
RE AD-A278 036)N PAGE ______p_ _

--isromty-u IiHIiEE I N "--"'"n- "-"- " -- -
loml ii ImiIEE 111 lii 'IlEISS EE j Vll iO e buudeuint i ar w n wv gw me d 0 Uws ml i . g// i ol knmmm l tg

ftoIfn, bt wadnbwE 'M Mw:. i JH MhAwmw :hI ,m,". Sum. I2 A VA
a rog 3 o 2 . 4 t o ,t 0 or - G 42 " of o nw9gwi oWf vbmh s D

I. AGENCY USE (L". j2. REPORT 3.REPORT TYPE ANMDAE

4. TTE AND

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
/JJ, V-•!,J , f-•.-• -- L-- • G I ,:.:: V ORGANIZATION

'3 - .. ,.>r C'" , .) < ' &'"- "~

9. SPONSORING/MONITORING AGENCY NAME(S) AND - 10. SPONSORING/IONITORING

Ada Joint Program Office AGENCY

The Pentagon, Rm 3E118
Washington, DC 20301-3080 D T IC
11. SUPPLEMENTARY

APR 1.21994y

12a. DISTRIBUTIONtAVAILABILITY
T12b. RIBUTION

l w bu t .lewo =nd sa* i iI

13. (Maximumn 200

: - -, L ,:<. -- -
Ao /

14. SUBJECT 15. NUMBER OF

0, (I .Cf_• ., • 16. PRICE

17. SECURITY 118. SECURITY I19. SECURITY20LITAONO
CLASSIFICATION

CLASSIFICATION

UNCLASSIFIED i UNCLASSIFIEDi UNCLASSIFIED UNCLASSIFIED
NS SWnda Form 296, (Rev. 2•r)

Pregibed by ANSI Sad.

AVF Control Number: AVF-VSR-582.0394
Date VSR Completed: March 14, 1994

94-02-14-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940305W1.11335
TED Systems, Ltd.

TLD Comanche VAX/i960 Ada Compiler System, Version 4.1.1
VAX Cluster under VMS 5.5 ->

Tronix JIAWG Execution Vehicle (i960MX)
under TLD Real Time Executive, Version 4.1.1

Acceslon For (Final)

NTIS CRA&I
DTIC TAB 0
Unannounced
Justification Prepared By:

Ada Validation Facility
By 645 CCSG/SCSL
Distribution Wright-Patterson AFB CH 45433-5707

Availability Cooes

Avail andfor
Dist Special

DTIC QUA=ITY IIISPECTED 8

94-11000 2
i ll illlIlllll 9 4 4 11 1 1

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 5 March 1994.

Compiler Name and Version: TLD Comanche VAX/i960 Ada Compiler System,
Version 4.1.1

Host Computer System: DEC Local Area Network VAX Cluster (comprising
2 MicroVAX 3100 Model 90 machines) (VMS 5.5)

Target Computer System: Tronix JIANq Execution Vehicle (i960MX)
under TLD Real Time Executive (TLDrtx)
(Domain Configuration), Version 4.1.1

Customer Agreement Number: 94-02-14-TLD

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940305W1.11335
is awarded to TLD Systems, Ltd. This certificate expires two years after-
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

AaValidation Facility,-
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

• Ada V~ilI• roani zatio

Dire or, ter and Software Engineering Division
Insti ute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
David R. Basel
Deputy Director
Defense Information Systems Agency,
Center for Information Management

DECLARATION OF CONFORMANCE

Customer: TLD Systems, Ltd.

Ada Validation Facility: 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: TLD Comanche VAX/i960 Ada
Compiler System, Version 4.1.1

Host Computer System: Digital Local Area Network VAX Cluster
executing on (2) MicroVAX 3100 Model 90
under VAX/VMS S.S.

Target Computer System: Tronix JIANG Execution Vehicle (i960MX)
running TLD Real Time Executive (TLDrtx),
(Domain Configuration), Version 4.1.1

Customer' s Declaration

I, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-181SA in the implementation listed in this
declaration executing in the default mode. The certificates shall be
awarded in-TL Systems, Ltd.'s corporate name.

-\ -,Date: 10 February 1994

Terry L. Dunbar, President

VAX/1960/TRONIX PAGE 1

TABLE OF TENTS

CHAPTER 1 INTRJCTION

1.1 USE OF THIS VALIDATION SUARY REPORT 1-1
1.2 NCES. 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATIcN DEPENDENCIES

2.1 WITHDRAM TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATICN

3.1 TESTING ENIRONET 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

ix

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard [Ada83] using the

- current Ada Compiler Validation Capability (ACVC). This Validation SuMmary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programmlin Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides, a sit of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not ope7rating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTROCXUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.
Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/ML-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration (Pro921.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLD0NTIM DEPENDIECIES

.2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C355083
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A 583022.B 83022fH B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1BO2B BDIBO6A
ADlBO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLERM TION DEDDUOCIES

The following 201 tests have floating-point type declarations requiring
more J'qits than SYSTEI.MAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113H..K (4 tests) have a line length greater than the maxima allowed
line length of 120 for this implementation.

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LOGJ INTEGER, or
SHORTINTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT_FLAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTM.YMX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is lesi? than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLW0S is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

D64005F..G (2) tests use 10 levels of recursive procedure calls nesting;
this level of nesting for procedure calls exceeds the capacity of the
compiler.

2-2

I EMEDRMTICN E DEPEDECIES

B86001Y uses the name of a predefined fixed-point type other than type
DURATICN; for this implementation, there is no such type.

CA3004E..F (2 tests) check that a program will execute when an optional
body of one of its library packages is made obsolete; thisimplementation introduces additional dependences of the package
declaration on its body as allowed by LRM 10.3(8), and thus the library
unit is also made obsolete. (See Section 2.3.)

LA5007S..T (2 tests) check that a program cannot execute if a needed
library procedure is made obsolete by the recompilation of a library
unit named in that procedure's context clause; this implementation
determines that the recompiled unit's specification did not change, and
so it does not make the dependent procedure obsolete. (See Section
2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files (See
Section 2.3 regarding CE3413B):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)

•CE3107B CE3O1A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C

2-3

IMPLMENTATION DEPEDMCIES

CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A.,D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation
does not support external filei and so raises USE ERROR. (See section
2.3.)

2.3 TEST MODIFICTI•t•S

Modifications (see section 1.3) were required for 63 tests.

Note: CD2A81A is subject to two, distinct modifications as described below
(the test name is marked with an asterisk).

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22005Z B24009A B25002A B26005A B44004D B59001E
B73004B B83033B BA1020C BA1020F BA1101C BA2001E
BA3006A BA3013A

C34009D and C34009J were graded passed by Evaluation Modification as directed
by the AVO. These tests check that 'SIZE for a composite type is greater
than or equal to the sum of its components' 'SIZE values; but this issue is
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus, the 'SIZE of such a record type might be less than the sum
of its components 'SIZEs, since the size of the heap space that is used by
the varying-length array components is not counted as part of the 'SIZE of
the record type. These tests were graded passed given that the Report.Result
output was "FAILED" and the only Report.Failed output was "INCORRECT
'BASE'SIZE", from line 195 in C34009D and line 193 in C34009J.

C64104A, CB2006A, CB4002A, and CC1311B were graded passed by Processing
Modification as directed by the AVO. These tests make various checks that
CONSTRAINT ERROR is raised for certain operations when the resultant values
lie outside of the range of the subtype. However, in many of the particular
checks that these tests make, the exception-raising operation may be avoided
as per LRM 11.6(7) by optimization that removes the operation if its only
possible effect is to raise an exception (e.g., an assignment to a variable
that is not later referenced). In the list below, beside the name of each
affected test is given the line number of the check that is skipped (with a
relevant associated operation's line number noted in parenthesis). These
tests were processed both with and without optimization: the tests reported a
passed result without optimization; with optimization, the checks cited below

2-4

IPLDIDGTATIC4N DEPED CIES

were skipped and a corresponding call to REPOrT.FAILED was made.

C64104A 174 (copy back of parameter value)
CB2006A 36
CB4002A 85 (initialization @ 54)
CC1311B 55 (default parameter value @ 36)

C98001C was graded passed by Processing Modification as directed by the AVO.
This test checks that a non-static argument to pragma Priority is not
evaluated; it uses the pragma for the main program and within a task unit in
the body of this program. This implementation evaluates the argument when
the pragma appears in a task unit (at line 27) only; this behavior is in
conformity to the draft revised Ada standard (a non-static argument will be
illegal for a main program). (The AVO allows implementers to adopt Ada9X
rules for Ada83 features so as to encourage the transition to the revised
rules.) The test was processed with and without line 27 being co ented out,
and it reported "PASSED" and "FAILED" respectively.

CA3004E..F (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program will execute when an
optional body of one of its library packages is made obsolete. This
implementation, for optimization purposes, compiles all compilation units of
a compilation into a single object module with a single set of control
sections, collectively pooled constants, with improved addressing. As a
consequence, the optional package body of these tests and its corresponding
library unit have a mutual dependence, and thus the library unit is also made
obsolete. This implementation-generated dependence is allowed by LEM
10.3(8).

LA5007S..T (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program cannot execute if a
needed library procedure is made obsolete by the recompilation of a library
unit named in that procedure's context clause. This implementation
determines that the recompiled unit's specification did not change, and so it
does not make the dependent procedure obsolete; the program executes, calling
Report.Failed. The AVO ruled that this behavior is acceptable, in light of
the intent for the revised Ada standard to permit such accommodating
recompilation; further deliberation by the AVO and ARG will determine whether
these (and many related) tests will be withdrawn.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures, Length Check
or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA), which u~ie the
generic procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked Conversion with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by
AI-00590, which addresses required support for Unchecked Conversion, and
since AI-00590 is considered not binding under ACVC 1.11, the support
procedures could be modified to remove the use of Unchecked Conversion.
Lines 40..43, 50, and 56..58 in LNCIHECK and lines 42, 43, aid 58..63 in
ENUMCHEK were contented out.

CD1009A CD1009I CD1009M CD1009V CD1009W CDlCO3A
CDlC04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C

2-5

IMPLEtDVTION DEPENDENCIES

*CD2AS1A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

*CD2A8IA, CD2ASlB, CD2ASIE, CD2A83A, CD2A83B, CD2A83C, and CD2A83E were
graded passed by Test Modification as directed by the AVO. These tests check
that operations of an access type are not affected if a 'SIZE clause is given
for the type; but the standard customization of the ACVC allows only a single
size for access types. This implementation uses a larger size for access
types whose designated object is of type STRING. The tests were modified by
incrementing the specified size SACCSIZE with '+ 64'.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as 'SMALL for
a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

CE3413B was graded inapplicable by Evaluation Modification as directed by the
AVO. This test includes the expression "COUNT'LAST > 150000", which raises
CONSTRAINT ERROR on the implicit conversion of the integer literal to type
COUNT since CORITLAST = 32,767; there is no handler for this exception, so
test execution is terminated. The AVO ruled that this behavior was
acceptable; the AVO ruled that the test be graded inapplicable because it
checks certain file operations and this implementation does not support
external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied
by the customer and guidance from the AVO. This bundling was done in order
to reduce the processing time-compiling, linking, and downloading to the
target. For each test that was bundled, its context clauses for packagesReport and (if present) SYTD were cosmrented out, and the modified test was
inserted into the declarative part of a block statement in the bundle. The
general structure of each bundle was:

WITH REPORT, SYST;
PROCEDURE <BUNDLE NWME> IS

- repeated for each test

DECLARE
<TEST FILE> [a modified test is inserted here, ...]

BEGIN
<TEST NAME>; [... and invoked here]

EXCEPTION -test is not expected to reach this exception handler
WHEN OTHERS -> REPORT. FAILED("unhandled exception ");

REPORT.RESULT;
2ND;

2-6

IJPLDUMTATz(N DEPEM CIES

[... repeated for each test in the bundle)

EMD <BUNLENAME>;

The 1259 tests that were processed in bundles are listed below; each bundle
is delimited by '<' and '>'.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A29002I A29002J A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A38106E
A38199A A390058 A39005C A39005D A39005E A39005F> <A39005G
A54BOIA A54B02A A55B12A A55B13A A55B14A A62006D A71002A
A71004A A72001A A73001I A73001J A74105B A74106A A74106B
A74106C A74205E A74205F> <A83009A A83009B A83041B A83041C

. A83041D A83A02A A83A02B AB3A06A A83AO0A A83CO1C AB3COlD

A83CO1E A83COlF A83COlG AB3CO1H A83COlI AB3CO1J AB5007D
A85013B A87B59A> <AB7006A AC1015B AC3106A AC3206A AC3207A>

<ADIA01A ADIAO1B ADIDOlE AD7001B AD7005A AD7101A AD7101C
AD71o2A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006A C24002A C24002B C24002C C24003A C24003B
C24003C C24106A C24113A C24113B C24113C C24113D C24113E>

<C24201A C24202A C24202B C24202C C24203A C24203B C24207A
C24211A C25001A C25001B C25003A C25004A C26002B C26006A>

<C26008A C27001A C2AO01A C2AO01B C2AOO1C C2A002A C2A006A
C2AO08A C2A009A C2A021B> <C32107A C32107C C32108A C32108B
C32111A C32111B> <C32114A C32115A C32115M> <C32117A C34001A
C34001C C34001D C34001F C34002A C34002C C34003A C34003C>

<C34004A C34004C C34005A C34005C> <C34005D C34005F C34005G
C340051> <C340053 C34005L C34005M C340050> <C34005P C34005R
C34005S C34005U C34006A C34006F C34006G C34006J> <C34006L
C34007A C34007D C34007F C34007G> <C34007I C34007J C34007N
C34007P> <C34007R C34007S> <C34009A C34009F C34009G C34009L
C34011B C34012A C34014A C34014C> <C34014E C34014G C34014H
C34014J C34014L C34014N C34014P C34014R C34014T> <C34014U
C34014W C34014Y C34015B C34016B C34018A C35003A C35003B
C35003D C35003F C35102A C35106A C35404A> <C35503A C35503B
C35503C C35503D C35503E C35503F C35503G C35503H C35503K>

<C35503L C355030 C35503P C35504A C35504B C35505A C35505B
C35505C> <C35505D C35505E C35505F C35507A C35507B> <C35507C
C35507E C35507G C35507H C355071 C35507J> <C35507K C35507L>

<C35706A C35706B C35706C C35706D C35706E> <C35707A C35707B
C35707C C35707D C35707E C35708A C35708B C35708C C35708D
C35708E> <C35711A C35711B C35712A C35712B C35712C C35713A
C35713C> <C35801D C35802A C35802B C35802C C35802D C35802E>

<C35902A C35902B C35902D C35904A C35904B C35A02A C35AO3A
C35A03B C35AO3C C3SA03D> <C35A03N C35A030 C35AO3P> <C35A030
C35AO4A C35A04B C35A04C> <C35A04D C35A04N> <C35A040 C35A04P>

<C35A04Q C35AO5A C35AO5D C35AO5N> <C35A05Q C35A06A C35A06B>
<C35A06D C3MAN6N C35A060> <C35AO6P C35AO6Q C35AO6R C35A06S
C35A07A C35A07B C35A07C> <C35AO7D C35AO7N C35A070 C35AO7P
C35AO7Q C35A08B C36003A> <C36004A C36104A C36104B C36105B

2-7

IMPLEKENMTION DEDENDEDaES

C36172A C36172B C361720 <C36174A C36180A C36202A C36202B
C36202C C36203A C36204A, C36204B C36204C> <C36205A C36205B
C36205C C36205D C36205E C36205F C36205G C36205H> <C36205I
C36205J C36205K C36301A C36301B C36302A C36303A C36304A
C36305A> <C37002A C37003A C37003B C37005A C37006A C37007A
C37008A C37008B> <C37008C C37009A C37010A C37010B C37012A
C37102B C37103A C37105A C37107A C37108B C37206A C37207A
C37208A C37208B C37209A C37209B C37210A> <C37211A C37211B
C37211C C37211D C37211E C37213A C37213B C37213C C37213D>

<C37213E C37213F C37213G C37213H> <C37213J C37213K C37213L
C37214A> <C37215A C37215B> <C37215C C37215D C37215E C37215F
C37215G C37215H C37216A C37217A C37217B C37217C> <C37304A
C373O5A C37306A C37307A C37309A C37310A C37312A C37402A
C37403A> <C37404A C37404B C37405A C37409A C37411A C38002A
C38002B C38004A C38004B C38005A C38005B C38005C C38006A
C38102A C38102B C38102C C38102D C38102E C38104A C38107A
C38107B> <C38108A C38201A C38202A C39006A C39006B C39006D
C39006E C39006G C39007A C39007B C39008A C39008B C39008C>

<C41101D C41103A C41103B C41104A C41105A C41106A C41107A
C41108A C41201D C41203A C41203B> <C41204A C41205A C41206A
C41207A C41301A C41303A C41303B C41303C C41303E C41303F
C41303G C41303I C41303J C41303K C41303M C41303N C413030
C413030 C41303R C41303S C41303U C41303V C41303W C41304A>

<C41304B C41306A C41306B C41306C C41307A C41307C C41307D
C41308A C41308C C41308D C41309A> <C41320A C41321A C41322A
C41323A C41324A C41325A C41326A C41327A C41328A> <C41401A
C41402A C41403A C41404A C42005A C42006A C42007A C42007B>

<C42007C C42007D C42007E C42007F C42007G C42007H C42007I>
<C420073 C42007K C43003A C43004B C43103A C43103B C43104A>
<C43105A C43105B C43106A C43107A C43108A C43204A C43204C
C43204E C43204F> <C43204G C43204H C43204I C43205A C43205B
C43205C C43205D C43205E C43205F C43205G C43205H C43205I
C432053 C43205K C43206A C43207A C43207B C43207C> <C43207D
C43208A C43208B C43209A C43210A C43211A C43212A C43212C
C43213A> <C43214A C43214B C43214C C43214D C43214E C43214F
C43215A C43215B C43222A> <C43224A C44003A C44003D C44003E
C44003F C44003G C45101A C45101B C45101C C45101E C45101G
C45101H C45101I C45101K C45104A C45111A C45111D C45111C>

<C45111D C45111E C45112A C45112B C45113A> <C45114B C45122A
C45122B C45122C C45122D C45123A C45123B C45123C> <C45201A
C45201B C45202A C45202B C45210A C45211A C45220A C45220B
C45220C C45220D C45220E C45220F C45231A> <C45232A C45232B
C45241A C45241B C45241C C45241D C45241E> <C45242A C45242B
C45251A C45252A C45252B C45253A C45262A> <C45272A C45273A
C45274A C45274B C45274C C45281A C45282A C45282B C45291A
C45303A C45304A> <C45321A C45321B C45321C C45321D C45321E>

<C45323A C45331A C45331D C45332A C45342A C45343A C45344A
C45345A C45345B C45345C C45345D> <C45347A C45347B C45347C
C45347D C45411A C45411D C45412A> <C45413A C45421A C45421B
C45421C C45421D C45421E> <C45423A C45431A C45502A C45503A>

<C45504A C45504D> <C45505A C45521A C45521B C45521C C45521D
C45521E> <C45523A C45524A C45524B C45524C C45524D C45524E>

<C45532A C45532B C45532C C45532D C45532E C45532F C45532G
C45532H C45532I C45532J C45532K C45532L> <C45534A C45611A

2-8

IMUME~TALTIM4 DOMEPDDIES

C45613A C45614A C45621A C45621B C45621C C45621D C45621E>
<C45622A C45624A C45624B C45631A C45632A C45641A C45641B

C45641C C45641D C45641E> C45652A C45662A C45662B C45672A
C46011A C46012A C46012B C46012C> <C46012D C46012E> <C46013A
C46014A C46021A C46023A C46024A C46031A C46032A C46033A>

<C46041A C46042A C46043A C46043B> <C46044A C46044B C46051A
C46051B C46051C0 <C46052A C46053A C46054A C47002A C47002B
C47002C C47002D C47003A C47004A C47005A C47006A C47007A>

<C47008A C47009A C47009B C48004A C48004B C48004C C48004D
C48004E C48004F C48005A C48005B C48005C C48006A C48006B>

<C48007A C48007B C48007C C48008A C48008B C48008C C48008D
C48009A C48009B C48009C C48009D C48009E C48009F C48009G>

<C48009H C48009I C48009J C48010A C48011A C48012A C49020A
C49021A C49022A C49022B C49022C C49023A C49024A C49025A
C49026A> <C4AO05A C4AOO5B C4AO06A C4AO07A C4AO10A C4AO10B
C4AO10D C4AO11A C4A012A C4A012B C4A013A C4AO13B C4AO14A>

<C51002A C51004A C52001A C52001B C52001C C52005A C52005B
C52005C C52005D C52005E C52005F> <C52007A C52008A C52008B
C52009A C52009B C52010A C52011A C52011B C52012A C52012B
C52013A> <C52103B C52103C C52103F C52103G C52103H C52103K
C52103L> <C52103M C52103P C52103Q C52103R C52103S C52103X
C52104A C52104B C52104C C52104F> <C52104G C52104H C52104K
C52104L C52104M C52104P C52104Q C52104R C52104X C52104Y>

<C53004B C53005A C53005B C53006A C53006B C53007A C53008A
C54A03A C54A04A C54A06A C54A07A C54A1IA C54A13A C54A13B
C54A13C> <C54AI3D C54A22A C54A23A C54A24A C54A24B C54A26A
C54A27A C54A41A C54A42A C54A42B C54A42C C54A42D C54A42E
C54A42F C54A42G C55B03A C55B04A C55BO5A C55B06A C55B06B>

<C55BO0A C55B09A C55B10A C55B11A c55B11B C55B1SA C55B16A
C55CO1A C55CO2A C55C02B C55C03A C55C03B C55DO1A C56002A
C57002A C57003A C57004A C57004B C57004C C57005A> <C58004A
C58004B C58004C C58004D C58004F C58004G C58005A C58005B
C58005H C58006A C58006B C59001B C59002A C59002B C59002C>

<C61008A C61009A C61010A C62002A C62003A C62003B C62004A
C62006A C62009A C63004A C64002B> <C64004G C64005A C64005B
C64005C C64103A C64103B C64103C C64103D C64103E C64103F>

<C64104A C64104B C64104C C64104D C64104E C64104F C64104G
C64104H C64104I C64104J C64104K C64104L C64104M C64104N
C641040 C64105A C64105B C64105C C64105D C64105E C64105F>

<C64106A C64106B C64106C C64106D C64107A C64108A C64109A
C64109B C64109C C64109D C64109E> <C64109F C64109G C64109H
C641091 C64109J C64109K C64109L> <C64201B C64201C C64202A
C65003A> <C65003B C65004A C66002A C66002C C66002D C66002E
C66002F C66002G C67002A C67002B C67002C C67002D C67002E>

<C67003A C67003B C67003C C67003D C67003E C67005A C67005B
C67005C C67005D> <C72001B C72002A C73002A C73007A C74004A
C74203A C74206A C74207B C74208A C74208B C74209A C74210A
C74211A C74211B C74302A C74302B C74305A C74305B C74306A
C74307A> <C74401D C74401E C74401K C74401Q C74402A C74402B
C74406A C74407B C74409B> <C83007A C83012D C83022A C83023A
C83024A C83025A> <C83027A C83027C C83028A C83029A C83030A>

<C83031A C83031C C83031E C83032A C83033A C83051A C83B02A
C83B02B C83E02A C83E02B C83E03A C83E04A C83FO1A C83FO3A
C84002A C84005A C84008A C84009A C85004B C85005A C85005B

2-9

IpaumE NTiaN DEPEDNCIES

C85005C C85005D> <C85005E C85005F C85005G C85006A> <C85006F
C85006G> <c87A05A C87A05B C87BO2A C87B02B C87B03A C87BO4A
C87804B C87B04C C87B05A C87B06A C87B07A C87B07B> <C87807C

C87B07D C87B07E C87B08A C87B09A C87B09B C87B09C C87B1OA
C87BI1A C87B11B C87B13A C87B14A C87B14B C87B14C C87B14D>

<C87B15A C87B16A C87B17A C87B18A C87B18B C87B19A C87B23A
C87B24A> <C87B248 C87B26B C87B27A C87B28A C87B29A C87B30A
C87B31A C87B32A> <CB1001A CB1002A CB1003A CB1004A CB005A

CB1010A CB1010B CB1010C CB1010D> <CB2004A CB2005A CB2006A
C82007A CB3003A CB3003B> <CB3004A CB4001A CB4002A CB4003A
CB4004A CB4005A CB4006A CB4007A CB4008A CB4009A CB4013A

CB5002A CB7003A CB7005A> <CC1004A CC1005C CC1010A> <CC1010B
CC1018A CC1104C CC1107B CC1111A CC1204A CC12078 CC1220A
CC1221A CC1221B CC1221C CC1221D> <CC1222A CC1224A CC1225A>

<CC1304A CC1304B CC1305B CC1307A CC1307B CC1308A CC1310A>
<CC1311A CC1311B CC2002A CC3004A CC3007A CC3011A CC3011D

CC3012A CC3015A CC3106B> <CC3120A CC3120B CC3121A CC3123A
CC3123B CC3125A CC3125B CC3125C CC3125D> <CC3126A CC3127A

CC3128A CC3203A CC3207B CC3208A CC3208B> <CC3208C CC3220A
CC3221A CC3222A CC3223A CC3224A CC3225A> <CC3230A CC3231A
CC3232A CC3233A CC3234A CC3235A CC3236A CC3240A CC3305A
CC3305B CC3305C CC3305D CC3406A CC3406B CC3406C CC3406D
CC3407A CC3407B CC3407C CC3407D CC3407E CC3407F> <CC3408A
CC3408B CC3408C CC3408D CC3504A CC3504B CC3504C CC3504D
CC3504E CC3504F> <CC3504G CC3504H CC3504I CC3504J CC3504K>

<CC3601A CC3601C> <CC3603A CC3606A CC3606B CC3607B>

2-10

CHAPTER 3

PROCESSING INFORMATICN

3.1 TESTING ENVIRONME

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Robert R. Risinger
TLD Systems Ltd.
3625 Del Amo Boulevard
Torrance California 90503
(310) 542-5433

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC (Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFMPTION

a) Total Number of Applicable Tests 3534
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 67
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 532 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as,
appropriate. The executable images were transferred to the target computer
system by the Serial Ports, and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The following options were used for testing this
implementation:

Compiler
Option / Switch Effect

NoPhase Suppress displaying of phase times during
compilation.

NoLog To cause command line to be echoed on log
file.

NoDebug To suppress generation of debug symbols to
speed compilation and linking.

List To cause listing file to be generated.

Target-i960 Selects the TLD Intel i960 target
architecture.

3-2

PROCESSING INFOMATIi

Linker
option / Switch Effect

No~ebug Suppresses generation of Debugger symbol
files.

NoVersion Suppresses announcement banners that
contain timstamp and version information
to facilitate file comparing.

All tests were executed with Code Straightening, Global
Optimizations, and automatic Inlining options enabled. Where
optimizations are detected by the optimizer that represent deletion
of test code resulting from unreachable paths, deleteable
assignments, or relational tautologies or contradictions, such
optimizations are reflected by informational or warning diagnostics
in the compilation listings.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-3

APPEN4DIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists tke
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LwN--also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN LEN 120 - Value of V

$BIGIDI (l..V-l -> 'A', V -> '1')

$BIGID2 (l..V-l -> 'A', V-> '2')

$BIGID3 (I..V/2-> 'A'W) & '3' &
(l..V-l-V/2 -> 'A')

$BIGID4 (l..V/2 -> 'A') & '4' &
(1..V-l-V/2-> 'A')

$BIG_INT LIT (I..V-3-> '0') & "298"

$BIGREALLIT (l..V-5-> '0') & "690.0"

SBIGSTRING1 '"' & (1..V/2 -> 'A') & 1"'

$BIGSTRING2 "' & (1..V-l-V/2 -> 'A') & '1' & '"

SBIANKS (l..V-20 -> '

$MAXLENIMTBASEDLITERAL
"2:" & (l..V-5-> '0') & "11:"

$MAX_LEN REAL BASED_LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

A-1

MACRO PARAMETERS

SMAX STRfl LITERAL "' & (l..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMNT 4

$CUNTLAST 511

$DEFAULT MEM_ SIZE 16#40000000#

$DEFAULT _STRLUIT 8

$DEFAULTSYSNAME 1960

$DELTA_DOC 2.0**(-31)

$ENTRY_ADDRESS 15

SENTRY_ ADRESSi 17

$ENTRYADDRESS2 19

SFIELDLAST 127

$FILE TEINAT ASCII.FS

$FIXEDNAME NOSUCHFIX TYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORSTRING,

$FORMSTRING2 CANIOTRESTRICT FILECAPACITY

$GREATER THN DURATlIO
S- 90000.0

$GREA~TERTHAN_1DURATION~ BASE LAST
131071.0

$GR•ATER_THAN FLOAT BASE LAST
-3.41000E+38

$GREATER THAN FLOATSAFE LARGE
2.T3000E+37

A-2

MR PARAMETER

$GEAE THN q' ?TFLOT SAFE lAME
NODi- "H vWFWOA Tym

$HIGHPICIRITY 20

$ILLEGAL EXM ý FILE NAMEl
WBADOAR@. IN

$ILLEGLEXTERNL FILE NRME2

WIFI~hRTocG SOnl~ERE

$ INAPPROPRIATELINELENGTH
-1

$INAPPROPRIM AGEPLENLGTH

s$icLUDE PRhGMA1 PRAGmA nCLuDE ("A28006D1.TSTr)

$INCLtJDEPRAQIA2 PRAGRA InCLUDE ("B28006F1.TST")

$INTEGER_FIRST -2147483648

$INTEGERLAST 2147483647

$INT _ERLAST PLUS 1 2147483648

$INTE~nCE LANGUGE ASSOWLY

SLESS THANURATIOC -90000.0

$LESS THIANDU A2ICKBASE FIRS
-1-1073.0

SLiN ACSII.cR

S . PRIORITY 1

$MACHINE CODE STATDlENT
CTRL'(B, 1, True)

$MACHINE CDE TYPE CTRL

$MANTISSA DOC 31

$MAX DIGITS 15

SmNx INT 2147483647

$MAX INT PLUS_1 2147483648

$MIN IN -2_147483648

A-3

MACR PARAMEERIS

$NAME NO SUCH INTEGER TYPE

$NAME LIST Pmachine, ns16000, vax, af1750 z8002, z8001,
gould, pdpll, m68000, pe320 0 , caps, amnahl,
i8086, i80286, i80386, z80000, ns32000,
ibmsl, m68020, nebula, namex, hp, bbl,
hawk, r1666, i960

SNAME_SPECIFICATIONI Not supported

SNAME_SPECIFICATIWN2 Not supported

$NAME_SPECIFICATICN3 Not supported

SNEGBASEDINT 16#FFFFFFFE#

$NEW MEMSIZE 16#10000000#

$NEWSTOR_UNIT 8

$N'ESYSNAME i960

SPAGETERMINATOR ACSII.CR & ASCII.FF

$RECORDDEFINITION Withdrawn

SRECOED_NAME Withdrawn

$TASK_SIZE 32

$TASK_STMGE_SIZE 2000

STICK 0.000001

$VARIABLE ADDRESS SYSTEM. "-" (16#7FFFFFF4#)

$VARIABLEADDRESS SYSTE. "-" (16#7FFFFFEC#)

$VARIABLEADDRESS2 SYSTEM. "-" (16#7FFFFFE8#)

SYOUR PRAGMA Withdrawn

A-4

APPENDIX B

COMPILATICN SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

TLD ADA COMPILER c960-ADA-2C
COMPILER USAGE 3 - 8

3.4 COMPILER OPTION SWITCHES

Capiler option switches pwvide control over various processing UAn
output features of the €•iler. The". features include several
varieties of listing output, the level and kinds of optimization.
desired, the choice of target cruter, and the operation of the
ompiler in a syntax cbecking mods oly.

Keywords are used for selecting various cmiler options. The
complement keyword, if it exmsts, is used to disable a cpiler option
and is formed by prefixi the switch keyword with .now.

Switch names may be truncated to the least number of characters
required to umiquely identity the switch. For exasple, the switch
OCR0SSJKF' (explained in the list below) may be uniquely identified by

the abbreviation CR or any longer abbreviation. In the list of
switches an the following pages, the abbreviatimos are in bold and the
optimoal extra characters are not bolded.

If an option is not specified by the user, a default setting is
asumd. =ll specif ie4d copiler options apply to a single invocation
of the c £iler.

The default setting of a switch and its meaning are defined in the
table below. The meaning of the cospiament form of a switch is
normally the negation of the switch. For some switches, the •le

meaning is not obvious; these cmiplemnt switch keywords are listed
separately.

Zn the description of the switches, the target dependent name target is
used. The value of this symbol is determined by the value of the
TRGZT switch.

Cap£iler-generated file specificatios generally conform to host
conventions. Thus, any generated filename is the source filename
appended with the default file type. The output file name can be
completely or partially specified.

7%.D 7PWWr WU~EL

TLD ADA COMPILER z960-ADA-2C

COMPILER USAGE 3 - 9

SWZTCH NAME MEANING

AD ss..suAcz,,m l (n-ame, I
NOADiuus s_sP - default

This switch allows users to specify the associaton of a
cmpilation unit with a logical address space. Mhis Capability
will support the definition of i960 Zxtended Architecture *Dm.ins
and domain calls.

The zame pazametr is the name of the address space and
xubaysnm-am in the name of the subsystem to which the address
space belongs. If subsatemi-name is not supplied, then the address
space does not belong to a subsystem. This switch may appear in
any compilation, and applies to all the cpilation units in the
compilation.

MOTV: An alternate method of associating compilation units() with
a logical Address space is to use the pragma AddressSpace in the
compilation unit(s) and compile without using this switch. The
pragma AddressSpace_;nt•y is used to indicate which subpraogranm
represent entities into the logical space (defined by this switch
or pragma Address.Space). Refer Section 5.2.F of this docment
under mplementation-Dependent Pragma, for further intfzomtion.

This capability does not yet allow uers to indicate objects that
are to be implemented and referenced as indpene objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the sam value, or have no addaess space
attribute and will create either a domain (if an address attribute
is specified) or a pzrz=am (if no address space attribute is
specified).

AI-adf- filename
NOAID -- default

This switch causes information collected during cmpilation to be
saved in a specified data base file or a default file named
1960.AD• in the caupilation directory. This infomation includes
the compilation units, *the contained scopes, the local declarations
of objects and types and their descriptions, external references,
callers, calls, program desigm language (PDL) which is extracted
from stylized Ada coments embedded in the source code, and any
other information extracted from similar stylized Ada coents. I
The T= Ada Info Display (TLD•id) pe=mits the user to bzowse this
data base and to extract selected data base information to support
the understanding of a program or to produce documentation
describing the program.I

77-0 A&ThUuMN LTD

TLD ADA COMPILER z960-ADA-2C
CoMPXLER USAGE 3 - 10

CAL T=
NOC4. ym -- def.aul

This svitch is used in conjunction with]MUMOM and It= to
cause all .CTZ files (coreponding to the c otple oet f obaject

files being linked for this program) to be read in and a closure of
all calls in the program, to be c¢xputed. The results of this
analysis is foxmatted into a subprogram call truee repo and output
in the listing file. This switch has no effect without the
w, ABORATCO and LZST switches.

WOTI: The call tree is incomplete if any required c£ilation
unit's . C=Z files are missing.

CHEczs - - default
CHZcKS {. (,=(_ckI•,,nifier(,...)))
NOCHzcxs{. (,c•eckidet..if r(,...)))

When the CHECKS switch is used, zero or more ch•.ck_.detiflr. m are
specified and the run time checks are enabled. The status of run

time checks associated with unmentioned cbeck_.idencifiera is
unchanged.

Without any check_.dentiffer, the NC.KS switch omits all r- m
timu checks. Xf ane or more check identifiers are specified, the
specified rin time checks are omitted. The status of rn time
checks associated with urnmntioned checkidentifLez is unchanged.

Choecks can be el*m4 ated selectively or cinpletely by source
statement pragma Suppress. Pragma Suppress rverrides the CHECKS
switch.

C•ecki1denifers are listed below and are described in the LM,

Section S.2.3.

AzaL_CHCKS -- default (consists of all the checks below)

ACCKS.czcK DZSCRM0 =_CHZCK DZIVSZIONCECK
r LA.ORATZý.CICK r :-CIMcK CK
0VZRPLOWOCHZK RANG;_CHK S MA;_REZCK

==.o Thurraw L=D

TLD ADA COMPILER z960-ADA-2C
COWZ LER USAGE 3 - 11

This switch allows the user to override & met of default sa t
charact used to mark cnents which have special meanings to the
Copiler. (n the source code, these mta characters mst
imediately follow the Ada coment designator *--.) Tmhe are 13
neor chracters defined as positi•onal entries in the string of
characters specified for this switch. To define eoo or ae
entries, all entries up to and including the last entry to be
defined miust be specified. Bach of thes may be
repesented either by the character itself, or by a dollar sign u$,

followed by the characteros decimal ascii value. (The ltter fcam
is useful for specifying characters which would otherwise be
significent to the comand line parmer.) To specify a dollar sign
character, use the ft=m $36'. Remaining character positions are
left unchanged. Capabilities for character positions in the string .
my he disabled by specifying either blank (8$328) or null (6$06).
Pleae refeor to the ascii character met table in Appendix 5 for the
decumal value of ascii characters. The definition of each entry
and its current default value is as follows:

I Configuration Zquals (default: lou)
This entry defines the character used to mark
conditional source lines which will be included in,
the complation Maly if its
configuration-identiflor is specified with the
CO7WORX2'ZO3 switch.I

2 configuration Not qual (default: at)
This entry defines the character used to mark
conditional source lines which will be included in
the cilation only if its
configuzati",-d•n,•ifer ins W specified with the
COnF•Z AT"ZO switch. This same character is used
to begin an "else' clause within a gr=op of
conditional cmpilation lines. The lines between
this character and the end of the go will be
included in the cmilation only if the
confIguration-ideni-fler for the gru s is
specified with the CONPZGORA=ZON switch.I

3 Begin Configuration (default: *(a)I
"This entry defines the character used to mark the
beginning of a group of conditional com.ilation
Source lines.

77. fthD TW.W LTD

TLD ADA COMPILER z960-ADA-2C
COMPILER USAGE 3 - 12

Sad Configuration (default: })
This entry defines the character used to mrk the
end of a grou of couditio•al mce.latiam soure
lines.

See the CQFX=%X=W cosinnd, line option for moz intomtion an
conditi•oal cosiplaatiu.

5 Continuatico Line (deault: Oa')
This entry defines the character used to mark a
coent cutine from the prev ous line and -for
which word-wrapping is pezozmd daring source code
zefozuattiag.

6 Reserved for future use.
7 Reserved for future use.

TL-•aid Cemumnt (•haraSe~tar

8 Begin Topic (default: 01[)
This entry defines the character used to mark the
beginning of text associated with a topic name.

9 and Topic (default: 0) I)
This entry defines the character used to mark the
end of text associated with a topic name.

10 Define Topic (default: .e I
This entry defines the character used to mark the
definition of a Coment meta character for Ai I
particular user-defined topic name. This character
may subsequently be used as a shorthand for the
above method, elim ating the need to ecify the
topic naime at each occurrence.I

11 Description (default: 0:)
This entry defines the character used to mark a
cmment as a description associated with the
previous declaration.

?%.0 AfdlW W m

TLD ADA COMPILER z960-ADA-2C
CoWIzaR UsasE 3 - 13

12 PDL (daumlt: 6) I
This entry defines the character used to mark a
cmment as Program Design Language (PDL).

:13 Coand (default: 8$')
ftis entry defines the character used to mark a
cmment as a ccnad to control data collecticn..
This entry provides a -achaniin for user to
maintain campatibility between the nw
inplamentat. o and previously cointed soue. Xt
also may be used to provide a degree of
ompatibility with tools similar to TLDaid.

see the flfrneBemtfor th. TLDUiW ~ a for More
infa•matio: on TLZDid.

CONvzguAxzoi. (() aonfiguraio,-..Idoti.ier(.... } ())

where the parenthesis () are rquired only when more than one
comfiguzation-Identifler is specified.

This switch provides a conditional €mpilation (configuration)
capability by determining the specially cosmented source lines that
are to be included in the copilation. Source liness) can be
associated with a cnfigura.ton-idi•r•.ier which if supplied with
this switch, causes them to be included. Also. alternative soe
line (s) can be specially marked to be included if the
configurat.ion-Identflar is not supplied.

Zans=

fark Source Line (s) Xndividually:

- - =conflguration. Identifer conditional - source- line

or:

- -a=nfiguraion-Idewncifir cond.i tional. source-line

The above format is repeated for each source line to be marked as a
coni•tional source line.

Source line(s) beginning with "--=9 are included in the compilation
if th.e configura.ion-Id.ntifaer is specified with the cmmand line
CONIUZ.OCZON switch. Source line(s) beginning with 0--4 are
included in the czpilatmon if the configuration-Ideniflear is Wa=
specified with the command line C•F-•FUZAX"ZO switch (CO GU7G(RA.ZO
is not used or is used without that configuration-identiflar). .

TLC7 ~ T

TLD ADA COMPILER z960-ADA-2C
COMpzIL USAME 3 - 14

Mark a Group of Source Lines:

- -(cfiguzaracai-d.e.tdierI
condi •,onal -svou.ae-.lIne-oz

)Comiled ifI
) coniguration. -ident.•fier
) Sa specified With this

aCoditional -source.-lne-n switch.e

&I t- con& clona~l- source - Un.-l 1
)Comiled ift

) c,•figurai-i.dntdmat.i er
i) s 2= specified with this

a&l -condi rioal -scume- line-A switch.
-) c•nfiguwracion-Ident.fer

Source line(s) between lines beginning with 0--{. and a--#* areI
included in the coq£ilatiAn if the configuzra.in-Idencifaer is
Specified with the cammind line CCB1ZOW.M'ZO Switch. Source
line(s) between lines beginning with *--.* and §--)* are Included
in the cilation if the cnfigu-a.Acin-Id.ntifl.r is MM specified
with the cimniand line c€WI=3n Cxw Switch (CI•GMaUZOw is niot
used or is used without that ,onfigua,.co-Ide~ntfer) .

Cem ints awe examined for cinfiguration switches only if they
occupy a line by themselves (i.e., the 8--a starts at the first.-
non-blank character of the line.

The special cement characters '--=,, ,--#, ,--{,, and '--)} must
be entered as shown with no spaces between them.

The characters *=I, . -(., and4) are the default metsa
characters for configuration switches, but they can be modified.
See the COqT cinand line option for more infozrmation.

The configuration-identifier must immediately follow the special
cent characters; no space is allowed between them.

The configuratcin-Idearifaer on the closing brae 0--), is
optional, but if specified must match the identifier on the
corresponding opening brace - -- { -

"rLD Mvrin Aui LT.D

TOD ADA COMPILER z960-ADA-2C
C0.ZLIR USAG 3 - 15

The 0-4-6 has one or the other of two distinct meanings: 1) itI
followed by a configuration-idt.ift•er, it means ac ile the
balance of this line canditio•nlly' and 2) if no identifier I
follows, it mans *toggle the sense of the innemost ofiguration

Any additional text an the same line as the
0--(configurcion-identifier" and/or the "--I
configurat.in-identifier* will be considered a oment and will MM
be cmpiled as Ada source, regardless of the configuration
"setti m

By default, a /CC=&G=1Z96 setting is created for the target
comuter and model (by the /TAROGT and the /== Compiler
switches). Theref oe, Z960 is not a valid co=figurzaion-.denrifl -
for coMndtional cilation. if use, conditionl source with that
name will always be included in the c£ilation whether or not this
switch is specified (sinc that name is already specified for the
target and model, by default).

The iler treats nested condAtional source in a manner similar .
to nested *if* statemnts. It checks the configuraction-Identifier
to determine if it has been specified with the CMZF.&GMMZXC switch
(similar to the checking performed to determine whether an "if'
statement is to be performed). If so, it selects the source marked
with that configuration-idmanifier (just as an 'if'0 statement isn
performed for a 'True, "if" condition). If not and alterte
conditional source exmists, it selects the alternate source for that
conf[guration-idenclr.le marked with *--#a (just as an else'
statement is performed for a 'False o if condition)). It continues
this checking for every nested configuration-identifr.e it
encoumters.

7%.0 J7MWTý 9=

TLD ADA COMPILER z960-ADA-2C
COwLzgt UsAGu 3 - 16

Forezampe:

-- (A

CCU&tt~g1 -Aowwce-UMe -Al
)Caspiled it A I
)specified with
this switch.

CCodi•c.mI, s Vur .e-.i)-A

a.tc -cdiC r.1.on2L -aous-e-2.Lu n-AZl
}cm.piled it A is 2=
I specified with

this switch.
a.lt- aandi t.l anaur - e-,1ne-,n)I

a d cinma.l - aou-.Lin-5..J• } d
}Ccopiled if A isa

a nd a ja specified
}with this switch.

CAndl c.oa. -Neu=&-Ilm-- }
..# I
a.t -codlt .tina -aource-4•i-31 }

}CopWiled if A and a aI
u ml, specified with

)this switch.I
a&U-cnditlana2,-suzc.-Ue-l -n }

¢=Md4 t.t,--, -#CUu.--•-.W-C2 }

)Ciipiled if A and are
um) and C A& specified

) with this switch.
comd.tn- l -sotwce-l-ne--Cn }

&I .Cndc ial -source-.lne-m }
Compiled if A, 3, and C

} ar 2= specified with
} this switch.

a.t-,ndiona, u,.-J-c ne-C) }

--)A

Configu-atiL switches are exmuined and must be properly nested
regardless of whether or not the ,.nf-g•.ar t -•t den-tjr. - are
specified.

7, YLO UN7MrWA L70

TLD ADA COMPILER z960-ADA-2C
COMVPILR USAGE 3 - 17

7he following .omeple format is invalid, since *26 is not
ca•psltely nested within •,A:

..)A&

at the close of "A', the nested was vwin be forced aloed with the
Warning message: 'Kissing cozfiguratiou coment: --)BE. by the
tme *--)Do is reached, 0" vwill have already been closed, 8o the
following warning will be issued: "0amatched configuration
coment: --)}. I

CRosimp
NOCRoss'azW default

This switch generates a cross reference listing that contains nams
referenced in the source code. The cross reference listing is
included in the listing tile; therefore, the LIST switch mist be
selected or CROSSUEF has no effect.CTz

NOCT -- default

7his switch generates a COM tools interface file. The default
filename is derived from the object fileam, with a .C
extension. The .CT file is required to rupport the CARLT31.,
FULLý_=LLTM and 33Y UEDCRULLTRE switches.

DEBuo - - default
NODEBw

This switch selects the production of symbolic debug tables in the

relocatable object file.

Alternate abbreviation: DBG, NODDB

DIbo s=cs
NODIAmomrsTC default

This switch produces a diagnostic message file compatible with
Digital's Language Sensitive Editor and ZinoTech Editor. See
Digital's dcumentaion for the Language Sensitive Editor for a
detailed ewlanation of the file produced by this switch.

"T1UC •FWf f L• .=

TLD ADA COMPILER r960-ADA-2C
COMzPILE USAGE 3 - 18

NO�ADORMmi. - - default

This switch generates a setup progrm (in umit-natSWZLAB..CM7 (and &
listing file in u&mi.-namWuZa5.LS if the UIST switch us
specified)) that elaborates all compilation unaits on which the
specified library unAit procedure (main progr•m) depends and then
calls the procedure (Main Progr). Mhan the X0MIATM Switch is
used, The unait ne of a prev ously oiled procede nmst be
specified instead of a suce fLle. Xt is not ncessary to

distinguish a Main P-9- from & library unAit when it is caviled.

F=.L f-S.T. TM

.NOF,%i z..u-T= -- default

When the F=LCw7-_TINZ switch is used, the c•iler listg
includes all calls including all nested calls in every call. The
X07 Z.LCALLT3= switch shows all nested calls in the first
instance only and all submequent calls are referred to the first
instance. This switch has no effect without the ELADWAOR and
LIST switches.

INDEriz=w.
INDEw'zcn=-3 -- default

This switch controls the indentation width in a refaoimatted source
listing (see the RZFOMW switch description). This switch assigns
a value to the number of columns used in indentation; the •alue n
can range from I to a.

INFo -- default
NOINFo

The InO switch produces all diagnostic messages including
information-level diagnostic messages. The YO313O switch
suppresses the production of informatica-level diagnostic messages
only.

INS•.rzz=.oIc.tn
NOINSm~vrx= -- default

This switch is used to establish a default mode of instantiation
for all generic instantiations within the compilation.

The opnio parameter instructs the Compiler to instantiate generics
in the mamner specified, as described below:

single body - a single body is used for all instantiations

macro - each instantiation produces a different body

7fjBAmsI ME LD

TLD ADA COMPILFR z960-ADA-2C
CoWP•LER UsAe 3 - 19

Pleasse rter to Section 3.12 "Oener"is for msore infd aticn On the
admntegss and disadvantages in using singlebody genrics versus
macro generics.

nested Gastantiations and nested generlcs are Supported and
generics defined in libary units are pexitted.

zt is not possible to pen ore a macro instantiation for a generic I
whose body bas not yet been c~iled.

NOTE: An alternate miethod of controlling macro instantiation of
a generic is by using prama Instantiate in the source code and
perf moeing cospilation without this switch. The pragm controls
instantiatioin of a particular generic. efr to Section S.2.F of
this document unde mplemnation-Dependent Prageas, for further
information.

in the event of a conflict between the pragem and this switch,
the switch takes precedence.

INTsL
NOINTsL -- default

This switch intersperses lines of source code with the assembly
c generated in the macro listing. This switch is valid only if
the LIST and MR= switches are selected. Xt my be helpful in
correlating Ada source to generated code, but it increases the size
of the listing file.

INVu= z amm
NOIN~zn:pc~Zmau .. - eault

This switch detertines which calls led to the present one. A
reversed order call tree is generated. This switch has no effect
without the ZLAORATOR and LXST switches.

LIST tmliatin-file-spsc)
NOLI-)T -- default in interactive mods
LIST -- default for background processes

This switch generates a listing file. The default filename is
derived from the source filename, with a .LiS exensin. The
.liscig-fi.Ze-spec can be optionally specified.

7%D _ATU&i•T &X=

TLD ADA COMPILER z960-ADA-2C
COMPILER USAGE 3 - 20

LOG
NOL~oG- default

This switch causes the ciper to write in the ilation log,
comand line options and the file specification of the Ada souce
tile being c iled which is written to to SYSSOM7T• (the
operating system' a standard output). This switch is useful in
eamng batch output logs because it allows the user to easily
determine which files are being caled.

MACRo
NOMACo -- default

This switch produces an assmbly like object code listing appended
to the source listing file. The LIST switch mat be enabled or
this switch has no effect.

MAIN
NOMAIN ma -- defauit

This switch makes the compiler treat the compilation unit being
compiled as a user-deafined elaboration or setup program which is
used instead of that nozmally produced by the LAIORATO.R switch.
The source file must be specified instead of a unit name of a
previously c iled procedure. Usually, the source file is
modified by the user, starting from the version produced by the
WRITS IL&A switch.

MAXIRRoRsUZI
WXRoRs.soo -- default

This switch assigns a value limit to the number of errors forcing
job termination. Once this value is exceeded, the cospilation is
terminated. Zfomration-level diagnostic messages are not included
in the count of errors forcing terminatica. The specified value's
range is from 0 to 500.

NMO~L.uadelz -name

If this switch is not specified, TLDada provides compilation
capabilities that are comon to all models of the target.

If this switch is specified, whoe model-nam is one of the models
below, TLDada provides compilation capabilities that are valid for
the specified model. The cmApilation that is performed for a
particular model may be valid f•or another model of the target if it
supports the same machine-specific code (machine instructions,
domiains, etc.).

77- T3WSAN &.7W

TLD ADA COMPILER z960-ADA-2C
COMPXLZR USAGE 3 - 21

The following are valid models:

SA
Ch

VCW I

X&

NEW LZNRW
NONE4zLzuana default

The MNW LIRAJ• switch creates an X960 subdirectory in your current
working directory and an IP60.IN3 library in that subdirectory,
replacing the contents of the prior subdirectory and library, if
they existed.

The RMCM LXER switch checks if an 1960 subdirectory exists in
your current working directozy and if it does not already exist, it
will create the 1960 subdirectory and an 1960.LZB library in that
subdirectory.

NOTE: This switch along with the PASinTLIBRAZY switch replaces
the jUmLýz switch.

OB=CTzcr(abJwt-eil..apec)
O&MCT -- default
NOOaazcT

This switch produces a relocatable object file in the 1960
subdirectory in the current cilation directory. The default
filename is derived from the source filename, with a ".0M'.
extension.

OPT - - default
OPT (parameter{,...}))
NOOýP
NOOPT(. (parameter{(...)))

This switch enables the specified global optimization of the
icnpiled code. The negation of this switch disables the specified

global optimization of the cwpiled code.

V ThD Wav LTD

TLD ADA COMPILER z960-ADA-2C
COMPILER USAGE 3 - 22

When the OPT switch is entered, without any paritere, a11
optimizatims listed below are tuzned ca. This restores the
parameters to their defaults. When it is entered with parameters,
omly the specified parameters are turned on.

Uhen the nOOPT switch is entered, without any paameOters, all
optimizations listed below are turned off. ahen it is entered with
parameters, cnly the specified parameters are turned off.

Default optimizationa such as CO5...3UUhRK3SI,
CM=83TATVPnW=c, MADC=3. and =)ZOZ•=n, etc. should =
be changed for noml use. Users my wish to change theme
optimizations for configuration or testing purposes, hoWever, -

Systems recnmmends that they not be changed. These default
optimizations should be changed only when there is an ahoom i
situation with data or the program or a bad, TLD- or user-C•meted
algorithm. For example, if the progrm has an umused procedure the*
default optimization parameter DZAD SDUPROGRAK default will delete
it for production impravement, however, the user my not want the
unused p'r-oedure deleted for Debugger purposes. If users are
finding a need to change these optimiuations, please notify TUD
systems so that we can resolve the problem more efficiently.

The fallowina bmters tor he used with the /OP? std /NOOPT

CODENov=nT

This parameter moves code to improve execution time. (For
example, moves invariant code out of a loop). This parameter
is turned on by default.

CODESmT arznw

"This para-mter ensures that program flow is well formed by
perfo=d.ng rearrangement of segments of code. This parameter
is turned an by default.

COl as~usgmznsszo.

Expressions with the sanme operands are not computed a second
time. (For example, if an expression uses "A + B" and another
expressions uses nA + 3', the Cmpiler does not comute the
second expression, since it knows it has already computed the
value). This parametear is turned on by default. NAZI :
Turning this switch off may cause unexpected results.

TLD ADA COMPILER x960-ADA-2C
COMPLER USAes 3 - 23

cot4STYAWRZTIc

This paramt@er per0t aM coUstant aritMtiC-. is Paralmeter
is turned on by default. WAYS=: Turning this switch off
may cause uelpectd results.

DEAD..C=

This parmeter rmvms code that cnot be reached such as
unlabeled code following an umncaditica1 branch. This
parimmter in turned on by default. UMISREG: Turning this
switch off may cause unespected results.

DEAD..S~mpaoon
This parameter removes u that ae not referenced.

This]arameter is turned by default.

DEAD_V Aumzz

This parametr removes local temporary variables that are not
used during execution. This parameter in turned on by
default.

DELasizm

This parameter optimises code by deleting redmdan
assignmnts. It only perfocms deletions allowed by the
semantIcs of Ada. This parameter is turned an by default.

by default, the cpiler automatically inlines subprograms
that are not visible in a package spec and if the estimated
code size is maller 1han the actual call, it will inline it.
This parameter is turned on by default.

LITZRALPOCL

This parameter. overrides the Copiler' a ptimization
separation of compile tim constants into a separate memory
pool. This parameter enables the user to eercise omplete
control over data allocation. This parameter is turned an by
default.

LOop m_ zx

This parameter applies to register memory only. it causes an
expression computed at the end of a loop to be remembered at
the top of the next iteration. This parameter is turned on by
default.

To TLww wraT• LTv

TLD ADA COMILER z960-ADA-2C
CONPZLR USAGE 3 - 24

P~zc

This Parameter Porto=@ Optimization in Ve ry limited

contex~ts. This parameter is turned an by default.

Rhz~s~zjk_mwx Onm

"This parameter allows dedication of a register to an object or
expression value. This parmter is turned an by defasuit.

SCzDULRM

This parameter is used to activate the reorganizer phase of
the Cmsiler. Instruction Scheduling, as pertozmed by the
Rearganizer, in a phase between the Code Generator and the
Object Formatter phases. The Reorganizer reads the Code tile,
reorders the code, and outputs the Code File. This parameter
is turned off by default.

The purpose of the Reorganizer in to perform optimizaton an
the cod generated by the Code Generator in order to minimize
the amount of time that the hardware has to wait for data,
generated by earlier instructions,* to become ready for use.

NOTZ: If you choose to use this switch, TZD recommends that
the System Adeinzstrator set the u~rser page file quota to
at least 60.000.

This parameter creates one object module per compilation unit
rather then cme for each top-level subprogram. If this
parameter is not used, and the casilation unit spec and body
are in separate files, the extension %0b is added to the
package name in the objeact file name of the package body
(i.e., package-nameýb. obi) to differentiate between the
package body and spec. The user may locate czects from only
the body or Spec by specifying the unique object filename
(package -nausýb for the body or package-nam for the spec)
followed by the control section name. This parameter is
turned on by default.

STRENGT REDCTIO

This parameter selects operators that execute faster. This

prmter is turned on by default.

,d %. ftLD W Wo L=D

TLD ADA COWILER z960-ADA-2C
COIILER USAGE 3 - 25

VAwz-owzum

Substitutions of operands kown to have the m value are
pezformed before expression analysis qptimization. (For
emmple, if 3 and C have the m value, th e 3e55sion 8A +
C, is used and OA + 2" will be recognixsed ua s -" and the
Coiler will not cMute the second eression, since it
knows it has the same value as the first). This paraiter is
turned on by default. UNIUZ: Turning this switch off my
cause unexpected results.

PAGu.une-per-page
PAG.so -- default

This switch assigns a value to the nuber of lines per pae for
listing. The value can Zrage fro 10 to 39.

PAREnT LmDARY-parmrae-u.~brary- spec
NOPAREmLummr -- default

The PA.MiTLZ3RARY switch uses the specified library as the parent
library for the library to be created. 175OA must be included at
the end of the paxnat-Librazy-spec. This switch may only be used
with the NhWLIBRARY switch.

If the HOPARENT LZ3BRAZ switch is used, the library created by the
UMZLZIRARY switch will have no parent library.

T: is switch along with the W 3XRART switch replaces the
WICF.LZ5 switch.

PARMs
NOPARMs -- default

This PARTMN switch causes all option switches governing the
C.npilation, including the defaulted option switches, to be
included in the listing file. The LIST option switch must also be
selected or this switch has no effect. User specified switches are
preceded in the listing file by a leading asterisk (w). This
switch adds approiately one page to the listing file.

PHuz- - default
NOPHuAs

This switch suppresses the display of phase names during
compilatiom. This switch is useful in batch jobs because it
reduces the verbosity of the batch log file.

TLC 7'r W in L70

TLD ADA COMPILER z960-ADA-2C
COMsZP.IE UsAGE 3 - 26

REF bz csz.n.pton

This is a reformatting option, under the control of the RE7O0.T
switch. This switch determines how variable unas appear in the

ccP£ileV listing. The opt-ios for this switch are:

Aa LZOWmR -.- All variable n-es are in lower case.
A.LIPZ -- All variable names are in upper case.

3.17 I.,phS -- All riable names have initial caps. -- default

REF -Kz cAs.opmion
NOREFI&nc_• .sption -- default

This is a reformatting option, under the control of the Rhr1Om
switch. This switch dteztmines how Atda key words appear in the
compiler listing. The opt.ons for this switch are:

AL,,_,OWER -- All Ada key words are in lower case. -- default
ALL•_PPl -- All Afta key words are in upper case.
33 TALCAPS - A- ll Afd key words have initial caps.

REFOma(r{ -refzt-fiae-apec}
NOREFOmoiT - - default

This switch causes the compiler to re•f ont the smuce listing in
the listing tile (if no zefizn•.-file-apec ms prow ded) or
generate a refozmatted source file, if a zeafct-Z44e- Spec is
present. The default file extension of the rsefoza=ted source file
is *.115'. Refozratting consists of univf a indentation and retains
numeric literals in their original source fom. This switch
performs the ref ormatting as specified by the RY_3DCNZ,
RZ7FXY-CASZ, and ZIEMETXATION switches.

30M=c - - default
NOSOumcE

This switch causes the input source program to be included in the
listing file. Unless they are suppressed, diagnostic messages am
always included in the listing file.

SYNTA• mY
NOSYNi=_ummy -- default

This switch performs sYntax and semantic checking on the source
program. No object file is produced and the MACRO switch is
ignored. The Ada Pogrm Library is not updated.

7%.0 inITMMW Lm•

TLD ADA COMPILER z960-ADA-2C
Co0WzLE USAGE 3 - 27

Tmbm-o.itgo -- default

This switch selects the target coputer for which code is to be
generated for this cpilation. 60)606 selects iss0 architecture

apetion.

WAmmas - - default
NOWdAuuzms

The M==M Switch Outputs warning and higher level dAgnostic

messages.

The BOWIUTIR1 switch suppLress the output of both warning-level
and information-level diagnostic massages.

WITM-Characters -per- line
WIM-.110 -- default

This switch sets the narbe of characters per line (80 to 132) in
the listing file.

WonD STOR
NOWOiwsmon - - default

The WOSTOMZ switch simulates byte and half-wor stores by using
full ord -instructions. 7This will allow only ftl wozd stores to
be pertfomed. The IUORNSTOW switch wil allow byte and
half-word stores to be performed.

NOWR0 zaa -- default

The WRITE-USA switch generates an Ada source file which represents
the main elaboration soetups program created by the cmiler. The
unit name of a previously cmpiled procedure must be specified
instead of a source file. The WRITE SLAJ switch may not be used at
the same time as the SLABORAT(M sw•itc.

XTRA
NOXm -- default

This switch is used to access features under development or
features not defined in the ZI. See the description of this
switch in Section 3.13.

7%.D -PW7M LM

COPIL.TIUMi SYSTD OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

B-2

TLD 32-BIT UNIVERSAL LINKER x960-LNK-2C
OzcRECrzv LANGUAGE 4- 1

4 DIRECTIVE LANGUAGE

On any host. the comand line calling TLDlnk may optionally specify &
link•r directive file to centrol the linking operation. TM directive
file format and individual directives are described in the follow'ng
pages.

4.1 DIRECTIVE FILE

Each line of the directive file cntmains up to 132 characters. Tabs
are treated as blanks. Blanks are used to separate words when no other
punctuation separates them; the actual number of blanks is
insignificant. Characters that follow two successive minuses (--) are
ignored.

A directive ordinarily consists of oe line of input, however, lines
may be continued using a tilde (-). Only one directive is allowed per
input line. A continuation character can be used to continue directive
values, however, a value cannot be split between two lines (if the
value does not fit on the current line, the continuation character must
be used aftear the previous value and the value must be placed on the
following line). Zither upper or lower case may be used (they are are
equivalent) except for file names on hosts with case-sensitive file
names.

A directive file may include another directive file. The format of
this directive is:

InCZZ f~llepec(. ink)

where the file extension . Ink may be optionally specified if the file
is a directive file, otherwise, if the file is an object module file,
its extension must be supplied (i.e., .obj or .olb must be supplied).

An included file may itself include another directive file, that is, in
the example above, filespec. ink may contain yet another directive
file. The level of nested directive files allowed depends on the
number of files that t.e operating system permits to be opened
simultaneously.

B-24

.&7-0 ArVgM&LM

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
OXRacIvE. LANaUAGa 4 - 2

Conditional linking may be performed in the directive f le. The formac
of this candit=.onal linking is:

if logical.*xpression then

(leIelsif logical-e.pspraion then)I

endifI

If the logical-expression returns a true value, the statements
following the if or the elsif clause will be processed, otherwise. the
ones following the else clause will be processed.

4.2 DIRECTIVES

TLDlnk directives are described in this section, in alphabetical order.

The following words, in lower case italics, are used in the
descriptions:

caect -name

This is the nama of the control section in the program being
linked.

file

This is a host file specification. A file specification must be
completely contained on a line.

group-nem.

This is a control section that includes specified modules and/or
control sections of module(s).

module-name

This is the name of a module in-the program be.ng linked.

paddzess

This is a physical address in the fo=z of a hexadecimal number

from 0 to "F)BF.

B- 25

TLD 32-BIT UNIVERSAL LINKER z960-LNK-ZC
DzacTive LANGUAGE 4 - 3

This is a physical page mimber in the fo=r of a hexadecimal
number fV 0 .co 7rF7.

syub@.LZ

This is the name of an extezral sYmbol in the program being
linked.

v'addreas

This is a virtual address in the form of a hexadeci-mal number
fro 0 to F1777777 (2*32 - 1).

vpage

This is a victual page number in the form of a hexadecial
number from 0 to 777.

Lach TLDlnk directive is described below.

ASSIGN (vpage-ppage{,...))

The ASSIGN directive causes the specified virtual page to be

mapped to the corresponding physical page.

For example,

ASSIGN (40000=Ca)

causes the specified virtual page 40000 hex to be mapped to the
physical page CO hex.

ASSIGN (40000.CO, 1.0000,0)

causes the specified virtual pages 40000 hex and 10000 hex to
be mapped to the physical pages CO hex and O hex,
respectively.

COMMENT (a)}(')Text to be put in Load Module{()

The C0UJNT directive contains text which -.=Dlnk puts in the
load module. TLDlnk precedes the text within quotes by ; ;" to
distinguish user inserted comments from those inserted by
TLDlnk *which begin with ";". All coments specified by CMOS
direct±ves are inserted in the load module immediately
following the in.:ial comment which is created by .--Tlnk. Zf

B-26

a7J! - •o

TLD 32-BIT UNIVERSAL LINKER x960-LNK-2C
Dzazcrzve LANGUAaE 4 - 4

quotes are specified, they must ex=s at the beginnLg and end

of the text to be created as a comment.

DEIUG (f l.e

When DBUG is used the linker creates a debug file containing
symbols and their values for the symbolic debuqger and a
Seb.ck file containing call and branching information. If

DU" is not specified, the linker does not produce the debug
file and eracaback file. The linker puts symbols which vere
included in the relocatable object file in the debug file and
t-aceback information also in the relocatable object file in
the traceback file. The name of the debug and traceback files
are derived the same way the map file name is derived as
described in the MP switch. The format of the debug and
traceback files is described in Appendix A.

This directive has the sam functionality as the linker switc.h
DMOm described in Chapter 5.

END

This directive is always required (if the End-of-File is not
present). It terminates directive input to TLDlnk, so that any
subsequent input is ignored. After this directive is read,
TLDlnk allocates memory and reads the object files to produce
the load module.

FXLL (vaddr=vaddress, lenusize-in-byces, (")paccern("))

The FILL directive is used to fill in all unused memory with a
user - specifiable value.

The vaddres parameter i4s the starting virtual address of the
fill region, the size-in-byces parameter is the number of bytes
to be filled with the pattern, and the pattern parameter is the
pattern used to fill in the fill region. The pair of double
quotse (0 0) are required if the fill pattern is a character
string.

GROUP (:group-naus)} (name.L(,amea...) ((acc==.huce(... }) }

This directive creates a grouping of control sections. The
argument name can be module-name, module - name: csect name, or
:group-name. :f module-name is spec-.fied (without :csec.-name)
then the wild card "** is assumed for the csect-name and all
control sections of the specified load module are used.
Because the group-name is associated with the -nulla module. ;t
is always preceded by the null module name: a colon (:). The
group name becomes a new control sect-.on that includes the

B-27

TLD 32-SIT UNIVERSAL LINKER z960-LNK-2C
DiRacrTiv LANGUAGE 4 - 5

specified control sect.ios and the included control sect-ons
my not be specif ±ed in any other group. If attri.butes are
specified, then only those control sectons with the spec-fied
attributes will be included in the group and the grou',
attributes consist of only those specified in the diective.

"This directive, as well as the SET directive, can refer to
attzrbutes in pragma Attribute in the source file. Refer to
the r-ferene. D mt r f r tha TIM Ada CJi1.r for further
infozmation regarding pragma Attribute.

if no data or code attribute is specified and an instruction
(code) control section is included in the specificacion, the
group will have the code attribute. If data control section(s)
are also specified, a warning masnage is displayed indicating'
that the group contains mixed instruction and data control
sections and that the code attribute is assumed for the grop.
If no data or code attribute is specified and no instruction
(code) control section is included in the specification, the
group will have the data attribute.

The alignment of the group is by the "least common deAnominator-
of all control section alignment values. The length of the
group is the sum of the lengths of the included control
sections plus necessazy alignment. The length (as vell as
other attributes) of the group may be changed by the SET
directive. After all explicit GROUP directives have been
applied, the Linker groups any remaining ungrouped control
sections and groups by similar attributes. Groups may be used
in other group directives.

Attributes may be one or more of the following to select groups
with these attributes. The boolean attributes are separated by
a comm to denote a logical AND.

READ
is a boolean TRUE if the coect is all readable,
otherwise, it is FALSE.

NOREAD
is a boolean TRUE if the csect is not all readable.
otherwise, it is FALSE.

WRITE
is a boolean .RUE if the csect is all writable,
otherwise, it is FALSE.

NOWRITE
is a boolean TMM if the cuec: is not all writable,
otherwise, it is FALSE.

B-28

TLD 32-BIT UNIVERSAL LINKER x960-LtK-ZC
DznecTiva LANGUAGE 4 - 6

CODE
is a boolean TRUE if the csect is all code, othserwse,
it is FALSE.

MOCODE
is a boolean TRUE if the csec= is not all cod.,
otherwise, it is FALSE.

DATA.
is a boolean TRUE if the csect is all data, otherwise,
it is FALSE.

NODATA
is a boolean TRUE if the csec: is not all data,
otherwise. it is FALSE.

To allow grouping of more control sections than can fiit in a
single directive line, a continuation character can be used or
the GROUP directive can be repeated (using the same group name)
as many times as needed to include all control sections needed
within that group. For example, if the following is in the
linker directive file:

GROUP :Groupla(a~b,c)...

GROUP :Group n(d,e,f)...

Group 1 will contain ab,c.d.e, and f.

Wild card symbols as previously described may be included in
the module-name, csecc-name, and group-name (which is not the
name of the group, but a group to be included).

The ordering of the wild card specifications within the linker
directive file is important. If any wild card specification is
a subset of another, the subset should be listed first. For
example, if the following groups are in the linker directive
file:

GROUP :Groupl=(abc-:lmn*)...
GROUP :Group_ 2(ab,:lm,)...

control section "abcd:lmnoa will be included in Group_1. and
since it has been included into a group, will not be included
in Group 2.

The following is an example of incorrect ordering, where the
subset is listed after its containing set:

GROUP :Group_2-(ab-:lm-) ...

B-29

7fjd%0M1W LTD~ A

TLD 32-BIT UNIVERSAL LINKER 1960-LNK-2C
DIRncTive LAuGUAas 4 - 7

GROUP Group 1. (abc :lm1) ...

In this example, control section I abcd: lmno" will be included
in Group_2, and s3.nce it has been included into a group, will
not be included in Gzrp_l.

INCLUDE () ... }{)}

The Zn=Dz direct4ve specifies the file (a) used for subsequent
linker input. This iu the only linker directive that requires
a complete filename (i.e., no fi1e type or extension is
appended to the supplied name). If the file name ends in .obj
or .olb, the file is asumed to be an object module file. If
the file name ends in .ink, the file is assumed to be a
directive file. If only one filespec is specified, the
corresponding parentheses are not required. This directive may
be repeated.

NOTE: The GROUP and SZT directives are used, instead of this
directive, to make specific selections of modules and/or
control sections to be included in the link.

A directive file may include another directive file. The

format of this directive is:

InCZD filexpec(. lnk)

where the file extension .lnk may be optionally specified if
the file is a directive file, otherwise, if the file is an
object module file, its extension =must be supplied (i.e., .obj
or .olb must be supplied).

An included file may itself include another directive file,
that is, in the example above, filespec. nk may contain yet
another directive file. The level of nested directive files
allowed depends on the number of files that the operati.ng
system permits to be opened simultaneously.

LET symbol = expression

When LET is used, the linker sets the specified symbol to the
specified value or expression. This directive has the same
effect as defining the symbol am an EXPORT in an object
module. Any external references to the specified symbol from
an object module are set to the value specified in the LET
directive. Currently, the expression argument must be a
hexadecimal number.

B-30

",,.TL ove lrl010 &X0--

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
OZRECTZVE LANGUAGE 4 - 8

LXZRARY,{(}t.l*e))

This directive causes the spec-i-fied object =Kdule library or
libraries to be searched to resolve undefined symbols. The
parentheses are not required if only one filespec is specified.

The order that the filespecs are specified is the order in
which they are searched. If library is used both on the
cmmand line and in the directive file, the libraries specified
on the command line will be searched first followed by those
specified in the directive file.

TLDlnk will process the library directive or switch at the
point where it is specified, therefore, it should be specified
after includes and searches.

This directive has the same functionality as the linker SEARCH
directive and LIBRARY switch which is described in Chapter 5.

MEMORY (mmbaypo name, ase-address, 2engt4.in_ words, -
word-size_,in.bits)

This directive describes a memory unit other than i960 standard
mmory to which Trlnk will allocate control sectios
containing objects specified in pragma Memory Unit. The
mtm cype jai argment is the character string specified Pragma
smmzToit., the base.address argumen: is the starting address
hex value in special memry where the memory unit objects are
to be allocated, the lengt._in words argwent is the hex value
of the size in words of the special memory location, and the
word size.inbics argumen is the hex value of the size in bits
of each word of special mmory.

RESERVE (vaddr-vaddress, len-size..__byees(,...))

This directive indicates that no relocatable control sections
are to be loaded into the specified address space.

SEARCH ille

When SEARCH is used, TLD1nk searches the specified file for
modules which define currently undefined external references.
These modules are included as if they had been specified in an
ZnlZE directive. Undefined weak external references (i.e.,
associated wit WEAK nMORT) do not cause inclusion on a
search, but if an external is weakly referenced (i.e.,
associated with WEAK :MPORT) and strongly referenced (i.e.. a
regular nMlORT), its defining module is loaded by SEARCH. New
external references fr=m modules included f-=m the search file
may cause addit:onal modules to be included from the search

B-31

TLD 32-BIT UNIVERSAL LINKER x960-LNK-2C
ODzacrzva LANGUAG 4 - 9

file. regardless of the order of modules in the search file.
for example, if the program references only S. S references T,
and the library cotains T followed by S. both S and T are
included from the library.
his directive has the same functionality as the linker LZUARY

directive and LMWRARY svitch which is described in Chapter S.

SET name' (()accribuce.Lumelueo(,acrribuce2.value2 ... {)}

This directive sets each specified attribute to the
corresponding value for the specified control section or
group. The argument nam can be module-name,
module.name:casec:-name, or :group-name. if mochle-name is
specified (without :czecc-name) then the wild card 0*. is
assumed for the caect-name and all control sections of the
specified load module are used. The parentheses are required
only if more than one attribute is specified. Because the
gr•up-nam is associated with the "null" module, it is always
preceded by the null module name: a colon (:).

This directive, as well as the GROUP directive, can refer to
attributes in pragma Attribute in the source file. Refer to
the eferene•e Docment _or the TLD Ad& Cocmiler for further
information on pragma, Attribute.

U• no data or code attribute is specified and an instruction
(code) control section is included in the specification, the
control section or group will have the code attribute. If data
control section(s) are also specified, a warning message is
displayed indicat2ing that mixed instruction and data control
sectlons have been included and that the code attribute is
assumed for the group. If no data or code attribute is
specified and no instruction (code) control section is included
in the specification, the control section or group will have
the data attribute.

Wild card symbols may be included in the module-name and
ceect-name consisting of 0*0 which matches one or more
characters and "?w which matches exactly one character. All
modules and control sections of the object module files listed
in the include directive(s) that match the wild card pattern
are selected.

B-32

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
DOuscrIvE LWaGUAGE 4 - 10

Attributes may be nme or more of the following to set or
reference an at=ibuce value:

VJADDZ

is the beginning virtual address of this csect. It
consists of a hex or decimal numdber. To set address (es)
in region 3, an eight-digit, non-negative, hex m=ber
must be used.

PJDDR
is the beginning physical addess of this csect. Since
the linker does not normally assign physical addreses,
this att:ibute must be set before it is referenced.

LEN(GTH)
is the length of this csect.

ALIGN
is the alignment used for this csect.

READ
is a boolean TRUE if the csect is all readable,
otherwise, it is FALSE.

ORPRAD
is a boolean TRU if the csect is not all readable,
otherwise, it is FALSE.

WRITE
is a boolean TRUE if the csect is all writable,
otherwise, it is FALSE.

WOWRTZT
is a boolean TEM if the csect is not all writable,
otherwise, it is FALSE.

is a boolean TRE if the casect is all code, otherwise,
it is FALSE.

MOODCE
is a boolean TRUE if the csect is not all code,
otherwise, it is FALSE.

DATA
is a boolean TRUE if the cuect is all data, otherwise.
it is FALSE.

B- 33

7fILOA3&7D L

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
OZucazva L.AGUAG 4-u

BOCA=A
is a boJan T7=Z if the cSmct .s3 not all dta.,
othe.rw.se, i.t in fTSZ.

B-34

APPEDIX C

APPENDIX F OF THEAda STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -2.12676E+37 .. 2.12676E+37;
type 14G FLOAT is digits 15

range -1.123_558.209_288_95E+307 .. 1.123_558_209_288_95E+307;

type DURATI(14 is delta 2.0**(-14) range -86400.0 .. 86400.0;

end STANDARD;

C-1

APPENDIX F

The Ads language definition allows for certain macine_dependencies in a
controlled m=nner. no nachin• -dependent syntax or semantic extensions or
restrictions are allowed. The only allowed implemsntation-dspendsncies
correspond to implementaton-dependent pragmus and attributes, certain
mahine-dependent conventions, as mentioned in chapter 13 of the

=L-STD-1815A; and certain allowed restrictions on representation
clauses.

The full Osfinition of the implementation-dependent characteristics of
the TLD VAX/i6O Mda Compiler System is presented in this section
extracted from the cmpiler reference manual.

VAX/I960/TRONZX PAGE 1

TLD ADA COMPILER x960-ADA-2C
z960 TARGET CMPILER 5- 1

5 z960 TARGET COMPILER

This section identifies correspondences between features of the TLDacs
and sections of the Ads Language Reference mnual (I=i).

5.1 LRM CH.1 - INTRODUCTION

The fozmal standards for the Ada Programing Language are provided in
the Ada Lanauaae Reference Manual (LRU), ANSZ/MIL-STD-lSlSA. TLD
Systems has developed TLDacs in the spirit of those standards.

The machine dependencies permitted by the Ada language are identified
in LRi Appendix F. No machine dependent syntax, semantic extensions,
or restrictions are allowed. The only acceptable implementation
dependencies are pragmas and attributes, the machine dependent
conventions explained in LRK Chapter 13, and scs restrictions on
representation clauses.

TLD System has developed implementation-dependent software to
specifically conform to these restrictions and has developed
implementation-independent pragmas and attributes in the spirit of the
LRi. This software is described, below, in individual discussions that
follow the topical order (within chapters and appendices) of the Lii.
For a detailed description of the Run Time enviroanent, refer to the
Reference Document for the TLD Ada Run Time Svstem.

5.2 LRM CH.2 - LEXICAL ELEMENTS

The items described in this section correspond to the standards in
Chapter 2 of the LRi.

The following limits, capacities, and restrictions are imposed by
the Ada compiler implementation:

The maximum number of nesting levels for procedures is 10. There
is no limit to nesting of ifs, loops. cases, declare blocks, select
and accept statements.

ii

TLD ADA COMPILER z960-ADA-2C
:960 TARGrT COMPILER 5 - 2

The maximu eaber of lexical elmnts within & language statemnt,
declaration or pra~m is not explicitly limited, but limited
depending on the cmbination of Ada constructs coded.

The maximum number of procedures per c=pilation unit is 500.

The maximnm number of levels of nesting of InCLD files is 10.
There is no limit on the total number of INCLUDMd or Wl"Ted filea.

Approximately 2000 user-defined elemnts are allowed in a
ccmpilation unit. The exact limit depends upon the characteristics
of the elements.

A maximum of 500 severe (or more serious) diagnostic messages are
allowed for a cospilation.

The range of status values allowed is the same as the range of
integer values, -2147483648..2147483647.

The maximum number of parameters in a procedure call is 20.

The maximum number of characters in & name is 120.

The maximum source line length is 120 characters.

The maxim string literal length is 120 characters.

The source line terminator is determined by the editor used.

Name characters have exter•al representation.

5.3 LRM CH.3 - DECLARATXONS AND TYPES

The items described in this section correspond to the standards in
Chapter 3 of the LEN.

Ntumber declarations are not assigned addresses and their names are
not permitted as a prefix to the 'addres attribute.

Objects are allocated by the coipiler to occupy one or more 8 bit
bytes. Only in the presence of pragma Pack or record representation
clauses are objects allocated to less then a word.

'Address can be applied to a constant object to return, the address
of the constant object.

Except for access objects, uninitialized objects contain an

ii

TLD ADA COMPILER z960-ADA-2C
1960 TARGET COMPILER 5 - 3

undefined value. An attempt to reference the value of an
uniitialized object is not detected.

The msximas number of enumeration literals of all types is limited

only by ava.lable symbol table space.

The predefined integer types are:

Tnteger range -2147483648 .. 2147483647.
Short_Integer range -32768 .. 32768

System.MinTnt is -2_147 483_648.
System.MaxTnt is 2 147_43O647.

The predefined real types are:

Float digits 6.
LongFloat digits 1s.

System."axDigits is 15.

There is no predefined fixed point type name. Fixed point types
are implemented as data depending upon the range of values by which
the type is constrained.

index constraints and other address values (e.g., access types) are

limited to 2147483647.

The maxim= array size is limited to 2147483647.

The maximum string length is 2147483647.

Access objects are implemented as an unsigned integer. The access
literal Null is implemented as 0.

There is no limit on the number of dimensions of an array type.
Array types are passed as parameters opposite unconstrained formal
parameters using a descriptor packet vector.

Additional dimension bounds follow immediately for arrays with more
than one dimension.

Packed strings are generated instead of unpacked strings.

ii

TLD ADA COMPILER z960-ADA-2C
Z960 TAnezT COMPILER 5 - 4

5.4 LRM CH.4 - NAMES AND EXPRESSIONS
The items described in this section correspond to the standards in

Chapter 4 of the LRM.

Macbine Overtelow is True.

Pragma Controlled has no effect since garbage collection is never
performed.

5.5 LRN CH.5 - STATEMENTS

The items described in this section correspond to the standards in
Chapter 5 of the LRM.

The maximum number of statements in an Ada source program is
undefined and limited only by symbol table space.

Unless they are quite sparse, Case statements are allocated as
indexed jump vectors and dherefore, are very fast.

Loop statements with a *form implementation scheme are implemented
"mato efficiently if the range is in reverse and down to zero.

Data declared in block statements is elaborated as part of its
containing scope.

5.6 LRM CH.6 - SUBPROGRAMS

The items described in this section correspond to the standards in
Chapter 6 of the LIM.

Arrays, records, and task types are passed by reference.

5.7 LRt CH.7 - PACKAGES

The items described in this section correspond to the standards in
Chapter 7 of the LRN.

Package elaboration is performed dynamically, permitting a warm
restart without reloading the program.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARET COMPILER 5- 5

5.8 LRM 0.8 - VISIBILITY RuLEs

Not applicable.

MMTE: TLW has not produced a moad'fication of the item(s) described in
this LIM section or documentation parallel to the inforzmation in this
LRM section.

5.9 LR4 CH.9 - TASKS

The items described in this section correspond to the standards in
Chapter 9 of the LRE.

Task objects are implemnted as access types pointing to a Process
Control Block (PCB).

Type Time in package Calendar is declared as a record containing
two integer values: the current value of the real time clock
counter and the number of ticks that have elapsed on the countdown
timer.

Pragma Priority is supported with a range defined in package
System. The restriction an a dynamic expression for a task',
priority has been remoa d consistent with Ada 9X. Note: Like Ada
9X, a pragma Priority placed in the main subprogram rema
restricted to a coile time static expression.

Pragma Shared is supported for scalar objects.

TLDa&da allows either a duration or a clock time to be specified in
a delay statement. If a duration is specified, the task is delayed
for that duration. If a clock tim is specified, the task is
delayed until that clock time is reached.

The format for specifying a duration is:

delay expression

where expression is of type Duration.

The format for specifying a clock time is:

delay until expression

where expression is of type Calendar. Time.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COPILIER 5 6

Package Calendar is described in the Reference Docncne for the TL
Run Time System. i950 Taraee.

5.10 LRM CH. 10 - PROGRAM STRUCTURE/COMPILATION

Ada Program Library processing is described in the Reference Doc -ment
for the TLD Ada Librar•_ wan•aser. i960 Taraemt.

Multiple Ada Program Libraries are supported with each library
containing an optional ancestor library. The predefined packages are
contained in the TLD standard library, I960.LIB

5.11 LRH CH.11 - ExCEPTIONS

Exception handling is described in the Reference Document for the TLD
Run Time Svytem. i960 Taraet.

Exception objects are allocated access objects to the exception name
string. The implementation of exceptions is described in the ftL2X@=
Document for tihe TD Run Time• Rvtem. i9AO Tar&et.

Exceptions are implesmented by the TLD Ada Compiler System to take
advantage of the normal policy in real time computer system design to
reserve SO* of the duty cycle. By executing a small number of
instructions in the prologue of a procedure or block containing an
exception handler, a branch may be taken, at the occurrence of an
exception, directly to a handler rather than performing the time
consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exception signals an exceptional condition,
perhaps a serious one involving recovery or reconfiguration, and that
quick response in this situation is more important and worth the small
throughput tradeoff in a real time environment.

TLDada allows one task to asynchrounously signal a another task by
raising an exception in the other task. The following Ada statement
may be used in an Ada program to exercise this capability:

raise excepcio name in task name

There is no direct effect on the task raising the exception. It
continues executing the code following the raise statement. The
context of the target task is set so that the next time it runs, it
will act as if the exception had been raised at the point at which it
was last executing. This feature requires the compiler switch XTRA.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COIZLER 5 - 7

5.12 LRM CH.12 - GENERIC UNITS
Generic implementation is described in t*he rance Dotument for the
TLD Run Time System. i960 Tar•et.

A single generic instance is generated for a generic body, by default.
Generic specifications and bodies need not be ccmpil'ed together nor
need a body be compiled prior to the compilation of an instantiation.
Because of the single expansion, this implementation of generics tends
to be more favorable of space savings. To achieve this tradeoff, the
instantiations must, by nature, be more general and are, therefore,
somewhat less efficient timewise. Refer to pragma Instantiate for more
information on controlling instantiation of a generic. I

5.13 LRM CH.13 - CLAUSES/IMPLEMENTATION
Representation clause support and restrictions are generally described
in Section 5.2.F.

,Additional Information

A comprehensive Machine.Code package is provided and supported.
The specification for this package is included in the
MachineCode .Ada file.

The present version of the TLD i960 Ada Compiler System supports
two forms of code insertion language features. In addition to the
standard LRN form od record aggregate form of code insertions that
are fully supported, TLDacs supports an alternative form supplied
with package Machine Code that defines a procedure for each i960
architecture instruction that is intrinsically implemented inline
by using a pragma Interface with a language type of i960; each such
procedure results in one instruction being inlined. Because a
procedure form is used, the restzictions placed upon the
Machine-Code aggregate form of insertion that prohibit mixing in
the same scope with declarations, statements, and functions do not
apply. Furthermore, the procedure form offers a more friendly
syntax that corresponds more to assembler input that does not
require all fields to be specified (as is true for machine code
aggregates) and can make use of parameter defaulting for such
fields as index registers.

To further support those users who need to write at the assembly
level, several additional procedures and pragmas have been added
that assist the user in accessing Ada expressions, modifying Ada
operands, and in manipulating registers. Pragma Register may be

ii

TLD ADA COMPILER i960-ADA-2C
z960 TARGET COMPILER 5- 8

applied to an Ada object to direct the cpiler to allocate
(dedicate) the object to the designated register. Use of ats
object on the left side of an assigment statement will result in
the right side expression being computed and loaded into the
register associated with the left side object, a la C register
variables. Use of the object in a value reference context will
result in a use of the value currently found in the associated
register. This approach permits direct access to values ftrm
cmulicated Ada expressions, packed and subscripted operands,
discriminated record components without having to know how the
compiler actually allocated the objects. Two additional procedures
are defined, Protect and Unprotect, which each take a register
parameter identifying a register that is to be reserved from
compiler use within the range of statements bracketed by the
Protect/Unprotect call pair.

Pragma Interface with a language type of interrupt will result in
the prologue and epilogue of the indicated procedure generated to
conform to the TLDrtx conventions for intem pt handlers. A
language type of Void will prevent the compiler from generating any
prologue or epilogue code and leave the responsibility for the
procedure entry and exit code to the statements within the
procedure: usually the above described intrinsically built-in
machine code procedures.

UncheckedDeallocation and Unchecked-Conversion are supported.

Procedure UncheckedDeallocation (LRX 13.10.1)

Function UncheckedConversion (LRX 13.10.2)

5.14 LRM CH.14 - INPUT/OUTPUT
The items described in this section correspond to the standards in

Chapter 14 of the LRK.

File I/O operations are not supported.

Input/output packages and associated operations are explained in
Section 5.2.F of this manual.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMILER 5 - 9

5.2.A LRM APP.A - PREDEFINED LANGUAGE ATTRIBUTES

The itesms referenced in this section correspond to the standards in
Appendix A of the LXZ.

All Lug-defined attributes are supported by the TLDacs.

5.2.3 IR App.B - PREDEFINED LANGUAGE PRAGMAS

The items described in this section correspond to the standards in
Appendix I of the LRK. Any differences from the implementation
described in the LiZ are listed below.

PRAGMA CONTROLLED

This pragma is not supported.

PRAGMA ELABORATE

This pragma is implemented as described in the LRi.

PRAGNA INLZNE

This pragma is implemented as described in the Lix.

PRAGMA INTERFACE

pragma interface (language..name, Ada,_enti snme{,strng));
pragma interface (system, Ads ent: tyname);

Pragma Interface allows references to subprograms and objects that
are defined by a foreign modile coded in a language other than Ada.

The following interface languages are supported:

o Assembly for calling Assembly language routines;
o Intel's i960 Architecture Specification for defining built-in

instruction procedures.

If the Adaentityname is a subprogram, LiZ rules apply to the
pragma placement. Pragma Interface may be applied to overloaded
subprogram names. In this case, pragma Interface applies to all
preceding subprogram declarations if those declarations are not the
target of another pragma Interface.

ii

TLD ADA COW4PILER z960-ADA-2C
z960 TARGET CowMPLER 5 - 10

For example:

package Test is
procedure P9;
pragma Interface (Assembly, P1. "AmRoutine_l");
procedure P1 (x:Longjloat);
praguma Interface (Assembly, P1, ,AsmRoutine_20);

end Test;

In the example above, the first pragmu Interface applies to the
first declaration of procedure P1. The second pragma Interface
applies to only the second declaration of procedure P1 because the
first declaration of PI has already been the object of a preceding
pragusa Interface.

If the AdaantitCykIme is an object, the pragma must be placed
within the same declarative region as the declaration, after the
declaration of the object, and before any reference to the object.

Void may be used as the languagename to prevent the compiler from
generating any prologue or epilogue code and leave the
responsibility for the procedure entry and exit code to the
statements within the procedure.

If the third parameter is omitted, the Ada name is used as the name
of the external entity and the resolution of its address is assumed
to be satisfied at link time by a corresponding named entry point
in a foreign language module.

If the optional string parameter is present, the external name
provided to the linker for address resolution is the contents of
the string. Therefore, this string must represent an entry point
in another module and must conform to the conventions of the linker
being used.

An object designated in an Interface prague is not allocated any
space in the compilation unit containing the pragma. Its
allocation and location are assumed to be the responsibility of the
defining module.

PRAGMA LIST

pragma List (on I off);

Compiler switch /LIST must be selected for the pragmu List to be
effective.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 11

PRAGMA MEMORY_SIZE

pregme memorySize (miumericiteral);

This pragms is not supported. This number is declared in package
System.

PRAGMA OPTIMIZE

This pragum is not supported. Compi1er switches control cmpiler
optimization.

PRAGMA PACK

This pragum is implemented as defined in the LM3.

PRAGMA PAGE

This pragum is implemented as defined in the 1,K.

PRAGMA PRIORITY

This pragma is implemented as defined in the LRK. Priority
contains a range defined in System_.Ada.

PRAGMA SHARED

This pragma is implemented as defined in the LRK. This pragum may
be applied only to scalar objects.

PRAGMA STORAGEUNIT

pragma Storagepnit (numeric. lieras);

This pragmu is not supported. This number is declared in package
System and has 8 bits per byte.

ii

TLD ADA COMPILER z960-ADA-2C
:960 TARGET COMPILER 5 - 12

PRAGMA SUPPRESS

pragma Suppress (access check);
pragma Suppress (all checks) ;

The a&llchecks parameter eliminates all ru tin. checks vith a
si.ngle pragma. in addition to the pragma. a ompiler switch
permits control of rn time check suppression by comand line
option, eliminating the need for source changes.

pragma Suppress (discrimi:antcheck);
pragma Suppress (division-check);
pragma Suppress (elaborationcheck);
pragma Suppress (indexcheck);
pragma Suppress (length_check);
pragma Suppress (rangecheck);
pragma Suppress (overflovcheck);
pragma Suppress (storagecheck);

PRAGMA SYSTEM_NAME

pragma Systemjlame (enumeratlon•l2teral);

"This pragma is not supported. Instead, compiler option is used to
select the target system and target Ada library for compilation.

5.2.C LR/ APP.C-PREDEFINED LANGUAGE ENVXRONMENT
The items described in this section correspond to the standards in

Appendix C of the LRX.

PACKAGE STANDARD

The specification for this package is included in the Standard..Ada
file.

5.2.D LRM APP.D - GLOSSARY

Not applicable.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5 - 13

5.2.E LRI App.E - SYNTAx SUMMARY

Refer to "Appendix . A•d Language Syntax Cross Reference" for the T=
cross-referenced expression of this information.

5.2. F LRM APP. F - IMPLEMENTATION CHARACTERISTICS

The items described in ths section correspond to the standards in
Appendix F of the iRK.

IMPLEMENTATION-DEPENDENT PRAG4AS

PRAGMA ADDRESSSPACE

pragma AddressSpace (name{, aubsyscem-name));

This pragma allows users to specify the association of a
compilation unit with a logical address space. This capability
will support the definition of i960 Extended Architecture mDomains"
and domain calls.

The following switch may be entered on the TLDada command line and
used instead of this pragma to associate compilation unit() with a
logical address space.

/addressspace-namel (name, subsysatename)

In either the pragma or the switch, name is the name of the address
space and subsystem•name is the name of the subsystem to which the
address space belongs. If subsyscem _name is not supplied, then the
address space does not belong to a subsystem.

This pragma may appear in any ccpilation unit. The command line
switch may appear in any compilation, and applies to all the
compilation units in the c~milation.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
specified).

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER S - 14

PRAGNA ADDRESSSPACEENTRY

pragma Address Space_-Etry (name{, entry number) (, enzy•cype));

This pragma allows users to indicate which subprograms represent
entries into the defined logical address space. This capability
will support the definition of i960 Extended Architecture "Domainso
and domain calls.

The name is the name of a previously declared subprogram, the
entry..number is an integer expression which is evaluatable at
compile time, and the enr-y type in one of the following: Local,
Supervisor, or Subsystem. If entrzyype is not specified, it
defaults to Subsystem.

This pragma may appear only in & cmpilation unit for which an
address space has been specified either by pragma or ccomand line
switch.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
specified).

PRAGMA ATTRIBUTE

pragma Attribute (Attribute-Nme•=>ACtr.buCe- Value, -
Item-Name{,...));

This pragma allows grouping of control sections with the specified
attribute.

If Item-Name is omitted, the specified attribute applies to all
control sections in the current module.

If Item-Name is Name'csect, the specified attribute applies to the
control section of the module containing Name. Name may be a
label, procedure, or data object.

If Item-Name is A~me' code, the specified attribute applies to the
code control section of the module containing Name.

ii

TLD ADA COMPILER x960-ADA-2C
x960 TARGET COMPILER 5 - 15

if temn-Name is ame' data, the specified attribute applies to the
data control section of the module containing f.me.

If Ztem-Name is Name' constant, the specified attribute applies to

the constant control section of the module c i g NMe.

No other form of Xtiam-Mmue is allowed.

The linker directives GROUP and SIT, described in Chapter 4 of the
PRferfnes Doeimnt for the TLD Linknr can refer to attributes in
pragma Attribute in the source file.

PRAGMA AUDIT

pragma Audit (Ada-name(....));

This pragma causes an error message to be generated for the
compilation in which an Ada name, that is specified by this pragma,
is referenced. The Ada name may be a package, scope, data, etc.

PRAGMA COMPRESS

pragma Compress (aubtype..pame);

This pragma is similar to pragma Pack, but has subtly different
effects. Pragma Compress accepts one parameter: the name of the
subtype to compress. it is implemented to minimize the storage
requirements of subtypes when they are used within structures
(arrays and records). Pragma Compress is similar to pragma Pack in
that it reduces storage requirements for structures, and its use
does not otherwise affect program operation. Pragma Compress
differs from pragma Pack in the following ways:

o Unlike pragma Pack. pragma Compress is applied to the subtypes
that are later used within a structure. It is W& used on the
structures themselves. It only affects structures that later
use the subtype; storage in stack frames and global data are
unaffected.

o Pragma Compress is applied to discrete subtypes only. It
cannot be used on types.

o Pragma Compress does not reduce storage to the bit-level. It
reduces storage to the nearest "natural machine size'. This
increases total storage requirements, but minimizes the
performance impact for referencing a value.

ii

TLD ADA COMPILER z960-ADA-2C
x960 TAUtuT CONPILER 5 - 16

Ior example:

subtype Sm.allnt is Integer range 0 .. 255;
pragm Compress (SMalInt) ;
type VumiArray is array (1 .. 1000) of SmallInt;

In this example, Small Int will be reduced from a 32-bit object to
an unsigned 8-bit object when used in MumArray.

If pragum Compress had not been used then Sm•na Int would be the
sam size am Integer. This is because a subtype declaration should
not change the underlying object representation. A subtype
declaration should only impose tighter constraints an bounds. in
this mamner a subtype does not incur any e•tra overhead (other than
its range checking), when compared with its base type. Pragma
Compress is used in those cases where tne underlying representation
should change for the subtype, therefore:

" SmallInt is compatible with Integer. It may be used anywhere
an integer is allowed. This includes out and in out parameters
to subprograms.

"o A SmallTnt object is the same size as Integer when used by
itself. This minimizes run time overhead requirements for
single objects allocated in the stack or as global data.

"o Small It is 8 bits when used within a record or an array.
This can dramatically reduce storage requirements for large
structures. The access performance for compressed elements is
very near that of the un-compressed elements, but a slight
performance cost is incurred when the compressed value is
passed as an out or in out paramseter to a subprogram.

IOTS: SmallInt'u storage requirements could be reduced by
declaring it as a type rather than a subtype, however, Sma.lInt
would not be compatible with integer, and this could cause
considerable problems for some users.

PRAGMA CONTIGUOUS

pragma Contiguous (cypename I objectname);

This pragma is used as a query to determine whether the compiler
has allocated the specified type of object in a contiguous block of
memory words.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COOPI LER 5 - 17

The cmiler generates a warning message if the allocation is
noncontiqguous or is undetermined. The allocation is probably
noncontiguous when data structures have dynamically sized
cospnents. The allocation is probably undetermined when
unresolved private types are forward type declarations.

This pragma provides information to the programmer about the
allocation scheme used by the compiler.

PRAGMA EXPORT

pragna Export (languagenaa, ada anti ryame, (string));

Pragma Export is a complement to pragma Interface. Export directs
the compiler to make the ads_enticy name available for reference by
a foreign language module. The Jangua gename parameter identifies
the language in which the module is coded.

Assembly is presently supported by Export. Ada is permitted and
presently means the same as Assembly. The semantics of its use is
subject to redefinition in future releases of TLDada. Void may be
usd as the language..name to specify the user' s language
convention. As a result of specifying Void, the Compiler will not
allocate local stack space, will not perform a stack check, and
will not produce prologue and epilogue code. if the optional third
parameter, string, is used, the string provides the name by which
the entity may be referenced by the foreign module. The contents
of this string must conform to the co=ventions for the indicated
foreign language and the linker being used. TLDada does not make
any checks to determine whether these conventions are obeyed.

Pragma Fxport supports only objects tha t have a static allocation
and subprograms. If the ada-entit•yname is a subprogram, this
Export must be placed in the same scope within the declarative
region. If it is an object, the ads-entityname must follow the
object declaration.

IOM: The user should be certain that the subprogram and object
are elaborated before the reference is made.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5-]8

PRAGMA IF

pragua If (acmpile..tmexpreaazon);
pragueli ia f (cli1. iexpreuaon) ;
pragna]ass;
prague End(if);

These source directives may be used to enclose conditionally
compiled source to enhance program portability and configuration
adaptation. These directives may be located where language defined
pragmas, statements, or declarations are allowed. The source code
following these pragmas is compiled or ignored (similar to the
semantics of the corresponding Ada statements), depending upon
whether the compile timelemapzeein is true or false,
respectively. The primay daifference between these directives and
the corresponding Ada statements is that the directives may enclose
declarations and other prague.

T: To use the pragma IF, ELSZIF, ELSE, or EN, the /rXRA
switch must be used.

PRAGNA INCLUDE

pragum include (filepachnameaczing);

This source directive in the form of a language prague permits
inclusion of another source file in place of the pragma. This
prague may occur any place a language defined pragma, statement, or
declaration may occur. This directive is used to facilitate source
program portability and configurability. If a partial
filepath name-string is provided, the current default pathname is
used as a template. A file name must be provided.

NOIK : To use the pragmu INCLUE, the /XTRA switch must be used.

PRAGMA INSTANTIATE

pragma Instantiate (opcion(, name));

This pragum is used to control instantiation of a particular
generic.

ii

TLD ADA COMPILER z960-ADA-2C
9G60 TARGET COMPILER 5 - 19

To establish a default mode of instantiation for all generic
instantiations within the compilation, the following switch may be
entered on the TLDada commad line and used instead of this pragma:

/instantiateuoptiol2

In either the pragma or switch, option instructs the Compiler to
instantiate generics in the manner specified, as described below:

singlebody - a single body is used for all instantiations

macro - each instantiation produces a different body

In this pragma, name is the name of the generic to which this
pragma applies.

There are two basic forms for this pragma. The first form omits
the second parameter, is associated with a generic declaration, and
is permitted to occur only within a generic formal part (i.e.,
after OgenericO but before "procedureo, *function", or *package*).
In this form, the pragma establishes the default mode of
instantiation for that particular generic.

The second form uses the second parameter, is associated with the
instantiation, and may appear anywhere in a declarative part except
within a generic formal part. This form specifies what mode is to
be used for the instantiation of the named generic which follows in
the scope in which the pragma appears. This form of the pramag
takes precedence over the first form.

in the following example, assume the following definition:

generic
pragma instantiate (single body); -- pragma 1
package G ...

end G;

generic
pragma instantiate(macro); -- pragma 2
package H ...
end H;

ii

TLD ADA COMPILER z960-ADA-2C
x960 TARGET COMPILER 5 - 20

package A isn n G(...);
package 3 is now G(...);
package C is now H(...);
package D is new H(...);

pragma instantiate(macro, G); -- pragma 3

package Z is new G(...) I
package F is now G(...);

In the above example, packages A and B share the same body, due to
pragma 1. Packages C, D, S, and F will be treated as macro
instantiation C and D because macro instantiation is the default
for H (due to pragma. 2) and for 9 and F because they follow pragma
3.

In both the pragma and switch:

"o Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

"o It is not possible to perform a macro instantiation for a
generic whose body has not yet been compiled.

In this pragma:

o It is also not possible to perform a macro instantiation
from inside a single-bodied instantiation, because the
macro instantiation requires information at coMile time
which is only available to a single-bodied generic at
excution time.

In the event of a conflict between the pragma and switch, the
switch takes precedence.

Please refer to Section 3.12 "Generics" for more information on the
advantages and disadvantages in using single_body generics versus
macro generics.

PRAGMA INTERFACENAME

pragma Interface Name (Ads encity name, string);

This pragma takes a variable or subprogram name and a string to be
used by the Linker to reference the variable or subprogram. It has
the same effect as the optional third parameter to pragma
Interface.

ii

TLD ADA COMPILER x960-ADA-2C
z060 TARGET COMPILER 5 - 21

PRAGMA 1OOOJZECT

pragmaa IObj:ect (object-name type ame, ... 1);
An 1OObject is an object which is fully contained within a page
(4096 bytes) and which begins and ends on a full word (4 byte)
boundary. 16 bytes of space preceding the 10Object are reserved
by the Compiler for user-specified use. An object is specified to
be an 10O.bject by use of the pragma 10.Object.

If pragma 1OObject is applied to a type, then any object of that
type is an 1O Object. If pragma 10 Object is applied to an object,
then that object is an 10 Object.

Only static -bjects may be 1OObjects. If an attempt is made to
specify an ob3.ct which is not static (e.g., an object declared
within a subprogram) as an IO.Object, TLDada issues a warning and
the object is treated as a normal object.

The following is an example of Ada source in which pragma 10Object
is applied to an object:

tpe Buffer_Type is ...

pragma ZO Object (BufferType);

BufferObject : Buffser.Type;

An IOObject can only be applied to scalar or composite types and
objects but cannot to component(s) of a composite type.

An 10 Attribute can be used to determine whether or not an object
is an 1O Object and to return its value. Refer to section
Implementation- Dependent Attributes in this Chapter for more
information.

PRAGMA INTERRUPTKIND

pragma Interrupt_Kind (entry name, entz•yype{, durat•.on);

An interrupt entry is treated as an "ordinary* entry in the absence
of pragma Interrupt-Kind. When pragma InterruptKind is used, an
interrupt entry may be treated as a "conditional" or "timed" entry.

ii

TLD ADA COMPILER :960-ADA-2C
z960 TARGET COMPILER 5 - 22

This pragma must appear in the task specification containing the
entry named and after the entry name is declared. Three
entrycypes are possible: ordinary, timed, and conditional. The
optional parameter duration is applicable only to timed entries and
is the maximum time to wait for an accept.

For an ordinary entry, if the accept is not ready, the task is
queued. For a conditional entry, if the accept is not ready, the
interrupt is ignored. For a timed entry, if the accept is not
ready, the program waits for the period of time specified by the
duration. If the accept is not ready in that period, the interrupt
is ignored.

PRAGMA LOAD

pragma Load (lieral string));

This pragmua makes the Compiler TLDada include a foreign object
(identified by the literal-string) into the link command.

PRAGMA MEMORYUNIT

"-pragma Kemorypnit (mmypename, object name I typejýnw, {...});

TLDacs will locate objects in memory units other than i960 standard
memory. Such objects are specified by use of pragma Kmnory pnit.
TLDada creates a control section for the specified memory unit and
allocates the specified objects or all objects of the specified
type to that control section. It passes the memory unit
information to TLDlnk in the object module. The user specifies the
location and size of the non-standard memory unit to link through a

EMRY directive. The mm-type. name is the name of the memory unit
and is currently one of the following:

SPE
BMR

GLOK
L0T

PBaWC
SPHCASIU
PBU-ASIU
FITS

WVPROX
SUBBUS

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARIGET COMPILER 5 - 23

and either objeccname (the specified object) or the -yp name (all

objects of that type) may be "pecified.

For example:

pragma emoryynit (SP., Duffer_Type);

will collect all objects of lufferType in a control section for
the memory unit name SPS.

The only legal reference to an object in a memory unit is a
',address reference.

PRAGMA MONITOR

pragma Monitor;

The pragma Monitor can reduce tasking context overhead by
eliminating context switching. This pragma identifies invocation
by the compiler. with pragma Monitor, a simple procedure call is
used to invoke task entry.

Generally, pragma Monitor restricts the syntax of an Ada task,
limiting the number of operations the task performs and leading to
faster execution.

The following restrictions pertain to Ada constructs in monitor
tasks:

"o Pragma Monitor must be in the task specification.

"o Monitor tasks must be declared in library level, nongeneric
packages.

"o A monitor task consists of an infinite loop containing one
select statement.

"o The "when condition" is not allowed in the select alternative of
the select statement.

"o The only selective wait alternative allowed in the select
statement is the accept alternative.

"o All executable statements of a monitor task must occur within an
accept body.

"o Only one accept body is allowed for each entry declared in the
task specification.

ii

TLD ADA COMPILER z960-ADA-2C
0960 TARGET COWPLER 5 - 24

If a task body violates restrictions placed on monitor tasks, it is
identified as erroneous and the cmpi1ation fails.

PRAGMA NODEFAULTNZTZALZZATZON

pragma NoDefaultlnitialization;
pragma No Default_-Iitialization (cypename, ...

The LRi requires initialization of certain Ada structures even if
no explicit initialization is included in the code. For example,
the LIX requires access type objects to have an initial value of
-VULL. - Pragma NoDefaultInitialization prevents this default
initialization.

In addition, initialization declared in a type statement is
suppressed by this pragma.

TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits
within the allocated size of a variant that are not associated with
a record component for the variant. NoyDefaultInitialization
prevents this default initialization.

This pragnm must be placed in the declarative region of the
package, before any declarations that require elaboration code.
The pragma remains in effect until the and of the compilation unit.

NOTE: To use the pragma, NPO_DZFALTINITIALIZATION, the /XTRA
switch must be used. The use of this pragma may affect the
results of record comparisons and assignments.

PRAGMA NOELABORATION

pragma no-elaboration;

Pragma No-Elaboration is used to prevent the generation of
elaboration code for the containing scope. This pragma must be
placed in the declarative region of the affected scope before any
declaration that would otherwise produce elaboration code.

This pragma prevents the unnecessary initialization of packages
that are initialized by other non-Ada operations. Pragema
No Elaboration is used to maintain the Ada Run Time Library
(TLDrtl)

ii

TLD ADA COMPILER z960-ADA-2C
0960 TARGET COMPILER 5 - 25

For e•xele:

package Test is
Pragma NoSlaboratLion;
for Progrem Status Word use

record at mod 8;
Systm Mask at OWOPRD range 0..7;
ProtectioKney at O0*UD range 10 .. 11; -- bits 8,9 unused

end record;
end Test;

In the above example, the NoElaboration pragma, prevents the
generation of elaboration code for package Test since it contains
unused bits.

NOTE: To use the pragma, N1 ZLABORATION, the /XTRA switch must
be used. The use of this pragma may affect the results of record
ccarisons and assignments.

PRAGMA NO.ZERO

pragma1 oZero (record-ype .name);

If the named record type has wholes" between fields that are
normally initialized with zeroes, this pragma will suppress the
clearing of the holes. If the named record type has no "holeso,
this pragma has no effect. When zeroing is disabled, comparisons
(equality and non-equality) of the named type are disallowed. The
use of this pragma can significantly reduce initialization time for
record objects.

PRAGMA PUT

pragma Put (va.lue(, ...));

Pragma Put takes any number of arguments and writes their value to
standard output at compile time when encountere4. by the Comiler.
The arguments may be expressions of any string, enumeration,
integer type, or scalar expression (such as integer' size) whos"
value is known at compile time. This pragma prints the values on
the output device without an ending carriage return; pragma
Put Line is identical to this pragma, but adds a carriage return
after printing all of its arguments.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 26

This pragsm is useful in conditionally-cospiled code to alert the
programmer to problems that might not othervise come to his
attention via an exception or a compile-time error.

This prages may appear anywhere a pragms is allowed.

PRAGMA PUT_.ZNE

pragma Putine (value(..

Pragma Put Line takes any number of arguments and writes their
value to standard output at compile time when encountered by the
Compiler. The arguments may be expressions of any string,
enumeration, integer type, or scalar expression (such as
integer size) whose value is known at compile time. This pragma
prints the values on the output device and adds a carriage retuxn
after printing all of its arguments; pragma Put is identical to
this pragma, but prints the values without an ending carriage
return.

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not othervise come to his
attention via an exception or a compile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAG1A REGISTER

pragma Register (object-name, registernumber);

This pragma allows limited register dedication to an object for the
purpose of loading registers with complex Ada expressions or
storing registers into complex operands within machine code
insertion subprograms. The Compiler dedicates the specified
register to the specified object until the end of the scope is
reached or until it is released through a call to the subroutine,
Unprotect, in the MachineCode package. The object name is the
name of the object to be dedicated to the register and
register number is the register number (without the "R" prefix that
is valid for the particular target).

These objects may be used on the left or right side of an
assignment statement to load or store the register, respectively.

ii

TLD ADA COMPILER x960-ADA-2C
ZM60 TAUGeT COMPZLER 5 - 27

PRAGRA TCBEXTENSZON

prngms TC._Zxtui5on (value);

This pragma is used to extend the size of the Task Control Block on
the stack. It can be used only within a task specification. The
parameter passed to this program miust be static and represents the
size to be extended in bytes.

PRAGMA UNALIGNED

pragma Unaligned(name. ...);

This pragma is used to accmaodate an access object that containg,
or might contain, an address which is not four byte aligned. The
name parameter identifies an access type or object that contains
unaligned address values. The name parameter may also refer to a
formal parameter passed by address that might be occasionally
passed an unaligned actual parameter.

PRAGMA WZTHZN_PAGE

pragma WithinPage (type-name);
pragma WithinJage (object-name);

N=TL: The typename or objecc.name must have been previously
declared in the current declaration region and these declarations
must be in a static data context (i.e., in a package
specification or body that is not nested within any procedure or
function).

This pragma instructs the comiler to allocate the specified
object, or each object of the specified type, as a contiguous block
of memory words that does not span any page boundaries (a page is
4096 bytes).

The conpiler generates a warning message if the allocation is
noncontiguous or not yet determined (see the description of pragma
Contiguous, above). Additionally, the c=Wiler generates a warning
message if the pragma is in a nonstatic declarative region. If an
object exceeds 4096 bytes, it is allocated with an address at the
beginning of a page, but it spans one or more succeeding page
boundaries and a warning message is produced.

ii

TLD ADA COMPILER c960-ADA-2C
z960 TARGET CO0PILER 5 - 28

PRAGMA VOLATILE

pregma Volatile (var.1b~..s.q.Ze.lna);

This prsgma perfoms the same function as pragma Shared, however,
it also applies to composite types as veil as scala: types or
access types.

IMPLEMENTATION-DEPENDENT ArmZsuTES

ADDRESSTYPE

The attribute 'Add ess_Type is used in a length representation
clause to indicate that the address type is to have the
characteristics of an access descriptor (with a tagged bit).

The format in:

for cype-name'Add essType use Access-Descriptor

TASK_1D

The attribute 'Task,.ID is used only with task objects. This
TLD-defined attribute returns the actual system address of the task
object.

bOATTRZBUTE

The attribute 'r0 Attribute is used to determine whether or not an
object is an 10Object.

When 10 AAttribute is applied to an object, it returns a value of
type Object Attribute_Type, which is a private type declared in the
package System.

If the object js an IOObject, then the value returned is the
address of a record containing the address of the object and the
number of bits in the object including any bits necessary for
padding (and does not include the preceding 16 bytes of reserved
user space).

If the object is = an 10 Object, then the value returned is
invalid ObjectAttribute, which is also defined in the package
System.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMILER 5 - 29

The association of an 10 Attribute with its IoOb* ct is maintained
only at compile time. For example, if an TOObject is passed as a
parameter to a subrogram, then vithin the subrogua, the
10 Attribute for that ZoObjict has the value
Invalid Obj octAttribute.

The following is an example of obtaining the value rsturned by
1 IOAttribute for the ZOObject Buffer Object shown in the example

above (under the Pragma 10_Object subsection heading).

A procedure which reads information into an 1 ObJect is defined as
follows:

procedure Get (...; BuffAttr : System.Object AttributType; ...

The procedure is called as follows:

Get (.... SufferObject' OAttribute, ...);

in the above example, the address of a record containing the
address of the object and the number of bits in the object are
returned for BufferObject.

PACKAGE SYSTEM

The specification for this package is included in the System_.Ada
file.

REPRESENTATION CLAUSES

Record representation clauses are supported to arrange record
components within a record. Record components may not be specified
to cross a word boundary unless they are arranged to encompass two
or more whole words. A record component of type record that has
record representation clause applied to it may be allocated only at
bit 0. Bits are numbered from right to left with bit 31 indicating
the sign bit.

When there are holes (unused bits in a record specification), the
compiler initializes the entire record to permit optimum assignment
and compares of the record structure. A one-time initialization of
these holes is beneficial because it allows block compares and/or
assignments to be used throughout the program. if this
"optimizationo is not performed, record assignments and compares
would have to be performed one component at a t~ime, degrading the
code.

To avoid this initialization, the user should check to be certain

ii

TLD ADA COMPILER z960-ADA-2C
:960 TARGET COOPILER 5 - 30

that no holes are left in the record structure. This may be done
by increasing the size of the objects adjacent to the hole or by
defining duy record coonents that fill the holes. if the
latter method is used, any aggregates for the structure must
contain values for the holes as well as the real cmponents.
Even with the extra cmponents, this approach should optimize space
and speed in campsaison to processing one ccmpoent at a time.

If the componentclause of a record representation specification is
not in the same order as the cmpa _nt list of the record
specification, the entire record is initialized, as indicated
above.

Address clauses are supported for variable objects and designate
the virtual address of the object. The Compiler System uses
address specification to access objects allocated by non-Ada means
and does not handle the clause as a request to allocate the object
at the indicated address. Address clauses to specify the address
to which code should be relocated, are not supported for
subprograms, packages, or tasks.

9OTE: Length clauses are supported for 'Size applied to objects
other than task and access type objects and denote the udmber of
bits allocated to the object.

Length clauses are supported for 'StorageSize when applied to a
task type and denote the number of words of stack to be allocated
to the task.

Length clauses are supported for 'StorageSize applied to an
access type and indicates the number of storage units to be
reserved for the collection.

Enumeration representation clauses are supported for value ranges
of Integer'First to Integer'Last.

An alignment representation clause has been added that
corresponds to Ada 9X that requests a subtype or object to be
allocated to an address that is a multiple of the alignment
value. Its syntax is

for object-or subtype'Alignment use expressioin

The alignment expression must be a static value. The use of
multiple alignment clauses within the same control section will
result in the containing control section assuming an alignment
value which is the greatest common multiple (GC0) of the
alignment factors occurring within the control section.

2.2

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 31

CONVENTIONS FOR IMPLEMENTATION-GENERATED

NAMES DENOTING IMPLEMENTATION-DEPENDENT

COMPONENTS

The Cmpiler System defines no implementation dependent names for
compiler generated record c¢uponents.

Two naming conventions are used by TLZacs. All visible run time
library subprograms and kernel services begin with the character
*A *. Global Run Time System data names begin with the characters
"Ai-. Tho unique name created by the compiler for overload
resolution is composed of the user name appended with "_$", plus a
maximum of three characters derived from the compilation unit name,
followed by three digits representing the ordinal of the visible
name within the compilation unit. The maxium length of this name
is 128 characters.

INTERPRETATION FOR EXPRESSzONS APPEARING

-IN ADDRESS CLAUSES

Address expression values and objects of type Address represent a
location in the program's linear address space.

RESTRICTIONS ON UNCHECKED CONVERSIONS

Unchecked conversion of generic formal private types is not allowed.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

OF INPUT-OUTPUT PACKAGES

PACKAGE DIRECT%1O (.3i= 14.2.5)

PACKAGE 1O.EXCEPTIONS (LRM 14.5)

PACKAGE SEQUENTZALZO (LRX 14.2.31

Input-Output packages are described in the Reference Document for
the TLD Ada i960 Run Time System.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 32

PACKAGE TEXT_1O (LR 14.3.10)

The following implementation-dsfined types are declared in TextIo:

type Count is integer range 0 .. 511;
subtype Field is znteger range 0 .. 127;

6 z960 TARGET COMPILER CHARACTERISTICS

The characteristics of the target compiler are described in this
section.

6.1 1960 RUN TIME CONVENTIONS

The Run Time conventions established for the TLD Ada Compiler and Run
Time System are explained in the Reference Dcuent for the TLD Run
Time System. i960 Target-: This infourmtion is necessary when the
user's application software is coded in & language other than Ada.

6.2 EXTERNAL WAES

External names are supported to a maxim= length of 128 characters or
the limits imposed by the i960 Linker. The system dependent character,
0 ", is left as a "_0 in external names since it is a legal character
for the Linker.

7 RELOCATABLE OBJECT FILES

TLDada produces Relocatable Object Files containing the results of the
compilation.

The TLDada Compiler partitions the generated object module into several
separately relocatable control sections. By default, instructions are
allocated in control section, $ZSECTS. Literals are allocated in a
read-only operand control section, $CONS$. Statically allocated data
are allocated in control section $DATAS. The NOCSEG switch may be used
to combine literals and data into the same control section.

The TLD Relocatable Object File is described in the Reference Document
for the TLD 32-Bit Universal Linker. i960 Target.

ii

TLD ADA COMPILER z960-ADA-2C
:960 TARGET COMPLER 5 - 33

The c•ntral section nhama and attributes are:

Relocatable Control Sections

Name: SISECTs $CONS$ SDATA$ VMPPED
instructions Constants Data Uapped

Attributes:

ZnDZRCT D0IRCT DIRECT DIZRCT DIRECT
MUPPD HPPED M"PPD W"PPED USM PED
RAM/RON RAM-ORRCK RA*_OR Rag RAM RAN
EU/RON HA RE ~ r MIN Ima uai RY MAINmR 92NMJRYWM
wry NOT UNrY NOT Wr NOT H=Y XOT M

UNP DROTECED =PROTCTED UNPROTECTED DPROTECTED
NWRAM UNPROTECTED UNPROTCTED UNPROTECTE UNPROTECTM
PUEG UNPROTECTE UNPTCTED UNPROTECTED UNPROTCE
RJOIMSP RO. ICH UNEP RO. RCH ONSP UNPROTECTED UNPROTCTM
0/I INSTSU~CT MW OPERANAD 1 OPERAND MM OPERAND
PRLL NODU= ALLOC MOD=L ALLOC HOD=L ALLOC NODULE ALLOC

These attributes are also described in the Reference Document for the
TD3-Bit Universal Linker. i9SO Taraet., Sections 3 and 4.2 describe

TLDlnk'u use of attributes, Appendix A describes the TWD Relocatable
Object File attributes and associated values.

8 TARGET REFERENCE TABLE

The following table provides i960 parameter values.mu, • •pim pp• p• m uii

Purpos~e:

-- 2 To satisfy the Ads LII r.iirement for package SYSTEN
........... i eiI I • I el Io ~ l ~
-- type a8ddr is range O..I6d#FFFFFFFFI;

type address is range -2 147 _48 64.8..2 147 43647;
for address'size use 32;

an 1960 33-bit access descriptor---we ignore the 33rd bit here
type accassadwsriptor is range -2 147483648..2..47.483_647;
for access descriptor'size use 32;

type unsigned is rine 0.-.2J47483 647;
for unsigned'size use 31;

type shortInteger is range -323768..32767;
for short-integer'size use 16;

type Long integer is range -2_147 483M648..2_147.483.647;
for tons Tnteger-size use 32;

Note: The order of the otmants in the OPERATINGSYSTENS and NAME
-- marat ions CANNOT be changed--they must correspond with the values
in the CONFIG.CFG file.

type OperatingSystlml is (Unix, Metos, Vow, Ucsd, Nsdos, Bare, Trump, RTX);

type Nams is (Puschine, 1N16000, Vex, Af1750, Z8002, Z8001,
Gould, Pdp11, N68000, Pe3200, Caps, Amdahl,
18086. 180286, 180386, 280000, Ns32000, Ibmsi,
168020, NebuLa, Name X, Np, bl, Hawk, R1666, 1960);

type Object Attribute Type is private;
InvalidObjact Attrilbute : constant ObjectAttribute Type;

systm name: constant name := 1960;

osename: constant operating_system :8 RTX;

subtype priority is Integer range 1.20; -- 1 is default priority.

--- note: the following priority Is probably not valid for the Hawk
and witt have to be modified when tasking is Implamanted

subtype interrupt priority is Integer range 1..15;

praei put-line(C", '', *>, ,, systeminame,
1 t, */, S 0 osrm, e 6 , t I<I ,<0);

-- Language Defined Constants
storage unit: constant :* 8;
memoryi$ze: constant :x 1601000.00000; -- 2564 words per segment
min int: constant :8 -2"31;
maxint: constant :* 2"31-1;
msx digits: constant :- 15;
,sx_mantissa: constant :x 31;
fine delta: constant :. 2.0C*(-31);
ticksper-second : constant :a 1000_000.0; -- Clock ticks are I usecs.
tick : constant := 1.O/ticks jer.second;
ticks.perrtc : constant :* 16010000000;

-- systam specific constants
address0O: constant address :- 0; -- Zero address
nutlladdress: constant address :a 0; -- Nutt ptr as systm.address
nuta AD : constant access descriptor := 0; -- tl IAD, untagged

private
type Object-Attribute.Type is record

ObjectAddress : Address :a null address;
ObjectSize : Integer :a Integer'first;

end record;
Inval idObjectAttribute C Constant ObjectAttributeType :a

(ObjectAddress => nut t address,
Object-Size *3 Integer0first);

and syst=;

The following software is the property of TLD Systsas, Ltd.
CoWpright (C) TLO System, Ltd., 1992 U

Wihn this software is delivered to the U.S. Goverrment, U
the foLLowing applies:

RESTRICTED RIGHTS LEGEND
... u Use, duplication, or disclosure by the Government is subject to
-- restrictions as set forth in subporgreph (c)(1)(ii) of the Rights in
...- Technical Data and Computer Software cteuse at 52.227-7013. U

TLD System, Ltd., Torrance, CaLifornia
... noun uan UXX===V8=auuguuuuuaa8UU Al8uuauuuuuu"u

..

Source file nam:
SYSTEN.ADA

-- Packages defined:
system - systm constained constants and types

-- Revision history:
-- 07-21-88 gtw new code for Nawk-32:

add types: short_integer, tong_integer
add 4osvs0 to operating_system type

-- add 'hawk' to name type
change priority range to 1..200

-- change address range to O..16MFFFFFFFF#
change address'size to 32 bits

-- change msorysize to 16#100000000

..

package system is

...-.. *..°.....

-- SRS Requirements:
- -extract requi rments
- -oneo.

*...

-- Package name:
- - system - system constrained constants and types

Initialization entry:
none

-- Types/subtypes defined:
-- address
oo unsidgnd
*- short_ integer

tong_integer
- -aoperat i ng-system

-- priority
- - interruptqpriority

ObjectAttribute.Type

-- Constants defined:
-- system name
o -osname
-- storageiuni t
-- mamory_siz*
-- minjnt

mixnt
*- max ntissa

fmI umnit Itos-- fine delta

-- t cks pr second
tick

- ti ckswper rtc
-- address 0-.-. tt, ru~l adrss

oo nuLL AD
-. -!InvalidObjectAttribute

...

