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Abstract

We investigate the computational issues that need to be addressed when incorporating gen-

eral cutting planes for mixed 0-1 programs into a branch-and-cut framework. The cuts we

use are of the lift-and-project variety. Some of the issues addressed have a theoretical answer

but others are of an experimental nature and are settled by comparing alternatives on a set

of test problems. The resulting code is a robust solver for mixed 0-1 programs. We compare

it with several existing codes.



1 Introduction

For large scale integer programs, a straightforward use of branch-and-bound is often compu-

tationally prohibitive. In 1983, Crowder, Johnson and Padberg [8] demonstrated that such

large scale problems can sometimes be solved to optimality in reasonable time by strength-

ening the integer programming formulation with automatic problem preprocessing and cut

generation before applying branch-and-bound. Their work involved pure 0 - 1 programs. In

1987, Van Roy and Wolsey [15] carried out a similar scheme for mixed 0 - 1 programs. The

successes reported in these two papers had a considerable impact on recent practice in integer

programming. In both cases, however, each cut only strengthens one (or a few) constraint(s)

while ignoring the rest of the formulation. As a result, the combinatorial structure of the

underlying problem may not be exploited. To remedy this limitation, the popular line of

research in recent years has been to consider classes of problems with special structure and

to devise combinatorial cut generation procedures for each case. This approach has led to a

number of impressive successes. However, its limitation is that each class of combinatorial

problems requires a special purpose algorithm. A different approach, which was originated

by Gomory [91 is an automatic generation of cuts based on the full formulation. With this

scheme, the structure of the integer program may be exploited even when this structure is

not apparent to the user. The Gomory cuts fell out of favor due to poor computational

experience reported in the sixties, but nowadays this disenchantment is probably excessive

in view of the greatly improved linear programming codes that are available. Recently. Ii ft -

and-project cuts [3] have been shown to be an effective way of strengthening mixed 0 - I

programs: not only do they dominate the classical mixed integer cuts of Gomory, but tIhe

are also numerically more stable. We will use them extensively in the work presented ill this

paper.

Another significant recent development in computational integer programming is the

branch-and-cut approach introduced by Padberg and Rinaldi [14]. In branch-and-cut, the

automatic cut generation is performed not only prior to starting branch-and-bound but also

at each node of the enumeration tree. For this approach to be successful, it is important that

the cuts generated at a node of the enumeration tree be valid at all the nodes. So far, this

requirement has limited the types of cuts used in branch-and-cut to combinatorial cuts. In

this paper, we show how to use lift-and-project cuts within a branch-and-cut algorithm. This

combination of general cutting planes with branch-and-cut results in a versatile procedure

for solving mixed integer programs. Our procedure does not require information about



problem-specific structure and is quite robust over the class of mixed 0-1 programs. We

tested it over a standard set of real-world publicly available benchmark instances. In some

cases, it not only dominates other general purpose codes, but also algorithms that use the

specific structure of the problem. In this paper, we investigate the computational issues

that need to be addressed when developing such a procedure. Some of these issues have

a theoretical answer but others are of an experimental nature and can only be settled by

comparing alternatives on a set of test problems.

Consider the mixed 0-1 program (MIP)

Min cx

subject to

Mx>d

x > 0

xi E {0,1}, i=l,...,p

where the first p variables are 0 - 1 constrained and the remaining variables xi, z = p +

1,... n, are continuous.

At a generic step of the branch-and-cut algorithm, the original linear programming re-

laxation, Mx > d, x > 0, xi •_ 1, i = 1,... ,p, is enriched by additional valid inequalities

for (MIP), and some of the 0-1 constrained variables are fixed either at their upper or

lower bound. We denote by C the current family of valid inequalities for (MIP) and we

assume that the linear system Ax > b defining C contains at least all the inequalities in

Mx > d, x > 0, xi : 1,i = 1,...,p. We denote by Fo, F1,{1,...,p} the sets of variables

that have been fixed at 0 and 1 respectively.

LetK(C,Fo,Fm)={x: Ax > b

xi = 0 foriEFO

xi = 1 for i E F1 }

and let LP(C, Fo, F1 ) denote the linear program

Min cX

x E K(C, Fo, F1 ),

which is assumed to be feasible, with a finite minimum.
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The active nodes of the enumeration tree are represented by a list S of ordered pairs

(Fo, F1). Let UB stand for the current upper bound, i.e. the value of the best known

solution to (MIP).

Branch-and-cut procedure

(Input c, M, d, p)

1. Initialization: Set S = {(0, 0)), let C consist of the linear programming relaxation of

(MIP) and U1B = o.

2. Node selection: If S = 0 stop. Otherwise choose an ordered pair (F0 , F1 ) E S and

remove it from S.

3. Lower bounding step: Solve the linear program LP(C, F0 , F1). If the problem is

infeasible go to Step 2, otherwise let t denote its optimal solution. If ct > UB go to

Step 2. If _;j E {0,1}, j =1,...,p, let x* = ,t, UB = cj± and go to Step 2.

4. Branching/cutting decision: Should cutting planes be generated? If yes, go to Step 5,

else go to Step 6.

5. Cut generation: Generate cutting planes ax > f3 valid for (MIP) but violated by 't.

Add the cuts to C and go to Step 3.

6. Branching step: Pick an index j E {1,.. . ,p} such that 0 < tj < 1. Generate the

subproblems corresponding to (Fo U {fj , F1 ) and (Fo, F1 U {j}), calculate their lower

bounds and add them to S. Go to Step 2.

When the algorithm stops, if UB < oo, then x* is an optimal solution to (MIP), otherwise

(MIP) is infeasible. In addition to the steps of the basic branch-and-cut procedure stated

above, several steps can be performed periodically to improve efficiency: use of heuristics,

preprocessing, variable fixing, etc., but this paper is not concerned with such refinements.

In this paper we investigate the use of general cutting planes in Step 5 of the branch-

and-cut procedure. The cuts we use are lift-and-project cuts and some of the major issues
that need to be addressed are the following.
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"* For computational reasons, it is important that the cuts generated at any node of the

branch-and-cut tree be valid at all the other nodes.

"* Not surprisingly, the degree to which general cutting planes help in solving (MIP) varies

a lot depending on the instance. A key issue addressed in this paper is a measure of

cut quality. Such a measure is used in this paper for comparing alternative versions

of the lift-and-project cuts and, in the branch-and-cut algorithm, for deciding what is

the right amount of cutting relative to branching.

"* A difficult question is the branching/cutting decision that needs to be made in Step 4

of the algorithm.

"* When the decision to generate cuts is made in Step 4, it is often efficient to generate

more than one cut. For a given amount of time devoted to generating cuts, is it better

to generate cuts sequentially, updating C and t before generating a new cut, or is it

better to generate the cuts in a batch without updating t?

A follow up paper will discuss other issues, not dealing directly with lift-and-project cuts,

such as the incorporation of Gomory cuts and of some special purpose cuts, general inte-

ger variables, heuristics and preprocessing, all of which are part of a code currently under

development, called MIPO (this stands for MIP Optimizer).

Section 2 discusses the basic aspects of generating lift-and-project cuts. In particular, it

is shown how the cuts generated at any node of the branch-and-cut tree can be made valid

at all the other nodes, and how to strengthen the cuts. Section 3 focuses on computational

considerations, such as cut quality versus computing time. The issue of whether it is better

to generate cuts is small batches or in large batches is also addressed in this section. Section 4

deals with the key decision of branching versus cutting at a node of the enumeration tree.

Other decisions such as node and branching variable selection in the enumeration tree are

investigated in Section 5. Finally, in Section 6, we compare our optimization procedure with

other existing algorithms, such as CPLEXMIP, OSL and MINTO.

2 Cut Generation

In this section we address the problem of generating cutting planes in Step 5 of the branch-

and-cut procedure. The use of combinatorial cutting planes, namely, cuts which arise from
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an underlying combinatorial structure of the problem is well documented in the literature.

In contrast, the literature contains no serious attempt to incorporate general cutting planes

within branch-and-cut, namely cuts obtained by imposing integrality conditions on one or

more of the 0-1 constrained variables. Such general cutting planes include, among others,

Gomory cuts [91, intersection cuts [11, disjunctive cuts (21 or lift-and-project cuts [3]. Here

we focus on lift-and-project cuts, including sever:.l improvements and variations. A major

goal of this paper is to compare cuts in terms of some quality measure and of the time

necessary to generate them. We start this section by addressing different measures of cut

quality. Another key issue addressed in this section is the guarantee that cuts generated at

any node of the branch-and-cut tree be valid for all the nodes.

2.1 Measure of Cut Quality

An important problem arising in a computational study of cutting planes is to define mean-

ingful measures for comparing them. It is quite common among integer programmers to

compare cutting planes based on the improvement obtained in the objective function once

the inequality is added to the formulation. The main drawback of this measure is that it

does not take into account improvements in the formulation that do not have an immediate

effect on the objective function value. For example, some hard mixed 0-1 programs may not

have any integrality gap. Nevertheless, the cutting planes may be very useful in driving the

current solution to integrality. In other mixed 0 - 1 programs where there is an integrality

gap, the difficulty may reside in proving that there is no feasible solution whose objective

value equals that of a linear programming relaxation. In this case, the objective function

may only start improving after several iterations, even with strong cuts. In general, the

behaviour of the cutting planes may vary so much from problem to problem that a mean-

ingful reduction of the integrality gap in one problem may not necessarily be meaningful for

another. Geometric measures compare cutting planes ax > / by establishing a notion of

"depth" relative to the solution t that they are designed to cut off. For a full dimensional

polyhedron, an appealing geometric measure of cut quality is the euclidean distance between

i and the hyperplane ax = #, namely the distance between t and its orthogonal projec-

tion on this hyperplane. It turns out to be a reliable guide (in the use that we make of it

later) even when the underlying integer polyhedron is not full dimensional. Thus, it will be

our preferred measure when we report computational results in Section 3. Another useful

measure in our work is the amount / - ai by which the cut is violated by t. Note that
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this measure assumes that the cut ax > /3 has been normalized. We consider mainly two

normalizations. For cuts with nonzero right-hand side, we can use

Normalization 1: 1/1 = 1.

In general, we can use

Normalization 2: i jaEi = 1.

2.2 Lift-and-Project Cuts

Let t be the solution obtained when solving LP(C, F0 , F1 ), at a generic node (FO, F1 ) of the

branch-and-cut tree. In this section, we assume that i, is not feasible to (MIP), and we

let j < p be the index of a 0-1 variable such that 0 < tj < 1. Lift-and-project cutting

planes that cut-off t are obtained by imposing the 0-1 condition on one or more of the 0-I

constrained variables. Those obtained by imposing the 0-1 condition on variable rj are valid

inequalities for:

Pj(K) = conv(K n {x E R' : xj E {0,1}}),

where K := K(C, Fo, Fl). A theorem of Balas 12] can be u-sed to characterize all valid

inequalities for Pj(K), as follows. Let F = {1,... ,n} \ (Fo U F1 ) denote the set of fre

variables at node (F0 , F1). We will assume, without loss of generality, that F, = 0. .itIC

if F1 # 0 then all the variables xk in F1 can be replaced by 1 - xk (which amounzit to

replacing the column Ak and the righthand side b with -Ak and b - Ak, respectivelY). "liii,

ZieF QiXi Ž / (which we denote by aFxF >_ #) is a valid inequality for Pj(K), if atid otiIY
if there exist vectors u, v and scalars u0 , v0 satisfying:

f uF AF -UoeF > 0

tF --vFAF -VOef > 0

uFbF = (1)

vFbF +v0 -"

uF, vF > 0,

where ef is the jth unit vector in RIFI, AF is the matrix obtained from A by removing the

columns Ai for i E F0 and the rows corresponding to the inequalities xi > 0 for i = !,... ,
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and -xi > -1 for i E {1,... ,p} nF0 , and bF is obtained from b by removing the components

corresponding to the rows removed from A.

More generally, for any R _ {l,... ,n}, let e' be the jt" unit vector in 3IRI, let AR be the

matrix obtained from A by removing the columns A, for i ý R and the rows corresponding

to the inequalities xi > 0 for i = 1,...,n, and -xz > -1 for i E {1...,p} \ R, and let bV

be obtained from b by removing the components corresponding to the rows removed from

A. Denote by LP(R) the linear program

max/3 - aRtR

subject to

aR -uR An -uoeA > 0

av -vRAR -voeR > 0 (2)

uRbR-/

vRbR +V0

RRu , v, > 0

(aR, 0) E S

where S is a normalization set such as Normalizations 1 or 2 defined earlier.

In order to find a valid inequality for Pj(K) that cuts off ± we proposed in [3] to solve

the linear program LP(F). We called its optimal solution (aF, /3), the deepest cut. Notice

that such a cut is only valid for the current node and its descendants, since the variables xi,

for i E F0, have been eliminated from the formulation. In the next section we discuss how to

make this cut valid for the whole branch-and-cut tree. The reason for introducing the more

general linear program LP(R) will become clear then.

Notice that in any optimal solution to LP(R), we have aP = max{a! ,a?} for all i E R,

where

aI = uRAR + uoeR

a 2 = VRAR + voe.

With Normalization 1, we must decide whether to set/3 = I or /3 = -1. In either case,

aR can be eliminated (after introducing slack variables in (2)), reducing the size of the

linear program to be solved. The drawback of this normalization is that, in some cases,
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the linear program may be unbounded. Normalization 2 is always applicable and can be

implemented by choosing S :{(=R, 1 ) : _< I 1). The absolute value constraint

used here can be linearized b, .atroducing new variables o+ ,o , writing S := {(,)
oR = a+ - a; a+,&- >0: +IER(tS + ct-) • 1), and eliminating OR.

The variables oR are eliminated from the linear program LP(R) to reduce its size but

are easy to reconstruct from the other variables, namely ao = inax{oa,,ao,} in case of

Normai',ation 1, a = a+ - a- in case of Normalization 2.

2.3 Cut Lifting

In general, a cut generated at a node (F0 , F1 ) of the enumeration tree is valid only when the

variables in Fo U F, remain at their fixed values. Such a cut may not be valid for (MIP) and

therefore it cannot be used in other parts of the tree. From a computational point of view,

it is extremely important that the cuts that are generated be made valid throughout the

enumeration tree: it not only reduces the need for extensive bookkeeping, but such "shared"

cuts may improve the bounds at many nodes of the tree. A cut which is valid at node (F0 , F1 )

is made valid for (MIP) by computing appropriate coefficients for the variables xj such that

i E F0 U F1 . This operation is called lifting the cut. In this section, we show how to lift

lift-and-project cuts (intersection cuts being a special case, they can be lifted as well).

We briefly summarize the results of [3]. Let " be the optimum solution obtained when

solving LP(C, F0, F1 ). We will work with a subvector tR of j± which contains all the fractional

components tj for J < p, all the positive components tj for j > p + 1, and possibly others.

We will compute a lift-and-project cut in the space of variables xR and then lift the inequality

into the original space. W.l.o.g. we can assume that if i i R then xi = 0, since for those i

such that ±i = 1 the variable Xi can be complemented (by replacing Ai and b with -Ai and

b - Ai, respectively). Let j E {1,. . . ,p} be an index such that 0 < ±j < 1 and consider the

inequality aRXR > : generated by the linear program LP(R) corresponding to this definition

of R.

The following theorem shows how the inequality ORxR > ,3 can be extended into a valid

cut ax > 83 in the original space.

Theorem 2.1 Let (aR, 3 ) be an optimal solution to LP(R) where R D {i E {1,... ,p} : 0 <

±ii<1}U{iE{p+l,...,n}:±,>0}. W.l.o.g. assume{iE {1,...,p}: i=1}=0. Then
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the inequality ax > /3 defined below is valid for (MIP) and cuts off i.

a 02= { if i C R

where a' = uuRA, a2 = vRAn and AR denotes the subvector of A, with the same row set as

AR.

Proof. Since i V R implies -i = 0, it is clear that the inequality ax > 3 cuts off X2, so we only

have to show that ax >/3 is valid for (MIP). That is, we must show that (a,/3) = (aN, /3) is

a feasible solution of LP(N), where N = {,. n}. The linear programs LP(R) and LP(N)

differ in the following ways.

LP(N) contains more variables and constraints, namely the constraints

a U AiN >0 for ZEN\R

ai-vNAuv >0 for iEN\R

and the variables ui and vi corresponding to the constraints -x, _ -L,i E N \ R that had

been removed from ANx > bV.

A feasible solution to LP(N) can be obtained from a feasible solution to LP(R) by setting

the extra variables ui and vi equal to zero, and setting ai, i E N \ R as stated in the theorem.

Then the above extra constraints are satisfied. a

An important property shown in [3] is that, for Normalization 1, the cut aRx > /3 is
"optimally" lifted by Theorem 2.1, in the sense that the resulting cut ax > /3 is identical

to the one that would be obtained by solving LP(N). The more complicated statement

(Theorem 3.2 in [3]) arises because [3] uses an equality version of LP(R). For Normalization 2,

however, there is usually a difference between the cuts obtained from LP(R) by lifting and

those obtained by solving LP(N).

The lifting procedure of Theorem 2.1 is computationally inexpensive, since each lifted

coefficient can be computed in time proportional to the number of rows of AR. This theorem

is crucial to the success of a branch-and-cut algorithm based on lift-and-project cutting

planes. First, by choosing R such that Rn (FO U F1 ) = 0, Theorem 2.1 provides an easy and

efficient way of making the cuts that are generated at the individual nodes of the branch-

and-cut tree valid for the whole tree. Second, it implies that the size of the linear programs
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that need to be solved for generating cutting planes can be substantially reduced. rendering

the approach computationally more efficient. In fact, a good choice for R is to take it as

small as possible, that is R = {i E {1,...,p} :0 < ,i < 1} U {i E {p+ 1,...,n} :ni > 01.

2.4 Cut Strengthening

The lift-and-project cut ax > 03 of Theorem 2.1 is derived from the 0-1 condition on x.. The

cut ax > #3 can be strengthened to -fx > /3 by using the integrality condition on variables

other than xj, as shown by Balas and Jeroslow [4] (see also Section 7 of [2]).

Theorem 2.2 The inequality yx > 0 is valid for (MIP), where

7k = min{a• +Uo[njihk,a2 -voL 7nkJ} for k 1,...,p,

1k = max {a 2}forkp+ n

with a1 and a 2 as defined in Section 2.2 and

2 1k -- ak- k=,...,p. (3)
U0 + V0

Proof. (This version of the proof is due to L. Wolsey) We show that the cut is valid by

proving that it arises from a valid disjunction for the 0-1 solutions of MIP. Suppose that in

order to derive a cutting plane we use the valid disjunction -xj + mx > 0 V xj - mx > 1,

instead of -xj > 0 V xj > 1, where m is a vector of all integer components such that

mk = 0, k = p + 1,... ,n. Then the coefficients of the cut obtained by imposing the new

disjunction are defined as:

7'k = maxfak • uomk, ak -vomk fork =,...,p,

-yk = max Iak , CV Ifor k = p+ 1... In.

We can now choose Mk, k = 1,... ,p, as the integers that make 7k, k = 1,... ,p, as small as

possible. It is easy to see that these values are obtained by first finding the value of mk that

makes the two terms in the brackets equal, which is frk as in (3), and then taking mk = LrnkI

or mk = [ink], whichever gives the minimum value for -Yk. This yields

^1k = min{a+ uo~rnkl ,ak - vo~Lnkj} for k = 1,...,p

"7k = max{caAl}fork=p+1,...,n,
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and the theorem follows.

It is important to note that the cut strengthening is done once the multipliers u, v, uo,

and Vo are defined by the solution to LP(R), i.e. the disjunction is changed only a posteriori.

3 Computational Testing of the Cuts

This section is devoted to testing several cutting plane strategies. Given a solution J of

LP(C, F0, F1) which is not feasible to (MIP), we call a round of cuts a set of cutting planes

generated for some or all j E 11,...,p} such that 0 < tj < 1. One of the key issues

investigated in this section is whether it is better to generate cuts in large or small rounds.

Before we deal with this question, we first settle three other computational issues: lifted

versus non-lifted cuts, strengthened versus non-strengthened cuts and whether LP(R) is the

best linear program we can use to generate the cuts. In each case, the issue boils down to

the quality of cuts versus the time required to generate them. Each experiment, except for

the last, was conducted as follows: we ran 10 rounds of cuts (or fewer whenever an optimal

solution of (MIP) was found) and, in each round, we generated a cutting plane for each

fractional component of the current solution. The cut comparisons were performed at the

root node, i.e. F0 = F1 = 0. The cuts generated in a round were sorted according to the

amount by which they were violated by t (most violated first), and a cut was added to C

if the cosine of the angle between its normal vector and each previously added cut was at

most 0 < 1, where 0 is a parameter. Here we took 0 = 0.999, the main purpose being to

discard duplicate cuts generated in the same round, if any. The linear programs encountered

during the procedure were solved using the CPLEX callable library. The times reported in

this paper refer to seconds on an HP720 Apollo desktop workstation with 64 megabytes of

memory.

3.1 The Test-Bed

For the purpose of testing computationally both our cuts (in this section) and our branch-

and-cut algorithm (in Section 6), we used a wide variety of mixed 0-1 programs arising from

applications. Since mixed 0-1 programs can have very different structures, any algorithm
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Problem Constraints 0-1 Continuous Value of Value of

name variables variables LP optimum IP optimum

BM23 20 27 0 20.57 34

CTN2 150 120 120 169.79 239.21

EGOUT 98 55 86 149.589 568.101

FXCH3 161 141 141 152.01 197.98

MISCO5 300 74 62 2930.9 2984.5

MODGLOB 291 98 324 20430947 20740508

MOD008 6 319 0 290.93 307

P0033 15 33 0 2520.57 3089

P0201 133 201 0 6875.00 7615

P0282 241 282 0 176867.50 258411

P0291 252 291 0 1705.13 5223.749

P2756 755 2756 0 2688.75 3124

SCPC2S 385 468 0 209.85 216

SET1AL 492 240 472 11145.62 15869.7

TSP43 143 1117 0 5611 5620

VPM1 234 168 210 15.4167 20

Table 1: Problem characteristics
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for this class of problems must be tested on a wide variety of instances. Many of our test
problems are taken from MIPLIB, a publicly available library of real-world mixed integer
programs compiled by Bixby, Boyd and Indovina [7]. The problems Pxxxx are pure 0-1

problems. They were first described in Crowder, Johnson and Padberg [8]. SCPC2S is
a set-covering problem generated by Beasley [5] and preprocessed by Nobili and Sassano
[13]. BM23 is a small but relatively difficult 0-1 problem due to Bouvier and Messoumian.

The problems EGOUT, MODGLOB, SETIAL and VPM1 are mixed 0-1 programs with

fixed-charge network flow structure, described in Van Roy and Wolsey [15]. CTN2 and
FXCH3 are fixed-charge network flow problems described in [3]. MOD008 originated at

IBM France and MISCO5 comes from circuit design. These problems range from difficult to
not-so difficult. We also found interesting to test our algorithm on some pure 0-1 problems
arising from combinatorial optimization problems, where special purpose algorithms have
been developed and tested. TSP43 is a 43-city asymmetric traveling salesman problem

arising from a scheduling problem at DuPont, and was provided to us by D. Miller and J.
Pekny. The formulation used here contains the degree constraints and a collection of subtour
elimination constraints that, together, provide a tight lower bound (see [3] for a more detailed
discussion of this instance). Table 1 contains the characteristics of the problems used in our

test bed.

3.2 Cut Lifting

For Normalization 2, there is usually a difference between the cuts obtained from R =

{1,...,n} and those obtained from R= {i E {1,...,p} :0 < 7i < 1}U{i E {p+ 1,...,n}:
ti > 0} followed by the lifting step of Theorem 2.1. However, the following computational
experiment demonstrates that the difference in cut quality between the two choices of R
does not justify the enormous increase in time needed to generate the cutting planes in the

full space of variables. The results are summarized in Table 2, for R = {1,.. . , n } under the
heading "Not lifted" and for R = {i E {1,...,p} :0 < ;i < 1}tU.{i E {p+ 1,...,n} :±, > 01
under the heading "Lifted". For both choices of R we report the total number of cuts

generated during ten rounds of cutting, the average depth of the cuts (using the geometric
measure introduced in Section 2.1, namely the euclidean distance between t and the cut
hyperplane ax = fl) and the percentage of the integrality gap closed after ten rounds of cuts.
First, note that, even though the time spent to generate the "non-lifted" cuts is considerably

greater, their quality (using the geometric measure or the gap closed) is sometimes worse.
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Problem Lifted Not lifted

Number Average Gap CPU Number Average Gap CPU

of cuts distance closed time of cuts distance closed time

BM23 103 0.05 39.2% 8 107 0.05 34.8% 23

CTN2 334 0.11 95.8% 240 340 0.12 95.0% 1346

EGOUT 77 0.71 100% 15 84 0.67 100% 39

FXCH3 291 0.14 88.8% 205 304 0.13 89.9% 1999

MISC05 244 0.03 12.4% 284 250 0.02 21.7% 1228

MODGLOB 412 0.31 96.6% 14498 341 0.50 96.4% 56618

MOD008 106 0.01 43.0% 10 88 0.01 32.2% 882

P0033 123 0.05 72.9% 7 126 0.05 69.1% 20

P0201 654 0.03 59.8% 1714 792 0.04 72.2% 24040

P0282 340 0.06 94.1% 125 282 0.07 96.3% 745

P0291 122 0.09 98.8% 8 138 0.06 97.7% 280

P2756 498 0.23 90.3% 163 388 0.3 97.2% 31383

SCPC2S 1132 0.02 60.5% 15171 351 0.03 43.1% 16169 *

SETIAL 257 0.71 99.9% 113 246 0.74 99.9% 961

TSP43 709 0.01 62.2% 2782 505 0.01 63.8% 15000 *

VPM1 300 0.05 72.3% 211 203 0.08 84.5% 655

* space limit or time limit exceeded

Table 2: Cuts, lifted versus not lifted
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Second, the time gained by lifting the cuts increases very significantly with the number of

variables: for the four largest instances in our test bed (in terms of the number of variables),

the non-lifted cuts required CPU time about 90 times greater than lifted cuts in one case,

200 times greater in another case, and had to be terminated in the last two cases due to

excessive time or space used. As a consequence of this experiment, our code always solves

(2) in the space R = {i E {1,...,p} : 0 < -ti < 1} U {i E {p+ 1,...,n} :i > 0}.

3.3 Cut Strengthening

The following experiment compares the effect of using "strengthened" versus "unstrength-

ened" cuts. In both cases, the cuts were lifted using Theorem 2.1. The strengthening step,

when applied, was performed after lifting. As in the previous experiment we report the

number of cuts generated in ten rounds, the average depth of the cuts, the percentage of the

integrality gap closed and the CPU time. It can be seen from Table 3 that the strengthening

step improves the quality of lift-and-project cuts in most cases, while the time needed to

perform it is relatively small. It may seem surprising that, in two or three cases, the effect

of strengthening was detrimental in terms of the gap closed or average depth of cuts. But

remember that our results are reported after the completion of ten rounds of cuts. After

one round, strengthening can only improve the gap closed and the average depth of cuts,

but in the following rounds, the fractional points to be cut off are likely to be different.

As a consequence, the cuts generated in rounds two to ten may be unrelated and, due to

chance factors, the run with unstrengthened cuts may turn out to be the best. This is the

exception, however, and the gains that are typically achieved with the strengthening step

are well worth the small amount of time required to perform it. Therefore MIPO performs

cut strengthening whenever possible.

3.4 Cuts Arising from Weaker Relaxations

The number of variables in the cut generating LP (2) is twice the number of rows of A'

when using Normalization 1 and twice the number of rows plus columns of AR when using

Normalization 2. So, clearly, the effort involved in generating lift-and-project cuts is sub-

stantial. In this section we study cuts obtained when a reduced set of constraints defining

K(C, F0 , F1 ) is involved in the cut generating LP.

15



Problem Strengthened Not strengthened

Number Average Gap CPU Number Average Gap CPU

of cuts distance closed time of cuts distance closed time

BM23 103 0.05 39.2% 8 124 0.03 34.3% 13

CTN2 334 0.11 95.8% 240 331 0.11 95.5% 225

EGOUT 77 0.71 100% 15 87 0.62 100% 19

FXCH3 291 0.14 88.8% 205 284 0.16 82.1% 176

MISCO5 244 0.03 12.4% 284 237 0.11 11.7% 243

MODGLOB 412 0.31 96.6% 14498 402 0.29 96.2% 12030

MOD008 106 0.01 43.0% 10 145 0.003 20.9% 24

P0033 123 0.05 72.9% 7 82 0.05 70.3% 2

P0201 654 0.03 59.8% 1714 686 0.02 55.2% 2024

P0282 340 0.06 94.1% 125 305 0.05 95.2% 59

P0291 122 0.09 98.8% 8 128 0.07 95.9% 8

P2756 498 0.23 90.3% 163 472 0.24 97.4% 128

SCPC2S 1132 0.02 60.5% 15171 1199 0.02 59.5% 16559

SETIAL 257 0.71 99.9% 113 257 0.71 99.9% il

TSP43 709 0.01 62.2% 2782 547 0.01 34.4% 641

VPM1 300 0.05 72.3% 211 290 0.05 62.3% 198

Table 3: Cuts, strengthened versus not strengthened
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The first relaxation of K(C, Fo, F1 ) that we consider only contains constraints which are
tight at the current solution t. Specifically, we only keep the constraints whose slacks are

nonbasic in the solution of LP(C, Fo, F1 ). The cuts obtained from this relaxation are exactly
the intersection cuts associated with the convex set 0 < xj < 1. In Table 4, these cuts

are reported under the heading "Not reoptimized". It was shown in [3] that these cuts
can be generated directly from the basis inverse of LP(C, F0 , F1 ). This is extremely fast.

In our experiment, we did not do this but solved linear program (2) instead, so the times

reported in the column "Not reoptimized" can be greatly improved. The second relaxation

reported in Table 4 contains the constraints which are tight at i together with the inequalities

xi > 0,i E R, xi < 1 for i E {1,... ,p} f R. We call these cuts "Semi-reoptimized". Finally

the cuts generated from the full description of K(C, Fo, F1), as discussed in Theorem 2.1,

are called "Fully reoptimized". As before, we report the results obtained after ten rounds
of cuts. Remember that, in every round, a cut is generated for each of the basic variables

xj ,j = 1,...,p such that 0 < ±j < 1 in the current solution. Building on the conclusions

from earlier sections, in this set of experiments the cuts are generated in the subspace

R = {i E {1,...,p} : 0 < ±i < 1} U {i E {p+ 1,...,n} : ii > 0} and are strengthened.

The following observations can be made from Table 4. The intersection cuts (under the

heading "Not reoptimized") are substantially worse than the semi-reoptimized or fully reop-

timized lift-and-project cuts. Quite surprisingly, the semi-reoptimized cuts are not always

dominated by the fully reoptimized cuts (both in terms of gap closed and average distance

cut off). In fact, quite to the contrary, in about half the cases, the semi-reoptimized cuts

are stronger than the fully reoptimized cuts. We offer the following explanation for this

unexpected behavior. Even though a fully reoptimized cut is typically deeper than a semi-

reoptimized cut, it also tends to be "more parallel" to the objective function. So, as a

family, fully reoptimized cuts may not improve the polyhedron as much as semi-reoptimized

cuts. In subsequent rounds, having cuts that improve the polyhedron in diverse directions

is important for the generation of new cuts. So, as a family, the semi-reoptimized cuts are

often more effective. To illustrate this point, consider problem P0201. For each cut that

we generated, we computed the cosine of the angle formed by its normal direction and the

objective direction, and we averaged these cosines over all cuts generated in a round. In

the first round, the average cosine was 0.439 for the semi-reoptimized cuts and 0.565 for the

fully reoptimized cuts. So indeed, for this instance, the fully reoptimized cuts were "more

parallel" to the objective direction.
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As a consequence of this experiment, we use the semi-reoptimized lift-and-project cuts

in our code.

3.5 Number of Cuts at a Given Node

The linear programs (2) used to generate cuts for different indices j E {1,...,pl such

that 0 < tj < 1 differ very little, given K(C, F0 , F1) and t. So, once a cut has been generated

for some j, where ;t• is fractional, it may be efficient to generate cuts for other fractional

components tj, using the solution obtained from ij, as a "hot start" for the next linear

program. This is particularly true if the LP's are solved using the primal simplex method.

In our implementation, we actually solve the cut generating LP's using the dual simplex

method because degeneracy appears to be less frequent, so the advantage of a "hot start" is

reduced. An issue for experimental testing is whether the cuts generated from the various

j E f 1,. . . , p} such that 0 < tj < 1 are sufficiently different from each other to warrant

generating them in rounds. In other words, we are again confronted with the issue of quality

versus time, but at a more aggregate level than in the previous section.

The time needed for generating a given number of cuts is usually greater with mally

rounds of few cuts than with fewer rounds of more cuts, because of the need for reoptimizat ion1

after the generation of every round. Hence we designed our computational experiment a•s

follows: First we ran 5 rounds of cuts, where in every round we generated a cut for every

fractional component tj, j = 1,... ,p, of the current LP relaxation solution. Let TTIM.

denote the total time taken to generate the cuts in these 5 rounds. We then ran for TTIM.ll'

an experiment where in every round we generated cuts for 50% of the fractional compoentws

and for 10%. The fractional components closest to 1/2 are those selected to generate the

cuts. In Table 5 we report for each alternative the number of cuts generated, the percentage

of the gap closed, and the average distance cut off by the cuts. Although none of the three

approaches is uniformly dominant, the first approach closes the largest gap in 9 out of the

16 instances. In some cases, the difference between the three runs is enormous. This is the

case for P2756 (see Table 5). It is useful to study this example in greater detail and to look

at the evolution of the gap closed over time for each of the three runs. In Figure 1, the

objective function value is plotted as a function of time. For several rounds, the cuts do

not improve much the objective function value, but they eventually become very effective.

The point in time where the objective value starts improving significantly occurs sooner
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Problem 100% 50% 10%

# of Avg Gap # of Avg Gap # of Avg Gap

cuts dist closed cuts dist closed cuts dist closed

BM23 44 0.07 31.8% 41 0.06 32.8% 33 0.05 24.6%

CTN2 138 0.22 84.4% 120 0.20 77.3% 70 0.16 46.8%

EGOUT 93 0.61 99.7% 77 0.58 73.2% 44 0.47 36.8%

FXCH3 117 0.19 63.0% 91 0.21 48.9% 67 0.14 31.8%

MISCO5 85 0.04 4.3% 62 0.03 3.7% 48 0.03 5.7%

MODGL. 223 0.44 79.8% 227 0.30 73.5% 271 0.11 24.7%

MOD008 38 0.01 34.4% 29 0.01 22.8% 19 0.01 11.2%

P0033 54 0.09 67.9% 60 0.10 47.2% 52 0.09 25.8%

P0201 181 0.06 32.2% 184 0.05 55.4% 85 0.03 44.7%

P0282 157 0.09 88.9% 158 0.08 94.1% 85 0.10 92.3%

P0291 57 0.16 89.0% 49 0.13 98.0% 27 0.14 69.1%

P2756 326 0.35 62.1% 295 0.26 4.6% 122 0.03 0.3%

SCPC2S 663 0.02 37.6% 470 0.02 38.2% 309 0.02 40.0%

SETMAL 233 0.78 99.9% 207 0.76 91.5% 111 0.73 50.9%

TSP43 95 0.03 19.4% 46 0.03 16.1% 26 0.02 26.7%

VPM1 126 0.07 34.8% 119 0.07 30.2% 67 0.06 13.8%

Table 5: Large versus small rounds of cuts
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TrIME TIME

Figure 1: P2756: objective function value as a function of time

when the cuts are generated in large rounds. Although P2756 is an extreme case, several

other instances exhibit a similar, less pronounced, behaviour. For other problems, such as

SCPC2S, generating cuts for 100% of the fractional variables is inferior after five rounds (the

choice we made for TTIME in Table 5), but becomes superior for a larger number of rounds.

Based on this set of experiments, our current implementation generates rounds of semi-

reoptimized cuts for all the 0-1 variables which are fractional in the current solution • or

some upper bound MAXROUND, whichever is smaller. In our implementation, we use

MAXROUND=40 for instances with up to 400 0-1 variables and MAXROUND=80 for

problems with more 0-1 variables.

3.6 Pool Management

A successful implementation of branch-and-cut requires paying attention to the management

of the cuts that have been generated in the course of the algorithm. If all the generated cuts

were kept active in the problem formulation the linear programs LP(C, Fo, FI) would become
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too large and sometimes difficult to solve. This is the main reason why the generated cuts

are kept in two separate lists, the active list and the pool. In the active list we keep the

constraints which are currently active in the formulation, while the pool contains all other

generated cuts. In the initial step both lists are empty. After a first set of cuts is generated,

they are all added to the list of active cuts, and periodically, cuts that become inactive are

transfered to the pool and deleted from the active list. On the other hand, once a node

(FO, F1) is retrieved from the queue, the pool is searched for cuts violated by the solution ±'

retrieved at this node. These violated inequalities are added to the active list and removed

from the pool.

We usually put an upper limit on the size of the pool. If the number of constraints in

the pool becomes larger than the upper limit some of the inequalities are deleted. A typical

value used for this upper limit is 500 constraints.

3.7 A computational issue

A computational issue related to the solution of the linear programs LP(R) is worth men-

tioning here.

One of the most common problems found during the solution of these linear programs

was the presence of unbounded solutions, even when Normalization 2 was used. This is

to be expected when Normalization 1 is used, as discussed in [3], but should not be the

case whenever Normalization 2 is used. We could find the following possible explanation for

this phenomenon. The linear programs are presumably not really unbounded, but the LP

solver finds them unbounded because of numerical difficulties. These may originate either

in degeneracy, or in the fact that the reduction step eliminates variables close to, but not

actually at their upper or lower bounds. For example, it is typically the case that variables

which are at values close to zero, but not exactly zero (say 10-') are not included in the set

R.

The appearance of an unbounded solution is handled in practice by taking as the optimal

solution to LP(R) the last basic feasible solution given by the LP solver. Our experience is

that the cuts obtained in this manner are still quite deep, probably because in most cases

the last basic feasible solution is indeed the optimal one. If the cut obtained in this fashion

is not violated by the current solution, it is discarded.
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4 Cutting/Branching Decision

One of the key decisions to be taken in branch-and-cut procedures is in Step 4: the branching

versus cutting decision. In branch-and-cut algorithms that use combinatorial cutting planes,

this decision is relatively easy due to two factors: first, restricted classes of inequalities are

considered as cutting planes and, second, the heuristics used to find violated inequalities

from these restricted classes might only manage to generate a small fraction of them, if

any. With cutting plane procedures guaranteed to find a cut, the branching versus cutting

decision has to be confronted. Indeed, pure cutting is possible, but often at a prohibitive

computational cost. At the other extreme, pure branch-and-bound may also fail, whereas an

appropriate balance between branching and cutting may result in small computing times.

We have shown in the previous section that when we decide to generate a cut by lift-

and-project, it is usually computationally efficient to generate a full round of cuts. So, we

generate cuts in rounds of cardinality equal to the number of fractional 0 - 1 variables, or the

upper bound MAXROUND, whichever is smaller. In this section, we address the following

questions: Should cuts be generated at all the nodes of the enumeration tree? If cuts are

not generated at all the nodes, how frequently should they be generated?

We call a fixed strategy one where a round of cuts is generated every k nodes of the

enumeration tree, for some fixed integer k (called the skip factor). These fixed strategies

are used as a benchmark for comparison. We then consider a problem dependent automatic

strategy in the sense that the skip factor is chosen automatically by the algorithm, depending

on the instance to be solved. More sophisticated strategies would be adaptive strategies where

the skip factor may vary throughout the enumeration tree: when the cuts in C are considered

effective according to the measure, rounds of cuts are generated more frequently and when

the effectiveness measure is small, cuts are generated with less frequency. We first investigate

fixed strategies.

Table 6 compares computing times for our test problems with various cut frequencies.

We report the CPU times for skip factors k = 1,2,4,8,16,32,64, 128 and when no cuts at all

are generated, i.e. our code is run as a pure branch-and-bound code. The last column gives

the average depth of the cuts generated at the root node. In order to reduce the variations

in computing time due to factors other than k, we used "best bound" as the node selection

strategy, and we set the initial upper bound UB equal to the optimum value of (MIP). An

immediate observation from Table 6, comparing columns "k=128" and "No cut", is that
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Problem k=1 k=2 k=4 k=8 k=16 k=32 k=64 k=128 No cut Avgdist

BM23 16.8 9.5 4.9 3.6 2.8 2.8 2.7 2.5 2.3 0.11

CTN2 220 223 153 118 132 95 183 179 0.38

EGOUT 9.1 8.3 8.6 8.9 11.2 15.0 23.9 37 4927 0.92

FXCH3 287 195 137 101 109 120 169 216 0.36

MISCO5 740 270 170 101 112 94 93 95 73 0.06

MODGL. 3584 *** *** 2370 *** 1703 1657 3164 0.85

MOD008 244 191 171 142 96 111 155 211 407 0.02

P0033 7.2 3.1 2.0 1.3 2.7 2.1 2.8 3.9 3.2 0.29

P0201 1674 926 432 177 163 112 115 96 85 0.07

P0282 72.6 65.7 39.8 24.8 40.3 59.0 107 351 0.20

P0291 4.9 4.5 9.2 8.0 17.4 47.0 53.8 128 0.24

P2756 944 1894 2211 12618 0.38

SCPC2S 1296 705 239 247 91 76 67 66 3S 0.03

SET1AL 134 125 131 165 222 294 542 899 0.81

TSP43 954 429 238 196 164 533 354 598 208 0.03

VPM1 4621 8010 15078 3523 2502 3320 4763 4096 0.07

* * * space limit or time limit exceeded

Table 6: Computing times for various skip factors k
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many problems that could not be solved by pure branch-and-bound became manageable

when cuts were added at the root node and then sporadically throughout the enumeration

tree. More importantly, Table 6 indicates a correlation between the fixed strategy that

yields the best time and the average depth of the cuts generated at the root node: the

deeper the cuts at the root node, the more frequently we should cut in the branch-and-cut

algorithm. To illustrate this point, Figure 2 plots the computing time as a function of the

skip factor, for nine of the sixteen instances in Table 6. Each curve represents a problem and

all computing times have been normalized so that, on each curve, the smallest time equals

one. The curves are labeled by the average distance d cut off by the cuts at the root node

(refer to Table 6). Figure 2 shows that, by using a fixed strategy of k = 8 or k = 16, eight of

the nine instances are solved within a factor of two of the best computing time over all fixed

strategies. Furthermore, a pattern clearly emerges from Figure 2, with the instances having

largest d solved fastest using the smallest skipping factors. Unfortunately, the correlation is

far from being perfect: the reader can use the data from Table 6 to plot the seven missing

curves. This should not surprise anyone familiar with the diversity of instances of (MIP)

and the difficulty of devising a robust MIP solver. Nevertheless, there is a clear (negative)

correlation between the best skip factor k and the measure d of cut quality.

When the cuts are very effective, it might be worth while not only to use a skip factor

of k = 1 but even to generate several rounds of cuts in each node of the enumeration tree.

Indeed, for P2756, we obtain substantially better results this way. However, in our expe-

rience, this opportunity rarely presents itself and therefore, in our current implementation,

we never generate more than one round of cuts per node.

The times in Table 6 were obtained using semi-reoptimized cuts. The argument used in

Section 3.4 in favor of the semi-reoptimized cuts was based mainly on cut quality. Here we

reconsider this decision based on time: the intersection cuts are extremely fast to generate

using the basis inverse, so we reran the experiments of Table 6 using intersection cuts instead.

Even with almost no computing time spent generating the cuts, the overall computing time

was greater for ten of the sixteen instances. In fact, four of the instances could not even be

solved within the time limit. So we conclude that the additional time spent generating the

semi-reoptimized cuts is well worth it.

Next we turn to the design of an automatic strategy. We devised our automatic strategy
by relating the value of the best skip factor from Table 6 to our measure of cut quality and

some other problem dependent parameters. First, the average distance cut off by the cuts
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TIME d=0.0 d=0.03

d=0.81
d--0.06

d=O. I! d=0.92

d=0.29

d--0.36 d=--0.29

d=0.38 d=0.36
d--0.38

d=0.81 0.114- 0.07
d--0.92 - '-0.06

0.03

k=1 k=2 k=4 k=8 k=16 k=32 k--64 k=128 SKIP FACTOR

Figure 2: Normalized computing time as a function of the skip factor

26



at the root node, which we denote by d, is a key parameter used in setting the skip factor k

for the automatic strategy. We have observed that d is a reasonably good indicator of the

average distance cut off by the cuts generated overall throughout the branch-and-cut tree

(d is typically two to three times greater, as the cuts have a general tendency to become

shallower when the process advances). The next observation is that, in the best run from

Table 6, the ratio number of outs for the full branch-and-cut tree is a function not only of thenumber of nodes

skip factor k but also of the average number of cuts generated in a round, and it is this ratio

that we feel should be proportional to d. Since k needs to be set at the root node, we use the

number of cuts generated at the root node as a proxi for the average size of a round. Denote
this parameter by f. So f is the minimum of MAXROUND and the number of fractional

variables at the root node. Finally, it appears that problem size also affects the optimal skip

factor: given d and f, the skip factor should be made slightly smaller as the number of 0-1

variables increases. Based on these observations, we chose
k = min {KMAX, f

=cdlog1 p1 1

where KMAX and c are constants. In our current implementation we set KMAX=32 and

c = 5. The reason for never using a skip factor greater than KMAX=32 is robustness. When
using a skip factor equal to 32, the fraction of time spent generating cuts is small but, in

some cases, these cuts make the difference between being able to solve the problem or not,

even when the cut quality as measured by d is poor.

As to adaptive strategies, we experimented with different choices, but we could not find
a strategy that obtains overall better results than the automatic strategy. Some simple

improvements on the automatic strategy should work, such as recomputing the skip factor k

after a new round of cuts has been generated with parameters d and f redefined dynamically.

We tried more ambitious strategies that favor generating cuts at the higher nodes of the tree

(those closest to the root), but these efforts were disappointing. For example, we tried

an adaptive strategy that generates a round of cuts at a node with a probability which is

inversely proportional to d and the level of the node in the enumeration tree.

27



5 Enumeration Strategies

5.1 Node Selection

In all the experiments we used the "best bound" rule for node selection. This is done by

listing the nodes in the queue in increasing order of objective function value and always

picking the first one. It is important to note, however, that these values were computed

when the node was generated and they do not reflect improvements obtainable from more

recently generated cutting planes. This implies that in general the ordering of the queue is

just an approximation to the best bound criterion.

5.2 Branching Variable Selection

If the current node cannot be discarded, a variable is selected for branching. In order to

select the branching variable we use the following simple criterion proposed by Padberg

and Rinaldi in [14]: we first determine the largest value of tj • 0.5 and the smallest value

>j ! 0.5. Let fo and f, be the respective values (if fo or f, is undefined, set it equal to 0.5).

We define the set of candidate variables for branching as

E ~ f 11 O<-i + f,I= {iE {i,...,p} : 1-_••-• .

2 - 2

Then we select a variable in I with the largest (in absolute value) objective function coeffi-

cient.

6 Computational Experience

We compare our code with CPLEX's branch-and-bound code (CPLEXMIP 2.1), with MINTO

1.4 (using CPLEX 2.1 as the LP solver) and with OSL (subroutine EKKMPRE).

6.1 Expanded Test-Bed

In addition to the test problems given in Table 1, we used some difficult problems from the

literature to test our branch-and-cut code. The problem characteristics of these additional
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Problem Constraints 0-1 Continuous LP value Value of

name variables variables (preprocessed) IP optimum

AIR04 823 8904 0 55535.436 56137

AIR05 426 7195 0 25877.609 26374

CFAT200-1 1919 200 0 -14.517 -12

CTN3 182 142 142 388.31 432.28

GENOVA6 98 904 0 10213.88 10267

L152LAV 97 1989 0 4656.36 4722

LSEU 28 89 0 947.96 1120

MISCO7 212 259 1 1415 2810

MODO1O 146 2655 0 6532.08 6548

P0548 176 548 0 315.29 869 1

RGN 24 100 80 48.8 82.2

SAN200-0.9-3 1126 200 0 -49.9676 -44

SET1AL 492 240 472 11651.63 15869.75

Table 7: Problem characteristics
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instances are given in Table 7. They were obtained from the following sources: the CFAT

and SAN instances are maximum stable set problems from the 1993 DIMACS computational

challenge ( the CFAT problem is a fault diagnosis problem originating with Berman and Pelc

[6] and the SAN problem is from Laura Sanchis). The GENOVA instance is a set covering

problem obtained from Antonio Sassano. AI1R04 and AIR05 are set partitioning problems

originating from crew scheduling at American Airlines. L152LAV, LSEU and MOD010

originated at IBM Yorktown Hights. RGN and SETIAL are fixed charge problems due to

Laurence Wolsey. The three remaining instances (CTN, MISC and P0548) are from classes

already discussed in connection with Table 1. Most of these instances were obtained from

MIPLIB. Note, however, that not all the instances in MIPLIB are part of our test bed.

Instances were excluded for one of two reasons. Either they are "easy" for branch-and-

bound, or several representatives from that problem class are already in the test bed.

Since preprocessing may play a big role in some cases, we report all the results with

preprocessed problems (a case in point is P0548: this is why we excluded it from the exper-

iments of Sections 3 and 4). All instances are preprocessed using the MINTO preprocessor.

These preprocessed instances are fed to the four codes compared in Tables 8 and 9. The

reason for this choice is to focus the comparison on the algorithms themselves. All compu-

tational experiments were first run with Normalization 1. In case the cuts generated were

not violated by the current solution, the same problem was re-run with Normalization 2. In

the end Normalization 1 was used successfully in twenty of the twenty eight instances.

6.2 Comparison between MIP solvers

In this section, we compare a preliminary version of our code, called MIPO, with several

existing codes. OSL was run on a RISC 530, whereas the three other codes were run on an

Apollo HP720. All times are reported in seconds. The conversion factor between a RISC

530 and an Apollo HP720 is roughly one to one.

Our purpose here is to show that MIPO is robust. Only the semi-reoptimized lift-and-

project cuts are used throughout the runs of MIPO. For most instances, not having a good

estimate of UB is not a big handicap. However, for some of the very large problems, such as

the AIRxx problems, it does make a difference. For this reason, we implemented rudimentary

heuristics: at each node where cuts are generated, MIPO uses a "diving heuristic" in the

spirit of the one described in Hoffman and Padberg [11]. The subproblem is solved and all
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Problem OSL CPLEXMIP2.1 MINTO MIPO

# of CPU # of CPU # of # of CPU # of # of CPU

nodes time nodes time nodes cuts time nodes cuts time

AIR04 * *** *** *** *** *** *** 308 394 7662

AIR05 *** * * * * * 886 1123 18734

BM23 35 11 571 2 922 155 17 254 72 4

CFAT200-1 4 2726 30 962 12749 0 44791 76 80 848

CTN2 *** *** 41071 1300 165 197 23 188 305 86

CTN3 * *** 302 4007 650 496 625 243

EGOUT 1 1.7 84 0.6 19 3 0.6 16 14 1.3

FXCH3 *** *** *** 241 565 86 880 587 237

GENOVA6 3787 2375 18826 2006 7533 0 1281 3970 2111 1508

L152LAV 1842 7413 27255 5591 *** *** *** 4716 3457 4772

LSEU 87 641 24995 674 153 161 13 1040 112 24

MISCO5 454 220 948 37 100 505 79 994 4 119

MISCO7 *** *** 40713 3832 479 537 297 7766 2354 2634

MOD008 53 107 15203 263 537 479 293 1376 215 50

MOD010 18 212 577 146 6 47 970 18 30 58

MODGLOB *** *** *** 360 263 56 960 3346 7413

P0033 8 2.6 1058 2.5 34 15 0.8 138 23 1.6

P0201 164 282 2476 63 116 1233 160 998 292 145

P0282 210 341 * * 438 3367 1007 218 186 36

P0291 8 10 * * 101 31 8.5 60 185 17

P0548 0 12 *** *** *** 6422 2433 11036

P2756 37 305 * * 875 1188 1867 724 595 1933

* * * space limit or time limit exceeded

Table 8: Comparison of OSL, CPLEXMIP, MINTO and MIPO
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Problem OSL CPLEXMIP2.1 MINTO MIPO

#of CPU #of CPU #of #of CPU #of #of CPU

nodes time nodes time nodes cuts time nodes cuts time

RGN 2836 284 5213 49 215 3607 255 846 134 55

SAN200-0.9-3 *** *** 2149 4074 *** *** *** 310 201 995

SCPC2S 202 277 673 123 833 0 600 62 137 93

SETIAL * * *** 400 27 10 68 201 161

TSP43 **** *** *** 746 568 324

VPM1 * *** * * 302 4005 650 2934 1438 1848

* ** space limit or time limit exceeded

Table 9: Comparison of OSL, CPLEXMIP, MINTO and MIPO (continued)

OSL CPLEXMIP2.1 MINTO MIPO

first second first second first second first second

12 4 0 2 10 4 6 16

Table 10: Ranking by number of seach tree nodes

variables at 0 or 1 are fixed at these values. The other 0, 1 variables are then fixed using

the branching rule described in Section 5.2, and only the most promising branch is followed.

This fixing step is repeated until either an infeasible problem occurs or an integer solution

is found. Also, at each node of the enumeration tree, we use two rounding heuristics. In

one we round to the closest integer and in the other we round up. By incorporating these

heuristics, the computing times deteriorate somewhat for several instances, but overall the

resulting code is more robust.

Next we summarize some of the major observations that can be made from Tables 8 and

9.

In terms of the number of nodes in the enumeration tree, the performance of the four

codes is aggregated in Table 10 where, for each code, we give the number of times it came
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OSL CPLEXMIP2.1 MINTO MIPO

first second first second first second first second

2 3 5 5 11 3 11 13

Table 11: Ranking by CPU time

in first (smallest number of nodes) and the number of times it came in second. As seen

from the table, OSL achieves the smallest number of nodes in twelve of the twenty eight

instances. The literature on branch-and-cut often stresses t he need to reduce the number of

enumerated nodes as much as possible. This seems to be 1I, ý strategy followed by OSL. Our

attitude is that more attention needs to be paid to the trade-off between node enumeration

and cut generation. There are situations where enumerating nodes is more efficient than

generating cuts. Unfortunately, OSL does not report the number of cuts it generates.

As far as computing time is concerned, Table 11 summarizes the performance of the

four codes. While both MINTO and MIPO achieved shortest computing times on the same

number of instances (eleven out of twenty eight), MIPO was in second place thirteen times

against three times for MINTO.

Overall, the most robust code was MIPO, which solved all twenty eight instances and

was best or second best in computing time in twenty four of the twenty eight instances. Of

course, there were instances that MIPO could not solve, such as P6000 (a problem from

Hoffman and Padberg [10]), but the other codes failed as well, so we did not include such

instances in the tables since there is nothing to report for any of the codes.

MINTO did particularly well on the fixed charge problems (CTN2, EGOUT, FXCH3,

MOD008, SET1AL, VPM1). Indeed, MINTO generates special purpose cuts for this class

of problems.

MIPO performed particularly well on the very large instances, that is those with more

than a thousand variables or constraints (AIR04, AIR05, CFAT200-1, L152LAV, MOD010,

SAN200-0.9-3, TSP43). Surprisingly, MIPO even managed to outperform MINTO on some

instances, like CTN3, where MINTO exploits the problem-specific structure.

In some cases, our general purpose code was competitive with special purpose codes. For

example, Hoffman and Padberg [11] give the following results for AIR04 and AIR05 on a
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RISC 550: AIR04 required 14441 seconds, 90 nodes and 3787 cuts whereas AIR05 required

139337 seconds, 494 nodes and 15449 cuts. In both cases we were able to solve these instances

with a few more nodes and a lot fewer cuts. Another example is TSP43. It can be converted

into a symmetric TSP and solved using a special purpose code. The resulting computing

time is of a similar order of magnitude as with MIPO [12].

7 Conclusions

In this paper, we investigated the use of lift-and-project cutting planes in a branch-and-cut

procedure. The major conclusions are:

"* A useful measure of cut quality can be obtained by simply computing the euclidean

distance between the hyperplane defining the cut and the point it cuts off.

" It is better to generate cuts in large rounds rather than one at a time or in small

rounds.

" Contrary to a wide-spread belief, it is efficient to incorporate general cuts with011

branch-and-cut.

" The branching/cutting decision is one of the most important issues in the imple.nvieta-

tion of an efficient general purpose branch-and-cut solver. Small enumeration t ree! do

not always correspond to smaller computing times: it is more important to have l4.

right balance between cutting and branching. This decision seems difficult to automiate

satisfactorily for all instances. We found that a simple strategy, based on the quality

of the cuts at the root node, performs well in most instances.

" Our branch-and-cut code is an efficient solver for mixed 0-1 programs. On several

instances of pure and mixed 0-1 programs, it performs as well as, or better than the

best currently available mixed integer programming codes. The main advantage of our

code is that it is able to generate cutting planes independently of the structure of the

problem, thus yielding a more robust MIP solver. In some cases it is even more efficient

than state-of-the-art algorithms that make use of the problem-specific structure.
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