10894

94-

94 4 11 o018 i

-

- _MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES
REPORT DOCUMENTATION PAGE | ot N 0706.018

PuBiic reporting Duraen 1Or this cOHECUON Of INTOrMAtIon 15 SSTIMITES tO JVErage ! ROUS DT FEIPONSE, INCINIING TRE TLIME 1O7 rEVIeWING INSTIUCTIONS. SEATCRING EXIS1NG GALE SOUrCes,
gathering ana Q the data d. and UNG AN reviewing tHe coliection of information. Send comments rAing this Durden estimate Or any OINET asDECT OF thus
collection of INTOrmMation. INCIUAING SUGGEITIONS 107 rETUCING this Durden O Wasninglon Headquaness Services, Directorate tor information Operations and Reports. 1215 Jetterson

Davis ighway, Suite 1204, Arhngton, VA 221024302 and to the Otfice ot Management and Budaget. Paperwork Reduction Progect (0704-0188), Washungton, DC 20503

1. AGENCY USE ONLY (Leave biank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 16, 1993 | Final Report: 24 Sep 1992-24 Sep 1994 -\

4. TITLE AND SUSTITLE 5. FUNDING NUMBERS w

Ada Support for The Mathematical Foundations of Software Engineering (
6. AUTHOR(S)

John Beidler
7. PERFORMING ORGANIZATION NAME(S) AND Aoonsssusﬁ T l C 8. PERFORMING ORGANIZATION

REPORT NUMBER
Computing Sciences Department .
ersity . ELECTE §%

University of Scranton

Scranton, PA 18510 APR121994§

AD-A278 031

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

['9. SPONSORING / MONITORING AGENCY NAME(S) AN ESS(ES)
U. S. Army Research Office F

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

~

11, SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
osition, policy, or decision, unless so designated by other documentation.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

‘2,

|

!
l

Approved for public release; distribution unlimited.

L

I %&R‘t‘(%i NG s targets for this project, program correctness, finite state devices, and program

complexity (timing). A variety of artifacts were developed to support course material, programming

assignments, and laboratory assignments in the mathematics of software engineering. The program correctness
artifact centers on an artifact, called Assert. Assert is an Ada package that assists users in testing program
assertions. The finite state device target is supported by several artifacts. One artifact in a course module,
with laboratory and programming assignments, that centers on the use of finite state device concepts in
programming and the classical representations of finite state devices in Ada. The second finite state device
artifact is a Turing Machine simulator that simulates a turing machine with from one to three tapes. The
timing target centered on generalizations of the classical Towers of Hanoi problem. The traditional Towers
of Hanoi problem appears in many computing texts as a recursion example. Our study of the Towers of Hanoi
problem led to the observation that there is no formal proof for the Towers of Hanoi problem when more than
three spindles are used. This problem lends itself to substantial experimentation among the students as they
compete to develop the program with the best timing results. All software developed through this grant has

been forwarded for inclusion in the Public Ada Library (PAL).
DTIC QUALITY LISILOTED 3

15. NUMBER OF PAGES

14. SUBJECT TERMS
Program correctness, assertion testing, finite state automata,

turing machines, Towers of Hanoi, computational complexity, program timing

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 (Rev 2-89)

NSN 7540-01-280-5500 :
Prescribed by ANS! St 239.18
298.102

Final Report

Research Agreement No: DAAL03-92-G-0410

Ada Support for The
Mathematical Foundations of Software Engineering

+ohn Beidler
Prof. of Computing Sciences

University of Scranton | Accesion For l
Scranton, PA 18510 NTIS CRA&I R
DTIC TAB ["J
beidler@cs.uofs.edu i’:t“'f“u‘r - -
(717) 941-7446 (Voice) L
(717) 941-4250 (FAX) BY e

Dictributicn]

Avatltabitity Codes

ECETa
Dist ‘ Special
!

1| |

Table of Contents

1 Executive SUMMAIY ititiiiiii ittt ennnnonnnneneeeeannneneens 3
0) 3 T 3
3 ASSEIlONSt tere et e e, 4
3.1 The Assert Packagettt iiinnnennennnnnanannns 5

3.2 Package Applications 0.ttt 8
33 Iterators and ASSertionsttt iirieetenennnnennnennnnns 10

4 Estimating The Number of Undiscovered Error, 11
41 Domainso i e e et 14

42 Independence i i i it e et 15

4.3 Beta Testing Equivalent Domains i i, 15

44 Multiple Estimatesttt tianeennans 16

5 Finite State AUtomatattt ittt ittt e e, 16
6 Turing Machine Simulator i i i i e 17
6.1 OVEIVIEWttt iiiinenseenanneseenoesesoeenonasnoensa, 17

6.2 ComSIUCONttt ittt ittt et 18

L T 18

7 Generalized Towers of Hanoiottt ennnnnennnn 19
7.1 The Towers of SaigOnmottt iiniinnanerenans 20

7.2 A Minimum Move Strategy for the Towersof Saigon 22

73 Observationc.c.iiiiiiiiiii i i et et 23

7.4 Acknowledgements i i i i e e 23

B SOftWare i i e et e i e 23
Bl ASSERT ... it i i i it e e e e 24
82 Turing SIMulator ittt i ittt et i e e 26
821 TheProcedure t0ttiteetnurnereonnonnnsoeennonaaas 26

8.2.2 The package tm machine sim L. 27

8.2.3 tm State_Transition_Control Packagecoviiinn... 29

8.24 The Turing Tape Package i, 32

83 Towersof HaNOiciiitiritiiiiiiieet i tinneoenenneennenns 34
8.3.1 Programming Assignmenti ittt e e 34

8.3.2 Basic Towersof Hanoi Programty 35

8.3.3 Towers of Hanoi Display Package 36

8.3.4 Towers of Saigon Sample Codeo, 37

O Referencesttt i i e e e 38

1 Executive Summary

Three topics were selected as targets for this project, program correctness, finite state devices, and
program complexity (timing). A variety of artifacts were developed to support course material,
programming assignments, and laboratory assignments in the mathematics of software engineering. Most
of these artifacts have been placed in the PAL, Public Ada Library. A few more artifacts will be set to
the PAL after they have been classroom tested.

The program correctness artifact centers on an artifact, called Assert. Assert is an Ada package that
assists users in testing program assertions. The finite state device target is supported by several artifacts.
One artifact in a course module, with laboratory and programming assignments, that centers on the use
of finite state device concepts in programming and the classical representations of finite state devices in
Ada.

The second finite state device artifact is a Turing Machine simulator, called tm. tm simulates a turing
machine with from one to three tapes with a visual representation on a typical text screen. The simulator
requires a VT'100 compatible terminal (that includes any PC running ANSLSYS, window systems using
an X11 xterm window). tm was designed using an object oriented approach, hence the artifacts support
three types of usage. Besides the typical turing machine building assignments, the may be used to
demonstrate object oriented design and the turing simulator may be as a programming project, by
withholding several package bodies and requiring the students to build the various packagé bodies.

The timing target centered on generalizations of the classical Towers of Hanoi problem. The
traditional Towers of Hanoi problem appears in many computing texts as a recursion example. Our study
of the Towers of Hanoi problem led to several surprises. First, the "well known" timing solution for the
traditional three spindle version was formally proven only in 1981! Also, there are no formal proofs for
the Towers of Hanoi with four or more spindles. There do exist estimates that appeared in 1941 as
solutions to a Problems Section entry that appeared in 1939. However, none of the solutions contained
formal proofs. This problem lends itself to substantial experimentation among the students as they
compete to develop the program with the best timing results.

All software developed through this grant has been forwarded for inclusion in the Public Ada Library
(PAL).

2 Overview

It was not enough to simply develop course materials directed at the mathematical foundations of
software engineering, it was important to develop materials that could be integrated into existing courses
without disrupting or displacing existing course materials. One way of achieving this is to develop
material that builds upon topics that are already in the curriculum. Four topics that are frequently found
in two core courses were select. The courses were the second course in computer science and the data
structures and algorithm course, frequently referred to as the ACM Curriculum courses, CS 2 and CS 7.
These courses were selected because all computing curriculum either contain these two courses, or cover
these topics in other core courses.

Initially, the project concentrated on three topics, program correctness, finite state devices, and
program timing. It was desirable to approach each topic from a new perspective that will not only interest
the students, but interest the instructors as well. For example, consider the topic of program correctness.
This is usually approached from a theoretical and very mathematical point of view. The approach take
in this project was from a pragmatic point of view, using assertions 1o locate and correct errors. This
point of view demonstrates that program correctness can play an important role throughout the entire
software life cycle, including system evaluation and maintenance.

3 Assertions

Proving the correctness of a program is frequently viewed by software developers as an esoteric
academic exercise. This point of view can be readily appreciated when one reviews the various
presentation on program correctness that appears in current text books. Frequently, illustrations of
applications of program correctness concepts are after-the-fact exercises of belaboring the obvious. In
some cases errors exist in the "proofs". Frequently authors avoid, or provide a poor presentation, on one
of the major tools of low level program correctness proofs, loop invariants. The current lack of utilization
of program correctness techniques is unfortunate because program correctness techniques can be an
invaluable software development aids that may be employed throughout the software development process,
from the design phase through software maintenance and modification.

This paper describes our experience designing an Ada package that supports practical uses of program
correctness throughout the software development process. The package, called ASSERT, was originally
designed as a stand alone package to supports the pragmatic use of program correctness with its major
concentration on the interface between the design and implementation phases of software projects. An
early version of the Assert package was designed and developed by Jennifer Pollack, a senior Computer
Science major at the University of Scranton.

She began the research for this project in the Spring of her Junior year and spent the summer
reviewing the literature on program correctness. Because of her preparation, she had a prototype
completed for her Senior project at the beginning of the Fall 1991 semester. This allowed us to
concentrate on the issues surrounding methods of encouraging potential clients to use the ASSERT
package. Section Two describes the Assert package and its various reporting modes. Section Three
illustrates a typical use of the Assert package.

Section Four presents several pragmatic issues surrounding the use of the ASSERT package. The
current version of the package was is slightly different from our original version of system. Initially, we
found attempts to use the Assert package to be inconvenient. This is illustrated in this paper with several
examples of assertions involving classical array based algorithms. Initially, the problem of testing
assertions frequently doubled the amount of code that was written. That is, the code to perform assertion
testing of a system was almost equal in size to the amount of code in the original system. The reason for
the additional code was that we wanted assertion testing to be written in code that is independent from
the original code for the obvious reason (same code = same error).

As we began to understand how to design good iterators, see [Bei92a], [Bei92b], [Bei93], the Assert
package became much easier to use. With good iterators we found it easy to build assertion tests for a
variety of homogeneous data structures. This will be demonstrated in the article with array iterators. With

just two types of array iterators as tools for building assertions, we found we could easily build most
assertion tests for many classical array based algorithms.

Just as our frustration was beginning to peak, this project was assisted by another project that involved
the construction of a repertoire of Ada software components. Each of our software component packages
contained appropriate iterators for the various components. Iterators became an invaluable tool for the
construction of algorithms to test assertions about components. With this in hand we went back to the
problems we had constructing assertions for array algorithms. First we constructed a simple package of
array iterators, then used these iterators to construct assertions. The result was a dramatic reduction in
the amount of code written to perform assertion testing.

The final section summarizes the results contained in this paper with some practical observation and
plans for future spin-offs from this project. The practical observation is that the use of iterators in
assertion testing provides a type of "proof-reading" approach to proving the correctness of a program. If
two proof readers come to the same conclusions about a piece of text, the text is assumed correct. The
noted mathematician, George Polya, wrote an article, see [Pol76], about the mathematics of proofreading.
In the future we plan to analyze the use of the Assert package in light of Polya’s article. By a proof-
reading proof we mean that if two independent pieces of code produce the same answer there is a higher
degree of confidence that the code is correct, especially if the two pieces of code are truly independent.
To some extent, the use of independently written iterators to construct assertion tests provides a reliable
and cost effective means of testing assertions.

Once we started using iterators to build tests for assertions, we found that it may be convenient to
build a repertoire of packages of small pieces of code to support a collections of typical assertions about
the structures of various components. We see the new nested library scheme in Ada-9X as a desirable
framework for the packaging of assertion testing tools. We plan to proceed with this project when we
gain access to a Ada-9X compiler. With Ada-9X’s ability to nest packages, we believe we can use this
feature to build collections of reusable assertion testing tools and components.

3.1 The Assert Package

The ASSERT package is quite simple in design. The specifications for the ASSERT package appear
in Figure 1. A natural assumption made regarding the use of the ASSERT package is that clients
understand the basics of program correctness. The four assertion testing procedures, Precondition,
Postcondition, Invariant, and Assertion are essentially identical. The only difference between them is a
unique prefix placed by the procedure in front of the output requested by the client. The implication is
that the client uses the appropriately named procedure when requesting an assertion test and uses identical
Prefix strings for procedures that correspond to the same structure. For example, given the statement
sequence,

Sum := 0;

for i in 1 .. n loop
Sum := Sum + A(i) ;

end loop ;

- m_-m S "... X
i

b

Txwe_Nessage
ting
Mossage
ting
turned

| whea

Palee_Message)
by curreat epera
Soeleaa)
string 3
striag 3
strisg))

Tree
_Massage)

e o
T
pesseye

ARAE
um : uu; 8

else dis)

by curveat epers
Alphea_lede
pockage
sage is pu:
4 by an

oy e

1 Neae
ualess 1
node
Condi
oxet
Palee
¢ Wone
Post-cond : if Coemditiea thea display

L
L}
lant (

i
b= o
.;;.
Message
Post-ssad 1 if Ceaditica thea display

Pre-coad

Procedure Bets_Node)
- Preo~cead
Post-cead
Comment

r h J

R M

+ Nowe
Post-oend : Displaying of asserticas is terminated

upoa curreat packsge mode

Pest-cend 1 Displaying of asserticas ceatinued depending

-
-—
-

Figure 1 ASSERT Specifications

may have the corresponding assertions,

Sum := 0Q;
ASSERT.Precondition (Sum = Sum OF (A, 0),
"Sum loop”, "start”, "Failed");
for i in 1 .. n loop
Sum := Sum + A(i) ;
ASSERT.Invariant (Sum = Sum OF (A, i),
“Sum loop”, integer’image(i), "Failed”);
end loop ;
ASSERT.Postcondition (Sum = Sum OF (A, n),
"Sum loop”, "end"”, "Failed");

where the prefix, "Sum loop" appears in each line of the display. The display would appear as,

Sum loop start
Sum loop
Sum loop
Sum loop
sum loop
sum loop

2
o0 os os o0 0 e
N WA=

POST: Sum loop end

The prefixes "PRE s ", "INV : ", "POST: ", and "ASRT: " are placed at the beginning of the line
displayed by the procedure Precondition, Invariant, Postcondition, and Assertion, respectively. Combining
the assertion prefixes with the client provided prefixes creates a display format that is easy to interpret.
For example the nested pair of loops in the statement sequence,

Sum := 0 ;
ASSERT.Precondition (Sum = Answer (0),
"Outer", "start", "Start fail®) ;
for outer in 1 .. 10 loop
ASSERT.Precondition (Sum = Answer (OQuter-l),
" Inner”, "nest begin”", "nest fail") ;
-for inner in 1 ,, outer loop
Sum := Sum + 1 ;
ASSERT.Invariant (Sum = (Answer (Outer
-l)+Inner), " Inner”,
integer’image(inner), "nest fail") ;
end loop ;
ASSERT.Postcondition (Sum = Answer (Outer),
" Inner”,
"nest end” & integer’image(outer),
"nest fail") ;
ASSERT.Invariant (Sum = Answer (Outer),
"Outer”,
integer’image(outer),
"fail®” & integer’image(outer))

-e

end loop ;
ASSERT.Postcondition (Sum = Answer (10),
"Outer”, "start", "Start fail")

e

have assertions that produce the display,

PRE : Outer start
PRE : Inner nest begin
INV Inner 1

POST: Inner next end 1
INV : OQuter 1

PRE : Inner nest begin
INV : Inner 1

INV Inner 2

POST: Inner next end 1
INV : Outer 2

Because of the potential verbosity of the display, the package has two global modes and two display
modes. The global modes are on and off. The display modes are referred to as Alpha mode and Beta
mode. The package displays assertion messages only when the global mode is on. No messages are
displayed when the global mode is off. When the global mode is om, if the display mode is Alpha, every
time an assertion testing procedure is called a message is displayed. In Beta mode messages are displayed
only when a test fails. By selectively using the global on/off modes with the display Alpha/Beta modes
clients may control the verbosity of the display.

The usefulness of the package depends somewhat on the cleverness of a client in performing
meaningful assertion tests along with useful and distinct messages. A future modification of the package
will be the inclusion of a Silent display mode. In Silent mode all assertion messages are placed in a file,
which may be viewed at a later time.

3.2 Package Applications

Buiiding an assertion testing package is easy, making it useful is another story. To illustrate, consider
building the assertions to test a simple algorithm, like the bubble sort illustrated in Figure 2. A set of
assertions to test the looping conditions for the bubble sort appears in Figure 3. Fortunately, the tests for
all the assertions may be created using a single function, Is_Sorted, which also appears in Figure 3.

rocedure L] T 1t in out Int_Array) 1is

temp, bub : integer ;

begin
tio.Put_Line ("Start sort") ;
tio.Put_Line ("first precond®) ;
for index in 1 .. A’‘range’last-1 loop
bub ¢= index ;
while (bub > 0)
and then (A (bub) > A (bub+1)) loop
temp t= A (bub):
A (bub) t= A (bub+l) ;
A (bub+l) := temp ;
bub t= bub - 1;
end loop
end loop;
end Bubble Sort ;

Figure 2 Bubble Sort Algorithm

Figure 4 contains a partial listing of sample output from the assertions in Figure 3. This simple
example demonstrates one of two problems associated with using the ASSERT package, its propensity for

8

star
Pinish : integer) return boolean is

begin -- ls_Sorted

for index in (Start+l) .. Pinish loop
it A(index-1) > A(Index) then

return false ;

end 1if ;

end loop ;

return true ;

end Ia_Sorted ;

[procedure Bubble_Sort (A 1 in out Int_Array) is
temp, bub : integer ;

begin
tio.Put_Line ("Start sort®) ;
ASSERT.PreCondition (Is_Sorted (A, 1, 1),
“Outer”, “"Start"”, "Start error®);
tio.Put_Line ('titlt precond®)
for index in 1 .. A’range’last-1 loop
bub 1= index ;
ASSERT. Pt-condl.uon (Is_Sorted (A, 1, lnax),
. Inner", "Start®, “"start error®);
while (bub > 0)
and then (A (bub) > A (bub+1)) loop
temp t= A (bub);
A (bub) t= A (bub+l) ;
A (bub+l) := temp ;
bub t= bub - 1;
ASSERT, Invariant
(Is_Sorted (A, bub+l, Index+l),
- Inner”,
integer’image(bub+1),
“invariant error”);
end loop ;
ASSERT.Postcondition
{ Is_Sorted (A, 1, Index+l),
* TInner®, “"Finish", “"Finish error”);
ASSERT.Invariant (1s Sortod (A, 1, Index+l),
"Outer®, "OK", integer’image(index));
end loop;
ASSERT.Postcondition
(Is_Sorted (A, 1, A'lhnqo last),
"Outer”, "OK", "end error”);

end Bubble 801-1: H
Figure 3 Bubble Sort with Assertions

producing enormous amounts of output. If the procedure in Figure 3 was sorting five hundred numbers,
the assertion tests would produce approximately 250,000 lines of output.

By selectively using the package’s On/Off switch and the Alpha/Beta display modes a client can
dramatically reduce the amount of output produced by the package. Since the major concern centers on
assertion failures, the Beta display mode is normally the primary interest of clients. In Beta mode, only
assertion failures produce output, a system that is mostly correct would produce very little output, and the
output that is produced would be the output that is of most interest to clients.

Figure 4 Sample Output for Bubble Sort Assertions

The seconu fundamental problem with using the Assert package is the general problem of creating
assertions. ror the best possible results, assertion tests should be developed independently of the package
being tested. There are sound formal reasons for the independent development of assertions. The formal
reasons are addressed in Section ?. Informally, it is desirable for the independent development of assertion
tests so that the code in the assertion tests is as distinct as possible from the code in the program. The
basis for the assertion tests in Figure 3 is at least a function whose code is independent of the code in the
procedure. A more desirable situation would be to have as much code as possible pre-written, which leads
us to Section ?.

3.3 lterators and Assertions

Many times, the coding effort involved in building assertion tests is potentially as large as the effort
required to build the system being tested. This would explain why assertion testing is not a popular
method of testing the correctaess of programs. This difficulty may be overcome with the right software
development tools. One family of tools that we have found to be very useful is the family of iterators
over homogeneous data structures.

Frequently, assertions center on verifying relationships that hold regarding the contents of
homogeneous structures. Often, algorithms to test assertions may be accomplished through the traversal
of a structure while performing simple comparison tests. The traversal may be constructed with a
predefined iterator. Fortunately, in our environment the packages for all homogeneous data structures
include collections of the typical iterators over the structure. For example, binary tree packages include
should include breadth first, depth first, and other typical iterators. In addition, we have a standard array
tool package, The specifications for the array iterators appear in Figure S.

When it comes to developing assertions, there are two advantages in using iterators when they are
available and appropriate. The first advantage is that iterators can dramatically reduce the amount of code
written to test assertions. A second advantage with iterators is that the traversal code for the structure
exists, and may be presumed to be correct, hence increasing the probability that the assertion test is valid.

The selector version of the step and bisection array iterators, serve as the basis for many array
traversal based assertions. To illustrate, consider the coding for the assertion testing function, Is_sorted,
in Figure 3. It is composed of a loop to traverse the part of the array being tested and an if-else
structure that performs the actual test. Figure 6 illustrates a version of Is_sorted built with the use of
an iterator. In the iterator based version the client only writes a procedure, Check_One, to perform a
single test and instantiates the iterator with that test.

The use of iterators actually serves two purposes. Beside the obvious benefit of reducing the amount
of code written to perform the assertion tests, basing the assertion tests on iterators makes the code that
performs the assertion tests dramatically different than the source code being tested. This difference helps
provide some degree of independence between the system’s code and the assertion testing code. That

10

his pechage ssataine three sets of array tesls
Iterstors

LA A RAR R

13

inited private ;

(<>)
axvay (Azsay _Rasge zasge <>) of est_Type:
:m Pass_Thew_Type ia l-hd'ulm] o3

Precadure Proonss (A 1 ia eut Asvey _Type
Index ' in Arzaey _Raage)
Cestrel 1 out Bisest_Ceatrel_Type)
Pass 1 in out Puss_Thru _Type))
y_Bisest_Ceastrueter
(A + ia sut Arvay ¥ype
Last out y _Rasge
Pass 1 is eut Pase_ihru_Type))
jpenccie

Aype Arvey_Type ils azwe (m;::q-n-po)uMM.m-u
™ie
th Presedure Presesss (A t in eut Azvay_Type ;
Inden t is Arzay_Range)
Coatinwe : out bosless ;
Pase * s out Pass_Thru_Type))

4
:
;
!
£
1

Figure 5 Array_Tool Package Specifications (Partial)

independence helps alleviate some of the concerns that the assertion testing code may be tainted by the
system’s code. That is, the group writing the assertion testing code may have a tendency to echo the
system’s code while writing assertion tests. As a result the assertion tests could contain the same errors
that appear in the actual code. By writing assertion tests in a different way, building them on top of
iterators, there is greater certainty that errors existing in the system’s code are not echoed in the assertions.

4 Estimating The Number of Undiscovered Error

After testing a software system how many undiscovered errors still remain? After a certain amount
of testing, locating, and correcting of errors can the testing information be used to form a mathematically
sound estimate of the number of undiscovered errors? This paper describes a statistical framework for
making estimates about the number of errors that may still remain in a software system as well as
providing measures of the quality of the testing process. This paper also suggests several methodologies
that may help to improve the accuracy of the results obtained when using the techniques described in this

paper.

11

Finish : integer) return boolean is
Answer t boolean i= true ;

procedure Check_One
(A : In Int_Array ;
Index t in positive ;
Continue 3 out boolean ;
Answer t in out boolean) is

begin -~ Check_One

if A(index-1) <= A(Index) then
Coatinue := true)

else

Countinue 1= false ;
Answer 1= false ;

end if ;

end Check_One ;

procedure Check Range is new
Array_Tools.Array_ Step_Selector
{ Object_Type => integer ,
Array_Range => positive ,

Array_ Type => Int_Array ,
Pass_Thru_Type => boolean ,
Process => Check_One) ;

begin -~ Is_Sorted

Check_Range (A, Start+l, 1, Finish, Answer) ;
return Answver ;

end Is_Sorted ;

Figure 6 is_Sorted Using An iterator

Let X be the number of errors that exist in a software system. Two teams, Able and Baker,
independently evaluate the system. As a result of their independent evaluation Team Able found A errors
and Team Baker found B errors. Let C represent the count of the number of errors located by both teams.
C is included in A and B. Let p be the probability that Team Able locates any given error and q be the
probability that Team Baker locates any given error. p and q represent independent probabilities.

It is reasonable to expect that the number of errors located by Team Able, A, approximates pX, the
number of errors Team Able is expected to find. Similarly, B approximates ¢X, the number of errors
located by Team Baker, and C approximates pgX, the number of errors located by both teams. This leads
to the following estimate for X the number of errors in the system,

x-PX:9X _AB
pgx C

The total number of discovered errors is A + B - C. An estimate of the number of undiscovered errors
is }

X—(A+B—C)~Aé—a-(A+B—C)

12

. AB-AC-BC+C*
C

. (A-0){8-0)
c

Estimates for the values p and ¢ are of interest, they produce measures of the quality of work
performed by each team. The measure of the quality of the work performed by Team Able is

p-PX_C
QX 8

The measure of the quality of work performed by Team Baker is

-
pX A

To illustrate uses of these estimates, consider the independent evaluation of a software system by two
teams, Able and Baker, that produces the values 30, 35, and 25 for A, B, and C, respectively. The
estimate for the total number of errors is 42. The number of errors discovered by the two teams is 30+35-
25 = 40. The estimate for the number of undiscovered errors is 2! Finally, the measures for the quality
of work performed by teams Able and Baker are 25/35 = 71% and 25/30 = 83%, respectively.

As a second example, suppose the independent evaluation of a software system by two teams produces
the values 30, 35, and 15 for A, B, and C, respectively. These values produce an estimate of 70 for the
total number of errors in the system. Since 30+35-15 = 50 errors were discovered, and the estimate for
the number of undiscovered errors is 20. The quality measures of the two teams evaluating the software
are 15/35 = 43% and 15/30 = 50%.

This technique is based on work by Polya, see [Pol76), on the probabilities of the number of
undiscovered errors in a text after being proofread independently by two proofreaders. In that paper Polya
uses probabilities to determine an estimate of the number of undiscovered mistakes that exist in a
manuscript after the manuscript has been independently evaluated by two proofreaders. To what extent
can this approach be applied to software? At which points could this technique be applied during the
software system life cycle? There are two considerations that must be addressed for Polya’s "proofreading
approach” to apply to the evaluation of software systems. One is the relationships that exist between
problem domain of the software system and the domain of use of the system by the groups beta testing
the system. The second issue is addressing whether the requirements of the mathematical foundation are
met in the testing process. These issues are addressed in the next two sections.

13

4.1 Domains

Applying probabilities to proofreading is relatively
easy when compared to applying the same approach to
estimating the number of errors that exist in a software
system. Specifically, in the case of proofreading the
work domain of the two proofreaders is identical, the
same manuscript. With large complex software
systems the problem is complicated by a collection of
domains. The software system functions over the
domain of the problem space for which it was
intended. Beta testers might only test a subdomain of
the software’s problem domain, that part of the
problem domain that is of interest to them. For
example, assume the software system was a
spreadsheet system. Most users to not use all of the
features of a spreadsheet, they concentrate on those
features that are useful to them in their problem
domain, which is a subdomain of the spreadsheet’s capability. Two different beta testers may be testing
overlapping, but generally unrelated subdomains of the software system’s domain, see Figure 7.

Figure 7 incompatible Beta Testing
Domains

Assume two beta testers are testing a software system and there tests are represented by Figure 7. If
the software system developer has confidence in the work performed by the beta tester, then the estimates
P and q helps measure the relationships between the subdomains of the beta testers. If p = ¢ = 0, then
the subdomains of the beta testers do not overlap. If p < g = 1, then the subdomain of beta tester Able
is contained within the subdomain of beta tester Baker. The closer p and g are to one, The closer the
subdomains of the two beta testers. Figure 8 illustrates an example where two beta testers are testing very
similar domains.

The values p and g must be used carefully. On
one hand, if a software developer expects a beta tester
to perform a good job, the values p and g could
provide a measure of the relationships of domains
between beta testers.

On the other hand, if a software developer is
confident that two beta testers are testing similar, or
identical, subdomains, as illustrated in Figure 8, the
values p and g may be good measures of the quality
of work performed by the two beta testers. In this

casc, Figure 8 Similar Beta Testing
Domains

(A-O(B-9
C

14

is an estimate of the number of errors that remain undetected in the in the beta tested subdomain of the
system.

4.2 Independence

First of all, the results are estimates and must be carefully analyzed before the results may be
interpreted. Whether the statistical foundation of these calculations is sound depend heavily on the
evaluations of the software system being determined by the two teams working in a truly independent
fashion. The statistical computations are based upon the probabilities of independent events. One might
question whether the ability of the team to determine one error is independent of their ability to locate any
other error. Assume that error i may be located with probability p, Then p is

)
_ kex
n(X)

where n(X) is the number of errors.

Intuitively, the more errors found in a system, the lower the confidence we should have in the software
system. On the other hand, each time an error is located and corrected, without introducing a new error,
the software system is closer to being correct. The obvious question is: Just how close?

The approach advocated in this paper suggests a methodology for obtaining an estimate on the number
of errors that remain in the system and evaluations for the quality of testing being performed. Since the
approach produces statistical estimates, there are a variety of factor that can adversely effect the estimates.
Two factors that can effect the results and a way of producing multiple estimates are described below.

The results described above depend upon the probability of occurrence of independent events. There
are two ways in which independence, or the lack there of, may effect the estimates produced. First, it is
important that the two individuals, or groups, performing the testing do it in an independent fashion. If
there is any direct, or indirect, communications between the two testing groups, the estimates are invalid.
The second assumption, over which we have no control, is that the probability of a particular testing
group of finding any given error is independent of locating any other error. One could argue that once
a certain type of error is recognized in a software system, a tester might devise a process of locating
similar errors, hence invalidating the independent probability of locating errors.

4.3 Beta Testing Equivalent Domains

It should be noted that the validity of the estimate of the number of undiscovered errors is valid only
when the beta tester test the exact same subdomains of the problem. At first that may appear to be an
impossibility. However, if assertion testing is placed into each program where the results of the assertion
tests are reported to a file, the file may be analyzed relative to the beta test results provided by a tester.
Now the errors indicated by the assertion tests may be measured relative to the errors reported by the beta
tester. the assertion tests are performed on the identical domain as the domain of the beta tester, hence
the estimates of the undiscovered errors within that subdomain could be fairly accurate.

15

4.4 Multiple Estimates

When more than two beta testers is are used a
collection of estimates may be formed. Assume the
beta testers are testing in the same subdomain of the
problem domain and there are X errors in that
subdomain. Assume the three beta testers, y, 8,ande
locate errors in a software system with probabilities p,
q, and r, respectively. If A is the number of errors
located by vy, B is the number of errors located by 8, Figure 9 Identical Subdomains
and C the number of errors located by e. Let D be
the number of errors located by both y and 8, E be

the number of errors located by both 8 and e, F be the number of error located by both Y and €, and
G be the number of errors located by all three. then

A~pX,B~qX,C~rX,D~pgX, E~qrX, F~prX,and G -pgrX.
There are five estimates that can be made for X,

ABCG AB B°C’ A'C,and D'E'F.

DEF’ D’ E’ F G?

and three estimates each for p, g, and r. The estimates for p ar %, %, and % Similar estimates may

be obtained for q and r.

With three or more beta testers one may use the results to produce multiple estimates. These results
may be further analyzed for consistency between the beta testers. Our experience indicates that with
multiple beta testers, one can first use the results of the initial error analysis to eliminate results that are
inconsistent to remove certain results from further consideration, then apply the approach described above
to the remaining results.

5 Finite State Automata

It is desirable to introduce finite state automata early in the computing curriculum. Not only is it an
important theoretical topic, but it is a fundamental design topic. In design, it is used to provide broad high
level design characteristics of systems. It also plays an important role in object oriented design, where
state transitions describe the state and change in states of objects in various object classes.

We introduced finite state automatons (FSAs) as a theoretical topic and made extensive use of CASE

tools as a means of drawing state transition diagrams. We found three excellent CASE tools that freshman
found easy to use. They are Open Select, Rationale ROSE, and Weilan’s LeCASE. Along with the CASE

16

tools we also discussed methods of implementing FSAs in programming languages. We concentrated on
two schema for implementing FSAs, one using a state transition table and the second as a function.

Besides the two methods mentioned above, we also used a simulator, described in Section 6, to
simulate FSAs. One laboratory assignment and one software development assignment were given to the
class. The laboratory assignment used the simulator to build a machine that recognized regular
expressions. For the laboratory assignment, the student were given a relatively simple task, like build a
simulator that recognized all strings of zeros and one where the number of zeros was divisible by five.

The software development assignment requires the use of the FSA simulator, building a graphic
representation using one of the CASE tools, and implementing the FSA in Ada and testing the
implementation.

The FSA simulator is actually a special case of the Turing Machine Simulator described in the next
section.

6 Turing Machine Simulator

We introduced turing machines in the CS 2 course, the second semester freshman computing course.
Turing machines were introduced as part of a software development example. The introduction was done
with an object oriented flavor by first discussing the component classes that make up a turing machine
simulator: Tape class, Finite State Class, Transition controlled. The transition controller obtained
information from the other objects, tape objects and finite state object, determined the next transition, then
sent a message to each object informing it of its change in state (status).

6.1 Overview

Besides the description of a turing machine and its operations, the problem discussed the issues of user
interfaces were discussed. The program presents a turing machine simulation by illustrating the movement
of the tape across the screen and indicating the state transitions as they occur. The simulator had user
definable controls. A user has the following options:

a. Single stepping through a simulation.

b. Speeding up the single step option with an ability to perform a fixed number of steps before
halting the simulation.

c. Going to continuous simulation mode. Once in this mode, the simulator may not be halted.

The simulator also includes a step counter. The user may define a step limit. The limit is used to
automatically terminate the simulator when the limit is exceeded.

The simulator terminates when either when the step counter exceeds the limit, or when no transition
exists for the given state/symbol pair.

17

6.2 Construction

The simulator is put together as a collection of interrelated packages. The system is composed of
three packages and a driving procedure,

The tm_tape package
The tm_state package
The tm_machine package
The tm procedure

aoow

The machine is entirely encapsulate in the tm_machine package. As such, the turing machine
simulator may be used with other programs that may require the use of a turing machine to perform part
of its task.

The tm procedure obtains the name of the file that contains the machine being simulated, calls the
machine simulator, and passes to it the name of the file and the simulation parameters.

The tm_tape and tm_state package completely encapsulate tapes and states in an object oriented
fashion. That is, states and tapes are entirely encapsulated within each package, including the information
cach tape and state must know to display themselves.

The tm package instantiates the tm_machine with the type of machine desires, a finite state automaton,
or a one, two, or three tape turing machine. In turn, The tm_machine instantiates the tm_state package
and the tm_tape package. In the case of finite state automatons, we made a special version of tm_machine
that restricts the tm_tape to a one-way read-only tape. and simplifies the user description of finite state
automata.

6.3 Use

Users define turing machines by completing turing tables. The tables are placed in an ASCII file,
which is prepared before running the simulator. To assist users in defining turing machines, the simulator
accepted ASCII files with one state transition per record. There are four record formats:

a. Comment records begin with a --
b. The first record in a sequence of records associated with a state simply contains the state name,

old_state

c. The transitions for a specific state follow the record with the state name, one per record, with the
format,

current_symbol next_state new_symbol head_movement

d. A blank record terminates the transitions for a state.

18

The old_state and next_state were strings of upto = X two tape turing machine

. . - That duplicates the string of
eight characters in length. The cumrent symbol [~ o . " 14 ones bracketed by

and new_symbol were any printable ASCH [- dollar symbols on to the 2nd tape
character, except **’ which has a special meaning. [start ies the f

The head_movements are ’<’, ’-’, or *>’, which $ Eu:tr °§p :‘ ;' % irst
indicate that the read write head moved left,
remains stationary, or moves right, respectively. P.r__ This state copies the rest of the
The symbol ’*’ is a "DON’T CARE" indicator. -- symbols to the second §

That is, when it appears in the place of he | § - X ? 293
current_state or current_symbol it means the value $ - HALT §$ - § -

of this object may be anything. In the next_state
or new_symbol position it means keep the current
value. Since the state transition table is read from
top to bottom, DON’T CARE indicators should
appear after other state transitions that would
override them.

Figure 10 Turing Table Example

The system also allows users to place comments in the state transition tables. Comments may be
placed in line, after a state transition, or are indicated by beginning a line with "--".

7 Generalized Towers of Hanoi

The classical Towers of Hanoi Problem, see A B cC
Figure 11, is a game involving n disks and three
spindles. The diameter of each disk is unique.
The object of the game is to move the stack of n
disks from the spindle containing the disks to a
specified target spindle. The disks must be moved
one at a time by removing any disk from the top
of a stack on one spindle to another spindle. A
disk may be placed on another spindle only if the
spindle is empty or if the disks on the spindle are
larger than the disk being moved. This problem
is employed as an example in a number of mathematics and computing courses to demonstrate recursion
or algorithm measurement. A fairly complete and traditional presentation on the Towers of Hanoi appears

in [Knu??].

The Towers of Hanoi problem is frequently used in computing courses as a problem whose solution
involves a non-trivial use of recursion. For n > 1 the algorithm for moving n disks is described as a
recursive three step process, as illustrated in Figure 12:

Figure 11 Towers of Hanol

Step 1: Recursively apply this algorithm to move n-1 disks from spindle A to spindle B using spindle C
to assist in the process.

Step 2: Move the one disk on spindle A to spindle C.

Step 3: Recursively apply this algorithm to move the n-1 disks from spindle B to spindle C using spindle
A to assist in the process.

19

Implementations of this algorithm in recursive
programming language appear in a number of
programming language and CS 1 texts, including
[} [, [Figure 13 contains a version of the
solution written as a procedure in Ada. This
procedure uses a screen display package that
visually displays the disk movements as they are
made.
procedure towers_of_hanoi
(from_spindle,
help spindle,

to_spindle ¢ in
Figure 13 Sample Towers of Hanol
Program

Let H(n) be the minimum number of moves
required to solve the Towers of Hanoi problem
with n disks. Using induction it can be shown
that H(n) = 2"-1.

Figure 12 Recursive Solution
There are two obvious variations of the to the Towers of Hanoi

Towers of Hanoi problem, suggested in [Knu??].

One variation is that the disks are not all different,

several disks may be identical. A second variation

is to solve the problem with more than three spindles. A four spindle version of the Towers of Hanoi
problem is used by several of our computing faculty as a software development assignment to test
students’ knowledge of recursion. We refer to the four spindle version of the Towers of Hanoi problem
as the Towers of Saigon.

7.1 The Towers of Saigon

Independently, two facuity had used the
Towers of Saigon as a programming assignment.
In both cases, students were required not just to
construct a correct program but to evaluate their
programs. The programs written by students o
produced a large variety of timing results. Several Figure 14 Towers of Saigon
faculty analyzed these results. This led to an
analysis of the various solution strategies
implemented by the students.

Students employed Two basic solution
strategies. These strategies evolved from specific
suggestions made by the two faculty. We refer to
these two so.ution strategies as the n-2 strategy

and the split strategy. One faculty member’s Figure 15 The Towers of Saigon

suggestions led to the n-2 strategy, the other n-2 Solution Strate
faculty member’s suggestions led to the split 9y

strategy. Figure 15 illustrates the n-2 recursive
strategy. In the n-2 strategy a tower of n disks, n
> 2, is moved in five steps:

Step 1: Recursively use this five step algorithm to move n-2 disks to spindle B.

Step 2: Move one disk from spindle A to spindle C.

Step 3: Move the last disk from spindle A to spindle D.

Step 4: Move the disk on spindle C to spindle D.

Step 5: Recursively apply this five step algorithm to move the n-2 disks on spindle B to spindle D.

When n = 1, the single disk may be move to the appropriate spindle. When n = 2, the two disks may
be moved to the appropriate spindle in three moves.

The second strategy, the split strategy, makes
specific use of the Towers of Hanoi (3 spindle)
algorithm. With split strategy a number &,
dependent on n, is selected. This strategy
employs a three step process:

—

Figure 16 oers of Saln o
Split Solution Strategy

Step 1’: Recursively apply the split algorithm to
move n-k disks from spindle A to spindle C.

Step 2’: Apply the Towers of Hanoi solution to
move the k disks from spindle A to spindle D using spindle B. Note that spindle C cannot be used
because the disks on spindle C are smaller than the disks being moved during this step.

Step 3’: Recursively apply the split algorithm to move the n-k disks from spindle C to spindle D.

Most students applied the split strategy by choosing k = pn for some p, 0 <= p < 1. Typical values
selected for p were 1/2, 1/3, and 1/4. Regardless of the choice made for p, for large values of n the split
strategy clearly out performed the n-2 strategy.

Several faculty began experimenting with the split strategy using various functions, k=f{n), for

selecting k. Independently, two faculty found the choice of k=yn to be substantially better than other
functions that were attempted. This lead to an interest in determining the best possible split strategy
solution, or possibly, the best solution for all possible strategies.

Observe that the Split Strategy encapsulates all possible strategies. For example, the n-2 strategy is
an example of the Split Strategy with k = 2. Regardless of the strategy that one might adopt to solve the
Towers of Saigon, that strategy must included the building of a tower of size k on an intermediate spindle
while the remaining disks are moved to the target spindle using the remaining three spindles.

21

7.2 A Minimum Move Strategy for the Towers of
Saigon

Let H(n) be the minimum number of moves required to solve the Towers of Hanoi problem with »
disks. Let S(n) be the minimum number of moves required to solve the Towers of Saigon problem with
n disks. The solution for moving n disks in the Towers of Saigon may be viewed as finding the optimum
split location, k, so that n-k disks are moved using a four spindle algorithm to one of the two assisting
spindles, then moving the lower k disks using a three spindle (Towers of Hanoi, H(k)) algorithm to the
final spindle, and then moving the n-k disks to the final spindle using a four spindle algorithm. It is well
known that the minimum number of moved for the three spindle Towers of Hanoi problem with k disks
is 2*-1. Clearly,

=1, forn =1,
= 2 S(n-k) + H(k), for some k, 0 < k < n, otherwise.

We wish to determine a formula for k& in terms of » that will determine S(n), call it g(n), i.e., our best
choice is k = g(n). Let AS(n) = S(n) - S(n-1). We wish to minimize AS(n). Observe that

AS(n) = 2 S(n-g(n)) + 2% - 1 - (2 S(n-1-g(n-1)) + 2%*7 - 1),
That is,

AS(n) = 2 [S (n-g(n)) - S (n - 1 - g(n - 1))] + 2% - 25D,
If g(n) = g(n-1) then

AS() = 2 [S (a-g0)) - S (@ - 1 - g(u))}
If g(n) = g(n-1) + 1 then

AS(n) = 2 (S (n-[g(n-1)+1]) - S (n - 1 - g(n -1))) + 28D+ _ 28D = paeD)
It is clear that to minimize AS(n), we wish to keep g(n) = g(n-1) until
2[S(n-g(n)) - S(n-1-g(n-1))] > 2%*7.
Hence g(1) = g(2)=1, g(3) = g(4) = &(5) = g(1) + 1, g(6) = &(7) = g(8) = &(9) = &(5) + 1, and so forth.

That is, g(n) remains fixed one time more in each subsequent subsequence of values of g(n). That is, g(n-
1) is the greatest integer such that

o0
Y isa
=

Thus g(n-1) satisfies ﬁ"‘"“é"‘”*"a, and by the quadratic formula,

str-1) .IMJ)

The sequence AS(n), s = 1, 2, 3, ..., is the sequence

[oy-12223228888 .2 2"

2T

and i

|l el
a=2 ?

7.3 Observation

According to a tale, a group of monks made a deal with God. He would solve a 64 disk version of
the Towers of Hanoi at the rate of one move a second before He would destroy the world. At that rate
the world would be destroyed in 584,542,046,091 years. If the monks would have made the same deal
with God using 64 disks and 4 spindles, the world would have come to an end in 19.3 days! What a
difference a spindle makes.

7.4 Acknowledgements

I would like to acknowledge roles played by Professors Paul Jackowitz, Robert McCloskey (both of
the Computing Sciences Department) and Prof. Steve Dougherty (of the Math. Dept.) for their continued
interest and work on Split Strategy for the Towers of Saigon problem.

8 Software

All the software that was developed through this grant has been placed in the PAL (Public Ada
Library). Portions of the software have also been processed with static logical analyzers and modified to
conform with these analyzers. For completeness, the listing of the packages and systems developed
through this grant are included below.

8.1 ASSERT

package Assert is

peocedure ¥reeondition (Coaditiom t booleea ;
Pxefix 1 sexing ;
Txue_Message : String ;
False_Message : String) ;

~-= Fre-cond : Nome

-- Dost-comd : if Condition thea display True_Nsssasge
- else 1ay Fealse_Nessage ;

- unless ted by curreat opxnu.ng

t Main_Switch Type := om ;
Wuzmu_rn- 1= Alpha ;

Display_File : Yext_10.Pile_Type)

procedure Postoondition (Comditiom s boolsan)
Prefix : stzing ;
TTue_Me: 1 string ;

y Palss_Message ;
ted by ourreat operatiag

procedure Iavariant (Comdition 1 boolean ;
Frefix 1 string ;
Trus_Massage : String ;
Yalse_Nessage : String)

~- Pre-cond : Wone
-~ Dost-gond 1 if Conditioa then display Trus_Nessage

- else dis False_Nessage ;
- unless u.ﬁx by curzest opezating
peocedure Assertioa (Comditios : boolean ;
Profin s stzing ;
_! 1 stxing 3
Palse_Message : string) ;
~= Pre-cond 1 Nome
- mt-oenduum then display Trus_Nessage
- muy False_Nessage ;
- ted by curreat operatiag

-- Post-cond : Place in Alpha_node
-- Comment 3 In Beta_Mode if the peckage is turned "Om°®,
- only the Palse_Nessage is printed whea the

tion being tested by sn assertiom
- procedure fails..

-- gemezic
- Type_Meseags : string ;
-- psocedure Assertiom_YTest (Comdition :+ boclean)
- : § 1 Stzing ;
.- _Message : Striag ;
- False_Message : Stzing) ;
peocedure Assertiom_Teet (Comditiom : boolean ;
1 string ;
rrofix 1 striag 3
Trws_MNesssge : Striag ;
Palee_Nessage : Striag) is
begia ~- Assertiom_
-= Text_I0.Put_Lime (“Assert’) ;
if Main = on thea
- Text_30.Put_Lime ("Main om®) ;

- P du dition is nev Assertiom_Test (“F8") ;

- s dition is mew Assertion_fTeet (°P08T") ;
-- procedure Iavariamt
-- procedure Assertiom is new Assertion_Test (“ASRY");
proceduse Precondition (Comdition s+ boolean ;
Prefin 3 string ;
True_Nessage : Striag ;
Yalse_Neseage : String) is
begin ~-- Precomdition
Test

(Condition, *PFRE", Prefix, Trus_Message, False_Nessage) ;
end Precondition ;

procedure Iavariant (ce-:i.:ia-

is mow Asesrtiom_Test (“INV®);

t boolean ;

| aeriay !

Trus_Nessage
Palse_Message : String) is

(Condition, “INV®, Prefix, True |

-~ Pre-cond 1 leln
-« Dost-oond t Displaying of assertioms continued depending
- upon curreat package mode

Procedure Close)
ond Assert ;

with Text_10 ;

package body Assert is

type Main_Switch_Type is (on, off) ;
type Package_Mode_Type is (Alpha, Beta) ;

ond Invariaat ;
P du dition (Comdition s booleaa ;
Prefix t String
True _Message : Striag ¢
Falee_Message : Strimg) is
begia -- Postoondition
Assertion_Test
(ConditIon, "P0ST®, Prefix, True_! , Falee_| 9) 1
end Postoondition ;
pe d Assertion (Comdition 1 boolean ;
Prefix t string ;
2

Trus_Nessage string ;
l-mm:luw)h

begia -- Assertiom
Assertion_Test
(ConditIon, "ASRT®, Prefix, True_Nesssge, False_Message) }
ond Assertion ;
Procedure Beta_Mode is
-- Beta_Node

begin _{
Package_Node := Beta ;
end Beta_NMode ;

Proosdure Alphs_Mode is
._Mode l:':?m 3
m_na]
Procedure Off is

b ot

end Off)

Proosdure On is

ot g

ond On)

Fxovedure Close is

«= Close
Text_10.Close (Display Pile) ;
ond Close ;

begin -- Assert

Text_10.Open (Display FPile, Text_IC.out_file, "DISPLAY.ASC") ;
-- Text_10.0pen (Display File, Text_I0.out_file, "Com:®) :
end Assext)

8.2 Turing Simulator

8.2.1 The Procedure tm

-- Multi T Turing Mechine Simulator

-= The s tor operates on & one way infinite tape.

«- Place state tramsition table in a data file uaing the
-- following two record formats

-- <state_name>
-- <symbol 1..n> <mext_state> <<new_symbol> <head move i..n>

-- A <gtate_nams> vecord is followed by cne tramsition record
-~ for each state transition. The <head move> is & ‘<’, ’-‘, or
<~ a '>* to indicate that the head is to move left, stay in
-« position, or move right res vely. The set of state

-- transitions is terminated with a recozrd oom a '~
-« There are two types of tilde record, either

- or
- ~ <next_state> <new symbol> <head move>
-- The d type of d is & catch all set of transitioms.

-~ That is, o gﬁ.‘. record indicates the tramsitions for this
-- state for all other state symbol pairs mot listed

-~ States are indiceted by s sequence of 1..12 non blank
-~ characters

with Turing Machine_8im ;
with gtring Scanner i
with integer_text_io, Text_10, Soreen 10)

proceduxe ™ is

peckage tio renames Text 10 ;
package iio integer_text_io ;
package sio _10 ;
peckage 8_s is new String Scamner ;

subtype Actusl_Tape_Range is positive range 1..3;
type Besdline Array is

array (Actual_Tape_Range) of striag (1..80) ;
Wo_Of_Tapes : Actual_Tape_Range := 3;

Beader : Neadline Array 1= (

. onsg TAPE TORING RACEINE st
ULATOR .,
. TWO TAPS TURING NaCEINER sIN
ULATOR “
" TERES TAPE TURING MACHINES s
MULATOR “)s

package T™ is new Turing Machine sim
(%o_Of_Tapes => Wo_Of Tapes,
Machine_Row => 3+5+No_Of_ Tapes,
Machine Col => 38,
ST_Row => $+3viio_Of_Tapes,
sT_Col -> 40) ;

subtype Taps_Rangs is TH.Tape_Range ;

Pile_Wame 3 string (1..80) 3
r_size 1 natural ;

state 1 TM.State_Wame_String ;
s_Size s natural ;

st_Tok : ™M.Action_Record ;
Tape 1 T™M.Tape_Init_Array }
Max_Steps : matural ;

Buf 1 string (1..80) ;

s 3 natural)

procedure Message (Msg : string) is

suf : string (1..40) ;
8_8 1t natural 3

begin -- Nessage

sic.Puts(Mag, 20, 1))

sio.Puts ("<or> to oontinuwe”, 21, 1) ;
tio.Get] (Bug, B_8) 1

end Meassage)

procedure Needline is
begin -- Needline
sio.Puts (Reader(Mo_Of_Tapes), 1, 1) ;
ond Neadline ;

begin -~ ™
sio.Cleax ;

adline ;

("Sater file mame (<asr> to quit): *, &, 1)}
Line (File_Wame, F_8ise))
gise > 0 loop

,_Machine (File_Name(l..P_Sise))
“<gr> to continwme®) i
t (ouf, B_S) 3
x_t-bh 3
- . (“<or> to ocontimue™) ;
-e tio.Get_Line (Buf, B_S) ;
sio.Clear)

Neadline ;
sio.Puts("Initial Tape 1 (<or> to quit): °,
10-2*No_Of _Tapes, 1);
tio.Get_Line (Tape(l).Init, Tape(l).8ise) ;
uu:n rmx).un >0 .
or 2..Tape_Range’
sio.puts(“Initial T

45
S

i

1
1
b

-

1

;
;

loop
ape” & integer’image (i) &
(<cz> to quit): °,842*i-2+N0_Of Tapes, 1);
tio.Get_Line (Tape(i).Init, Tape(i).size)
if Tape(i).Sise = 0 thea
Tape(i).8ise 1= 1)
Tape(i).Init(l) 1= ’'~’ ;

("start State: °, 10, 1) 3
Qot_ 8_8ise) ;
a.Input (State (1..8_8ise)) ;

iece j
. %o. of Steps (O<or> = 10000): “, 12, 1))
MNax_Steps) ; tio.skip_! H

state 1= t™N.8imulate (Tape, State,
true, true, 1.25, Max_Steps) ;
nessage (“Nachine Halted *)

“"m.mu Rrror =

nessage (“Machine Baltad *) 3

when T™M.Data_RErroxr =

Nessage (“State Tramsition Table Brror®) ;
wheon TH.Tape_Overflow =>

Nessage
("Ran off right end of tape -- md.bh infinite loop®)
whon TH.Tape_Undezf -
Nessage (“Ran off left end of tape®) i
when TN.Tape_Rrroxr =>
Nessage ("Unexpsoted tape failure®) ;
whon IX.Time Exceeded =>

Nessage
(*Bxcseded Max. Steps -- Possible iafinite loop®) i

ond }
sio.Cleas ;

e }
sio.Puts(“Initisl Tape 1 (<er> to guit):
*, 10-2*Noc_Of_Tapes,

1);
tio.Get_Line (Tape(1).Init, Tape(l).Sise) ;

i

others =>
tio.New_Line 3
tio.Put ("sevesr ° 5 Pile Wame (1..F_Sise)
& * error ~- <or> to continue®) ;
tio.Get_Line (File_Name, F_Sise) ;
end
™.Bnd_8im ;
sio.Clear ;
Beadline 3
sio.puts (*Enter file name (<er> to guit): °, 8, 1);
tio.Qet_Line (File_Wame, F_Sise) ;
ond loop

ond ™ ;3

8.2.2 The package tm_machine_sim

with Turiag Taps, TM_State_fTransition_Coatrol ;

genecio
lo of_Tapes 3 positive 3= 1
Max_State_Name_Size 1 positive := 12 ;
nachine_Wow 1 Ratural = 8 ;
Machine _Col t matural = 18 ;
BT_Row t natural := 2t ;
$T_Col 3 natural 1= 40 ;

peckage Turing_Machine_Sia is

peckage TH_Taps is mew Turiag Tepe

{ No_of_Tapes => No_Of_Tapes,

Top_Row => Machine_Row -~ 5*Bo_Of_ TYapes,
Nead_Column => Machine Col+2) ;

puquu TH_ST is new TH_State_Transitiom_Control
(Wo_Of_Tapes => Mo_Of _Tapss)

subtype State_Name_String is TH_ST.State_Weme_String ;
b Action_| d is T™M_ST.Action_Recozd ;

lnbtypo Tape_Range is TN_ST.Taps_Range ;

subtyps ly&ol. Arrey is TH_8T.Symbol | uny]

type Tape_Init_Rec is
record

8ize : nmatural := 0;
Init : string (1 .. 25%5) ;
end recozd ;
typs tnp_!nit Array is array (Taps_Range) of Tape_Init_Reo
H

ime_Exceeded :

state_Scror : exception renames TM_ST.State_Brror j
Data_frror : exception renames TM_ST.Dats _R&zror 3

Tupo_mgn Rrror @ sxoeption ;
exception ;

Taps_Overflow : exception reaames TH_Tape.Tape_Overflow ;
Tape_Undertflow: exoeption renames TH_Tape.Tape_Underflow ;
Taps_Brror 1 exception renames TH_Tape.Tape_Errox ;

peocedure Get_Machine (File_Naws : string)
Tenames TH_ST.Get_Naching ;

procedure Display Table
renames TH_ST.Display_Table ;

t Tape_Init_Array ;
3 Stats_Wame_Str.]
on_| t boolean := false ;
single_step : boolean := false ;
s Duration = 1.50 ;
: natural t= 1000) return sState_Wame_string ;

== PreCond : Get_Machine has been called to initialize a

-~ PostCond: Returns the terminiting state of the machine
-~ Exceptions:

-~ Tape_Underflow

== Tape_Owerflow

== Time_Exceeded

function Tape_Size (Tape : Tape_Range) return natural
Tenames TH_Tape.Tape_Size ;

function Tape_ Piece (Tape : Tape_Range ;
left : natural =1 ;
Right: natural) return string
renames TH_Tape.Tape_Piece)

function Nead_Position (Tape : Tape_Range) return natural
rensmes TH_Tape.Nead_Position ;

funotion Transition (State : State_Wame_String;
symbol : Symbol_Array) return Action_Record
ronames TH_ST.Transitiom)

BODY
with String Scaamer ;
ﬂumxo.m:o;
pock body ing_Machine_8im is

peckage 5_S is mev Striag_Scamner
(max_substring_Sise => Max_State Neme_Sise) ;
tio resamse Text IO ;
ok sio _10 ;

: boolean := false
3 boolean := false
On_Soresa 1t boolsan 1= false
t boolean 1= false

procedure Box (Row : natural) is
bagin -- Box

sio.puts (°+-°, Row, Machime _Col) ;
for i in 1..Max_state_Name_size loop

. o w

sio.Pute (‘-7, Row, Coltlei) ;3
end loop ;
sio.Puts (°-+°, Row, mnn_t:ouzﬂlu_luu_l-._lm) i
ond Box ;

procedure Display _State (State : qu _Name_string ;
Step_Wo: natural) is

begin -- Dhrhy state

-- sio.Puts(PR YIR ¥)
}

Sox ulnuu‘_lov) 3

-= sio.Puts("Box 2 *. 1, 1)

sio.puts (| ° ¢ luu &, hine_Rowtl, Machime Col) ;

"1, 1);

®e 1,)
®, Step_Bo, Machine Row-1, 1) ;

- uo.m('m
(llultnrluﬂ)]
== sio.Puts{ Time
sio.putsy (“Step No.
end Display_State ;

procedure Display_Actioa (Action : Action_Reocord) is
begin -- Display Action

- sio.puts ('-uu Transition" , ST_Mow,
8T _Col) ;

sio.Puts (“Next State: ° & Action.Next_Stats, ST_Rowtl,
8T _Col)

l;:ih!npmwhl.eop ima. N
aio.PutS ("Tape” & integer’ qo()i':‘
imm(hmlﬂl
Action (i).Hesd_Move,
nmux.nc«x):

end loop
end mpl..y_mion H
duce Erase_Actiomn is

begin -~ Rrase_iction

sio.puts (" *, ST_Row, 8T _Col);
sio.puts (° ®, ST_Rowtl, ST Col);
for i in Tape | Range loop

sio.puts (¥ *,8T_Row+lsi, 8T Col);

ond loop)

end lxm_m H
function simalate

(Input 1 Tape_lIait_Arra

start t State Name_string ;
On_screen 3 boolean 1= false ;
single_step : boolean := false ;
Pause 3 Duratioa t= 1.50

Max_Steps : natural 1= 1000) ntun state_WName_sString is
Cuzrent_Stats : State_NWame_sStr 1= gtart 3

Continucus t boolean 1=~ mot siagle_step ;

Usex_step t naturel 1= 0 ;

lu_u“z_lupa natural = 1 ;

step_¥o natural i~ 0 3

Currenat. lydaol: tyﬁol_nz.y 3
Action aotion_Record j

sutfer : string (l..tO) 3
3_Size : matural

function Valid State_Wame (State : State_Wame_String)
boolean
Tenames TH_ST.Valid_State_Name ;

proocedure End Sim
rensmes TH_ST.End_Sim ;

ond Turing Machine_gim ;

pE dure Get_Tape_Symbole is
begin -- Get_Tape_Symbols
for i in Tape_Rangs loop
mtnp.lud Nead (i, Current_Symbol(i)) s

loop
end Get_Tape_Symbols ;

27

proceduze Update_Tape (Tape : Taps_Range) is

begia -~ Updats_Tape
x:mm(np)ms,-- '~ then
1: |_Taps.Mrite_Bead (Tape, Curreat_Symbol (Tape)))

N_Llp.lxlu Head (Tape, Actiom.Actiomn(Tape).New_Sym) ;

Case Action.Actiom(Tape).Wead Nowve is

when ‘>’ «> TH_Tape.Move Nead_Right(Tape) ;
whea ‘<’ => TN ! Move_Nead_Left(Taps)
Moehx.-o]

ond o.duu Tape)

hf.- -~ Simulete
T h:.-’uu- ’
for
™ !q-.nl‘“ﬁnu, Input(i).Init (1..Input(i).sise))3
end loop)
it o-_lc:on thea
-- sio.Clear ;
~-- sio.Puts (°Display om®, 1,1) ;
T™M_Tape.Display Om 3

-~ sio.Puts (“Tape eymbols®, 1, 1)
Display_state (Curzeat_State, Step_lNo)

end if ;

sim Loop :
- .’m;‘;:gta Loop PR TIR Y I
Get_Tape_§]
-~ sio.putS (“Transition ‘e 1, 3) 3
Action := Transitiom (_Stats, _Symbol) ;

-- Display_Table ;
if Om_Sczeen

then
-~ slo.puts ("Display Actiomn®, t, 1) 3
Display Action (Actiom)
it eelth“ then
delay Pause ;
else
User_sStep := Usexr_Step + 1
If User_Step >= Nax_User_Steps then
User_step 1= 0 ;
sio. Puts(°C(ont) Q(uit) #d¢ : °, 23, 1))
tio.Get_Line (Buffer, B_Sise) ;
if 3_sise > 0 then
Case Buffer (1) is
when ‘c’ 'C’ => Continuous 1= true ;
wvhen ‘q’ 'Q’ => exit 8im_Loop)
when ‘0’ ., ‘'Y =
Nax_User_Bteps :+
natural’/value (Buffer(l..®_sise)) ;3
when others =>
aull ;
end case ;

--nbm('umm. 1, 1) 3
Brase_Action)

ond if ;

for i in Tape_Range loop

<~ sio.Puts (:vpd-uup,x, 1) 3
Update_Tape (1) ;

nd loop

® 1]

Cuzrrent_State := Action.Next_sState ;

Step_Wo 1= Step Mo + 1 ;

if On_Screen n

- slo.puts ("Display step # and curreat state®, 1, 1) ;
nht‘hy state (Current_Stats, Step_Wo) ;

12 step_Wo > Max_Steps then
raise Time_ Exoeeded ;
ond if ;
end loop lh
return Current_| suu H

ﬁ State_Error =

Balted :1= tzue ;
return Curreat State ;
end Simulate ;

ond Turing Machine_Sim ;

8.2.3 tm State_Transition_Control Package

with String Scanmer)
gensric
Wo_Of_tTapes s positive ; - 1= 1
MNax_state_Wame_Sise : positive := 12 ;
package TH_State_Transitioa_Coatrol is

package 8_8 is aew string_sScenmer
(Max_substring Sise => Max_State_Wame_Size) ;

type State_RWecord is
recocd

state : State Name_string ;

T List : 7 1.1ist
.-lt.“;l" -Tyee

:n:umuu. of eupport procedures needed to imstantiate
pt_Lpt with State_Recocds

procedure
(Souxoe 3 state_Record ;
target : im out State_Reoord) ;

subfype Tokea_Record is 8_8.Token_Type ;

subtype State_Name_String is str (1..Max_| u.u _Mame_8Sise) ;
subtype Tape_Range is positive range 1..¥Wo Of _Tapes 3
type symbol_Arzay is array (Tape_Range) of]

type Tape_Action is
secord
Wew_Sys t character = ' '
Bead_Mowe : character 1= ° '}
end record ;
type Action_Array is array (Tape_Range) of Teps_Action)
type Action Record is
recoxd
Next_State: State_Wame_sString 1= (Othezs => ' *);
Aotion t Aotion_Array 1
end recozd ;

State_Brror : exveptiom ;
Data_frror : exception ;

procedure Get_Machine (File_Rame : string) ;
-- Precond : File_Name is the name of a file that contains a
-— correct description of Tur Machine
The th the T™™H’'s state

k is initialized
table
-- Exoeption: Data_Rrror iff file format error

— N As

- tranaition

peoocedure Display Table ;
-- P d : Get_Machine was called and terminated
sucocassfull

- Y
~- Postoond: Displays the atate transitiom table

procedure Display Om ;
procedure Display off ;

function Transition (State : State_Wame_string;
Symbo), : Symbol_Array) return Actiom_Record ;

Pe dure Nove_Aad_Reset

t in out Stats hecoxd) ;
functioa "=° (Left, Right : state_Record) retura boolean ;

S_L is mew List_Lpt Lpt
(State_] _Reoozd, Copy, Nove_And_Reset, Sap, °=°)

xumu.m t boolean 1= felse ;
On_Screea s boolesan 1= false ;
Curreat_State : State_Name_String ;

State_List : 8_L.List_Type ;

-~ Bodies of support procedures required to instantiate
-= List_Lpt Lpt with State_Records
(Souroe i I- State_Record)

Target : ia out State_Reocord) is

begia ~- Copy

Tazget. mu 1= gource.ftate ;

T_L.Copy (Source.T List, !uwt.!‘ List) 3
end Copy)

(Souxrce : in out State_Recozd ;
Target : in out State_fecord) is

begin ~- Move_| And Reset

stat: .Stats ;
T !..llov. And_} mot (Source.T_List, Target.?T List) ;
end Nove_And_Reset ;

- d 1 Get_Rachine wes called and terminated
- suooesefully
-- Postoond: returns the transition for the (State, Symbol)

-- Exception: State_Srror if no state transition described

function Valid State_Name (Stats : State_Wame_string)
return boolean ;

- Precond : Get_Kachine was called and terminated
- sucoeddfully
~-= Jostoond: returns t:u iff state is a valid state name

peooedure Bnd_Sim ;
-~ Precond : non

the peck:

to its initial condition

end IM_State_Traasition_Control ;

20DY
with List_Pt_Lpt, List Lpt Lpt ;
with Text_10, Screen_I0 ;

peackage body TH_State _Transition_Contzol is

package tio renames Text_IO ;
] sio s 10

» v

type Transition_Reooxd is
reocord
symbol s Symbol_Array 3
Wext_sStste: State_Name_string ;
aAstion 1 Action_Array
eond recozd ;

package T_L is new List_Pt_Lpt (Transition_fecoxd) ;

3 dure Zap (1 in out State_Record) is
bagin ~- Sap
T_L.Sap (Source.T _List) 3
end Rap ;

function "=° (Left, Right : State_Record) return boolean is

begin
return false ; -~ Not used
ond "=*

dure Get_Wachi

In_File : tio.rile_Type;

fer : string (1..258) ;
8_Sise : natural ;
state_Rec 1 State_Record ;
Trans_Rec : Transltion_Record ;
Token_Buf : Token_Reooxd ;

oot ition_ d is
nmum Record
lnq
s,iou) 1= Token_Buf.Piece(l) ;
* & Trans_Rec.Symbol(i));

ape_Range’Last thea
,_ Buf 1= §_8.8can §

(Pile_Wame : string) is

>

ngg »
}?‘E”.
”ﬁgr.

Next_State := 8_8.8can.Pisce ;
* & Trans_Rec.Next_state) ;
loop

§988 KE
i

K2RE
gg;?
Ks
?5'
-s

then
.Action(i).New_Sys 1= Token M.Pheo(l) ;
* * & Trans_Mec.Action(i).New_Sym &

29

ummnm-xm
case Token_Buf.Piece(l) is
when ‘<l | 3¢ | tat w>
Trans_Reo.Aotion(i).Nead jowve ;=
Token

_Buf .Piece(l) ;
mM(hm“m(L)MMl' *)y s
when others => zaise Data_Brror ;
end case

olse
tio.put (Tokea_Buf.Pieocs); tio.Mew Lime ;
raise Data_Rrror ;

ond if ;

loop ;
if t_l.1s_Bapty (State_Wec.T_List) them
1:;1 Ingsert_Pizsat (Trans_Rec, Stats_Rec.T_List) ;
[}
t_l.Append (State_Rec.T_List, Trans_fec) ;

i

while not tioc.End Of rile (Ia uu) loop
io.0et_Line (In_File, nz?ox, B_8sise) ;
_8.1n (suffer (1..9_size));

Put (State_Rec.State) ; tio.New_Line ;
tioc.Get _Line (In_rile, Du!!-x, B_Sine) ;
8_s.Input (Buffer (1..B_Sise));
Token_Buf 1= §_§.Scan ;
while (Token Buf.Sise /= 0) loop

-- and (Token_Buf.Piece(l) /= ‘~‘) loop

if (Token_Suf.size >= 2)
and then (Token_Buf.Piece(l..2) = °--°) then
tio.Put (Buffer (i..B_Size)) ;
tio.Mew_Line ;

else
Get_Transition_Record ;
end s
tio.Get_Line (In _File, Buffer, B_Sise) ;
s_8. Iapt (Duffer (1..0_8ise));
Token_Buf i~ $_S.Scan }
ond l.oop 3
if (Token_Buf.size = 1)

- and (Token_Buf.Piece(l) = ’~’) then

- if not $_s.8nd_Of_string then

- Get_Transition_keoord ;

- end if ;

- else

- tio.Put (Token_Buf.Pisce); tio.New_Line ;
- raise Data_krror ;

-- ond if ;

if 8_L.Is_Empty (State_List) then
S_L.Insert_Pirst (State_Rec, State_lList) ;

else
S_L.Append (State_List, Stats_RNec) ;

end if ;

tio.New_Line ;

end if ;
end loop 3
tio.Close (In_File) ;
Initializsed := true ;
ond Get_Machine 3

procedure Display _Table is
type Not_Used_Record is

Not_Used : Not_Used_Recozd ;
prooedure ouu Action (unu_ Info 3 in state_Record ;
Wot_Used in out lot Used_Record ;
Continue x out boolean)

& > ad,

= is new S_L.Rec_Sel_Iterator
(Wot_Used l.cotd, state uuen) 3

proocedure Transition Action
(Aotion_Info : in Transition_Recozd ;
Not_Used : in out NWot_Used | l.oo:d H
Continue out boolean)

peooceduzre Traverse Transitions is new T_L.MNec_Sel_Iterator
(Wot_Used_Record, Transitiom _Action) ;

procedure Transition Actiom

(Aotion_info : in Transition_Reoord ;
Not_Used : in out Wot_Used_Necord)
Continue @ out boolean) is

begin -- Transition_Action

for i in Tape_Ran
Text_I0.Put (* ?" Action_Info.symbol(i)) ;

loop §

Text 10. Put (° * & Actios_Info.Next_Stats) ;
or 1 in Tape_Range loop

,10; Pt (* * & Mtios_iafo.dotiom(i).New_Syn

3 * & Action_Info.Actiom(i).Nesd Move) ;

State_Bwaozd ;

procedure State_Actiom (Stats_Info : ia
Bot_Used l.eeca 3

1 42 out Bot_Used,

eathu : out hoe'i-n

begia -- State_Actioa

Text_IO.Put (mu Iafo.Stats); text_io.New_Lime ;
Traverse_Transitioms (State_Iafo.T_List, Wot_Ueed) ;

Traverse_States (State_List, Not_Used) ;
ond if
ond Display_Table ;
peocedure Display Om is
begin -- Display_t o-

peocedure Display Off is
begin -- Display off
mglc:oo- u’!n{;c
end Display oOff ;

function Transition (State : State_Nams_Striag ;
Symbol : Symbol_Array) return mio- Record is

type Ssturn_fecord is
zecord
Pound ¢ boolsan = ul.u [
s Actios |
ond :oeocd ’

C_stats : State_Name_String 1= Stats ;
3 d)

m.u.udlnu (B_Wec 3 in state_Reoord ;
C_state : In out State_Rame_string ;
Continue: out boolean) 3

procedure Traverse_States is new S_L.Reo_Sel_Iterator
{State_Neme_string, Find_state) ;

peocedure Find_Transitioa (Aot t 4n
Transition_Record ;
Answer 1 in out Return_Record ;
Coatinue : out boolean) ;

procedure Traverse_Actions is mew T_L.Rec_Sel_Iterator
(Return_Record, Find_Transitioa) ;

function Matoh (syml, 8 : Symbol_Aczay)
- . o return he:hu is

Answer 31 boolsan 1= true ;

begin ~- Match_Up

for 4 in Tape_Range loop

if symi(i) /= ‘~' and then
sym2(i) /= ‘~’ and then

symi(i) /= sym2(i) then
Answer t= fa H
exit ;

end if ;

ond loop ;

begin -- Pind state
ull.emu-cu-umn
Traverse_Actions (8_Rec.T List, Answer) ;
Continue 1= false ;

else
Continue i1 true ;

ond if ;
end Pind_State ;
peoocedure H.nd Transition (Act t in
Traneition_Record

Answer t in out Return_Recorxd ;
Continue : out boolean) is

begin ~- Find_Transition
if Match_Up (Symbol, Act.Symbol) then

Answer 1= (tzus, (Act.Mext_State, Aot.datiom)) 3
Continue 1= false ;

olse
Continue 1= true)

ond if ;

ond Find_tTramsitiom ;

bagin -~ Tramsitiom
Travezse_States (State_List, C_State) ;
if Answexz.found thea

’
elee
raise State_Srrorx)

ond if ;

end Tramsition 3
function Valid_state_Rame (State : State_Name_string) retura
boolean is

function Traverse (List : S_L.List_Type) retura boolean is

begia -- Traverse

if state = B_L.Current_Object (List).State then
Tetwrn true)

elsif 8_L.Ze_Empty (8_L.Teil Of(List)) thea
return false ;

olee
return Traverse (8_L.Tail Of(List}) ;

end if ;

ond Traverse ;
begin -~ Valid_state_Neme
if S_L.Is_Rwpty (State_List) then
soturn false ;
olse
return Traverse (State_List) ;
end if ;
end Valid_State_Mame ;
procedure End_sim is
h:rh -« End_Sim
Initialised := falee ;
$_L.Sap (State_List) ;
end End_sin ;

ond TH_State_Transitiom_Control ;

31

8.2.4 The Turing_Tape Package

-~ This package maintains and (optiocnally) displays Turing

-~ machine tapes.

generic
%o _Of _Tapes : poeitive ; - 1..3
) =] s natural = 3 ; -~ Sareen position of tape
Bead_Colusn : natural :® 20 ; -- positiom of R/W head

Max_Taps_size : integer :=~ 1300 ;-- Max sise of tape
package Turing Tape is
subtype Taps_Range is positive range 1..Wo_Of _Tapes ;
Tape_Overflow 1 exception ;
Tape_Underflow: exception ;
Tape_Bzror 1 exception ;

peocedure Initialise (Tape_Wo : Tape_Range; Start : string) ;

-~ PreCond : None
-- PostCond : Give a Turing tape an initial value

function Curzemt_Symbol (Tape_No : Tape_Range)
return character ;

-- PreComd : Tace must be Initialized
-- PostCond : Returas Symbol under the R/W head ;

function Bead_Position (Tape No : Tape_Range) retura aatural ;

-= PreCond : Nome
-~ JostCoad : Returns Nead positiom index ;

ond Turing Tape ;

»O0DY

with Screen_10, Text_10 ;
peckage body Turing Tape is

procedure Display_On ;

-~ PreCond :
-~ PostCond 1 thhy the current taps on the screen

procedure Display Off ;

-- PreCond : Wone
-- FoetCond : Stop displaying the tape

procedure Read_Nead (Tape_No : Tape_Range;
symbol : in out character) ;

-« PreCond : Tape was initialised
«~ JostCond : Return’s the symbol
- the R/W head

ly being d by

procedure Write_Bead (Tape_No : Taps_Range;
symbol : in out character) :

~- PreCond : Tape was initialized
-- PostCond : Replece the tape position currently being
- scanned by the R/W head with symbol

procedure Move_Nead_Lsft (Tape _No : Taps_Range)

~- PreCond : Tape was initialized

-- PostCond : Move the R/W head one position left on the tape

-- Bxception: Tape_Underflow if the R/W head moves off the
tape

procedure Nove_Nead_Right (Tape_Wo : Tape_Range) ;

-- PreCond : Tape was initialiszed
--)oott:ond 1 Move the R/W head one position right on the

tape
-~ Bxception: Tape_Overflow if the R/W/ head moves off the
tape

procedure End_sisulation ;

-= PreCond : None
-- JostCond : Marks the current tape as unitialiszed

function Tape_Size (Tape_No : Tape_Range) return natural ;

-~ PreCond : None
-- PostCond : returns the length of the non-blank portion of
- the tape

function Tape_Piece (Tepe_¥o : Tape_Range ;
Left : natural := 1 ;
Right: natural) geturn string ;

-= PxeCond : NWone
-- PostCond : Returns Tape (Left..Right) ;

package sio _I0 ;

par 3 tant chareoter 1= '|’ ;
Cozner : oonstant character := '+’ ;
Top : oonstant character := ‘-’ ;
R_W_Nead : oomstant charecter 1= ‘"’)
Blank 1 oomstant character := ‘' ' ;

Left_Edge : oomstant natural := Need Columm / 2 ;
Right_Rdge: constant natural t= (80 - Bead Columm) / 21 ;

type Tape _Rec is
record
Tape 1 string (1..Max_Tape_Sise) ;
Bead : natursl = 1 ;
Right_Snd : natural := 0;
end recozd j
type Tape_Array is arzay (Tape_Range) of Taps_Rec ;

Initialised : boolean := false ;
simulating : booleen 1+ false ;
On_Scresn : boolean 1= false ;

Dats : Tape_Array)
procedure Display_Taps_sSymbols is

Left s natuaral ;
sor_Col : matural ;

begin -- Display_Tape_Symbols

for i in Tape_Ran
it Data(li) Nead > Left_Rdge then
1eft - D.t‘(i)...d-l‘ft Edge+tl 3
sex_Col t= Bead_Column - 2¢(Left ld'-l) H

else

Lleft 1= 1

scr_Col 3= lnd Column - 2*(Data(i).Nead-1) ;
ond It

3
while (Scr_Col <=80) and (Left <= Data(i).Tape’last) loop
sio.putc (uuu).np(un), Top_Rowtl + Se(i-1),

Col)

sor_Col 3= Sor co). + 2 ,
Left 1= Left + 1 ;
ond loop

end loop ;

end Display_Tape_Symbols ;

procedure Initialise (Tape_WNo : Tape_Range; Start : string) is

h:zu -- Initialise
Initialized 1= true ;
simulating = false ;
Data(Tape_¥o).Tape = (othexrs => ‘~*) ;
Data(Tape_No).Tape (1..Start’last) 1= Start ;
Data(Tape_Wo).Nead 1= 1 ;
Data(Tape_Wo) .Right_End := gtart’last ;
if on_screen then
pisplay on ;

ond if ;

ond Initialise ;
proocedure Display Om is

Col : natural ;

boqi.n -~ Display_On
Sczeen = true }

u “Initislized then
Initialised 1= false ;
simulating = true ;
for i in Tape_Range loop
Col := Bead_Column - 1;

32

while Col o 80 loop Display_Tape_Syambols ;
0

alo.pute (Cormex, Top_Row + S=(i.1), Col) ; ond if

oio.PutC (Separatox, Top Rowtl + $¢(i-1), Col) ; else

sio.PutC (Cormer, Top_Rowtd + S+(i-1), Col) zaise Tepe_Error ;
if Col < 80 then ond if 3

sio.putC (Yop, Top_Row + Sv(i.1), Cal+tl) ond Nove_Bead_Right ;

slo.Put (Top, Top Rowt2 + Se(i.1), Coltl) ;

end if ; procedure Bad_Simulation is
Col = Col + 2

oend loop ; h‘!i- «- Bad_Simulation
sio.putl (R_W_Nead, Top_Rowtd ¢ S¢(i.1), Nead Columm) ; Iaitislined :1= false ;
sio.Putc (Separator, Top_Rowtd + S*(i-1), Need Colum) ; simulating 1= falee ;
end loop) On_Sarean 1= false)
" thhy_!m_l,ﬁoh [} end Ead_simulation ;
@ i
end Display Om ; function Tape_Size (Tape Bo : Taps_Range) return natural is
procedure Display Off is begin -- Tape_Sise
zetura Data(Tepe_Wo).Right_Ead ;
begin ~-- thh!.. ond Tape_Size ;
On_Sozeen 1= fg
end Display_off ; function !cp_)hoo (Tepe_No ;. Tape_Range ;
1 natucsl =1 ;
proceduzre Read_Nead (Tape _Wo : rap_luq- Iiﬁt 1 matural) retura striag is
symbol : in out character) is
begin bagin «- Taps_Piece
-— return Data(? _Bo) . T (Left..Right) ;
it !uithuua or Simulating thea ond Tape_! H.o:.. e
Initialised := !uho H
Simalating := true function Current_Symbol (Tape Mo : Tapa_Range)
u.ly-bol 1= Data(Tape_| le) Taps (Data(Taps_Wo).Nead) ; return character is
e
:uu Tape_Srror } be: -- Curreat_symbol
ond if - u'::su-una or Simulating then
end Ind |_Besd) l::tm Data(Taps_Wo).Tape (Data(Tape_No).Bead)
.
proocedure Write_lNead (Tape_No t Tape_Range } zaise Teps_Krror ;
symbol : in out character) is ond it ;
end Curreat_Symbol ;
begin -- Write_Nead
if Initialized or Simulating then function Bead_Rosition (Tape_MNo : Tape_Range) return aatural is
Initialized 1= hho 3
Simulating := true begin -- Bead_Position
Data(Tape_WNo).Tape (uu(!cp _No) .Bead) 1= Symbol ; Totura Data(_¥Wo).Nead
it on I:cmn then mbols ond Nead_Posi H
D Ta 8 H
L:.ad if ?h’ e ond Turing Tape ;
.
zaise T Rrzor ;
end if ; e

ond n:iu Read
procedure Move_Nead_Left (Tape_ Mo : Taps_Range) is

begin ~- Move_Bead_Left
if Initialised or Simulating thea
Initialised := false ;
Simulating 1= true 3
if Data(Tape_] lo).lud = 1 then
raise Tape_Undexflow ;

alee
.':tn(!np _No) .Bead := Data{Tape_No).Bead - 1 ;

if On_scoreen then
If Data(Tape_| wo) .load < Left_gdge then

sio.puts (" ,» Top_Row ¢+ S*(Tape_Wo-1),
Bead ool--:'mn(!ap_lo).lod-l) [
sio.puts (° , Top_Rowtl + S*(Tape_NWo-1),

Nead CQL_-I'htc(!m ¥o).Nead-1) ;
sio.Puts (° °, Top Rowtl + Se(Tape_No-1),
Nead eolm-zmu(!np Mo) .Nead-1) ;

end if
thhy_fnp_lyﬁoh H
ond if ;

else
raise Tape_Error ;
ond if ;
ond Move_Bead_Left ;

procedure Move_Nead_Right (Tape_Wo : Tape_Range) is

begin ~- ad_Right
it xuu.u-.a or Simulating then
Initialised ;= !nho]
Simulating = tzue
if Data(Tape_Wo) .lud - n-n('up- ¥o).Tape’last then
zaise Tape_Overflow

olse
Data(Taps_Wo).Nead := Data(Tape_¥o).Head + 1 ;
if Data(Tape_No).Nead > uu(up Wo).Right_Snd thea
.-d 3@.(1.,. o) .Right_End 1= Data(Tape_No).Nead ;

1f on_{ lcmn then
If Data(Taps_¥o).Nead <= Left _Edge then
sio.puts (Cormer ¢ Top, Top Row + 5*(Tape NWo-1),
Sead_Column-32+Data(Tape_No).Bead+l) ;
sio.Puts (Separator & Blank,
Top_Rowtl + 5'('!-;0 No-1),
Sead_Column-2*Data(Tape_No).Bead+l) }
sio.Puts (Cormer & Top, Top_Rowt2 + Se(Tape No-l1),
Nead_Column-2*Data(Tape_No).Neadtl) ;
ond if

33

8.3 Towers of Hanol

8.3.1 Programming Assignment

The Towers of Hanoi program was discussed in class. A copy of the Hanoi program is in
/home/facultybeidler/Cmps144/hanoi.ada

You can see how the program executes by bringing up an xterm window and executing
/home/faculty/beidler/Cmps144/hanoi

Below is a graph of the number of disk moves required to complete the Towers of Hanoi problem with

1 through 8 disks, inclusive. Note that the number of moves required to perform the Towers of Hanoi
is

d
Md) =2 -1

where d is the number of disks.

127 255 511 1023 2047 4095

80+
70+
60+
50+
40+
30+

20+

10+

h/s h/s

R NN S S §

+ + + + + +
1 2 3 4 S 6 7 8 9 10

-
*

The file /home/faculty/beidler/Cmps144/saigon.ada contains a partially completed Towers of Saigon
program. The Towers of Saigon is like the Towers of Hanoi, but uses fou: spindles instead of three.
Complete and run the program and do the following:

1. Run the program with all values between one and eight disks.

2. Cut and paste the graph above and plug in the letter ’s’ to roughly indicate the growth pattern for the
number of moves required to solve the Towers of Saigon with between one and eight disks, inclusive.

3. Include with your submission for this assignment and estimate of the move function for the Towers
of Saigon program.

4. Submit the information above, via email, with a .Ist of your program.

8.3.2 Basic Towers of Hanoi Program

with tty, text_io, hanoi_board; towers_of_hanoi
(::u_lph\dh => help_spindle,

procedure hanoi is »_M = from_spindle,
spindle => to_spindle,
Number_Of_Disks : constaat natural t= § ; od if nﬂoroﬂdhko»nﬁuo!m-l)l
}
package New_board is new end towers_of_hanoi;
hanoi_doard (No_Of_8; les => 4,
wo_Of_D: => Woaber_Of Disks) ; begin -- of hanol
use Wew_board ; -= tio.put(“Sow many disks? °);
~= tio.get_line(in_string, etring sise);

package tio renames Text_IO ; ~- aumber_of_disks := integer’value(in_string);
in_ in 4 :E’L}ha‘ fir

str. t etring (1 .. 40); rom_s, - at_name,
string sise t integer; help_spindle => pecond_name,
first_name s positive 1= 1 ; to_spiadle => third name,
second_name : positive 1= 2 ; aumber_of_disks => number of disks);
third_name s positive 1= 3 tty.Put (23, 1, lmq_llhpr'tnp(lhp_!ﬂ.:))

Jtty.Put(2e,1, * °) ;

step_numb t long_integer := 0 ; ond hanol;

coedure towers_of_hanoi

(::i.-.m’

p.spindle,
spindle

t in zcitivo;
m-h.: _of_disks : in

hqin--o!m-o!hmi
if number_of_disks = 1 then

Step_number 1= & ber + 1 3
uen Disk (from_a » to_spindle);
& ~put (“Step *);

-={lon ht.rtiu (8 Wumberx));
- :;i:‘iue s lbvu': “’?)))
P ‘ﬁomw'inp (from_spindle));

pot (°)
--uopnt 1unmp(uum));
it ol | pog
elee
-- Nows all but the bottom disk to the “help® spindle
w: of_hanoi
(fzom lpindh => from_spindle,
Mlp spindle = to_spindle,
to_spindle => help spindle,
nomber_of_disks => aﬂ-: of d.hkl ~1);
--%% Move the bottom disk to the "to®
tovers_of_hanoi
(trom_spindle => from_spindle,
hlp _spindle > n.lp_-phdh,
pi.ndh

-~u¢nundhk-!:e-tho'holp -Mumo!mugwk

35

8.3.3 Towers of Hanoi Display Package

genexic

Bo_Of_8, les 1 positive ;

wo_of _ + positive ;

peckage hanoi_board is
Disk_Brxoz : exception ;

procedure move_disk (from spindle, to_spindle : in
positive) ;

end hamnoi_board;

with screen_io j
-- with tty ;
- with text_io;

package body hanoi_board is
Base_Row : coastaat natural := 20 ;

Disk_Size : constant matural 1= (80)/wWo_Of
subtype disk_string is string (1 .. Disk_sIse

sample_disk : comstant Disk_sString := (others => ‘¢#') ;
blanker 1 comstant Disk_string i= (others => ’))
max_disks : constant integer := (Disk_Sise-2) / 2 ;

subtyps stack_range is integer range 1 .. max_disks;
type epindle_ uny is arzay (stack_zrenge) of utunl]
type spindle_record is
¥ - disk : inte 0
X t ger 1=
“’P 1 spindle_array := (ot.bt- = 0);

ub:“ g pin:i.o ie in %o_of_spindles
[YP® 8] range teger range 1 ..]
type boaxd_type h array (spindle_rangs) of lplndI- record;

type spindle_column_type is array (1 .. No_Of Spindles) of

lpiadho H

integer ;
spindle_column : -p.i.ldh ocolumn_type }
hanoi board_type ;
from_aumber,
to_nﬂox 1 integer ;
Count 1 natuxal 3= 0 ;

procedure Display_Disk
(Row, Column : natural ; Disk : integer) is

begin -- nhph! Disk
if Disk o= 0 the
-- tty.Put (Row, Col—#nhk, lhahr(l..(-nhk)) [3 Rl

- Blankexr(l..(~Disk))) ;
screen_io.Puts (Blanker(l..(-Disk)) & "[°* &
m-I.m:u..(-nmn, Row, ColummtD.]
[
-— tty.Put (Bow, Colum-Disk, Sample _Disk (1..Disk) & °"#° &
- sample_bisk (l..nht))
soreen_io.puts (Sample Disk (1..Diek) T e
o “lqh Disk u..nI-k). Row, co:.—-nm) s
@

ond thlly pisk ;
procedure initialize_board (hanoi 1 im out board_type) is

Procedure Display_sSpindle
(col& t natural ; sSpindle : spindle_Necord) is

begin -- Display_spindle
for i in stack_Range loop
pisplay_Disk (Base_fiow - 1, Colum, Spindle.Disk{i));s

ond loop ;
ond Display_Spindle ;
-- of initialisze_boeazd
le_column (1) := Disk_Sise/2 ;
!oz i in 2 .. Wo_Of_8

spindle_¢ coh- 31) 1= lpd.ldh Column (i-1) + Disk_Sise;
indle_Colum(i)));

for 4 in 1 .. Wo_Of_Disks loop

Banoi(1l).Disk(i) := wo_Of_Diskstl-i ;

~- text_io.Put (Lnuqn'i-qo(lo of Dhluol-i.))y
end loop ;
Ranoi(l). lbp Disk 1= Mo_Of_Disks ;

«-tty.Cleax_screen ;
screen_io.clear ;
--tty.Put (Base_Row, 1,
eexm_h.m (

» Base_Row, 1) ;

for 1 in1y .. spindles loop
.-' y_sphdl'.o (spindle_Columm(i), Banoi(i)) ;
ond hithuu _board;

e mowe_disk
(from_spindle, to_spiadle : in positive) is

Abowe, Below : imteger ;

beagia
Display Disk (Base_Row-Bamoi (To_spindles). _Disk - 1,
spindle_Column (!’o spindle),
Banoi (Prom_spiadle).Disk(Benci(From_Spindle).Top_Diak));
Displsy Disk (Bese_Row-Bamci (From_8|)-
spindle_Column (From l%).
-Banoi({From_spindle).Disk(Banci{Prom_Spisdle). _Disk));
Nanoi(to_Spindle).Top Disk 1= Nanoi(To_Spindles).) Disk+l;
Nanoi (To_spindle). th(luui(h lpi.ndh) Top_Disk) =

Banoi (Prom_spindle).Disk((Prom_spindle).Top Disk);
Sanoi(From_spindle) .Disk(Nanci(From lﬁa‘h !'o:‘:ﬁk

-0,
Ranoi(From_spindle).)_Disk 1=
“Banoi (Frow_spindle).Top_Disk-1 ;
Count 1= Coumt + 1 ;

--tty.Put (3, 30, “Mowes = ° § integer’'image(Count)) ;
h = * § integer’image({Count) , 3, 50);
--tty.Put (22, 1, " *} 3
scxeea_io.Puts (° °, 22, 1) ;
-- b‘lz 0.001
for 1 .. 32767 loop
aull ;

ond loop ;
--tty.Put (3,3,°if *) s
if (Ranoi(To_| M).Qa th > 1) thea
--tty.fut (3,), “inner
--t:y.m (6,3, Llu’x'l-p (To_spindle));
--tty.Put

(5,3, iateger’image (l-nol(!b _Spindle) .Top_Disk));
--tty.put (6,3, ia

(Banoi(To_Spiadle). ohk(u-oi(ro spindle).Top_Disk)));
--tty.Put (7,3, integezr’

(Banoi (To_spindle) .Disk(Banci(To_spindle) .Top_bDisk-1)));

-

)
selow Banci (To_Spindle) .Disk({Banoi(To_spindle).Top_Disk);
1=
l.uoi(!b l'hdh) Disk(Renci(To_spindle).Top_Disk-1);
if Abowe >
raise nm Ism]
ond i2 ;
—-—tty.Put (3,3, “exit ianer®) ;
end if

'
--tty.Put (3,3, “exit outer”) ;
ond move_disk;

begin -- hanoi_board
it Wo_Of_Diske > Max_Disks then
raise comstraint_error)
olse
initialise_board (hanoi) ;

ond if ;
end hanoi_board;

36

8.3.4 Towers of Saigon Sample Code

-- Copyxight (c) 1991,1992 Joha Beidler
- Computiag Scisncss Dept.
- tniv. of Sczantoa, Screatos, PA 18510

- (717) 941-7446 voioce
- (717) 941-4280 PAX

- beidlezrfguinness.cs.uofs.edu ond Sot. mphy]

- beidlerfsczeanton [Bitast)

- bagia -- of Sai

-~ For use by aoa-profit educational iastitutioms oaly. tio.put(Now many disks? °);

== This software is GUARANTEED. Plsase rxeport any exzors. All ilo.get (Wo_Of |) 3 tio.skip _Line ;
-~ ocorrectioms will be made as socon ss poasible (mormslly set_Display (Bo_Of Disks) ;

-~ withia one workiang day).
with text_io, hanoi_boexd;
psoceduxe Saigom is
subtype Disk_Range is integer range 1 .. 9 ;

pasckage tio renames Text_I0 §
package iic is new Text_lo.integer_io(integer) ;

- Lt
Text_.

in_strin s string (1 .. 40);
string_sise + integer;
_Of_Disks t Disk_Range }

step_number : long_integer i= 0 ;
Prooedure set _Display (Wumber_Of_ Disks : in

package New_board is new
hanoi_board (do_Of_8;
%o,

integer) is

- 4,
=> Wumber Of_Disks) ;
use New_boazd ;

proocedure towers_of _Saigom
(fram_spindle,
holp_spindle,
Belp_2 s .
to_e 1 in ﬁcith. H
Number_Of disks : in teger) is

begin -- of towers_of_saigom
-~ tio.put (ﬂun:.m (Wo_Of_Disks)); tio.New_Line;
Case Bumber_ Of_D:
when 1 =
Move_Disk (Prom_Spindle, To_Spindle) ;
Step_number 1= Step_Wumber + 1 ;
when 2 => pindle
Towers_Of_Saigon (From_s$; ’
o 7 P

utp spindle,
Towers_Of_saigon (lm_lpd.ndh.

1)
Towers_Of saigon (l-l.p_lphdh

when others =>
Towezs_Of_saigon (

Towers_Of_Saigon (n- sp:
Belp_Spindle,
8

To_ [l
Selp 2_Spindle,
1)
Towers_Of_8S (rrom_spindle,
sigon l.l.p_:_-phao
Belp_Spindle,
b lphdh,
)1
Towers_Of_Saigon (lolp_z_lpl.ndh,
lll.p IM
’ Spindle,
Towers_Of_Sai (!o).p spindle,
h Selp_2 lphdh
!ru 8
l_bt_o!_bh)u-i) '
end case ;
ond towers_of_ Saigon;

begin -~ set_Display

- tty.But (23, 1, lomg_integer’image (Step Wumber))

et (24,1, %)
“t Line (I ltxhg, striag Sise) ;

37

9 References

Beidler, J. "Structuring Iterators for Reuse”, To Appear in the Proceedings of Ada-Europe 93. Paris,
France. July 1993.

-, An Object-based Approach to Data Structures Using Ada, a text in preparation.

-, "Building on the Booch Components: What Can Be Leammed When Modifying Real World Software
Tools for Educational Use", Proceeding of Tri-Ada ;92, Nov. 1992.

-, "A Role for Iterators as A Tool for Software Reuse”, Proceedings of WAdaS ’92, July 1992.

-, "A Sequence of Integrated Laboratory Assignments for Freshmen”. Proceeding of ASEET-6
Symposium, Washington, D.C. Sept. 1991.

-, P. Jackowitz, and R. Plishka, "A Graphics-based Editor for Parallel Systems”, Proceeding of the Third
Annual CASE Workshop, Cambridge, MA, July, 1988.

-, and P. Jackowitz. "On Defining Consistent Generics." SIGPLAN lulletin, v.21 no.4, April 1986. pp.
32-41.

-, and P. Jackowitz, Modula-2, PWS Publishers, 1986.

-, R. Austing, and L. Cassel, "Computing Programs in Small Colleges,” Available through the ACM --
Summary appears in CACM, June 198S.

-, Data Structures, Allyn-Bacon, Waltham, MA. 1980.

Brender, Ronald. Character Set Issues for Ada 9X. SEI. Pittsburgh, PA. 1989.

Booch, Grady, Software Components with Ada, Benjamin Cummings, Menlo Park, CA. 1987.
Cohen, Sholom. Ada Support for Software Reuse. SEI. Pittburgh, PA. 1990.

Doerr, A. and K. Levasseur, Applied Discrete Structures for Computer Science, 2nd Ed,,
Dellen/MacMillian

Lewis, H, and C. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, 1981.

Liskov, Barbara, and John Guttag, Abstraction and Specification in Program Development, McGraw
Hill, New York, 1986.

Piff, M., Discrete Mathematics: An Introduction for Software Engineers, Cambridge University Press,
Cambridge, 1991.

38

Polya, George., "Probabilities in Proofreading”. American Mathematical Monthly. v.83 n.1 January
1976, p.42.

Shaw, Mary, W. Wulf, and R. London, "Abstraction and Verification in Alphard: Iteration and
Generators", Alphard: Form and Content. Springer-Verlag, New York. 1981.

Stubbs, D and N. Webre. Data Structures with Abstract Data Types and Modula-2. Brooks/Cole.
Monterey, CA. 1987.

39

