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INTRODUCTION

With the catastrophic failure of many Liberty ships during World War II, the phenomenon of weldment
cracking and the question of weldability were brought into the forefront of metallurgical engineering (ref 1). An
example of one of those ships that failed is the S.S. Schenectady, which split in two at her outfitting dock
(ref 2). The ensuing investigatior into these ship failures extended beyond the quality of the actual welded joints
to encompass numerous factors, including environment, operating conditions, and residual stress considerations.
The multiplicity of this study is an important illustration of how the definition of weldability must encompass
more than just the mechanical quality of the welded joint. Additional factors 10 be considered include the effects
of environment, fatigue, and stress corrosion. Weldability, then, is a qualitative term which may be defined as
the ease at which a satisfactory joint is produced relative to a range of service conditions.

Weldability studies generally differentiate between hot cracking and cold cracking phenomena. Hot
cracking is a term associated with the [racture of solidifying weld metal, while cold cracking cncompasses failure
of the solidified weldment. Note that these tests may encompass additional variables such as the effect of
environment on hot cracking.

Weldability tests may be classified into two broad categories, direct and indirect tests. Direct
weldability tests make use of an acwual weldment on the service material, while indirect tests utilize basic
metallurgical principles to examine the effects of welding variables o~ the final product. Direct weldability tests
are of greatest practical importance to the engineer and designer because they are designed to closely
approximate actual production welds and welding conditions. While more removed from actual fabrication
conditions, indirect weldability tests provide valuable metallurgical information that may be impractical or
impossible to obtain through direct methods.

Weldability testing offers an economical and rational way to investigate the effccts of chemistry,

welding parameters, material, and weld processes on the quahty of the actual weldment. In order to be effective,
a weldability test should provide (ref 3):

° Information that has direct relevance to a production weld
. Sensitivity to the effect of welding variables

. A high degree of reproducibility

. Simplicity of operation

Centain weldability tests are quantified by a characteristic parameter. These include the Nil Ductility
Temperature (NDT), defined as the temperature at which a material loses the ability to deform plastically and
fails by fast fracture, and the Fracture Appearance Transition Temperature (FATT), ’=fined as the temperature
at which fracture of the weld changes from a ductile to a brittle manner. Note that the FATT is generally
specified as a percent of a given type of fracture, e.g., the temperature at which the fracture surface appears to be
50 percent ductile. Other parameters include the Fracture Transition for Elastic Loading (FTE) and the Fracture
Transition for Plastic Loading (FTP). The FTE is defined as the temperature below which a fracture will
propagate into the elastically loaded area at the edge of the specimen, and the FTP is the temperature above
which the fracture is arrested in the plastically deformed region of the specimen (ref 3).




As most weldability iests investigate the cracking behavior of a weldment, the precise classification of
the type of cracking occurring is of importance. Definitions of common types of cracking failure encountered in
welding are as follows:

Hot Cracking - Hot cracking is the type of cracking that occurs at the liquid/solid interface of a weld
and is caused by both grain boundary liquation (hot shortmess) and solidification stresses (see Figure 1). Hot
cracking is promoted by chemical segregation effects of low melting constituents. These low melting
constituents, such as sulphur and copper, tend to aggregate in the last metal to solidify, thus forming a weak
plane within the weldment (ref 4). The metallurgical phenomenon of liquid metal embrittlement is closely
associated with hot cracking.

Hydrogen Cracking - Hydrogen cracking is commonly referred to as cold cracking. It is influenced by
four factors: hydrogen in the weld metal, high applied or residual stresses, susceptibie microstructure (e.g.,
martensite), and relatively low temperature (ref 5). Figure 2 shows a good example of hydrogen cracking in a
fillet weld of 1040 steel. Preheating a specimen prior to welding often alleviates hydrogen cracking by slowing
the cooling rate of the specimen, thus allowing more time for hydrogen gas to diffuse from the weldment.

Lamellar Tearing - Lamellar tearing is a type of cracking caused by a combination of high localized
stresses (usually caused by thermal contraction), low ductility of the base metal, and the presence of nonmetailic
inclusions parallel to the rolling direction of the base metal (ref 5). Tearing is initiated at the weak
inclusion/metal interface and usually occurs in or near the heat-affected zone of the weldment (sec Figure 3).

Rehea: Cracking - Reheat cracking generally occurs in the heat-affected zone of a weld during reheating
(i.e., a stress-relieving operation) as a result of residual stresses (ref 5). Figure 4 shows an example of reheat
cracking.

Solidification Cracking - Solidification cracking is an intergranular type of fracture that occurs during
cooling when the stresses developed across solidifying, adjacent grains exceed the strength of partially solidified
weld mesal. Solidification cracks may appear as open tears, or may "backfill,” commonly with low melting
constituents of the weldment (ref 5).

DIRECT TESTS

Cracking in base or weld metal caused by thermal stresses is termed restraint cracking. Restraint tests
analyze hot cracking by varying the amount of restraint a weld experiences, while the cooling effcct associated
with the mass of the specimen is held constant (ref 3). Originally designed as a test to determine the hot
cracking sensitivity of a base material, the varestraint test has been used to study (ref 6):

. The hot cracking sensitivity of filler metals
. The effect of alloying elements on hot cracking behavior
) The basic mechanisms of hot cracking
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The varestraint test apparatus is illustrated in Figure 5. Note that subscale specimens have also been
used (ref 7). The basic procedure for testing is as follows:

. An arc is struck and travels left to right along the test specimen using the appropriale process,
geometry, and welding parameters.

o As the arc passes point A, the loading yoke bends the specimen suddenly downward to
conform to the curvature of the die block B.

) The arc travels intr area C and is terminated.

The test specimen is then visually examined in the as-welded and as-polished conditions. The three
criteria used to evaluate the test are:

1. Cracking threshold - the minimum augmented strain needed to cause cracking
2. Total crack length - the sum of the lengths of all the cracks present
3. Maximum crack length - the length of the longest crack

Variations on the varestraint test include the spot varestraint test (or Tigmajig), the Sigmajig, and the
transvarestraint tests (refs 1,7). As the name implies, the spot varestraint test utilizes a spot weld rather than a
weld bead to investigate heat-affected zone and liquation cracking (see Figure 6). The Sigmajig test is designed
for thin sheet weldability testing. In the transvarestraint test (Figure 7), a transverse strain is applied to the
specimen rather than a longitudinal strain.

The Lehigh restraint test was developed to quantify the degree of restraint at which cracking occurs in
butt welds (ref 3). The critical restraint is expressed numerically as a function of distance X, shown in Figure 8.
Cracking is detected visually as-welded, or by examining a cross section taken at the midpoint of the specimen
and ground to a 50 grit finish. Magnetic particle inspection may also be used in inspecting cross sections. The
Lehigh restraint test has been used to determine the effects of the following variables on restraint cracking:

. Hydrogen content . Electrode variables
. Base metal composition . Preheat
. Heat input . Prior microstructure

Another useful restraint test, the tapered fin test, may be used to study the resistance to both crack
initiation and crack growth (ref 3). If the weld bead is struck at point A in Figure 9, and travels along line AB
until a crack initiates, the test gauges the material’s sensitivity to crack initiation. Conversely, if the bead is
struck near point B, initiating a crack, and travels along line BA until cracking ceases, the test measures the
material’s crack growth resistance. Note that a similar test, the Houldcroft restraint test, was developed for
weldability testing of sheet gauge steels (ref 3). Figure 10 is a schematic of the Houldcroft test specimen. Other
restraint-type tests include the keyhole and the circumferential-weld restraint tests.

Bending tests evaluate welds by applying a bending moment across a weld joint or heat-affected zone.
These tests are categorized into free bend and guide bend types of tests. Free bend tests are used 10 determine
weld joint ductility, while guide bend tests evaluate the soundness of the welded joint (ref 8).




Figures 11a and 11b are schematics of the free bend test apparatus showing initial bend fixturing and
final bend fixwring, respectively. After initial bending, the specimen is placed on the final bend fixture and bent
until a specified flaw size (commonly 1/16 inch) is produced. Ductility is measured as the percent elongation of
two reference marks.

Impact tests such as the drop-weight test and the explosion-bulge test determine an important weldability
parameter, the NDT. Although the exact definition of this parameter may change with each test, it is essentially
the temperature at which the material loses the ability to deform plastically (ref 3).

Figure 12 is a schematic of the drop-weight test. Note that this test may also be classified as a bending-
type test. The drop-weight test has been augmented by the drop-weight-tear test, which utilizes a notched
specimen.

The explosion-buige test was developed to simulate military-type, high loading rates on the specimen.
When performed over a temperature range, a characteristic NDT may be established. Note that both notched and
unnotched specimens may be used as well as a slotted specimen (i.c., the explosion-tear test) (ref 3).

INDIRECT TESTS

Fundamental to weldability determination is a metaliurgical understanding of the materials to be welded.
The physical metallurgical structure of the base material, filler metal, and the final product are vital elements in
predicting the ease of joining and the quality of the final welded structure. Metallurgical characterization may
include:

. Hardness testing

. Meuallography

. Chemical analysis

J Electron microscopy
. Mechanical testing

The Gleeble apparatus (see Figure 13) essentially consists of a load cell equipped with special grips
capable of quickly heating and cooling the test specimen. The capability of thermal cycling allows weld heat-
affected zones to be simulated. The Gleeble apparatus has also been used to investigate elevated temperature
ductility, thermal expansion, and low-cycle thermal farigue. Note that Gleeble techniques are not limited 0
tensile loading (ref 3).

The cast-pin-tear test was developed to investigate supersolidus cracking. Essentially, the test consists
of levitation melting small amounts of metal in an inert gas atmosphere, and casting the melts into tapered pin-
shaped copper molds. As the solidifying melt contracts and the copper mold expands, a tensile stress is applied
to the ends of the pins. Figure 14 is a schematic of the cast-pin-tear test apparatus.




SUMMARY

As was evident from the catastrophic failure of many Liberty ships during World War II, the
phenomenon of weldment cracking is of tremendous engineering importance. One manner in which weldment
quality can be investigated is through weldability testing techniques. Weldability testing offers an economic and
scientific way of studying the effects of numerous factors on the quality of the final weldment. Direct testing
methods, which utilize an actual weld on service material, offer the closest correlation 10 a production weld,
while indirect tests may reveal information impossible to obtain by direct methods. Direct testing methods can
be subdivided into restraint, bend, and impact types of tests. Restraint tests investigate the effect of strain on hot
cracking behavior, bend tests quantify weld ductility, and impact tests generally determine a characteristic
temperature where the fracture mode of the weldment changes. Augmenting direct tests, indirect testing methods
help characterize a weldment by providing important metallurgical information that is difficult or impossible to
obtain through direct testing methods.
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Figure 1. An example of hot cracking in a fillet weld.
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Figure 2, Hydrogen cracking in a filles weld of 1040 steel,
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Figure 3. Schematic and microstructure of lamellar tearing.
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Figure 4a. Macrostructure of reheat cracking in a chromium-molybdenum-vanadium steel,

10




¢ B RS

- . A A S
@ .~ . ‘ > * !.
w* . Voo Y OLTON .
-~ wl&




4

- e .

WELDING imscnou .
! (A)

QTIOIRTO

TOP VIEW

(e B

N
,
>
)
o
Lan )
3]

SIDE VIEW

Figure 5. Schematic of the subscale varestraint test.
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