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Preface

Early in 1990 a scientific committee was formed for the purpose of organizing a high-level
scientific meeting on Future Directions of Nonlinear Dynamics in Physical and Biological
Systems, in honor of Alwyn Scott's 60th birthday (December 25, 1991). As preparations for
the meeting proceeded, they were met with an unusually broad-scale and high level of
enthusiasm on the part of the international nonlinear science community, resulting in a
participation by 168 scientists from 23 different countries in the conference, which was held
July 23 to August 1 1992 at the Laboratory of Applied Mathematical Physics and the Center
for Modelling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT) of the
Technical University of Denmark. During the meeting about 50 lectures and 100 posters
were presented in 9 working days.

The contributions to this present volume have been grouped into the following chapters:

1. Solitons
2. Superconducting devices
3. Biomolecular dynamics
4. Nonlinear optics
5. Classical and quantum mechanical lattice dynamics,

reflecting some of the many different areas of nonlinear science to which Al Scott has made
early and fundamental contributions. They form a subset of the total number of the papers
and posters presented at the meeting, judged by the editors to be most representative of a
cross-section of Al's own research. Other papers from the meeting, which cover an even
broader spectrum, have been selected for publication in "Future Directions of Nonlinear
Dynamics in Physical and Biological Systems", NATO Advanced Study Institute Series, to
appear with Plenum Press.

People who have worked with Al know that he insists that everyone saould do what he or
she likes to do; this is certainly true, but it is also true that from the very early days he has
demonstrated a unique ability to stimulate research in new directions. Moreover, his ability
to interact with people and to transmit his optimism and enthusiasm to those around him has
furnished a solid launching pad for these new lines of research. Many friends and colleagues
around the world are thankful to Al for having received such a stimulus. This was the
essential motivation for our meeting and for the publication of these Proceedings. It is a
small way of saying "Thank you, Al, and many happy returns".

It is our pleasure to acknowledge financial support from the NATO Scientific and
Environmental Affairs Division (grant SA.9-15-03), the Army Research Office of the United
States Army Laboratory Command (grant 29333 MA-CF), the United States Army Euro-
pean Research Office (grant RD 6891-MA-02), the National Science Foundation (grant ASI

vii



Viii Preface

910728), the Danish Technical Research Council (grant 16-4932-1 OS), NORDITA, the
COWl foundation (grant A-51.77/TJ/IJO), and The Technical University of Denmark
(basic research grant to MIDIT).

The Scientific Committee, consisting of D.K. Campbell, Los Alamos, G. Careri, Rome,
P.L. Christiansen, Lyngby, A.S. Davydov, Kiev, J.C. Eilbeck, Edinburgh, A. Luther,
Copenhagen, D.W. McLaughlin, Princeton, A.C. Newell, Tucson, and R.D. Parmentier,
Salerno, was particularly helpful in the organization of the scientific program.

We warmly thank K. Fisker, L. Fonss, L. Gudmandsen, L. MacNeil, M.P. Sorensen and
many students at MIDIT for their generous assistance during the meeting and the prepara-
tion of these Proceedings.

Peter Christiansen
Chris Eilbeck
Bob Parmentier

Editors
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Solitons on lattices

D.B. Duncan, J.C. Eilbeck, H. Feddersen and J.A.D. Wattis
Department of Mathematics, Heriot- Watt University, Edinburgh, EHI)4 4AS. UK

We examine a variety of numerical and approximate analytical methods to study families of solitary waves on
lattices. Such waves, when they exist, travel through the lattice without loss of energy, and have approximate soliton
properties on collision. Corresponding quantum problems are also briefly described.

1. Introduction associated set of exact soliton properties, is now
well known.

The study of solitons on discrete lattices date For the discrete problem, Toda [311 showed
back to the early days of soliton theory. The fa- that the special choice of V (4) = all -
mous paper by Fermi, Pasta and Ulam (FPU) exp(-bqo) ] let to a set of equations which also
which inspired the pioneering work on the KdV had exact multi-soliton solutions. Ablowitz and
problem by Kruskal and Zabusky (cf. [12] for Ladik [1] discovered another integrable lattice
references) was a numerical study of a crystal lat- which was a discrete version of the Nonlinear
tice model with an anharmonic interatomic po- Schrbdinger equation, and a number of other
tential. The Hamiltonian of such a system could lattice equations, either continuous or discrete
be written as in time, have been shown to have this property.

However the basic model investigated by FPU
H [_ n + V (q,+ I - qn) 1, (1.1) is not integrable, and unfortunately little theory

n is possible once this property is lost.
In this paper we survey some recent investi-

where qo is the displacement of the nth particle gations of nonintegrable lattice problems which
from its equilibrium position, and V ti. - qth) have soliton or soliton-like solutions (w%: will use
is the anharmonic interaction potential. In the the word "soliton" in the loose sense as a lo-
FPU study, V'(q) = d ,q + e qm , m = 2 or 3. calized travelling wave which survives collision
If the relative displacement of the nth bond is with other such objects unchanged, or almost un-
defined to be cm = - qn, then the equation changed). Such studies are by necessity approx-

imate, although we present both numerical and

analytic approximations (here by "analytic ap-
d 2--- V'(bn+0) - 2V'(q0n) + V'()n-0). proximation"we meanasimpleanalytic formula

(1.2) with parameters derived by numerically or ana-
lytic means).

A continuum approximation to the FPU prob- There are two basic numerical approaches we

lem leads to the KdV equation (m = 2) or the have used in our study. One is to look for trav-

MKdV equation (m = 3), (see [12] for de- elling waves, i.e., solutions of the form n(t) =

tails). The analytic solution of such equations 4.(n - ct) = OS(z), with qS(z) -- 0 as Jzj , oo,

through the inverse spectral transform, and the which leads to the equation

0167-2789/93/$ 06.00 @ 1993-Elsevier Science Publishers B.V. All rights reserved



2 D.B. Duncan et al / Solitons on lattices

the range 1 < c < 2. The inset shows the corre-
4.0 4in) (w" sponding travelling wave profiles for three points

04(0 $4) on the curve. We see that the energy of the wave
3.0 2 4 is concentrated on the three most central grid

0i) points. Numerical studies with these profiles as

0 - , _ initial conditions shows the pulses are stable, at
5 0 least for medium time scales. We mention in

passing that a similar calculation can be used to
1.0 0) investigate periodic solutions of (1.3) or indeed

solitary wave or periodic solutions of continuous

0.0 problems.
.0 1.5 c 2.; A related equation where the nonlinearity is in

the derivative term, arising in an electrical lat-
Fig. I. Travelling waves for the case V'(q) . q + q2 . tice problem, is discussed in [ 19]. In this case

c20i"(z) = V'(0 (z + 1)) - 2V'(O(z)) the curvature of the apex of the solitary wave ap-
+ V'(0(z - 1)). (1.3) pears to blow up at a finite value of the ampli-

tude, i.e., the tip develops a cusp. Unfortunately
We solve this equation using pseudo-spectral this corresponds to a parameter value for which
methods [ 17 ]. By treating c as a parameter we the model is no longer physical. It would be in-
can use path-following methods to trace out the teresting to find this effect in a physically realis-
whole curve of solutions as c varies, able model.

In order to study the stability or interactions
of such solitary wave solutions, or to study more 2.1. The discrete sine-Gordon equation
arbitrary initial conditions, we have investigated
a class of symplectic solvers for the initial value If we try to carry out the same calculation for
problem ( 1.2) [ 15 ]. Some typical results are de- the discrete sine-Gordon (DSG) equation
scribed in section 2.

Another alternative approach is to find ana- On+I - 20, + n+I - F 2 sin On, (2.1)
lytic approximations to travelling waves, either
by continuum approximations to (1.3) at var- we were unable to find travelling waves with the
ious levels of approximation, i.e., low c expan- property that 0 (z) -- 0 (mod 2n) as IzI -- oc.
sions, or expansions in small values of 1/c, or The best we could find is shown in fig. 2, where
by the use of variational or weak formulations we have cut out the central part of the kink in or-
to fix parameters in some assumed formula for der to highlight the behaviour of the tails. It can
the travelling wave. This approach is described be seen that the tails appear to be periodic waves
in section 3. with a small constant amplitude. The calculation

is set up in such a way that the tails travel at
the same velocity as the main kink. AV.- hope to

2. Numerical results investigate the effect of varying the background
wave velocity independently of the kink veloc-

Results for the potential V' (q) = q + 2q 3 are ity in the future. It seems that the medium must
described in [ 17 ]. As another example we show be "pumped" with background radiation before
in fig. 1 some results for the potential V'(q) = the kink will travel in a lossless manner. This
q + q 2. Here the main graph shows the plot of finding is consistent with the results of Peyrard
maximum height against the velocity c, for c in and Kruskal [26], who showed that a kink in
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Fig. 2. Travelling kink for the DSG equation, c = 0.316228, Fig. 3. Discrete sine-Gordon breather bifurcating from
F = 1. the simple solution (2.3) for L = 30 and w = 0.9.

A = maxf(n,t).

a medium with no initial background radiation
loses energy as it propagates. If the velocity of the breather appears to be stable and does not

the combined wave in fig. 2 is varied, the size of lose energy through radiation.

the background radiation increases - the exam-
ple we have chosen corresponds to a minimum 2.2. The discrete nonlinear Schrodinger
in this amplitude. equation

Discrete SG breathers. Instead of looking for The discrete NLS equation appears in sev-

travelling kink solutions of the DSG equation eral applications in condensed matter physics

(2.1), we can look for stationary breather type [4,11,341 and in nonlinear optics [81. We con-

solutions of the form On (t) = 4 arctan f (n, 1). sider the nonintegrable discrete NLS equation

We assume periodic boundary conditions, • dOn
f (n,t) = f (n + L,t) and consider solutions -- + Y10nI2n + 0n+I + 4n-i = 0 (2.4)
which are even in both space and time, i.e., f with periodic boundary conditions On+L = On,

can be expanded as a double Fourier series where L is the number of lattice points. Hence,
27rin . all the solutions we find are periodic with period

f (n, t) = L aijcos L cosjwt. (2.2) L. For large L we can expect to find good ap-

-' proximations to solitary waves which can be re-
One simple solution of this type, which is con- garded as periodic waves in the lim" of infinite
stant in n, is given by [251 period. We will look for travelling waves of the

form of an envelope travelling wave modulating
f (n,t) = A cd(Qt I m), (2.3) a carrier wave travelling at a different speed, i.e.,

where cd is one of the Jacobian elliptic functions On (t) = 0 (n - ct) ei(kn-out)

[3] and where 2 = 1/(1 + A2 ) and m = Al. i(knwt)

Now we find a bifurcation diagram where the

localised wave, in this case a breather, bifurcates where c is the speed of the envelope of the
from a simple solution, see fig. 3. The numer- travelling wave. The periodic boundary condi-
ical path-following suggests that breather solu- tion O (z + L) = O (z) requires k to be of the
tions only exist when F is sufficiently small. By form k --. 27cm/L where m is an integer. With
using an accurate and efficient symplectic inte- the ansatz (2.5) inserted into (2.4) we find
gration scheme [5,151 on the numerical output that O (z) must satisfy the complex nonlinear
from the path-following code it is confirmed that differential-advance-delay equation
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2 continuum limit dark solitary waves only exist
10 ,for negative y [2,23].

5 100W)1 0.1 If we consider the discrete NLS equation
0.05 we can expect to find dark solitary waves for

-,,) 0 to 20 30 40 negative y (just as we found bright solitary
() , :5waves for positive y). Assume that 0.n(t) =

0.5 - Mk(z) exp[i(kn - wt)] is one such dark solitary

0 22wave for y = -Yo < 0. Then it is easily shown
.21 -2 -1.8 -1.6 .14 -12 by insertion that the dark solitary wave

Fig. 4. Paths of travelling waves in the discrete NLS equa- &n (t) = 4(-z)
tion (2.4) for L = 40 and, from the left, (a) c = 0.01, (b)
c= 1.2, (c)c = 1.6. Localized ('solitary") waves bifurcate xtexpi{[(2q + 1)i- k'n + ot/' (2.8)
from stationary solutions (straight lines), but only seem to
exist when y is sufficiently small as indicated by the dotted where q is an integer, satisfies the discrete NLS
line. The inset shows waveforms along the c = 1.2 path. equation (2.4) with y = +3,o.

-ic4'(z) + w40(z) + yjt(z)j 2q(z) 2.3. Davydov's equations

+ eik t(Z + 1) + e-ik (z- 1)

= 0. (2.6) Davydov's equations have been proposed as a
model for propagation of vibrational energy in

Apart from the trivial solution 4' (z) 0 this the form of solitary waves in a-helix protein and
equation has the obvious stationary solution tae the form [ 10,111]

[181, 0 (z) = 0 where 0 is a (complex) con-

stant. The dispersion relation for the normalised ih d X-n = +
(i.e., EL=11 0. I12 = 1) stationary solutions is dt X(fin+, fl9)0,n J(On+i + on-I,

easily found as (2.9)

-- 2cosk. (2.7) M 2 =d w(finI - 2fin + fin-I)oJ- L 
dt2-wfn -

The stationary solutions are interesting in this + X(I0n 12 _ I0n- 112). (2.10)

context because localised travelling ("solitary") Here 10nl12 is the probability of finding a quan-
waves bifurcate from them. The bifurcation tum of amide-I vibrational energy at site n and
points can be found analytically using standard fin is the longitudinal displacement of the nth
bifurcation theory [ 21 ]. peptide group of the protein. X, J, M and w are

The travelling waves which bifurcate from physical constants for which we will use the es-
the stationary solutions are calculated numer- timates [30] w = 50 N/m, M = 5.7 x 10-25

ically using the path-following method [17]. kg and J = 1.55 x 10-22 J. At present it is un-
As we follow the path away from the bifurca- clear what value X should take [ 71 although ex-
tion point, i.e., for increasing nonlinearity, we periments [6,7] suggest X =35-62 pN.
see how the travelling wave becomes more and Note that under the "adiabatic" approxima-
more localised (cf. fig 4) until (for c * 0) at tion, d2fP,/dt2 = 0, eq. (2.10) is satisfied for
some point the path stops. f9n+1 - #n = -xIbnlI2/w and eq. (2.9) reduces

Until the path stops the bifurcation diagram is to the discrete NLS equation (2.4) with y =
very similar to what is found in the continuum X 2/Jw (and t replaced by the scaled time Jt/h).
limit [ 35 ]. However, in the discrete case we also With the above choice of parameters in Davy-
find dark solitary waves for positive y. In the dov's equations (2.9), (2.10) we find a bifur-
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cation diagram very similar to that found for c25(k)- (4sin2 (Vk)' F(k)
the discrete NLS equation [221; stable solitary
waves bifurcate from stationary solutions and -- (3.2)
the paths of solitary waves stop at some point = A (k

as X is increased. For small values of c this hap- where j (k) represents the Fourier transform of
pens for X ::: 120 pN. We also find dark solitary g(z) and we use the abbreviated notation F(z)
waves, for V' ( (z)). Inserting Taylor series or Pade ap-

proximations of the transformed operator A (k)

2.4. 2D lattices in the equation above, we then invert the trans-
form to obtain standard nonlinear ODEs for the

Some results on a generalization of (1.2) to solution 0 of (1.3).
isotropic 2D lattices is given in [ 19]1. An inter- For example, using the (0,2) Padi approxima-isoropc 2 laties s gvenin[19. A iner tion 1/(1 + Ak 2 ) of A(k) generates the second
esting anisotropic lattice, proposed by Zakharov, order ODE

which reduces to the KP equation in the contin-

uum limit, is discussed in [14]. c 2 (o - D2 ) = V_,(4),

where the operator D = d/dz. This has as a

3. Analytic approximations solution

In this section we outline various analytic ap- 4'(z) - (c - 1)
proximations to solitary wave solutions of the 2 ( 3(c 2l- 1))
lattice equation (1.2). We start with the travel- V seCh2z /2)
ling wave equation (1.3) obtined from (1.2) by
the travelling wave ansatz. For illustration, we using the cubic potential (3. 1 ). This ODE is also

consider the cubic polynomial potential obtained via an approximation of the original
lattice equation (1.2) by the regularised or im-

V(O) = ½42 + a (3.1) proved Boussinesq equation as in [28,29] and
by a very different approach in [9 1.

where a > 0 is a constant. We examine The most accurate approximation of A(k)

continuum-like approximations derived from a which leads to a tractible ODE is the (2,2) Padi

Fourier transformed version of eq. (1.3) and approximation

valid in various wave speed ranges and one - Ik2

method valid in the high speed, large amplitude A(k) -
limit. We also describe methods based on vari- 1 + MI k2 '

ational and weak formulations of the travelling which, after substitution in (3.2), multiplication
wave equation (1.3) which are valid at all wave by 1 + mk 2 and inversion of the transform, gives
speeds. the ODE

C 2(1 - MD2)0b = (I + 1 132) V, (0),
3.1. Continuum approximations D 2

where the differential operator D = d/dz. An
We start by deriving various continuum ap- implicit solution of the ODE can be found

proximations from a Fourier transformed ver- and for the cubic potential (3.1) we obtain the
sion of (1.3) (see [24] for example): speed-height relationship
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Height -- (0) (3.3), we see that this approximation has given
-[4c' - 9 + c5( 14C2 - 9)] us a different length scale for the waves.

All these methods have been applied to the
for the travelling wave. The solution 0 is found two-dimensional lattice, the KP lattice [ 141, an
from electrical transmission lattice of Remoissenet

2 and Michaux [27] and a lattice with second,
z tan-i' nearest neighbour interactions [32]. For more

details of these results see [33]. The only sig-
(2c 2 + 3) (og1I - e/f/a0(O) nificant obstacle to its use on more complicated

6v/Sa0(0) 1 + 1 /f/aO(O) ' lattice equations is being able to isolate the
(3.4) operator into a single term in Fourier space.

where the constant fl and the function e are
defined by 3.2. Asymptotics offast waves

= [9 - 4c 2 + cV5(14c2 - 9)], Much has been written about the asymptotic
regime c -* 1 (see the subsection above). Here

0 2 (z) - a [(0) - 4(z)] (3.5) the solitary waves are low amplitude and slowly
a~b (z) + fl varying. Continuum approximations are appli-

For fixed z, 0 (z) can be found by first solving for cable and results are often easily obtained in
e in (3.4) by Newton's method and then for 0 in terms of elementary functions.
(3.5). Although the expressions are complicated, However in the other limit, c -. oo, very little
the process can be automated quite easily. has been published. A simple approximation

The approximations so far derived have relied has been provided by Druzhinin and Ostrovsky
on expanding A (k) for small k, assuming that [ 13 ], which neglects the coupling between adja-
the waves are mainly composed of the smaller cent lattice sites. The result is an approximation
wave numbers. However, for fast waves we ex- in terms of elementary functions, which is valid
pect the pulse to become narrow and so to have for the body of the wave, but has the wrong
an appreciable component from higher wave asymptotic behaviour in the tail. A different ap-
number modes. This can be accommodated by proach is taken in [ 14] for the KP lattice where
forming an approximation of A(k) that will the shape of the high speed travelling waves
be globally valid in k. One way to do this is to is shown to be determined by a function from
match an approximation 1(k) of Ai(k) at the the class Qp(z) which satisfy the differential-
low frequency end so that A(0) = 2(0) and difference equation
then to minimise the L2 norm of the difference
IIIA(k) - A(k)112 ). Using a (0,2) Padi form Qp'(z) = Qp(z + 1)P - 2Qp(z)P
A(k) = l/(l + ak 2), the L2 norm is minimised + QP(z - O). (3.7)
with a = 4 and this leads to the ODE

This equation has no solutions in terms of ele-
c 2 ( 4 - 1D2 )•k = V' (ak) mentary functions, but numerical studies indi-

with solution cate that it is even and pulse shaped. Numerical
calculations show that height and width in the

OWz = 3(C2 _ I1) sech2  V 2  ). (3.6) first two cases are given byTa~z = -(c2)seh 36

Comparing this with a similar solution found H2 2 1.40, W2 : 1.44,

earlier using the (0,2) Pad6 approximation //I3 : 1.30, W3 ; 1.28.
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We now apply the argument in [ 14] to the to enable us to carry out integrations explicitly.
travelling wave equation (1.3) with cubic poten- We use
tial (3.1). We see that since the height of the
travelling wave increases with speed c, the po- X = {q (z) = E tanh(Fz); E, F E R+},
tential is dominated by the cubic term at high
speed and equation (1.3) can be approximated and note that we are working with the variable
by q (z) which is defined in terms of qn (t) appear-

ing in (1.1) using the travelling wave ansatz
-- 0"(z) = 2 (z+ 1)-2b2 (z)+2(z-1). qn(t) = q(n - ct) = q(z). The function q(z)
a is related to O(z) by

The solution of this equation is related to the
solution Qp of (3.7) by the transformation O(z) = q(z + 1) - q(z), (3.9)

1 c2 and forms a kink soliton, as opposed the pulse/ a(z) = aQo(z) (3.8) shape of 4. This restriction now means that I is

As a consequence, the height of the pulse 0 is a function of E and F, so that setting the first
prediced to be approximately 1.4 c2/a at high variation of I to zero corresponds to the coupled,

speed and the width is fixed at 1.44 lattice spac- nonlinear algebraic equations
ings. 01 91

3.3. Variational formulation O =0 , OF 0.

As might be expected, the algebra is messy.
A different approach to forming analytic ap- Using an algebraic manipulation package we can

proximations is to make use of the Lagrangian obtain a relationship between E and c and F and
structure of the equations. The Lagrangian for- c and we can extract information for any speed of
mulation gives us an extremum principle for the solitary wave using numerical routines. Secondly
solution of a system of equations. From the ki- we can use asymptotic analysis to investigate the
netic (T (q)) and potential (V (q)) Energies we two limits c -+ I and c -- o0. Both of these

( defget the Lagrangian, L (j, q) =f T - V. Equations have been carried out in detail in [ 16 ]. For the
of motion are then generated by application of cubic potential with c2 -- 1 we recover all of the
the Euler-Lagrange equations, continuum limit results, since O (z) = q (z +

dL1) - q(z) asymptotes to a sech 2 pulse. In the
d (_ _ - =o 0. high speed region, the expressions for height and
d"_ Oqn width

In this derivation, however, we have skipped
over an important point, that the first variation H3 = (c2 - 1) [ 1.404 870 + 0.059 759c-2

of the action integral, I = f L vanishes (H! = + O (c- 4 )], (3.10)
& f L = 0). It is this part of the theory which we
exploit. CW 1.433 565 - 0.346 955C-2

In a fashion reminiscent of finite element tech- W c3'- 1 [ 6
niques, we shall seek such a critical point over + (c- 4 )] (3.11)
a restricted space of functions X, for the travel-
ling wave function, q (z) E X. We pick the space show agreement to within about 2% of the
X to match important qualitative features of the Qp (z) functions described earlier and graphs of
solution such as symmetry and shape and also the waveform also demonstrate a good fit.
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3.4. Weak formulation Unfortunately, numerical tests using this ap-
proximate solution as intial data show that it

We now describe a simpler method for the only accurate in producing travelling waves up
approximation of the travelling wave equation to speed 1.7 and fails to produce one after that.
( 1.3) which uses a weak formulation of the prob- Further numerical tests using a three parameter
lem and can be shown to be closely related to the approximation
variational formulation described above. More
details can be found in [16]. We multiply (1.3) Ok(z) = A sechn(fiz)
by a smooth test function V/ (z), integrate with for n = 4,6,. . show that n must be increased to
respect to z and use integration by parts (assum- obtain good results at higher speeds. It is possible
ing appropriate conditions on 0 (z) and y (z) as to obtain an optimal value of n for given speed c
Iz[ , oc) to obtain by solving the algbraic equations obtained from

00 the weak form (3.12) with three test functions
c2 ] V/"(z) 0(z)dz {z 2, z4, z 6}. This is quite messy and valid only

-o00 up to c ; 2.5 where n -- oo and, taking this limit
cc into account, the approximate solution is

-00 c(z) = v'2(c 2 - exp z2c 2 2 )C
x [y/(z + 1) -2,(z) + /(z- l)Idz. (3.15)

(3.12)

This equation is satisfied by any resonably well for all higher speeds. The numerical tests in-

behaved test function V (z) when 0 (z) is a solu- dicate that this Gaussian approximate solution

tion of (1.3). when O (z) is a solution of (1.3). gives very good results at high speeds and that it

Now we look for an approximate solution of is also reasonably good at low speeds.

(1.3) for the cubic potential (3.1). We use the This technique is easy to use, particularly

form when the approximate solution 0 and test func-
tions y/ are chosen such that the integrals in the

O(z) = A sech2 (#z) (3.13) weak form can be obtained easily.

because it has the expected symmetric pulse 3.S. Numerical results
shape and satisfies ( 1.3) in the continuum limit.
We substitute this approximate solution in the
weak form (3.12), select two simple test func- One way to evaluate the accuracy of the var-
tions {z 2, z4} and fix the constants A, ft by solv- ious solutions given above is to compare the

ing the resulting algebraic equations. We find speed-height and width-height relationships

that for the travelling waves they predict with those
found by direct numerical approximation as de-

A =3 (c2_ 1) scribed in section 1. The results for the approx-
/-a imations described in the previous sub-sections

and are shown in table 1. We see that many methods

2 agree in the low speed (c ; 1) region since they

p2-3 .2(3.14) reproduce correctly the simple sech2 solitary
wave predicted by continuum theory. In the

The behaviour as c - 1 is in exact agreement high speed limit, we see that the variational ap-
with the approximations (3.3), (3.4) and (3.6). proximation (3.9) is very close Lo the "correct"
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Table I
Relationship between height, width and speed predicted by the methods of this section. Width refers to the half height
width of the pulse. The last three rows give the leading order behaviour for c2 

-_ I and c2 
-- 00 as appropriate. We use the

function R 2 (C2 ) = C2 /(C 2 - 1).

Solution/Type Amplitude Width

low speed high speed low speed high speed

(3.3)/Padi 1.5 (c 2 - ) 1.0177 R(c 2 )

(3.6)/Pade 1.5 (c2 - 1) 1.7627 R(c 2 )

(3.13)/weak 1.5 (c 2 - I) 1.0177R(c 2 )

(3.15)/weak v,2 (c 2 
- 1 ) 1.3596R(c 2 )

(3.4)/Pade 1.5 (c 2 - 1) 1.3741 c2  1.0177 R(c 2 ) 1.4336 R(c 2 )

(3.8)/fast not valid 1.40c 2  not valid 1.44

(3.9)/variational 1.5 (c 2 
- l) 1.4049 c2  1.0177 R (c 2) 1.3590R(c 2 )

value 1.40c2 found by accurate direct numerical on lattices without mentioning briefly recent
calculation using spectral methods reported in developments in the study of the corresponding
section 1. Also, we see that the pulse width is quantum version of these problems [20]. For
bounded below at high speeds and the approxi- example, the second quantised version of the
mate solutions have significant size over only a Hamiltonian for the DNLS equation (2.4) is
few lattice spacings.

Another test of the methods is to use the solu-
tions they predict as initial data in the ODE sys-
tem (1.2) and measure the proportion of energy f
carried by any resulting travelling wave form if H1 = - E (b~bj1 l + b~bj-l + btb~bjbj ),
the solution settles down. At low speeds (1 < j =f

c < 1.7), all the approximations which repro- (4.1)
duce the continuum results (3.3), (3.4), (3.9)
and (3.13) produce very clean travelling waves
carrying most of the input energy. The Pad6 ap-
proximation (3.6) and the weak form approxi- where b! and bj are bosonic raising and lowering
mation (3.15) are designed for high speeds, but operators satisfying the usual commutation rela-
perform reasonably well at these low speeds. At tions. If we calculate the energy levels on a peri-
speeds above about 1.7 some of the methods fail odic lattice of length f = 60, with two quanta
completely, but the approximations (3.4), (3.6), (the smallest non-trivial case), the distribution
(3.8), (3.9) and (3.15) are all designed to work of energy eigenvalues as a function of momen-
at these speeds and perform well. tum k looks like fig. 5. The distinct band be-

low the quasi-continuum is the so-called soliton
band. A state in this band has a high probability
of having both quanta on the same site, hence

4. Quantum problems the name soliton as a localized lump of energy.
However, this being quantum mechanics, there

In a volume dedicated to Alwyn Scott, we is equal probability of finding this double quanta
would be remiss to leave the topic of solitons on any site of the lattice.
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On the prediction of the number of solitons
excited by an arbitrary potential:
an observation from inverse scattering
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A heuristic estimate for the soliton production rate by a pulse is verified for the Korteweg - de Vries equation using
inverse scattering. An observation from this result, which is shown to hold for some other nonlinear equations and for the
case of the "forced" nonlinear Schr6dinger equation, is that production is determined by quantities that are invariant
under rescaling of the original nonlinear equations. We speculate that this result may be useful to the development of an
inverse scattering theory for "forced" nonlinear systems.

1. Introduction If a fraction of a box of area W\/2A appears in
computing (1), i.e. the portion O.abc... of R

A heuristic method for determining the num- above, this fraction is taken to produce "radia-
ber of Korteweg - de Vries (KdV) solitons pro- tion rather than another soliton". This intuitive
duced in an experiment has recently been re- way of thinking of solitons arising from a pulse
ported [1]. That method was verified numerically lacks completely any theoretical basis, but the
by testing it on the Toda lattice, which becomes accuracy of (2) has nonetheless been verified
a KdV in a continuum limit, numerically [1].

The method arises in noting that for KdV General solutions to soliton equations may be
solitons, the product WVA§4 = constant, where A obtained by the method of the inverse scattering
is the soliton amplitude and W its width. Sup- transform [4,51. The nonlinear problem pre-
pose one now applies to the medium an excita- sented by the soliton equation is mapped to a
tion potential amplitude B, width L. First com- linear scattering problem, for which the solution
pute the integer N given by of the nonlinear equation serves as the scattering

potential. The scattering problem is solved by
N = (LVB/WVA§_), (1) standard linear techniques, and the subsequent

inverse mapping back to the nonlinear problem,
where for the real number R, (R) denotes the provides its solution. This consists of a number
integer part of R. For example, if R is written as of solitons plus radiation, the solitons corre-
the decimal form R = N.abc .... (R) = N. Then sponding to the bound states of the scattering
eq. (1) gives the number of whole boxes of area problem, the radiation to the continuum (scatter-
WX/A fitting in the box of area LV/B. Finally, ing) states.
remembering that the solitons are nonoverlap- We wish now to establish a connection be-
ping, the soliton production rule is tween the production rule (2) and inverse scat-

tering. It is our intention in this note to suggest
number of solitons excited = N + 1. (2) that the success of (1) and (2), which after all

0167-2789/93/$06.00 (E) 1993 - Elsevier Science Publishers B.V. All rights reserved
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amount to no more than a simple minded scaling lxi -- o . With v = (v1 , v2 ) and A, B arbitrary
argument, may actually rest on a deeper, mathe- amplitudes, we obtain from (4) the solutions
matically rigorous property of soliton equations.
We have been unable to discover this conjec- if = (0, Be'"`), x > a;
tured rule as yet. v=(1,-i/2ý)Ae-i•", x<-a, (6)

Toward our goal, we present in section 2 a
number of scattering problems for soliton equa- which have the appropriate bound state behavior
tions indicating a connection between the bound wi have te appoprate bou tae behvo
state spectrum (obtained from the associated as l hi is done al t e w a 0wfr e bo ncase. This is done because we are aware be-
linear scattering problem) and the scaling prop- forehand that v, may be eliminated from (4),
erties of the original nonlinear soliton equation. leaving the quantum mechanical Schr6dinger
In particular, eqs. (1) and (2) are verified for the equation for v2 with eigenvalues .2 This Hermi-
case of the KdV equation. A possible application tean operator permits only real •2, so that
of the present observations to the problem of corresponding to bound states is purely im-

"forced integrable systems" [6] is discussed in aginabyu

our conclusions in section 3. aginary.
For JxJ-< a, insertion of

v = (F,, F2) eivx (7)

2. Some examples in (4) yields the condition

We consider first the KdV equation F2/= i(y- ) = i(y + )/1oVo. (8)

dq(x, t) + 6qdxq + d3q = 0, (3a) With

with the initial condition = K + (9)

q(x,0) = oVo, -a <x <-a we obtain the two solutions

=0, IxI > a. (3b) K_ = _L {1 n172 + 0V

The sign o- = t+1 is present for generality. Asso- + (Q 2
- + oV] + 4( 7)

2 )1/
2]} 1/2

ciated with (3) is the linear scattering problem
[4] P, = fn/K,

dxv, + i~v, = q(x, O)v2 , () y±t = K, + ip± . (10)
((40

dxV2 - i'v2 = -qx1 , As in (8), F1, = -i(y, - f)F 2, so that

for the eigenvalues ý. In general, ý is complex, v, = -i(y+ - ý)F2+ pi+ - i(y_ - ý)F "-*,

= + iii. (5) Ixl-I a,

V2 = 2+P -x + F 2 _p . (11)

Solitons produced by (3b) are determined by the
bound state spectrum of (4) in the upper half Continuity of the solution determines the match-

c-plane, i.e., 77 >0 [4]. Such states vanish as ing conditions
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*(x = +a) = v(x = +a) ,

t(x = -a) = v(x = -a). (12) f dxV'qi ' t)=V2.

With a little algebra this gives If we substitute Y from (15) into (16) and
consider the limit X-*O, we find with (15a) that

(Y+ + ))p-i,÷o = __(y+ - ý)pi,,. (13) Y_-X 2 >0 and X=aVJ[VJ. Thus this solution,
the even case, exists for arbitrarily small V0 . This

Finally, recalling • = 0 for bound states and is the origin of the additional term of unity
letting added to N in (2). There is no threshold con-

dition. For the odd case, (15b), this limit gives
X=K4 a, Y=qa, (14) for X--*0 (but X#0), I=aVriVi . There is a

threshold for the odd case.
equating real and imaginary parts of (13) gives Considering next the invariance of (3a) under

the scaling transformation
+: XtanX=Y, (15a)

X, = E X, t' = ebt q' = ecq (18a)
XcosX=-Y. (15b)

we find

Also, in either case, from (10), b = 3a, c = -2a, (18b)

X2 + a2(OrV 0 ) Ž0.(1) 0X + = a (16) so that

Using (8) we find that for (15a), F2+ = F2, an xvr- = x'Vq7. (18c)
even solution, while for (15b) F2, = -f2-, an
odd solution. This invariant combination reflecting shape pre-

As previously stated, upon eliminating v, from servation under (18a) by the nonlinear differen-
(4), one derives the quantum mechanical Schr6- tial equation is interesting if we make the as-
dinger equation for the potential -q(x, 0). For a sociation of x with 2a and q with e-V0 = 1V01. To
different symmetric potential, the conditions the extent that this purely dimensional associa-
(15), (16) have been obtained and solved graphi- tion actually means something, the invariant
cally [7]. The results is that quantity in (18c) is seen by (17) to be the

determiner of soliton production. The soliton
number of bound states = N + 1 spectrum was found from the linear scattering

problem using the initial condition for the non-
if linear equation. We will return to this shortly.

We consider next the nonlinear Schr6dingerNir < 2a Vr•0~ - (N + 1)IT. (17) eqain(LEequation (NLSE)

With the correspondence WVi---+ r-nand LVB= idq(x,t)+ d2q±2qlq12 =0, (19)
2aV\/-•, this is just the result (1), (2). We note
here that the one soliton solution q,(x, t) of (3a) for which the associated scattering problem is

q•(x, t) = (2/W 2) sech 2([x - 4t/W 2]/W) + = qV2 I

obeys d.V2 - i'v 2 = .q*v. (20)
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Again, with oa = -1, let and from (24),

q(x,O)=oVo, -asx -a, = {4a2 V012 + p2 _ y2

=0, Ixl > a. (21) +[(±4a 01Vol2 + p2 _ y 2)2 + 4(pY) 2]/ 2}.
(27b)

For bound state solutions with •ini the upper half
plane, solutions are In terms of •, a single NLSE soliton may be

written as [6]
gP=(0,dpI"x), x>a;

) iexp[-4i(f 2 
- 112)t - 2ifx]

v = (ap- 0), x<-a. (22) qj(x,t)=271 cosh[2-q(x-xo)+88,qt]

For IxI -s a, use of the form (7) gives the speed of which is seen to be dx/dt = -4g.
r/2=aV/IKY + 0) = i(Y - 0/0 -V ), Then the condition for production of solitons at

(23) rest is found by letting • =0. From (26), p = 0=

r and (27) is

while use of (5), (9) yield
X cot X = - Y,K~ _- _+½+012 + f2_ 72

+ ([ -+V012 + f2 _,q2]2 + 4( f')2)1/21}1/2,X + y = (2ajVol) 2  -0, (28)

P•_ = 41l/. so that only the + sign may be considered. This
is the odd case, (15b) and (16), of the KdV
example. As noted, there is a production

threshold for IV01. Eliminating Y and letting
Again we use the conditions (12). Then 3`_ =

-~ reslts inX-a'0, we find Y•-I, X2 "~(2alVol)2 - 1-0.
- y, results in The quantity governing production (i.e., the

(-y+ e2
i,+a = (Y + ) (25) bound state spectrum) in (28) is 2alV01. Accord-

ing to the earlier dimensional speculation, this

corresponds to xq. Substituting the scaling (18a)
analogous to (13). Defining into (19) yields

X=2aK+, P=2a4, b=2a, c=-a,

r=2ap+, Y=2aiq, (26) q'=xq (29)

we obtain upon equating real and imaginary
parts of (25) Interestingly, the modified Korteweg - de

Vries (MKdV) equation

cos X [e" (X + p) - e-" (-X + p)]

= - sin X [er(r + Y) + e-r(-r + Y)], dOq(x, t) 6q2qx + q0 =0

cos X [e" (r + Y) - e-" (-r + Y)] yields, upon employing (18a),

=sinX[e'(X+p)+e-'(-X+p)], (27a) b=3a, c=-a>x'q'=xq, (31)
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i.e., the x, q-invariance as the NLSE. An analy- NLSE and MKdV. This not only held for the
sis along previous lines of the associated linear initial value problem (the spatial evolution equa-
scattering problem tions of the inverse scattering transform), but

also for the "forced" problem, as seen by consid-
dOv1 + i vI = qv2 , ering the time evolution equations of the inverse

scattering transform the NLSE.
d,v, - i•v 2 = •qv, (32) We established eq. (17) with use of the inte-

gral of the single KdV soliton. In the spirit of the
leads to the condition (25) already obtained for WKB we generalize the results to speculate that
the NLSE. Of course, subsequent time evolution
is different in the two cases. In particular, b is fdx qp(x, 0) CN,
different in (29) and (31). f

We also see from (29) that tq 2 = t'q'2 holds. with N = integer number of solitons produced, C
As the inverse scattering transform contains a the constant determined by N = 1, and P the
pair of equations describing the time evolution of exponent obtained from the scale invariance of
the scattering functions [41, the previous discus- the governing equation. A similar formula can
sion suggests that a determination of the eigen- be written with time integration for the "forced"
value problem using the temporal rather than the problem. As such a relation relates the soliton
spatial scattering problem, would show the production to a certain integral of the initial/
eigenvalue spectrum to be determined by T11101 2 boundary conditions, our speculation is that the
with r the time of a pulse IV(,l applied to the scaling behavior of the nonlinear differential
system at some fixed position x. Indeed, a con- equation could perhaps provide a useful ap-
sideration of the forced NLSE, driven by a time proach to solving the problem of developing an
dependent pulse at x=0. shows this to be the inverse scattering transform for forced nonlinear
case [61. (To see this in ref. [61, one must note
that in eq. (3) of that paper, a = r', and then
consider eqs. (16) and (17), along with the inter-
vening discussion.) Acknowledgements
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Data-parallel Langevin dynamics simulations
of Josephson junction arrays

P.S. Lomdahl and N. Gronbech-Jensen
Theoretical Division and Advanced Computing Laboratory, Los Alamos National Laboratory,
Los Alamos, NM 87545. USA

We discuss the advantages of parallel computing with respect to both computing speed and coding techniques. As
an example of an application, we show results of dynamical simulations of two dimensional Josephson lattices in
external magnetic fields. Using data parallel computing, we are able to study the dynamics of very large systems and
identify the interplay between spatial and temporal scales in complex systems.

1. Introduction which nevertheless maintain a local communi-
cation topology on the machine. Fourth, we are

Typically nonlinear problems with origin in often interested in the behavior of large systems,
condensed matter physics and materials science as close to experimental situations as possible.
are ideally suited for implementation on mas- This naturally leads to formulations with a large
sively parallel computers. This is of course true number of lattice sites, especially for 2D and 3D
for many other branches of science, but for con- problems. Finally, we are interested in the dy-
densed matter problems the reasons are espe- namic response of the system, we want to follow
cially clear. First, nonlinear problems in higher its time evolution. All of these factors lead to a
dimensions are most often formulated on a lat- formulation of the problem in terms of a large
tice, the lattice for example represents the under- number of coupled Langevin ordinary differen-
lying discreteness of a substrate of atoms or dis- tial equations with near neighbor interaction.
crete k-values in Fourier space. The fundamen- Fine grained massively parallel multicomput-
tal unit of parallelism thus has a direct analog ers like the CM-2 and CM-5 from Thinking Ma-
in the physical system we are interested in. Sec- chines Corporation are ideally suited for these
ondly, we are often interested in understanding types of problems. We will illustrate this point
the influence of temperature on the system, i.e. in the following, first with a simple example of
the system is in contact with a heat bath. There a data-parallel solution to Laplace's equation,
are of course several was to introduce tempera- secondly with an example of data-parallel tech-
ture in a problem, but often it is most convenient niques applied to problems from the dynamics
to operate in the canonical ensembk, i.e. having of Josephson junction arrays. One might argue
the temperature constant and the energy fluctu- that massively parallel computers are very ex-
ate. This situation is also closer to many exper- pensive and only accessible to a few fortunate
imental setups. Third, interactions are often lo- researchers and therefor not of general interest.
cal, i.e. we can represent the important physics We do not think that argument holds. Key com-
with a nearest or next-nearest neighbor interac- puter industry analysts now predict that by the
tion. Even when this is not the case parallel im- end of this decade the majority of computers,
plementations of the problem is often possible from the PC and workstation to the high-end

0167-2789/93/$ 06.00 @ 1993-Elsevier Science Publishers B.V. All rights reserved



P.S. Lomdahl. N. Gronbech-Jensen / Langevin dynamics simulations of Josephson junction arrays 19

number-chruncher will be multiprocessors and The data-parallel computing model maps very
parallel processors. Over the next five years, it cleanly on to the CM-2 SIMD structure. Data
is critical that computational physicists under- parallel computation is parallelism through the
stand this revolutionary technology if we want to simultaneous execution of the same instruction
make progress on "Grand Challenge" problems on a large set of data. This should be contrasted
in nonlinear science and elsewhere. with control-parallelism , where speed-up is

achieved through the simultaneous execution of
different instructions. This kind of parallelism
is much harder to manage and best results are

2. Data-parallel programming usually achieved at the hardware level. The
data-parallel concept is most easily illustrated

In this section we will briefly illustrate how with an example. Given three N x N (N = 256
programming a massively parallel computer is e. g.) matrices A, B, and C; a matrix element
surprisingly simple when the data-parallel ap- from each matrix is associated with a proces-
proach is followed. In fact, once a few basic con- sor - i. e. each processor has allocated memory
cepts are understood a typical code is signifi- for three matrix elements only. The statement
cantly simpler that a corresponding code for a C = A + B is a single statement in a program
serial computer. and will be executed as such in the data-parallel

The Connection Machine 2 (CM-2) is a mas- computing model. One each processor the indi-
sively parallel distributed memory computer vidual matrix element calculation is performed
containing between 4096 and 65536 bit-serial simultaneously. This high-level abstract model
processors. Each 32 processors share a floating- is important because it makes programs less
point unit, so for most scientific calculations machine dependent and thus more portable.
a 65536 processor CM-2 can also be viewed The data-parallel model is supported in the lan-
as a 2048 floating-point processor. The CM-2 guages C* and CM-Fortran on the CM-2 and
is a SIMD (single instruction-multiple data) CM-5. The data-parallel languages also support
computer, i. e. all the processors execute the the notion of virtual processors. Let us say that
same instruction in lock step. All processors are N in the above example was 512, in this case
synchronized at all times and problems such as N 2 = 262144 which is four times larger than
dead-locks, race-conditions, etc. can not occur. the maximum number of processors. With vir-
Each processor has control over its own mem- tual processors, each real processors is now per-
ory, - up to 128 Kbytes, for a total of 8 Gbytes forming the work of four fictitious processors.
on a 64K processor machine. For communica- Of course, at this level the work for each of the
tions purposes the processors can dynamically four virtual processors must proceed in serial
be arranged as a hypercube shape in up to 31 on each of the real processors. Nevertheless,
dimensions. For most applications in nonlinear this model of computing is extremely useful and
condensed matter physics the dimension of the conceptually simple. Note for example, that a
hypercube is low, - corresponding to 2D and 3D program written for say a 65K processor CM-2
problems. The CM-5 is a newer and more gen- will run unchanged on a 16K CM-2, but take
eral massively parallel multicomputer, which four times as long. The current hardware of the
in addition to the SIMD data-parallel program- CM-2 restricts the layout of the processors to
ming model, also supports the more general have axis that are powers of two. On the CM-5
MIMD (multiple instructions-multiple data) these restrictions do not apply.
programming concept. The interested reader is As a slightly more interesting example, con-
referred to [ 11 for more details. sider a finite-difference approximation for calcu-
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shape [512] ([12] grid;
float:grid a, b;
boolean :grid interior-element;

... /* Initialize the variables to something appropriate */

where (interior.elament) {
b E. + 11 .Ja + E. - 11[.]a + [.1[. + 1]a + [.J[. - I]a

-4 * 4.][.Ja;
} else

/* Do something for boundary elements */

}

Fig. 1. CO code implementing a finiJ Jifference approximation for calculating the Laplacian in 2D.

lating the Laplacian in 2D. We would discretize code, because we believe that it shows most
space such that a (x, y) = a (iAx, jAy) = aij convincingly that the basic concepts of data-
and an approximation of the Laplacian correct parallel programming are indeed extremely sim-
to 2nd order in Ax and Ay would be: (ai+ lj + ple. In comparison with a conventional serial

a,_ j + aij+1 + aij_ - 4aj)/Ax2 Ay2 . The es- program, one notes the complete absence of any
sential part of a C* program implementing this loops over the lattice sites. The Laplacian is cal-
calculation would look like fig. 1. culated with one statement in the data-parallel

The first line defines a processor layout with code, which represents very cleanly how we

the new parallel C type shape. Here we have think about the problem. Having illustrated the

defined a 512 x 512 2D shape called grid. basic principles behind data-parallel computing

The next line defines two floating-point parallel we now turn to a real application from the dy-
variables, a and b, each with the grid shape. namics of 2D Josephson junction arrays. Inter-

The third line defines a similar logical variable, ested readers who wants to know more about
interior-element. The rest of the code show a data-parallel programming are referred to [2].
where-else control structure, the body of which
calculates the actual Laplacian. The left-index
notation [.] (.+la, is another C* extension
that allows addressing of neighboring proces- 3. Josephson junction arrays

sors. The "dot" notation should be read as "this
processor's coordinate". This code is executed As an example of an illustrative system mod-

on all processors in parallel and depending on eled by data-parallel computing we show long-

the value of interior-element, a processor will time Langevin dynamics simulations of large

either sit idle or participate in the calculation (N, x Ny, ;Nx = = 128) 2-dimensional

of the interior Laplacian. The code to initialize arrays of Josephson junctions in a uniformly

interior-element has been omitted. The else frustrating external magnetic field. The results

branch of the control structure is then subse- demonstrate: (i) Relaxation from an initially

quently executed, here only the boundary pro- random flux configuration as a "universal" fit to

cessors are active and all others sit idle. On a "glassy" stretched-exponential type of relax-

the CM-5 the two parts of the control structure ation for the intermediate temperatures, and an

could execute in parallel. "activated dynamic" behavior for T , Tc; (ii) A

We have chosen to show an actual piece of glassy (multi-time, multi-length scale) voltage
response to an applied current. Intrinsic dynam-
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ical symmetry breaking induced by boundaries depends on the magnetic properties around the
as nucleation sites for flux lattice defects gives system and the inductive interaction is there-
rise to transverse and noisy voltage response. fore not easy to define theoretically. Secondly,

The Lagrangian for the JJA takes the form (see this type of interaction poses potential problems
refs. [3-51 and references therein) for a numerical scheme since the dynamics at

a given point depend on all other variables in
L -EoZ [2- Co(Osi - Oij - A - ,ij) the system. Some attempts to model the mu-

tual inductance have recently been published
- cos(O1 - 00-I - Aj,ij i)] [7 1, using interaction between nearest neighbor
+ ½Co E 6?. El % (6~l - 6 Nxj). (1) plaquettes only. However, omitting the induc-

.j •,j tive interaction does not seem to prevent the
model from presenting results that are close toHere, 00~ is the phase of the superconduct- experiments (see e.g. ref. [8]).

ing island with the discrete coordinates (i =

1, 2,.., N~, j = 1, 2, ... , N) of the lattice, and The Aij,kI summed around a plaquette obeys
k,,.,N, i=12... y fteltie n the following relation: AiJ.kI + Ak,,k,- +

Aijkl = (2e/hc) f 1k A • dI is the integral of the t l oi n + r 2nf, w the frus-
fi Ak-1l-,ij-i + Aij-l,ij =27rf , where the frus-

v-ctor potential from island (i,j) to a neigh- tration f = Ha 2/cDo is a constant giving the av-
boring island (k, 1). The energy associated with erage number of flux quanta 0 0 = hc/2e of the
each Josephson link is denoted by E0, and the external magnetic field H through the area a 2 of
capacitance between each superconducting is- each plaquette of the array. We also introduce
land and the ground plane is Co. An external the fractional charge qij, obtained as the gauge
potential El is imposed at the edges, cij = 1 invariant phase sum around the ij'th plaquette:
for i = j and 8ij = 0 for i # j. The vector
potential A is given in the Landau gauge, qij = ± [(O - - AiF-,ij) mod t

Aijkl = 2 7rfXIJ + Xk2 (YkI - Yij), (2) + (Oij-i - Oi-lj-i - AI-j-.,ij-i) mod it
2 + (Oilj_ I - Oilj - A iIj,- ilj I ) mod it

Xij = X° + 3xij, Yij = YO + 6yij. + (Oi-i - - A~-l) mod it]. (3)

Here, 6xij and 'Yij represent a spatial disor- The dynamical equations derived from eq. (1)
der around the ordered positions (xg., yO ). The are (in normalized units)
model of the Josephson links sketched above
lacks two potential contributions. One is the 6 ij =sin(Oij+l - Oij- Aij,ij+l)

capacitive coupling between the superconduct- + sin(O0•j_.. - Oij - Aij,ij-I)
ing islands. This interaction introduces implicit + sin (Oi+ Ij - 00 - Aij,i+ 1j)
terms in to the equations of motion and compli- + sin (O•_j - Oij - Aij,i_ j)
cates the computational procedure slightly, but - ( ij+I + oij- +- Oi+ij+ "i-ij-40 j)
there are no formal problems in the modeling + A M + A O3j - 6N~j (4)
as can be learned from e.g. ref. [6]. We have,
however, decided to study the system assuming Time is normalized to T = (Coh/2elo) /2,
that a ground plane is present, since this case where Io = (2e/h)Eo is the critical current of
makes the capacitance between the islands in- a link, and the normalized external bias cur-
significant when compared to the capacitance to rent at the edge points is J, = (2e/hlo)EI.
the ground plane. The other contribution to the The normalized dissipation is given by il =
dynamics is the long range inductive interac- (1/R)(h/2eColo)1/2 with R the normal resis-
tion between the currents in the network. This tance of the junctions, and the thermal noise



22 P.S. Lomdahl. N. Grenbech-Jensen / Langevin dynamics simulauions of Josephson junction arrays

associated with the dissipation is introduced note that the transition temperature T, for f =

in the classical Langevin sense: (Ai (t)) = 0, ½ is Tc "" 0.45: for T > T, long-range flux or-
(Ai)(t)(t)) = 2ITJ6(t - t'), where the tern- der and superconductivity are lost. In fig. 2a we
perature T is normalized to EQ/kB, kB being the see how the large temperature prevents the sys-
Boltzmann constant. We note here that the form tern from reaching its ground state (T = 0.5)
of eq. (4) lend itself to a very natural imple- and how a lower temperature (T = 0.3) results
mentation in data-parallel C*, like the example in a final state very close to the ground state,
in the previous section. C = - 1. However, we also observe how a very

(i) Relaxation studies with periodic boundary small temperature (T = 0.01) may result in a
conditions: final state which is far from the ground state.
For this part of the study we have chosen the This behavior of the final state as a function of
damping parameter to be q/ = 1, and of course the temperature can be understood as trapping
J, = 0, since there are no open boundaries. The into metastable (after the initial relaxation) flux
periodic boundary conditions are implemented configuration at very low temperatures because
through the physical observables - not through of the uniform frustration. As the temperature is
the phase, Oj. For any choice of gauge for the increased the thermal tunneling over the frustra-
external magnetic field there are many ways of tion barriers is allowed and C approaches closer
choosing the boundary conditions for Oj. We to the ground state value. For further increasing
have made the choice of introducing the phases: temperatures the thermal energy approaches (or

exceeds) the frustration pinning energy and ther-
Ooj = 0N j, mal randomization occurs (C -. 0 for T -, oc).
0 Nx+lj "- 61J + ANZJNX+IJ -AOj, Ij In fig. 2b we have shown the quantity
0io = PiN,, lnlnC(t) as a function of In t. For the interme-

0iN,+l = Oil, (5) diate temperatures (0.3Tc < T ;S 0.7Tc) we

which, when applied to the system defined find an excellent fit to a 'glassy' stretched ex-

above, will give the right periodicity of the ponential type of relaxation [10]. Specifically,
physical system. The ground state for the maxi- we find the dependence, C (t) , exp(- (t/r)P 1,

physcalsystm. he roun stte or te mxi- with fi • 0.45, in good agreement with studies
mal frustration parameter f = ' the fractional ooth muLti tim-saleems 1101.

charge q exhibits a checkerboard pattern, q = In f i 2c me-have shown [ as

± (- I )i+j. Therefore the following gauge invari-
a function of ln Int£ for a few temperatures

ant correlation function is defined as a measure

of the magnetization of the system (for f = -1): around the critical value Tc = 0.45. Here crit-
ical effects dominate and 'activated dynamics'

C1M has been proposed in the form [101, C(t) ,
Nt Ny exp [- (In (t/r) )J 1. As is seen this is in fair agree-

ment for T .z T,, where we find the exponent,x Eqij (qi+ Ij + qi- j + qjj,: I + qj- 1)- (6) 3 ;Z 0.9.

i~j Figure 3 displays the states for t = 40000

This quantity is C = -1 for the f - ½ ground for three different temperatures, (a) T = 0.01,
state and C = 0 for the random flux configu- (b) T = 0.25, and (c) T = 0.45. We have
ration. The initial conditions in 0;j are random shown (left) the staggered order parameter,
and we have followed the dynamics in normal- qij = (-1 )i+j, since this quantity will be uni-
ized times up to 104. form as a function of i and j if the system is

We have shown the evolution of C (t) for var- in a ground state f = ½. We have also shown
ious temperatures T in fig. 2. It is important to (right) the spatial Fourier transforms, g(k), of
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Fig. 2. The global correlation function C(1) during relaxation from random initial condition for f = ½ and zero disorder,
6xij = byjj = 0.

the shown qij distributions. This function will This is due to the thermally nucleated vortex
be sensitive to the distribution of domain sizes antivortex pairs visible in fig. 3c (left).
rather than the detailed structure of domain Figure 4 shows how a thermally nucleated
walls. Comparing the structures of the different vortex-antivortex pair may be
temperatures we see that the intermediate tem- annihilated by a domain wall. For three differ-
perature creates a system which is dominated ent times we show the same part of the system.
by only a few k scales, when compared to the The first shows the domain wall and the nucle-
system in very small (a) or in large tempera- ation in its close vicinity. The second shows the
ture (c). The spatial structures of the states also wall getting contact with the nucleation, and the
show some qualitative differences between the third shows the total annihilation. The normal-
very cool and the warm system. Looking at the ized time span from fig. 4a to 3c is ; 2.
spectral plots we find that the spectral power (ii) Externally driven dynamics with open
centers around the horizontal and vertical axes, boundary conditions: In this case the boundary
whereas for the warm system the distribution conditions are described by the phases,
is more independent of the angular orientation.

0 0j = O0j + Aoj,lj,
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ON.+Ij = ON j + ANZj,NX+Ij,

- (a) 01o = Oil + Aio,01,

OiN,+1 = OiN, + AiN,,iN,+1. (7)

-These boundary conditions will result in zero
current flow through the edges - except the cur-
rent supplied by the external source, J1 .We have
"studied the system as defined above for the dis-
sipation parameter I = 5 and the external mag-

S(b) netic field f - ½. In fig. 5 we show the current-
voltage (IV) characteristics of the system. The
current is supplied at the vertical edges of the

,,-, , "• ,_ _• system and the resulting dc voltages, Vx and Vy,
are measured and displayed in fig. 5a and fig.

-V "5b, respectively. The voltages are defined in the
following way,

V y E_~• • j=1

v, = ( 0 N - o,,). (8)

At the macroscopic level of the J, - Vx curve we
see no essential differences from the periodic

Fig. 3. The Wj configuration (left) for the relaxed states boundary conditions [3]. Examination of the
(t = 104) at different temperatures and the spectral power dynamics reveals the presence of a window of
(right) Jg(k). ij >0 - black; iij <0- white. The color noisy response for Jc(f = Z) • Jl < 0.55.
code for the spectral power is loglo (lg (k)]12) > 103 - black;
105 <log1 0 (Ig(k)12 ) < l03 - grey; loglo(Ig(k)1 2 ) < 105 This multi time-scale response is understood
white. (a) T = 0.01; (b) T = 0.25; (c) T = 0.45. in terms of irregular domain wall separations,

shown in the insets (JI = 0.4) in fig. 5a, where
the •i, distribution is displayed. Figure 5b shows
that a large transversal voltage is uniquely asso-

(a) (b) (C) ciated with the 'chaotic' regime of the dynam-
ics. Indeed, we see that the amplitude of Vy is
largest in the most noisy regime (lowest J, ) and
vanishes in the periodic regime. The origin of
the transversal voltage generation can be under-
stood from the insets in fig. 5. In fig. 5b the solid
curves show the time evolution of the voltage,

Fig. 4. Annihilation of a thermally nucleated (T = 0.25) 2 N,12
vortex-antivortex pair on a domain boundary. The plots Vy - Z OiN 0, ), (9)
show 16 x 16 of the total 128 x 128 system for three different
times (ta < tb < 1c, ta - tc z 2). The jq configuration is
shown as in fig. 2 (left). and the dotted curves show the time evolution

of the voltage,
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Fig. 5. The voltages across the JJA as a function of the applied bias current. (a) The longitudinal dc voltage. The insets show
the qi configuration (color code as in fig. 2) for two characteristically different cases. The bias current is forced through
the system along the horizontal axis. (b) The amplitude of the transversal voltage. Insets: time evolution of the transversal
voltages, Vy (dashed), Vy, (solid), and Vyr (dotted).

V(r) 2 N- quency contribution arises from the injection ofY(r = -• dN, -Ei ),~ (10) domain walls at the driven edges. Further, the

i=N,1 2+1 breaking of the symmetry in the chaotic regime

and the dashed curves show the sum, Vy. In the results in an exact half harmonic generation,

periodic regime we find large oscillations for since each half of the system now contributes
•() and �(r) (see fig. 5b for ,1 = 0.7), but separately. Let us conclude this section by not-
since they are of equal size and opposite s ing that the symmetry breaking and transversetotal transversal voltage is zero. For the voltage generation has been observed for a dis-

chaotic regime, on the other hand, the dynami- ordered system as well [5] and the results of the
cally induced spatially disorder (see fig. 5a for dynamically induced disorder and the positional
J= = 0.4) makes the two contributions unequal disorder are qualitatively very similar.
in size, and hence the sum, Vy, starts to oscil-
late as shown in fig. 5b (inset for J, = 0.4).
Furthermore, as suggested in the inset of fig. 5a, 4. Conclusion
and as we have observed through careful exam-
ination of the time evolution, the asymmetry We have used the data-parallel programming
between the left and right half planes develops model to study the dynamics of large frustrated
by local flux defects nucleating at the bound- arrays of Josephson junctions on the CM-2. This
aries and propagating into the interior. It is here approach allow for a flexible and intuitive im-
important to note that the dynamically induced plementation of the basic dynamical equations.
transversal voltage response to the longitudinal Our study reveals an interesting relation between
dc current is purely oscillating and has no dc spatial and temporal scales, including relaxation
value. Detailed studies [5] of the power spectra from random flux configurations which exhibit
of the longitudinal and transversal voltages show a stretched-exponential behavior. The dynamics
that the frequencies of V, and Vy are closely re- of the noisy response is controlled by "defects"
lated. Not surprisingly, the Josephson frequency structures -vortices and domain walls, which are
is present in the signals, but also a large fre- defined with respect to the underlying ground-
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Non-linear properties of Josephson junctions

N.F. Pedersen
Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby, Denmark

The non-linear properties of Josephson junctions are reviewed. Those properties includc thc possibility to have soliton
propagation in a Josephson junction transmission line, i.e., a very ordered state. The non-finear properties also include the
possibility for chaos in many different Josephson junction systems, i.e., a very non-ordered state. Several examples from
experiments are given.

1. Introduction
Josephson junction physics in the examples pre-

The Josephson junction is a unique non-linear sented on the following pages. The paper is
system for several reasons. Firstly one may find organized in the following way. In section 2 the
most of the generic non-linear behaviour in vari- autonomous Josephson is described. In section 3
ous Josephson junction systems. For example we discuss soliton propagation with one subsec-
chaos transitions of several different kinds may tion describing the theory and numerical simula-
be found, including the famous period doubling tions and the other describing experiments.
route to chaos. Another non-linear phenomenon Chaos is discussed in section 4 with a similar
such as soliton propagation may also be found in subdivision between simulations and experi-
a spatially extended Josephson junction, which is ments. Conclusions are found in section 5.
described by the socalled perturbed sine-Gordon
equation [1]. Also other typical non-linear phe-
nomena such as phase-locking, subharmonic gen- 2. The autonomous Josephson junction
eration, phase transitions etc. may be found in
Josephson junction systems. The most widely investigated Josephson junc-

Secondly a most important aspect of the non- tion system is the current-driven Josephson junc-
linear behaviour of Josephson junctions is that tion, a description of which may be found in
most of the above mentioned phenomena are recent books on the subject [2,31. The Josephsonaccessible for experimental measurements. This junction consists of two superconducting elec-
has given a unique possibility of cooperation trodes separated by a tunneling barrier. The
between researchers working with computer
simulations on one side and researchers doing equations with a bias current Idc may be written
experimental work on the other. The benefit of
such crossfertilisation has produced results that -at +iV (la)
through the mutual interaction by far exceed the d- + R +10 sin • = Idc,
sum of the individual contributions. I hope to d9' _ 2eV (lb)
convincingly demonstrate this unique feature of dt F(

0167-2789/93/$06.00 (g) 1993 - Elsevier Science Publishers B.V. All rights reserved
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( soliton propagation is accessible for direct ex-
(a) I (b)~ perimental measurements. For the purpose of

7 this presentation it is sufficient to note that the
6i. physical manifestation of the soliton is a fluxon,
w i.e., a quantum of magnetic flux 0,=

Fig. I. Equivalent diagram (a) and schematic drawing of a h/2e = 2.064 x 10- " Vs. Moving fluxons in the
long Josephson junction, long Josephson junction manifest themselves as

the so-called zero field steps (ZFS) in the dc
Equation (1b) is the famous Josephson fre- current-voltage characteristic. Figure la shows

quency-to-voltage relation and eq. (la) is Kir- the equivalent diagram and fig. lb the geometry
choff's law applied to the Josephson junction of a long junction of the overlap type. The
equivalent circuit, a section as shown in fig. la. corresponding wave equation may be written as
Here ýp is the pair phase difference across the a rather simple extension of eq. (2):
junction, and 1, is the maximum pair current. In
addition, a shunt resistance R carries a normal -ýxx + ýp,, + sin ýp = 1 - aýp,, (3)
electron current (VIR), a capacitance C carries a
capacitive current C(dV/dt), h is Planck's con- with (normalized) voltage V= p, (as in eq. (ib))
stant and e is the electron charge. With time and (normalized) current i = -px. The addition-
normalized to the reciprocal plasma frequency al normalizations used are as follows. Length is

0 = (hC/2eloJt1 2 and current normalized to measured in units of the Josephson penetration
the critical current I1, these equations may be depth A, = V/(h/2depA)J), i.e., l = L/Aj. J is the
combined into a single dimensionless equation current density, and d is the magnetic thickness
(the pendulum equation), of the junction. The junction length, L, is as-

sumed large, and the width, W, is assumed small
ýp,, + crp, + sin ýp = 17. (2) compared to the Josephson penetration depth.

Finally, velocities become normalized to the ve-
The plasma frequency, w0, is the natural oscilla- locity of light in the barrier, j. For typical ex-
tion frequency for the Josephson junction, corre- perimental junctions (of "old" superconductors),
sponding to the oscillation frequency in a pen- J is a few percent of its value in vacuum.
dulum. The McCumber parameter /3c is given by

f3c = 2eR2h)C/h, and the damping parameter a is 3.1.1. Perturbation calculation for the infinite
given by (1 /IVIc). n1 is the normalized (to I0) dc Josephson line
bias current. The methods in this section are based mainly

on the work of McLaughlin and Scott [1]. With
the right hand side equal to zero, eq. (3) is the

3. Soliton propagation sine-Gordon equation. The loss and bias terms
on the right hand side are considered as a pertur-

3.1. Long Josephson junctions: spatial bation to the sine-Gordon equation. The un-
dependence perturbed sine-Gordon equation has the well

known analytical single soliton solution [1,4],
As an extension of the simple Josephson junc-

tion let us now consider what happens when a ýp = 4 tan-' eo, (4)
spatial variation of the pair phase is allowed. We
may get a soliton. Indeed, the long Josephson where 0 = (x - ut)y(u), and y(u) = 1/ V(1 - u2)
junction is one of the physical systems where is the Lorentz factor. The solution gives rise to a
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2ir phase shift over a length of a few A,, and its X\-
derivative p, represents a voltage pulse. Note
that the form of the solution- a traveling wave -.-
in the parameter 0 = y(u) (x - ut) - is a con- -___-

sequence of the Lorentz invariance of the sine- __---

Gordon equation. In eq. (4) the velocity u is a ___. .
free parameter. As shown in refs. [1,4] the per-
turbation terms are included by assuming a solu- ,
tion of the same form as that in eq. (4), but with
u to be determined by a power balance equation. Fig. 2. Fluxon-antifluxon collision, a = 0.2, n1 - 0.22. 1 = 40.

Requiring either the Hamiltonian or the momen-
tum to be independent of time, one finds the
velocity to be determined by [1,41 one finds after rather lengthy calculations [6] that

the collision gives rise to an energy loss AH,
u = 1/I (1 + (4a/lrri)-). (5) given by [61

A more complicated solution to the sine- AH 41rT2a. (9)
Gordon equation that may be perturbed under
the influence of bias and losses is the soliton - Part of this energy is dissipated in propagating,
antisoliton solution that may be written [1] but decaying, oscillations of the line. The annihi-

lation threshold [61 may be found by requiring
S = 4tan-'(sinh TIu cosh X), (6) that the total energy of the soliton and anti-

soliton before the collision, H = 16y(u), is equal
where T = uy(u) t and X = y(u) x. It is possible to the energy loss plus the rest energy of a
in a manner similar to that for the single soliton stationary soliton and antisoliton, i.e.,
case to perform a power balance calculation by
requiring the time rate of change of the energy H 16y(u) - 4&2a + 16y(O). (10)
to be zero, i.e., calculating the integral [4-6]

Equation (10) together with eq. (5) leads to [61
d- = (io, - aý2) dx, (7) Th (2a) 31 2- (11)

with ýp inserted from eq. (6). For this case a Figure 2 shows a numerical calculation of a
qualitatively new phenomenon occurs. For high soliton - antisoliton collision where both of the
incident energies the soliton and antisoliton will above phenomena - the energy loss and the
pass through each other with a phaseshift 8 phase shift - are easily observed.
(spatial advance) given by

3.1.2. The overlap and annular Josephson trans-
8 = -2(1 - u2) In u . (8) mission line

In the overlap junction (fig. lb) the long di-
For bias below a certain threshold, th6, to be mension of the junction is perpendicular to the
calculated below, the soliton and antisoliton will current direction and the bias current is uniform-
annihilate each other, create a breather mode, ly distributed over the junction length. Hence
and eventually die out as small amplitude q = I/IJWL may be assumed in eq. (3). Due to
damped plasma oscillations. In evaluating eq. (7) the moving fluxon, a phase shift of 27r takes
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place in a time interval 1/u, where I is the () 'F I T

(normalized) length of the junction. This, in
turn, gives rise to a dc voltage v, given by -.

v =(2"n/I)u. (12)

The overlap junction has boundary conditions /: -

requiring that no currents flow out at the ends, V/(21/t)

i.e., Fig. 3. (a) Equivalent pendulum array for the annular
Josephson with one fluxon (from ref. [9]). (b) Schematic IV

•x (0, t) = Px (/, t) = 0. (13) curves: Annular junction p = I.

It may be shown that this boundary condition
is mathematically equivalent to a soliton - effects of collisions must be taken into account.
antisoliton collision, which was treated in the Disregarding the collisions for simplicity, the

previous section. voltages of these different ZFS are given by
The annular geometry on the other hand looks multiplying the one fluxon voltage with the total

mostly like a long overlap Josephson junction number n of fluxons and antifluxons, i.e., voltage
that is folded back into itself; it has the simple steps are to be expected at voltages v,, v3 = 3v,,
periodic boundary conditions v5 = 5v 1, etc. (shown as the dashed curves in fig.

3b). For the higher order branches, v3, v 5 ,....

,Px(O, r) = ,px(l, t) + 2plT, (14) the qualitative effect of the collisions is to lower
the average velocity and voltage somewhat com-

which for its simplicity is favoured by many pared to nv1 , where n = 3, 5, 7,..... Also a
authors. Here p gives the number of full phase lower bias threshold 77th, where a fluxon and an
rotations along the line. For topological reasons antifluxon annihilate each other (cf. eq. (11)), is
p is a conserved number as long as the supercon- to be expected. Figure 3b shows qualitatively the
ducting ring is not opened up by taking the higher order steps (full curves) based on these
junction through the transition temperature [7- arguments. Reference [8] shows for p = 2 a nu-
10], or by local hearing with an e-beam [11,12]. merically simulated IV curve which contains all

The simplest case to consider is p = 1, i.e. a the essential features of fig. 3b.
single fluxon on the circular line. This case is
shown in fig. 3a for the equivalent closed pen- 3.2. Soliton experiments: dc IV-curves
dulum array [9]. In that case there is no super-
current, since as soon as a uniform bias current is In the IV curve of an overlap junction the
applied, the fluxon starts moving with a velocity moving soliton gives rise to zero field steps
u determined by eq. (5) and a voltage given by (ZFS). The mechanism for the first ZFS, n = 1,
eq. (12) develops. Hence for the annular junc- is that a fluxon moves along the junction and is
tion with one trapped fluxon no supercurrent reflected at the boundary as an antifluxon. Since
exists and thc dc voltage is a direct measurement the reflection at x = I is equivalent to a collision
of the velocity of the single soliton. The IV curve with a virtual antifluxon at x = 1, the problem
is shown qualitatively in fig. 3b. In addition to may be treated in the framework of eq. (8) for
the single soliton, further solitons may be the phase shift and eq. (9) for the energy loss. If
created only by introducing soliton - antisoliton the junction length I is very large, the details at
pairs (for topological reasons), in which case the the boundaries play only a minor role, and the
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.......... change of 2n-. The experiment and interpretation
(.9 2 ~are elegantly connected with fundamental theory

which requires the phase to change only in muti-

.- 1 ,pies of 21T around a superconducting ring.

- ,_• 4. Chaos

V(Av) 4. 1. Chaos in Josephson junctions

Fig. 4. (a) Experimental zero field steps for an overlap
junction. (After ref. 151). (b) Experimental n-fluxon zero
field steps on an annular junction. n = 1-9 (after refs. Another non-linear signature appearing quite
[111121). often in Josephson junctions is chaos together

with its accompanying bifurcations. In fact, quite
voltage of the first step is given by eq. (12). For often the Josephson junction is used as a model
example, Pedersen and Weiner [51 were able to system for chaos in numerical simulations. A
neglect completely the effects of collisions in a particular feature of chaos in Josephson junc-
comparison between experimental ZFS on a very tions is that both the effect of thermal noise and
long overlap junction (1 = 45) and perturbation the effect of deterministic noise (chaos) are very
theory. Figure 4a shows an example of one of important in relation to the experiments. The
their experimental curves. If the junction length interplay between those two sources of noise is
is smaller (for example of the order 5-10), the very complicated, and at worst makes it difficult
energy loss and the phase shift will give rise to to interpret experiments. This has led to new
corrections. theoretical and numerical work on the non-linear

Experimental measurements of solitons on the interaction between thermal and deterministic
annular junction [9,10] have also been reported. noise.
In the experiment the p value could be changed
only by taking the junction through the transi- 4,1.1. Deterministic chaos in the Josephson
tion temperature. p = 1 appeared qualitatively as junction
discussed above. p =0 (zero fluxons trapped) The most widely investigated chaotic Joseph-
showed the full supercurrent and fluxon - anti- son junction system is the rf-driven Josephson
fluxon steps at voltages v2 = 2vI, v4 -4v... junction for which the equation may be obtained
etc. by adding a term Irf sin wt to eq. (la), i.e., in

In a more recent experiment [11,12] the intro- normalized units (0 = o/to)
duction of fluxons could be made in a much
more controlled way. Here an electron beam was •',, + ctp, + sin ýp = iq0+ rmq sin nt. (15)
used to open one side of the annular junction
and introduce a fluxon. Each time the electron Since analytical solutions do not exist, one has
beam was crossing the junction a new fluxon was to do numerical simulations [13-181 in the pa-
introduced. Passing the beam in the opposite rameter space of a, qo, il, and 12. A particularly
direction removed a fluxon. Figure 4b shows an thorough investigation of the parameter space
IV curve from this experiment [11,12], in which was done in ref. [18]. Typically, the system has
successively one up to nine fluxons were intro- been investigated numerically in the 77-,4 plane
duced. The annular junction experiment dem- for a fixed damping parameter a, a plot which
onstrates in a very clean way the existence of a more or less has become a standard for such
topological sine-Gordon soliton with a phase systems. Such a parameter plane shows a very
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complicated mapping of different dynamical be- 0166

haviour [141. For w >w, i.e., 02>1, the ] -i
threshold rises because the capacitor shorts out 1
the applied rf current. For w<1/RC, i.e., 0164 -

D < I/Vc, the system is able to follow adiabati- [
cally the if current, and chaos occurs only if

i1 > 1. For w - w, the threshold for chaos is
lowest. 0162

Besides numerical simulation another method

of a somewhat computational nature is to use an --

electronic analog simulating the Josephson equa- 0 60-

tion [19]. Such systems have the advantage of o.0 1.5 2.0 2.5 s0

being very fast, and Poincare sections and bifur- V/(!hc/2e)
cation diagrams may be readily displayed. The
disadvantage is the limited precision and res- Fig. 5. Numerical calculation of phase locking steps of an IV

olution, and the drift of analog electronic cirr curve. 0 =0.16, a = 0.5, 1, 1.05. After ref. 122].

cuits.

4.1.2. Thermally affected chaos in the Josephson an rf-induced step with loss of phase lock. In
junction experiments that have been performed, such in-

In ref. [201 a Joscphson junction system with teresting and complicated structure have been
parameters such that two solutions existed, was typically washed out because of thermal noise,
investigated. The authors found that the basin and only a smooth curve which does not in a
boundaries between the two solutions were frac- simple and convincing way demonstrate chaos, is
tal. A small amount of thermal noise may then obtained [221. Thermal smoothing due to a tem-
take the system back and fourth between the perature of less than 100mK is sufficient to
solutions. The authors found that this mecha- remove most of the traces of complicated dy-
nism gave rise to approximately 1/f noise for namical behaviour. By comparing experiments
some parameter regions. with a calculation that includes thermal noise,

In an extensive numerical simulations [21] in- however, the existence of chaos may be shown
cluding a thermal noise term in eq. (2), Kautz indirectly.
was able to obtain the very high noise tempera-
tures (_ 106 K) that have been observed ex- 4.2. Experiments on real Josephson junction
perimentally. For a situation with overlapping
if-induced steps, the origin of the very high noise Common to all the experimental results is that
temperatures was hopping between phase locked they are not nearly as spectacular as the numeri-
and metastable chaotic states induced by thermal cal simulations. The main reason is that thermal
fluctuations. This may even lead to the result noise, which is most often not taken into account
that the low frequency noise power increases as in simulations, has a major effect on the out-
the temperature is reduced. In the absence of come of the experiments. This is because the
thermal noise, numerical calculations of chaotic energy levels in the thermal oscillations may very
regions in the IV curve typically contain a wealth well be of the same order of magnitude as the
of complicated structure displaying bifurcations, intrinsic energy levels in the Josephson junc-
chaos, periodic solutions, etc. This may be seen tions, and complicated non-linear interactions
in fig. 5, which shows a numerical calculation of occur.
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4.2.1. dc observation of chaos suits are very similar to the numerical results
Before the term chaos was connected to shown in fig. 1 of ref. [17] and to analog results.

Josephson junctions, researchers sometime
noted very irregular and erratic IV curves in 4.2.2. Chaos and parametric amplification
samples subject to strong applied rf signals. In For Josephson junction parametric amplifiers,
many cases such junctions were discarded be- low noise temperatures were found in some
cause of assumed defects during fabrication. It is cases, however, more often experiments showed
known that such irregular IV curves may be a considerable excess noise [25]. For experimental-
signature of chaos. Examples of such irregular ists the observed noise rise has been a major
behaviour, in particular the loss of phaselock on puzzle. A large number of theoretical and nu-
an rf-induced step, may be found in refs. [22- merical papers [261 have dealt with the problem.
24]. The conclusion is that the very large noise tem-

By comparing such experimentally obtained, peratures cannot be explained by traditional
irregular IV curves to numerically obtained ones, noise sources such as Johnson noise, shot noise,
one has in principle the simplest experiment on or quantum noise. Hubermann et al. [131 first
chaos. An example of such a dc experiment is suggested that chaos was the origin of the excess
illustrated in fig. 6, which shows an experimen- noise. This suggestion was further substantiated
tally obtained IV curve with loss of phaselock on in ref. [141.
the rf-induced step. Also shown in the figure is More recently a slightly different type of
the spectrum of half-harmonic generation as Josephson junction parametric amplifier was in-
measured with a sensitive microwave spectrome- vestigated [27] by another group, which drew the
ter. Note that these experimental curves, which conclusion that noise in this amplifier cannot
contain two period-doubling bifurcations and a arise from deterministic chaos alone. The ob-
chaotic region on an rf-induced step, can be served noise increase required the presence of
considered as a standard example of the period- thermal noise. They suggested that the noise
doubling route to chaos. There experimental re- increase was due to thermally induced hopping

between a bias point that would be stable in the
absence of thermal noise and an unstable point.
This observation demonstrates the importance of

I • _thermal noise in modeling chaos in Josephson
junction systems. A noise temperature of as

-50 much as 106 K may be obtained.

0 5. Conclusion

This paper has discussed mainly the non-linear
0 properties of Josephson junctions, which have so

much promise for both applications and con-
n •tinued research on fundamental problems. The

-C
problems we have dealt with have all been de-

0 I 50 Ifined on the basis of the "old" superconductors.0 500 1000
I (p A) Future work involving the new high Tc supercon-

Fig. 6. IV curve a and half harmonic microwave power. ductors will most likely deal not only with the
Experiments after ref. 1241. same type of problems as discussed above for
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different parameters, but also with completely [12] A.V. Ustinov, T. Doderer, R.P. Huebener, N.F.

new non-linear phenomena, for example, due to Pedersen, B. Mayer and V.A. Oboznov, submitted to
Phys. Rev. Lett. (1992).

anisotropy and complicated flux dynamics. It [13] B.A. Huberman, J.P. Crutchfield ai..: N.H. Packard,

may be safely predicted that a lot of interesting Appl. Phys. Left. 37 (1980) 750.

non-linear physics lies ahead. [14] N.F. Pedersen and A. Davidson, Appl. Phys. Lett. 39
(1981) 830.

1151 D. D'Humieres, M.R. Beasley, B.A. Huberman and A.
Libchaber, Phys. Rev. A 26 (1982) 3483.
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Josephson soliton oscillators integrated in a resonator consisting of two closely spaced superconducting microstrips
have been investigated experimentally. The dc IV-characteristic shows zero-field steps containing a number of resonator-
induced substeps, occurring because of locking of the soliton oscillator to the resonator. The position of the substeps
follows the structure of a "devil's staircase", and their appearance depends strongly on the externally applied dc
magnetic field.

1. Introduction

The study of the dynamical behaviour of long 1+

Josephson junctions is of great fundamental and
practical interest. Besides showing a rich varia-
tion of nonlinear properties and chaotic regimes, V.
they have potential applications as electronic de-
vices, such as local oscillators for SIS-mixers in
the realization of cryogenic integrated millime-
ter wave receivers for use in radio-astronomy
and space communication [ 1. Fig. 1. Schematic drawing of the sample geometry. The

coplanar resonator has its electromagnetic field confined
The one-dimensional Josephson soliton os- in the gap between the two closely spaced Nb-strips. The

cillator is a Josephson tunnel junction which two Josephson junctions are formed where the top and bot-

is much longer than the Josephson penetration tom films of the left strip overlap. The microstrip antenna
edirection and comparable to shown at the top of the figure is used for the microwave

measurements.

or less than Aj in the other direction. When the
junction is properly dc biased, a localized quan-
tum of magnetic field - a soliton - can oscillate shown in fig. 1. Earlier experiments [3] have
back and forth in the junction, hereby emit- shown locking between one soliton oscillator and
ting radiation in the millimeter wave frequency the resonator manifesting itself as substeps on
range [2 ]. the zero-field steps in the I V-characteristic. Here

The junctions discussed here are integrated we report on a more detailed study of these sub-
in a resonant structure consisting of two closely steps in order to clearify the nature of the inter-
spaced coplanar superconducting microstrips as action between the soliton oscillator and the res-

onator.

0167-2789/93/$ 06.00 (K) 1993-Elsevier Science Publishers B.V. All rights reserved
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i(•A) we noted that the substeps were approximately
one order of magnitude more sensitive to the
magnetic field than the critical current.

800

3. Discussion
700

The dominant mode in the present geometry is

o00 the coplanar resonator mode, where the millime-
ter wave electric and magnetic fields are mainly
confined to the narrow space between the strips.

500 - In order to model the geometry used in ref.
[1], Gronbech-Jensen et al. developed a sim-
ple analytical approach [61, where the overlap

4W .junctions are coupled to a lumped element lin-
L ',) ear tank circuit. The model predicts locking be-0 50 O 70 gotween the soliton and the tank circuit when the

Fig. 2. Lower part of the ZFSI for a four-junction sample junction is operated near the fundamental reso-
(UI-4JJ). T = 4.2 K, B = 0. nance frequency of the tank or its subharmonics

[7]. This has been confirmed numerically. The
2. Experiments height of the subharmonic steps was seen to vary

approximately inversely proportional to the sub-
The samples were fabricated in Nb/AlOx/Nb harmonic number [ 71.

trilayer technology with a critical current density In contrast to this model, the distributed res-
of 103 A/cm2 as described elsewhere [4 1. The di- onator in our setup will exhibit resonant be-
mensions of the junctions are 200 am by 10/um haviour at all multipla n of one half-wavelength
and they are closely spaced in pairs placed in the giving rise to locking whenever the soliton fre-
middle of one of the Nb-strips (see fig. 1). The quency equals a fractional harmonic n/m of the
critical current was 10 mA. The Josephson pen- half-wavelength resonance frequency v, of the
etration depth is Aj _• 10 pm giving a maximum coplanar mode. Indeed, the position of the steps
plasma frequency of fp 2_- 130 GHz. The maxi- in fig. 2 corresponds very well to n/m = 2/5
mum voltage of the first zero-field step (ZFSI) and n/m = 4/9, assuming that the hysteretic
is approximately 100 pV corresponding to a soli- step corresponds to n/m = 1/2.
ton oscillator frequency of 24 GHz. The varia- The height of the substeps decreased with in-
tion in the measured parameters was less than creasing temperature. At a temperature wh re
5%. the substeps were completely suppressed, the

Fig. 2 shows the lower part of ZFS l for one of junction was irradiated with microwaves via
the junctions in a four-junction sample. A hys- the microstrip antenna shown at the top of fig.
teretic step at 79 #V, corresponding to a soliton 1, and if-induced phase-locked steps were ob-
frequency of 19 GHz, is present, but a series of served. Not only locking to the fundamental fre-
minor steps can also be seen at lower voltages. All quency was seen, but also locking to fractional
the steps are interpreted as coupling between the harmonics, following the structure of a "devil's
soliton oscillator and the external resonator [5]. staircase" with locking at n/m = {1/3, 2/5,
By applying a dc magnetic field in the plane of 3/7, 4/9, 5/11,..., 1/2} was observed. Com-
the junction and thereby changing the coupling, paring to fig. 2, the 3/7 and 5/11 harmonics
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Numerical simulations have been performed for an annular Josephson junction with a normalized length equal to
6, using the perturbed sine-Gordon equation. The calculated current-voltage characteristics reveal a small jump on
the steps 3 and 4 in accordance with experimental observations. The computer simulations show that the jumps are
caused by a transition from a non-bunched to a bunched fluxon oscillation state as the bias current is increased.

The annular Josephson junction allows for where ( (x, t) is the space and time dependent
the study of undisturbed motion of sine-Gordon superconducting phase difference. The spatial
solitons (magnetic flux quanta) in the absence coordinate x is normalized to the Josephson
of boundaries and soliton-soliton collisions. Re- penetration depth .j, the time t to the inverse
cently the dynamics of a soliton chain trapped plasma frequency too , a and ft are the dissipa-
in an annular Josephson junction has been in- tion coefficients, and y is the bias current. For
vestigated experimentally [ 1]. The experiment the annular junction, the boundary conditions
showed the evidence for a crossover in the soli- for eq. (1) are periodic,
ton chain velocity v dependence versus the driv-
ing force y (I-V characteristics), which has been (p (1, t) = (p (0, t) + 2nn,
suggested to be due to soliton bunching [2] at
high velocities. The surprising fact observed in (Px (l, t) = x (0, t). (2)

the experiment was that the crossover has been As known from previous studies [41 , the pres-
found only for the configurations with n = 3 ence of the surface-loss term 8? in eq. (1 ) leads to
and 4 solitons trapped in the annular Josephson a spatially oscillating trailing tail behind a mov-
junction of the normalized length I ; 6. For the ing soliton, which appear at high soliton veloc-
cases of n = 2 and n > 4 no specific features ity v,. This may give rise to bunched (bound)
have been observed in the I-V curves. states of solitons in the chain, thereby breaking

In this contribution we report on our recent the symmetry in the system.
numerical simulations, which where performed For solving eq. (1) with the boundary con-
in order to check if the behavior which was ob- ditions (2) we were using a pseudo-spectral
rerved in the experiment [2] can be explained Fourier method [51. The parameters have been
by the soliton bunching effect. chosen close to the experimental values [1 ]:

The system discussed here is described by the I = 6.0, a = 0.02, ft = 0.02, n = 1,2, ..., 6. In
perturbed sine-Gordon equation [3], order to achieve a stationary dynamic state, for

each value of the bias current y the integration
()xx - (pt = sin (p + acu, - f/)9xxt + y, (1) was running to let the solitons make from 60

0167-2789/93/$06.00 (@3 1993-Elsevier Science Publishers B.V. All rights reserved
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Fig. 3. The spatial distribution of the normalized magnetic
field in the junction on step 4 at y,=0.26 (a) and at y=0.34

0 , 2 (b).
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V

Fig. I. The calculated I-V curves of the annular Josephson the small step in the y-v curve, the three soli-

nction with different numbers n = 1,...,6 of trapped tons are equidistantly spaced (the system has a
,ons. translational symmetry in the x-direction with

a period of 1/n) and accordingly the solitons
are not bunched. However, above the small step

dV/dx dV/dx we observe bunching of the solitons. A similar
8.0- 10.0-

6.0- 8.0- crossover from non-bunched to bunched soli-
6.0- tons are detected for the step 4 as the bias cur-

4.0- 4.0 rent y is increased (see fig. 3). These pictures
2.0

20- 0.0- prove that the crossover we observe in the exper-
0.0 ...... -o .. . iments is due to the bunching of solitons in the

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(a) x (b) x junction. The bunching effect "helps" the chain

Fig. 2. The spatial distribution of the normalized magnetic of solitons to overcome the dissipative losses.

field in the junction on step 3 at y,=0.2 6 (a) and at y= 0.34 Their average velocity becomes higher than that
(b). of a single soliton at the same bias current.

up to 1200 revolutions in the system. After that Discussion. At the crossover from the equidis-
the average voltage v = (05t) was calculated using tantly spaced solitons to the bunched soliton dy-
both temporal and spatial averaging. namic mode, a jump to higher voltages occurs.

The normalized I-V characteristics (y-v) The experiments [ 1 ] show a relative increase in
have been calculated for a different number of the voltage which is less than 1%, whereas in the
solitons n in the system. The results are shown numerical simulations this relative voltage jump
in fig. 1. Apparently, this collection of curves is about 2%. This discrepancy in the numerical
looks quite similar to fig. 2a of experiment [ 1 ]. simulations may be attributed to the influence of
In a nice agreement with the experiment, the the neglected spatial extension in the y-direction
crossover manifested by small steps on the of the annular junction where the inner circum-
curves for n = 3 and 4 solitons is very pro- ference is smaller than the outer one.
nounced (compare with fig. 2b of experiment In the numerical simulations the step hights
[Ml). follow the pattern seen in the experiments. The

The spatial magnetic field distributions second step is higher than the first and the third
(px(x,t) for step 3 at y=0.26 and at y=0.34  one. Similarly, the form of the steps 5 and 6 in
are shown in fig. 2. It is apparent that below the numerical simulations resembles very closely
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It is known that the long annular Josephson junction allows to avoid the influence of boundaries and soliton(fluxon)-
soliton collisions on the dynamics of soliton chains. With new experimental methods and junction design a fully controlable
way of introducing individual solitons into such a system is realized. For the homogeneous junction crossover at high
velocities of the fluxon chain is seen and explained in terms of the fluxon bunching. In the periodically modulated junction
a new resonant mode called a supersoliton is observed.

1. Introduction 2. Experimental methods of fluxon trapping

Josephson junction fluxons represent a well- Annular junctions with the inner radius of the
known example of nonlinear electro-magnetic ring 100 Rm and with the width of the tunnel
waves [1]. The system is described by the per- barrier ring 20 ýLm were used. The critical cur-
turbed sine-Gordon equation [2]. In case of rent density was about 40 A/cm2, which corre-
conventional topology of a long Josephson junc- sponds to the characteristic size of a fluxon A,
tion, a moving soliton (magnetic flux quantum, 70 Rm. In order to achieve a high homogeneity
or fluxon) cannot avoid collisions with other of the tunnel barrier it was formed in the area
solitons and the junction boundaries. This between two insulating SiO rings covering the
strongly complicates the analysis and interpreta- edges of the bottom electrode. On each substrate
tion of the experimental data. together with homogeneous junctions we have

This paper emphasizes new results obtained fabricated several modulated annular LJJ. In
for the ideal experimental system - the annular order to provide a periodic modulation of the
Josephson junction [3]. In the annular junction critical current density along the LJJ, the regular
one may avoid fluxon collisions and study in a lattice of inhomogeneities was made using SiO
controllable way the motion of individual flux- strips placed across the junction.
ons. With new experimental methods and junc- We have realized experimentally two different
tion design we have realized for the first time a techniques for trapping the magnetic flux in the
fully controllable way of introducing individual junctions. First, using low temperature scanning
solitons into such a system. This has allowed us electron microscopy (LTSEM) we were able to
to study multisoliton dynamics without collisions trap one by one several magnetic flux quanta in
with boundaries and to make a comparison with the tunnel barrier area of the Josephson junc-
existing soliton chain perturbation theory. Two tion. Second, by applying the external mono-
types of junctions, homogeneous and spatially pole-like magnetic field (MMF) using a special
modulated rings, have been investigated, coil we trapped the flux in the junction at the

0167-2789/93/$06.00 @ 1993 - Elsevier Science Publishers B.V. All rights reserved
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beam focus as shown in fig. lb. The details of
e- beam e m this technique are presented elsewhere [4].

normal domain In the MMF method we have used a current-
v ,,getic carrying ring above the junction in order to

P I• • produce a radial magnetic field component along
b :lthe junction circumference. The magnetic flux

a b happens to be trapped in the junction at the
Fig. I. (a) The magnetic flux trapping procedure in an temperature close to the critical temperature of
annular junction using LTSEM. (b) The cross-section of the the superconducting electrodes. The details are
junction along the dashed line shown in (a) at the moment of described elsewhere [5).
crossing by the electron beam (the insulating SiO window is
not shown).

temperature near the critical temperature of the
superconducting electrodes. 3. Results and discussion

In the LTSEM method, the focused electron
beam was used for trapping magnetic flux quanta Fig. 2a shows the experimental I-V charac-
in the annular junctions. The crossing of the top teristics for the trapping of solitons in the annu-
electrode by the electron beam focus resulted in lar Josephson junction obtained by a sequential
trapping the magnetic flux in the tunnel barrier crossing of the junction with the electron beam.
(fig. la). This was due to the local heating of the Typically, each crossing resulted in trapping a
sample in the focus of the beam. A normal one flux quantum in the ring. The critical current
domain carrying the magnetic flux was moved of the junction without trapped flux was about
across the Pb film together with the electron 3.3 mA. The resonant soliton steps corre-

(b)

4 5 6 (a) 3-
3-

2 3 7

2 5 1
2-I - 2 91_-.

0 2 9 1
V (/V) 2  27 28 29

Fig. 2. (a) The I-V curves corresponding to the sequential trapping of solitons in the homogeneous annular Josephson junction
using the LTSEM method. The numbers correspond to the number of solitons trapped. (b) The detailed comparison of the
high-current parts of the scaled soliton steps in a magnified voltage scale (the voltage of the nth step is divided by n).
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sponding to different numbers of unipolar ment, also displaying the crossover at high ve-
solitons n are observed. The voltages of the steps locity for the cases of 3 and 4 solitons.
are quantized as expected, according to the In periodically modulated rings we observe a
formula: V. =n4o/L, where q0 the magnetic new resonant mode, called the supersoliton
flux quantum, F the maximum velocity of the mode, which has been found before in numerical
electromagnetic waves in the junction, and L is simulations [101 and described theoretically [111.
the junction circumference. At the step voltage This mode is justified by the additional voltage
Vn the solitons move as relativistic particles with steps in the current-voltage characteristics of the
the velocity close to e. If solitons are trapped in junction, which appear when the spatial periods
an ideally homogeneous annular junction, theo- of solitons and the junction modulation are
retically the non-dissipative critical current Ic incommensurate. Fig. 3 shows the I-V charac-
should be equal to zero. This is perfectly fulfilled teristics of the modulated annular junction with
for all the curves in fig. 2a and is a good proof N = 5 inhomogeneities (the modulation period is
for the high homogeneity of our junctions. The equal to - of the junction circumference) and
multi-soliton states for the perturbed sine-Gor- n = 6 solitons trapped in it using the MMF
don system with periodic boundary conditions method. Each inhomogeneity represents a region
were analyzed by Marcus and Imry [6]. The in the junction where the critical current density
tendency to reach an asymptotic linear slope is suppressed, so it attracts a soliton. It is
with the increasing number n of solitons pre- energetically advantageous to place the 6-th
dicted from theory [61 is clearly seen in the soliton as a defect (supersoliton) on already
experiment, pinned regular lattice of 5 other solitons. Under

Fig. 2b shows the current plotted versus the the influence of bias current this defect (super-
voltage per fluxon.Vs/n and displays the top soliton) moves along the junction, while all the
parts of the steps in a magnified voltage scale. other solitons remain being pinned. In the I-V
Since V, In is proportional to the average fluxon curve this mechanism leads to the pronounced
velocity v, we can compare the dependence of v first step at V- 32p.V in fig. 3. The detailed
on the external driving force I for different explanation for the features observed in the I-V
fluxon densities. With increasing step number of curves may be found elsewhere [5].
crossover in the step voltage is clearly seen. At
certain fluxon velocities the steps with n = 3 and
n = 4 display a kind of shift to higher voltages, 0.2
which is not expected from theory [6]. As it was
known already from early computer simulations
(A.C. Scott and W.J. Johnson, unpublished, 1
1968), the dissipation due to the surface (3)
losses [7,8] at high velocity generates an effective
attraction between unipolar solitons and results " t
in bunching in a localized soliton train moving in
the junction. This bunching effect breaks the
symmetry in the annular system and "helps" the
chain of solitons to overcome the dissipative
losses. Their average velocity then becomes 0.0'0.0 0.I
higher than that of a single soliton at the same V (rm V)
bias current. Recent numerical simulations [91 Fig. 3. The I-V curve of the junction with N = 5 inhomo-

have shown a nice agreement with our experi- geneities and n = 6 trapped solitons using the MMF method.
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New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary
results of structural data obtained by neutron diffraction at low temperature are also described.

Besides the well-known anomalous amide-1 mode (1650cm-'), it is shown that the NH out-of-plane bend (770cm-')
and the "H-hond strain" (at about 105cm ') exhibit an anomalous increase of intensity proportional to the law
exp(- T2/ 2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H-
localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy
at 15 K.

Considering these new results, the theoretical model of a self-trapped "polaronic" state seems to be the most consistent
with the whole set of observed anomalies in this family of crystals.

1. Introduction 2. New infrared results

The orthorhombic acetanilide crystal 2. 1. The amide A, B, region [2,12]
(C6HANHCOCH 3 or ACN) and its deuterated
derivatives contain one-dimensional networks of Absorption measurements of selectively deu-
hydrogen-bonded ... H-N-C-O ... amide terated ACN and of the methyl fluorinated ACN
groups, like polypeptides and alpha-helix pro- (abbreviation 3F) [13] allow to estimate the rela-
teins [1]. The family of ACN compounds display tive strength W of the hydrogen-bond in each
some anomalous infrared and Raman modes [2], derivative.
the origin of which is still a subject of consider-
able controversy. Tentative explanations of these V3F = 3303 cm-, VACN = 3281 cm-
extra-intensities observed at low temperature
have been given in terms of Davydov-like soliton vD5 = 3275 cm - V , vo 3 = 3273 cm-
theory [3], vibron soliton [4], "polaronic" local-
ized mode [5,6], nonlinearly coupled oscillators VD8 = 3272 cm- , ND = 2414 cm-
[7,8]. Alternative interpretations involve Fermi
resonance [91 and more recently a model based it follows that [14]
on two slightly nondegenerate configurations of
the amide proton [10]. W3F < WACN < WD5 < Wo 3 < WD8 <WND <WD 9

In this paper we present recent data focused
on the unconventional amide modes and propose (ND means C6H5NDCOCH3; D3 means
a new comprehensive view of the anomalies in C 6 H5NHCOCD 3 ; D5 means C 6DNHCOCH 3;
ACN family in terms of a hydrogen localized and so on.)
mode similar to the U centers formerly observed The energy shift of v(NH) in ACN as a func-
in ionic crystals [111. tion of the temperature exhibits a characteristic

0167-2789/93/S06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved
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sigmoid shape, representative of the existence of dard amide-I frequency) and the supposed self-
competing interactions, while v(ND) obeys a trapped state or "soliton" (anomalous mode fre-
normal monotonous temperature dependence. quency) is AE = 16.5 cm-_ in pure ACN, AE =

15 cm- in DS, and AE = 11 cm-' in 3F.

2.2. The amide-I region
2.3. The amide-V modes

Our new data are summarized in fig. 1. The
amide-I mode exhibits a classical thermal be- The anomalous thermal behaviour of the in-
haviour in D3 and D8: the frequency decreases tensity of this mode (or y(NH)) [15-181 consists
with decreasing temperature and no extra-peak of an increase of the integrated intensity of about
is observed. On the contrary the anomalous 20% or more, when the temperature decreases
band is present in D5 and in 3F, at 1647.5 cm-' from 300 K to 20K. Fig. 2 shows the anomalous
and 1693 cm -', at 20 K, respectively. The energy behavior in ACN, at 772 cm-' at about 20 K.
shift between the fully delocalized exciton (stan-

ACN (phenyl d')I• ] ..... 20 K,,
3F-ACN 300 K
---- 20K -K00K
- 300 K

,. ',

1550 1600 1650 1700 1750 4
cc F

0 1550 1600 1650 1700 1750O*:,

A AC( (methyl d35
K 20K

-300K

SI a

1550 1600 1650 1700 1750

WAVENUMBERS cm- 1  1550 1600 1650 1700 1750
WAVENUMBERS cm-'

Fig. 1. Amide-I modes in four derivatives of ACN: the D5 and 3F compounds exhibit an anomalous mode like pure ACN, with a
very small energy shift in the range 300-20 K. On the contrary, the D3 and D8 compounds display a classical behaviour without
anomaly.
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Fig. 2. Amide-V modes (or NH out-of-plane bend) in ACN -300 K I

and D5, showing an increase of the intensity at 20 K. The
structure at about 760 cm -' in the ND compound is assigned
to the C-H out-of-plane bends in the aromatic ring.

The other modes around 760 cm' are assigned
to the C-H out-of plane bends in the phenyl
ring. Their intensity is quasi-independent of the

temperature. The anomaly is also observed in
D3, D5, D8, and 3F compounds.

The temperature dependence of the anomal- 1350 1400 1450 1500 1550

ous intensity [171 is compatible with the predic- Fig. 3. Anomalous increases of intensities at 20 K in ACN, in

tions of the "polaronic" model [5,6], or of the D5 and in 3F.

"vibron soliton" model [4].
the doublet (1492 and 1504 cm-1). Same strong

2.4. The anomalous modes at about 1500 cm- anomalies are observed in D3, D5, an'd 3F, at
1498, 1492 cm- ', and 1400-1411 cm- ' respective-

They were first identified [17,14] in D8 at ly. No anomaly is observed in this frequency

about 1490 cm-'. Fig. 3 indicates that the same range on the ND compound.

anomaly exists in ACN as a strong increase These anomalous modes are tentatively as-

(more than 30%) of the integrated intensity of signed to the overtone of the anomalous y(NH)
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mode. The% are also accidentally degenerated
with the C-C stretch of the phenyl ring, except 1,K'W

in 3F. The C-C stretching modes are observed in
the ND compound, with a classical temperature
behaviour. U

An increase of intensity is also observed at
about 1430cm' in ACN and D5 only, for a _

mode assigned to a methyl motion. " 7"

2.5. The amide-Il and amide-Ill modes WSL

The 8(NH) or in-plane bend of the amide UIU

proton, at about 1560cm-', and the N-C 0
stretching modes (presumably at 1260 and 0O
1320cm-') do not show any anomalous be- a sooo M . a 70 s go &W ,,u
havior.

99*K 00*K

2.6. Far-infrared modes

Far infrared spectra are dominated by the /.,
features at 100-110cm- t in ACN. This mode
displays a strong increase of intensity: about
50% in the whole temperature range (fig. 4). aU70 It 130 N0I 1 0 - go

The temperature dependence of its integrated WAVEN Cii

intensity is compatible with a law oc exp(- T2/ Fig. 4. Evolution of the intensity of the "H-bond strain" in
82), its width is consistent with a T 2 power law ACN with respect to the temperature.

description. All these three specific properties
are strikingly resembling that of the fundamental
vibrational mode (or zero-phonon mode) of the at 100-110cm-' may be tentatively assigned to
H- ion localized oscillator, extensively investi- the "H-bond strain" by analogy with the same
gated in alkali halides [11]. Furthermore, the features in other amide compounds [19]. It con-
energy of this mode is related to the elastic sists on a distorsion normal to the (b) H-bond
constants of ACN in the same way as the H- direction, or a hindered rotation of the whole
localized mode in alkali halides and may be molecule around the a axis involving a significant
scaled on the same plot (cf. fig. 7-2, in ref. [11]). change of the electric dipole moment, so giving

Its frequency shift with successive deuterations rise to a strong infrared intensity. Much atten-
is not related with the molecular mass, but with tion has been given to the H-bond strain mode
the H-bond strength (for example the maximum because it is suspected to be the driving mecha-
is found at 107 cm-' in ACN, 107 cmnf in D5, nism for the opening of the double helix in
109 cm-' in D3 at about 20 K). Thus it is not a transcription and replication processes in DNA
simple classical external mode, but it ;ivolves [19].
the H-bond. It is worth to remark that in D3 and
D8 the mode appears to be split and is acciden-
tally degenerated with the deuterated methyl 3. Low temperature neutron diffraction
(CD3) torsion [151,

The motion associated to this major intensity The low temperature crystallographic structure
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C(") by Pauling [21]. Moreover, the H- ion existence
C as an impurity of a color center in alkali halides

is well established.
The H-bond is the result of a delicate balance

C . /V between electrostatic attractive interactions, di-
7)• polar forces, and repulsion from electronic orbi-

tals of neighbouring ions. In a classical system

like ND, the attractive interactions dominate and
the bond strength monotonically increases as the

6 C (1) temperature decreases.

In ACN on the contrary, competition occurs

Fig. 5. ORTEP drawings of the amide group in the ACN and explains the S-shaped curve of the energy
molecule at 15 K, in the (a, b) molecular plane, and perpen- shift of the ,(NH) mode.
dicular. Note the large anisotropy of the H(1) ellipsoid in the Assuming that some negative charge density is
c direction. bound to the proton, it is possible to explain that

repulsive interactions increases as the 0.. .H
of ACN has been measured by neutron diffrac- distance decreases with decreasing temperature,
tion with the aim of determining the amide thus explaining the strong localization of the
proton localisation. Preliminary results indicate hydrogen ion in the c direction, perpendicular to
that the thermal ellipsoid of the proton is elon- the bond. It is now easy to understand why both
gated in the c direction, that is perpendicular to the H-bond strain mode and the y(NH) mode
the molecular plane. The axis ratios of the ellip- increases in intensity and energy with decreasing
soid are: temperature.

The anomalous peak at 1650 cm-_ may be a
c = 1.05 and c=1.69 at room temperature, self-trapped state resulting from a nonlinear cou-
a b pling of the C = 0 stretch with transverse mo-

c = 1.54 and c tions like (in-phase and out-of-phase) librations
a b around the a axis, instead of the longitudinal

modes considered in the past. Nevertheless, the

reflecting an increase of the localization of the experimental values of AE are not in contradic-
proton along the c axis as the temperature de- tion with the well known prediction [2]:
creases (fig. 5). However, the difference Fourier
maps show only one maximum density region, AE = X2/2W- 2J.
and not two as could be expected in the model of
slightly non-degenerate configurations of the Following our hypothesis, the disappearance
proton. of the anomalous mode in the methyl deuterated

compounds (D3 and D8) is no more mysterious.
Remembering the accidental degeneracy of the

4. Discussion deuterated methyl libration with the "H-bond
strain" mode, it is clear that the former coun-

The hypothesis of a negative charge distribu- teracts with the latter, so probably restraining its
tion borne by the amide hydrogen atom was amplitude and prevents its coupling with the
formerly suggested to explain some special NMR C = 0 stretch. Fermi resonance mechanisms in-
chemical shifts in H-bonded systems [201. The volving either the CH 3 "torsional mode", or the
existence of some positive charge density local- "H-bond strain" may be ruled out because the
ized on the nitrogen atom was also conjectured anomalous amide-1 mode still exists in 3F at
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and analysis of third-order nonlinear polarizabilities
for linear conjugated --electron molecules
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The nonresonant w-electronic component of /(- 3w; w0, w,, w), y., is calculated and analyzed for two important types of
linear conjugated ir-electron molecules: linear cyanine cations and linear polyenes. The specific linear cyanine cations are
all-trans, linear symmetric cyanine and streptocyanine cations with no double-single bond-length alternation, and cyanine
cations with asymmetric geometries resulting from the artificial imposition of double-single bond-length alternation. The
linear polyenes of interest are all-trans linear polyenes with double-single bond-length alternation, and those with
geometries resulting from the artificial imposition of no double-single bond-length alternation. Bond-length alternation is
found to dramatically affect y. for the linear cyanines: the -y.'s for the symmetric cyanines are calculated to be negative; the
-y/'s for the assymmetric cyanines change from negative to positive with increasing chain length. The -y/'s for the linear
polyenes are always positive regardless of the extent of bond-length alternation; the Iv. y's for the linear polyenes increase
with decreasing bond-length alternation. The 1-/.1's for the symmetric linear cyanines increase more rapidly with the
number of ir-electrons than the lyj's for the linear polyenes: ly,(symmetric cyanines)ICN8., and Iv.(linear
polyenes)j a N4., where N_ = 4, 6, 8, 10, 12. The linear cyanine cations comprise a very promising class of nonlinear
optical, if-electron molecules that merit further experimental study.

1. Introduction nonlinear electronic polarizabilities are of great
interest world-wide as nonlinear optical (NLO)

Nonlinear optical phenomena are increasingly materials [9]. The organic molecules with the
being utilized in a variety of photonic applica- largest nonlinear electronic polarizabilities tend
tions. The second-order nonlinear optical pro- to fall in one of three classes of molecules with
cess of second-harmonic generation is used to conjugated 7r-electron bonding networks:
extend the frequency ranges of lasers [1-31. (1) polyenes and related compounds with pro-
Electro-optic modulators and switches (e.g., Poc- nounced 7T-electron bond-order alternation,
kel's cell) operate via the second-order nonlinear e.g., the asymmetric merocyanines, H2N-
optical effect of an electric-field-induced change CH=(CH-CH)=--O, (2) symmetric polymethines
in refractive index [3,41. The third-order non- with attenuated 'r-electron bond-order alterna-
linear optical phenomenon of a light-induced tion, e.g., the symmetric cyanine cations,
change in refractive index is fundamental to H2N.-.CH. -•.(CH...-CH)'=-NH 2, and (3) por-
soliton light-pulse propagation in optical media phyrins and phthalocyanines. The conjugated 7r-

[51, optical switching and computing [6,7], as electron bonding networks in these molecules
well as phase conjugate adaptive optics [8]. The not only endow them with large nonlinear ar-

efficiencies of these nonlinear optical processes electronic polarizabilities, but with large linear
are dependent upon the material employed to ar-electron polarizabilities, and high one-photon
couple the given combination of electrical and/ absorptivities in the visible and near-IR spectral
or optical signals. regions [9].

Organic molecules and polymers with large The attenuated ar-bond-order alternation for

Elsevier Science Publishers B.V.
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the symmetric polymethines results from a ir- merocyanines [131, (CH 3)2N-CH = (CH-
electron ground state that can be described as a CH), = 0. Also, the linear, static electric-dipole
resonance hybrid of two equivalent structures, polarizabilities of symmetric cyanine cations
e.g., +HN--CH-(CH--CH),NH 2 ,-*H2N-CH= have been measured [15] and calculated
(CH-CH),=NH2 for the symmetric cyanine [12,16,17] to be larger than those for all-trans-
cations. The pronounced bond-order alternation linear polyenes of comparable methylation,
in the polyene-like molecules results from a length, and number of ir-electrons.
*r-electron ground state that is best described One would also expect the nonlinear optical
by a single structure, e.g., the +H2N--CH- properties of symmetric polymethines to be dif-
(CH--CH),-O- structure for the merocyanines ferent from those of polyene-like molecules.
in a vacuum is not equivalent to the more stable Third-harmonic generation (THG) measure-
H2N-CH=(CH-CH),--O structure. ments of the nonresonant electronic component

In free-electron theory, the potential energy of of the third-order, electric-dipole polarizability
a *r-electron in a symmetric polymethine can be [ye(-3to; w, w, w), with w = 1.91 ýimj for a vari-
approximated by a constant value because of the ety of symmetric cyanine dyes in the condensed
ir-electron density delocalization associated with phase yielded ye(-3w; w, w, to)'s with both nega-
the resonance hybrid; the potential energy of a tive and positive signs, while the measurements
if-electron in a polyene-like molecule can be for a selection of polyenes yielded only positive
approximated by a periodic function with the ve(-3w; o, w, &o)'s [15]; the magnitudes of the
troughs and crests of the function coinciding with ye(-3w; w, w, w)'s measured for streptocyanines
the double and single bonds [10]. An important met or exceeded those for a, a, w, w-tetra-
consequence of these different potential energy methyl-polyenes of comparable size and number
functions is that the energy difference between of if-electrons [151. The THG measurements at
the highest occupied molecular orbital (HOMO) w = 1.85-2.15 R±m for the polycrystalline powder
and the lowest unoccupied molecular orbital of a symmetric cyanine dye with terminal
(LUMO) goes to zero with increasing chain quinoline rings determined ye(-33w; w, w, &))I to
length for symmetric polymethines, but con- be greater than that of the well-studied poly-
verges to a finite value with increasing length for diacetylene system, poly-(2, 4-hexadiyn-1, 6-diol-
polyenes. In other words, symmetric cyanines bis-(p-toluene sulfonate)), or PDA-PTS [18]. A
become metallic in the limit of infinite length, recent study of the third-order nonlinear optical
while the polyenes resemble semiconductors in properties for a set of zwitterionic polymethine
this limit [11,12]. dyes, the squaryliums, emphasizes the impor-

This free-electron/Hueckel theoretical picture tance of the polymethines as a class of nonlinear
is in agreement with experimental and theoret- optical molecules distinct from the polyenes [19].
ical studies of the linear optical properties of The principal subject of this paper is the calcu-
symmetric polymethines and polyene-like mole- lation and analysis of the nonresonant, ir-elec-
cules. For example, there is the experimental tronic components of third-order, electric dipole
observation that Amax for the first one-photon polarizabilities for a set of linear streptocyanines
allowed ifrr* +-S 0 transition increases linearly and unmethylated streptocyanines (hereafter
with chain length for symmetric all-trans, poly- known simply as cyanines). In contrast to earlier
methine cations with two terminal dimethyl theoretical studies of these polarizabilities for
amino groups [(CH) -. CH-....(CH...-CH)+-..- linear cyanines [16,17], we (1) use a sum-over-
N(CH 3)2 or streptocyanines] [13], but reaches a states expression derived from time-dependent
limiting value in the case of all-trans-a, w- perturbation theory [20] to calculate the ir-elec-
dialkyl-polyenes [141, and the dimethylamino- tronic component of the dynamic third-order
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polarizability for third-harmonic generation, ALL- RNS LINEAR CYANINES

y,(-3w; to, w, w), as well as the static third- NO 2OUB3E-SLE ( OULE-SILE
order polarizability, &,,(0; 0, 0,0); and (2) treat BOND-LENGTH ALTERNATION BOND-LENGTH ALTERNATION

the ir-electronic states using the all-valence-elec- NNN n.N

tron, semiempirical INDO (intermediate neglect 2 N( 3C) N - N(C H 3) 2

of differential overlap) molecular orbital proce-
ALL- TRANS L NEAR POLYVENES

dure combined with single- and double-excita- (n.0. 1.23)

tion configuration interaction (SDCI) of the sing- BOND-LENGTH ALT.TIONE-LNGLE

let ir-electron configurations, instead of using
original 1161 or refined [17] versions of Kuhn's n

free-electron method [101. Although our theoret- Fig. 1. Structures of the linear cyanines and polyenes with

ical method is more complicated than those and without bond-length alternation.

based on free-electron theory, it has been shown
to provide a consistent treatment of the wr-elec-
tronic components of the third-order polariz- length alternation on the signs and magnitudes of
abilities and the linear and nonlinear spectro- the y,,'s for the linear cyanines and polyenes,
scopic properties of the lirir* states of linear and the dependence of hy'J on the number of
polyenes and benzene [21]. Critical to our con- 7r-electrons in both sets of molecules. A prelimi-
sistent calculation of these properties is the treat- nary account of this study is given in ref. [221.
ment of 7w-electron correlation at least at the
level of SDCI [21].

We calculated y,'s for all-trans, linear sym- 2. Theoretical method
metric cyanine and streptocyanine cations with
no double-single bond-length alternation, and This section consists of three parts. The first
for cyanine cations with asymmetric geometries part establishes the general relationship between
resulting from the artificial imposition of double- the macroscopic third-order electric susceptibility
single bond-length alternation. These y.'s are and the microscopic, molecular third-order
compared with those previously calculated for polarizability. One of the most important third-
all-trans linear polyenes with double-single bond- order electric susceptibilities from a technologi-
length alternation [21], and for a new set calcu- cal point of view is the light-induced change in
lated with geometries resulting from the artificial refractive index. This nonlinear refractive index
imposition of no double-single bond-length alter- is related to the molecular third-order polar-
nation. The structures of the five sets of mole- izability in the second part of the section. The
cules are shown in fig. 1. third and final part describes the quantum chemi-

Our study of the 7r-electron, third-order cal calculation of the nonresonant ir-electronic
polarizabilities for the molecules shown in fig. 1 component of the third-order molecular polar-
consists of two parts: (1) a comparison of the izability.
calculated and measured y(-3w; &w, w, &)'s for
the linear streptocyanines to extend the valida- 2.1. Relation between macroscopic susceptibility
tion of our theoretical method beyond that of the and molecular polarizability
linear polyenes and benzene [21], and (2) a
comparison of the calculated 3y(-0; 0, 0, 0)'s that The mathematical expression for the polariza-
emphasizes analyzing the effect of terminal tion of a non-conducting, non-magnetic medium
methyl group substitution on the y,.'s for the by an applied external electric field(s) is given by
symmetric cyanine cations, the effect of bond- the Taylor series expansion [1,3]
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PA (w)E,(wl) coupled molecules randomly oriented in a given
B medium, X~ n) can be expressed simply as [23,24]

1 I (2) E(o)cw2

1 E E E (3)

1

* - B C ABcDEB(& 1 ) Ec(o)2 ) where L. is a scalar local-field factor defined by!B C D the refractive indices of the medium at the fre-

x ED(t 3 )O+ (1) quencies of the applied electric fields and the

polarization field, and (a (n)) is the orientation-
where PA is the component of the polarization ally-averaged molecular polarizability tensor.
vector along the A Cartesian coordinate axis in The product, (a0())L,, defines the averaged
the laboratory reference frame; wtp,0 is the angu- first-order dipole moment induced at the given
lar frequency of the polarization field, which molecular unit by an applied electric field. In a
contains contributions from the linear and non- similar fashion, the products, (a (2)) L 2 and
linear polarization of the material, e.g., (0, 9tlW + (a (3))L 3, define the averaged second- and third-
w2, and o &2+3;XA, X and XABCD are order dipole moments induced at this unit.
the real components of the electric susceptibility
tensors of rank 2, 3, and 4, respectively; and 2.2. Light-induced change in refractive index
Ea(Wk) is the a = A, B, or C component of the
applied electric field vector oscillating at angular The third-order nonlinear optical phb:: iomenon
frequency wk. All terms in eq. (1) are in esu of a light-induced change in refractive index is
units. The 1/2! and 1/3! factors in eq. (1) are fundamental to soliton light-pulse propagation in
often incorporated into the definition of XABC, optical fibers [5], optical switching and comput-
and B *3ht(2)

dXABCD" Note that XABC is zero for cen- ing [6,7], as well as phase conjugate adaptive
trosymmetric media. optics [8]. The dependence of the real refractive

Most organic nonlinear optical materials (e.g., index at wavelength A on the incident light inten-
organic molecular crystals) are composed of mo- sity can be expressed as
lecular units whose polarizabilities sum to define
the macroscopic electric susceptibilities. The n(A, I) = n0(A) + An(A, 1), (4)
electric susceptibility tensors for these media can
then be expressed as a function of the number where n0(A) is the linear refractive index at A,
density of molecular units [N], a term containing and An( A, I) is the change in refractive index as
the local electric field tensor and the direction a function of A and the incident light intensity L.
cosines that relate the molecule-fixed coordinate The leading terms in the series expansion for
axes to the laboratory coordinate axes [Ln(O), An(A, I) are n2 (A) I and nfh(A) I, so that
and the molecular polarizability tensor of rank
n+1 [a(•)]: n(A,I)"no(A)+[nE(A)+nth(A)]l. (5)

X(n) =f(N,a("),Ln(O)) (n=1,2,3). (2) The nonlinear refractive index coefficient,
n2(A), defines the change in refractive index

The molecular polarizability tensors, a In) (n = arising from the electric-field induced polariza-
1, 2, 3), are more commonly represented as a tion of the material, while the nbh(A) coefficient
(molecular polarizability), 03 (second-order mo- describes the change in the real part of the
lecular polarizability), and y (third-order molec- refractive index resulting from the light-induced
ular polarizability), respectively. For weakly- heating of the material, i.e., the thermo-optic
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effect [61. The thermo-optic effect is to be avoid- erties of the molecules are not very sensitive to
ed in all device applications, the lengths of the N-H and C-H bonds.

The n,(A) coefficient is related to the third- The INDO-SDCI method employed in the
order nonlinear electric susceptibility tensor ele- calculation of the 7r-electron transition energies,
ment, ,Bco(A), by the following equation [251: permanent state dipole moments, and transition

dipole moments for the various molecules is the
n2(A)= 4 I2 (I ,A)/(cno(A) 2), (6) same as that described in ref. [211, with one

exception. This exception is that the transition
where c is the speed of light. The units of all energies were calculated using the formula [26],
parameters in eq. (6) are in esu. The expression AE,-, = E,(5IN)Eo, where E, is the energy of
for n,(A) in eq. (6) is appropriate only for the excited state i, Eo is the ground electronic state
Taylor series expansion given in eq. (1). This energy, and N is the number of conjugated
third-order nonlinear optical response is also ir-molecular orbitals. This formula scales the
known as the optical Kerr effect. According to ground state energy to compensate for the imbal-
eq. (3), eq. (6) can be rewritten to directly relate ance in the degree to which the ground state and
n,(A) to the third-order polarizability, A, for the 7rir'* states are stabilized by single- and
weakly-coupled molecules randomly oriented in double-excitation interaction [26].
a given medium: Our evaluation of the sum-over-states expres-

sions for y,,(-3w; w, w, w) and y,(O;0,0,0),
n2(A) = 4 •N(-y(A)) L3(A)/(cn,,(A) 2). (7) and the isotropic averages of these

polarizabilities, (y,(-3tw; w, w, w)) and
2.3. Calculation of third-order molecular (y,(0; 0,0,0)), are as given in ref. [211. Unless
polarizabilities indicated otherwise, "y,(-3w; w, w, w) and

y,(0;0,0,0)) will henceforth be taken to be
Only two types of third-order molecular synonymous with (y,,(-3w; w, w, &))) and

polarizabilities are calculated here, the 7'-elec- (y,,(0; 0, 0, 0). The x-axis of the molecule-fixed
tronic component of the dynamic third-order coordinate systems for the linear molecules in
polarizability for third-harmonic generation, fig. I is taken to be coincident with a line
y,(-3w; w, w, w), and the static third-order connecting the two terminal atoms of the ir-
polarizability, y,•(0;0, 0, 0). The calculation of electron bonding network. As a result, the yx,,
y,,(-3 w; w, w, w) and y,,(0; 0, 0, 0) for a given component is expected to dominant the y,
molecular unit proceeds in three steps: tensor.
(1) determination of a molecular geometry,
(2) calculation of the transition energies, perma-
nent state dipole moments, and transition dipole 3. Results and discussion
moments associated with the ground and excited
7r-electron states for this geometry, and 3. 1. Comparison of calculated and measured
(3) evaluation of the sum-over-states expression -y1 (-3o); w. w, w)'s for linear streptocyanines
for the y,,'s using these transition energies and
dipole moments. Our theoretical method has been successful in

The -ir-electron bonding networks in all the calculating nonresonant y,,(-2w; &, w, 0)'s for
molecules in fig. 1 were kept planar. The bond- ethylene, linear polyenes, and benzene that are
lengths and bond-angles used for these molecules in very good agreement with the -y's measured
are given in ref. 1221. It is noted that the 7r- for these molecules in the gas phase [211. A
electron polarizabilities and spectroscopic prop- similar comparison of calculated and measured
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-'s is given in table 1 for three linear strep- sured for the longest streptocyanine can be ex-
tocyanine cations of different lengths. The calcu- plained in terms of the stabilization of the asym-
lated values of y,, and y in table I are rounded- metric geometry. This interpretation of the mea-
up to the most significant digit. This table con- sured data needs to be investigated further.
tains the 1(-3w; w, w, ()'s measured at w = Recent measurements of non-resonant third-
1.908 Am for the three molecules in the liquid harmonic generation in liquid solutions contain-
phase [151, and the y(-3w; w, w, ()'s calculated ing cyanine molecules confirm the above theoret-
for the streptocyanines with both symmetric and ical prediction that the sign of y for these mole-
asymmetric geometries. The 'y(-3w; w, w, w)'s cules can be negative, and that the sign and
for the two geometries were calculated since it is magnitude of y should be very sensitive to the
unclear which geometry was stabilized by the CI- dielectric properties of the solvent [29].
counterion and the solvent used in the ex-
perimental samples. In this regard, Fabian and 3.2. Comparison of calculated y, (0; 0, 0, 0)'s
Mehlhorn [27] comment that the asymmetric
geometries seen experimentally [28] in crystals of The 1v,,(0; 0, 0, 0)I's calculated for the five sets
streptocyanines may be due to a non-symmetric of molecules in fig. 1 are plotted on a logarithmic
arrangement of the counterion to the chain in scale in fig. 2 as functions of the number of
the crystal. Note that the calculated *r-electrons (Ne) in each molecule. The sym-
y(-3(; ow, w, w)'s in table 1 are separated into metric, linear streptocyanines with no bond-
or- and ir-electron components. The -y. term was length alternation are designated LC1 in fig. 2;
estimated using the bond-additivity approxi- LC2 is the label for the symmetric, linear
mation described in ref. [211, while the y,, term cyanines with no bond-length alternation; LC3
was that calculated for the unmethylated represents the asymmetric linear cyanines with
cyanines. bond-length alternation; LP1 designates the

As shown in table 1, the magnitudes of the linear polyenes with bond-length alternation;
measured -y's and those calculated for either the and LP2 represents the linear polyenes with no
symmetric or asymmetric streptocyanines are in bond-length alternation. A dashed line in fig. 2
rough agreement. The positive signs of the y's indicates a negative -y,(O; 0, 0, 0), and a solid
measured for the two shorter streptocyanines can line a positive y,, (0; 0, 0, 0).
be explained in terms of the stabilization of the In regard to the sign of y.,,(0; 0, 0, 0) for the
symmetric geometries by the Cl- counterion and different molecules, the symmetric linear
solvent, while the negative sign of the y mea- cyanines with and without terminal methyl

Table 1 10,33 LCI ,c,

Calculated and measured y's for selected linear strep- LC3 '
tocyanines. L3

Molecule Theory ( 10- 6 esu) Expt( 10-3esu) P,- _'.-t,

'Y- -ý 1 035

2(Mo) Nr N (Me)2 2.8 -6 -3 -

0.5-3 -0.4 " 10'. L ,
2.8 -1 2 / .

+ ~ ~~~~LC2•, ,( ..

2(Me)N2 N(Me)2  3.3 -80 -80 1037 LC, ' -2(GN%_ ý+ _ (e2LC3 .-71•0

+ 52 t-
2 (Me)N 2N (Me)2 5 3.3 40 40 , S 6 7 S 9 10 '0 12

2 (Me)Ni N(Me)2 3.7 -800 -800 NUMIER O X-ELECTRONS

3ý -510 t- 50-0 () 50 +Fig. 2. Calculated (0;0, 0, 00)J's for the five sets of mole-
2(M-)NS+"3N(Me) 2 3.7 1000 1000 cules shown in fig. 1.
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groups all have negative y,,(0; 0, 0, 0)'s; the comprised all-trans, linear symmetric cyanine
asymmetric cyanines switch from negative to and streptocyanine cations with no double-single
positive signs after N,.e = 8, or as the chain bond-length alternation, and cyanine cations
length increases past five carbon atoms; and both with asymmetric geometries resulting from the
sets of linear polyenes have positive artificial imposition of double-single bond-length
3',(0; 0, 0, 0)'s. alternation. The set of polyenes consisted of

In regard to the relative magnitudes of all-trans linear polyenes with double-single bond-
y,,(0;0,0,0) for the different molecules, the length alternation, and all-trans linear polyenes
1-y,(0; 0, 0, 0)i's for the symmetric linear cyanines with geometries resulting from the artificial im-
start out less than those for the two sets of linear position of no double-single bond-length alterna-
polyenes, but become much greater than tion. The theoretical analysis consisted of two
IJy(LP1)l and I,,(LP2)I after N,.e = 6. This be- parts: (1) a comparison of the calculated and
havior reflects the greater power law dependence measured y(-3w; to, wo, o)'s for the linear strep-
of the symmetric cyanines on N,,.e, than that of tocyanines to extend the validation of our theo-
the linear polyenes, i.e., yv(LC1)J o Nr, retical method beyond that of the inear polyenes
lyir(LC2)oN7,6, 'y(LP1)l - N3.7. and and benzene [211, and (2) a comparison of the
Iv (LP2)o N4,0, where N,. = 4, 6, 8, 10 for the calculated y,(-0; 0,0, 0)'s that emphasizes
polyenes and N,,e = 4, 6, 8, 10, 12 for the analyzing the effect of terminal methyl group
cyanines. Terminal methyl group substitution for substitution on the yf's for the symmetric
the symmetric linear cyanines results in a slight cyanine cations, the effect of bond-length alter-
increase in I'y,(O; 0, 0, 0)1 at each value of N,.-. nation on the signs and magnitudes of the y.'s

Decreasing bond-length alternation for the for the linear cyanines and polyenes, and the
linear polyenes acts to increase Iy,(0; 0, 0, 0)1 at dependence of I yI on the number of r'-electrons
each value of N,,.e. This result is reasonable since in both sets of molecules.
a lower degree of bond-length alternation will The y,,'s of the linear, symmetric and asym-
smooth out the potential energy surface of the metric cyanines are calculated to be substantially
ir-electrons along the polyene chain, different from those of the linear polyenes. In

Perhaps the most interesting result shown in regard to the sign of y,,(O; 0, 0, 0), the symmetric
fig. 2 is the dramatic effect that molecular geom- linear cyanines with and without terminal methyl
etry has upon the y, (0; 0, 0, 0)'s for the linear groups all have negative yJ(0; 0, 0, 0)'s; the
cyanine cations. Moving between the symmetric asymmetric cyanines switch from negative to
geometry with no bond-length alternation and positive signs as the chain length increases past
the asymmetric geometry with bond-length alter- five carbon atoms; while both sets of linear
nation can result in large changes in the sign polyenes have positive 'y, (0; 0, 0, 0)'s. In regard
and/or magnitude of y,(0;0,0,0). These to the magnitude of y,(0; 0, 0, 0), the
changes in geometry can be effected by altering Iy,(0; 0, 0, 0)I's for the symmetric linear cyanines
the dielectric properties of the environment of start out less than those for the two sets of linear
the molecule, e.g., variation in the polarity of polyenes, but become much greater after the
the solvent in which the molecule is dissolved, number of a--electrons (N,.e) exceeds six. This

behavior reflects the greater power law depen-
dence of the symmetric cyanines on N,.e, than

4. Summary and conclusions that of the linear polyenes, i.e., ly,,(symmetric
cyanines)l N7.9e = 4, 6, 8, 10, 12 and Iy,(linear

The ar-electron, third-order polarizabilities for polyenes)I o N 3"7 e = 4, 6, 8, 10. The polymethines
a set of polymethines and a set of polyenes were in general, and the cyanines in particular, corn-
calculated and analyzed. The set of polymethines prise a very promising class of nonlinear optical,
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Dynamics of the amide-I excitation in a molecular chain
with thermalized acoustic and optical modes
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An improved version of the Davydov soliton model to describe the physical mechanisms of the energy transfer in
proteins has been introduced. The essential modifications have been done for the lattice subsystem: (1) the intrapeptide
N-H bond is allowed to move together with its peptide group and therefore both the acoustic and optical modes appear to
be coupled and (2) a harmonic on-site potential, which describes the influence of the environment of the chain, is
introduced. The chain is considered to be in contact with a heat bath only via the acoustic mode, while the coupling of the
amide-l excitation with the optical mode is shown to be crucial for the thermal stability of the Davydov soliton. The
presence of a substrate on-site potential, modelling the influence of the environment, is shown to improve the soliton
stability with respect to thermal oscillations since it essentially reduces the amplitude of acoustic oscillations.

1. Introduction depends on its stability at physiological tempera-
tures, i.e. at T-300K. Therefore its thermal

The study of the mecha-isms for energy and stability has recently been the subject of inten-
charge transport in biological systems represents sive studies [3-10]. Thus, for instance, the nu-
one of the important aspects of bioenergetics. In merical simulations [4,5] on the basis of the
1973, Davydov suggested a soliton mechanism Langevin approach discover the thermal de-
[1] to explain the efficient transfer of the vi- stabilization of the Davydov soliton at room
brational amide-I energy in proteins. According temperatures. As follows from these calcula-
to his model, solitary waves (or solitons) are tions, the amplitude of thermal vibrations of PGs
carriers of the intramolecular high-frequency exceeds more than one order the amplitude of a
vibrational amide-I energy which can be excited localized deformation of the chain. In this case,
inside each peptide group (PG) H-N--C=-O thermal vibrations result in the break of the
involving mainly longitudinal oscillations of the coupling of the amide-I excitation with the local
C--O bond (for a comprehensive review see deformation of the chain and as result, the
Scott [2]). The formation mechanism of the soliton (self-trapping) state disappears.
Davydov soliton is based on the balance between However, the interaction of the intramolecular
the effects of dispersion caused by the resonance amide-I excitation with other low-frequency in-
interaction of adjacent PGs and the interaction tramolecular vibrations should improve the
of the amide-I mode with longitudinal deforma- soliton stability. The period of such optical
tion (acoustic mode) of the chain (self-trapping vibrations, compared to acoustic oscillations, is

mechanism). much less than the time for the excitation to be
The possibility of the successful application of transferred from one PG to its neighbor. The

the concept of the Davydov soliton in biology excitation is sensitive to these optical oscillations

0167-2789/93/$06.00 (K) 1993 - Elsevier Science Publishers B.V. All rights reserved



60 A.V. Savin and A.V Zolotaryuk / Dynamics of the amide-! excitation in a molecular chain

in an averaged way, responding only on the 2. A modified Davydov model
motion of their equilibrium positions. Therefore,
in contrast to thermal acoustic oscillations, ther- Consider a typical one-dimensional chain of N
mal optical vibrations should not exert any hydrogen-bonded peptide groups. Suppose that
visible destabilization influence on the Davydov along the axis x = n1, where I is the lattice
soliton. spacing, PGs are placed in the sites with n =

In this paper the dynamics of the self-trapping 1,.. . , N. Besides the longitudinal displacements
state of the amide-I excitation in a thermalized of PGs as whole objects, the internal motion of
chain is studied provided that it interacts with the proton in the N-H bond is also considered.
both the acoustic and optical modes. The inter- Schematicc ly this lattice model is shown in
action of the chain with a heat bath is assumed to fig. 1.
be described by the Langevin-type equation. The The standard quantum mechanical description
phenomenological damping and the color noise, of this model can be reduced in the adiabatic
which model the interaction of the chain with the approximation to the classical Lagrangian
bath, are involved only into the acoustic
subsystem, while the optical subsystem is sup- ; = 2{ ,, 4;., x"; 9,", y,} I
posed to be thermalized via its coupling with Y.. + Ya, + Y-.t (1)
acoustic oscillations. The interaction of the
amino acids with its local environment chosen in composed of three components. The first of
the form of a harmonic on-site potential [11] is these, the exciton Lagrangian, is
also included into our studies of temperature N

effects. E
The best appropriate material which may be n=n

described on the basis of this model is the crys- + J~n*(Ob._ 1 + O• +01, (2)
talline acetanilide (ACN) (CH 3CONHC 6H5 )X
with parameter values very close to those of where the dot denotes the differentiation with
polypeptide protein chains [12,131. Experimen- respect to time t, E0 is the amide-I site energy
tally, in the crystalline ACN the amide-I excita- (Eo = 0.205 eV), -J is the nearest neighbor
tion is observed as the maximum of the infrared dipole-dipole coupling energy and IJ•I2 defines
absorption 1667 cm-'. Besides this band in the the probability to find a quantum of the amide-I
infrared and Raman spectra for ACN, another excitation at the nth PG, so that the discrete
band with the red shift about 17 cm - has been
found in the experiments. The suggestion has
been done that this band is caused by the
interaction of the amide-I with an intrapeptide^K mAK m-OK m

displacement of the proton in the N-H bond M K M H M H
and it may be identified with Davydov-like NC=O N,•_ NC=O
soliton states stabilized by this interaction. Thus,
to describe the soliton transport of the amide-I
energy along the chain of hydrogen-bonded PGs K, K. K.
both the couplings of this excitation with the
deformation of the hydrogen bonds and with the n-1 n n +1
intrapeptide proton displacements should be Fig. 1. Schematical representation of the chain model of

considered. hydrogen-bonded PGs.
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wave function O~(t) is supposed to be normalized where X, and X, are the coupling constants of the
as v,, b•0-I2 = 1. amide-! with deformation of the N-H bond and

The second term, the lattice Lagrangian, in- of the hydrogen bond, respectively.
cludes two modes: longitudinal displacements of Then the equations of motion which corre-
PGs as whole objects (acoustic mode) and in- spond to the Lagrangian (1)-(4) become
trapeptide optical oscillations of the proton in
the N-H bond with low frequencies as com- ihO = [Eo + X(y. -xJ) +X,(y., 1 -y.)]4.
pared with the frequency of the amide-I oscil-
lators. In comparison with the previous studies -J(d•_ + 4b t). (5)
[4.51. the following two essential modifications
are made for this chain model. First, the N-H mx• = K(y. -x,)+x114,,1". (6)
bond is assumed to move together with its PG
and therefore both the acoustic and optical My. = V'(Y, YJ -Y•)-V'(y " -

modes come to be coupled. Second, a substrate K(y - x.)- Ky. -
on-site potential with single-minimum topology 2)

is introduced [11] which models the interaction +
of the chain with its environment as shown in fig. - FMv,, +(t). (7)
1. Thus.

.N where the prime denotes the differentiation of
'•at = • [ m + 7 M y- V( y. - yn) the function Vwith respect of its argument. Here

eq. (7) has the form of the Langevin equation
- 4K(y• - x) 2 -½K• y] (3) describing the interaction of PGs via the amino

where m and M are reduced masses of the acid residues with the thermal bath. As for the
proton and PG. respectively; x. is the proton N-H optical oscillations, they are thermalized
displacement in the N-H bond (with the stiff- via thermal motions of PGs. The thermal bath
ness constant K) of the nth PG and y,, is the with temperature T is described by the relaxa-
longitudinal displacement of this PG; the Morse tion time tr = 1/F and the normally distributed
potential V(p) = eo(e-b' - 1)2 describes the cou- random forces IQJt) with the correlation function
pling between adjacent PGs and E0 is the energy (1'r(tl) l(t')) = 2MFkBTI4(t - t')$,, where the
of the hydrogen bond. For small deformations of autocorrelation function •(t) is normalized as
this bond V(p) =Kp2 where K = V"(0) is the f +'i(t) dt = 1. Using a color noise in eq. (7) we
stiffness constant of the hydrogen bond. The are able to model the "whole" thermalization of
phenomenological parameter b for the Morse acoustic modes and a "partial" thermalization of
potential can be calculated according to the optical modes. Since some analytical work can
relation b = V'-20. The last term describes the be done for the exponential color noise (I(t) =

interaction of the nth PG with the substrate (K. exp(-ItI/tr)/2t.), it is convenient to use it for our
is the stiffness constant). purposes and in this case we may complete the

The interaction part of the Lagrangian de- set of eqs. (5)-(7) by the equation
scribes the coupling of the amide-I with both the
acoustic and optical modes and it is written in 4. = tc[ý(t) - 17J')0. (8)
the standard form

where the -q•'s are the delta-correlated random

•ift = 2MEkBT t [xl(x - yp) + x (y -y•l)] •, (4) forces (white noise), so that (r/,,(t)T1J(t')) =
. • I ~~2MFkTS(t - t)..
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3. Numerical simulations of the soliton see Zolotaryuk et al. (111). Starting the descent
dynamics from the point corresponding to the localization

of the excitation at one PG we obtain the set
For numerical studies of the soliton model {• , x (), y)},N, describing a self-trapping state

we have considered the chain of N = 50 PGs with its localization width L = ( ,ý)'.)
with periodic boundary conditions and the Next, this set is used as initial conditions to
following parameter values: J = 1.55 x 10-22 J, simulate eqs. (5)-(7) taken without damping and
E,=0.17eV =2.72 X 10 21j, mr=m = 1.67X forcing terms [11].
10-2 kg, M = 113 .2mp = 1.89 x 10-2¢ kg, K = As was shown previously [11], at x1 =0 and
13 N/m, I = 4.5 A. Calculations for the acoustic K, > 0 the soliton exists only for large values of
and optical modes with K = 30.5 N/rn and K, = X2. For its small values there exists only the
4N/m give in the linear limit the following stable exciton state (note that at K,=0 the
frequency bands: 24.3cm-' -'n-_ (2 90.9cm-' Davydov soliton is stable while the exciton is
and 719.86cm- AP !-719.91cm-'. The Eins- unstable for all values of x2). The descent
tein temperatures can also be calculated and we calculations have shown that in the chain with
have 130.7 K for the acoustic mode and 1035.8 K X1 =0 the static soliton solution exists only if
for the optical mode. X2 -0.8 x 10- " N while for VxI > 0 it exists for all

The damping coefficient is determined by the the values of X,. Besides this, with increasing X,
relation F = 61Trbq/M where b =1 - 10 A is the (at a fixed value of X2) and X2 (at a fixed value of
characteristic linear size of an amino acid residue X,), the soliton energy and its width L are
and q/ is the viscosity of medium. For water monotonically decreased. Also, with increasing
71= 10-3 kg/mis, therefore F = (1-10) X the soliton velocity v, the soliton energy is
1013s-'. We choose the minimal value F= increased while the width L is decreased.
10i 3 cm-' which corresponds to the relaxation The motion of the amide-I excitation in the
time t, = 0.1 ps. thermalized cyclic chain is governed by the

First, we study pure soliton solutions in the system of equations (5)-(8). The dynamical
unthermalized chain by using the steepest-des- simulations have been carried out for the chain
cent method [111. We write of N = 50 PGs with the value x, = I x 10-' 0 N to

=ýp(nl - vt) expfi[kn - (E1, + A)tlh, (9) be fixed and X2 to be varied. The amplitude of
thermal oscillations for the acoustic sublattice

where ,p is a smooth real function, v is the exceeds by one order the deformation amplitude
soliton velocity, k is the wave number, and A is a caused by the amide-I excitation. On the back-
real parameter. Substituting (9) into eq. (5) we ground of these oscillations a local deformation
find the soliton velocity spectrum: v = v,, sin k of the acoustic sublattice is not sensible for the
where v,, = 21J/h is the maximum velocity of excitation and the self-trapping state has to be
excitons. Also, we derive the discrete stationary stablilized only by the coupling of the excitation
Schr6dinger equation with the spectral parame- with a local deformation of the optical sublattice.
ter A which can be calculated by using the Therefore the initial conditions for the set of
normalization condition for the envelope ý0. equations (5)-(7) which correspond to a local-
Next, inserting (9) into the Lagrangian (1)-(4) ized self-trapping state can be chosen as
and using the approximate relations 0,= follows: O(0) = ý eikn, x"(0) = i, + x0,° y,(O) =

-v(ýp, -R)/I. i, =-v(x, x-x.)/1, and y,= y, +yXi (O)=x-v(x.+I -x II0)/l, )=y-
- v(y + y.) /1, we obtain the conditional mini- v(yn I - Y n)I/11 (0) ) n =1, 2, . N,
mum problem _T-- mrin: E,, •0 = I in the con- where v is the soliton velocity, k = arcsin(v/vej,
figuration space { x v} t1 (for more details {n, x, yn}=t1 is the "pure" soliton solution of
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the minimization problem, and { A', jr, , ý, 37

} is a "lattice" solution of eqs. (6)-(8) at
the instant of time t = 50 ps, when the lattice is 6-

already thermalized, i.e., it is found in the 5
thermal equilibrium with the heat bath.

Take at the initial instant of time the static 41

soliton solution (v = 0). In the chain with X. = 0

the soliton is stable against to the thermal Fig. 3. Time dependence of the soliton width L (v = 0) in the

oscillations of PGs with any values of the corre- thermalized chain with X, = I x 10- 0 N and x, = I X 1012 at
to =0.1; 0.07; 0.04; 0.01; 0.001 ps (curves 1, 2, 3. 4, 5,

lation time tc. For the values tc=0.1; 0.07; respectively).
0.04ps the soliton width practically is not
changed while for the values tc = 0.01; 0.001 ps
its insignificant oscillations are observed (fig. 2). 4 5

This can be explained if we notice that the
period of the optical oscillations (-0.046 ps) is 10
less by one order than the minimum time which
the excitation needs to be transferred from one
unit cell of the chain to its neighbor (I/Vex = 10 20 t (!0) 30
0.34 ps). The intramolecular excitation is sensi-
tive to such oscillations only in the averaged Fig. 4. Time dependence of the localization width L for the
way, responding only on the change of the static self-trapping state in the thermalized chain with X, =

wlx 10- 0 N and x2=4x 10- " N at tc =0.1; 0.07; 0.04; 0.1;

centers of vibrations. 0.001 ps (curves 1, 2. 3, 4, 5, respectively).

In the chain with X, = 1 x 10-12 N, thermal
vibrations lead only to insignificant oscillations of
the soliton width (fig. 3) while the strong inter- oscillations of the molecules which appear ran-
action of the excitation with the acoustic domly along the chain.
subsystem (x 2 = 4 x 10- " N) results in the decay
of the soliton (fig. 4). This can also be explained
if we note that the period of the acoustic oscilla- 4. Concluding remarks
tions has the same order as the time for the
excitation to propagate along the chain one unit To study the thermal stability of the Davydov
cell. In this case, the excitation cannot follow the soliton at biological temperatures, we have con-
large-amplitude deformation caused by thermal sidered the model with the interaction of the

amide-I excitation with both the acoustic and
optical modes. Since the intrapeptide N-H
bonds are allowed to move together with their

ý4 PGs, the acoustic and optical oscillations become
6 to be coupled. Therefore, the optical oscillations
6 can be thermalized via the acoustic mode for
5 1 -2-3 which the temperature description is introduced

in the standard Langevin form.
0 10 20 t (ps) 3o The dynamical semiclassical simulations of the

time evolution of the intrapeptide amide-I exci-
Fig. 2. Time dependence of the soliton width L(v = 0) in the have shown tha trally able socit

thermalized chain with X, = I X 10 " N and X. = 0 at t, = 0.1; tation have shown that thermally stable soliton
0.07; 0.04; 0.01; 0.001 ps (curves 1, 2. 3, 4. 5. respectively). (self-trapping) states can exist if they are stabil-
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ized by the coupling of the excitation with the indebted to A.C. Scott and B.M. Pierce for
intrapeptide displacements (optical mode) while stimulating discussions and suggestions for the
the coupling with deformation of hydrogen future work.
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stabilizing influence. At the values X2 = (3-5) x
10- "N given by quantum-mechanical calcula- References
tions (for references see Scott [2]) the soliton
appears to be unstable with respect to thermal [11 A.S. Davydov, Solitons in Molecular Systems (Reidel,
oscillations. Therefore, on the surface of a Dordrecht, 1985).
vi [21 A.C. Scott, Davydov's Soliton, Phys. Rep. 217 (1992) 1.globular protein, where thermal oscillations of [3] A.S. Davydov, Sov. Phys. JETP 51 (1980) 397 [Zh.
hydrogen bonds have large amplitudes, the Eksp. Teor. Fiz. 78 (1980) 789].
soliton cannot survive at room temperatures. On [41 P.S. Lomdahl and W.C. Kerr, Phys. Rev. Lett. 55

the other hand, globular proteins are arranged (1985) 1235.
[51 P.S. Lomdahl and W.C. Kerr, in: Physics of Many Body

with high density and therefore the stiffness of a Systems, A.S. Davydov, ed. (Naukova Dumka, Kiev,
substrate inside a globule can significantly exceed 1987).

the value K0 = 4 N/rI. In this case the frequency [61 V.N. Kadantsev, L.N. Lupichov and A.V. Savin, Phys.
Stat. Solidi (b) 143 (1987) 569; 147 (1988) 155.

of acoustic vibrations is increased while their [71 A.F. Lawrence, J.C. McDaniel, D.B. Chang, B.M.
amplitude is decreased by one order (-0.01 A). Pierce and R.R. Birge, Phys. Rev. A 33 (1986) 1188.
At these conditions the soliton becomes stable 181 X. Wang, D.W. Brown and K. Lindenberg, Phys. Rev.

Lett. 62 (1989) 1796.
with respect to the thermal oscillations. Thus, [91 W. F6mer and J. Ladik, in: Davydov's Soliton Revi-
the on-site potential, which models substrate sited, P.L. Christiansen and A.C. Scott, eds. (Plenum,
influence [111, plays an important role for the New York, 1990).

thermal stability of the Davydov soliton. [10] L. Cruzeiro-Hansson, Phys. Rev. A 45 (1992) 4111.
[111 A.V. Zolotaryuk, St. Pnevmatikos and A.V. Savin, in:

Davydov's Soliton Revisted, P.L. Christiansen and A.C.
Scott, eds. (Plenum, New York, 1990).

Acknowledgement 1121 G. Careri, U. Buontempo, F. Galluzzi, A.C. Scott, E.
Gratton and E. Shyamsunder, Phys. Rev. B 30 (1984)
4689.

Part of this work was done during a visit at the [13] J.C. Eilbeck, P.S. Lomdahl and A.C. Scott, Phys. Rev.

Research Center of Crete supported by an EEC B 30 (1984) 4703.

grant (SC1-CT91-0705). One of us (A.V.Z.) is



Physica D 68 (1993) 65-67
North-Holland

SDI: 0167-2789(93)E0169-C

Finite temperature simulations of the semiclassical Davydov model

L. Cruzeiro-Hansson
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The thermal stability of soliton solutions of the semiclassical Davydov model for energy transfer in proteins is
investigated. Thermal averaging is made taking the degeneracy of the states into account. It is shown that Langelin
dynamics leads to the same average states as the semiclassical Monte Carlo simulations, indicating that the former do
constitute an accurate representation of the thermal bath in the semiclassical approximation.

1. Introduction one-dimensional lattice with N sites,

In 1973, Davydov [1] proposed a mecha- H k . + Hph + nt, (1)

nism for energy transfer in proteins, according
to which the energy released in the hydrolysis where Hex is the exciton Hamiltonian, Hph is the
of adenosine triphosphate can propagate along phonon Hamiltonian and HAnt is the interaction
an enzyme a-helix in the form of a soliton. It is Hamiltonian. The exciton Hamiltonian Hex is
now well established that the Davydov Hamil-
tonian does possess soliton solutions at T=OK. teX = a [ lalan - J (anan - + ana,, +i,
An essential question is, however, whether at n=1,N

physiological temperatures the Davydov soliton (2)
lasts long enough to have a biological role [2-
4]. Simulations with Langevin equations lead where E is the intramolecular excitation energy,
some authors [2,3] to the conclusion that, at -J is the dipole-dipole interaction energy be-
T= 310K, the Davydov soliton disappears in tween neighbouring sites and an (a,) is the cre-
a few picoseconds. This conclusion is d.L;cn- ation (annihilation) operator for an excitation
dent on an accurate simulation of the effects in site n. The interaction Hamiltonian HAn is
of the thermal bath. Recently a test to measure
the accuracy of the thermal bath representation Hint = E [X + (Un+l - un) antan

has been proposed [6]. It aims at comparing n=1,N

average results from the Langevin dynamics - - n
(LD) with corresponding results from the exact +X - -u atan] (3)

Monte Carlo (MC) simulations. This article is where X + ( -) is an anharmonic parameter re-
concerned with the results of this test. lated to the coupling between the excitation and

the displacement Un of the following (preceding)
site. The Hamiltonian is called semiclassical be-

2. The semiclassical Davydov model cause the lattice is considered a classical system,
which is here expressed by treating the displace-

The Hamiltonian used here, designated as the ments Un (and below the momenta Pn) of the
semiclassical Davydov Hamiltonian H, is, for a lattice as real variables, while the intramolecular

0167-2789/93/$06.00 @) 1993-Elsevier Science Publishers B.V. All rights reserved
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excitation is described by the operators &i, ain.
This difference is marked by the hats above the o"
operators. Thus, the phonon Hamiltonian Hpb is *44,4

4

4•
Hp =. + IK(n-U- 2 (4)

n=,N4

where P. is the momentum of site n, M is the 4
mass of each site and K is the elasticity constant
of the lattice. The exact general solution of the x
Schr6dinger equation for the first excited state Fig. 1. Variation with X of the energy of minimum en-

of the semiclassical Davydov (1-4) is ergy excited states determined with semiclassical Davydov
model (triangles) and with the full quantum mechanical
model (crosses). N = 50, J = 1.549 x 10- 22 J, K = 13 N/m.

I Y/(QUn, IPn}, 10,t = 3. Monte Carlo simulations and Langevin

E nU({U.},{Pn},t) 0 a 10), (5) dynamics

n= I,N
The variable selected to compare the results

between MC and LD simulations is the thermo-
where no form is set a priori to Obn. Exact mini- dynamic average state, as specified by the av-
mum energy first excited states of the semiclas- erage probability per site n, ((I On 12)), and the
sical Davydov Hamiltonian can be determined corresponding average displacement differences,
by numerically minimizing the Hamiltonian ((un - un-,)). This average state is determined
(1-4) averaged over state (5), subject to the by summing I On 12 and u, - u,,- over all sam-
normalization condition -- =IN I On 12= 1. pled states, after having located, for each sam-
In the case J=0, the full quantum mechanical pled state, the site for which the probability of
Davydov model can be solved exactly and it excitation is maximum and translated this max-
has been shown that the semiclassical Davydov im to the middle of the chain and performing
model leads to the same minimum energy states "tly the same rotation with the displacement
[7 1. For J # 0 the solution to the full quantum ,erences. Fig. 2 displays the average state as
model is not known. In fig. I the minimum en- calculated from the MC (solid line) and from
ergy, as determined numerically for the semi- the LD (broken line) simulations, respectively,
classical Davydov model is compared with that for the same values of the parameters (see figure
determined approximately by Venzl and Fischer caption).
[5] for the full quantum mechanical Hamilto- The MC simulations involved more than 1
nian. Letting p=X2KJ, (with X =X + =X -), for- million passes and the LD were run for more
mula (39) of [ 5 ], p. 6093, was used whenp < 1 than 100 nanoseconds. Fig. 2 shows that the cor-
and formula (55) of [5], p. 6094, was used relation between the site of maximum excitation
when p > 1. Fig. 1 shows that, also for J #0, and the lattice deformation that was observed
the semiclassical Davydov model leads to ap- in the MC simulations is not destroyed by the
proximately the same states as the full quantum LD. In fact, it is present in the LD with approxi-
mechanical model. mately the same strength (i.e. the value of the lat-
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as the MC simulations indicates that the former

0.10 constitutes indeed a faithful representation of
the thermal bath. This supports the conclusion

A 0.08" that the initial solutions used by other authors do
A lead to a soliton lifetime of a few picoseconds at

0. 06' 310 K [ 2,3 ]. These conclusions are valid within
V the semiclassical Davydov model. However,

""0.04 the results in section 2 indicate that they are

0.02' approximately valid for the full quantum me-
chanical model. A few points remain however,

10' 20' 30' 40 50' to be studied. They include the temperature de-
pendence of the parameters, a decrease in J as
temperature increases will lead to more stable
solitons at higher temperatures and especially

0.000' the second excited state has yet to be explored.
\ 0. 000

A

"7
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produce an accurate representation of the ther-
mal bath in the semiclassical Davydov model.

4. Discussion

The semiclassical Davydov model can be
solved exactly and thus the results presented
here do not suffer from the ambiguities that
plague the full quantum mechanical model,
where ansAtze for the wavefunctions are pro-
posed whose degree of approximation is not
known. The MC simulations also provide an ex-
act simulation of the system at finite tempera-
tures. The fact that LD leads to the same results
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After a short review of our previous results on temperature effects on Davydov soliton dynamics, we give some
comparisons between results obtained with Davydov's average Hamiltonian method within the ID, ) ansatz state in one
chain with quantum Monte Carlo results found in the literature. We find that Davydov's method leads to quantitatively
incorrect results, but reproduces the qualitative trends correctly. Our results obtained with different models point into the
direction that Davydov solitons should be stable, if the value of the spring constant for hydrogen bonds is larger than
usually assumed. Therefore we return to Scott's suggestion, that in order to simulate the three coupled hydrogen bonded
chains present in protein a-helices with one chain, the spring constant and the mass should be enlarged. In case of the ID, )
state we present numerical simulations for three coupled chains including temperature with different initial states and for
one chain using Scott's revised parameters at 300 K.

1. Introduction In his original theory Davydov [1] used an
ansatz for the wave function (I D2)) which treats

For the mechanism of energy transport the lattice classically. At zero temperature is has
through proteins Davydov 11,2] suggested that been confirmed that Davydov solitons exist for
the energy of =0.4 eV released by hydrolysis of parameter values appropriate for proteins 131.
adenosine-triphosphate (ATP) could be trans- Also their stability against disorder along the
ported in quanta of the amide-I (mainly C--O chain was studied [4]. The investigation of tem-
stretch) vibration (=0.2 eV). The CO groups par- perature lead to controversial results. Halding
ticipate in hydrogen bonds which form chains and Lomdahl [5] found stable pulses at T =
parallel to the axis of a-helical proteins. Thus 310 K using classical molecular dynamics for pep-
the amide-I vibration interacts with the acoustic tide units moving in a Lennard-Jones potential.
phonons in these chains. The 11,2] excitation of Lomdahl and Kerr [6a] and others 171 used the
an amide-I oscillator causes a distortion in the I D2) ansatz together with a damping and a noise
lattice which in turn stabilizes the amide-I excita- term to introduce temperature and found no
tion. It was found that for certain regions of the stable solitons at 310 K at a specific set of param-
parameter space of the model this effect can eters. Bolterauer [81 argued that their classical
prevent the excitation from dispersion via the thermalization scheme might lead to a too large
dipole - dipole coupling between neighboring transfer of energy into the quantum system (os-
CO-groups in the lattice. The region in which the cillators). Cottingham and Schweitzer 191 applied
vibrational energy is localized can travel as a perturbation theory to the Hamiltonian after
soliton along the chain, partial diagonalization and could show (again for

0167-2789/93/$06.00 ©• 1993 - Elsevier Science Publishers B.V. All rights reserved
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one set of parameters) that the soliton life-time this work. There are doubts, if the Davydov
at 300 K is too short for biological processes. In concept of using a thermally averaged Hamilto-
our previous work [4,10,11a] we prepared the nian to derive equations of motion from it, is in
lattice in a thermally excited state prior to the agreement with statistical mechanics. There is
soliton start. We compared our results to those the possibility that it may lead to results which
of [6a] and found agreement between the models are even qualitatively misleading. Therefore we
if in the Langevin model [6a] the lattice is ther- present in the third part of section 2 a com-
mally equilibrated before the soliton starts. We parison of our results obtained with the averaged
could show that in a window in the parameter Hamiltonian method with the exact quantum
space which might well be realistic for proteins Monte Carlo results of Wang et al. [191.
travelling solitons exist at 300 K. Since all our results point into the direction,

Recently Brown et al. [121 have shown that that the hydrogen bond spring constant should
the ID,) state ansatz does not reproduce the be large to allow soliton formation at 300 K, we
dynamics of the exactly solvable small polaron go back to the suggestion of Scott [3,20,211 that
limit (dipole - dipole coupling neglected). in one chain simulations the spring constant
Davydov [21 introduced a more sophisticated should be larger by a factor of three, in order to
ansatz state (ID,)) which allows for quantum simulate the three coupled chains present in real
effects in the lattice. However, he used the protein a-helices within a one chain model. For
energy expectation value for IDI) as a classical an excellent review of the state of art of work on
Hamiltonian function to derive equations of mo- Davydov solitons the reader should consult
tion [2]. It was shown that with these equations Scott's recent paper [211. In the first part of
ID,) does not reproduce the small polaron limit section 3 we present one chain simulations with
[12] either. With these equations of motion and a revised parameters according to Scott's sug-
thermally averaged Hamiltonian Davydov [2] gestion. In the second part of section 3 we
could show within the continuum limit that sol- present simulations on three chains using differ-
itons exist at 300 K. Cruzeiro et al. [13] reached ent excitations (symmetric as well as asymmetric
at the same conclusion numerically without mak- ones) within the ID2) ansatz state and compare
ing use of Davydov's approximations, but using them with one chain results, using different pa-
also the thermally averaged Hamiltonian as a rameter values. Finally in the third part some
classical Hamiltonian function. examples of three chain simulations including

Most recently Mechtly and Shaw [14] and temperature are discussed.
Skrinjar et al. [15] could derive new equations of
motions for ID,) with help of quantum me-
chanical methods. These equations of motion
reproduce the small polaron limit. We also used 2. One-chain simulations at finite temperature
the Langrangian method described in [151 to
obtain correct equations of motion for the IDI)
ansatz state from the thermally averaged Hamil- 2. . The ID2) ansatz state
tonian derived in [2,13]. In this investigation
[16-18], as well as in our previous studies within The Hamiltonian used for this study is in the
the ID2) state, summarized in [17] we found that most simple form for the system investigated by
Davydov solitons should be stable at 300 K if the Davydov [1]. More sophisticated forms of the
spring constant of the hydrogen bonds is larger Hamiltonian which incorporate more details of
than previously assumed. These results are short- the protein structure have lead qualitatively to
ly reviewed in the first two parts of section 2 of the same results [3].
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ft = • (Eoldlj - J(nd +, + an+ a,) results we deduced that within the ID2) model
n 2Davydov solitons should be stable at 300 K if the

+ + spring constant W of the hydrogen bonds is
2M (2 - _l)2 larger than roughly 30N/m (see [lla,171 for

+ n , - (.1) details).
A very appealing model for treating tempera-

In eq. (1) i+ (n,) are the usual boson creation ture effects on Davydov solitons was recently
(annihilation) operators [3] for the amide-I oscil- introduced by Cottingham and Schweitzer [9].
lators at sites n (see fig. 1). They [9] could diagonalize the Hamiltonian par-

From infrared spectra the ground state energy tially. Then one can define H = H0 + W where
of an isolated amide-I oscillator can be deduced H0 is the diagonal part of Hi and WV the non-
(E0 = 0.205 eV). Usually for all parameters in diagonal one. Thus * can be treated as a pertur-
eq. (1) site-independent mean values are used. bation. This partitioning is reasonable, and for
The average value for the dipole - dipole cou- their purpose unique, because the Davydov sol-
pling between neighboring amide-I oscillators is iton state (ID2)) is an exact eigenstate of Hi0 and
J = 0.967 meV. The average spring constant of thus first order perturbation theory using W as
the hydrogen bonds is taken usually to be perturbation allows the calculation of soliton life-
W= 13 N/rm. On is the momentum and 4n the times. They could compute the transition prob-
position operator of unit n. The average mass M ability from an initial state containing a Davydov
is taken as that of myosine (M = 114mp; mp = soliton and a thermal distribution of phonons to
proton mass). The energy of the CO stretching a final state without the soliton. From this prob-
vibration in hydrogen bonds is a function of the ability they could derive an explicit expression
length r of the hydrogen bond (E = Eo + Xr). for the life-time of a pinned soliton.
For X the experimental estimates are 35 pN and To compare our model with that of Cotting-
62 pN. ham and Schweitzer [91 we took a cyclic chain as

For the solution of the time dependent Schr6- in ref. [9] where only pinned solitons are found
dinger equation we used the displaced oscillator numerically [9]. We used W= 13 N/m. X =
state ansatz (ID 2 )) of Davydov [1]. Davydov 62pN and an(0) = A sech[(an - 100)X 2/WJJ as
[1,2] formed the expectation value of the Hamil- initial condition as in [9]. In addition we im-
tonian (1) with ID 2 ) and used this expectation plemented the symmetric interaction into our
value as classical Hamiltonian function. In this program for the purpose of comparison, since in
way he obtained the equations of motion. Ex- ref. [91 this model was used. As shown in [13]
plicit forms of the equations of motion used can the two interaction models lead to rather differ-
be found in ref. [lIla]. The ID2) state reproduces ent results. For comparison we varied J and
the lattice dynamics for J = 0 correctly, but leads estimated soliton life-times from our model. For
to an incorrect phonon energy [12]. From our this purpose the initial excitation (ID2) soliton

solution) was centered around site 100 and we
used the soliton detector plot of Lomdahl and

/\ / Kerr [6a]. We found [lla,17] that the two mod-
.--..0--C N-H-...0-C els agree very well. However, one should keep

N ----O C N-H-.... two restrictions in mind: in case of small J the
/\ / continuum limit used in [9] does not apply and

n-1 n n' +1 the formula for the life-time given in [9] still

Fig. 1. Schematic picture of a hydrogen bonded channel in a contains approximations which were removed in
protein, a later paper [23]. Thus the nearly quantitative
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agreement [lla,171 between the two models nian. It seems to be more realistic to investigate

should be considered as accidental. However, we the dynamics of an initial one- or two-site excita-

expect that also with the improved perturbation tion than that of a preformed soliton obtained

treatment (231 qualitative agreement should still from ID2 ) continuum theory. As we found in

be found. With the new formula [231 for the our studies, the solitons formed from such an

parameters life-times between 0.30 ps and 322 ps excitation have properties which can differ con-

for J between I meV and 0.1 meV were found siderably from the continuum solutions. To study

[241. This still agrees qualitatively with the range quantum effects on solitons one has to compute

of 0.6-96 ps from our model, at least for larger J the dynamics of such initial excitations with bet-

values. For the smaller ones the continuum ap- ter ansatz states, instead of calculating the life-

proximation used in [231 breaks down. time of ID,) solitons within the exact Hamilto-

However, studies on Davydov soliton life- nian, since these ID2) solitons are only solutions

times should not be based on the symmetric of H, and not of H/. The full Hamiltonian Hý can

interaction ansatz, where the length of a hydro- have soliton solutions which might differ drasti-

gen bond in which the C=O group does not take cally from these approximative ID2) solitons.

part is considered as to influence the C=O group Since the Schr6dinger equation for H cannot be

as much as the hydrogen bond in which it partici- solved exactly, besides in special cases, we ap-

pates. This seems to be rather unrealistic. To plied as a first step the improved ID,) ansatz

give some examples, we performed similar calcu- state of Davydov [2] which allows quantum ef-

lations as reported above for parameter values fects in the lattice and also reproduces the exact

where we found stable solitons at 300 K with solutions in the small polaron limit (J = 0) if the

asymmetric interaction and open (instead of cy- equations of motion are correctly derived 114,151

clic) boundaries. In case of X = 110 pN and but is still an approximation for J 7 0. The re-

W = 90 N/in we find a stable soliton in our simu- suits of these investigations are reported in the

lations, observed in the computer experiment for next section.

more than lOOps. However, if we perform the
calculation as described above with symmetric 2.2. The ID )ansatz state

interaction and cyclic boundaries we obtain a
life-time of only 3-4 ps. This again is quali- In this chapter we want to report on our

tatively in the same order of magnitude as per- results at T= 300 K using the ID,) state ansatz

turbation theory which gives 0.8ps in this case [17,181. The Hamiltonian [1,21 in second quan-

[24]. tized form including disorder is given e.g. in

In general it seems that ID,) dynamics which [17,18]. The ID,) ansatz for an inclusion of

approximates the lattice classically leads to sol- temperature in Davydov's approximation for so-

itons which are more stable against temperature lution of the time dependent Schr6dinger equa-

than in theories which apply the exact Hamilto- tion is [22]
nian, like perturbation theory [9,23]. Also Bol-
terauer [251 who studied the uncertainty of the ID1, P) = a'.(t)d4I0)oII3, ,) . (2)

soliton energy in order to obtain lifetimes found
that both quantum and temperature fluctuations Here 10), is the exciton vacuum, and 1,3,,) a

should destroy the soliton within less than 1 ps. coherent phonon state. For the one-quantum

However, these studies have in common, that oscillator states used here Ela,,-2 = I holds. To

the decay time of a soliton as given by the exact include temperature approximately we assume,

continuum limit solution for the ID2) ansatz as in [131 that a phonon distribution is present in

state is investigated within the exact Hamilto- the lattice where each normal mode is occupied



72 W. Forner / Effects of temperature and interchain coupling on Davydov solitons

by Pk quanta. We do not consider a thermal 300 K if the spring constant of the lattice is much
distribution of amide-I quanta since at 300 K the larger than the usually applied 13 N/m. This
Boltzmann factor implies that only 3 of 10000 leads us first of all to the suggestion of Scott
amide-I oscillators would t,; thermally excited. [3,211 that one has to take into account that in an
Thus one can neglect a possible thermalized a-helix three coupled chains are present. Scott
soliton distribution in the system too, since pres- argued that in one chain dynamics one has to use
ence of solitons requires first of all amide-I exci- a larger effective value for W and M in order to
tation. Then the expectation value of the Hamil- simulate the three chain case with a one chain
tonian in this state is formed and thermally model. We will investigate this in section 3 in
averaged over all phonon distributions. From more detail. But before turning to this point, we
this equations of motion are derived using the want to discuss some basic problems of the mod-
Euler-Lagrange formalism [17,18]. els applied. One may ask if it is correct to

This method introduced by Davydov was criti- introduce temperature in an averaged way as
cized by several authors as being inconsistent done here and if not fluctuations taken explicite-
with statistical mechanics, since equations of mo- ly into account could destroy the solitons. How-
tion are obtained from a thermally averaged ever, we have shown in our previous work
Hamiltonian. However, we feel that it might still [11,171 that in case of the ID,) ansatz models
be a reliable approximation to the real dynamics with explicit random fluctuations and our model
under physiological temperature. To investigate using a lattice prepared to T = 300 K in a de-
this we also give a comparison with quantum terministic way lead to comparable results. Thus
Monte Carlo simulations in the next section. we are confident that in the I DI) case the same
However, since in previous work on Davydov's conclusion holds. The other problem is the ap-
method [2,13] his incorrect derivation of equa- proximative nature of the ID,) state. To im-
tions of motion was used, it seems to be interest- prove the ansatz in this respect we plan to take
ing in itself, to study the dynamics of the system two-phonon terms into account in the generator
using correct equations derived from the aver- of the unitary transformation [14]. A more se-
aged Hamiltonian. vere problem is the inconsistency of Davydov's

The equations of motion have been solved method for incorporation of temperature with
using a fourth order Runge-Kutta method [19] statistical mechanics. Thus we want to compare
and the dynamics were calculated through ID,) results with exact quantum Monte Carlo
-- 26ps. We performed a survey of the (X, W) simulations ii. the next section, to be able to
parameter space. At T = 0 K solitons occur at decide if Davydov's method can still be consid-
much larger values of X (>l50pN [161) and ered as an at least qualitatively correct approxi-
smaller values of W than at 300 K [17,18]. The mation.
reason for that is, that effectively the dipole -

dipole coupling J which is responsible for disper- 7- 1. Comparisons with exact quantum Monte
sion decreases with increasing temperature. in Carlo results
this way a larger temperature can stabilize sol-
itons at smaller values of X. This is consistent Wang et al. 1191 reported the results of quan-
with results reported by Cruzeiro et al. [13], tum Monte Carlo simulations on the Davydov
although the effect is far more pronounced in Hamiltonian. These results should describe the
our case using the quantum mechanically correct equilibrium state in principle exactly, restricted
equations of motion. Thus we arrive with ID,) only by numerical inaccuracies which can be
dynamics at the same conclusion as with ID,) controlled. They applied the parameters usually
dynamics: Davydov solitons should be stable at used in the literature (J = 0.967 meV,
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W= = 13 N/m, X =62 pN, M = 114mp), cyclic tion programs, started from a random distribu-
boundaries, the symmetric interaction, and rings tion of one amide-I vibrational quantum and
of 24 sites. They determined for each of their performed a time average of the same quantity
configurations the excitation site n0, and rotated with which Wang et al. performed their ensem-
all coordinates such that this site is in the middle t , average. We determined nf in each time step
of their lattice. Then they computed the average as the site where the excitation probability
(A.) of the lattice displacements A, = q÷,, - Ia,(t)12 is largest. In this way after a sufficient
q, •. Here n refers to the rotated coordinate number of time steps (convergence of (A,)) we
system, where the excitation site no is always in should obtain results comparable with those
the center. We implemented cyclic boundaries from Wang et al. [19].
and symmetric interaction into our time simula- In [191 it is reported, that at 2.8 K coherent
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structures are obtained. In this case from their 1Da) state and Davydov's model for temperature
fig. 1 we estimate a maximum of (A,,) at n = fl( effects, however, using correct equations of mo-
of =0.07 A. For T = 7.0 K they observe that this tion as given in the previous section. We fol-
coherent structure starts to break down, leading lowed the dynamics over a period of 6 ns, corre-
at 11 .2 K to localized structures comparable to sponding to 3 000 000 time steps. The calculation
small polarons (this might also be interpreted as for one temperature had to be done in 6 runs,
an Anderson-like localization originating from where one requires 7.7 cpu hours computation
increased disorder due to thermal fluctuations). time on a Cyber 995E computer from Control
For 7.0 K the maximum of (A,,) is found to be Data Corporation (500000 time steps each run).

/0.)8 A and d0.09 A for 11.2 K. The latter Typically (T = 11.2 K) the error in total energy

value is already close to the infinite temperature in such runs is •3 neV and the norm error is less
limit of •(0.095 A 1191. than 0.05 ppm (parts per million). We see from

In fig. 2 we show our result obtained with the fig. 2a that at T= 2.8 K after roughly 1 ns a
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Fig. 2 (cont.).

soliton nucleates from the random initial condi- like structures is shifted to higher temperatures.
tions and performs a random walk in the system. Thus Davydov's model appears to be in quali-
This corresponds qualitatively to the coherent tative agreement with quantum Monte Carlo re-structure found by Wang et al. [191 at this tern- suits. However, it does not agree quantitatively
perature. At T = 7.0 K (fig. 2b) also such a as fig. 3 shows where we present the time aver-
localized packet forms, but it is first of all smaller age ( A,,) of the lattice displacements through
and after 2 ns it remains confined within a few 3 000 000 time steps. Obviously the structure
lattice sites, again corresponding to the destruc- found has a decreasing width with increasing
tion of the coherent structure towards a localized temperature, but the peak values are ==-0.026A
state reported in [191 for this temperature. Final- (2.8 K), •--0.028A• (7.0 K) and -- 0.029,A
ly at 11.2 K the packet remains in the middle of (11.2 K) in contrast to the much larger values
the chain and becomes smaller, again in quali- found in [191 (-0.07,/A, -0.08 "k, -0.09 A, re-

tative agreement with [191, although it seems spectively). Also the increase of this peak value
that in I D,) theory the building of small polaron- with temperature is much less pronounced than
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Fig. 3. Time average (A,,) over 3 000 000 time steps (6 ns) of the lattice displacements A, in the rotated coordinate system for
the system of fig. 2 at the same temperatures.

in the quantum Monte Carlo case. Therefore we sing ansatz shows a narrow and too high peak for
conclude that Davydov's ID,) model gives a all three temperatures. The peak does not
qualitatively correct picture, but fails to repro- change for increasing temperature and thus for
duce exact results quantitatively, this ansatz we even do not find qualitative agree-

Let us turn now to the partial dressing state of ment with quantum Monte Carlo results.
Brown and Ivic [261 which is a special case of the Finally we computed again the average (A,,)
I D,) ansatz with a fixed dependence of the for the ID2 ) ansatz with our temperature model.
coherent state amplitudes bnk on the site n. Our In the ID2) case the peak values of (A,) are
simulations at 0 K for this state have shown that again smaller than the corresponding quantum
the results are rather similar to ID,) dynamics, Monte Carlo values, however, with the wrong
however, with solitons appearing at even higher tendency: they decrease somewhat with increas-
values of X than in zero-temperature ID,) ing temperature (2.8 K: -0.0107 A; 7.0 K:
theory (161. Our implementation of the partial -0.0106 A; 11.2 K: -0.0098 A). The decrease is
dressing theory including temperature is de- not very pronounced and it seems that all three
scribed in [161 and we do not repeat it here. In values are far off the infinite temperature value
case of this state already after 900 000 time steps given in [191. Since there are no solitary or small
of 2 fs convergence of the average (A,) is ob- polaron like structures visible in the lan12 plots
tained. In this case no solitons are nucleated. We and the infinite temperature behavior shows al-
found that here the infinite temperature value ready up at T = 2.8 K it seems that here the
from [191 for the peak is underestimated by all temperature effects are overestimated in agree-
three curves. Thus even at 2.8 K where in [19] ment with Bolterauer's [81 argument. In conclu-
coherent structures were found, the partial dres- sion it seems that among the models studied, the
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ID,) ansatz together with Davydov's treatment W(N/m)

of temperature is the only one which gives an at 100
least qualitatively correct picture, although it is
quantitatively incorrect and furthermore there

800
are doubts on the validity of Davydov's ansatz
for the description of temperature. However, it 0 0
seems that Davydov's ansatz can be viewed as a 60 0 % ."

qualitatively valid approximation (see [27] for • -4-+-4-
details). 40 + + %

3. Three chain dynamics 20

3.1. One chain dynamics at T = 300 K with
enlarged mass 0 20 40 60 80 100

X(pN)
In this paragraph we want to follow Scott's

suggestion to use revised parameters in one Fig. 4. Survey of the (X, W) parameter space at T = 300 K
chain dynamics in order to simulate three chain using Davydov's temperature model and the ID,) ansatz

state together with a mass of 3M = 342mP (initial excitation

dynamics with them. Since we want to survey the at site 49, time step 0.15 fs, chains of 50 units, crossed open

(X, W) parameter space, we only need to change circles: pinned soliton, horizontally dashed black circles:

the site mass from 114mp to 342mp. However, pinning or reflection after roughly 40 sites, vertically dashed
black circle: slowly dispersive solitary wave, horizontally

we have to keep in mind, that then in these crossed black circle: soliton which becomes pinned after a

simulations W is an effective spring constant and few sites, diagonally crossed black circle: moving soliton

no longer the spring constant of an individual which becomes pinned after interaction with the shock wave

hydrogen bond. We used chains of 50 units and and then slowly disperses, black circle: travelling soliton).

an initial excitation at one site (49) as in the
calculations reported before. The temperature this is the case as the figure shows. We find many
was 300 K using Davydov's model for tempera- parameter values where the solitons become
ture effects and the ID,) ansatz state. The time pinned after interaction with the sound wave
step was 0.15 fs and we followed the dynamics reflected from the chain end. After that inter-
over roughly 26 ps. In case of the I D1) state action in most cases the solitons disperse slowly
Scott's analytical considerations for an A-mode and perform a random walk around the pinning
excitation within the ID,) state which are re- site. For W= 80 N/im and X = 60 pN the soliton
peated shortly in the next section do not hold. is even reflected from the shock wave, but not
Thus we cannot expect that also for the I D, ) destroyed. Therefore we marked this point in the
ansatz the three chain case is reproduced by one parameter space as a point where travelling sol-
chain dynamics if we use 3W and 3M instead of itons exist. In general we see that the picture is
W and M. very similar to that for the reduced mass dis-

The results of our calculations are displayed in cussed in section 2.2. The region of stable sol-
fig. 4 Since the enlarged mass influences consid- itons is again shifted to small X- and rather large
erably the phonon frequencies we have to expect W-values, and the boundary of this region ap-
that interactions between the soliton and sound pears to be roughly linear. However, here W has
waves in the lattice might be different from the another meaning than in section 2.2. Thus the
one chain case with smaller site mass. Indeed threshold for soliton formation of W'-4ON/m



78 W. Forner / Effects of temperature and interchain coupling on Davydov solitons

should correspond to a spring constant for single (L) of one unit on a single chain. In the case of
hydrogen bonds of roughly 13 N/m which is the the A-mode the soliton consists of three identi-
usually cited value, while the also used value of cal, parallel moving localized excitations on all
19 N/rm corresponds here to W-60 N/rn. How- three chains, while in the E-mode the soliton
ever, the factor of 3 holds only for I D,) theory, moves only on two chains. In the case of the
while for ID,) this is not the case. Further the local excitation the soliton is found mainly on
figure shows that for a value X = 60 pN W has to one chain, with a small fraction of the excitation
be larger than 70N/m to allow travelling sol- transferred to the others. Scott [3,211 found for
itons, which corresponds to a hydrogen bond the A-mode that the equations of motion for
spring constant of -25 N/re. three chains are identical to the equations for

one chain but with M' = 3M and W' = 3W. The

3.2. Three chain simulations at T = 0 K important conclusion is that numerically this
holds not only for the symmetric A-modes, for

As Scott pointed out already (see [211 for a which Scott's considerations outlined above

recent review) a long time ago [31, in an a-helix hold, but also for the E-mode and even for a

three parallel chains of hydrogen bonds exist, single chain excitation [281.

which are coupled by dipole-dipole interactions. In the more complicated ID,) case the equa-
tions of motion for the symmetric A-mode for

If a is an index which specifies the chains (a = 1, three chain for one chain Are ode as

2, or 3), and if L is the coupling parameter shown in [2] for tre chain simula-

between two neighboring C=O oscillators on dif- shown in [281. We performed three chain simula-

ferent chains, the equations of motion for the tions with an A-mode excitation and again the

simple JD,) ansatz state are 13,211: two single chain simulations (using W, M and
3M, 3W, respectively), but now computed in the

iha -J(a,, .,, + an - ].) ID I) model (X = 62 pN). We found that the one
chain results for parameters M and W are the

+ L(a.., +I an., - I) same as those from the three chain calculations
as expected from the considerations outlined in
[28]. However, an A-mode excitation does not

M4,(.. W( q. +,I.,, - 2qn,, + q. 1.,) necessarily occur in reality and thus we also have
to study initial excitations in the E-mode and

+X(Ian. 1- Jan-'.12 ) (4) ones which are localized on one chain where the
equations for one chain are not the same as

Scott's argument is now, that the usually used those for three interacting chains. This is dis-
values for the parameters W and M apply only cussed in the next section.
for the case of three coupled chains. He found
[3] for the interchain coupling parameter a value 3.3. Three chain dynamics at T = 300 K
of L = 1.54 meV. For this value of L and stan-
dar.' values for the other parameters (W= 13 N/ Here we want to show results obtained with
m, M = 114mg, X = 62 pN, and J = 0.967 meV) the equations for three chains with general initial
we performed simulations for a three chain sys- excitations in the ID,) case using Davydov's
tem, as Scott did for one special case of excita- model for temperature effects. The equations are
tion [3]. We used the symmetric A-mode (an, = given in [28]. Let us first discuss a localized
an, = an.), the linear combination of the two excitation at one of the terminal sites of just one
degenerate E-modes (an1 = 0, an2 = 1I/V2, spine. We have chosen a chain length of 20 units
a, -I /V2) and an asymmetric local excitation for each chain (excitation at site 19 of chain 1)
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and the usual value of 1.5373 meV for the inter- of 62 pN (see [211 for references). Figures 5a and
chain coupling L [211. The time step was chosen b show that for W = 13 N/rm in case of the lower
as 0.25 fs. In this case in a typical calculation on X value a solitary wave is formed first which
localized initial excitations the total energy was becomes trapped roughly in the middle of the
conserved within roughly 2 ILeV and the norm to chain, while for the larger X value the excitation
better than 5 ppb (parts per billion). Repetition is trapped close to the chain end. In both cases a
of one of the calculations with a time step of considerable part of the excitation goes over to
0.1 fs lead to no changes in the results. In fig. 5 the initially unexcited chains. In case of
we show the results of these simulations. We use W = 19 N/rm (5c, d) at the lower X value a clear
for W the values 13 N/rn from measurements on solitary wave is formed and travels through the
formamide crystals and 19 N/m from theoretical chain. If one looks closer at the pulse like struc-
calculations. For X we use 35 N/rm which was ture, one sees that the excitation is oscillating
found by Scott and also the usually applied value between the initially excited chain and the other
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Fig. 5. Time evolution of la,(t)1-2 in the ID, ) ansatz state at 300 K using Davydov's model for temperature effects and a localized

initial excitation (a,,.,(0) =1, all other a's equal 0.005, then normalized to 1, all three chains are shown: chain 1: n = 1-20, chain
2: n = 21-40, chain 3: n =41-60, time step: 0.25 fs) for different values of W and X:
(a) W=13N/m, X=35pN-, (b) W=13N/m, X=62pN; (c) W=19N/m, X=35pN-, (d) W=19N/m, X=62pNý
(e) W=4ON/m, X=62pN;(f) W=6ON/m, X=62pN.
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two. When the excitation probability is small on lattice and Davydov's method for incorporation
chain 1, it is large on chains 2 and 3 and vice of temperature, we arrived at roughly the same
versa. At the larger X value the excitation is conclusion. Since Davydov's method to account
again trapped close to the initial excitation site. for temperature effects is believed by several
For X = 62 pN we have increased W to 30 N/rm, workers to be inconsistent with statistical mech-
40N/m, 50N/m and 60N/rn. Two cases are anics, we performed comparisons with exact
shown in fig. 5e (40 N/rm) and f (60 N/rm). As in quantum Monte Carlo results (QMC) [191. Since
case of one chain simulations an increase in W these results are available only ior one set of
favors soliton formation and we found soliton parameters and with the rather unrealistic sym-
formation between W= 40 and 60N/m, even metric interaction ansatz, we incorporated these
quantitatively in fair agreement with one-chain features into our program to be able to perform
and even with ID,) results. The results for the comparable calculations. Instead of the ensemble
E-mode are more or less similar [281. Again average in QMC we performed a time average
from W = 40 N/rm solitary wave formation can be over the lattice displacements in a rotated coor-
expected. In case of A-mode excitations a strong dinate system. We found that the transition from
tendency to trapping after a few sites shows up. coherent to localized structures between 2.8 K
However, for W= 19N/m and X=35pN again and 11.2 K reported in [191 is reproduced by
a solitary wave shows up. In the cases of larger Davydov's method. However, quantitatively the
W values we observe again solitary wave forma- averaged lattice displacements and their vari-
tion, but at 40 N/m after the reflection the sol- ation with temperature are underestimated. Thus
iton oscillates around the chain end. Increasing the method serves as a qualitatively correct ap-
W to 60 N/rm leads again to a solitary wave, but proximation to the dynamics at physiological
it moves erraticly after reflection [281. Thus we temperature. The classical ID2) ansatz seems to
reach at the same basic conclusion as in case of overestimate temperature effects, while the par-
most other models (with the exception of the tial dressing ansatz [26] leads neither to coherent
partial dressing state) we studied: If W is larger structures below 7.0 K nor to localized ones
then 30-40 N / m solitary wave formation should above 7.0 K and also underestimates the aver-
be possible in proteins also at physiological tem- aged lattice displacements and their temperature
perature. variation.

For the I D2) ansatz state we performed soliton
dynamics in a system of three coupled chains as

4. Conclusion suggested and done earlier by Scott et al. [3). We
could verify Scott's proposal that three chain

With the classical I D,) ansatz state we per- dynamics can be simulated with one chain calcu-
formed dynamic simulations on one chain using lations if one takes as site mass three times the
different models for the incorporation of a finite value applied in tWe three chain dynamics and for
temperature into the Davydov soliton theory. the spring constant of the hydrogen bonds also
We varied the parameters W (hydrogen bond three times the value for one bond. We obtained
spring constant) and X (oscillator-lattice cou- this result independent of the initial excitation,
pling constant). We found that at 300 K the which can correspond to the symmetric A mode
spring constant of the hydrogen bonds should be or to the degenerate E mode of the three chain
larger than roughly 30-40N/m to allow forma- system. Even for a localized excitation on one
tion and propagation of Davydov solitons in the chain only we obtained agreement between three
system. From calculations with the ID,) ansatz chain dynamics and those using one chain but
state which allows for quantum effects in the changed parameters.



W. F6rner / Effects of temperature and interchain coupling on Davydov solitons 81

For the ID,) state we surveyed again the Acknowledgement
(X, Y) parameter space at 300 K using one chain
and 3M as site mass for stable solitons within It is first of all a pleasure to thank Professors
Davydov's method. We found that W has to be P.L. Christiansen, J.C. Eilbeck and R.D. Par-
larger than roughly 70 N/ m to allow soliton for- mentier for the invitation to contribute to this
mation around X = 60 pN. Since this value would volume. Further I am very much indebted to
correspond to a spring constant of about 25 N/ Professor A.C. Scott for fruitful discussions and
m, we arrive more or less at the same conclusion correspondence on the topic of this paper. The
as discussed above for one chain, if the sug- financial support of the "Deutsche Forschungs-
gestion, that three chain dynamics could be re- gemeinschaft" (Project Fo 175/2-3) and the
produced by one chain simulations if a site mass "Fonds der Chemischen Industrie" is gratefully
of 3M is used, is correct also in the ID,) case. acknowledged.
However, at 0 K we found that in the ID,) case
three chain dynamics with parameters M, W and
X are identical to one chain simulations with References
the same parameters in contrast to ID2) dy-
namics. [l A.S. Davydov and N.I. Kislukha, Phys. Stat. Sol. B 59

With explicit three chain simulations at T= (1973) 465;

300 K using Davydov's temperature model we A.S. Davydov, Phys. Scr. 20 (1979) 387.

found again that solitary waves are formed at W 121 A.S. Davydov, Zh. Eksp. Teor. Fiz. 78 (1980) 789; Soy.
Phys. JETP 51 (1980) 397.

values larger than 30-40 N/im. However, if X is [31 A.C. Scott, Phys. Rev. A 26 (1982) 57; Physica Scr. 29

around 35 pN instead of 62 pN already from W (1984) 279;

around 19 N/m solitary waves were observed. L. MacNeil and A.C. Scott, Phys. Scr. 29 (1984) 284;
Phil. Trans. R. Soc. London A 315 (1985) 423.

Thus the conclusion drawn earlier by us remains [41 W. F6rner and J. Ladik, in: Davydov's Soliton Re-

unchanged: If the spring constant of the hydro- visited, eds. P.L. Christiansen and A.C. Scott, NATO

gen bonds in protein a-helices is larger than ASI, Series B- Physics, Vol. 243 (Plenum, New York,
1991).

30-40 N/m the Davydov soliton should be able [51 J. Halding and P.S. Lomdahl, Phys. Lett. A 124 (1987)
to function at 300 K. Interestingly this conclusion 37.

is reached with both of Davydov's ansatz states 161 (a) P.S. Lomdahl and W.C. Kerr. Phys. Rev. Lett. 55

and with different models for temperature ef- (1985) 1235; in: Davydov's Soliton Revisited, eds. P.L.
Christiansen and A.C. Scott, NATO ASI, Series B-

fects. Since the usually quoted value of 13 N/im Physics, Vol. 243 (Plenum, New York, 1991);

derives from formamide crystals where the hy- (b) W.C. Kerr and P.S. Lomdahl, Phys. Rev. B 35

drogen bonded molecules vibrate freely it should (1987) 3629;
(c) W.C. Kerr and P.S. Lomdahl, in: Davydov's Soliton

be too small for proteins. In proteins the hydro- Revisited, eds. P.L. Christiansen and A.C. Scott,

gen bonded sites are embedded in the covalent NATO ASI, Series B - Physics, Vol. 243 (Plenum, New

backbone of the helix which becomes distorted York, 1991).

due to the vibration. Thus we expect the spring [71 A.F. Lawrence, J.C. McDaniel, D.B. Chang, B.M.
Pierce and R.B. Birge, Phys. Rev. A 33 (1986) 1188.

constant of a protein normal mode correspond- 181 H. Bolterauer. in: Structure Coherence and Chaos,

ing to hydrogen bond stretch to be much larger Proc. MIDIT 1986 Workshop (Manchester University

than that of crystalline formamide, and thus Press).
191 J.P. Cottingham and J.W. Schweitzer, Phys. Rev. Lett.

probably allowing for Davydov solitons to be 62 (1989)1792.

formed in proteins. However, detailed calcula- 1101 H. Motschmann, W. F6rner and J. Ladik, J. Phys.:

tions or measurements on the spring constant in Cond. Matter 1 (1989) 5083.
[111 (a) W. F6rner, J. Phys.: Cond. Matter 3 (1991) 4333.

proteins are necessary to decide finally on the (b) W. Forner, J. Comput. Chem. 13 (1992) 275.

question of existence of Davydov solitons. 1121 D.W. Brown, K. Lindenberg and B.J. West, Phys. Rev.



82 W. Forner / Effects of temperature and interchain coupling on Davydov solitons

A 33 (1986) 4104, 4110; Phys. Rev. B 35 (1987) 6169; B The Next Decade, Los Alamos, National Laboratory
37 (1988) 2946; (May 1990).
D.W. Brown, Phys. Rev. A 37 (1988) 5010. [211 A.C. Scott, Phys. Rep. 217 (1992) 1.

(131 L. Cruzeiro, J. Halding, P.L. Christiansen, 0. Skov- [221 A.S. Davydov, Phys. Scr. 20 (1979) 387.
gaard and A.C. Scott, Phys. Rev. A 37 (1988) 880. 1231 JW. Schweitzer and J.P. Cottingham, in: Davydov's

[141 B. Mechtly and P.B. Shaw, Phys. Rev. B 38 (1988) Soliton Revisited, eds. P.L. Christiansen and A.C.
3075. Scott, NATO ASI, Series B-Physics, Vol. 243

[151 M.J. Skrinjar, D.V. Kapor and S.D. Stojanovic, Phys. (Plenum, New York, 1991).
Rev. A 38 (1988) 6402. 1241 J.P. Cottingham and JW. Schweitzer, unpublished.

1161 W. Forner, Phys. Rev. A 44 (1991) 2694. [25] H. Bolterauer, in: Davydov's Soliton Revisited, eds.
[171 W. Forner, Nanobiology 1 (1992) 413. P.L. Christiansen and A.C. Scott, NATO ASI, Series
1181 W. Forner, J. Phys.: Cond. Matter 4 (1992) 1915. B - Physics, Vol. 243 (Plenum, New York, 1991).
1191 X. Wang, D.W. Brown and K. Lindenberg, Phys. Rev. 1261 D.W. Brown and Z. Ivic, Phys. Rev. B 40 (1989) 9876.

Lett. 62 (1989) 17%. [271 W. Forner, J. Phys.: Condensed Matter 5 (1993) 803.
[201 A.C. Scott, presented at Conf. on Nonlinear Sciences: [28] W. Forner, J. Phys.: Condensed Matter 5 (1993) 823.



Physica D 68 (1993) 83-92
North-Holland

SDI: 0167-2789(93)E0171-7

Thermodynamics of Toda lattice models: application to DNA

R.K. Bullougha, Yu-zhong Chenb and J.T. Timonenc
"UMIST, P.O. Box 88, Manchester M60 IQD Manchester, UK"hPurdue University, Indianapolis, IN 46202, USA

"Department of Physics, University of Jyvaskyli, SF-40351 Jyvaskyla, Finland

Our generalised Bethe ansatz method is used to formulate the statistical mechanics of the classical Toda lattice in terms
of a set of coupled integral equations expressed in terms of appropriate action-angle variables. The phase space as
coordinatised by these action-angle variables is constrained; and both the soliton number density and the soliton
contribution to the free energy density can be shown to decouple from the phonon degrees of freedom and to depend only
on soliton-soliton interactions. This makes it possible to evaluate the temperature dependence of the soliton number
density which, to leading order, is found to be proportional to T"'.

1. Introduction

This paper is concerned with Alwyn Scott's contributions to molecular biology - particularly with his
recent work [1,2] on the thermal excitations of the Toda lattice [3,4] viewed as a model of the DNA
molecule at biological (i.e. body) temperatures -310 K. It connects in a natural way with his paper to
this meeting [5] 'There's more than one way to skin Schr6dinger's cat' because even classical statistical
mechanics is intimately related to quantum mechanics (recall [6] the Gibbs' paradox e.g.). Thus just as
one can rewrite the title of Alwyn Scott's (ACS's) paper [5] in another language, Danish, as 'Man kan
fl Schr6dinger's kat pA mere end en facon' (the title actually reported during the meeting in
Copenhagen's newspaper 'Berlinske Tidende') and one can also rewrite this in many different ways, so
in quantum mechanics there are many technically different lines of argumentation using the many
different representations.

Thus for the many quantum integrable lattice models [7] which have a commuting number operator
&1, [Rt., I] = 0 and R is the Hamiltonian, there is the standard number state method (SNSM) [5,7] and
there is the quantum inverse scattering method (QISM) [5,7] equivalent to the Bethe ansatz (BA)
method as conceived by Bethe [8]. The QISM as well as the BA can also be developed for field
theories, while there is the Feynman propagator method for both integrable and non-integrable field
theories and lattices in which K(0b, 40; T) (t is time and 0 -< t : T) is a Green's function expressible in
terms of the classical action S(0•, •0; t) as a path (or functional) integral on a Hilbert space 19]:
K(46, y0; T) can be expressed (with advantage [10]) as a functional integral on a symplectic manifold M
(a phase space) infinite dimensional in the case of field theories [10]. Wick rotation on the time, so that
t-- -it, T-- -i/3 yields the partition function Z(13) = Tr K(46, .00; -i13) = f 2k 0 K(4o, 40; -iJ3) where
2 means functional integration [10] and f3 - = kB T with T now the temperature. The free energy
F= -3-' In Z, an]l p3-' = kBT--+0 gives the ground state energy in thermodynamic limit [7,111.
Alternatively and equivalently F = E - 3 •'S where E is an energy defined for the model at
temperature 0 -1 and S is an entropy. F is then minimised under the constraint of the algebraic Bethe
ansatz described by ACS [5]. Yang and Yang [12] introduced this particular method for the quantum
SM in the case of the integrable quantum repulsive nonlinear Schr6dinger model (the 'bose gas'). Both
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the 'bose gas' and the discrete lattice bose gas can be handled this way [7]. With [/if, 1J = 0,
E - 13 - 'S - 11N = -pL, where L is the 'volume' in one dimension, Ji is the chemical potential, and p is
the pressure. All of these methods for the quantum integrable systems rest on algebraic methods and
most especially on the quantum groups, non-commutative and non-cocommutative for the quantum
integrable models, commutative and cocommutative for the classical integrable models [7,13,14]. Fig. 1
in ref. [141 shows some of these algebraic connections: the classical inverse method (top left) and the
QISM (third column down from the right) are shown, while our work, e.g., refs. [15-221, on the
quantum and classical SM of the integrable models is summarised by the route from the Lax pair of the
inverse method to periodic boundary conditions (b.c.s.) across the top and then down to the partition
function Z given by eq. (4) below and out to EXPERIMENTS.

The functional integral form of quantum Z we have used is defined on the symplectic manifold M as

Z=Tr f 217.90expS[17,,1, {H7,4)}=5(x-x'). (1)

The classical action S (for quantum Z) is 1101

S[L4]='f d f 17H0,Tdx -H[H417, (2)
0

where i = N'§1 and H[11, 40] is the classical Hamiltonian. The classical limit of this quantum Z is the
classical Z given by (1) with

SIM, 44= -13Hln, 41. (3)

This limit must be taken so that h--0 with zero winding number [10].
Natural coordinates for the integrable models are the action-angle variables (since S is classical for

both quantum and classical Z we can use the action-angle variables as the natural coordinates on M in
both cases). Under this choice, classical Z, eq. (1) with (3) becomes

Z = Tr f _9A exp -f3H[p], (4)

where H[p] depends only on the action variables and 21, is a measure for functional integration on M
to be determined [10,15-22]. These action-angle variable coordinates enable us to define a soliton
number N, and its mean value (N,) (note that in terms of canonical coordinates H, 4) there is no means
of identifying soliton or other particular contributions (the phonons - see below) to Z).

The calculation of Z simplifies to some extent for lattices (i.e. for integrable lattices, quantum or
classical) where the functional integral for classical Z eq. (1) with the action (3), becomes a product of
ordinary integrals. Generically the action-angle variables, under vanishing b.c.s at t--, split into
variables P(k), Q(k) labelled by modes k, together with 'soliton coordinates' pi, qj (i = 1, 2, . . . ,N).

Our method of calculation exploits the fact that in thermodynamic limit there is a connection between
action-angle variables under these b.c.s. and action-angle variables under periodic b.c.s. Under
periodic b.c.s. the integrable lattice has a total number N of degrees of freedom (the total number of
lattice points in the period). The thermodynamic limit is then taken so that e.g. iimN. NSN- is a
non-zero soliton number density.

In the action-angle variable description the number of modes Nmodes (say) of the modes k, and the
number of solitons N, satisfy N. + Nm,,de, = N for fixed N. The limit N-- - is then taken at finite density
as described. For fixed N :5 one finds for the classical integrable models that generically
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Nmodcs N,HIp] E ow(k,) P(k,) + Ef' HIP,]. (5)
t=1 l

The mode sum is apparently the linearised part and w(k,) is the linearised dispersion relation. However,
the mode sum also provides nonlinear contributions to classical Z, eq. (4) - as is exemplified in the
calculations [161 for the sinh-Gordon model. This is because the k, couple to the Pi in our classical
generalization of the Bethe equations as we explain for the Toda lattice below. We call this contribution
to (5) the 'phonon contribution' in this paper. The remaining part of (5) provides the soliton
contribution to Z.

In these terms the classical lattice partition function Z and mean soliton number (N,) are given by

(N,) > N,(N,! flfdP(ki)Hdpj exp./Hp)(NN,==

=N Nmo- (6)
Z = (N,!)' f dP(k,) I dpi exp -PH[p], (6)

NS= I i= j=1

with N, + Nmode, = N. The (Ns!) ' is due to Willard Gibbs [6]. In thermodynamic limit N,, N- o so that
NAN-' > 0. We can execute this limit best by going to a 'number representation' in terms of densities
p,(p) for the solitons (f p,(p) dp = lim NSN-_) and defining a 'phonon' density p(k). Total particle
density is then J p(k) dk + f p,(p) dp, and we can then work with variable numbers of particles by
introducing chemical potentials /ph and t (say). The problem posed and largely solved in this paper is
to carry out this calculation for the classical Toda lattice and most particularly to find the mean soliton
number density (N,)N-'.

This problem is of particular interest for at least two reasons. Most importantly for this meeting, in
refs. [1,21 V. Muto, A.C. Scott and P.L. Christiansen calculate this density numerically for finite but
quite large values of N and they find unequivocally that (N,)N- 1 T113 where T is the temperature. A
second reason is that we had believed that our methods for Z just sketched could be applied to all of
the integrable models in 1 + 1 dimensions, lattices and field theories both quantum and classical. Our
methods have been the functional integral methods sketched, or our method of 'generalised Bethe
ansatz' [15,16,191 which apparently extends the Yang and Yang BA method [121 to the quantum and
classical SM of all of the integrable models in 1 + 1 and finds in many cases alternative descriptions in
terms of fermi, bose, or other statistics [10] for each model. We reported solutions for Z and F for some
14 integrable models in ref. [19] and it was therefore surprising to discover [201 that the classical Toda
lattice did not seem to fit within these schemes. Particularly (N,)N-1 oc T "3 seemed impossible given
the expressions for Z we were able to find [20]. There has been a considerable variation in results
already obtained for the Toda lattice: ref. [2] quotes an unpublished T'/ 3 found by Schneider and Stoll
and an error in this calculation found by Bolterauer and Opper [23], as well as (N,)N-1 = (In 2/Ir2 )T, t
a normalised temperature by Mertens and Buittner [24,251. The paper most relevant to ours is ref. [26]
which finds TV 3 . This paper used the classical action-angle variables but uses these inconsistently. We
refer in more detail to this paper ref. [26] elsewhere.

2. Toda lattice

In our paper we sketch what appears to be a correct ab initio non-phenomenological analytic theory
for the quantity limN-. (N,)N-' and show that the T" 3 behaviour found numerically [1,2] can still be
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accommodated in our expression for the free energy density, lim FN -' which also shows no non-
analytical behaviour in T. Incidentally it is a particular pleasure to work once again on the Toda lattice
because Professor Morikazu Toda was present at this meeting and himself gave a paper on it [4].

In refs. [1,21 two numerical method were used: one of these was to create Gaussian chaotic Brownian
motion at a chosen temperature on a lattice of N points under periodic b.c.s. T was identified by setting
the mean kinetic energy per particle Eki. = 7kBT. In fact remarkably similar results "t. : found [21 for a
number of different initial distributions of energy between the kinetic and potential energy parts of the
total energy. For canonical P•, Qm the general results of classical SM for both linear and nonlinear
systems are, of course, the 'virials' (P, 3H/aP,) = (PQ•) = p3 '; (Q,, H/oaQo) = -( PýQ•) =/3-.
The number of solitons was defined and counted by an ingenious 'spectral analyser' method which
counts the number of eigenvalues A of an associated spectral problem lying in A > + 1 or A < - 1. Our
definition of soliton number is through the action-angle variables and is therefore essentially identical
to this definition of refs. [1,21. Thus we should be in complete agreement. (Note that tlhz" 4efinition of a
soliton in equilibrium or non-equilibrium SM is not necessarily unique -since (a) periodic b.c.s. are
used and (b) even under vanishing b.c.s at - the soliton in the equilibrium SM (thermal equilibrium) is
not the 'bare' soliton calculated through the classical inverse method). The numerical results found by
this first method were unequivocally (N,)N- 1 - T113[1,2,271. The second method was [2,271 to drive the
Toda chain by a random force ril(t) at each lattice site n. Again (Ns)N- ,C T"/ even for N = 32 (cf. fig.
4 of ref. [21). The spectral analyser was again used to count the solitons.

It is possible to calculate the partition function Z for the Toda lattice exactly. Toda gave Z for one
fixed end of the chain, i.e., at constant pressure, in ref. [3]. We gave a closed form for Z at constant
volume (two fixed ends) in ref. [201 as Z = Z,,ZP01: Z,, = (27rba- 1 3)-N in which a, b are the usual
Toda parameters and Zpot was

g2N,. 02N Y,+2N

Zpot = e-2N+ l ~h 'P exp -ab- . y, + E E j (7)"1=10 Yi L =1 j0 y

There are now 2N + 1 points in a period under periodic b.c.s and (h = 1)

Z ; (2,u)--f H dP• dQ. e-' 11 "" o
?z= -N+,I

where

N
H [ P, Q,] =ab- b' ( 2 ba-P2p2 + e-(o" -OQ-I1)- (8)

n= -N

is a Hamiltonian for a scaled Toda lattice: {Pn, Q_} = 8,ni. The Q,, are dimensionless and ba-'Pn is
dimensionless; ab ' is an energy and t is scaled as abM ' t- t. The closed form (7) is exact and has a
low temperature asymptotic expansion in the dimensionless temperature ba -'6 -' of the form [20]

lim F(2N + )-'-/3' n3 -/3' ln[ + (ba ',6')]
N--

+ C(In(2N)/(2N + 1)) + O(1/(2N + 1)), (9)

in which the [1 + Q(ba-'/3-')] is an asymptotic power series. The /3'- In /3 i:, the linear part of the
phonon contribution and the /3-_ In[. I- is the nonlinear contribution provided by both solitons and
phonons. The error ( (1/(2N + 1)) is usual for the thermodynamic limit 2N+ 1+- I. The I)(In(2N)/
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(2N + 1)) is not usual and conceals a divergent (-In N) phonon number density. However the free
energy (9) is well defined.

It is worthwhile comparing (9) with a corresponding low T expansion for the integrable classical
sine-Gordon (sG) model [15,17,19j. One can calculate the sG soliton density to be m[817-rrt]1' e +
corrections t(t); t = M/3-', m is the sG phonon mass and M = 8my 0,' is the soliton mass (yo is the
coupling constant). This is -f3 times the leading term in the soliton contribution to the free energy
density. On this line of reasoning we see that, since in[1 + Q(ba-'f3)J in (9) is itself a simple-power
series in ba-, a behaviour for limN•(N,)/(2N + 1) nonanalytic in IY' and proportional to J3-,
cannot apparently be accommodated. Despite this situation the main result reported in this paper is,
nevertheless, that 'to first order',

(( T-) 1/3 4alim I&/2 T,-3bka (10)
N•-- "it"' ",.

The result (10) has also been given by F. Marchesoni and G. Lucheroni [281. Unfortunately we are
unable (so far) to justify any part of the argument these authors give to reach this result though ref. 1261
may be suggestive. The analysis of ref. (281 is based on phonons and is modelled in effect on the sG
analysis [151. We show here next that the thermodynamics of the Toda lattice is very different from that
of sG and that phonons play no role in the calculation leading to (10). Fig. 1 in ref. [281 shows how well
formula (10) corresponds to the data of fig. 4 in ref. [2] (for which 2N + 1 - 32). The line through the
actual data in this figure 1 of ref. [28] was reached by considering additional corrections due to
soliton-soliton interactions otherwise totally neglected. Note that our result (10) is in thermodynamic
limit where 2N + 1--->-: in ref. [2] it seems that the factor -- rF(4)(TJy''3 changes so as to move a line
through the data on the In((N,)/(2N + 1) against In T plot to the left as 2N + 1 increases from -32 to
-128 whereas (10) already differs from the data in fig. 4 of ref. [2] by a missing factor of -1.5, pushing

the line to the left. On the other hand the first of the two methods which has 2N + 1 - 64 000 is much
closer to (10). For the exact comparison between the numerical results and our analytic methods more
numerical work like that of ref. [2] is now needed.

In ref. [20] we give more detail of the calculation of limN-, (N.)/(2N + 1) for sG: we gave explicit
integral equations whose iteration yields

p•(P) - (21r)-' e-v •t• (11)

where E,(p) is the excitation energy of solitons at the temperature 63 -= kBT and is found from the
classical Yang and Yang type integral equations given in refs. [15,17,19]. From (11) we can see that the
soliton contribution to the free energy density of sG is -2 -_' Jf% p•(p) dp = -2/_ -I ln(N,) (2N + 1) =
m18/7rt1" 2 e-' + C(t) as quoted before. The same connection between soliton number density and free
energy contribution does obtain for the Toda lattice - providing we push all difficulty in calculating the
resultant total free energy density into the remaining phonon contributions. We noted already that there
is no definable phonon number density for the unconstrained linearised Toda lattice in thermodynamic
limit. We explain the phrase 'unconstrained' in the following.

3. Action-angle variables

The key to the situation is that the Toda lattice has a constrained phase space in terms of its
action-angle variables under vanishing b.c.s at infinity. (We have not yet checked however that we can
exploit the ,.nnection between action-angle variables under periodic b.c.s and those under vanishing
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b.c.s in thermodynamic limit in this case of the Toda lattice. Nor have we checked that our result (10)
for the soliton density leads finally to the free energy density given by (7) and (9). Our calculations
which lead to (10) are therefore incomplete in these respects.)

The essential of the matter under vanishing b.c.s is given in ref. [291: solitons and. phonons are
coupled in terms of their realisable 'action-angle variables'. The Hamiltonian of the Toda lattice in
terms of these action-angle variables can be put in the form [29]

if N,

H=2 Jsink P(k)dk+½ E (z-2 -z' +21nz2), (12)
0 

j=1

but the variables P(k) and z, are constrained by
V P (k) Ns 2

sin kdk= - Inz. (13)
0 j=1

Thus there is the alternative form for H in these variables which is

IT 
N

' cos 2k NY
/=-2 sinkP(k)dk+½ I (Z-2 _ Z2)z . (14)

0 i j=1

The z, are the zeros of the 'transmission coefficient' a(z) inside the unit circle IzI = 1 and describe the
solitons: coefficients a(z), b(z) are defined on Izi = 1, z 0 ±1 so that Ia(z) 1- Ib(z) 1 = 1 '291. These
coefficients near z = -1 are singular or regular together [29] so that b(z) and z, are not independent.
This is tied to the fact that one half of the infinite set of constants of the motion are inadmissible since
they do not conserve the phase space. Consequently the 'natural' soliton action-angle variables

,ýj = z, + z,-', 4j = lnlyi , j = 1,. . ., Ný (15)

(for the definition of y, see ref. [29]) together with the natural action-angle variables for phonons
1

P(k) = 1 sin k In(1 + lb(eik)12)

Q(k) = arg b(eik) , 0 < k <irr, (16)

have [291 the complex Poisson brackets

sin k
{P(k), Q(k')} = 5(k - k') -sin k'[(k- k- r,

{P(k), 4j) = -2 sin k 2z [8(k) - 8(k - T)]zi - 1
t/•, 4j} = 8,j, (17)

while all other pairings commute. Evidently P, Q are not canonical action-angle variables and P(k) and
4, are coupled.

With these variables as 'best possible' action-angle variables under vanishing b.c.s, a situation we are
investigating further, one can make the canonical transformation z, = exp(-p,), 0<p <0o. Then
j = 2 cosh p,. Also q, = (sinh p,)-' q, preserves the symplectic form and
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w N,

H=2 sin k P(k) dk + X (sinh 2p - 2p). (18)
0 j= 10

This splits as in (5) into phonon and soliton parts. It is important to our result (10) that sinh 2p, -2p

expands as I p3 + C(pl): /H eq. (14) expands as 2p, + G(p3).

4. Statistical mechanics and soliton density

The constraint (13) on the phase space coordinatised through these action-angle variables P(k),
Q(k), pj, q, need not be implemented for the calculation of limN-. (N,) /(2N + 1) if we use the soliton
coordinates pP, q, as free coordinates. The difficulty is thus pushed into the calculation of the phonon
number density (without constraints apparently undefined in thermodynamic limit - see by eq. (9)) and
the contribution of the phonons to the total free energy density which is defined by (9). This procedure
can work because, with this choice of variables and the choice (18) for H, both the soliton number
density and the soliton contribution to the free energy density, which to leading order - . (number
density) depend only on the soliton-soliton interactions.

One can see this by looking at the classical generalised BA, namely the classical Bethe equations for
the Toda lattice. These we find to be [21] as follows: Recall that, generically the quantum Bethe
equations take the form

No

ei,,(2 N+ l) H7 e-iA(kjj) (19)
j76i

so their logarithm is

No

(2N + 1)/k, = 2iw,, - E A(kj,, k,), (20)
j #i

where the ni are integers 1, 2,..., 2N + 1, and the A are quantum S-matrix phase shifts in a fermion
description. We need N., 2N + 1-- oo in thermodynamic limit with No(2N + 1)-1 finite, for a finite
density thermodynamic limit. Our result [21] for the 'classical' Bethe equations in corresponding
logarithmic form is the set of 'phase shift equations'

iT(2N + 1)/k, = 21rn, - 60 f dk' A(kj,,k') P(k')

0
N+÷ N-

+ E J+(ki, p+) + 2. A-(j, p-), (21a)
j=I j=1

j'== ji==

Nj N-

(2N + 1)p- = 27rn- - A,-•+(p-., p.) - E As--(p;-, p-), (21c)
SS= SS=
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with j' =j excluded in (21b,c): ni and n7 are integers and 9 means principal value. These two
equations concern at their left sides positive (+ve) and negative (-ue) momentum solitons respectively.
There is coupling of the two sorts of soliton to the phonons through the phase shifts A[ (k, p) in (21a).
However, the soliton equations (21b,c) are closed to soliton-soliton interactions.

By our generalised BA method [15,16,18,19,211, this set (21) of 'phase shift equations' yields for the
free energy density

im F 1 f _p, -PE-p) 1 -e_ r (P) ( 2
-im + F - 2 dk ln[t9(k)l-- f dp-e - 2_-- dpe S (22)

0 0 0

The phonon excitation energies e(k) are found from a nonlinear integral equation coupling phonons
and both sorts of soliton. But the corresponding integral equations for EV(p) are

1 Eaý((, pE+ '(p) =Ej~p) - fJ dp' (p' ' e E p

1 O~s•(p, p) P-oE(p') (32 f•/3 dp' aS e ,
a1,

0

with the obvious corresponding equation for ES(p). These two coupled integral equations are closed to
E (p).

In (23) Ej(p)= sinh 2p - 2p and the phase shifts, which appear first in (21), are [211

A(k, k') = {[sin(½k) cos(Ik')12 - [cos(½yk) sin(Ik')]2} -',

ASA (k, p) = -2 tan--'[tan( k) tanh( p)],

A (k, p) = 2 tan '[cot(½k) tanh(½p)],
A•-(p, p') = 2 tanh-'[coth(½p) tanh(½p')l = A-•(p, p'),

A +(p, p') = -2 tanh-'[tanh(½p) tanh(½p')] = A--(p, p'). (24)

The two soliton number densities are then given by lM N-- (W) /(2N + 1) = fo p (p) dp where p! (p)
satisfy

#E()f dp ÷÷ '

(P) - 2-,•fdp' ;p a(P)
0

1 dp aAss (PP p') ') (5

and this system is again closed to solitons. Note that E.(p) solve (23) and its companion. This solution
is obtained by iteration (assuming iteration is possible). Then (25) must be solved by iteration (assuming
that is possible). So there are two iterations. In this way we reach the formula (10) as

(N±+ + -N-) P I' ) -(T"2-.lim 2N+ pr,(p) dp=- (l•)( -O(T/To)" (26)

0
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We have managed to evaluate all but one of the contributions to the first correction to (26) which is
then (1/48-trV3V)j8- (P measured in (a/b)-'). Note that the contribution to the total free energy
density of the constrained phonon modes must eliminate the free energy contribution

F1,_ (N+ +N-)
+ -N-1-. lim 2N $1(27)ji_. 2N +1 N--• 2N+lI

determined by (26) since this goes as T4'3 . The result for the total free energy must then be equivalent
to the asymptotic expansion (9). The problem of actually demonstrating all of this looks very difficult.

It would be very interesting now to make detailed comparisons between numerical estimates for the
soliton density and the analytical theory as we develop the further corrections to (26). These corrections
already tend to explain the turn-over of the numerical log-log plots at higher temperatures but, as
noted, the numerical calculations found by the second method in ref. [2] are very far from the
thermodynamic limit used in our calculations. Of course it will also be instructive to calculate the free
energies numerically by an adaptation of the second method of ref. [2] if this can be devised.

Conclusion: The formula (10) for the soliton number density of the classical Toda lattice in
thermodynamic limit seems to be a good estimate for small enough temperatures T in the range for
which classical statistical mechanics applies. It is not incompatible, apparently, with the free energy
result at constant volume and this result is in agreement with Toda's free energy [3] taken at constant
pressure.

We have still to check that our use of the constrained 'action-angle variables' (15) and (16) for the
thermodynamic limit is compatible with the periodic b.c.s initially used for that thermodynamic limit, as
it is for the other models concerned in ref. 19. The numerical results [1,2] nevertheless seem to provide
yet another check on our methods, and vice-versa. There exist [15] already other good checks on these
methods.

Evidently this work [1,2] by Alwyn Scott and his collaborators is yet once again of considerable
interest and importance.
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The effect of nonlinearity in models of DNA with homogeneous and inhomogeneous strands is investigated. Numbers
of solitons and numbers of long-lived open states as function of temperature are computed.

A number of researchers have suggested that single base pair and the nonlinear springs con-
anharmonicity may play a role in the dynamics of necting neighbouring particles represent the Van
deoxyribonucleic acid (DNA) molecules at phys- der Waals potentials between adjacent pairs. The
iological temperatures. A summary of this con- system was thermalized either by choosing the
troversial question with an extensive list of refer- initial conditions from Gaussian random dis-
ences was given in 1990 in [1]. At the same time tributions [61 or by adding a damping force and a
studies of a dynamical model in which the hydro- noise force which simulate the interaction with a
gen bonds in the base pairs of the DNA mole- thermal reservoir at finite temperature, T [1].
cule were modelled by nonlinear springs, gov- The resulting Langevin equations are then per-
erned by Morse potentials, were presented in turbed Toda equations for each particle.
[2,31. A multiple scale perturbation analysis Due to the integrability of the Toda lattice, it
leads to a continuum model approximation, becomes possible to measure the effect of the
based on nearest neighbors' interactions, in nonlinearity in a very concrete manner, namely
terms of the nonlinear Schrodinger equation. by using the machinery of the inverse scattering
Inclusion of long range linear interactions, how- transform to count the number of solitons e.g.
ever, tends to disperse pulses propagating along Numerical integration of the perturbed Toda
the strands of the DNA molecule [4]. In the equations ar-d subsequent application of the sol-
DNA molecule there is a succession of iton countcr [1] shows that, when thermal
adenosine-thymine (A-T) and guanine-cytosine equilibrium is reached, a significant number of
(G-C) base pairs. The A-T bond involves two solitons, N5, is generated in the DNA model at
hydrogen bonds whereas the G-C bond involves physiological temperatures, namely N -0.31N,
three hydrogen bonds. The influence of this type where N is the number of base pairs. Moreover,
of inhomogeneity on the localization and propa- from dynamical simulations at different tempera-
gation of energy along the DNA strand was tures it was found that N, cc T'13. This power law
investigated in [5]. is observed independently of the coefficient used

The temperature problem for the nonlinear in the friction force.
DNA model with a transversal Morse potential In [71 this temperature dependence was de-
was treated in [2] by statistical mechanics meth- rived by statistical mechanics for a free soliton
ods. In [6,11 the DNA molecule is modelled by a gas. A linear dependence on temperature for low
Toda lattice in which each particle represents a temperatures was found in [8,9] considering the

0167-2789/93/$06.00 C 1993 - Elsevier Science Publishers BY. All rights reserved
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density of states. Using the interacting soliton of the inhomogeneity on the dynamics of the
phonon theory a T" 3 law was found in [10,11]. DNA helix described by the Toda-Lennard-
However, the difficulty of physically distinguish- Jones model. The inhomogeneous Toda-
ing low-energy Toda solitons from long-wave Lennard-Jones model is a more realistic descrip-
length phonons is underlined in [121. Further tion of the DNA helix since the two strands of
work based on the Bethe ansatz is reported in the helix are described by two chains transverse-
[13,141. Recent analytical work, [15,161, arrives ly coupled and the inhomogeneity of the mole-
at a T"' law for the soliton density. cule is taken into account. As in [191, the anhar-

In order to make a more realistic model of the monic Van der Waals potentials are described by
DNA dynamics the molecule must be described a Toda potential with lattice constant 1:
by two chains, transversely coupled, where each a
chain simulates one of the two polynucleotide VT(I) = •- exp(-b,/) + al, (1)

strands. The hydrogen bond between the two

bases in a pair can be modelled by a Lennard- and the hydrogen bonds are modelled by a Len-
Jones potential as suggested in [17, 18]. In [19] nard-Jones potential
this system was thermalized by inclusion of [[/r\12 / ".61

damping and noise forces. The masses, repre- VLj(d) = 4e.[(] - . (2)
senting the bases, were permitted to perform

longitudinal as well as transversal motions. Al- The index n appears now explicitly to indicate
ready, an unperturbed single Toda chain in the presence of inhomogeneity. Denoting the
which the masses can move in this manner, is not weak A-T base pairs by W, the strong G-C base
an integrable system. However, in the case pairs by S, and an averaged base pair by H, the
where the longitudinal and transversal strains are presence of inhomogeneities will be described
of the same order of magnitude, a supersonic using different values for the linear spring con-
solitary hybrid wave can propagate for a while stant, k,, = ab , in the Toda potential, and for
without dispersing, if the velocity and the param- the Lennard-Jones parameter, e•, related to the
eter, describing the coupling between the longi- stacking energy and the hydrogen bond strength,
tudinal and the transversal modes, are small [20]. respectively. DNA sequences of the following
Correspondingly, in a continuum limit based on type have been considered:
equations of improved Boussinesq type analyti-
cal solutions, travelling with a characteristic ve- X... XWSWS.. .WSWSX...X,
locity, exhibit stable behaviour or blow-up (of
the longitudinal component) [21]. Other super- where X stands for W, S, or H. In the Toda-
sonic analytical solutions, travelling with arbi- Lennard-Jones model [19,25,261 the linear spring
trary velocity [22], can be shown to be un- constants in the Toda potential between W and
bounded. The existence of blow-up has recently S, W and W, S and S, and H and H are (a)
been demonstrated by analytical methods [23]. kw-s = 1 N/m, kw-w = kss = 29 N/m, and

The influence of the specific base sequences kHH = 15.8N/m and (b) kw_s =0.1 N/m,
along the helix has been investigated in a num- kw-w = ks-s = 29.9 N/m and kH-1 = 15.8 N/m,
ber of papers. Here we mention a recent study of respectively. In the Lennard-Jones potential for
DNA-promoter dynamics based on a discrete W, S, and H we use E = Ew = 0.0176 eV, e = Es =
sine-Gordon model [24]. Propagation and pin- 0.0264 eV, E = EH = 0.022 eV, and ou = 2.7 x
ning of solitons were found in various segments 10-' m in case (a) and (b).
of the inhomogeneous double strand. In fig. 1 the number of solitons as function of

In the present work we consider the influence temperature is shown for the cases of inhomoge-
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Fig. 1. Number of solitons, N,, versus temperature, T, in T (K)

logarithmic scale, for N = 64 masses. Circle: single strand Fig. 2. Number of open states of hydrogen bonds versus
model [6,11. Bullet: homogeneous double strand model temperature, T, with life-times: 5-20psec (open symbols),
(f=0.022eV, k=15.8N/m, ur=2.7xl-O1'm). Diamond: longer than 20ps (full symbols). Homogeneous chain
inhomogeneous double strand model for parameter values of (circles), inhomogeneous chain with prevalence of bases of
case (a) (empty diamond) and case (b) (full diamond). strong type (triangles), homogeneous type (diamonds), and

weak type (squares).

neous chains with prevalence of H type (X = H) significant lifetime. However, this does not imply
for parameter values of case (a) (empty that all bonds are permanently broken. Such a
diamond) and case (b) (full diamond), respec- state of full denaturation may be caused by other
tively. This soliton ratio is compared with the effects such as bending of DNA [27,281.
results of the homogeneous double strand model
(e = 0.022 eV, k = 15.8 N/m, and o- = 2.7 x It is a great pleasure to dedicate this paper to
10-'° m) (bullet) and with the ones of the Alwyn C. Scott on his 60th birthday. Financial
homogeneous unperturbed single strand model support from the EEC Science Program (grant
(circle) [191. The effect of the nonlinearity is No. 89 100079/JU1) and from the project UPV
stronger in the double strand model than in the 100.310-E096/91 of the University of Basque
single strand model. Thus NIlN- 0.49, 0.55, Country is acknowledged.
0.45, and 0.31, respectively, at physiological
temperature. Results very similar are obtained
for chains with prevalence of strong or weak References
base pairs.
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Nonlinear science has erupted in many directions over recent years, with many successes. Two main themes have been
found in many different settings- chaos and solitary phenomena. While found initially in simple models, useful for
establishing mathematical methods and the behavior of exact limiting cases, their robust features give us assurance that
they are generic. The next frontier then is not so much in formalism, but in how to achieve a realistic, eventually
utilitarian, representation of an actual biological, material, physical, or chemical system that connects the experimentally
significant behavior with its nonlinear properties. An approach is proposed.

1. Introduction In fields not so traditional, such as biological
science, metallurgy, and others, particularly

The thoughts presented here are an outgrowth where mathematics has been less used, the rec-
of a workshop on Future Directions of Nonlinear ognition and incorporation of modern nonlinear
Dynamics in Physical and Biophysical Systems at concepts and methods have not progressed very
Lyngby, Denmark, July 1992. There is no doubt far. This is not only unfortunate, but unneces-
in my mind that there is an important place for sary. The challenge of the next era in nonlinear
the widespread application of the great amount science is to find what is necessary to close the
that has been learned about nonlinearity, but I gap that exists.
have developed concerns whether the research as The root of the problem as I see it, exagger-
it is now going will succeed in the broad sense ated perhaps, is that more and more nonlinear
hoped for. research is becoming either marginal or irrele-

Over the past twenty five years nonlinear sci- vant, aided and abetted by the wide availability
ence has flowered, in mathematics, the physical of larger and larger computers, and the ease of
sciences, and engineering. Bolstered by the great formulating variations on a basic mathematical
power of computer simulation, formal theories theme and doing one more case. Indeed, many
and the experimental identification of nonlinear of these incremental exploratirons yield fascinat-
phenomena have made great progress. The ing special features. However, the important
generic character of chaos and solitary excita- questions are: first, do they extend our general
tions have been established; general mathemati- understanding; or, alternatively, do the special
cal methods, ever increasing sophistication of features really provide new, quantitative insight
computer simulations, and powerful new ex- to some particular experimental observation? It's
perimental techniques, particularly in traditional not clear in many instances of published research
areas of physics (e.g. fluid dynamics) have today whether the answer to either is in the
achieved marked success. affirmative. Nor do I mean to direct my skepti-

cism only to nonlinear science, though the issue

'Horace M. White Professor of Physics Emeritus, Cornell seems to me to be of especial importance to a

University; Adjunct Professor of Physics, University of developing science looking for opportunities on

Massachusetts Amherst. the widest possible front.
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2. Criticism has been expended to seek out substantively
their presence or absence in situations they al-

Let me illustrate two sources of my concerns, legedly represented. This is what I call science by
which I will call ,narginal modeling, and science advertisement.
by advertise went. To convey what I mean by Again, in my own field, to take an example,
each I would like to review some history in my there have been a series of recent, admittedly
own field, condensed matter physics. titillating, reports on stochastic lattice models of

One of the great revelations following the the spread of forest fires. Indeed the dynamics of
discovery of quantum mechanics was the applica- the models presents neat problems and behavior,
tion of the theory to periodic crystals and the which might also apply to corrosion, spread of
discovery of electronic energy bands, developed surface infection, and so forth - might, that is. It
especially by Bloch, Bethe, Slater and others in is curious, however, that in the bibliographies of
the 1920-30s. For a number of years thereafter the papers I have seen so far the only references
there were explorations of all sorts of models, are to the physics or mathematics literature, not
periodic square well potentials, multiple sine to forestry publications. Whether or not the
wave potentials, muffin tin potentials, etc., but models are indeed applicable to real forest fires,
looked at objectively it cannot be said that any it is all too easy to entitle the research as such.
of these studies added very much substantively The same criticism can be applied to many of the
new physics. These were "marginal models", current nonlinear dynamical models of the con-
albeit some quite interesting as puzzles at the formations of biomolecules; they are biology by
time. There was a resurgence of this topic in the advertisement.
1950-60s, but with new justification as will be If the only message I had were negative, it
discussed below. A similar situation is develop- would be unfortunate. That is not the case,
ing in certain areas of nonlinear science today, however. The viewpoint to take is that nonlinear
particularly as new supercomputers allow the science has come a long way, and likely can
exploration of more and more complex model make many further, important contributions to
problems; but only models they are, for the most other fields, but it will not unless the gap be-
part. There are notable exceptions, as in hydro- tween formal theories or simulations and the real
dynamics where exploration of singular prop- scientific problems in those other fields is nar-
erties, local structures, and turbulence has main- rowed. Here are some suggestions, with guid-
tained close and faithful contact with the physics. ance from history.

Certainly, there is a time in the development
of a new topic when simple, testable models are
of great importance in reconnoitering general 3. New frontiers; basic rules
behavior. However, as progress provides a
generic understanding, models should make way Many challenging nonlinear problems arose
for reality; the statistical mechanics of one more originally from the observation of some natural
elaboration of a nonlinear potential on a one phenomenon: limit cycles in nonlinear coupled
dimensional chain ought to be explored only if differential equations from modeling competing
there is a specific suggestion from experiment or fish populations in the Baltic Sea, chaos from
other physical reason to test that particular vari- modeling weather dynamics. In the simplest
ation on the general theme. Indeed, there are in cases the modeling format may be apparent from
the literature many extremely sophisticated non- the nature of the phenomenon; that, however, is
linear simulations which have been carried out, usually not the case. Assuming that the objective
that show interesting behaviors; but little effort is to have nonlinear dynamics describe reality, I
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3pose the following check list for developing process (3) took place continually, refining the
)dels: modeling, the questions asked of the simula-
[1) Identify the phenomenon to be studied. tions, and the interpretation of results.

so only after consulting with experimentalists What about nonlinear dynamics these days?
find out what they believe to be important. There is a spectrum of answers, depending on

itially, what we think is important may not be the area of application. I have the impression,
evant; try to do their problem first. Reduc- that in the field of hydrodynamics and plasma
-nism from "first principles" only hardly ever physics, at least, that the three rules above are
irks. employed very well; this may not be too surpris-
,2) Use physically realistic variables, i.e. ing since the basic physical variables are easily
rder parameters". The endemic difficulty here identified, and the elementary laws governing
that formal mathematical or theoretical sci- them are well known. In this case reproducible,
tists expect experimental scientists to pull out physically significant phenomena, including col-
general models the important results that lective and local nonlinear behaviors, are found

ate to their need. This is unrealistic; the inter- and correlated to theory. An excellent overview
ion must be a two way street. The nonlinear of this area of nonlinear science is given recently
entist must make the effort to learn enough by Rabinovich, Fabrikant, and Tsimring [11].
aut biology, metallurgy, quantum electronics, The situation in other areas is not nearly as
whatever the topic may be both to talk to the well defined; one close to my own interests for
Derimentalist and to use common sense in the past decade has been that of topological
xieling. Clearly, it is important to find the solitons to describe transitional behavior in dis-
nimum number of functionally important placive structural transformations of solid ma-
:)rdinates, but not more - a clever trick. terials, of which martensitic materials (hardened
,3) Check frequently in the carrying out of steels, shape memory alloys) are a particularly
iulations whether it is better to reconsider the interesting subclass. The early simulations were
)deling of the science or to increase the detail done with ball and spring models, but the subject
z. size) of simulation as the research goes has progressed much further in quantitative rele-
-ward. vance to reality, with the participation of metal-
Let me cite a few instances by way of general lurgists, and through the efforts of a number of
istration, then speak more specifically to some experimental and theoretical researchers focus-
)molecular examples. Earlier I noted the his- sed on common problems [2,31. The rules stated
•y of electronic energy band physics, and that above now apply there. Nonetheless, in spite of
er an early period developing the foundations this progress toward joining nonlinear and ma-
-re was a hyatis of sorts, until the 1950-60s. terials science, much work continues in the ball
hat then happened was the sudden entry of and spring vein, involving increasingly extensive
niconductor physics and its application to elec- simulations. Let me move on, however, to the
,nic devices; the science then became focussed much less clear case of biomolecular nonlinear
a few very specific questions, i.e. (1) above, science.

d energy band theory had a renaissance.
ose in the field we recall that then, instead of
possible aspects of electron dynamics being 4. Biomolecular conformations; proteins and

)deled by theory, process (2) took place; elec- DNA
:al properties were well described by two
uids", electrons and holes, with a few aniso- Biology is concerned with structure at several
,pic effective mass parameters. Meanwhile different levels; primary, the local molecular



100 J. A. Krumhansl / Nonlinear science: toward the next frontiers.

bonding; secondary, the extended macro-molec- Beyond proteins, however, the beauty and the
ular geome ry, as in proteins and DNA; tertiary, challenge of the concepts involved in genetic
as in functional units such as hemoglobin; and expression by the polynucleic acids DNA and
quaternary, such as chromosomes and larger RNA have captivated our scientific interests, no
units. Of course beyond that is cellular biology, matter what field we are in. It is only natural that
and so forth. Pause for a moment to compare we ask the question whether nonlinear dynamics
this with the situation in fluid dynamics, which plays a role in the expression process. A priori
does not have these distinct levels of mesostruc- there is no particular reason that this be the case.
ture. There is plenty of evidence suggesting non- In the context of biochemistry the triumph of
linear behavior at most of these levels, but it Watson, Crick and Wilkins [8] was to combine
must be obvious that the issues and the physical necessary capabilities from chemistry, physics,
phenomena involved are different between each; and biology in the double-helical (phosphate-
biology is far more complex than fluid dynamics. ribose sugar) ladder with (purine-pyrimidine)
It is of the essence, then, to select problems base pair rungs, appropriatedly hydrated. All of
carefully. the pieces were necessary to simultaneously corn-

For example, the subject of energy transport bine the stability, the ability to store the genetic
in proteins is important biologically. Alwyn Scott code, and the capability with the proper opening
(4], Davydov [5], and others have in effect fol- of the helix t( transfer a chemical copy of the
lowed rule (1) by choosing the particular prob- code to produce selected proteins, i.e. expres-
lem of energy transport in alpha-helical proteins, sion. The combined biological and biochemical
and rule (2) by choosing the amide bond vib- behavior has been established in great detail.
ronic excitation as the primary physical vari- The issue here is what the kinetics or dynamics
ables. Rule (3) has fallen into place rather natur- of the expression process might be, for that is
ally as a number of experiments stimulated by where nonlinear dynamics might play a role.
the proposition of vibronic solitons were carried Now, returning to the earlier discussion, we must
out over the past decade. Although open ques- face the issue of how and what to model realisti-
tions remain, even about the necessary quantum cally.
formulation of the nonlinear dynamics, much There are two aspects of the expression pro-
contact has been made with biologists. cess that one might focus upon: first, that base

The question of protein folding conformations pair breaking and opening of the helix to expose
is an entirely different matter, of paramount the code sequence occurs in a localized region,
importance in molecular biology, and many as- suggesting a solitary localized concentration of
pects remain open. Clearly the physical variables strain energy; second, because it has been noted
involved, the equilibrium criteria, and the dy- experimentally that there are enzymes which
namics are fundamentally different from those seem to promote at one location on the helix to
for the energy transport problem; but again induce transcription at another location, a local-
there are clear signs of important nonlinear be- ized excitation of some sort might propagate
havior to be explained. A very useful intro- from one region to the other. In either case some
duction to the structure and dynamics of bio- sort of solitary excitation might exist.
logical macromolecules is the book by McCam- On the other hand the entire process may be a
mon and Harvey [61; a very recent quantitative series of chemical steps, localized chemical re-
study of protein dynamics, and the development actions together with diffusion along the helix
of optimally descriptive coordinates, has been between steps. Clearly, given the complexity of
reported by Garcia [7] on the hydrated protein, the DNA helix as a dynamical system it is quite
crambin. beyond reason to think of doing any formal
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neral analysis of the dynamics seeking some In order, the terms are, respectively, bond
-cial excitations which play a key role in bio- streching (Hooke), bond bending, bond twisting,
,ical function. There are only two choices: to core repulsion, Van der Waals, and Coulombic,
;ort to experiment for guidance toward im- since many ions are charged. Biological mole-
rtant motions, or to attempt complete molecu- cules must operate at temperatures of order
dynamic simulations starting with molecular/ 300 K, for which thermal energy is nowhere near

)mic interaction potentials - or, better, to use enough to break bonds (therefore base pair
ormation from both. But to proceed it is breaking simply by dynamical excitations is hard-
;ential to see the molecular structure of a ly likely), but bending and twisting of biological
"4A helix. macromolecules can easily be excited. In fact,
However, before going directly to a possible today it has become clear from both experiment
ideling it is necessary again to aquaint mathe- and large scale simulations [91 that the key exci-
iticians and physicists with some parts of the tations which participate in DNA expression are
ig history of chemical molecular dynamics. the bending and twisting distortions, which allow
pically, in simple solids the atoms, being the molecule to accomodate attachment of a
isely packed, can only change their interaction suitable enzyme, that in turn either locally or in
ergy by small motions which change the dis- coordination with other parts of the molecule
ice between them. Thus, potential energy provides sufficient chemical energy to open the
ictions in the form of two-center Hooke's law coded base pair sequence.
sings are not a bad approximation. Literally What then is the current thinking on the dy-
)usands of simulations have been done with namical degrees of freedom of a DNA macro-
iss and spring models in this vein. Unfor- molecule? Reference to the book by McCammon
iately these are almost completely irrelevant and Harvey [6] is a good place to start, but to
many situations in real materials, and par- provide some image at least of what is involved,

ularly to biological systems; why? Almost all in fig. 1 is shown a section of B-DNA, together
)logical material is polymeric, covalently (di- with a schematic of the significant torsional de-
•tionally) bonded, and with open structures. grees of freedom along a representative section
.is now allows a number of additional degrees of one strand. The torsional i.e. dihedral mo-
freedom, generally of much lower excitation tions cannot be represented by pair potentials,
-rgy than bond stretching, to come into play, since for purely geometric reasons it takes 4-
:h as bond bending and twisting about co- atom positions to define twisting about one
ent bonds. Such distortions are far easier to bond. The main components are: a phosphate
:ite than bond stretching, typically 1-2 orders unit (PO 4 ) of which the P and two 0 are part of
magnitude lower in energy. In fact, the poten- the helical ladder, a 5-membered ribose sugar
Is needed for biomolecules are of the form [6]: ring (ribose; with or without an attached oxygen

i.e. oxy or deoxy) one of whose edges is part of

Y, Kb(b - b,,) 2  the helix while opposite corner ties to the base
bonds which in turn connects to the base on the com-

+ Z Ko(O - 0)W plementary helix. The main degrees of freedom
bond angles (per unit) are bending of PO bonds, twist of the

E+ cos(n - 8ribose ring, and thereby twist of the attached
Kd[1 angles base. These perform the dominant motions; base

dihedral angles

+A C +qlq pair opening is not likely to take place as a result
nonbonded r12 r6  Dr+ of the intrinsic dynamics.

pair% It is far beyond the scope of this short report
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Fig. 1. TUPAC nomenclature for backbone torsion angels, ribose endocyclic torsions, and the glycosidic torsion. The backbone
torsion 8 is defined by the four atoms O3'-C3'--C4'-C5', while the endocyclic ribose torsion about the same bond, 0•, is defined
by C2'-C3'-C4'-04'. The proper definition of X' is 04'-C1'-N1-C2 for pyrimidines and 04'-C1'-N9'-C4 for purines.

to discourse on the many fascinating types of cautious affirmative; the plane of the 5-
dynamical and static distortions, general con- membered sugar ring is puckered and seems to
formations, that this beautiful molecular system have two possible minimum energy configura-
can sustain. To data, almost all of what we tions, describable by a 2-well potential function.
known comes from "brute force" massive simu- These, coupled by the phosphate ions along the
lations . Are there possibly generic nonlinear backbones might give solitary kinked bending
modes? The answer I would guess would be a modes [11]. The most difficult challenge facing

nonlinear science at this time in biomolecular
°tSee [101, this reference provides not only detailed results

of large. realistic simulations, but an extensive bibliography dynamics is how, if indeed it is possible, to
as well. model the significant biological excitations with a
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There is a growing feeling that biomolecular structure is not sufficient to determine biological activity which is also
governed by large amplitude dynamics of the molecules. The transcription of DNA or its thermal denaturation are typical
examples. Traditional approaches use Ising models to describe the denaturation transition of DNA. They have to introduc"
phenomenological "cooperativity factors" to explain the rather sharp "melting" of this quasi one-dimensional system. NL
present models which describe the full dynamics of the melting. Using molecular dynamics simulations and statistical
analysis, we discuss the mechanism of the denaturation, including precursor effects that can be related to large amplitude
localized nonlinear excitations of the molecule in which discreteness effects play a large role. We also show the microscopic
origin of the cooperativity factors.

1. Introduction the coding bases to chemical reaction, the double
helix unwinds locally and forms a "bubble"

Nucleic acids are the repository of genetic which is about 20 base-pair long and moves
information and each of the units that compose along the molecule as the transcription proceeds.
DNA or RNA molecules plays an essential role This complex process, which is activated by an
in the biological functions. The famous discovery enzyme, is still beyond a physical analysis but it
of the double helix has emphasized a strong has strong similarities with the early stage of the
relationship between structure and function in termal denaturation, or "melting" of the double
molecular biology. However this structure, helix. The melting, which is the separation of the
which is so well designed to include the genetic two complementary strands, starts locally by the
code in two complementary strands and protects formation of small denaturated regions very
it against external perturbations, would also pre- similar to the transcription bubble. Another im-
vent the expression of the code if the molecule portant motion of the DNA molecule is its
were static because the coding bases are not "breathing" or fluctuational opening. In these
directly accessible to chemical reaction. There very large fluctuations, base-pairs are temporari-
are however many indications that DNA is a ly broken and the two bases are exposed for
very dynamical entity, undergoing very large de- chemical reaction for a very short time (10-7 S).
formations and should not be viewed merely as a These fluctuational openings can be considered
solid with a particular structure. as intrinsic precursors for the denaturation and

A typical example in which the dynamics of they could play a ic in carcinogenesis by exter-
the molecule is essential for its function is DNA nal molecules [1].
transcription during which a segment of the gen- The molecular deformation involved in melt-
etic code is copied into RNA. In order to expose ing or in fluctuational openings are so large that

0167-2789/93/$06.00 C 1993 - Elsevier Science Publishers B.V. All rights reserved
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they cannot be described by linear approxi- cooperativity parameter taking into account the
mations. Therefore biomolecular dynamics is a fact that breaking a base-pair destroys two stack-
fascinating topic for nonlinear science because it ing interactions unless the pair is the terminal
is related to basic phenomena of life and we pair of an open region, and an entropy parame-
know that it has to be fundamentally nonlinear. ter for each loop measuring the "stiffness" of the
We discuss here some aspects of DNA dynamics DNA strands. Many varieties of these Ising-
and we show that simple nonlinear models can models have been presented. For instance the
provide a good description of the large am- stability parameter can be assigned to base-pair
plitude distortions of the molecule which are doublets rather than to a single base-pair be-
observed experimentally. Our basic approach cause, as we discuss in the last section, there is a
can be viewed as an extension of the Ising mod- strong relationship between the stacking inter-
els, which have been widely used to study the action of adjacent bases and the stability of the
statistical mechanics of the melting, in which we pairs. The model parameters are determined
treat completely the dynamics of the bases. In phenomenologically in order to get the best pos-
section 2 we present our basic model and its sible agreement between the theoretical predic-
statistical mechanics. This section makes the con- tions and the experimental melting curves. Once
nection with the usual Ising models for DNA. a particular model has been calibrated it may be
Section 3 studies the dynamics of the model. used to predict the melting curve of another
Molecular dynamics is used to detect the main DNA segment. The success of this approach to
types of large amplitude motions and connect reproduce experimental melting curves is impres-
them with the experimental observations. Then sive, but it involves a large number of adjustable
we propose two analytical investigations adapted parameters. For instance, 10 parameters are
to the description of the fluctuational openings used to represent the 10 possible types of base-
and denaturation bubbles. Section 4 discusses pair doublets along the molecule. Moreover,
more precisely the thermodynamics of the melt- using an Ising-variable prevents any attempt to
ing of this one dimensional object, the DNA describe the dynamics of the fluctuational open-
molecule. We show how the introduction of non- ings since states intermediate between closed and
linear coupling terms to describe the base stack- open cannot be represented.
ing interactions is essential to explain the sharp Our approach goes further but still keeps the
melting transition observed experimentally, model as simple as possible in an attempt to

determine the fundamental mechanism of the
melting. Therefore we consider a simplified

2. A simple model for DNA melting and its geometry for the DNA chain in which we have
statistical mechanics neglected the asymmetry of the molecule and we

represent each strand by a set of point masses
The simplest description of DNA melting rep- that correspond to the nucleotides. The charac-

resents a base-pair by an Ising-like variable teristics of the model are the following:
which takes only two values, 0 and 1, i.e., closed (i) The longitudinal displacements are not con-
and open. The denaturation transition is then sidered because their typical amplitudes are sig-
analyzed by treating the statistical mechanics of nificantly smaller than the amplitudes of the
this one-dimensional Ising-spin chain [2]. The smaller transverse ones [3]. The stretching of a
structure of DNA appears in the calculation of base-pair in the transverse direction is repre-
the statistical weight of each state of the mole- sented by a real variable y,, which can therefore
cule which is expressed as the product of a describe all the states of the pair from closed
stability parameter for each base-pair, a (y,, = 0) to completely broken.
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(ii) Two neighboring nucleotides of the same the eigenfunctions and eigenvalues of the trans-
strands are connected by an harmonic potential fer integral operator
to keep the model as simple as possible. On the
other hand, the bonds connecting the two bases J dyn 1 e-4yn(.-i) y,(y.-,)

belonging to different strands are extremely
stretched when the double helix opens locally so = e- S"(Yn) (3)
that their nonlinearity must not be ignored. We
use a Morse potential to represent the transverse The calculation is similar to the one performed
interaction of the bases in a pair. It describes not by Krumhansl and Schrieffer [61 for the statisti-
only the hydrogen bonds but the repulsive inter- cal mechanics of the 464 field. It yields -my =
actions of the phosphate groups, partly screened exp(- N&0), where co is the lowest eigenvalue of
by the surrounding solvent as well. The Hamilto- the operator. We can then compute the free
nian of the model is then the following: energy of the model as 'F = -kBT In W=

-(½NkBT) ln(2,rmkBT) + N% and the specific
H= [my 2 +_K(ynYn-)2 heat Ca T(O2 ;/oT2). The quantity which

_ gives a measure of the extent of the denaturation
+ D(e-av - 1)21. (1) of the molecule is the mean stretching (Y.) of

the hydrogen bonds, which can also be calcu-
Since we are interested in the thermal denatu- lated with the transfer integral method [51 and

ration transition of the molecule, the natural yields
approach is to investigate the statistical mech-
anics of the model. Due to the one-dimensional N

character of the system, and because the interac- (Y) = (Yn) Ne

tions are restricted to nearest neighbor interac- (Y) ( ( e
tions, it can be treated exactly, including fully
the nonlinearities, with the transfer operator = (4o(Y)Iy46o(Y))
method [4].

For a chain containing N units with nearest = 0 4(y)y dy, (4)
neighbor coupling, the classicai partition func-
tion, given in terms of the Hamiltonian (1), can since in the limit of large N tme result is again
be expressed as dominated by the lowest eigenvaiue e. associated

with the normalized eigenfunction 46,(y).
fN In the continuum limit approximation, the TI

W= f I dyn dpn eH eigenvalue problem can be solved exactly, but
+. experiments on proton exchange in DNA [8]
Se Yshow some evidence of exchange limited to a
f Jsingle base pair which suggests that discreteness

effects can be extremely large in DNA. There-
,(2) fore we have solved numerically the eigenvalue

equation of the transfer operator [9] without
where f( y,,, y•_) is the potential part of the approximations. The TI operator is symmetrized
Hamiltonian. The momentum part are readily and the integral is replaced by sums of discrete
integrated to give the usual kinetic factor for N increments, using summation formulas at differ-
particles 2tp = (2ltrmkBT)N '. The potential part ent orders. The problem is then equivalent to
can be evaluated exactly [5-71 in the thermo- finding the eigenvalues and eigenvectors of a
dynamic limit of a large system (N--)--) using symmetric matrix.
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.. . .ticular, does it start locally by the formation of
I denaturation bubbles in agreement with the ex-

periments. In order to study this aspect, we have
investigated the dynamics of the model in con-

.I tact with a thermal bath by molecular dynamics
10- simulation with the Nose method [10-11].

Beginning with the Hamiltonian H and the
2N-dimensional phase space of a chain of N
base-pairs with periodic boundary conditions,

Sithe fixed temperature canonical ensemble can be
simulated by the addition of a single variable s,
which regulates the energy flows, and an addi-
tional parameter M, which fixes the scale of the

- / temperature fluctuations. Nose demonstrated
0 that in this phase space of the extended Hamilto-

... . . .. .. nian H', the microcanonical ensemble of H' is
200 300 4W Soo precisely the canonical ensemble of H at tem-

TEMPERATURE (K)
Fig. 1. Variation of (y) versus temperature: the dash line perature T. This property is only exact for
corresponds to the TI results in the continuum limit, the solid equilibrium properties, but investigations cur-
line gives the exact TI results obtained by numerical solution rently in progress [12] show that, provided that
of the TI operator, and the plus signs correspond to molecu- the characteristic time of the Nose thermostat,
lar dynamics simulations. controlled by M, is properly chosen, it can also

give reliable results for the dynamical properties.
Figure 1 compares the thermal evolution of Most of the simulations have been performed

(Yi) obtained with the continuum approxi- with a chain of 256 base-pairs with periodic
mation and the exact numerical calculation, for boundary conditions, but in order to achieve
the model parameters discussed in the next sec- better statistics, some simulations have been per-
tion. Both methods show a divergence of the formed on a Connection Machine-200 with 16384
hydrogen bond stretching over a given tempera- base-pairs. Equations are integrated with a 4th
ture, but the melting temperature given by the order Runge-Kutta scheme with a time-step
numerical treatment is significantly higher, point- chosen to conserve H' to an accuracy better than
ing out the large role of discreteness in DNA 0.001% during a run.
dynamics if one uses realistic parameters for the We have chosen a system of units adapted to
model. The TI calculation shows that the specific the energy and time scales of the problem. Ener-
heat has a broad maximum around the denatura- gies are expressed in eV, masses in atomic mass
tion temperature. unit (a.m.u.) and length in A. The resulting time

unit is I t.u. = 1.0214 x 10-14 s. The choice of
appropriate model parameters is a very con-

3. Dynamics of the DNA molecule troversial topic, as attested by the debate in the
literature [13]. There are well established for'ce

The thermodynamics of our DNA model fields for molecular dynamics of biological mole-
shows that it exhibits a thermal evolution that is cules, but they have been designed to provide a
qualitatively similar to the denaturation of the good description of the small amplitude motions
molecule observed experimentally. But this of the molecule and are not reliable for the very
statistical approach does not give information on large amplitude motions involved in the denatu-
the mechanism of the denaturation, and in par- ration. In our model, the Morse
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potential is an effective potential which links the molecule. These black areas are the denaturation
two strands. It results from a combination of an bubbles observed experimentally. At the highest
attractive part due to the hydrogen bonds be- temperature shown here (fig. 2c) they extend
tween two bases in a pair and the repulsive over 20 to 50 base pairs and their boundaries are
interaction between the charged phosphate sharp.
groups on the two strands. The potential for the If the temperature is raised slightly above
hydrogen bonds can be rather well estimated [141 540 K, the bubbles grow even more and finally
but the repulsive part is harder to determine extend over the whole chain: the molecule is
because the repulsion is partly screened by ions completely denaturated. The second remarkable
of the solvent. Consequently we had to rely on feature on fig. 2 can be observed by moving
estimations. The parameters that we use have along a vertical line on the figure, i.e., following
been chosen to give realistic properties for the the time evolution of a given base pair. If one
model in terms of vibrational frequencies, size of choses one region of the molecule in which the
the open regions, etc., but future work will be energy is concentrated, one can see alternating
needed to confirm our choice. We do not expect black and light-grey dots. This is due to an
however that a better choice would change quali- internal breathing of the localized excitations that
tatively the results presented here. The parame- oscillate between a large amplitude (black dots
ters that we have chosen are: a dissociation in the figure) and a small amplitude state (light
energy D = 0.04 eV, a spatial scale factor of the dots) in a regular manner. These motions are the
Morse potential a = 4.45 A-', a coupling con- fluctuational openings of DNA. They exist even
stant K = 0.06 eV/A, a mass m = 300 a.m.u. The well below the denaturation temperature and
constant of the Nose thermostat has been set to coexist with denaturated bubbles in the high
M = 1000. temperature range. Figure 2b shows that they

A first scan of the dynamics of the model is play the role of precursor motions for the forma-
obtained by imposing a slow temperature ramp tion of the bubbles.
(200-540 K) that generates sets of states which The calculation of the dynamical structure fac-
are approximately equilibrated and are used then tor from the molecular dynamics results exhibits
as initial states for simulations at constant tem- two types of excitations. In the high frequency
perature. Figure 2 shows a time evolution of the range, one recognizes the phonon modes corre-
dynamics of the model at three temperatures. sponding to linear motions of the chain. At low
The stretching of the base-pairs is indicated by a temperature their dispersion curve is well de-
grey scale, darker dots corresponding to larger scribed by the linear dispersion curve resulting
stretching. Looking at this figure, one notices from the equations of motions of the model.
immediately two major features. First, as one Close to melting, on the contrary, most of the
moves along an horizontal direction, i.e., along chain is on the plateau of the Morse potential
the molecule for a given time, the amplitude of and therefore experiences almost no restoring
the stretching varies very much from site to site. force that brings it back to y = 0. The dispersion
This is especially true at high temperature, but it curve is then the dispersion relation of a chain of
is still noticeable at 150 K, well below the melt- harmonically coupled particles, without a sub-
ing temperature. This shows that there is no strate potential, i.e., a dispersion relation with-
equipartition of energy in this nonlinear system, out gap. The variation versus temperature of the
but on the contrary a tendency for the energy to frequency of main phonon peak at wavevector
localize at some points which is more and more q = ½2rr plotted on fig. 3 shows clearly the transi-
pronounced as temperature increases. At high tion between a frequency belonging to the origi-
temperature, the figure shows large black regions nal dispersion curve at low T toward that of a
which correspond to denaturated regions of the gapless dispersion curve. This phonon softening
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Fig. 2. Results of molecular dynamics simulations at three different temperatures (a) T = 150 K. (b) T = 341) K, (c) T = 450 K.
The horizontal axis indicates the position along the 256 cells of the molecule and the vertical axis indicates time. The stretching y.
of the base-pairs along the molecule is indicated by a grey scale, the lighter grey corresponding to • -v 0. 1 A and black indicating
v - I A. Therefore black regions show broken base-pairs.

should be observable experimentally in the vic- quency as the denaturation bubbles form near
inity of DNA melting transition. The second the melting point.
characteristic feature of the dynamical structure Since the molecular dynamics simulations have
factor is a low frequency peak. associated to the found the two types of motions observed ex-
fluctuational opening, which shifts to zero fre- perimentally, fluctuational openings and bub-
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0.1 . , . . .. for y. ": 1/a is convenient. Introducing the vari-
able w, = ay. and the scaled time T = N'-K7/i t,

2and defining the parameter aid = DIK, which
measures the discreteness, the Hamiltonian of

-- this simplified models becomes

S0.M H= K »[l*n + j(W.- Wn_1)22 2"
+Wdd(•W -2 3W)]. (6)

f I T Large amplitude localized breathers can be ob-
tained for this model [161 by the lattice-Green

0.02 .......... ............- i.. functions method [17] developed recently to

study local modes in nonlinear lattices. We seek
long-lived oscillatory solutions under the form

0.00 ......... I. ........... .... ..... t....

0 100 200 300 400 500
wEPRA R = 4,E cos(ioWt) (7)

Fig. 3. Frequency of the phonon modes versus temperature i=0
for q = !'•. The error bars indicate an interval where the
frequency lies, at those temperatures for which a single mode where w, is the eigenfrequency of the fundamen-
cannot be identified. The horizontal lines correspond to the
phonon frequency at the bottom of the well (dashed) and on tal mode (i = 1) and 40' is the time independent
the Morse plateau (dash-dot-dot-dot). amplitude of the ith mode (the ansatz has a dc

part simply because of the asymmetry of the
bles, it is interesting to see whether an analysis in potential). Inserting this ansatz in the equations
terms of nonlinear excitations can explain these of motion and setting the coefficients of cos(iahet)
motions. equal to one another and retaining only the first

The fluctuatioruil openings correspond to large three terms, which gives already a good apploxi-
amplitude breathing modes which are localized mation, we obtain:
by nonlinear effects. As they extend only over a
few base pairs, they are intrinsically discrete. tod, -(4,n+n + 0-1 - 24,0)
Their existence and long term stability poses the 2[O02 1 2 22

general question of the existence of breathers in d wdIln + ½(4On + On] (8)

discrete Klein-Gordon models which has already d b (0'+ 1 + OI- 24,'.)
attracted a great deal of attention without receiv- (no n n - +

ing a definite answer [15]. An analytical investi- =W2 + 42)4,d o(24,0 + n),, (9)
gation of the DNA model presented above is 2 W 2 , 2 _ . 2 + .420_ 2 )
difficult due to the Morse potential, but, since (W -- 4 )4" - (4,n n +0 -2 n

the fluctuational openings are intermediate am-
plitude oscillations, their study can be performed d- '(20' + P n (10)

with a simpler potential that has qualitatively the
shape of the Morse potential for small and inter- Using the lattice Green's function of the linear

mediate amplitude but is more suitable analyti- part of the above equations,

cally. The potential _iq(n-m)

V" 2G(n- m,= D() = y -a y---2 (11)
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where q is the wave vector inside the first Bril- Introducing u. = y. - (y) = y. -q and two pa-
bouin zone. 460, 461, 42 can be expressed in terms rameters 112 and 4, we apply the SCP method
of the r.h.s. of eqs. (8)-(10), which gives a set of [18] by considering the trial harmonic Hamil-
simultaneous nonlinear eigenvalue equations de- tonian
termining the eigenfrequency &., and the eigen-
functions 0',. They can be solved numerically by Hmu. + - u,)Z + fl 2.
iterations, starting with appropriate initial condi- n 2 2 (12 )2
tions. We fix the dc tei'm, which amounts to
choosing a particular amplitude for the solution. The canonical partition function X can be ex-
Only 15 iterations are necessary to determine the
values with an accuracy of 10-4. A numerical pressed as the product of the unperturbed parti-

simulation of the dynamics of the chain with the tion function 10 and a perturbation factor 1,:

solution determined as above as an initial condi-
tion shows that a large amplitude breather local- = I I du, e-ov

ized on very few lattice sites is extremely long
lived, in agreement with the results of the molec- = (f H dui e-Ho) (e-O(H-H))o
ular dynamics simulations of our DNA model.
Consequently the very narrow fluctuational = 10-T.
openings observed experimentally in DNA [8]
and in our molecular dynamics investigations The perturbation series for 1 is calculated by
could well be discrete breathers stabilized by expanding the exponential, and the logarithmic
nonlinearity, function; the coefficient of (-P)"/n! in the ex-

The study of the denaturation bubbles turns pansion of In T, is called the nth cumulant and is
out to be much more difficult because they can- written [191 ((H - H.)")o c.. Thus
not be studied independently of the thermal
effects. Due to the shape of the Morse potential, • = -kT In _
at T = 0, any large amplitude opening bringing a = -kBT In To - kBT ln(e- (-H°))0
set of neighboring base-pairs on the plateau of
the Morse potential is unstable. This initial state go- (--)
would oscillate at very low frequency, but cannot = 1- ((H-
stay in an open state since the bases in the open = 0 + + 2+ ...

region are called back to their closing state by

the bases which are still closed in the molecule The first contribution go is the contribution of N
and by the small downward slope of the Morse harmonic oscillators,
plateau. Therefore the existence of long lived
open bubbles in our model, as they are seen in N-I 2nkBT
the molecular dynamics simulations, is fun- 0°=-k in 22B) (13)
damentally a thermal effect which cannot be
studied by Hamiltonian mechanics, as we did for It can be shown [201 that the variational free
the fluctuational openings. One way around this energy 5 A0 + ,F, = %, gives an upper bound
difficulty is to include temperature effects in the for the actual free energy. The only difficulty in
potential itself. This is exactly what the self- evaluating 9, is the self-consistent substrate
consistent phonon (SCP) method does using a potential. It can be evaluated and gives an "ef-
trial Hamiltonian for the calculation of the free fective" potential that keeps the shape of the
energy of the system at temperature T [18]. Morse potential, but with a minimum which is
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temperature dependent. The expression for the clearly that the self-consistent solution, which
first order correction for the free energy is then: corresponds to the metastable minimum of the

dashed and dash-dotted curves, disappears at
S= (K- -- '2 T; =411 K to give a strictly decreasing function

+ D(I +e -a+2a+2u2) 2 e -a+(a2ý )(u2)) of 11- Over Tc the only minimum is obtained for

(14) an infinite value of q7, which does not correspond
to a self-consistent solution of the problem. Con-

with (u 2 ) = (u2 ) and (v 2) = (uu"). Consid- sequently Tc can be identified as the denatura-

ering q/, (u 2) and (v 2) as variational parame- tion temperature given by the SCP. Moreover,
ters, the conditions for 3W, to be stationary give assuming that the free energy can play the role7 7 = ,a ) t j= 2n • 2= 2 2 e p _

a(u 2 ), = K and 2a D exp(- 2.ai). of an effective potential at temperature T, one
As -q is an increasing function of temperature, can see that, as T approaches the melting tern-
D 2 decreases with T, which corresponds to the perature, the free energy exhibits a maximum
mode softening observed in the molecular dy- followed by a decreasing part. In a "mechanical"
namics simulations. Since (u 2 ) and i7 are re- equation of motion, such a potential would give
lated, the minimization of w, amounts simply to stable open bubbles.
solving the equation

3akBT 4.2a2D e-273 4. Is DNA melting a one-dimensional phase
2N 2---e2a3transition?

+ 4K sin2 (irp/N)]-' . (15)
The model discussed above has been able to

In practice, eq. (15) is solved by a simple describe some of the main features of DNA
bisection method and fig. 4 shows the free ener- melting as it is observed experimentally. How-
gy J;, versus q at different temperatures. We see ever there is a crucial point in which this model

gives incorrect results, it is the sharpness of the
.0... . .,. . .phase transition. For an homopolymer, the ex-

periments show that the melting occurs very
abruptly over a temperature interval which is
only a few K or even less. This poses a very
fundamental question since DNA is basically a

•" i\one-dimensional system, which is not expectedto have a phase transition. We would like to

conclude our paper by showing that, within a
one-dimensional model with short range interac-

-0.040 tions, a sharp transition is possible if one takes
into account properly the nonlinearity of the

".0. base stacking interaction [211. The possibility of
a phase transition in one-dimensional DNA was

" . already examined within the Ising-model ap-

-0.050 '-. proach by Poland and Scheraga [221 and Azbel
toA 0. E 1.0 1.5 [231 who concluded that it can be attributed to

Fig. 4. Free energy f, versus 11 at different temperatures: cooperativity effects and to the role of the wind-

T = 350 (dashed). 380 (dash-dotted). 411 (solid), 430 (dash- ing entropy released when the two strands sepa-
dot-dot-dot) K. rate. A simple extension of our DNA model (1)
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can describe the dynamics of these effects and although cooperativity in introduced through
gives a very sharp transition in agreement with purely nearest neighbor coupling terms, it has a
the experiments, remarkable effect on the ID transition.

The stacking energy between two neighboring Figure 5 shows the drastic change introduced
base pairs is described by the anharmonic by the anharmonic coupling on the specific heat
potential: of the model calculated by the transfer integral

method [21]. The full curve corresponding to the
W(y,, y,. )= [K(1 + p e -ay+yn-0)) anharmonic stacking interaction shows a sharp

(6 peak very similar to that one would expect from
X (y. - y._t) (16) a first-order phase transition, whereas the har-

monic coupling investigated before gives only a
This new intersite coupling, replacing the simple smooth maximum. This result suggests that, al-
harmonic coupling of our previous approach, is though DNA structure is very complicated, a
responsible for qualitatively different properties. simple nonlinear model is able to reproduce with
The choice of this potential has been motivated a good agreement the main experimental fea-
by the observation that the stacking energy is not tures of its dynamics for the fluctuational open-
a property of individual bases, but a character of ings as well as the melting curves. Indeed such a
the base pairs themselves [241. When the hydro- model does not pretend to give exact quantita-
gen bonds connecting the bases break, the elec- tive results that would fit exactly the experimen-
tronic distribution on bases are modified, causing tal melting curve of an heteropolymer with all its
the stacking interaction with adjacent bases to small structure. Our feeling is that it is more
decrease. In eq. (16), this effect is enforced by important to get a basic understanding than to
the prefactor of the usual quadratic term (y, -
y-_' )2 This prefactor depend- on the sum of the IIoil _IIII _.........

stretchings of the two interacting base-pairs and
decreases from • K(1 + p) to 1 K when either one
(or both) base-pair is stretched. Although its
form was chosen for analytical convenience, the
qualitative features of potential (16) are in
agreement with the properties of chemical bonds
in DNA. They also provide the cooperativity
effects that were introduced phenomenologically
in the Ising models. A base pair that is in the
vicinity of an open site has lower vibrational
frequencies, which reduces its contribution to the
free energy. Simultaneously a lower coupling
along the strands gives the bases more freedom
to move independently from each other, causing
an entropy increase which drives a sharp transi- 0
tion. Our approach can be compared to recent too 20o 3M0 400 So 60o
views on structural phase transition in elastic TMRATR

media which -tress that intrinsic nonlinear fea- Fig. 5. Variation of the specific heat versus temperature. The
tures characterize the physics of these trans- very narrow peak corresponds to the anharmonic coupling

case (a = 0.35. p = 0.5). the dotted curve and the solid broadformations, and extend the standard soft mode peak to harmonic coupling (k' = 1.5k and k = k. respec-
picture [25,261. It is important to notice that, tively).
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try to explain the very small experimental result. nonlinear model for DNA denaturation, Phys. Rev.

This does not mean that we think that the simple Lett. 62 (1989) 2755.
Thisdoeslnotm that we discuss theeink c ltte s e 151 D.J. Scalapino, M. Sears and R.A. Ferrel, Statistical
model that we discussed here is complete and mechanics of one-dimensional Ginzburg-Landau fields,

should not be extended. But any extension will Phys. Rev. B 6 (1972) 3409.

have to be measured for the new fundamental 161 J.A. Krumhansl and J.R. Schrieffer, Dynamics and
statistical mechanics of a one-dimensional model Hamil-

feature it brings against the unnecessary compli- tonian for structural phase transitions, Phys. Rev. B 11

cations it introduces. Finally we would like to (1975) 3535.

point out that, although we have discussed non- [71 J.F. Currie, J.A. Krumhansl, A.R. Bishop and S.E.

linear dynamics of DNA, we have not intro- Trullinger, Statistical mechanics of one-dimensional soli-
tary-wave-bearing scalar fields: exact results and ideal-

duced solitons in our picture (although the dis- gas phenomenology, Phys. Rev. B 22 (1980) 477.

crete breathers are probably close to being sol- [81 J.L. Leroy, M. Kochoyan, T. Huynh-Dinh and M.

itons). It is simply because they do not seem to Gueron. Characterization of base-pair opening in deox-
ynucleotide duplex using catalyzed exchange of the

be necessary to explain the dynamical features of imino proton, Mol. Biol. 200 (1988) 223.

DNA we are interested in. Solitons are marvell- [91 T. Schneider and E. Stoll, Classical statistical mechanics

ous objects but nonlinear science can also live of the sine-Gordon and 04 chains. Static properties,

without them. Phys. Rev. B 22 (1980) 5317.
[101 S. Nose, A molecular dynamics method for simulations

in the canonical ensemble, Mol. Phys. 52 (1984) 255.
[111 S. Nose, A unified formulation of the constant tempera-

ture molecular dynamics methods, J. Chem. Phys. 81
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In this paper we describe laser light interacting with nematic liquid crystals. The paper begins with a summary of
recent experimental results of E. Braun, L. Faucheux, and A. Libchaber in which the liquid crystal sample is studied
in three geometries - film, pipe, and droplet. Then, after a very brief glimpse at the history of liquid crystals, a
theoretical model of the interacting system is described. In a one transverse dimensional idealization, we investigate
the pipe and film configurations. In these cases the model reduces to a coupled system of nonlinear pde's - an
elliptic sine-Gordon equation for the director field coupled to a Schroedinger equation for the electromagnetic field.
Properties and qualitative behavior of this coupled system are described, both numerically and theoretically. As an
illustrative example of boundary layer analysis of such coupled light-nematic systems, we describe calculations in the
film geometry in some detail. Results of this analysis include: (i) an extension of the Frederiks bifurcation analysis
to electric fields with spatial variation; (ii) the determination of the transverse scale at which self-focusing saturates
in this nematic; (iii) the derivation of a nonlocal nonlinear Schroedinger equation which governs the inner structure
of the laser beam. We conclude the paper with a summary of similar boundary layer calculations for light-nematic
systems in other geometries.

1. Introduction an optical arena for the study of the physics of
complex nonlinear patterns.

Liquid crystals provide an optical medium In recent experiments of E. Braun, A. Libch-
with very strong nonlinearity. For example, the aber, and L. Faucheux [ I ], nematic liquid crys-
coefficient of nonlinearity in liquid crystals can tals (MBBA, 6CB, and E209) were irradiated
easily be 106_1010 times greater than in "typ- with light from a cw argon laser with I watt of
ical" nonlinear optical media such as carbon power. A linearly polarized argon laser beam in
bisulfide (CS2 ). The extreme nonlinearity of the TEMoo gaussian mode (the pump beam)
liquid crystals permits the investigation of non- was applied to the sample of liquid crystal which
linear optical effects such as self-focusing and sat on the stage of an inverted microscope. The
filamentation with low power cw lasers. For this pump beam had a waist of = 50 gm at the bot-
reason liquid crystals are excellent materials for tom plate of the sample. Thermal effects were
the investigation of laser radiation interacting negligible, while scattering losses were more sub-
nonlinearly with matter, and thus they provide stantial but controlled.

A detailed description of the experimental
results may be found in [2,11. Here we restrict
ourselves to a few remarks about them, focusing

I This lecture is dedicated to Al Scott, who has shown us attention upon two representative experiments.
many beautiful properties of the sine-Gordon equation. Studies were performed in three geometries -

2 Funded in part by AFOSR-90-0161 and by NSF DMS film, droplet, and capillary tube. Self-focusing
8922717 AOl.

3 Funded in part by AFOSR F-49620-92-J- 0023F, NSF effects were observed in all three geometries. In
DMS-9100383 and NSF DMS-9157492.

Elsevier Science Publishers B.V.
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Fig. I. Self-focusing and filamentation in a droplet config-
uration of the nematic. Note the boundary of the droplet Fig. 2. Longitudinal view of self-focused filaments in the

is observable. Also note that polariuation effects produce capillary tube configuration of the nematic.
".'ordinar%- and -extraordinary rays. The latter coherently

self-tbcus, side diameter 1.5 mm, was coated with the
polymer MAP to enforce tangential alignment of

the thin film case, the observations were made the director at the glass surface, and thus to en-
outside the liquid crystal "after" the light beam sure uniform bounday conditions along the cap-
had passed through the thin sample: thus. self- ilary tube. The liquid crystal was then injected

focusing was observed only indirectly. However, in the nematic phase. One end of the capillary
in the droplet and tube cases, filamentation was was scaled with fast epoxy to avoid any motion
directly observed. Figure 1 shows a beautiful of the nematic. Cooling was achieved by a flow
example of focusing and filamentation in the of nitrogene around the capillary. The strongest
droplet geometry. lens in this system is a diverging one due to the

In order to achieve better control of thermal meniscus at the air-liquid crystal interface. With
effects, Braun. et al. 12. I changed to the geom- this setup, the argon laser beam was focused in-
erry of a cylindrical capillary tube. together with side the sample. far from the entrance meniscus.
a different nematic liquid crvstal, E209, which and the scattered light was observed from below.
offers a wide range in temperature in the nc- Figure 2 shows a striking longitudinal view
matic phase. A cylindrical capillary tube, of in- of the light field along the capillary tube. Many
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other observations, for several increasing values cholesterol in plants. In 1888 he was observing
of power in the pump beam, can be found in the melting behavior of an organic substance re-
[ 2,1 1. There one observes the presence of a focal lated to cholesterol and noted that it possessed
spot, and, as the pump intensity is increased, its two melting points - at 145.50 C it melted to a
"movement" along the tube toward the meniscus cloudy liquid and at 178.51C this cloudy liquid
at the front entry. As the intensity is further in- turned clear. He also observed the appearence
creased, this movement stops and a second spot of blue colors at the phase transitions. The sub-
forms and moves toward the front of the tube. stance that Reinitzer was observing was in fact
Three coexisting focal spots have been observed cholesteryl benzoate, a chiral nematic liquid
in the experiments [2,11. Also one observes the crystal.
onset of transverse undulations of the filament. Reinitzer sent some of his samples to a Ger-
The wavelength of these undulations at first de- man physicist, Otto Lehmann, who had just de-
creases, and then increases with increasing pump veloped an important microscope. Lehmann's
intensity [ 11. Finally, at still higher values of microscope was a significant technical advance-
pump intensity, two filaments form and inter- ment for that time period in that it had a heat-
act. As far as we know, these are the first obser- ing stage that allowed him to observe crystal-
vation of the actual longitudinal behavior of fil- lization as temperature was slowly lowered, as
amentation of a low power cw laser beam in a well as polarizers which allowed him to view po-
nonlinear medium. In any case, it is certainly a larization phenomena. Through his observations
striking visualization, of Reinitzer's samples, Lehmann became con-

vinced that the cloudy liquid was a liquid phase,

but a phase that affected polarized light in a man-
2. Brief overview of the history of liquid crystals ner typical of solid crystals. The substance had

the flow properties of a liquid, but the optical
The twelfth International Liquid Crystal Con- properties of a solid, and led Lehmann to call

ference was held in Germany in 1988. One as- such substances "liquid crystals".
pect of that conference was the celebration of the As described by Collings [3], European
one hundredth anniversary of the "discovery" of chemists, biologists, and physicists continued to
liquid crystals. At that conference, H. Kelker de- study liquid crystals, both experimentally and
scribed that history. Our account is taken from theoretically, during the first half of the twen-
the second chapter of a recent book by Peter tieth century. The theory culminated with the
Collings [3 1. continuum elastic theory of English physicist F.

During th.c time period from 1850-1888, just C. Frank in the 1950's. Little was done in liquid
before the 'Ji)'cvery" of liquid crystals, several crystal research from the end of World War It
European scientists were observing striking vi- through the early 1960's, perhaps because no
sual effects such as cloudiness and color changes important applications had emerged. The dis-
which would later be attributed to the liquid covery of liquid crystal displays (LCD's) at the
crystal phase of their samples. For the most part end of the 1960's certainly changed the status of
these scientists were biologists who were inves- research in the area! Today liquid crystal physics
tigating under microscopes the effect of temper- is alive, well, and dynamic - with a great many
ature on different biological materials including scientists actively studying nonlinear properties
the outer covering of nerve fibers, natural fats, of this liquid crystal phase of matter.
and cholesterol. An Austrian botanist, Friedrich While this "history of liquid crystals" is cer-
Reinitzer, is generally credited with the actual tainly interesting, we elected to describe it in
discovery of liquid crystals in his studies of such detail in our paper for another reason. Our
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conference here at the Technical University of
Denmark has as one of its goals the celebration of a

the sixtieth birthday of Professor Alwyn C. Scott. TWIST v.00

As we learned about the history of liquid crys- X Ct =Kvl.(v xiV
tals, we were struck by the similarities between
the development of the science of liquid crystals
and the manner with which Al does, and advo- SPLAY

cates doing, science: - The development of liq- X Cs - Ksv i,

uid crystals was interdisciplinary - between the
biological and physical sciences; international;
nonlinear-, and driven by experimental, theoreti-
cal, and practical developments. A brief consid- BD F

eration of such historical perspectives certainly B to - Kl x (V ,
seems appropriate at our conference on Future /
Directions of Nonlinear Dynamics in Physical Fig. 3. Schematic of the "twist", "splay", and "bend" elastic

and Biological Systems. distortions of the nematic.

We conclude this historical section with two
additional references: the book of de Gennes Rotation of these rods is opposed by elastic,
4 ], and the survey [ 5]. nearest neighbor, forces. Three independent ori-

entational distortions exist for the vector field
n (x, t). These are called "twist", "splay", and

3. Theoretical considerations "bend"; they are displayed in the cartoons of Fig.
3 [61; the energy densities associated with each

We are interested in a coupled field descrip- are given by

tion of the interaction of laser light with a ne-
matic liquid crystal. A nematic liquid crystal CT = KT [n. (V x a) ] 2,

may be thought of as consisting of cigar shaped
"objects" which are either polarized or easily Fs = Ks(V. X)2,

polarizable. These objects have both transla-
tional and orientational degrees of freedom. In LB = KB [a × (V x a )2,
the liquid crystal phase, the material behaves as where KT, Ks, and KB are the elastic constants as-a fluid with respect to its translational degrees weeKKadK r h lsi osat s
of freedom; however, with respect to its orien- sociated with twist, splay, and bend respectively.of feedm; hwevr, ith espct o it oren- The total elastic energy is then given by
tational degrees of freedom, long range order
is maintained as if the material were in a crys- f
talline phase. In this work we will ignore fluid Eel - ½j (T + ES + la) d3x.
motion and concentrate upon the orientational
behavior of the liquid crystal. Infinitesimal variations (subject to the unit di-

This orientation is described by a directorfield, rector constraint) of this elastic energy produce
an elliptic operator which, in the "one constant"

X(x,t), IaI = 1. approximation (K = Ks = Ka = KT) reduces
to the Laplacian. (Typical nematic liquid crys-

This unit vector n (x, t) describes the density of tals have Ks < KB ,- KT.)
"rods", at position x at time t, oriented in the We seek to describe the interaction of this di-
direction a. rector field with laser light. First, note that the
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director a is very sluggish in t and can only re- the equation for the director takes the form of
spond to the time averaged electromagnetic field an elliptic, variable coefficient, sine-gordon equa-
E. A phenomenological description of this inter- tion:
action is as follows: The liquid crystal has its di-
rector field a specified on the boundary of the O, + O, + IF12 sin 20. (3.4)
sample. When the laser shines on this sample,
energy minimization favors the alignment of a
with E. During this alignment procedure, E in- 3.1. The Frederiks transition

duces a dipolar change in the index of refrac-
tion. The index of refraction is maximal when a The relevant nonlinear effect for our studies
is parallel to E, producing a "self-focusing" lens. is known as the "Frederiks transition" and can

The reason behind the large values of the nonlin- be easily seen from eq. (3.4): One assumes an F

ear dielectric constant in liquid crystals is that it field which is constant in both x and z, and seeks

is relatively easy to rotate the director field. a director field 0 which is a function of z only.

The coupled equations for the electric field in- In this situation, one reduces (3.4) to the ode

teracting with the director field are given by

0z + ,A-2 sin 20 = 0,
-V x V x E + ko(E + a(n . E)n) = 0,
K(axV2a + g•(a×(n.E)E')) =O, 0(z = 0) = 0(z = L)=0.

Here we have introduced a parameter A known
(3.1) as the Frederiks transition length,

where g denotes a coupling parameter. Here we
note that E is the time averaged complex electric A - IFI-1,
field amplitude, and that the interaction in the
coupled equations (3.1) is invariant to a -- -n. and have introduced the boundary conditions on

It will be convenient to specialize to a simple the director that n = i at z = 0 and z = L;
two-dimensional geometry which can apply in that is, 0 vanishes at the front and rear faces of
either the "film" or the "tube" cases: the sample. 0 = 0 is one solution of this two-

point boundary problem corresponding to align-
sin 0 ment with the boundary conditions of the direc-

0 0 , (3.2) tor throughout the sample. On the other hand, as
\ Cos 0 the intensity of the constant F field is increased,

Fsolutions of the two-point boundary experience
(3.3) a "pitchfork bifurcation" and a second solution

H appears with 0 = O(z). This second solution
represents a z dependent rotation of the director

where the angle 0 = 0 (x, z), and the compo- field within the sample, away from its boundary
nents of the field (F, H) also only depend upon orientation toward the orientation of the i com-
(x, z). In this two dimensional geometry, z is the ponent of the electric field. This bifurcation is
longitudinal coordinate; x is the transverse coor- the primary nonlinear effect behind our study.
dinate; F and H are the transverse and longitu- We will investigate it numerically and analyti-
dinal field components, respectively. If, at "lead- cally, in the more general situation of coupled
ing order", one neglects the longitudinal field H, fields with both x and z dependence.
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3.2. A model problem 4. An initial numerical study

By scaling all lengths on the Frederiks tran- We begin with a brief summary of our initial
sition length of the incoming pump beam, the numerical study of model (3.5)-(3.6). To set
experimental value of the optical wavenumber up the numerical algorithm we impose Dirichlet
becomes k s- 189. (Other natural scalings pro- boundary conditions for the 0 field in z, Neu-
duce much larger nondimensional wave num- mann boundary conditions for the 0 field in x,
bers.) With such a large wavenumber, the elec- as well as periodic boundary conditions with re-
tric field is certain to obey a slowly varying enve- spect to the transverse variable x for the F field.
lope approximation. Here we study the simplest The transverse width models an extremely wide
such (two dimensional) envelope model - one thin film, and in practice is chosen wide enough
which incorporates a coupling between paraxial that it does not effect the results. (The choice
optics and nematic deformation: of transverse Neumann boundary conditions has

been made to improve this insensitivity.)
The parabolic equation for F is integrated

2ikFz + Fx + k 2a sin2 08 F = 0, (3.5) with an "integrating factor" method which ex-
, + Oxx + IF12 sin 20 = 0. (3.6) actly factors out the Laplacian from the evolu-

tion in z by introducing analytically the factor
exp [ (iz/2k) 9Jx 1. The elliptic equation for theHere the refractive anisotropy is represented by 0 field is integrated with a "relaxation method".

the parameter a, which is approximately 0.25 for Both the "integrating factor" and "relaxation"
the experiments [ 2,11]. Depending upon bound- Bt h itgaigfco"ad"eaainthe xpeimens 1,1].Depndin upn bond- methods are implemented through "fast Fourier
ary conditions, this model can be used to study transforms", which are natural given the bound-

either the thin film or the tube geometries. In the ary cd ions.
thinfil cas, te bunday cnditonsareary conditions.

thin film case, the boundary conditions are Sample results from these numerical experi-

ments are displayed in Fig. 4. In these numer-

F(x,z = 0)=Fin(X) ical experiments, k = 100.00,a = 0.10, and
the critical field for the "Frederiks transition"

0(x,0) =O(x,L) = 0, (below which there is no transition) is IFcrI !-
0.12. In Fig. 4a, the maximum field intensity is

O(x,z) -0 asx - ±oo. (3.7) &FmaxI = 0.20, somewhat above the transition
value; in Fig. 4b, the maximum field intensity is

(In the tube geometry, the latter boundary con- larger, IFmaxI = 0.50, well above the transition
dition is replaced by 0 (± W, z) = 0, where W is value. Examination of these figures shows:
the width (radius) of the tube.) (i) The transverse profile of the electric field

Heuristically, eq. (3.5) is a scalar paraxial IFI is much narrower than that of the nematic
equation that includes the effects of diffraction field 0.
and nematic anisotropy, while eq. (3.6) models (ii) The contour lines of the nematic field 0
static nematic distortions. Of course, this two show transition regions (in z) near the front and
dimensional model neglects birefringence (po- rear faces of the nematic film. These rather sharp
larization) effects and scattering losses - which transitions are particularly apparent at the larger
are important for quantitative detail. However, input field of Fig. 4b.
this simple model has proven useful in the de- (iii) As the electric field F "propagates" in
velopment and description of our mathematical z, it "self-focuses" in that its intensity increases
approximations. while its tranverse structure narrows. Again,
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Fig. 4. Sample numerical experiments for the scalar model problem, for as 0.10, k =100.00. At these parameter values
the critical field for the Frederiks transition has IF~I (0.12)2 (a) Pump beam: IFmauI2 = (0.2)2 (b) Pump beam:

.1~~2 = (0.5)2. In each case, we display contour lines for the nematic angle 0; the electric field intensity profiles IF12 sx,
at the front (dotted curve) and rear (solid curve) faces; the behavior of the electric field intensity (solid) and of the nematic
(dotted) along the center beam line; and a tranverse profile near the rear face for the electric field intensity (solid) and
nematic angle (dotted).
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used in the analysis is a transverse boundary layer
located at the beam center. While the nematic
field 0 has contour lines (see Fig. 4) reminiscent
of longitudinal boundary layer behavior near the
front and rear faces of the nematic film, this
longitudinal transition scale is much longer than
the characteristic width of the self-focused elec-
tric field F. In the absence of scattering losses,
the self-focusing continually narrows the electric
field until diffraction saturates this process at a

OZ:L very narrow beam. This transverse self-focusing
is also apparent in the numerics of Fig. 4b. In-
deed, it is this transverse effect of the electric

Fig. 5. A sketch of the boundary layer behavior for the thin field, rather than the longitudinal behavior of the
film case. nematic, that limits numerical resolution, and

this self-focusing is particularly apparent for the introduces the small width scale for our analysis.

larger input field of Fig. 4b. In both cases a and Let y y (k) denote a large parameter which

b, the self-focusing continues to the rear face of fixes the inner, transverse beam scale:

the film. It is not clear from these experiments Y x, y 1.
what, if anything in the absence of scattering
losses, saturates this self-focusing process. Here the scaling function y (k) will be deter-

Clearly, for this simple model problem, these mined later in the analysis; for the moment it is
numerical discretization effects could be elim- only taken to be large. Next we assume that in the
inated with a finer resolution of the numeri- outer-relaxation and in the inner-beam regions,
cal grid. Furthermore, one could also further the fields take the following form:
stress the model by running the numerical ex-
periments at more realistic parameter values - 0 O (z,0) + X -6(b)(z,.) (inner), .1)
for example, k could be increased from 100.00
to 189.00 and a from 0.1 to 0.25. However,
the "boundary-layer-self-focusing" nature of
the phenomena make this solely numerical ap- F 0 1/2F(b) (z,s ) (inner). (5.2)
proach unrealistic for the actual system. Thus, (
even for the model problem, it is judicious to When viewed from the outer scale, the 12 field
develop a mathematical analysis based upon a appears as a delta function located at the beam
boundary layer reduction, center x = 0; in turn, from eq. (3.6), the 0 field

has a jump discontinuity in its first derivative
0, (x = 0, z). Thus,

5. A boundary layer analysis for the thin film
cawF

2 - 16(x),

With our thin film model (3.5), (3.6), (3.7), where

we illustrate a boundary layer approach for the +00 +00
light-nematic system. The geometry is depicted I J IF12 dx I IF (b) 1 2 dc,
in Fig. 5. We emphasize that the boundary layer -M -00
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and where the scaling of F(b) insures the last
equality.

In the two outer-relaxation regions (x > 0 and
x < 0), the electric field is exponenmially small C(Z;I)

and the nematic field satisfies Laplace's equation x/2

V2 0(r) = 0,

together with vanishing boundary conditions at

z = 0, z = L, x = ±oc and the jump condition
across x = 0. Thus, 0 has the Fourier series
representation zI= 0 z =I L

() ,X n VLW' Fig. 6. A sketch of the qualitative behavior of the nematic

0) nexp -n Tx) sin (n distortion at beam center as would be obtained by solving

n= I the bifurcation equation (5.3) for C(z; i).

where the constants 4, will be determined by the C (z) . This equation (5.3) should be viewed as
jump condition. Notice that because 0 (r) solves an extension of the Frederiks bifurcation equa-
Laplace's equation, the transverse half-width tion to the boundary layer situation of variable
of the nematic distortion is determined by the field strength. It must be solved numerically. Its
thickness L of the thin film. solution will behave as a pitch-fork bifurcation

To derive the jump condition, one integrates and, above a critical intensity lc, will have the
eq. (3.6) across the beam zone, paying attention qualitative behavior sketched in Fig. 6. Note, in
to scales and to the local behavior of the fields. particular, this nematic distortion C (z; I) con-
The result is tains the "longitudinal transitions" in z.

10+ I Turning to the behavior of the electric and ne-
0r + Isin2O(r)J = 0. matic fields in the inner-beam region, we express

-x=0 the nematic equation (3.6) in the inner coordi-

Defining nates and solve it asymptotically for 0 (b),(Z): O(r) (Z X=
C(z) =o(r(z,X =0) = sin n z), 0(b) sin(2C)( IFI2didy

n=1 i 2) I1 ýd

one sees that the jump condition yields the ex-t

pression + I I FIFdJdy)" (5.4)

1 si 2 0 ýn in n-cc-00

2 s •in 1j 2 sin n Inserting this expression into the field equationn--1 (3.5) written in inner variables yields, after re-
= n, sin nz (5.3) moving an appropriate fast phase kS(x, z),

n=1 2 ka
iG, + !- G-- + - sin (2C) O(b)G = 0, (5.5)

which is a nonlinear equation which determines 2k 2'
the constants c, as a function of the beam in- where
tensity I; thus, it determines the nematic distor-
tion at beam center as described by the function F (b) = G exp (ikS).
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Examination of eq. (5.5) shows that the nat- 6. Conclusion
ural balance of diffraction against nematic dis-
tortion defines the scaling In this paper we have described some initial

work on the interaction of a laser beam with a
Y(k) = k2 3. (5.6) nematic liquid crystal. Our interest in this sys-

With this choice of y scaling, and introducing the tern stems from its very large coefficient of non-

propagation scale i = k 1/3z, we obtain the lead- linearity which allows the generation of complex

ing order equation which governs the structure nonlinear optical patterns with low power, CW

of the inner beam: lasers. Experimentally, Braun, Faucheux, and
Libchaber have studied this system in three geo-

iG- + X- asin2 (2C) 0 metric configurations of film, droplet, and tube
i +IGI2dJdy [21, [11. Of particular importance in these ex-
X Y perimental studies are the striking longitudinal

X Y views of interacting filaments in the cylindrical

+ f / IFj2djdy}G = 0. (5.7) geometry.
-0 o-0 In this paper we have described a theoretical

boundary layer analysis of an idealized (two di-
Several remarks should be made about this non- mensional, scalar) model of this coupled light-
local, nonlinear Schroedinger equation (5.7) nematic system in a thin film geometry. The

which governs the local structure of the inner transv se b n ayerinaly shows Tha
electic feld:transverse boundary layer analysis shows that

electric field: the nematic distortion at beam center is de-

(i) This nonlinear Schroedinger equation is a sre by a dlor tion c urve-
Hamitonin sstem wit Hailtoianscribed by a "local Frederiks bifurcation curve"

Hamiltonian system, with Hamiltonian which captures transitions in the nematic near

+ the front and rear faces of the film. The analysis

H= [ t1Gxi2 + " sin2 (2C) IGI2d.) also produces a scaling function which results
-I from "maximal balance" between diffraction

-00 io

and nonlinearity and fixes (in the absence of
]G12 dy) }d. (5.8) scattering losses) the spatial extent of the self-( )focussed beam. It also yields a nonlocal non-

linear Schroedinger equation which governs the
(ii) It depends upon C(z), the nematic dis- inner structure of the beam.

tortion at beam center, which is determined from In other theoretical boundary layer analyses
the outer problem as matched to the inner beam of this coupled system, we have studied the two
via bifurcation equation (5.3). dimensional "tube geometry" for both a model

(iii) Even though this NLS equation has coef- scalar[ 11 and full vector [7] optical field. In
ficients which depend upon z, the intensity I is [ I ] we show that in the tube geometry, the two
independent of z and can be viewed as a param- dimensional scalar model captures the essential
eter which is controlled by the input laser beam. physics of both the filamentation and the trans-
However, perhaps the most important conse- verse undulation of the laser beam. The latter is a
quence of this boundary layer analysis follows new phenomenon. In order to describe polariza-
from the combination of the inner beam equa- tion effects, which are certainly absent in these
tion (5.7) with the scaling law (5.6). Together, scalar models, we have studied a full (but two
these imply that, in the absence of scattering dimensional) vector system in the tube geome-
losses, the self-focusing process terminates on try [71. In this study we identify properties of
the scale x •- 0(y-I = k-2/ 3 ). the undulation process that are distinctly polar-



126 D. W. McLaughlin et al. / Light interacting with liquid crystals

ization effects. References
Taken together, these experimental, numer-

ical, and theoretical studies establish that the [I E. Braun, L.P. Faucheux, A. Libchaber, D.W.
light-nematic system is an excellent source of McLaughlin, D.J. Muraki and M.J. Shelley,

Filamentation and undulation of self-focused laser

complex, nonlinear spatial patterns. Further- beams in liquid crystals, Europhys. Lett. (1993), in

more, our studies show that coupled nonlinear press.
pde descriptions of light-nematic interactions [21 E. Braun, L.P. Faucheux and A. Libchaber, Strong self

focusing in nematic liquid crystals, Phys. Rev. A 47
are indeed accessible theoretically, through (1993).
boundary layer asymptotics implemented nu- [31 P. Collings, ed., Liquid Crystals (Princeton Univ.

merically. Press, Princeton, 1991).
[41 P.G. de Gennes, The Physics of Liquid Crystals

(Clarendon , Oxford, 1974).
[5] N.V. Tabiryan, A.V. Sukhov and B. Ya. Zeldovich,

Acknowledgements The orientational optical nonlinearity of liquid crystals,
Mol. Cryst. Liq. Cryst. 136 (1986) 1.

[6) Paul Manneville, ed., Dissipative Structures and Weak
We gratefully acknowledge Erez Braun, Luc Turbulence (Academic Press, Boston, 1980).

Faucheux, and Albert Libchaber, who have [71 D.J. Muraki, D.W. McLaughlin and M.J. Shelley, Laser

introduced us to liquid crystal self-focusing light interacting with nematic liquid crystals, in

through their elegant experiments, and with preparation (1992).

whom we have enjoyed many hours of intense
collaboration.



Physica D 68 (1993) 127-134 
i M

North-Holland

SDI: 0167-2789(93)E0176-C
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Travelling wave solutions are found to be the natural nonlinear modes of wide aperture two-level and Raman lasers
for frequency detunings to the positive side of the pin peak.

1. Introduction

Complex pattern formation is commonly observed in spatially extended, continuous, dissipative
systems which are driven far from equilibrium by an external stress. Under the influence of this
stress, the system can undergo a series of symmetry breaking bifurcations or phase transitions and the
resulting patterns become more and more complicated, both temporally and spatially, as the stress is
increased. Examples abound in ordinary and binary fluids, in liquid crystals and chemically reacting
media [ 1]. Optical systems, both passive and active, are no exception and considerable effort has been
expended recently to predict [2, 3] and observe [4, 5] pattern forming instabilities in both passive
and active nonlinear optical systems.

The plan of the article is as follows. In the next section we introduce the laser models, compare
and contrast their physical characteristics and briefly review their bifurcation behavior. An important
conclusion will be that both laser models admit an exact finite amplitude travelling wave solution
for positive detuning (92) of the laser and a homogeneous solution for negative detuning. A weakly
nonlinear analysis near threshold for lasing in the following section yields a coupled set of amplitude
equations of the complex Newell-Whitehead-Segel type when £Ž > 0. Linear stability analysis of
this latter set shows that the travelling wave solution arises from an instability of a standing wave.
The very simple form of this exact solution allows us to extend the analysis beyond threshold and
derive an equation for the evolution of the phase. This yields analytical expressions which predict the
coexistence of stable, Eckhaus and zig-zag unstable regions beyond lasing threshold. We next provide
some preliminary numerical results which confirm that the wide aperture Raman laser exhibits weakly
turbulent behavior, whereby instabilities on an underlying travelling wave can spontaneously nucleate
seas of optical vortices and oil-like structures. The physical manifestation of the travelling wave
solution is a strong off-axis emission of the laser. Finally we conclude with some comments on ongoing
and future work.

2. Two-level and Raman lasers: background theory

The essential difference between the two lasers lies in the method of pumping employed in order to

achieve population inversion. Figure 1 shows a schematic of the energy level schemes and pumping

Elsevier Science Publishers B.V.
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Fig. I. Energy level diagrams depicting pumping schemes Fig. 2. Stability and instability regions for the nonlasing
for a (a) two-level and (b) Raman laser. solution in (As, rc) parameter space. (a) Two-level and (b)

Raman laser.

mechanisms for both lasers. The pump is the principal stress parameter for the problem. Inversion for
lasing in a two-level laser is created via incoherent pumping (electrical/flashlamp discharge, collisions,
etc.) whereas, in the Raman laser, a classic three-wave interaction involving two optical and one
material wave, introduces a strong coherence between the pump wave (amplitude A) and the laser
emission field (amplitude e). Figure la shows incoherent pumping of a broad upper manifold of levels
with subsequent decay to form an excess of population in the upper lasing level 12). In the Raman
laser depicted in fig. lb, the external pump laser (A) can be detuned either above or below (6 < 0
or > 0) an intermediate dipole coupled level 12) and the laser emission field (e) is generated via the
three-wave interaction. Mirror optical feedback in both cases ensures that the finite lasing emission
field (e) will build up from noise if the external stress parameter r exceeds some critical value re.
The distinction between incoherent and coherent pumping ensures that even the simple single mode
Raman laser exhibits much richer nonlinear dynamical behavior than its two-level counterpart [6].

The mathematical description of both lasers derives directly from the Maxwell equations for the
optical fields and the appropriate material density matrix equations. When appropriately scaled, the
resulting Maxwell-Bloch laser equations can be cast in the form of a generalized set of complex Lorenz
equations for each laser.

Case A. Two-level laser:

el - iaV 2e = -ae + ap, Pt + (I + iS2)p = (r - n)e, n, + bn = ½(e*p + ep*), (1)

with £Ž = -A,.
Case B. Raman laser:

et - iaV2e= -oe + ap + iOen, pt + (I +iQ)p= (r - n )e + i. 21e1 2p,

nt + bn = ½(e*p + ep*), (2)

with 92 = -A, + r63.
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The complex laser emission field is denoted by e, the complex polarization field by p and the
real population inversion by n. The parameter a is proportional to the cavity loss, b is the ratio of
the polarization dephasing to inversion decay rates, A. measures the laser cavity-atomic transition
frequency detuning and r, the principal stress parameter of the system, depends on the nature of
the pumping. Notice that if the parameters 6,, i = 1,2, 3 appearing in eqs. (2) are set to zero, both
problems are mathematically identical. The transverse Laplacian operator V2 = (02/Ox2 + a2lay2)

includes the transverse degree of freedom allowing for pattern formation. The coefficient a, which
is the inverse of the Fresnel number, measures the characteristic width of the transverse aperture of
the laser. The most significant new physics in the Raman laser is the A.C. Stark shift, which appears
in the set (2) as a nonlinear detuning term proportional to 62. As mentioned earlier, the additional
terms proportional to Si, i = 1, 2, 3 appearing in the Raman laser model, substantially modify the
bifurcation behavior of even the simplest single mode laser [61, making it one of the earliest laser
systems showing evidence for chaotic dynamics [7].

Some of the more important simple solutions to eqs. (1) and (2) and their associated bifurcation
behavior will now be briefly reviewed. Both models admit a trivial (nonlasing) solution (e,p, n ) = 0,
whose linearization differs only in the dependence of the detuning parameter 0 on the stress parameter
r for the Raman laser (case B). The stability characteristics of this solution are succinctly captured in
the (As, rc) plane, as shown in fig. 2 for both cases. The laser oscillation frequency and stress parameter
at onset of lasing are given by the formulas

v, = (arQ, + ak 2 )/(ci + 1), r, = I + (Qc-ak2 ) 2 /(a + 1)2 (3)

with •2, = -As (case A) and 92c = -A, + rt63 (case B). An important point to note is that for
02 < 0, the homogeneous state (k = 0) has the lowest threshold (rc = 1 + S2c2/ (c + 1)2), whereas
for 92 > 0 the mode with ko = ± V--c/a has the lowest threshold. The formula for the laser frequency
v, which is a simple generalization of the classic frequency pulling formula, has the obvious physical
interpretation that, for 02 > 0 the laser will seek to develop some transverse pattern that minimizes
the detuning, thereby maximizing the emission. In a large aspect ratio system one might anticipate
the spontaneous formation of local patches of patterns with random relative orientations.

When r > r,, the two-level laser undergoes a supercritical (Hopf) bifurcation to a spatially homo-
geneous lasing state for Q < 0 or to a stable travelling wave state (e,p, n) = (jeiO, Te',71), 0 =
k • x + cot for •2 > 0 with

= b(r-rc)e-i f', T = [ -i(vc/a) Vb(r-rc)leivct, r = rc,

and co = -(ar + 1)- (042 + ak 2 ). In the Raman laser a similar transition to a homogeneous (2 < 0)
or travelling wave (92 > 0) state is observed although in this case the bifurcation may be sub- or
supercritical. The lasing emission intensity j2 (can be assumed real) is now given as the solution to
the following quadratic equation in F2,

(]- --- 52) 4+ [2(92-ak2) (--J2) + (1 Ct r) 2 ]2 + (•2-ak 2 )2 - (r- + 0,)2b b b/-k (-1( t)

=0

with
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wave vetor k D2 > 0.

0o= (Or + I )-I [a52F2 - aD - ak2 + JIF2/b], = F2/b, FO (+ ia),

where

a =(a + I)- IF2(62 - 611b) - (12 - ak2)].

It is a straightforward matter to show that the bifurcation to this state will be subcritical if the condition
2 (f2-ak2) (Jj/b-$2 ) + (or+ 12)1b < 0 is satisfied. Moreover, it can be shown using weakly nonlinear
analysis near onset that this exact travelling wave solution appears as an instability of a standing
wave. This point is discussed briefly in the following section. Numerical integration of both sets of
laser equations ( I) and (2), for one transverse spatial dimension and a variety of initial conditions
suggests that the above travelling wave with ko = VII- is a globally attracting state of the system
for 92 > 0 [8].

For illustrative purposes, we show in fig. 3 the neutral stability curve in the (r, k) plane, indicating
the region of existence of the travelling wave solution and its stability characteristics for the case of
the Raman laser (case B). Observe the coexistence of Eckhaus, zig-zag unstable and stable travelling
wave domains. Our parameters were chosen to be identical to those used in ref, [ 6] with the additional
diffraction parameter a = 0.05. Along the curve (- - ) the bifurcation is subcritical and the curve
( --- ) denotes the maximum emission amplitude of the laser satisfying a2 = ak4. Note also that the
lasing emission threshold for the travelling wave is substantially lower than for the homogeneous state.
The Eckhaus, zig-zag and stable boundaries can be determined analytically from the phase equation
presented in the following section. We remark that the relative disposition of these boundaries depends
strongly on the sign of 6•. The stable travelling wave region is the optics analog of the Busse balloon
relevant to pattern formation in large aspect ratio fluids. A further comment is in order with regard
to the distinction between I1D and 2D instabilities in these laser systems. In I D, the zig-zag instability
is absent and only the Eckhaus remains. We therefore expect to observe a fundamental difference
between I D and 2D pattern forming instabilities. We will explore further the natures of the 2D pattern
forming instabilities when we discuss some numerical solutions to eqs. (2) later.
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Fig. 4. Neutral stability curves for (a) 12 > 0 and (b)
(8) 0<0 (b) a >0 £ < 0, applicable to both types of laser.

3. Near and beyond threshold behavior. amplitude and phase equations

Neutral stability curves, corresponding to negative and positive detuning respectively, are sketched
in figs. 4a and 4b and apply to both laser models.

We now specialize to the Raman laser (case B) and assume Q2 > 0 as this case offers the richest
phenomenology. Carrying out the weakly nonlinear analysis near threshold along the lines described
in refs. [8, 9] for the two-level laser, we arrive at the following coupled complex Newell-Whitehead-
Segel equations describing pattern formation near the onset of lasing,

( _.__O)B + a - 8 iaV B + )2 k2irv + a' )'BIat + a-W1 ) 2B!a

= r(r- l)BI [(0 + i63 )- (b i (52 + A-)) (IBI12 + 21B212)],

(ci+l)O B2 [-2W-OB2 iV2 2 + a2  (_2it 0 02)\2
at V a-x (+51) 2 k V a x+ -2 2

= o(r- 1)B2 [(0 + i- 3 ) - ( - i (5 2 + (1B212 + 21B.12)], (4)

with 12 = -J, + 63 > 0. Setting 6i = 0, i = 1,2, 3, we recover the coupled complex Newell-
Whitehead-Segel equations for the two-level laser near onset given as eq. (6.246) in ref. [9]. These
coupled amplitude equations are generally valid near threshold for the two-level laser with 12 > 0
but their validity is restricted to the case where the bifurcation in the Raman laser near threshold is
supercritical and 92 > 0. It can be shown for both cases that the standing wave solution BIB, = Ib is
unstable to a travelling wave solution [8 1. These latter waves are seen to move with the group velocity
vs = +(2 Vra-. / + 1).

By using the exact travelling wave solution above threshold (e, p, n ) = (F eiG, T eiO, J), and assuming
that the amplitude is slaved to the phase, we can derive an evolution equation for the phase 0 itself,

1 - I (2ak2( + . d22 d+.+ 4s(k) d k2
T- (k)-•X "Ik- ae(x, + x1 ) + k) Oxx

a- (x + x*)F)0.,
n (k)
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where

x1 + x• = (2Q/u) [a + (b62 - 61/)a 2 -0(b6 2 + ji/a) -_ 62 2 (1 - 26ia/a)1,

r(k) = -(21 2/a)[1 + a + 2a(b62-6 1 )],
&2 a6 a2 ) _e2 + 2-2P2(

+ - ( lJ + 3F (62l + a .b2-ý'
+ 92 -ak2 (I (ab62 - ) ý - 2a . 6

This rather complicated expression enables us to determine analytically the boundaries for phase
instabilities and compare those with results obtained from the exact problem and amplitude equation
approximation.

4. Numerical simulations beyond threshold

We have numerically integrated eqs. (2) for the Raman laser using parameter values which yielded
fig. 3, for a variety of initial conditions both without and with a weak external probe beam. The idea
with the external probe is that it may be possible to injection lock local spatial domains of the wide
aperture laser in a controllable manner. Choosing the pump parameter A = 3.0 (see fig. 3) and initial
data corresponding to a plane travelling wave with wavenumber lying in the stable band, confirmed
that the travelling wave was indeed stable. If a weak external probe is applied so as to favor the zig-zag
instability, which occurs at right angles to the travelling wave direction, we observe the appearance of
a rather robust solitary wave train as an alternating dark/bright pattern.

Figures 5A and 5B show a sequence of frames from a movie of the near- and r-field output cross-
section of the laser, when the pump A = 3.0 and the field is initiated from noise. The sequence
of frames (a)-(f) in fig. 5A shows the build-up from noise (random pattern) to a finite amplitude
emission consisting of a sea of optical vortices and bright ridges which arise from a combination of
Eckhaus and zig-zag instabilities. The bright ridges are aligned at right angles to the direction of the
travelling wave which is moving from the top left to bottom right of each frame. This complicated
spatio-temporal pattern persists indefinitely in time with no sign of any regular recurrence. The far-
field emission shows the initial appearance of a weak far-field ring with radius equal to the value
k = k, at threshold. As the amplitude grows the ring expands slightly consistent with the fact that the
wavenumber k increases as one moves above threshold. The ring in the far-field signifies the absence
of any preferred direction due to the degeneracy in the local plane wave directions. Once the amplitude
becomes significant the travelling wave starts to choose a fixed direction and the emission adjusts to a
reasonably well-defined spot off-axis. This off-axis spot remains intense with a randomly fluctuating
lower amplitude background indicative of a weakly turbulent state of the laser emission.
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(a) (b) (C)
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(a) (b) (C)

(d) (e) (f)

B. FAR-FIELD EMISSION

Fig. 5. (A) Frames from a movie showing a succession of trasnsverse pattern evolutions from noise in the near-field. (B)
Far-field emission corresponding to each near-field frame in (A).
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5. Conclusions

Both two-level and Raman wide aperture lasers are capable of displaying a rich variety of pattern
forming instabilities. The nonlinear detuning term in the Raman laser is responsible for promoting
a broader range of instability behavior than can occur in the two-level laser. The nature of the in-
stability depends on the transverse dimension of the laser system and it is anticipated that much of
the spatio-temporal behavior of these lasers will carry over to technologically important wide aper-
ture semiconductor laser systems. The latter systems require a much more complicated material de-
scription, involving many-body interactions between carriers and holes at the microscopic level and
a major challenge that remains is to derive order parameter equations near onset that are capable of
predicting and suggesting means of stabilization of novel pattern shapes in a broad area and vertical
cavity surface emitting semiconductor lasers.

Acknowledegement

The authors wish to thank the Arizona Center for Mathematical Sciences (ACMS) for support.
ACMS is sponsored by AFOSR contract FQ8671-9000589 (AFOSR-90-0021). J.V.M. and J.L. ac-
knowledge partial support for this work through a European Community Twinning grant SCI*0325-
C(SMA).

References

[ 1 I A.C. Newell, T. Passot and J. Lega, Order parameter equations for patterns, Annu. Rev. Fluid Mech. 25 (1993), to appear.
[21 R. Chang, W.J. Firth, R. Indik, J.V. Moloney and E.M. Wright, Three-dimensional simulations of degenerate

counterprogating beam instabilities in a nonlinear medium, Opt. Commun. 88 (1992) 167.
[3] P. Coullet, L. Gil and F. Rocca, Optical vortices, Opt. Commun. 73 (1989) 403.
141 F.T. Arecchi, G. Giacomelli, P.L. Ramazza and S. Residori, Vortices and defect statistics in two-dimensional optical

chaos, Phys. Rev. Lett. 67 (1991) 3749.
[51 D. Hennequin, C. Lepers, E. Louvergneaux, D. Dangoisse and P. Glorieux, Spatio-temporal dynamics of a CO2 laser,

in: XVIII International Quantum Electronics Conference Technical Digest, Vienna, June 14-19, 1992.
[6] R.G. Harrison, W. Lu and P.K. Gupta, Origin of periodic, chaotic and bistable emission of Raman lasers, Phys. Rev.

Lett. 63 (1989) 1372.
171 R.G. Harrison and D.J. Biswas, Demonstration of self-pulsing instability and transitions to chaos in single-mode and

multi-mode homogeneously broadened Raman laser, Phys. Rev. Lett. 55 (1985) 63.
18] P.K. Jakobsen, J.V. Moloney, A.C. Newell and R. Indik, Space-time dynamics of wide-gain-section lasers, Phys. Rev. A

45 (1992) 8129.
[9] A.C. Newell and J.V. Moloney, Nonlinear Optics (Addison-Wesley, Reading, 1992).



Physica D 68 (1993) 135-137
North-Holland

SDI: 0167-2789(93)E0177-D

Applications of self-trapping in optically coupled devices

G.P. Tsironis, W.D. Deering and M.I. Molina
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We present two generalizations to standard optical coupler configurations. Both cases show improved switching
characteristics.

The switching characteristics of nonlinear di- self-phase modulation coefficient, the "phase"
rectional couplers have been the object of at- On is the wavenumber of the field along the direc-
tention since the work of Jensen [ 1] and Maeer tion of propagation in the nth waveguide and P is
[2]. These authors demonstrated the possibil- the total power injected into the waveguide sys-
ity of an all-optical switching in a two wave- tem at z = 0. Power conservation (E, laI 2 =

guide device based on the occurrence of power- P) requires Vn,,+I = V.*n. The transforma-
triggered switching (power self-trapping). The tion c,, = an exp(iin z )/v' reduces system (1)
present study will focus on means of improving to
the switching profile and decreasing power lev- dcV -

els required for the device to operate by consid- i =dz C, + Vn,,Cn-I + Vnlc,,i
ering direct extensions of Jensen's original idea. d1 (2)

Consider a one-dimensional array of N (differ- -XniCnI 2Cn,
ent) nonlinear directional couplers. The nonlin- where 6n = C. - On, X, = PQn and En Ic"I2 =

ear waveguide medium is assumed to be of the 1. Note that in eq. (2) the "phases" Okn play the
Kerr type, i.e., with refractive index given by role of local "self-energy" terms or local "site en-
ni = noi + n2dIEi12 where n 0i is the linear in- ergies".
dex of refraction of the ith guide, n2i is its Kerr System (2) is a fairly general form of the dis-
coefficient and Ej is the electric field inside the crete nonlinear Schr6dinger equation (DNSE)
guide. Treating the system in the coupled-mode or discrete selftrapping equation introduced by
approximation and restricting each waveguide Eilbeck, Lomdahl and Scott in the context of
to separately support a single mode only and ne- coupled nonlinear oscillators [ 3 1. In most cases
glecting cross-phase modulation, the equations of physical interest, systems of identical wave-
for the mode field amplitudes a, are guides are considered, in which case 6n = 6,

Vn,n-I = Vn,n+i = V and Xn = X. In Jensen's
idan, + V 1  expli(OI - O)z]a 1  two identical coupler device (N = 2), in partic-

dz + V - z ular, and for the initial condition which places

+ Vn,n+l exp[i(,n+l - qSn)zjan+i all the initial power in one of the guides (say

-Qn a~n2an, (1) guide 1), the exact solution shows the pres-
ence of a "dynamical" self-trapping transition

where n = 1,2,..., N, En is a self-energy term, [1,2,4]. For values X/4V < 1 there is a complete
Vn,n,- 1 and Vn~n +I are nearest-neighbor coupling transfer of power between the two guides in a
coefficients. The nonlinear coefficient Qn is the trigonometric-like fashion, while for X /4V > 1,

0167-2789/93/$06.00 (@) 1993-Elsevier Science Publishers B.V. All rights reserved
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Fig. 1. Nonlinear two-waveguide with phase mis-
match: space-averaged transmittance difference T, - T2  1.0
= (IcI 12) - (Ic2 12) versus power (x) for several phase mis- "strappe"
match values (4) (V= I ).

the transfer is incomplete and the power re-
mains trapped in the original waveguide. Let us 2.0 V =

now consider a simple extension of the above
system: two guides with different linear indices W
of refraction but rather similar Kerr coefficients. Fig. 2. Dynamical phases for the DNT system as a func-
Since the waveguides are dissimilar in this case tion of the linear coupling W and power X. The regimes

the propagation properties of the fields in the labeled "free", "chaotic" and 'self-trapped", refer to com-
plete, chaotic and incomplete power transfer, respectively.

two guides are different, resulting in a non-zero The top half of the figure displays the case for V and W

phase mismatch 02 - 01 # 0 in the system of negative while the lower half is for V and W positive [7 1.
equations (1). The resulting set of equations
is deceivingly complicated since these equa- tion at X/4V = 1. For A < 0, the position of
tions can be written equivalently in the form the transition shifts to lower power levels, while
presented in eq. (2), leading to for A > 0, the tendency is reversed and more

power is required. A phase diagram illustrating

idcl VC2 -XlC
2CI, the different regimes of behavior can be found

dz in ref. [6].

idc2 = 4c2 + VcI -X c212c2. (4) Another simple variant of the Jensen model
dz is the doubly nonlinear trimer (DNT) system:

Assuming for simplicity = C2= 0 We O- two identical nonlinear waveguides interacting

tain A = 32 - 61 = 01 - 0k2 as the effective with a third linear guide in a closed configura-

mismatch between the two guides. Equations tion [71 (61 = 62 = 63, XI = X2, X3 = 0). In

(3), (4) represent the exact equations of mo- practice this could be achieved by placing three

tion for a nonlinear nondegenerate dimer [5,6 1. waveguides in a triangular array with (nonlin-

Figure 1 shows numerical simulation results for ear) guides 1 and 2 in close proximity and (lin-

the space-averaged difference in transmittance ear) guide 3 symmetrically below the mid point

(IcI 12) _ (Ic212) as a function of X (proportional of the line joining the other two. The equations

to the input power P) for several values of A for the field amplitudes are

for cl(0) = I and c2 (0) = 0. For A = 0 we idc,
have the degenerate dimer self-trapping transi- 1 Vc2 + Wc3 - lc112cI, (5)
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.dc2  tion of ultrafast all-optical switching devices at
-= Vc + Wc3 -XdC21 2c2, (6) reasonable power levels.

idc-= W(cl + c2), (7)dz

where W is the coupling to the linear guide. Nu- Referene

merical simulations show that the self-trapping 1I] S.M. Jensen, IEEE J. Quant. Electron. QE-18 (1982)

transition is sustained in the presence of the third 1580.

linear guide. Furthermore, by a judicious choice [21 A.A. Maier, Sov. J. Quantum Electron. 14 (1984) 101.

of the value of W, the transition can be tuned to (31 J.C. Eilbeck, P.S. Lomdahl and A.C. Scott, Physic& 16
D (1985) 318.

occur at much lower input power levels (fig. 2). [41 V.M. Kenkre and D.K. Campbell, Phys. Rev. B 34

The study of simple extensions and modifi- (1986) 4959;

cations to Jensen's original device demonstrates G.P. Tsironis and V.M. Kenkre, Phys. Lett. A 127
(1989) 209.

that it is indeed possible to improve on the char- [5] A.C. Scott, Physica Scripta 42 (1990) 14.
acteristics of that device. In particular, lower [6] G.P. Tsironis, Phys. Lett. A 173 (1993) 381.

power and reasonably abrupt switching are pos- [7] M.I. Molina and G.P. Tsironis, Phys. Rev. A 46 (1992)

sible in the context of the models we described 1124;
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is a positive step in the direction of the fabrica-
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The quantum inverse scattering method is used to solve the spectral problem of the discrete self-trapping dimer,
in the case of both a quadratic and a linear r-matrix algebra representation. The first case is solved by the algebraic
Bethe ansatz, while in the case of the linear r-matrix algebra we use the method of separation of variables. In this last
case it is shown that the wave functions of the quantum discrete self-trapping dimer are related to the solutions of a
Heun's type equation and that the system is equivalent to the two-site hyperbolic Gaudin magnet separable in elliptic
coordinates.

1. Introduction

During the past years the quantum inverse scattering method (QISM) has been shown to be a very
powerful tool in the field of quantum integrability. This method was used to perform the exact quan-
tization of several nonlinear field theories of physical interest such as nonlinear Schrodinger, sine-
Gordon etc., and provides a unifying bridge with the works of Bethe, Yang, Baxter, etc. on solvable
lattice models of statistical physics [7,13 1. Besides this, the QISM has shown to have interesting links
with the theory of factorizable S-matrices, braid groups and the newly born discipline of quantum
groups. In the context of quantum integrable systems the QISM is used to find the common eigen-
vectors and the eigenvalues of the quantum integrals of motion. The method consists in including a
commutative subalgebra of operators, corresponding to the quantum integrals of motion, in some as-
sociative algebra of generators Tp (u) (a, ,8 = 1 d) satisfying the following quadratic R-matrix
relation:

R(u-v)Ti(u)T 2 (v) = T2 (v)T 1(u)R(u-v), (1.1)

or the linear r-matrix relation

[T, (U), T2 (v)] = [r(u - v), T, (u) + T2 (v)], (1.2)

with

T1 (u) = T(u)W id, T2 (v) =id® T(v). (1.3)

Here T(u) denotes a (d x d) matrix with q-numbers (operator) elements, id is the unit (d x d)-
matrix, R(u) and r(u) are (d 2 x d 2 ) c-number matrices which satisfy, respectively, the quantum and
classical Yang-Baxter equations [7]. The matrix T (u) is the monodromy matrix (or Lax operator)

0167-2789/93/$06.00 @ 1993-Elsevier Science Publishers B.V. All rights reserved
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and the commutative subalgebra is simply the one generated by the trace of T(u) in the quadratic
case and by the trace of T2 (U) in the linear case. Sometimes it is possible to include the family of
integrals of motion into both linear and quadratic algebras. In this case two different Lax operators
for the system must exist. Below we shall restrict ourselves to the case d = 2. By fixing R and chosing
a representation of the associative algebra (1.1) (or (1.2)) one has an integrable quantum system
whose spectral problem can be solved by purely algebraic means.

The method of solution, however, may depend on the particular representation (L-operator) chosen
for the algebra of generators. Two principal methods exist to solve this problems. The first one is the
so-called algebraic Bethe ansatz (BA). This technique is only applicable when the representation of
the algebra of generators

T(u) = (A(u) B(u)) (1.4)

does possess the highest vector 10) (pseudovacuum) such that

BI0) = 0. (1.5)

The application of this method however does not automatically guarantee the completeness of the ob-
tained solutions (it is however believed that the cases in which completeness problems arise constitute
a set of zero measure).

The second method is the functional BA, also called the method of separation of variables, which
was originally introduced by Sklyanin [20,211. This method does not depend on the existence of the
pseudovacuum and has the advantage of avoiding the completeness problems.

The aim of the present paper is twofold. First, we show on a concrete example how one uses in the
QISM the above methods to calculate the eigenvalues and the common eigenvectors of the quantum
integrals of motion. To this end we will use as a working example the quantum discrete self-trapping
(QDST) dimer [3,2,19,18 1. This system was introduced by Scott and has been shown to be completely
integrable in terms of a Lax pair related to a quadratic R-matrix algebra [ 5 1. In this representation
there exists the pseudovacuum so that the algebraic BA can be applied. Second, we present new results
on the QISM analysis of the QDST dimer. More precisely, we show that it is possible to construct
a different Lax pair for the QDST dimer which is related to a linear r-matrix algebra. In this case
the representation space does not contain the pseudovacuum state so that the method of separation
of variables must be used. These features make the QDST dimer to be an ideal system on which the
different ansatze used in the theory of quantum integrability can be tested and compared. The proposed
paper is devoted exactly to the discussion of these questions. As a result we show that in the case
of linear r-matrix algebra the resonant QDST dimer is equivalent to the hyperbolic Gaudin magnet
[8] and the eigenfunctions of the integrals of motion are expressed in terms of generalized Hermite
polynomials or confluent Heun's polynomials [ 1, 10,12,16,17,23,24]. To this end we use the technique
developed in refs. [ 11, 14,151 to show that the QDST dimer separates in terms of elliptic coordinates.
We note, that confluent Heun's polynomials also appeared in the quantum two-dimensional Coulomb
problem which was presented in details in the book [ 121 and we think it is remarkable that the
eigenfunctions of the QDST dimer are expressed in terms of them. This result is also compared with
a direct solution of the eigenvalues problem of the QDST dimer in terms of su (2)-variables.

The paper is organized as follows. In section 2 we recall the quadratic R-matrix algebra for the
QDST dimer and the algebraic BA is briefly reviewed. In section 3 a new Lax operator related to a
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linear r-matrix algebra is introduced. In section 4 we show how the method of separation of variables
allows to solve the spectral problem of the QDST dimer. Finally, in the last section, we check the
results of section 4 by expressing the QDST Hamiltonian in terms of su (2)-variables and performing
an alternative analysis of our problem in functional space.

2. Quadratic R-matrix algebra for the QDST dimer

The QDST dimer is defined by the following integrals of motion: the energy H and the particle
number N [ 18 1,

H 2 21 (b~b, -b~b2) + N + (o, - ½y)btb, + (02- jy)btb 2 -e(btb 2 + btb1 ), (2.1)

N = btb, + b2b 2, (2.2)

where bt and bi are creation and annihilation operators satisfying the boson commutation relations
and y, e, w•, i = 1, 2, being real parameters. The corresponding system represents a two degrees of
freedom integrable Hamiltonian system with equations of motion given by

hi= [H,b,], bt = [H,bt], i = 1,2. (2.3)

In the classical limit, these equations were shown to be exactly solvable in terms of elliptic functions
18 1. In ref. [ 51 the QDST dimer was analized within the QISM on the background of quadratic R-

matrix algebra defined by the principal relation ( 1. 1) with d = 2. It was found that the R-matrix for
QDST has the simplest rational form

(U) 0 0 0

R(u) 0 g (u) ) (2.4)0 g (U) 1 0
0 0 Ofu))

with

f (u) = (u- iy)/u, g(u) = -iy/u. (2.5)

The L-operator of the system is given by

L(u) = L(=)L ( A(u) B(u) (2.6)
= C(u) D(u) '

where L(m) are the matrices

L(m) (u) (U -i(ybmbn +r+com) v/e-bm)i , m = 1,2. (2.7)

In this representation the pseudovacuum vector 10), satisfying the relations

(OIB = 0, Bao) = 0 (2.8)
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exists so that the spectrum of the generating function of the quantum integrals of motion (i.e. the
trace of L (u)) can be computed by the algebraic BA. Here we recall the main ideas of this analysis,
referring to refs. [5,61 for more details. In the algebraic BA a crucial role is played by the so-called
Bethe equations

a(uk) ii f(Uk -u- (2.9d(Uk) - 1'1 f (Ukuj U), k = I .... n, (2.9)
d(Uk) J = .jok f(uj - Uk

with a (u) and d (u) given by

A(u)10) = a(u)jO), D(u)10) = d(u)10). (2.10)

If this set of equations is satisfied, then the eigenfunction of the trace operator A (u) + D (u) can be
constructed as

n

IT(,...,)) = -IB(uj)10), (2.11)
j=l

where n is the number of quanta and uj,j = 1,..., n, are the Bethe parameters. The eigenvalue t(u)
of the trace operator

(A(u) + D(u))IVP(ul,..., u,)) = t(u) Ii(u, ..... u,,)) (2.12)

is given by the formula

u1n-iI(u-u+i) 
1  (u-uj - iY)

I W =a(U) 1=I(u-Uj) +d(u) H1  (u -u) ' (2.13)iri n I(u - u j) jn,(U j

with u .... u,n satisfying the the Bethe equations

a(uk) = -d(uk) IJ Uj - Uk + iY k = I,-,n. (2.14)
j9k U-- Uk-- i'

a(u) = [u-i(to, - Jy)][u-i(0)2- 2y)1, d(u) = e2. (2.15)

The Hamiltonian operator can be written in terms of the trace operator as

y, = j dtrL(u) -trL(u) -e 2 + 1(01 - 17)2 + 1(0 2 - rY)2. (2.16)

The energy levels Ek are given by the formula

yEk = [ d(•t(U) )-t(u) _e 2 + (w)-y) 2 + 9( + 2 -I y) 2 . (2.17)

To find the energy levels Ek it is convenient to rewrite (2.13) in the form (41

t(u) =a(u)-e 2 + Fi - -,n (2.18)lj=1 (u - uj)'
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where the polynomial On + I (u) of degree n + 1 equals

n

-C I(U-j + Y H(2.19)(h2 (u-uJ +iy) - I(u-uj)). (.9
\j= 1 j=l

An alternate expression for 0,, +1 (u) is

n

On+1 (u) = (-inyu + fin)fl-(u - uj), (2.20)
j=I

where fi,, is a new parameter. Equating coefficients of powers of u between (2.19) and (2.20) leads
to the condition det(flI + P) = 0 [4], where I is the (n + 1 ) x (n + 1) unit matrix and P is the
(n + 1) x (n + 1) lower Hessenberg matrix,

qo,,, -iy 0 0 ... 0

qjn q,,,n-I -2iy 0 ... 0

P- q2,n q2,n-I q2,n- 2 -3iy ... 0 (2.21)

-niy
Sqn,n qn,n- I qn,n- 2 ... • qn,o

with the matrix elements q m, 1 = 0, .... n given by the formula

qm'n-=-(m0-M )(-iy)m-1- 2 n( [-2) - 4,n1-210Y( 2)1
( n- -[l-mn - 2O -1)

iO - 1) (W I + (02 - y) (-iy)m- ( - m- ) 1 I

+( -iy)m -O(m -1 )[ 1(02 - 'Y(C1 -I + OJ2 ) + +y2 + (-l)m-l.2]

x n -1mt) (2.22)

From the n + 1 characteristic values P,(k), k = 1,-, n + 1, one finally obtains the energy levels of
the QDST dimer as

Ek = n(co, + (02 ) - 'n(n + 2)2y - fink)/y. (2.23)

The proposed method works effectively for the calculation of the energy levels for small numbers of
quanta; the explicit formulae are in refs. [5,6].
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3. Linear r-matrix algebra for the QDST dimmer

In this section we introduce a new Lax operator for the QDST dimer related to a linear r-matrix
algebra. The existence of another Lax representantion is an interesting phenomenon which is related to
the possibility of constructing the different bases in the space of quantum states. In this representation
the QDST dimer becomes equivalent to the two site hyperbolic quantum Gaudin magnet [81 and
the spectral problem for the quantum integrals of motion can be solved by the method of separation
of variables. In order to construct a linear r-matrix algebra representation for the QDST we take as
space of the quantum states the representation space of the direct sum of two su (1, 1) Lie algebras
with generators s,, a = 1,2 satisfying the commutation relations

[si, s#j = -i6 .flejktg9msi, g = diag(l,-l,-l). (3.1)

In the following, the norm and the scalar product of operator vectors s, will always be computed with
respect to the metric g, i.e.

2= (S.,S). (saI) 2 _ (S2) 2 _ (S3) 2 , (s$,sp) = -_ S(.
SO ft = ~#-sý - s,;shj (3.2)

The Casimir operators of the algebra (3.1) have the form s2 = k_ (k. - ),with k. = 1, 1, 2, 5.
for discrete series representation, while kI, vary continuously from zero to infinity, 0 < k,, < oo, for
representation of the universal enveloping algebra siu (l, 1).

In terms of these variables the L-operator of our system is introduced as

L(u) = (o,L(u)) A- (u) -A(u))' (3.3)

where L (u) is the operator vector

L(u) = u-a + s - 0 (3.4)

and a denotes the su( 1, 1 ) generators in 2 x 2 representation

I '= (00 1 )'- a2 = (00-1)' r3 = -oi 0).

It is easy to check that the L-operator (3.4) obeys the following linear r-matrix algebra:

[LJ(u),Ll(v)] = -fj-- g-. (L'(u)-L m (v)), j,k,1,m = 1,2,3. (3.5)
U

This expression can be rewritten in matrix form as

[LI (u),L 2 (v)] = [r(u-v),L,(u) + L2 (v)], (3.6)
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with the matrix r(u) being proportional to the permutation matrix as

1000

r(u) = 1 0 10

(0001

In (3.6) the notations for Li are the same as in (1.3).
By defining the quantum determinant of the L-operator as

detL(u) = -L 2 (u) = -A 2(u) - ½{B(u),C(u)}, (3.7)

where the brackets {., .} denote the anticommutator, one can construct the following commutative
algebra:

[L 2(u),L 2 (v)] = 0. (3.8)

We have then

S2S 2  H1  H 1
1 2 + H + H2 I

L2(u) - (u- a) 2 + (u-b) 2  u-a u - b +4 (3.9)

is the generating function of the quantum integrals of motion

H, = a2 (S , S2) -- S1, (3.10)

H 2 = b a($1'S2)SI (3.11 )

The system defined by these two integrals is called the two site hyperbolic Gaudin magnet [ 8,14,20].
In order to make contact with the QDST dimer it is convenient to construct the generators of the
algebra (3.1) in terms of new operators p,,, x," as

1= I(p.+ X), s2 = (p)2 _, S3 = I{p.,X•} (3.12)

with p,, x,, satisfying Heisenberg's commutation relations

[P.,XplI = -iJ.#, [P.,Pe I = [x.,xp I = 0, a,fl = 1,2. (3.13)

One easily checks that for such a realization of the algebra (3.1) the Casimir operators have the value
$2 1-6 ,a = 1,2 (we deal with the metaplectic representation of the su(1, 1) algebra, kc3 = - '3).
Performing the canonical transformation

A = ½(bi+b, +bt+b 2), x, = (bt+b -b,-b 2 )/2i,

P2 = (-bo + bn + bs-b2)/i, X2 = (bs-b2 + b, -b (3.14)

one obtains
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H, + H2 = -1('l+ b'b2 + 1),

2(H1 - H 2) = ( (btb - btb2 )2 + 1)/(a - b) - (bb 2 + btbj). (3.15)

By comparing these expressions with (2.2), (2.1) we see that the QDST system is equivalent to the
two site Gaudin magnet if o, = Co2 and a - b = -4e/y. From (3.3), using relations (3.12), (3.14)
one gets the L-operator of the QDST dimer satisfying the linear r-matrix algebra (3.6).

4. The method of separation of variables for the QDST dimer

The Lax operator (3.3) introduced in the previous section does not admit the highest vector 10) for
which

B(u)I0) = 0, (O0B(u) = 0. (4.1)

This is due to the presence in (3.4) of the c-number term ½cot( 1, 0, 0). In the method of separation
of variables eqs. (4. 1 ) are replaced by the operator equation

B(u) = 0 (4.2)

for the operator zeros uj of B. If we substitute (by the left) u = uj in (3.3), the L-operator acquires
the form

Lj = L(uj) = (A(uj) 0 ) (4.3)* -A (ud)

from which we see that ivj = A (uj), j = 1,...., n, are the "operator eigenvalues" of L (u). We aim at
solving the spectral problem for the generating function of the integrals of motion, which in this case
is given by the operator determinant

-L 2(u) = detL(u). (4.4)

Since the operation of taking the determinant of L (u) commutes with the substitution u -_ uj we can
express (4.4) in uj, vj variables as

L'(uj) = -v?, j = I,- .. ,n. (4.5)

By using the linear r-matrix algebra for the L-operator, one can prove the following commutators:

[Vi, Uk] = -ibjk, [ui, uj] = [vi, vj] = 0, (4.6)

i.e. the uj and vj are canonical operators. This fact allows to separate the eigenvalue problem for L2 (u)

L 2(u)qP = t(u)T (4.7)

into a set of one dimensional problems

S= t(ui)V (Ui), (4.8)
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with

1= lWiu(). (4.9)

In the following we show how this works for the QDST dimer.In this case the spectral problem has
the form (see (3.9))

L2(U)S/ = t(U)SP HiT = hiVI,
3 3

) T9 T9 h I h2 +(4.10)
(u-a)2  (u-b)2 +u-a +-b 4

The separation variables are determined as the roots of the equation

B(u) = -L 1 (u) + L 2 (u) = 0. (4.11)

In explicit form we have

2 2 ,
Xi X2_=_ 1 (4.12)

u-a u-b

with the roots uI, U2 given by the equations

u, + u2 = c + b + x2 + x2, uIu 2 = ab + bxI + ax2.

Let us introduce the following notation:

O(U)= X12 + X22 (u-u 1 )(u-u 2) (4.13)
u-a u-b b (u-a)(u-b)

Taking the residues in u = a and u = b at both sides of (4.13), we have

2 (u,-a)(u2 -a) 2 (u,-b)(u2 -b)b-a ' a-b (4.14)

These elliptic coordinates uI, u2 in R 2 satisfy the inequalities

a < u, < b < U 2 < 00. (4.15)

For each uj we define the additional variable vj as (the left substitution!)

1 1 (.6

Vj = -iA(uj) = L 3 (uj) = 4(uj- a){X1, P} + 4(uj- b){X2,P2}. (4.16)

The matrix elements of the L-operator (3.3) in ui, vi variables then have the form
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B s= -s s-sI _ 1 (u-u)(u-u 2 ) (4.17)
u-a u-b 2 (u-a)(u-b) '

A (u) = (•i{pX1} {+p2,X2} =2iB(u)(u- D2v2+ u-1 Div , (4.18)
4 u- a 4 u-b kU- U 2  u uDVI(.8

where

(ul-a)(ul-b) (u2 - a)(u2 - b)DU1 - U2 U2 - 19

By using (4.19), (4.13) it is easy to show that

I X2  2 -
Di = ( )2 + X2 >0, i = 1,2. (4.20)

( (i -a)2 (ui -b0 2

Note that the meromorphic operator-valued function A (u) is obtained by interpolation with the data
A (uj) = ivj and the expression for B (u) follows from the definition of the variables uj. By equating
the residues at u = a,b in the r.h.s and l.h.s of (4.18) we obtain

12.( I D22 2 + I Div, (4.21)•{p,,,(e. - U2, e 2, +--' e. - ul

where el = a and e2 = b.
The conjugation properties for the introduced operators have the form:

uý = uj, Djv, = v;D, (4.22)

from which we see that the operators vj are not self-adjoint. From the vj one can construct self-adjoint
operators wj as follows:

w 7 = Vf/--vj = wj V/D, (4.23)

and from (4.23), (4.6), (4.20) one can show that the operators wj, uj are also canonical ones.
Substituting u = uj into (3.9) and taking into the account (3.7) we obtain two operator equalities

3 3
-v2= (ua)2 (u=-b)2 + uaHi + --- b-H2 + 4 , j = 1,2. (4.24)

Acting by the right and left hand sides of this operator equality on TP, which is a common eigenfunction
of H, and H2, we obtain

vJ2' + t(uj)P = 0, j = 1,2, (4.25)

where the function t (u) is given in (4.10). In terms of wj the above equations take the form

wV/YI•!' + t(uj)/ VjP = 0. (4.26)
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Let us demand that the wave function V/ factorizes as
1I • exp[-I(ul + u2 )]4, 0 = •41(u 1 )002 (u2), (4.27)

where the partial functions Oj (uj) are defined on the corresponding intervals (4.15). Note that the
factor I/ýý•/lY2 in (4.27) is connected to the Jacobian of the transformation from the xj to the uj
variables,

Jdet8(x 1,x 2 )/8(u1 ,u 2 )] = 1/VD/b--lD. (4.28)

By substituting (4.27) in (4.26) we obtain the following separation equations:

/ I I \,\
-0"(u) + I- a u-I1b) 0'(u) + h + h )(u) = 0. (4.29)

Here (and below) we have omitted the indices since the O1's satisfy equations of the same form, but on
different intervals. Equation (4.29) is of confluent Heun's type (see, e.g. refs. [ 1,12]), having a and
b as regular singularities and oo as irregular singularity and with the spectral parameters hj, j = 1,2,
given by

hi = h, + 1-/8 (a -b), h2 = h2+ -1/8(b -a). (4.30)

It is worth to remark that although the O's satisfy the same equation they are defined on different
intervals. In order to get the eigenvalues we have to solve two boundary problems, one for the angular
interval a < ul < b and the other for the radial interval b < u2 < 00. Furthermore, both T' and
exp[½ -(-ut - u2 )1•1 are demanded to be square integrable in their variables.

Let us take the following form for the solution of eq. (4.29):

OW(u) = (u--a)k,(u--b)k2O(u), 0 (u) = f(U--Ai), (4.31)
j=--

where ki = 0, ½. These partial functions are polynomials multiplied in some cases by the square root
of u - a or/and u - b. By substituting (4.31) in (4.29) we get the following equation for 0:

-011 _ 2k, +~ 2k2 + _1__ +(ý k 0=0,(.2
u - a u (4.32)

where

Ik + k2 + 4k=/k -2  - Ik2 + k 2 + 4k, k22+ k - 2 a -b 2 ab (4.33)

Equation (4.32) has just polynomial solutions with the zeros Aj satisfying the nonlinear equations

k- + k + - i= l,.+ kn. (4.34)A2i -- 2.j 2 A+ 2- a Ai - b "
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It is possible to prove that the zeros 2, have the following properties (generalized Stieltjes theorem
[221): (i) they are simple, (ii) they are placed along the real axis inside the intervals (4.15), (iii)
they are the critical points of the function IGI,

= exp[-½G(A. + +2A)] II(2P--a)k'+1/4(A0--b)k2+/4 1-(A, -- Ap). (4.35)
p : I r>p

To calculate the eigenvalues,4i we must first solve eqs. (4.34) and then use the formulae

/R I I2k + ) n ,q

ýj = (2k, + ½) 9 2 = (2k2 + I
j=_ j=I

I;.,1 (4.36)+ h2 =-n = h, + h2 + k, + k2 + I.

From (4.36) we see that the spectrum of H, + H2 has the form

(HI + H2 ) = h, + h2 = -(bb + bb)- I = -(n + k, +k 2 + ½) (4.37)

and therefore the spectrum of N is

(N) = 2(n + k, + k2). (4.38)

For each fixed n, k, and k2 (i.e. for each fixed (N)) we have n + 1 different eigenfunctions
0 (u, {,}k•k = I) which differ by the distribution of their zeros among two intervals: (a, b) and (b, oc).
The kth polynomial has k zeros on the first interval and n - k zeros on the second (k = 0,..., n)
and for fixed (N) we have (N) + I eigenfunctions.

Let us take the alternate representation for the polynomial P (u)

n

0 (u) = E"cj(u-a)j, c, = 1. (4.39)
j=0

Equivalently one can take the expansion near another singular point u = b. If we denote u - z,
a - b = i, h = hI, + h = -n, g = i, we have

-z(z + i)O"(z) + [z 2 + z( - 2k, - 2k 2 - 1) - (2k, + )iV]0'(z) + (zh + g)O (z) = 0,

which gives the following three-term recurrent relations for the cj

cj [g - j(j + 2k, + 2k2 - i)]I + cj- I(j - ln) - cj+ ji(j + I) (j + 2k, + 1) = 0,

i = 0,....,n (4.40)

with c- I = cn +I = 0. This equation can be rewritten in the form

Ac = 0, (4.41)
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with A being a three-diagonal matrix which, after symmetrization, reduces to a Jacobi matrix. The
procedure of finding the n + I eigenvalues turns to the problem of calculating of zeros of the charac-
teristic polynomial det A = 0. We remark here that the above prosedure of passing form the solutions
Aj of the (4.34) to the polynomial (4.39) coefficients is analogous to the described in the section 2
derivation of the energy levels on the background of Bethe ansatz for the quadratic R-matrix algebra.

It is easy to get the expressions of qP in terms of the initial variables x,. Let us dispatch the factor
1/,D7D1 to the weight when integrating upon the uj variables, so in xj variables the wave function
P' has the form

n
(X X2) exp[-½(x2 +X2 2k X(k2 I), (4.42)

i=i

where 0(Ai), i = 1,... n, is defined in (4.13) and {li}"=1 satisfy eqs. (4.34). One can verify that
•P is an eigenfunction of the two commuting operators H, and H'2 labelled by the quantum numbers
n, k, and k2 and by an additional index enumerating the n + 1 different sets of solutions for { j Ij__
If x 2 = 0, we have that (4.42) reduces to the usual Hermite polynomials, so our functions are
generalized Hermite plynomials or confluent Heun's polynomials [1,12,17,241. Heun's polynomials
were studied in ref. [ 171 and the confluent Heun's polynomials first appeared in connection with the
two-dimensional Coulomb problem [ 121 and is remarkable that they have also appear in connection
with the eigenfunctions of the QDST dimer.

5. su(2) algebra and QDST dimer

In this section we show that the QDST dimer is naturally related to the su(2) algebra. We use this
fact to check the results of the previous section. To this end, let us introduce the operators

t3 - ½(btb, -2bb 2 ), t+ = t1 + it 2 = btb2 , t- = t- it 2 = btb, (5.1)

with the operators bi, bý satisfying the commutation relations [b, bt] = (i~j [b,,bj] = [bt,b! I = 0.
The operators (5.1) are the generators of the su (2) algebra

[13, t±+ = ±1t, [t+, t- = 23. (5.2)

The Casimir operator is given by

C2 = t3 + ½t+t_ + It4t+ = s(s + 1), (5.3)

where s is the eigenvalue of the operator I (btbl + btb2 ). In terms of the generators (5.2) the Hamil-
tonian of the QDST dimer becomes

H = -yt2 + At 3 - 2et, -s(ys + y - (to + C02)), (5.4)

where A = o01 - (02 and the average of the particle number operator equals

(N) = 2s. (5.5)

If we take the unitary irreducible representation of the su (2) algebra in the vector space C2s +
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t3NS,m) = ms, m), (5.6)

t*ls,m) = V(s:m)(s±m + l)Is, m± 1), (5.7)

where

s -0 ,,1.... (5.8)

then the spectrum of H is simply obtained by diagonalizing a three diagonal matrix. These matrices
were written down explicitly in a number of cases by Scott [ 18 1.

Here we show that the eigenfunctions •P of H and N are the confluent Heun's polynomials, in
agreement with the result of the previous section. To this end we consider the following realization of
the su (2) algebra in the space of holomorphic functions:

t3 = X49X -S, I- = OX, 1+ = -x2ax + 2sx. (5.9)

The operators t+ and t- are adjoint to each other in the scalar product (x E C),

4P 2s + 1 f ( (x) V(x) d (5.10)
(I 1(+ IX12)2+2s

while t3 is a self-adjoint operator. The basis vectors is, m) in this representation have the form f..
crux1+ m with Cm = [ (2s)!/(s - m)!(s + rM!y]"/ 2.

It is convenient to realize the algebra (5.9) in the space of functions x- P (x) with x = z + v/z2--I.
Then the generators are

i3- V/z2-1IOz, j± = (Z±V/2-i-)(STV/-fl-2lOz). (5.11)

In terms of z the spectral problem HO1 (z) = hW (z) becomes

off + z2 - 2 1Of

1 (2Lz + s+ I I+12 h) = 0. (5.12)

This equation, in the case , = 0, coincides with eq. (4.29) with a = 28/y, b = -2c/y.
We finally remark that eq. (5.12), rewritten in the y = In x variables, gives the quasi-exactly solvable

system considered in ref. [9].

6. Conclusions

We have shown that two different representations for the wave functions of the Q,,-,-: j iimer can
be constructed. The first one is connected with the quadratic R-matrix algebra and t,. oecond one
with the linear r-matrix algebra. These two representations must be connected by some unitary trans-
formation. It is of interest to find this transformation explicitly, since it would elucidate the link be-
tween the standard algebraic BA and Baxter equation (see [211) and the polynomial solutions of the
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separation equations. This question is presentely under investigation. A further interesting problem
under investigation is the application of the method of separation of variables to q-deformations of
the QDST dimer. This would give the possibility of introducing a new class of special functions i.e.
the q-deformed Heun's polynomials.
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An ecumenical nonlinear von Neumann equation:
fluctuations, dissipation, and bifurcations

V.M. Kenkre
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA

An evolution equation is presented to describe the transport of a quantum mechanical quasiparticle such as an electron,
or electronic or vibrational excitation, interacting strongly with lattice vibrations. A generalization of the discrete nonlinear
Schr6dinger equation to incorporate dissipation and fluctuation effects arising from interactions with a thermal reservoir,
the equation predicts a multitude of interesting phenomena including bifurcations.

1. Introduction relation of the equation to Aiwyn Scott. There
exists a nonlinear transport equation which goes

Aiwyn Scott has initiated, performed, stimu- under the name of the discrete nonlinear Schrod-
lated, and guided, an amazing amount of current inger equation (DNLSE), whose study has oc-
research in nonlinear physics. The community of cupied many investigators, including the present
nonlinear scientists owes much to him. It is a author [5-81, for several years. Equation (1) is
pleasure and an honour to be asked to make this the augmented form taken on by the DNSLE,
contribution to the Festschrift on the occasion of when the latter is opened to heat reservoirs and
his sixtieth birthday. The range of Alwyn's work prepared for stochastic activities through the
in nonlinear science is vast. It spans a variety of introduction of dissipation and fluctuation. The
systems and approaches, and deals with practical DNLSE, on the other hand, is identical in form
matters such as the problem of launching solitons to the so-called discrete self-trapping equation
and the spectra of acetanilide, as well as formal (DSTE), introduced earlier, and studied exten-
matters such as the dynamics of nonlinear sively, by Alwyn Scott and his collaborators.
systems and the generalization of nonlinearities While identical in form, and therefore in the
[1-41. relevance of a number of results such as con-

The subject of the present article is the cerning stationary states, the DSTE and the
ecumenical nonlinear von Neumann equation DNLSE differ significantly in physical meaning.

This is evident from the role played by quantum

dpm, mechanics in the two equations. The complex

d'h = IV, Plmn - X(Pmm-- Pnn)Pmn nature of the amplitudes in the DNLSE are a

S [ Prequirement of quantum mechanics and the
F- p,.([V, p.,. - IV, P]) study of the interplay of phases and nonlinearity

m eq is an undertaking of direct physical import. The
- ia(I - bm)(pn - p,.(1) complex nature of the amplitudes in the DSTE,

on the other hand, is a convenience of the type
Before describing the what, whence, and whither familiar in electromagnetism where fields, which
of this equation, it is relevant to comment on the are actually real, are described by complex

Elsevier Science Publishers BV.
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quantities for computational ease. There is, thus, for the amplitudes cm where the E's and the V's
work on the "quantization" of the DSTE, which are, respectively, the diagonal and off-diagonal
appears to have no counterpart at all in the matrix elements of the Hamiltonian in the local-
context of the DNLSE. Also, the two equations ized basis. If interactions with vibrations are
differ in physical origin. We begin with a brief present, the V's and E's are dependent on the
motivational discussion of the microscopic origin vibrational coordinates x. For simplicity, let us
of the DNLSE in the next section. After a quick take Vm to be independent of x, and Em to
review of earlier work on the DNLSE in the depend linearly only on the internal coordinate
following section, we introduce noninfinite relax- xm at site m. In the absence of interactions, x,,
ation and thermal fluctuations, and arrive at the might have evolved sinusoidally with frequency
ecumenical equation (1), which has been so w and equilibrium position 0. It might naturally
termed because it is capable of resolving the obey, in the presence of interactions,

competition and conflicts of nonlinearity and
damping, or of fluctuation and dissipation, since d2x- (
it unifies the description of all these effects in dt2

one fell swoop. The fascinating consequences of where the equilibrium position of the oscillator is
the augmented equation will occupy us in the changed by an amount proportional to the prob-
rest of the article. The subject under investiga- ability that site m is occupied by the quasi-
tion is the transport of a low or intermediate particle. In the presence of a time scale disparity,
mobility quasiparticle under strong interactions if the vibrations are slaved by the quasiparticle
with vibrations. Examples are an electron in a probabilities, the time derivatives in (3) may be
narrow-band material, a vibrational or electronic put equal to zero. The vibrational coordinate is
excitation in a polymer, and a light interstitial then proportional to the quasiparticle occupation
such as a proton or muon in a metal. The probability, and we obtain the DNLSE
notation in (1) is standard: p represents the
density matrix of the quasiparticle, the matrix it- dC Vc -XlCI 2C
elements are taken in the representation of some dt mm(

localized states such as a Wannier set, and thefourters o th riht ide ris frm iterite The above description of the origin of the
four terms on the right side arise from intersite DNLSE is meant to convey only its essential
transfer, nonlinearity stemming from interactions physical content. While we do not wish to discuss
with vibrations, finiteness of vibrational relaxa- here the many subtleties which the microscopic
tion, and thermal fluctuations, respectively, derivation of the DNLSE entails [9,101, we now

give a brief description of how the DNLSE can
be obtained through a semiclassical approxima-
tion from the Hamiltonian evolution of the
standard model of a quasiparticle interacting

Consider a moving quasiparticle described by stogywhvirinvz.

the ket ]I'(t)) whose time evolution is governed strongly with vibrations, viz.,

by the Hamiltonian H through ih(dl'I'(t)))Idt = H = Z ema'am + X Vm.na* a,
HhP(t)), i.e., the standard Schr6dinger equa- m M.,

tion. On multiplying the equation by a Wannier- + E hw (b t b + I)
like localized bra (ml, one obtains q q 2

+N-'1/2 Z' hoqgq

dc q

iht-- > Vmcn + EmCm, (2) x exp(iq . Rm) (bq + bq)atam. (5)
nq
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Equation (5) uses standard notation which we sity matrix element combinations of the two-site
will not detail here, except for stating that a and system (dimer):
b refer, respectively, to the quasiparticle and the
vibrations with which it interacts strongly. With P = P P22, q= i(p 1• P20-

r = P12 + P21. (9)
pala+- aa 2 , (6a)

- , (6b) While simple, the foregoing demonstration
1 -(ala 2 -a 2a1) makes transparent what crucial assumption is

= a'a 2 + ala1 , (6c) responsible for the passage from microscopics to
evolution equations such as the DNLSE. It is

= -(b* + b)12g, (6d) clearly the assumption that the vibrations may be
considered classical. This fact, while well known

the Hamiltonian (5) can be written, for a simple to many, has often gone unappreciated. This has
two-site symmetric system (a dimer) interacting led to numerous incorrect, although wishful,
with a single vibrational coordinate, as assertions on the one hand and meaningless

H = Vi +go g(b + b) + o(b tb +q on the other.
2 "

Here V denotes the interaction matrix element
for the quasiparticle transfer between the two 3. Nonlinear capture and trimer, N-mer
sites of the dimer, g measures the coupling evolution
strength with the vibration of frequency w, and
we have put the (identical) site energy of the two Before proceeding with the process of the
sites equal to zero: Henceforth we put h = 1. augmentation of the DNLSE into the ecumenical
Equation (7) then results in the following evolu- form (1), il is of interest to recall the large
tion for the quantities defined in (6): number ot interesting and useful results which

dfi have emerged from the DNLSE in a variety of

t 2V4. (8a) situations. Space limitations force us to do no
more than list the primary contexts of some of

-- -2 V/3 - Xi99, (8b) that work, along with some slightly greater detail
on two specific areas, viz. nonlinear trapping

d; [11,12] and exact analysis of some spatially
dt =XlY", (8c) extended systems [13,14]. For further descrip-

tion, the reader may refer to several more
d29 - -o,2(0 -3). (8d) detailed reviews [6-8].

dt2  The following is a list of some early work done

Let us now take the expectation values of the on the DNLSE, i.e., from the infinite relaxation,

operators in an initial state 41, and denote these zero temperature limit of (1):

values by removing the circumflexes, i.e., ý = (1) Exact solutions for the dynamics of the
( 4,14 10 ). The single assumption that 9 is classical two-state system for arbitrary initial conditions
converts the exact dynamics into the DNLSE, as and the elucidation of polaronic motion and self-
it is trivial to show [6-8] that eqs. (8) rewritten trapping on the basis of those solutions [5].
without the circumflexes represent the DNLSE (2) Application to fluorescence depolariza-
for the two-site system, the p, q and r being tion, wherein the moving quasiparticle is an
nothing other than the standard Feynman den- electronic excitation and the observable is the
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intensity of light emitted with different polariza- energy, but no matter, is the quasiparticle, and
tions [6,151. the reaction center is the trap [20,21]. Let us

(3) Application to neutron scattering of hy- assume that an excitation moves on a chain via
drogen trapped around impurities such as ox. gen nearest neighbour interactions V, and trapped by
in metals such as niobium, where the moving a site which has the nonlinear behavior arising
quasiparticle is the proton (161. from strong interactions with vibrations leading

(4) Application to muon spin relaxation in to the nonlinearity described by the cubic term in
antiferromagnetic solids such as bcc iron wherein the DNLSE. Of the several possible models of
the quasiparticle is a muon moving within a capture, consider two: one in which one of the
solid, and the observable is spin polarization sites in the chain is itself the trap site and
17,171. possesses the cubic nonlinearity, and another in

(5) Generalization of the DNLSE to incorpo- which the excitation moves in a region of space
rate anharmonic potentials and nonlinear restor- called the antenna and communicates with a trap
ing forces, resulting in nonlinearities other than which is external to the antenna. In a simple
bilinear, and the appearance, and counterintui- example of the latter situation, the N antenna
tive disappearance, of multiple stationary states sites all communicate equally with the external
[6,18]. trap through a matrix element W, while transfer-

(6) Calculation of memories in nonlinear ring excitation among themselves through near-
generalized master equations, and the develop- est neighbour elements V. The first model is
ment of a perturbative scheme which is exact in represented by
the nonlinearity but perturbative in the intersite dcm
transfer 191. iT = V(C. +.1 + Cm.) -- moXICoI 2Co, (10)

(7) Studies of the interplay of nonlinearity t

and disorder on the basis of ensembles with in obvious notation, while the second is repre-
various distributions of the nonlinearity parame- sented by
ter [6,7]. dc

(8) Theory of nonlinear trapping of excitation i- = V(Cm+ I + Cm. i) + Wce, (Ila)
directed at fluorescence quenching in molecular
aggregates [11,12]. dc•• WEC.ICO12C" (11b)

(9) Analytic solutions for a restricted class of di M
initial conditions in some spatially extended Numerical calculations by Dunlap, Kenkre and
systems such as trimers and symmetric N-mers Reineker [111 on the first model have shown that
[13,141. a transition appears to occur as the nonlinearity

We refer briefly to the last two of these below, parameter X crosses the value (3.2)V. The sec-
ond model has been solved analytically by Ken-
kre and Kus' [12] who have shown that the

3. 1. Nonlinear trapping probability of the trap site, which we will call P,

Quasiparticle trapping is an important phe- obeys

nomenon, and is of particular interest in areas of d2P
investigation such as photosynthesis, in which d_7= ½('i _7'2)_ (•i2 +2+ I)P
the harvesting of energy necessary for the oper- - 3f-P 2 - 2f 'P3

, (12)
ation of the reaction centers is followed by the
process of the transfer of the harvested energy to where, with the notation that w is defined as
the reaction center. The excitation carrying VN W, the scaled time 7- and the parameters s
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and i? are r = 2wt, X =X/ 4 w, and 17 = Viw, the I's into a completely tractable non-degenerate
being constants of the motion. Clearly, C mea- dimer problem [22] involving the solution of
sures the amount of nonlinearity relative to the
(scaled) interaction matrix element for transfer d 2p - - - 6y2p - 2y~p (14)
of excitation between the antenna and the trap
while 71 measures the motion of the excitation Some of this work is reappearing in the literature
within the antenna relative to the extent of its and is being applied to experimental situations.
transfer from the antenna to the trap. Equation
(12) can be solved in terms of Weierstrassian
elliptic functions. A completely general solution 4. Finite relaxation and thermal fluctuations
to the problem has been obtained for arbitrary
initial conditions, and a number of physical How do we augment the DNLSE (4) to treat
features have been extracted [121. The analysis situations not involving time scale disparities
has also been generalized to finite relaxation and between the quasiparticle and the vibrations, to
finite temperature situations. eliminate unrealistic assumptions such as that of

infinite vibrational relaxation, and to include
unavoidable, and important, interactions with

3.2. Spatially extended systems: analytic results reservoirs which give rise to temperature effects
and fluctuations? This is the question that we

The methods of analysis used in the early work now address. Equation (4) is the result of a time
151 to obtain exact solutions in two-site systems disparity assumption made on (2) and (3). We
were generalized by Andersen and Kenkre to now retain (2), and replace (3) by
some larger systems -including trimers and a class
of extended systems termed N-mers [13,141. d2x, xm+
They obtained the explicit time dependence for dt2 + 3 dt o = -const. x Cm V+ Rm(t),
the trimer for a class of special initial conditions, (15)
discussed a transition at X = -6V as well as the and explore the consequences of dissipation
effect of the sign of the nonlinearity, and showed introduced by the rate y, and of fluctuation
the connection of their results to the trimer caused by the random force term Rm(t). For
stationary states obtained earlier by Eilbeck et simplicity, we have used the restriction that the
al. [3]. They generalized the work to N-mers, reservoir interaction occurs only with the vi-
also obtaining explicit analytical solutions. The brational system. Two limits of (15) are par-
systems considered were site-degenerate with ticularly interesting: zero damping, and extreme-
Vmn = V between any two sites, the initial excita- ly large damping. Some exact solutions can be
tion being localized on a single site, or more found for the former case [23] for the dimer. The
generally, distributed equally among all sites of probability difference p(t) shows cn or dn be-
one of two groups, one of mA sites and the other havior as in the adiabatic solutions [5] and
of m8 = N - mA sites. The calculational trick of undergoes a characteristic new transition into a
Andersen and Kenkre [13,14] consists of the region where it equals the sum of a part which is
generalization of (9) to define new quantities p, proportional to the appropriate elliptic function
q, and r, which allow one to convert the trimer (cn or dn), and a part which is proportional to the
or N-mer problem as described by cube of the elliptic function. Here, we will focus

on the opposite limit of extremely large damp-
dcm iV(-cm + E )+ ixc,2 cm (13) ing.
dt - cn c , If the damping is large enough to justify the
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neglect of the second derivative of the oscillator dr 2VX 2

displacements, more formally, if y-., dt = Xpq - -F q - a(r - r)(17c)

Wo 2/y = F, the evolution of the oscillator displace-

ments towards their equilibrium positions now Here, req is the thermal equilibrium value of r,
possesses a single characteristic "vibrational re- and a is a rate which attempts to drive the
laxation" rate F. Restricting the analysis to the system to the thermal state. A high temperature
two-site system in the interest of full tractability, expression [25] for this rate is a = (2r/F)kT.
we obtain from (2) and the large damping limit The set of equations (17) have been arrived at
of (15), by extending the DNLSE to nonadiabatic, finite

dp dq dr temperature situations through a blend of
dt 2Vq, dt- = -2Vp - ,yr, -= xyq, analytic arguments and physical assumptions.

The system they describe reduces to the trivial
(16a) linear dimer if X = 0 = a, to the high-tempera-

dy 2 ture damed linear dimer if X vanishes but a does
dt F(y - p) + F(t), F(t) = 2F(kT/oJ2) 8(t, not, to the nonlinear adiabatic dimer if V is finite

(16b) but F is infinite and a vanishes, to a relatively

where k is the Boltzmann constant. crude extension [26] of the nonlinear dimer to

Equations (16) constitute a Langevin set. dissipative situations if X is finite but F is infinite

Standard techniques allow the derivation of an and a vanishes, and to the nonlinear

exact Fokker-Planck equation for the distribu- nonadiabatic dimer if X and F are finite and a

tion function in p, q, r, y space and of an vanishes. The latter case displays a rich multi-

approximate but useful Fokker-Planck equation tude of phenomena including a fascinating inter-

for the distribution function or(p, q, r; t) in p, q, play of quantum phases and nonlinearity, for

r space alone. The latter is obtained [24] through which we refer the reader to refs. [27]. Evolution

the application of projection techniques which showing a complete combination of the elliptic

eliminate the vibrational variable y, and is valid function evolution of the adiabatic dimer for

in the high damping limit. The Fokker-Planck short times, followed by a self-trapping swing

equation can be solved exactly for its stationary into the localized stationary states of the dimer

state distribution function, and the formalism for longer times, which is itself followed by a

can be used in two separate ways: (i) to perform delocalization and symmetrical spreading over

a Kramer's first passage time analysis aimed at the two sites characteristic of thermal fluctua-

an investigation of the stability (against thermal tions, has been exhibited and commented on in

fluctuations) of the nonlinear structures inherent ref. [25] for the high-temperature case when req,
in the DNLSE, and (ii) to carry out a contrac- which can generally be taken to equal tanh(V/

tion analysis [25] from the Fokker-Planck equa- kT), vanishes. Exciting new behavior, which

tion in order to arrive at a closed equation such occurs when req does not vanish, will now be

as (1) for the quasiparticle variables. We refer mentioned here briefly.

the reader elsewhere [24] for (i), and concen- For vanishing a, the probability difference p

trate on the results of (ii) here. The contraction oscillates and then tends to the stationary value

analysis has, as its consequence, which is 0 if the nonlinearity parameter is small
enough and finite (corresponding to a localized

dp 2Vq (17a) state) if it is large enough. As a increases, the
dt 2 , detrapping effect is seen: p tends to 0 at larger

dq _ 2Vx times even for large nonlinearities. As a in-
dt -2Vp - xpr + - qr - aq, (17b) creases further, a surprising burst of p occurs for
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a short time, and the burst recurs after a time by Kenkre and Kus' 1261 shows that the destruc-
period. The bursts become more frequent with tion of limit cycles occurs for a > rqX/IF, i.e., for
further increase of a and behavior that appears temperatures exceeding that at which VIkT
chaotic occurs. Phase space plots in the p-q becomes smaller than its hyperbolic cotangent if
plane show that a limit cycle has been reached at x and F are assumed to be independent of
this point, as p (as well as q) oscillates steadily temperature.
between two finite values (see (iv) and (v) in fig. This bifurcation behavior is reflected in excit-
1). A further increase in a destroys the limit ing predicted features of several observable
cycle, and stable dissipative behavior is recov- quantities [261. An example is the degree of
ered (case (vi)): p, q tend to vanishing values fluorescence polarization in poly-L-proline oligo-
while r tends to req. Stability analysis carried out mers of variable length, which is given [6] by a

(i) (iv)

(ii) (v

(iii) (vi)

Fig. 1. p-q phase space plots from (17), the dimer form of (1), showing bifurcaton behavior. Each frame extends from -1 to I
on the horizontal p and the vertical q axis, and the initial condition is of one-site occupation, i.e., p = 1, q = 0. The nonlinearity
X/2V is larger than 1: localized states exist. The values of a/2V are (i) 0.002, (ii) 0.00968, (iii) 0.04685, (iv) 0.22676, and (vi)
1.09752. In (i), one sees clear evolution to the self-trapped stationary state (p -< 0) followed by symmetrization (p = 0) as a result
of thermal fluctuation. Limit cycles are destroyed in (vi).
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linear superposition of p and r, the coefficients of learnt much during our joint investigations, I
the superposition being subject to experimental would like to thank here, in particular, Marek
control. Kus of the Center for Theoretical Physics of the

Polish Academy of Sciences, and Paolo Grigolini
of the University of Pisa and the University of

5. Concluding remarks North Texas.
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We report some recent results related to quantum integrable systems. The Baxter formula is generalized into the case of
finite temperature. We reformulate the quantum inverse scattering method for ID quantum systems with long-range
interactions. Extensions of the Gaudin model and integrability of the Calogero model are discussed.

1. Introduction This report presents some recent results re-
lated to the quantum integrable systems. It is

In 1965, the soliton as a new concept in known that there exists a correspondence be-
nonlinear dynamics was introduced by Zabusky tween ID quantum system and 2D classical
and Kruskal [1]. Exciting findings in the pioneer system. The Baxter's formula relates a 2D solv-
period were collected in an excellent review able lattice model to a ID integrable spin
article by Scott, Chu and McLaughlin [2]. Dur- system. In section 2, we extend the Baxter's
ing the last decade, there continued to be many formula into the case of finite temperature.
important developments [3]. One of them is a Combining this extension with the evaluation of
unification of exactly solvable models in physics. finite size corrections, we obtain a systematic
The quantum inverse scattering method places method to calculate low temperature expansions
the theory of exactly solvabi dels in a unified of thermodynamic quantities [5-7]. Sections 3
framework and provides wul method for and 4 deal with integrable systems with long-
studying those models. Soi models in (1 + range interactions. Some time ago, Gaudin intro-
1)-dimensional quantum theory and in 2-dimen- duced a class of such spin models using the
sional classical statistical mechanics share a com- Bethe ansatz method. In section 3, we give an
mon property: to each model we can associate a algebraic formulation of the models. Introducing
family of commuting transfer matrices which are inhomogeneities into lattice models, we present
generators of an infinite number of conserved a general method to construct quantum integra-
quantities. This property may correspond to the ble spin Hamiltonians with long-range pairwise
Liouville theorem for classical Hamiltonian interactions. The last section is devoted to a
systems. A sufficient condition for the com- reformulation of the quantum inverse scattering
mutability of the transfer matrices is called the method for ID quantum particle systems. In
Yang-Baxter relation [4]. The Yang-Baxter re- particular, construction of conserved operators
lation is a key of new ideas and new concepts in for the Calogero-Moser system is explicitly
recent mathematical physics such as knot theory shown. The expression in terms of the Lax
based on solvable models, and quantum operator is new. Further, we find that the Lax
groups. pair yields an interesting algebra.

Elsevier Science Publishers B.V.
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2. Finite temperature Baxter's formula (2.2) leads to the relationship between the
ground-state energy E. of H and the maximum

We consider a square lattice with M rows and eigenvalue Aa.x(u) of TN(u):
N columns under the periodic boundary condi-
tion (M + 1-_ 1, N + 1-- 1), and define a model E= d- log A...(u)L , (2.5)
of classical statistical mechanics on the lattice.
We assume that the Boltzmann weights of the We have observed that the equivalence through
lattice model satisfy the Yang-Baxter relation. Baxter's formula between a ID integrable quan-
Let TN(u) denote the transfer matrix, where u is tum system and a 2D solvable lattice model is
the spectral parameter. The Yang-Baxter rela- useful in particular when we discuss the zero-
tion assumes the commutability of the transfer temperature properties (e.g. ground state
matrices: energy) of the former. A challenging problem

ITN(U), TN(v)j = 0. (2.1) may be how we extend Baxter's formula to study
the finite temperature properties.

It is known that there is a relationship between We look for a new approach to analyze
the row-to-row transfer matrix TN(u) and a ID thermodynamic properties of the ID quantum
quantum Hamiltonian H: system. Baxter's formula (2.2) assures the ex-

a i pansion,
H =--TN(O)-' - TN(u)[ " (2.2) TN(u) = TN(0) [I - uH + Y(u2 )]. (2.6)

For instance, the Heisenberg XYZ (XXZ) model Using Trotter's formula, we have
is related to the eight- (six-) vertex model by a
formula (2.2). We call (2.2) Baxter's formula. exp(-13H) = lim (TN(O)-' TN(,3IM)) M , (2.7)

The relation (2.1) contains useful information.
Expanding the transfer matrix in powers of the where /3 = 1 /k BT as usual. Since TN(O) is the
spectral parameter, we can easily verify that the shift operator, we may interpret TN(O)-' TN(u)

transfer matrix is a generator of an infinite as a diagonal-to-diagonal transfer matrix and
number of conserved quantities (operators). The denote it by TTD(u). Then, the free energy per
first term in such an expansion is the shift site, f, of the 1D quantum system can be
operator: expressed in terms of the partition function ZMN

of a 2D classical model of the lattice:
T aa. -a'.=8(b 1 ,aN) .''(bN, aNl), (2.3)

-f lir liM log ZMN(U) (2.8a)
where a = (a,) and b = {b,) denote state vari- N-- M--

ables respectively in lower and upper rows, and ZMN(U) = Tr(T TD(u))M U plM (2.8b)
8(b,, a,) is the Kronecker delta. A set of the N 8
conserved quantities, {lk}, is given by The cigenvalues of the transfer matrix are infi-

a k nitely degenerate as u--0. Therefore, (2.8) is
k a log TN(u) " (2.4) not practical and remains to be formal. To avoid

this situation, we introduce a trick: we look at
Baxter's formula (2.2) corresponds to 1, up to a the lattice from the crossing channel, that is,
sign. from a 900 rotated frame.

The above discussion indicates that Because of the crossing symmetry of the
[TN(u), 4k] = 0 and that TN(u) and (1k} have model, this manipulation is made by the change
common eigenstates. Thus, Baxter's formula in the spectral parameter u into A - u, where A is
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called the crossing parameter [4,51. Corre- involved but straightforward. We apply the
spondingly, we introduce a notation Tx(u)-- Euler-Mclaurin expansion formula and the solu-
T TD(TA - u). Now, (2.8) is replaced by tion technique of the Wiener-Hopf integral

I equation to the Bethe ansatz equation.

f = -- lim log Am(u), (2.9a) The new approach to finite temperature quan-
P- tum systems presented above has been success-

ZMN(u) = Tr(TX(u))N , U =/M, (2.9b) fully applied [5-71. It should be stressed that this
approach is valid for any quantum chain as long

where AM(u) is the largest eigenvalue of the as it is solvable by the Bethe ansatz method. We
crossing transfer matrix TX(u). Equation (2.9) is only mention here the results for the XXZ spin
a finite temperature extension of Baxter's for- chain in a gapless phase:
mula (2.2), and has been named finite tempera- N

ture Baxter's formula. Remark that the spectral H = I ( I II+ I + +• •ya ')
parameter u, a fundamental quantity in soliton 1=1

theory, now plays a role of intertwiner between a (2.10)
finite size system and a finite temperature A Cos A. (2.11)
system.

A caution is necessary for making use of The free energy f with the first thermal correc-
formula (2.9). Since the temperature depen- tion is
dence enters through u =,0/M, one should be
careful in taking the limit M- -.. Otherwise, any A(kBT) 2

information of finite temperature will be lost. ff"-12 sin A.JTr+ (2.12)
Instead, a finite size calculation or a 1/M-expan-
sion gives a systematic method to obtain low where f, is the ground state energy. The result
temperature expansions of thermodynamic quan- B(2.12) is the same as the one obtained by the
tities. Figure 1 summarizes the significance of the B anuatz metho with terstrin hypothelimis T~ 0and -~x fr th iDquatumCalculation of the higher terms in T can be
limitsysTe and M- for the 2D classicl sdone by making use of the perturbation theorysystm ad th 2Dclasica sysem.of the Wiener-Hopf integral equation. In the

The theory of finite size corrections has at- of the Wn H intel equatin In the
tracted much attention of theoretical physicists limi he rat oe l im it) the cre
since it gives central charge c and scaling dimen- tionerms have thers le sion the
sion x which are essential quantities in the reecenergy fian th
conformal field theory. To evaluate finite size respectively given by
corrections, we adopt a method by de Vega, (kBT) 2  T (kT) 2  

1

W oynarovich and Eckle [8]. The calculation is f =f . 12J + T 2Jr _ [o (Jr/kB T)]3+13)

r•• •.•(2.13)

ID Quantum Chain
T firte T-i a1  a 2

Off Criticality TM T Tlog(1/T) (2.14)

where a, and a2 are constants. Two remarks
2DClassical System M should be made. First, the appearances of logar-

MX Nse ithmic terms in (2.13) and (2.14) are notewor-

Fig. I. Relations between finite size system and finite tern- thy. This is the first analytical derivation of such
perature system. terms and has been confirmed by numerical
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calculations based on a different formalism. ters, one of which we denote by 17. It is sometime
Second, we find that the calculation of the convenient to use the A-matrix defined by
correlation length is quite straightforward, by A(u; n) R(u; 7 P, (3.2)
making use of the result for the corresponding
2D classical models. This is remarkable since in where P is a permutation operator, P(x ®y)=
string hypothesis approach we can obtain only y 9x. For R(u; 71) and A(u; 17), we assume the
the free energy and cannot get any information following two conditions.
on the correlation length. (I) regular condition,

R(u=O;vj)=P, A(u=0;7)1=, (3.3)
3. The Gaudin model and generalizations (II) quasi-classical condition,

Depending on the interaction ranges, corn- R(u;n = 0) = I, l(u;i = 0) =P. (3.4)
pletely integrable systems may be classified into
two groups. One is a system with short-range (3.3) is also called the standard initial condition.
interactions including the 5-function gas, the In terms of R-matrices, we define the transi-
Heisenberg XYZ model and the Toda lattice. tion matrix TN(u) and the transfer matrix TN(u)
The other is a system with long-range interac- by
tions. Contrary to the short-range interaction
models, there has not been a systematic work on TN(U) = TN(u; (Xj};
the long-range interaction models. So far we = RON(U - xN)"" * Ro•(u - xI), (3.5)
know two integrable systems, the Calogero-
Moser model and the Gaudin model [9]. Recent- TN(u) = TN(u; {xj}; n)

ly there has been a renewed interest in the = TrTN(u). (3.6)
long-range interactions models. It is believedthatthe odel hav th Jasrow-ype ave Remark the shift xi, of the spectral parameter inthat the models have the Jastrow-type wave R
functions which play a central role in the theory R01. We regard Rjk as a matrix acting on V, ® Vk

of the quantum Hall effects and the high-T, where V0 is the "auxiliary" space and Vk denotes
the kth site on a one-dimensional lattice. In

superconductors. In this section, we present a

general method [10,11] to construct quantum (3.6), Tr means trace in the space V0. Then, the

integrable spin Hamiltonians with long-range system (3.5) is identical to an inhomogeneous

pairwise interactions which extend the Gaudin 1D lattice with N sites (fig. 2).

model. Because of the additive property of the spec-

Let the matrix R act in a tensor product V OV tral parameters, the Yang-Baxter relation re-

of the linear space V. The Yang-Baxter relation mains valid for the inhomogeneous lattice. Then,

reads the transfer matrices (3.6) with different spectral
parameters commute,

R 12(u - v) R, 3(u) R 23(v)

= R 23(v) R, 3(u) R, 2(u - v). (3.1)

Here Ri, denotes the matrix on V 9 V 9 V, acting
as R on the ith and the jth spaces and as identity -I ---- IQ
on the other space. A solution of (3.1) is referred u-x U-X2  UxN

to as R-matrix. The R-matrix depends on the
spectral parameter u (or v) and other parame- Fig. 2. lnhomogeneous lattice.
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[TN(u), TN(v)j a
- TN(u) TN(v) - TN(V) TN(U) = 0 (3.7) Hk = -R,J(xk - xj; 71) 0

This way of introducing the inhomogeneity is k=1,2, ,N (3.13)

known as the Z-invariance. We can regard {Hk) as commuting Hamilto-
Let JA) be an eigenstate of TN(u) which is nians. In fact, substituting the expression Zk

characterized by a set of "quasi-momenta" A,, I + T7Hk + q(q2) into (3.7), we see that
A2 .... ,AM. A set of mutually commuting
operators and the eigenvalue problem are re- [Hk,' HI]= 0, k, = 1,2,...., N. (3.14)

spectively expressed as This indicates that the Hamiltonian system

Zk =TN(U =X,; {Xj};n), k= 1,2,.....N,(3.8) N
H E = akHk, ak: constants, (3.15)

At 1 k=1

ZkA)= c(A Xk) (3.9) is completely integrable.
1=l It is interesting to compare formula (3.13)

Of course, explicit forms of c(A) and A, are with Baxter's formula (2.2). While Baxter's for-

model-dependent. mula gives a spin Hamiltonian with nearest-
We differentiate both sides of (3.9) with re- neighbor interactions, the formula (3.13) yields a

spect to 77. Then, setting 77 = 0 and using the spin Hamiltonian with long-range interactions.

quasi-classical condition (3.4), we get The above discussion is general. We have used
only the Yang-Baxter relation and the properties

S(__= fA 1 A) (3.10) of the R-matrix such as the regular condition, the
HA o = H c(A_ xk) IA) " .0 quasi-chemical condition and the inhomogeneity.

Given an R-matrix, we have commuting
where Hamiltonians {Hk} by formula (3.13). For in-

stance, from the R-matrix for the spin-I XYZ
Hk - Zk . (3.11) model, we have

We have found that Hk in (3.11) can be ex- 1_x

pressed concisely in terms of the R-matrices. We
(b~~ I{ [I + k sn 2(xI _ xj)lar~o',

denote by TN'al the transfer matrix from lower 2 (X, I j

states {a,} to upper states {b,}. From the defini- + [1 - k sn 2(x,_ xI)jo.ov

tions (3.5), (3.6) and (3.8) and the regular + cn(x, - x) dn(x, - xj) (o•r - 1)}) (3.16)
condition (3.3), we have

where k is the modulus of Jacobi's elliptic

k{a) T b) (u = Xk; {x,}; 17) functions. Applications to other models includ-Z{b) -Na ~ ucin.mdl

Tr RoN(Xk - XN) POk.." RoI(Xk - X ) ing the spin-1 model have been discussed [10,11].

= k X - k -I * R I X - X ,I )

x RkN(Xk - XN) .'. Rkk+,(xk -Xk+). 4. Quantum integrable particle systems

(3.12)
The quantum inverse scattering method for

Differentiating the last expression and using the N-particles on a line may be introduced as
quasi-classical condition (3.4), we obtain follows. Let L and M be N x N matrix
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operators. We choose L, M (Lax pair) such that 1/x 2, but the discussion is the same). They
the Lax equation proved that with g = a2,

L = i[H, LI = i[L, M, (4.1) [H, det A]= 0, (4.10)

is equivalent to the equation of motion gener- where the matrix A is an N x N matrix defined
ated by a Hamiltonian H under consideration. by Alk L~k - A8,k. The expansion of det A in
We associate an evolution of "eigenstate" as powers of A gives a set of conserved operators

iW = [U, HI = MU. (4.2) {J.}:

Then, from (4.1) and (4.2), we have det[AJk] = det[L,k - A8)k]

[H, U-'LUI = 0. (4.3) N
= (-A)N + E (-A)N-J,. (4.11)

Equation (4.3) is a quantum version of the "=1
unitary equivalence by P. Lax. For classical Those conserved operators {J,} have the same
systems, the condition that U-'LU does not functional forms as the classical ones. Only the
depend on time leads to the existence of N difference is that p, is the operator in the
conserved quantities {I,}, quantum case. To carry out the proof of (4.10),

1 1 they modified (4.1) into1.-Tr(U-'L"U)=-nTr L", (4.4)

[H, Lik] = 4 Z (LiMk + MIkLJI
where Tr means the trace of matrix. For quan-
tum systems, since L and U are operators, the -MjtLt - LkM11). (4.12)
last equality in (4.4) is not guaranteed.

To be specific, we restrict our discussion to the However, the symmetrized commutator in the
Calogero-Moser system whose Hamiltonian is r.h.s. of (4.12) needs a justification from a
given by viewpoint of the quantum inverse scattering

N method. We therefore believe that their proof is
H = ½ p + >9 E y(x -xk), (4.5) not satisfactory, although the conserved

i=l j•,k operators {J,,} are widely accepted.

a I An alternative method to find conserved
P, = -i-- y = -. (4.6) operators may be the following. From (4.1), we

have

The Lax pair is found to be

Lik = P,56 k + ia(1 - Sjk) a(xj - Xk), (4.7) [H, (Ln)jk] , [(Ln)jIMIk - M1I(L )tk]. (4.13)

Mlk = a(1 - i
5

k) P3(xi - xk) + a
8

jk Y A(X -Xt), Explicit form of Mjk in (4.8) gives
(4.8) E.Mjk=0, >Mk-0. (4.14)

where a is a constant related to the coupling i k

constant g by g = a2 - a, and Then, we find from (4.13) and (4.14) that

a(x)=I/x, 13(x)=-1/x 2 . (4.9)

Calogero, Ragnisco and Marchioro [121 pre- [H, • (L),k]= 0, (4.15)
jLk

sented a set of conserved operators (rigorously
speaking, their potential is 1/sinh x instead of that is, conserved operators (I,} are given by
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1 (Further detailed analysis of long-range integra-
(L )kn = 1,2.... ,N. (4.16) ble Hamiltonian systems, in particular, thenJk Calogero-Moser system with spins will be dis-

Expression (4.16) is new. The first three of the cussed elsewhere [131.
conserved operators are
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For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schr6dinger equation with
arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the
discretization becomes too coarse, the discrete equation exhibits localization in regimeb where blow-up cannot occur in the
continuum system. This phenomenon is investigated numerically, and the grid resolution at which the transition occurs is
determined.

1. Introduction continuous counterpart of localization is blow-up
[21, which designates the situation where the

The one-dimensional discrete nonlinear Schr6- maximum of 14i, tends to infinity in finite time.
dinger equation with arbitrary power nonlineari- Blow-up has been studied extensively in the last
ty, cr, decades, and has now been observed both ex-

perimentally, analytically and numerically in
iU + h I - 2U, + 1) + =0, many physical systems. Most famous is presum-

ably the Langmuir wave-collapse in plasma

(1) physics [31 and self-focussing of laser beams in
nonlinear optics [4]. Furthermore it has been

describes a system of f coupled anharmonic oscil- useditoa describe energyu transfer in molel
latos, = 1(-l)(f od). used to describe energy transfer in molecular

lators, j=-2(f-1),. thin films [5].
The dispersive coupling has the strength h 2,
where h is the distance between adjacent sites.
Eq. (1) is a discretization of the nonlinear Schr6-
dinger equation with arbitrary power non- 2. The discrete and the continuum model

linearity
The discrete model, eq. (1), has only the two

i4,+ • + 012o= 0. (2) conserved quantities the number, N, and the
Hamiltonian, H,

For high grid resolution (high values of f) the 'j.
solution to eq. (1) is expected to resemble the N=h E luiu ,
solution to eq. (2). It is the aim of this paper to j=-"
study to what extent and in which areas of + 1

parameter space (f, ar) this is true. In particular H= -h 4 -2UUU + -.
we concentrate on the phenomenon of localiza- I =-j'

tion or self-trapping [1], that is, the dynamically + (1 + 0-11Ui12r+2 , (3)
stable state in which most of the energy of the
system gets concentrated at a single site. The where j'= ½(f + 1). Thus, eq. (1) is not integra-

0167-2789/93/$06.00 C 1993 - Elsevier Science Publishers B.V. All rights reserved
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ble when the system has more than two degrees 3. Numerical results
of freedom. As a measure of localization (or
self-trapping), we introduce the mean width of a Eq. (1) is integrated numerically with

pulse, W, defined as W= (I/N)"'2, where the ok(x, t; t = 1), given by eq. (6), as initial con-

virial, 1, is given by [2] dition

I = h3  ? j 1jujU2 corresponding to U,(0) = ,(jh, 0; w 1). (7)

A fourth order Runge-Kutta scheme, with time
If step dt = 10-5, is used for the integration

1= j x'I 2 dx. (4) throughout the paper. The value 10-' of dt

assures the conservation of N and H within 10-9

Here the pulse center is assumed to be at site of their initial values for all runs. The most

j = 0, corresponding to x = 0. Thus for a com- important results found, have been checked by

plete localization of the energy at the center site, repeating them with dt = 5 X 10-6 and dt = 5 x

W becomes zero. The virial theory [2] is a classi- 10-5, and by applying another integration

cal method to determine whether a given initial scheme, the Burlirsch-Stoer method with

waveform will collapse in a finite time (I-* 0 for Richardson extrapolation [6], to assure that they
t--* to, to < c0), or not. are independent of the time integration. N, H, I

Corresponding to N and H given by eq. (3), etc. are checked at time intervals At 10-2 and

the continuum eq. (2) has the conserved quan- the length of the x-interval, L = (f -1)h, has

tities the value 25.6 for results presented.
Fig. 1 shows the time evolution of the am-

Sf112plitude A, =Uj I, for different values of oa and f.
NzfIuI 2 dx, For o, = 1.90 and f= 185 (fig. la) the pulse is

-• stable. This is also predicted from the continuum

H= f (10j 2 - (1+ + oy)-ll12a+2) dx . (5)

As the ground state solitary solution to eq. (2), 21 J
with zero velocity and centered at x = 0, we find 1 1

A,(x, t; v) = oL7(1 + or" 2, sech l,(wax) e102ete , ite ,

where w is a real parameter. From general

studies it follows that the solution, given by eq. (-Ad (c) ) A.
(6), is unstable and blows up at the center if 2 2
o- - 2, and is unconditionally stable foror < 2 [2]. 1
The different regimes of o, are denoted the sub-
critical (or < 2), critical (a 2) and supercritical 0 10 e S
regime (o- > 2), respectively. In the critical case Site i 1W' Sit 2

an arbitrary initial condition will blow-up if the Fig. I. Amplitude of the solution to ea (1) and (7) with

requirement N > N, is fulfilled. Here N, = N(4k), L = 25.6. (a) a = 1.90, f= 185, (b) a, = 1.95. f= 1.85, (c)

where N(ui) is given by eq. (5). o, = 1.95, f = 191, (d) o, = 2.00, f = 501.
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system, eq. (2), since a- 1.9 is a subcritical 0.83- 1.39

value. However, a small oscillation of the am- 1.6 A0
plitude and width of the pulse is noticed. Fig. lb 1.7

shows that most of the energy becomes localized 0.77 -1.35- 1B

at the center site when a- is increased to 1.95. L9

This contrasts the stability of the ground state 0.71 1 .3 -1 -

solution for the continuum model, in the sub- 0 5 t 10 0 5 t 10

critical regime. The observed localization is not Fig. 2. Width, W, and center amplitude, A0, as function of

complete (W O0) since not all of the energy is time for f = 257 and L = 25.6. a = 1.5, 1.6, 1.7, 1.8, 1.9.

concentrated at the center site. Actually, for the
initial conditions used in our numerical simula- tions of W and A, are 900 out of phase, due to
tions, the state of complete localization cannot conservation of N. Fig. 3 shows the variation of
be reached. There will always be a certain the oscillations for different values of f, the
amount of energy at the neighbouring sites. number of sites in the interval L = 25.6. The
However, a final state as in fig. lb will be nonlinearity, a, has the subcritical value 1.95.
characterized as localized in the following. In fig. For f :s 1.87 the time evolution has two dis-
Ic, f is raised to 191 while ,a is still 1.95. It is seen tingu&'able states: (i) First there is a monotoni-
that this decrease of h prevents localization of cal decrease (increase) of W (A0 ), resembling
the energy. Instead periodic oscillations occur. the initial phase of a blow-up in the continuum
These are of the same type as in fig. '.. We have system. The first minimum (maximum) of
checked that they continue, at least until t = 100 W (A 0 ) is delayed as f is increased. We note
(further increase of f leads to a decrease of the again that W never reaches zero, but has a
oscillations). In fig. 1d, o- is raised to the critical minimum value approximately equal to the dis-
value 2, where blow-up occurs in the continuum
system. Correspondingly localization is ob- tnebtensts .(i hnflosss

tained rapid oscillations. The mean value of this
served, despite the fine resolution f = 501. We final oscillation increases with f, while the period
note that the localization for o- = 1.95 (fig. lb) is decreases with f. For these f-values the time
due to the discreteness of the system, when the evolution is of the same type as shown in fig. lb.
oscillation pulse is most narrow it cannot be At f = 191 an abrupt transition has occurred.
resolved. In contrast, the localization for ,o = 2 There is no longer localization. Instead the pulse
(fig. ld) is a reflection of the blow-up phenom- performs a slow periodic oscillation, of the same
enon in the continuum system. The discreteness type as seen in fig la and fig. ic. We shall
and :he conservation of N prevents the am- denote this transition value off, by f. Increasing
plitude at a single site to reach infinity. While the f to 501, the oscillation are still present, but
localization for a- = 1.95 can be removed by in- much weaker.
creasing f, this is not the case with the localiza-
tion for -= 2. Here the localization is only 0.9 151 187 4-
delayed when f is increased. The variation of the 501 15l

oscillations of pulse width and amplitude for W 191 A0
different values of a- are shown in more detail in 0.5 2.8-

fig. 2 in the subcritical regime, o, < 2. Here the
time evolution of the mean width, W, and the .9.

0.1 -1.2 7 01

center amplitude, A,,, are depicted. Clearly both 0 13 t 26 1 13 t 26
the period and the amplitude of the oscillations Fig. 3. A, as function of time for a = 1.95 and L = 25.6.

are increasing with cr. Furthermore, the oscilla- f = 171. 187, 191. 201.
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Fig. 4. t"' W' and A' (defined in text) as function off with Site site

L = 25.6. (- o -) a = 1.95 and (-) a = 1.99. Initial values Fig. 5. Amplitude of the solution to eq. (1) with f= 107,
ot W'" and Aoa are shown as dashed lines, = 2 and L = 25.6. The amplitude of the initial condition,

given by eq. (7), is reduced by a factor (a) 1.000, (b) 0.994,
(c) 0.993.

These results are summarized in fig. 4. Here tm
is defined as the value of t at which W reaches its amplitude is reduced by a factor 0.993. Here the
first minimum. Correspondingly, Wm=_ W(t') pulse no longer localizes, but disperses slowly.
and A'= A 0(tm). Results for two subcritical In the continuum model the criterion for blow-
values of or, or = 1.95 (-- -) and a = 1.99 (-), up of an arbitrary initial condition is N Ž- =

are shown. 2irV/'3 in the critical case. Fig. 5 shows that in
For f <f,, t m increases with!f. Here tm is the the discrete system, for f= 107, the limiting

time of localization. For f -f,, tm  decreases value of N is reduced from N, to 0.988. N,.
rapidly towards an asymptrtic value. Here 2t' is Decreasing f further, this limiting value will de-
the period of the slow oscillations. crease correspondingly.

For f < f, W ' decreases approximately as 1/f,
again implying that the width is bounded from
below by the distance between sites, h. For 4. Conclusion
f > t,, Wm increases asymptotically towards
W(0), indicated by dashed line. A corresponding In this paper we have studied numerically the
behavior is observed for A'. (The randomness relation between localization in the discrete non-
for f < f is due to limited time resolution in the linear Schr6dinger equation with arbitrary power
plotting At = 10-2). nonlinearity, and blow-up in the corresponding

In fig. 5 o, = 2 (the critical value) and f = 107. continuum equation. It is found that localization
Fig. 5a shows the time evolution of the am- may occur, even for subcritical values of the
plitude, with the initial condition given by eq. degree of nonlinearity. A sharp transition be-
(7). Localization is seen to occur. In fig. 5b the tween localization and smooth oscillatory be-
initial amplitude is reduced by a factor 0.994. havior occurs. A reduction of the initial am-
Localization still occurs, but delayed with respect plitude is shown to be equivalent to a reduction
to the localization in fig. 5a. In fig. 5c the initial of the nonlinearity.
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Quantizing a self-trapping transition
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Stationary state energy levels of the quantum discrete self-trapping equation (DST) dimer are computed numerically
and estimated analytically. Quantum-mechanical manifestations of a self-trapping transition that occurs in the corre-
sponding classical DST dimer are found in both quantum energy levels and quantum wavefunctions. The work is motivated
by applications of the DST equation as a model for local vibrational modes in polyatomic molecules.

1. Introduction intersite coupling and on-site anharmonicity,
respectively. The effective nonlinearity is

Clarifying the influence of quantum-mechani-
cal effects on the behavior of classically non- " (2)
linear dynamical systems is an important goal for
future nonlinear science research. A mathemati- where N = Ia 1 2 + Ia.12. Both the norm N and the
cal model particularly well-suited to this research Hamiltonian
area is the discrete self-trapping equation (DST),
introduced in 1985 by Eilbeck, Lomdahl and H = woN - ½y(laJ" + Ia 214) - J(a~a2 + a~a,)
Scott [1]. The DST is a nonlinear and generally
non-integrable classical dynamical system of f (* denotes the complex conjugate) are conserved
coupled, anharmonic oscillators and is uncom- by eq. (1); for two freedoms the DST is an

monly easy to quantize. Already the DST has integrable system.

been useful in studies of quantum manifestations An important class of solutions of eq. (1) are

of nonlinear classical phenomena such as soliton- the stationary solutions, for which

like energy localization [2,3] and deterministic
chaos [4,51. The DST is also a useful model for a, = aj(O) e"i', (3)

molecular bond vibrations [6-81. with the same constant frequency to for all j [1].
In the special case of just two degrees of For 0:- • <2, there are two stationary solutions:

freedom, that DST equation takes the form one is symmetric (aI = a2) and the other is anti-

da, 12 symmetric (a, = -a 2); each distributes energy
idt- = tooa, - Ja2 - /aIa1Ia•, equally between the two sites. However, at " = 2

da 2  2 there is a bifurcation. For " > 2 the symmetric
id - o=toa2 - Ja, - yIa2 a2 , (1) stationary solution is unstable and two new

stable solutions are found. As ý increases, these
where a, is the complex amplitude of vibrations two other stationary solutions become the lowest
of the jth bond, wo is the frequency of uncoup- in total energy and each concentrates more and
led, low amplitude oscillations and the real more energy on one of the two sites. For these
parameters J and y give the magnitudes of linear two local mode stationary solutions [1],

0167-2789/93/$06.00 @ 1993 - Elsevier Science Publishers B.V. All rights reserved
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Fig. 1. Quantum and classical transitions. (a) The energies of stationary solutions of eq. (1) vs. " for N = 20, J = 1, and W, = 0.
The dashed curve indicates that the symmetric stationary solution is unstable above = 2. (b) Quantum energy levels vs. " for the
quantum level n = 20, J = 1 and w, = 0.

i4 2where h' (hi) is a quantum raising (lowering)

a112 _ 2= ±N1 1 2 (4) operator for bosons on site i.

For each non-negative integer boson number n

Although the two oscillators are identical, eq. there are n + 1 stationary quantum states which
(4) shows that above the " = 2 self-trapping we label s('), m = 0 .... , n. These states are
transition, vibrational amplitude - and hence represented in the (n + 1)-dimensional basis of
energy - can be localized. Figure la shows how product states In,) In), where In,) is the eigen-
the total energies of all the stationary solutions function of a harmonic oscillator at site i with
of eq. (1) vary with ý. quantum number ni, and n, + n2 = n. We write

This paper describes recent efforts to under-
stand how the classical self-trapping transition at 0(= E (')I(

r = 2 is reflected in the energy levels and station- o;0

ary state wavefunctions of the corresponding
quantum-mechanical problem (QDST). Requiring that 40') solves Schr6dinger's linear

wave equation /:qs") = E(•') 4 (r) for a particular
value of n, we get an (n + 1) x (n + 1) matrix
eigenvalue problem for the stationary state

2. Quantum energy levels energies E(') and the corresponding coefficient
vectors c =) [Com), C(m) C(m), c(m)jT

m --- 0 .. .. n

Because solutions ot the classical DST equa-

tion conserve the norm N, solutions of the Computed energy levels for n = 20 are plotted
corresponding quantum-mechanical problem vs. " in fig. lb. Near the transition point r = 2,

conserve the total number n of vibrational the curves for the lowest levels change slope and

quanta (bosons). This makes it easy to quantize combine into nearly-degenerate pairs. The classi-

eq. (1) [2]. The classical Hamiltonian H becomes cal bifurcation at ý = 2 is clearly manifested in

the quantum Hamiltonian operator changes in the corresponding quantum energy
spectrum.

I:I = (wo - •,)(BB 1 + BB 2) Analytical estimates for the n + 1 energy levelst. (WO -* ^ z, +, fand eigenfunctions at the nth quantum level in
-v[(•Bf) (B 2 B2 ) A-J(BzI 2 +B 2 B& ), the large-c limit can be obtained by writing the
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quantum Hamiltonian operator ft/=/1/0+ Jf/t. 15000

Degenerate regular perturbation theory gives

. =(wm0- -½ y)n - - y[(n-m)2 +m 2 ] 14000

"+ (m(n -m + (n -m)(m +()

" O~j) (6)13000

for the energy levels, mi 0,. . . , n. The corre-

sponding zero-order wavefunctions are also 12000

found up to t(J). 0 2 4 6 a

Perturbation calculations for small • can also Fig. 2. E(°1 vs. C: exact value (......), small y perturbation

be carried out, by representing the problem in a theory (-) and small J perturbation theory ( ----- ). The

new basis that diagonalizes ft in the limit • 0. parameters % = 3000 and J = 100 and the quantum level

Writing ft = ho + yf/, and using non-degenerate i =5 used here are realistic for modeling carbon-hydrogen
stretch vibrations in molecules.

regular perturbation theory, we obtain for m -

0, .. , n energies

3. Energy level splittings
E(m) = won + J(2m - n) - 3"yn

S2 y2(2m-n) For ý > 2 and n >2, the two lowest-energy
-z(n + 2nm - 2m 2) + 32J quantum eigenstates for a given n are nearly

_ 1+6degenerate and can combine to form a long-
x [2m(n - m) + n 1] + U(v 3) (7) lived, energy-localizing wavepacket [3]. Here we

consider more general values of ý. In fig. 3, the
along with the n + 1 corresponding wavefunc- energy splitting AE between the lowest two
tions up C(y). energy levels of the QDST dimer is given as a

In using coupled anharmonic oscillator models function of " for several n values. These numeri-
such as the QDST to describe local modes in cal results suggest that in the classical limit
molecules, the lowest energy levels for a given
value of n are especially significant; these levels 2.0

correspond to the predominant peaks in ex-
perimental absorption spectra [9]. In our nota-
tion for both large- and small-c perturbation 1.5

theories, the lowest level for a given n is E(°}. In
fig. 2 the small y perturbation result, the small J 1.0
perturbation result, and the exact (numerical)
value of E(°) are plotted vs. " for n = 5. For
S<2, the small-y perturbation result and the
exact result are so close that they appear as a
single line; the same is true for the small-J 0.0
perturbation result and the exact E(°) for " > 2. 0 2 4 6 8

Patching together the two second-order per- Fig. 3. Computed splitting AE between the two lowest

turbation theory results appears to give a good QDST energy levels for a given n vs. C for (from right to

approximation for the Et01 level for all [. left) n = 6, 12, 25, 50, 100, 200 and 400, J = 1 and w,, = 0.
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n - 0, the two lowest levels become degenerate of the stationary states. For example, the lowest-
precisely at the classical bifurcation point " = 2. and second-lowest-energy stationary states for a

In the large ý limit, a useful formula for the given value of n are symmetric and anti-symmet-
energy splitting AE is [31 ric, respectively. A non-stationary wavepacket

created by adding these two stationary states can
AE- 2n -,, (8) initially concentrate energy on one of the two

n!•• sites [3]. The degree of localization in such a

Numerical tests [31 have shown that for fixed non-stationary wavepacket can be characterized

J , y, the exact AE converges to the expression by the value of

in eq. (8) for large n. It has been conjectured f*- Bl 2 )120  (9)
that eq. (8) is good for C > 2.

Using Stirling's approximation for n! in eq. where t = 0 is the initial time. This is the quan-[2 _ a,2.
(8), one can show that for large n, the exact AE tum analog of the classical quantity la1 - a,.
diverges from the right side of eq. (8) for r - e - Numerical calculations for the quantum problem
2.718. Thus eq. (8) should apply to the QDST suggest that one can create for r - 2 quantum
model for quantum levels n > eJ/y. This has wavepackets for which the value of (B, B -

been verified numerically. Thus, the approxi- B-B*)IO approaches the right side of eq. (4) as
mation in eq. (8) breaks down just above the n-- *. In this way the initial degree of localiza-
classical bifurcation point. tion in such quantum wavepackets approaches

the degree of localization in the corresponding
classical local mode stationary solutions.

4. Wavefunctions Creating a wavepacket that initially concen-
trates energy on site 1 requires that symmetric

Further insight into the quantum-mechanical and anti-symmetric stationary states be added
dynamics of the QDST dimer can be obtained by with a specific relative phase at t = 0. Because
considering the quantum wavefunctions. How- the two stationary states have slightly different
ever, the problem of finding a quantum-mechani- energies and hence evolve at different charac-
cal analog of classical local modes is complicated teristic frequencies, the phase relationship estab-
by a quantum-mechanical symmetry condition: lished at t = 0 gradually changes and energy is no
the nondegenerate stationary quantum states for longer concentrated on the original site. For ý
systems of two identical oscillators must be above the self-trapping transition, the time At for
symmetric or anti-symmetric with respect to which the energy remains concentrated on the
exchanges of the two sites. Here we handle this initial site increases with increasing n, because
complication in two ways: (i) by comparing the energy splitting AE between the two station-
classical local mode stationary solutions to non- ary state components decreases (see fig. 3). For
stationary quantum wavepackets and (ii) by large n and " >2, the initial phase relation takes
examining a certain property of the properly- a long time to decay. Such quantum wavepackets
symmetrized stationary quantum states that is are the analogs of the classical local modes.
related to classical energy localization.

4.2. Stationary state wavefunctions
4.1. Local mode wavepackets

There are a number of reasons to consider
Nonstationary energy-localizing quantum properties of QDST wavefunctions other than

wavepackets can be created from superpositions the characteristics of the local mode wavepackets
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discussed above. First, it is desirable to under- 1.0
stand how all types of classical solutions (not just
local mode stationary solutions) of eq. (1) are 0.8

connected to exact solutions of the corre-
sponding quantum problem. Also, it is important 0.6

from the point of view of applications to consider
the case where a system remains in a superposi- 0.4
tion of stationary states for a relatively long time
but external forces lead to a rapid randomization 0.2
of the phase relations between the wavepacket
components [101; in such cases the properties of 0.0

0 2 4 6 8
the stationary states are more significant than are 0.

wavepacket properties (such as (9)) that depend Fig. 4. Solid lines: the localization measure D'- vs. C" for the

on the initial phase relations. This motivates an 21 stationary quantum states at the quantum level n = 20,
examination of how the individual quantum J = 1 w, = 0. Dashed line: I la,I - la2, I for classical local

stationary states tlange as the anharmonicity mode stationary solutions.

parameter " is tuned through the self-trapping
transition. to the classical symmetric and anti-symmetric

It is useful to characterize stationary quantum normal modes. The stationary quantum states
states P('") using the quantum analog of the with the largest values of D(") when ý = 0
classical time-average of Ila! 2 - la2121. The ana- correspond to non-stationary classical solutions
log for stationary quantum states is the diagnos- in which 100% of the energy oscillates between
tic the two sites.

As " increases above 2, pairs of stationary
DIc 1n- 2 states develop large values of D(m'). These pairsD(-) -- cm•'n-2j1(0
n j.2 of stationary state wavefunctions are those with

which one can build an energy-localizing quan-
a measure of the average difference between the tum wavepacket; they correspond to the pairs of
excitation levels of the two sites in the dimer that nearly-degenerate energy levels at the bottom of
does not distinguish which site is more highly fig. lb. For large values of n, the uppermost
excited. The values of D(m) are easily calculated. solid curve in fig. 4 for •" - 2 is well-approxi-
The number c(m) in eq. (10) is the coefficient of mated by the absolute value of the right side of
In-j) j) in the basis-state expansion of the eq. (4) with N = n. The classical expression is
stationary wavefunction t(m). The factor In - 2j1 plotted with a dashed line in fig. 4 for com-
gives the magnitude of the difference between parison.
the quantum level at site 1 and the quantum
level at site 2 in that basis state. A value of D(m)
near 1 indicates that when the system is in the 5. Discussion
stationary state q("), there is a high probability
that one site is more excited than the other. Solutions of the fully quantum-mechanical

In fig. 4, DI'm is plotted vs. C for each of the version of the DST dimer reflect the classical
21 stationary quantum states 4i'm) for the case self-trapping transition in a number of different
n = 20. Note that D(m) can be nonzero even ways. Numerically-calculated quantum energy
when ý = 0; the stationary quantum states with levels manifest the classical self-trapping bifurca-
the smallest values of D(m) for " = 0 correspond tion most notably in the quasi-degeneracy that



L.J. Bernstein / Quantizing a self-trapping transition 179

occurs above the transition point between the with the production of figs. 1-4. This work was
two lowest levels for a given boson number n. supported by the University of California Presi-
Carefully constructed quantum wavepackets and dent's Postdoctoral Fellowship Program, the
even some properly-symmetrized stationary United States Department of Energy under
quantum states (if characterized by the quantity contract # DE-FG03-86ER13606-A003 and the
D(")) echo the behavior of the classical local ASI Travel Awards Program of the National
modes for ý Ž>2. The results presented here Science Foundation.
illustrate connections between quantum and clas-
sical behavior that are likely to exist for other
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Conditions for integrability of a modified discrete self-trapping dimer are derived. Dynamical properties of three special
cases are investigated. Blow-up in finite time may occur in a non-compact system.

1. Introduction where A, and A 2 are complex functions of time,
dot denotes differentiation with respect to time,

The discrete self-trapping (DST) equation was and the coefficients a,101 .... E2 are a priori
introduced in [1] as a general model for energy complex constants. Terms of the form y1,A 112A 1,
self-trapping in molecules and molecular crystals. y21A212A2, e1A 2 and E2A1 occur in the DST
The DST equation is only integrable for two system [11, terms of the form 6 IA 1i2 A 2,
degrees of freedoms. 821A 212A19, E1A2 and e2A1 are found in the AL

The DST equation includes as a special case system 131, while terms of the form aIA212A,
the discrete nonlinear Schr6dinger equation and a2!A I 2A 2 arise in the coupling between two
which is integrable in the continuum limit too pulses in optical fibres [6,71. The remaining
[2]. An alternative discretisation of the nonlinear terms are new.
Schr6dinger (NLS) equation is the Ablowitz- The aim of this paper is to study the integ-
Ladik (AL) equation [31, which is integrable for rability of various special cases of the general
any number of freedoms. system (1). In the next section we derive three

Several generalisations of the DST equation special cases which are Hamiltonian and com-
have been studied in the literature, cf. [4]. It has pletely integrable. In section three we investigate
recently been shown in [51 that a Hamiltonian the solutions in each of the three cases. We have
and a non-standard Poisson bracket, depending explicitly shown that one of the cases possesses
on a deformation parameter, can reproduce the solutions which are not globally defined, i.e.,
discrete NLS equation and the AL equation in they tend to infinity in finite time (blow-up).
two different limits.

In this article we consider the following combi-
nation of the DST equation and the AL equation
with two degrees of freedom and periodic 2. Deriving the special cases
boundary conditions:

The general system (1) is only integrable when
iA = aIA2I2A + 0111A212A 2 + yvIA A I it has two conserved quantities. We already know

+5A, 1A12 A2 + ejA2' Itwo special cases which are integrable, the DST
and the AL case. The DST dimer has two

iA 2 =a2IAu1 2 A 2 +f32IAuI 2A1 +y2IA2I2A2  conserved quantities, one of which is the norm
+,521A 212A +e 2 A I, (1) (or number)

0167-2789/93/$06.00 ©D 1993 - Elsevier Science Publishers B.V. All rights reserved
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N = A I'2 + IA 21
2 . (2) tities, and w is a three-component vector related

to L through an affine map
Equivalently, one of the conserved quantities for

the AL dimer is oj = C + D -L, (8)

r, = A A*2 + AtA 2. (3)
where C is a constant vector and D is a constant

This last quantity is one of the three Feynman matrix. The vector L in the four cases is given in
variables introduced in [81, hence the notation table 2. In each case L+ + L + is constant
rP. due to the fundamental relation (6), in agree-

Since the system (1) is more general than the ment with eq. (7). Having rewritten the dy-
DST and the AL, we consider the remaining two namical system in the form of (7) and (8) it is
Feynman variables too. These are easy to construct a second conserved quantity

using an analogy with classical mechanics 191.
r2 = i(A A* - A*A 2 ), (4) Generalising the kinetic energy we obtain the

qunity
r3 = IA1 12 -Ia 2I2 . (5) quantiy

We then demand one of these four quantities to T= C+-2L D L (9)
be conserved and thereby derive the four sets of
conditions on the coefficients of (1) given in where T denotes transposition. This quantity is

table 1. The four quantities N, r,, r 2 and r 3  indeed conserved, provided the matrix D is

satisfy the following fundamental relation: symmetric. The conditions for symmetry of the
matrix D in each case is reproduced in table 3.

N 2 = r±2 + r2 + r3. (6) We now have four different special cases of (1),
each with two conserved quantities. The final

Using this relation it is possible, in each of the e p is to apl sa g ue tran sf i oe to

four cases, to rewrite the dynamical system (1) in simplify the equations. The gauge transform

the following way ("the Feynman top formal- used is of the form

ism")

L = L x t, (7)
Table 2

where L is a three-component vector constructed The vector L.

from the three remaining (non-conserved) quan- Conserved quantity L = (L,, L,, LU)

N (r,, r, rj3)
r, (N, ir2, ir3 )

Table 1 r2 (N, ir,, ijr)
Conditions on coefficients. r 3  (N, ir,, ir,)

Conserved quantity Conditions on coefficients

N y3, y2 real; Ima, = -lm a%;
86l f*2, P.=S11; el=f*

Table 3
r, y, =a 2. a1, = y *; Tm 61 = - Im 62; Conditions for two conserved quantities.

/ 3t,/ real; e1 , e2 real Conserved quantity Conditions for symmetry of D
r, y', = - *,, a l = y*, a ; Re 31 = Re 32;P9, P2 imaginary; e•, e,2 imaginary N ay real, Re8 = R

rt •t, 3'2 real, Re86t= Re 82

r', y 2 real; Im al = Im a 2 ; r 2  al, y, real, lm 8, = -lm 62

_P* = -3,3, = -81; e = -e'2 r3  a, real, P3, = -8

Im m mm
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Aj(t) ">Aj(t) H = y' I[A 11' -I 7 2 A4 + eA *A 2 + e* A A*.

( I I 12 ) It can be shown [111 that this system is a
Jexp -i(AI+ K2IA 2 )dt, /=1,2, specialisation of case 3. In [14] a Lax operator

to satisfying the quadratic Sklyanin algebra [151 is

where t0 , K1 and K2 are real constants. Note that given.
this transformation preserves the form of the
four quantities N, r,, r, and r3. Case 3

By examining the simplified equations it is The dynamical equations are
easily shown that the case i. = 0 can be mapped iA Y =A I J'A 2 + j6, JA 212A, + I• A, + iaA
linearly to the case ii = 0. We are finally left with
the three cases V =0, i, =0 and i,3 =0 [101. In iA2 Y ',IA I +t!21A112AI + 2AI-iaA
the following we list them in their simplified
form together with the two conserved quantities: where -y, 013w t!2, 'E, C2 and a are real constants.

The two conserved quantities are
Case I

The dynamical equations are A A +

iAI = A112AIA +EA2 ,H = t!21A 114 + -,I A 214 + 'E2 A 112 + ElA 2 12

+3'A A'a1121A1 2 + ia(A A *2 - A tA2).iA2 = y"21A j2A 2 + E* A I , I

where y, and y. are real constants and e is a For A = 162 = 0, 1 = E2 and a = 0 this system

complex constant. The two conserved quantities reduces to the AL case [3]. Choosing instead
are y = ti3 = 32 the reduced system is equivalent to

case 2. However, where the general system, case
N IA12 + 1A212  3, possesses blow-up solutions, this is not so for

case 2.
H = -311IA I4 + I3y21A 214 + eA*A 2 + e*A 1A*. This concludes the derivation of the three

This system reduces to the DST dimer [1] for special cases of (1).

7, = y2 and E real. For y, 5 y2 the system is
equivalent [11] with the non-resonant DST dimer
studied by Scott in [12]. The quantum problem 3. Properties of the three dynamical systems
for this equation is studied in [13].

In this section we will examine ihe integrabili-

Case 2 ty of the three cases and investigate the prop-
The dynamical equations are erties of the solutions.

All three cases are Hamiltonian with the
iA 1 = y1[A 11'AI + EA 2 , second conserved quantity H as the Hamilto-

nian. The Poisson structure is standard and the
iA 2 =7"2IA212A2 -E*A" 'canonical variables are (iA*, iA*, A1, A 2),

where y, and 72 are real constants and e is a (iA1, A 2, A1 , iA•) and (iA'1, iA•, A2 , A 1)
complex constant. The two conserved quantities respectively.

are The three cases are all completely integrable
[16]. Indeed, defining N,- IA,12 we get in case

r3 = IA| 1
2 

- IA 2I 2
, 1:

• =rn nliu H a nn I l l l • I l IIIW mi Il~aaaami l lI
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(N) 2  [H - 'y.N2 - 'y2(N - N,) 2] 2  (N) 2 = (N 2 - r2 - r2)[(y -_)r, + 2al2', (15)

+ 41eI 2N1(N - NI), (10) where r, is related to Hamiltonian through

and in case 2: H = ½/3N2 + EN + '(3 - 3)r 2 + ar,

(&V,)2 :- -[H - 41 yN 2 + ½-y2(N - N, )212+ ( - ) r ,

+ 4Ie12 NI(N - N I ). (11) with r, being the first conserved quantity.

So in both cases (N1 )2 is a fourth degree polyno- Simple calculations show that (N) 2 can be
mial in N1 , and hence the solution N,(t) may be expressed as
expressed in terms of Jacobi elliptic functions
1171. (N) = P4(N) + R2(N)V•2(N) (16)

In case 1 all solutions are bounded in infinite where P4(N) is a fourth-degree polynomial in N,
time, since N = JA '12 + 1A212 is a constant. In and R2(N) and Q2(N) are second degree polyno-
case 2 the coefficient to N4 in (11) is -'(y - mials. For a = 0, (Ný1) 2 becomes a fourth-degree
_y2) 2 , i.e., negative. Hence all solutions are polynomial in N. Thus, in this special case the
bounded for -y, = A-,. For -y = /2 the right-hand Feynman variable N can be written in terms of
side of (1) becomes a second degree polynomial Jacobi elliptic functions [17]. In the general case
in N, with the highest coefficient 41 2 -,yr3.

The solutions to (11) are in this case either eq. (16) must be solved numerically.
sinusoidal or exponential, and hence they are
bounded in finite time.

However, in case 3 the solutions can generally N

not be written in terms of Jacobi elliptic func- 2

tions. Nor are the solutions globally defined, i.e.,
bounded in all finite time; some solutions exhibit
blow-up. In the following we investigate case 3 in
more detail.

By examining the non-compact manifolds r, =
const. and H = const. we quickly derive sufficient -r

conditions for bounded solutions. These are

-either y, Gf and/32 have the same sign, (12) N

- or /332 > (13)

For f3, =/32 03 and E, = E, = e, the dynamical 2

equations for case 3 can be written as

N = (y --3)rr 3 + 2ar 3 ,

0 .2 0 .4 0., 0 . 1.2 1.4

= -2Er, - 2/3Nr3

r3 =(y+ 3)Nr, + 2aN + 2cr2 , (14)
-2 (b) r

where we have reintroduced the Feynman vari-
+ 2 + 2 Fig 1. Solution of eqs. (14) with (a) y=2, 13 = IE 0.5.

ables (2)-(5). Recalling that N2 = r, + r22 + r3 N(O) = 1.732, r,(O) 1, r3(0) = 1, r, = 1 (0) y -1, 3 = 1,
we find that o = 1, a = 0.5, N(O) 1, r.(O)= 0, r,(O) 0, r, 1.
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solution shown in fig. la for parameter values to dedicate this article in honour of Professor
and initial conditions as indicated in agreement Alwyn C. Scott's 60th birthday. Vadim B. Kuz-
with (12). Alternatively, fig. lb illustrates an netsov is thanked for his remarks.
unbounded solution. Numerically, the blow-up
was found to occur at time t = 1.684.
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