the recovering processes can determine when the last processes to
fail have recovered. If cyclic failure detection is possible, then the problem is not solvable. For
example, suppose P = {1,2}, process 1 falsely detects 2’s failure, and then crashes. Process 2
detects 1’s failure, proceeds with its work, and finally crashes. If process 1 were to then recover, it
would conclude that it was the last to fail. In general, if cyclic detection is possible then the only
possible recovery is to always wait for all crashed processes to recover.

There are other protocols that require failure models even stronger than FS. For example, if
the failed-before relation is transitive as well as acyclic, then detecting the last process to fail can
be implemented so that as soon as the last processes to fail have recovered, then the processes can
determine this. If the failed-before relation is not transitive, then it is necessary to wait for more
processes to recover. The failed-before relation of sFS is not transitive. We are currently looking
into several stronger versions of fail-stop, whether they are implementable given fail-stop, and
into how they too can be simulated.

The protocols described in this paper are very simple and are easily implementable. Failure
detection such as described here is typically done as part of a group membership service (e.g.,
(RB91,MPS91,ADKM92]). We believe that the protocols here could be used as the basis of a failure

14

detector that could be used outside of a system built using a group-membership protocol. This
would allow for consistent failure detection on top of any kind of lower-level communication,
including point-to-point communication.

References

[ADKM92] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A communica-
tion sub-system for high availability. In Proceedings of the 22nd Annual International
Symposium on Fault-Tolerant Computing (FTCS), pages 76-84, July 1992.

(B]J87] Kenneth Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed
systems. In Proccedings of the Eleventh Annual ACM Symposium on Operating System
Principles, pages 123-138. ACM, 1987.

[CHT92] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. In Proceedings of the Eleventh Annual ACM Symposium
on Principles of Distributed Computing. ACM, August 1992.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Transactions on Computer Systems, 3(1):63-75,

February 1985.

[CM86] K M. Chandy and Jayadev Misra. How processes learn. Distributed Computing,
1(1):42-50, 1986.

[CT91] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asyn-
chronous systems. Technical Report TR91-1225, Department of Computer Science,
Cornell University, August 1991.

[FLP85] Michael]. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374~382, April
1985.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Proceedings of the Symposium
on Operating Systems Principles, pages 150~162. ACM SIGOPS, December 1979.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7).558-565, July 1978.

[MPS91] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. A membership
: protocol based on partial order. In Proceedings of the International Working Conference
on Dependable Computing for Critical Applications, February 1991.

15

[Pne77]

[RBI1]

[Sch84]}

[Ske85]

A. Pneuli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
of Foundations of Computer Science. ACM, November 1977.

Aleta Ricciardi and Kenneth Birman. Using process groups to implement failure
detection in asynchronous environments. In Proceedings of the Tenth Annual ACM
Symposium on Principles of Distributed Computing. ACM, August 1991.

Fred B. Schneider. Byzantine generals in action: Implementing fail-stop processors.
ACM Transactions on Computer Systems, 2(2):145-154, May 1984.

Dale Skeen. Determining the last process to fail. ACM Transactions on Computer
Systems, 3(1):15-30, February 1985.

16

A Appendices
A.1 Formal Definition of Events, Runs, and Special Predicates

Recall that an event e is a function that maps global states to global states. An event e applied to a
global state ¥ either

¢ yields ¥, in which case we say that e is a null event; or

o yields a new global state L’ that differs from X in the local state of exactly one process i and
the state of at most one channel incident on ;. We say in this case that ¢ is an event of ¢, and
that e changes the state of i.

A non-null event e is uniquely defined by the process i whose state it changes, the state s of i
immediately before e is applied, the state s’ of i resulting from e, the states of the channelsincident
on i before e is applied, and the states of the channels incident on i after e is applied. Let .X; ; be
the state of channel C; ;. Let X;. be the n-tuple (X, X;>,..., X;n) and let X, ; be the n-tuple
(X1,iy X2,is - - .y Xn,i).Then, e is defined by the 7-tuple (i, s, &, X s Xf,,, Xesis Xﬁ,,,-), such that:

o if X;. # X, (eis a send event), then X.; = X, there exists exactly one j # i such that
Xi; # X% ;,and X} ; = (X;; == m) for some message m (where :: is the catenation operator).

i3’

o if X, ; # X, ; (eis a receive event), then &';, = A7, there exists exactly one j # i such that
Xji # X', and (m : X} ;) = &;; for some message m.

s’

If e is a null event, then e is not of any process i and therefore is not represented by a 7-tuple.

Definition 6 Wesay that (non-null) e = (i, s, s, X ., X} ., X.;, X ;) can occur in global state T if and
only if:

o the state of processiin L is s,
o the states of the incoming channels incidenton i in . are X; ., and
o the states of the outgoing channels incident on i in T are X . ;.
A null event can occur in any state.
Lete = (i,s, ', X; ., X} ., Xuir X% ;). We abbreviate send and receive events as follows.
o If eis a send event of i and C} ; = (C;,; = m) for some j, then e is denoted send;(j, m).
) .lf e is a receive event of i and (m == C} ;) = C;; for some j, then e is denoted recv;(j, m).
We define “crash” events and “failure detection” events as follows:

17

. 'If crash; is false in s and true in ¢/, then ¢ is denoted crash;. By assumption, crash; changes
only the local variable crash,.

o If 3;: failed;(j)is false in s and true in &/, then e is denoted failed,(;).

The events send;(j, m), recvi(j, m), crash;, and failed,(j) are atomic; each event only changes the
relevant state variables of the process on which it occurs. For example, if crash; is false in local
state s of i when send;(j, m) occurs, then crash; is false in the resulting state of :.

Definition 7 Let r = (29, L1, I, . . .) be an infinite sequence of global states of the system. We say that
r is @ run of the system if and only if Xq is an initial global state and there exists a sequence of events
(e, €1, €2,...) such that forall i > 0, e; can occur in ¥; and ;41 = €;(L;).

e Vi,j, m: SEND;(j, m) and RECV;(j, m) are false in an initial global state.

o Lete = send;(j, m) and let £ be a global state such that e can occurin £. Then send;(j, m}(Z) =
SEND;(j, m). That is, SEND;(j, m) becomes true when send;(j, m) has occurred.

o Lete = recv;(j, m)andlet T be a global state such that e can occur in E. Then recy;(j, m)(X) =
RECV;(j, m). That is, RECV;(j, m) becomes true when recv;(j, m) has occurred.

A2 Proof of Theorem 5
Theorem 5 The simulated fail-stop model (sFS) is indistinguishable from the fail-stop model (FS).

In order to prove that for any run r that satisfies FS1 and sFS2a-d, there is an isomorphic run
' that satisfies FS1 and FS2, we will need to determine the conditions under which an event in a
history H, can be moved to yield a history M, such that r =p r'.

Consider H, = (...€;,€i41,€i42...) corresponding to run r = (..., %, Ti41, Big2,.-.)- By
definition, e; can occur in I; and e;4+; can occur in ¢;(X;) = T;4+1. Assume that ¢; and ¢4 are
non-null events.

Suppose that e; and ¢4 are of the same process k. Since ¢; changes the state of , the state of
k is not the same in ¥; asin X;,,. Therefore, €;4+; cannot occur in ¥;.

Now suppose that e; and e; are of two different processes k and ¢, respectively. The state of
¢in T; is the same as that in X, because ¢; does not change the state of {. Therefore, if ¢;4, is not
a receive event, then ¢;,; can occur in ;. If e;4, is a receive event, and changes the state of any
incoming channel other than C} 4, then ¢;;; can occur in £;, because the states of all other incoming
channels must be the same in ¥; and X;,;. However, if ¢;41 = recoe(k, m) and e; = sendi({, m),
then ¢;,; cannot occur in I;, because the message m is not part of X', in Z;.

In summary, ¢;+1 cannot occur in ; if and only if

e ¢; and e;,41 are of the same process, or

18

o ¢; = sendy({,m)and e; 4, = recve(k, m).

In other words, ¢,,1 cannot occur in £, if and only if (¢; — €;41).

Assume that €;4; can occ = in X, and let £{,; = &;41(X;). It can be shown by a similar
argument that e;;, cannot change the state of k, .Y, or X, in such a way as to violate the
preconditions for e;, so ¢; can always occur in &} ,. Furthermore, e;(€i+1(Zi)) = eipa(ei(E)).
Therefore, ' = (...%;, E},,, £i32,...) is a valid run, where H,s = (...ei41, € €42 -).

Consider ry; , and r'{ k) (Recall that repeated states are removed in these sequences.) From
the construction of v/, ry = r} and r, = r,. Since ¢; and e¢,,; do not change the states of processes
other than & and ¢, r; = r| for all process ¢t ¢ {k, {}. Therefore, r =p 7'

In summary, we have shown that if —(e; — €;41) in H,, then ¢;4) can be moved before ¢; to
Jyield H,: such that ' =p r. It can also be shown that for any two events ¢; and ¢; in H, such
that i < j and —~(e; — ¢;), e; can occur in I;, ¢; can occur in e;(X;), and e;(e;(X;)) = ei(e;(Ly)).
Therefore, ¢; can be moved to directly before ¢; to yield #, such thatr =p r'.

We can now prove the theorem.

Proof: If run r satisfies FS2 then the theorem trivially holds, so we assume that r violates FS2.
Then, there exists at least one pair of processes i and j such that r = Q(FAILED;(i) A ~CRASH;). For
each such pair, by sFS2a, r = {CRASH;. Therefore, H, is of the form (- -failedj(i) -« -crash; - - -).

Definition 8 A pair of processes (i, j) is bad in H, if H, = (---failed;(i)- - -crash;---). Otherwise,
(i,7)is good in H,.

We prove the theorem by induction on the number of bad process pairs in ;.

Base case Assume that there is only one bad pair in H,. Let H, = (z; failed,(%); y; crash;; z) where
z,y, and z are sequences of events. Let k be the number of events in y. We construct by induction
onk arunr'isomorphic to r suchthat #,. = (z'; crash;; failed (1); y'; z) where z’ and y' are sequences
of events.

Base Case (Inner Induction) Assume k = 0. H, = (z;failed;(i); crash;; z). Since
crash; and failed,(j) are of different processes, they can be swapped to yield H,, =
(z; crash;; failedj(i);z) such that 7’ =p r. Clearly, v’ satisfies FS2.

Induction case (Inner Induction) Assume that the theorem holds for all histories
in which k < £ -1, and assume that k = £. H, = (z; failed;(i); es; €2; - - -; ey; crash;;
z). By Lemma 4 we know that -'(failedj(i) — crash;). Let e, be the first event of
(e1; - - -; crash;) such that -(failedj(i) — e4). Since e, is the first such event and — is
transitive, Vz: 1 < z < u: ~(e; — ¢,). Let @ C P be the set of processes such that
failed,(i), e1, . .., €, are events of processes in §. Then e, is an event of a process in Q.

- Therefore, there is a history H.» = (z; e,,;failedj(i); €1;€2;° *; €y—1;Cyu41; " * *; €15 Crash;)
such that r” =p r. By the induction hypothesis there is a history H, of the desired

19

form such that ' =p r”,and hence r’ =p r. Otnner Induction

Induction case Assume that there are k bad pairs in H,, one of which is (z,y). We will show
that we can use the same inductive construction presented in the Base Case to yield a history X,,
such that v’ =p r, with strictly fewer bad pairs, so that the Inductive Hypothesis applies to H,..

Overview: Given a bad pair (z, y), consider another pair of processes (a,b). Using a case
analysis on all possible placements of failed,(a) and crash, in H, with respect to failed (z) and
crash,, we show that using the earlier inductive construction, we can “fix” (z, y) — i.e., construct
a history M, in which (z, y) is good — such that:

o if (a,b)is bad in H,, then (a, b) is either good or bad in H,;

e if (a,b) is good in H,, then (a,b) is either still good in H,, or is bad in 7, but can be
fixed without making (z, y) bad again by using a finite number of applications of the same
inductive construction.

There are twelve possible placements of failed,(a) and crash, with respect to failed (z) and
crash,. In each case, we consider the effect on (a,b) of applying the inductive construction to
(2,9)-

L e ke e fleda) - foled(z) - crshy
2 oo falea) e crhy e fulld2) - crashy
% o i (e) - by oo crshy e filed(a) -
o o e () e by - filedfa) - crash

5. - failed(a) --- failed(z) --- crash; --- crash

6. --- crash, --- failed (z) --- crashy --- failedy(a)
Since only events that occur between failed (z) and crash, are moved, (a, b) is independent
of (z, y) in these six cases, in that fixing (z, y) has no effect on the goodness of (q, b). Thus,
(z, y) becomes good and (a, b) is unchanged.

7. --- failedy(a) --- failed,(z) --- crash, --- crashy ---
In this case, the history H, resulting from an application of the construction of the base case
has one of two forms, depending on whether or not failed, (z) — crash,:

o My = (---failed,(a)- - -crash, - - - crashy; failed (z)- -)

20

10.

11.

o M, = (- failed,(a) - - - crashy; failed (z)- - - crash, - -)

In either case, (z, y) is now good and (a, b) remains bad.

. -+ failed (z) --- crash, --- crashy --- failed,(a) -

In this case, the history 7, resulting from an application of the construction of the base case
has one of two forms:

o Hy = (---crash, - - - crash, ;failed (z)- - - failed,(a)- - -)
o M, = (---crashg;failed (z)- - -crash, - - - failed(a) - - -)
In either case, (z, y) is now good and (a, b) remains good.
- crash, --- failed (z) --- foiledy(a) --- crashy ---
In this case, the history #,- resulting from an application of the construction of the base case
has one of two forms:
o My = (---crashg - - -failed,(a) - - - crashy; failed, (z) - - -)
o My = (---crashy - - -crashg; failed (z)- - - failed,(a) - - -)
In either case, (z, y) is now good and (&,) remains good.
-+ failed (z) --- failed,(a) --- crashy, --- crash,
In this case, the history H, resulting from an application of the construction of the base case
has one of two forms:
o Hy = (---failedy(a)- - - crashg; failed (z)- - - crashq - -)
o H, = (---crashg;failed (z)- - -failed,(a) - - -crash, - - -)
In either case, (z, y) is now good and (a4, b) remains bad.
-+ failed (z) --- failed,(a) --- crash, --- crashy ---
In this case, the history H, resulting from an application of the construction of the base case
has one of four forms:
o H,» = (--failed,(a) - - -crash, - --cmsl_zz;failedy(z)- .
o Hy = (...faﬂedb(a).. .cras]_: ;faﬂedy(z). - -crash, - ..)
o Hy = (.. .mshz;faﬂedy(z). ..fm’ledb(a). . .cmshd . ..)
o H,r = (---crash, -- -cmsh,;failedv(z)- - - failed,(a) - -)

- In the first three cases, (z, y) is now good and (a, b) remains bad; in the fourth case, (z,y) is

now good and (a, b) is now good, thus reducing the number of bad pairs by two.

21

II—————

In this case, the history ¥, resulting from an application of the construction of the base case
has one of four forms:

¢ Hyo = (- -crashg; failed (z)- - -crash, - - - failed,(a) - - -)
o Hyr = (-+~crash, - failedy(a) - - -crashy; foiled (z) -
o Hyr = (- -crash, - - -crash;; failed (z) - - - failed(a) - -)
o Hys = (- failedy(a) - - -crashg; failed (z) - - - crash, - - -

In the first three cases, (z, y) is now good and (a, b) remains good. However, in the fourth
case, (z,y) is now good, but (a, b) is now bad. Thus, the number of bad pairs may not be
reduced. Furthermore, for each pair (i, j) such that failed.(i) and crash; appear in H, in the
same order with respect to failed (z) and crash; as failed,(a) and crash,, there can be one more
bad pair in ¥, than thereis in %, .

However, we can construct a history H,~ from H,: in the same manner in which *,: was
constructed from H,, such that (a, b) is good in H,~ and (z, y) remains good in M, ~ as follows.
We have M, = (.- -failed,(a) - - - crashy; failed (z)- - - crash, - - -). Recall that in the construc-
tion of H,. from H,, an event e between crash. and failed (z) was moved if and only if
-(failed,(z) — e). Therefore, since failed;(a) was moved in the construction of H,+ and crash,
was not, it must be the case that in both #, and ¥,

~(failed () — failedy(a)) A (failed, (z) — crash,) o))

As shown in the case analysis, there are four possible results of applying the inductive
construction to 7. Either of the first three possibilities yields a history ,~ in which (e, b)
is good and (z, y) remains good. We claim that the fourth possibility cannot occur.

Proof: Suppose, for contradiction, that H,» = (- - -failed (z) - - -crashg; failed,(a) - - - crashy - - -).
Then by the earlier argument it must be the case thatin 7, and H,~

~(failed(a) — failed,(z)) A (failedy(a) — crashy) @

(failed (z) — crash,) in H,: implies that failed, (z) occurs in H,+ by sFS2d and the definition
of happens-before. Similarly, (failed,(a) — crash.) implies that failed_(a) occurs in H,:.
Thus, Equations 1 and 2 imply that in ,+ both failed (z) and failed_(a) occur in H,., which
contradicts sFS2b. Therefore, H,~ cannot have the assumed form, so both (4, b) and (z, y)
must be good in #,».

-Thus, if fixing (z, y) in H, results in ¢ new pairs (a;, b;) that are bad in ¥,/ then we can fix
all of these pairs in ¢ applications of the inductive construction. (Note that the ¢ bad pairs

22

do not interfere with each other: since all of them are bad, they all fall under one of the first
11 cases. Therefore, fixing one pair (a;, b;) either fixes another pair (a,, b;) or does not affect
(a5,65).)

Thus, the number of bad pairs in X, can be reduced by at least one in some finite number
of applications of the inductive construction given in the base case. Furthermore, this number is
bounded by n.

Therefore, we can construct a history H,. with fewer than k bad pairs such that r =p r. From
the Induction Hypothesis, there is a run r” that satisfies FS2 such that ' =p r”; therefore, r =p r'.

o

A3 Proof of Theorem 6
Theorem 6 (Vr: r |= OsFS2b) = (Vr: 7 = OW).

We will show that (3r: = | $-W) = (3r: r ~{sFS2b). To do this, we first assume that
W does not hold in some state of , i.e,, that it is possible for k failures to be detected such that
the quorum sets for those detections have an empty intersection. We then show that using this
assumption, a run can be constructed in which there is a k—ycle in the failed-before relation.

Wedivide the n processes in P into & sets So, . . ., Sk—1 such thatfor0 < i < k-1, i € §;; thatis,
processes 0 through k — 1 are in sets Sp through Sj_1, and the rest of the processes are distributed
among Sp through Si_1.

Consider the following scenario. Forall i : 0 < i < (k- 1):

1. Process i suspects the failure of process i ¢ 1, and sends the message SUSP; ;¢ to all processes
in P. The messages sent to the processes in set S;q are delayed indefinitely.

2. As a result of Step 1, process i receives a message SUSP;q1,; from process j © 1 for all
i #14,0<j £ k-1, where © is subtraction modulo k. Thus, process i does not learn that
another process has suspected it of having crashed.

3. Before receiving SUSPjg1,;, process i suspects the failure of process j, and sends SUSP; ; to
all processes in P. The messages sent to the processes in set S;g1 are delayed behind the
previous messages (recall that interprocess channels are FIFO). Process i also acknowledges
any SUSP messages with ACK.SUSP messages.

4. Process i has now received ACK.SUSP; ;1 messages from all processes kin |] 5j.

j#i01
Let Qiion = U S;foralli: 0 < i< k—1. No processin §; is in @;,jg1; in other words, for every
j#iel
: k-1
process i in P, there is some quorum set of which i is not a member. Therefore, (| Qi g1 = 0.
i=0

23

“

Mamom, by definition of Q;; being a quorum, every process i has received enough ACK.SUSP
messages to execute failed,(i ® 1). We have failedy(1), . . ., failed,_, (k- 1), and failed , _,(0), which
causes a k- “ycle in the failed-before relation. 8]

A4 Proof that the Protocol of Section 5 Implements sFS2b

Lemma 9 Given the protocol of Section 5, then[r = 35 = {1,2,...,k}: (FAILED1(2)AFAILED2(3)A- - -A
FAILED,_1(k))] = [3q: (sendy(S, “k failed”) — send,(S, “k — 1 failed”) — - - - — send,(S, “2 failed”))
inM,). ‘

Proof: We use the notation SEND;(S, m) as shorthand for (Vp € §: SEND;(p, m)).
The size of the quora are sufficient to ensure W, by Theorem 7. By W, r |= 3¢: Vi,j€ §:
FAILED;(j) = RECV;(¢q, “j failed”) = SEND,(S, “j failed”). We prove the lemma by induction on k.

Base case For k = 2, the proof is trivial Let k = 3. § = {1,2,3}, r |= FAILEDy(2) A
FAILED,(3), and r |= SEND,(S, “2 failed”) A SEND,(S, “3 failed”). Assume for contradiction that
sendy(S, “2 failed”) — sendy(S, “3 failed”) in H,. Then, because channels are FIFO, recv,(g, “2 failed”) —
recvy(q, “3 failed”) in X,. By the protocol, crash; — failed,(3) in H,, so r |= ~FAILED,(3). Therefore,

it must be the case that send, (S, “3 failed”) — sendy(S5, “2 failed”).

Induction case Assume that the lemma is true for k = [— 1. For k = [, we have FAILED;(2) A
FAILED2(3) A - -+ A FAILED;.1(!). By the induction hypothesis, sendy(S, “I — 1 failed”) — --- —
send (S, “2 failed”) in H,. Assume for contradiction that send,(S, “l - 1 failed”) — send,(S, “I failed”)
in H,. Then, as in the base case, recv;1(g, “I — 1 failed”) — recvi_1(q, “I failed”), so crashi_; —
failed,_(1)in H, and r |= ~FAILED,_(). Therefore, send,(S, “l failed”) — send,(S, “l — 1 failed”)
inM,.]
The quorum size for each failure detection is sufficient to guarantee W. Assume for contra-
diction that the failed-before relation is not acyclic. Then r |= 3§ = {1,...,k}: FAILED{(2)A---A
FAILED_ (k) A FAILEDk(1). By Lemma 9, 3q: sendy(S, “1 failed”) — send, (S, “k failed”) — --- —
send (S, “2 failed”) in H,. Thus, recor(g, “1 failed”) — recvi(q, “2 failed”) in M., crashy — failed,(2)
in H,, and r = ~FAILEDy(2). 0

24

