
MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE 1Form ApprOved

I 0MB No. 0704-0188
puoic reeortigq ouroen tor this cOllection of intooration is estimated to avefrage I hour Der response. incuding the time for reviewing inistructiOns. searchinq eaxsting data swoute
gathering one maintaining the data heeded. and co iti g na retieonn the c~llectoI of inormation. Send comments regarding ths burden estimate or anl Other atic Ot the
collectiOn Of intormation. including suggelStons for reducii'i this ourden to Washington Nleadauartears Services. Directorate for information Oderat$ons and Reoiorts 12 isa jethersmt
Daii,s H10-Sai. Suite 1204. Arlington. VA 22202-4302 and to the Ofice of Managemen t and Buaget, Paperwori Reduction Protect (0704-018). Washington. DC 2o0s03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I November 16, 1993 1 Final Report: 24 ýM1992-24 Sp1994 Z-
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Ada Support for The Mathematical Foundations of Software EngineeringOE)M
6. AUTHOR(S)

00 John Beidler

Nlm 7. EFRIGOGNZTO AES N ADDRESSRE~" 8. PERFORMING ORGANIZATION

_= PEFRIG RAIAIOIAES)AD1 1 REPORT NUMBER

- °l°°Computing Sciences Department
University of Scranton ELECT
Scranton, PA 18510 APR 12 1994

9. SPONSORING/ MONITORING AGENCY NAME(S) AN ESSES). SPONSORING MONITORING

U. S. Army Research Office F AGENCY REPORT NUMBER

P. 0. Box 12211\ Research Triangle Park, NC 27709-2211

II. SUPPLEMENTARY NOTES

___• The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army

O0 position, policy, or decision, unless so designated by other documentation.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13qJBSTRCT.(Maximum 20 wor

nree topcs were seiei a targets for this project, program correctness, finite state devices, and program
complexity (timing). A variety of artifacts were developed to support course material, programming
assignments, and laboratory assignments in the mathematics of software engineering. The program correctness
artifact centers on an artifact, called Assert. Assert is an Ada package that assists users in testing program
assertions. The rimite state device target is supported by several artifacts. One artifact in a course module,
with laboratory and programming assignments, that centers on the use of finite state device concepts in
programming and the classical representations of fimite state devices in Ada. The second finite state device

0 artifact is a Turing Machine simulator that simulates a turing machine with from one to three tapes. The
timing target centered on generalizations of the classical Towers of Hanoi problem. The traditional Towers
of Hanoi problem appears in many computing texts as a recursion example. Our study of the Towers of Hanoi
problem led to the observation that there is no formal proof for the Towers of Hanoi problem when more than

three spindles are used. This problem lends itself to substantial experimentation among the students as they
compete to develop the program with the best timing results. All software developed through this grant has
been forwarded for inclusion in the Public Ada Library (PAL).

TIMC QrA-iL;1:y X2 mE
14. SUBJECT TERMS 15. NUMBER OF PAGES

Program correctness, assertion testing, finite state automata, 31
turing machines, Towers of Hanoi, computational complexity, program timing 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
WOF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED I UNCLASSIFIED I UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Sid Z39-18
2981•02

Final Report

Research Agreement No: DAALA3-92-G-0410

Ada Support for The
Mathematical Foundations of Software Engineering

.ohn Beidler
Prof. of Computing Sciences ----------------

University of Scranton "'A-co I.-..-
Scranton, PA 18510 NTIS CRA&I

OTiC TAB Ej

beidler@cs.uofs.edu J... .f1.t..-
(717) 941-7446 (Voice)
(717) 941-4250 (FAX) .y

A.cklh,17+ Codes

Dist~ib Spti

S Table of Contents

1 Executive Summary .. 3

2 Overview ... 3

3 A ssertions ... 4
3.1 The Assert Package .. 5
3.2 Package Applications ... 8
3.3 Iterators and Assertions .. 10

4 Estimating The Number of Undiscovered Error 11
4.1 Dom ains ... 14
4.2 Independence ... 15
4.3 Beta Testing Equivalent Domains 15
4.4 M ultiple Estimates .. 16

5 Finite State Automata .. 16

6 Turing Machine Simulator .. 17
6.1 Overview .. 17
6.2 Construction .. 18
6.3 U se .. 18

7 Generalized Towers of Hanoi .. 19
7.1 The Towers of Saigon ... 20
7.2 A Minimum Move Strategy for the Towers of Saigon 22
7.3 Observation .. 23
7.4 Acknowledgements ... 23

8 Softw are ... 23
8.1 ASSERT .. 24
8.2 Turing Simulator ... 26

8.2.1 The Procedure tm .. 26
8.2.2 The package tm machine.sim 27
8.2.3 tm StateTransition Control Package 29
8.2.4 The TuringTape Package .. 32

8.3 Towers of Hanoi ... 34
8.3.1 Programming Assignment ... 34
8.3.2 Basic Towers of Hanoi Program 35
8.3.3 Towers of Hanoi Display Package 36
8.3.4 Towers of Saigon Sample Code 37

9 References ... 38

2

1 Executive Summary
Three topics were selected as targets for this project, program correctness, finite state devices, and

program complexity (timing). A variety of artifacts were developed to support course material,
programming assignments, and laboratory assignments in the mathematics of software engineering. Most
of these artifacts have been placed in the PAL, Public Ada Library. A few more artifacts will be set to
the PAL after they have been classroom tested.

The program correctness artifact centers on an artifact, called Assert. Assert is an Ada package that
assists users in testing program assertions. The finite state device target is supported by several artifacts.
One artifact in a course module, with laboratory and programming assignments, that centers on the use
of finite state device concepts in programming and the classical representations of finite state devices in
Ada.

The second finite state device artifact is a Turing Machine simulator, called tm. tm simulates a turing
machine with from one to three tapes with a visual representation on a typical text screen. The simulator
requires a VT100 compatible terminal (that includes any PC running ANSI.SYS, window systems using
an Xl xterm window). tn was designed using an object oriented approach, hence the artifacts support
three types of usage. Besides the typical turing machine building assignments, the may be used to
demonstrate object oriented design and the turing simulator may be as a programming project, by
withholding several package bodies and requiring the students to build the various packagi bodies.

The timing target centered on generalizations of the classical Towers of Hanoi problem. The
traditional Towers of Hanoi problem appears in many computing texts as a recursion example. Our study
of the Towers of Hanoi problem led to several surprises. First, the "well known" timing solution for the
traditional three spindle version was formally proven only in 1981! Also, there are no formal proofs for
the Towers of Hanoi with four or more spindles. There do exist estimates that appeared in 1941 as
solutions to a Problems Section entry that appeared in 1939. However, none of the solutions contained
formal proofs. This problem lends itself to substantial experimentation among the students as they
compete to develop the program with the best timing results.

All software developed through this grant has been forwarded for inclusion in the Public Ada Library
(PAL).

2 Overview
It was not enough to simply develop course materials directed at the mathematical foundations of

software engineering, it was important to develop materials that could be integrated into existing courses
without disrupting or displacing existing course materials. One way of achieving this is to develop
material that builds upon topics that are already in the curriculum. Four topics that are frequently found
in two core courses were select. The courses were the second course in computer science and the data
structures and algorithm course, frequently referred to as the ACM Curriculum courses, CS 2 and CS 7.
These courses were selected because all computing curriculum either contain these two courses, or cover
these topics in other core courses.

3

Initially, the project concentrated on three topics, program correctness, finite state devices, and
program timing. It was desirable to approach each topic from a new perspective that will not only interest
the students, but interest the instructors as well. For example, consider the topic of program correctness.
This is usually approached from a theoretical and very mathematical point of view. The approach take
in this project was from a pragmatic point of view, using assertions to locate and correct errors. This
point of view demonstrates that program correctness can play an important role throughout the entire
software life cycle, including system evaluation and maintenance.

3 Assertions

Proving the correctness of a program is frequently viewed by software developers as an esoteric
academic exercise. This point of view can be readily appreciated when one reviews the various
presentation on program correctness that appears in current text books. Frequently, illustrations of
applications of program correctness concepts are after-the-fact exercises of belaboring the obvious. In
some cases errors exist in the "proofs". Frequently authors avoid, or provide a poor presentation, on one
of the major tools of low level program correctness proofs, loop invariants. The current lack of utilization
of program correctness techniques is unfortunate because program correctness techniques can be an
invaluable software development aids that may be employed throughout the software development process,
from the design phase through software maintenance and modification.

This paper describes our experience designing an Ada package that supports practical uses of program
correctness throughout the software development process. The package, called ASSERT, was originally
designed as a stand alone package to supports the pragmatic use of program correctness with its major
concentration on the interface between the design and implementation phases of software projects. An
early version of the Assert package was designed and developed by Jennifer Pollack, a senior Computer
Science major at the University of Scranton.

She began the research for this project in the Spring of her Junior year and spent the summer
reviewing the literature on program correctness. Because of her preparation, she had a prototype
completed for her Senior project at the beginning of the Fall 1991 semester. This allowed us to
concentrate on the issues surrounding methods of encouraging potential clients to use the ASSERT
package. Section Two describes the Assert package and its various reporting modes. Section Three
illustrates a typical use of the Assert package.

Section Four presents several pragmatic issues surrounding the use of the ASSERT package. The
current version of the package was is slightly different from our original version of system. Initially, we
found attempts to use the Assert package to be inconvenient. This is illustrated in this paper with several
examples of assertions involving classical array based algorithms. Initially, the problem of testing
assertions frequently doubled the amount of code that was written. That is, the code to perform assertion
testing of a system was almost equal in size to the amount of code in the original system. The reason for
the additional code was that we wanted assertion testing to be written in code that is independent from
the original code for the obvious reason (same code = same error).

As we began to understand how to design good iterators, see [Bei92a], [Bei92b], [Bei93], the Assert
package became much easier to use. With good iterators we found it easy to build assertion tests for a
variety of homogeneous data structures. This will be demonstrated in the article with array iterators. With

4

just two types of array iterators as tools for building assertions, we found we could easily build most
assertion tests for many classical array based algorithms.

Just as our frustration was beginning to peak, this project was assisted by another project that involved
the construction of a repertoire of Ada software components. Each of our software component packages
contained appropriate iterators for the various components. Iterators became an invaluable tool for the
construction of algorithms to test assertions about components. With this in hand we went back to the
problems we had constructing assertions for array algorithms. First we constructed a simple package of
array iterators, then used these iterators to construct assertions. The result was a dramatic reduction in
the amount of code written to perform assertion testing.

The final section summarizes the results contained in this paper with some practical observation and
plans for future spin-offs from this project. The practical observation is that the use of iterators in
assertion testing provides a type of "proof-reading" approach to proving the correctness of a program. If
two proof readers come to the same conclusions about a piece of text, the text is assumed correct. The
noted mathematician, George Polya, wrote an article, see [P6176], about the mathematics of proofreading.
In the future we plan to analyze the use of the Assert package in light of Polya's article. By a proof-
reading proof we mean that if two independent pieces of code produce the same answer there is a higher
degree of confidence that the code is correct, especially if the two pieces of code are truly independent.
To some extent, the use of independently written iterators to construct assertion tests provides a reliable
and cost effective means of testing assertions.

Once we started using iterators to build tests for assertions, we found that it may be convenient to
build a repertoire of packages of small pieces of code to support a collections of typical assertions about
the structures of various components. We see the new nested library scheme in Ada-9X as a desirable
framework for the packaging of assertion testing tools. We plan to proceed with this project when we
gain access to a Ada-9X compiler. With Ada-9X's ability to nest packages, we believe we can use this
feature to build collections of reusable assertion testing tools and components.

3.1 The Assert Package

The ASSaRT package is quite simple in design. The specifications for the ASSERT package appear
in Figure 1. A natural assumption made regarding the use of the ASSERT package is that clients
understand the basics of program correctness. The four assertion testing procedures, Precondition,
Postcondition, Invariant, and Assertion are essentially identical. The only difference between them is a
unique prefix placed by the procedure in front of the output requested by the client. The implication is
that the client uses the appropriately named procedure when requesting an assertion test and uses identical
Prefix strings for procedures that correspond to the same structure. For example, given the statement
sequence,

Sum : 0;
for i in 1 .. n loop

Sum := Sum + A(i)
end loop

5

*1 iemmm a aJ

3 pfeoemU ftIneeitLes (Oemd ee I beeleua j
4 lieU a gtela"

* U•le oee * Oalal)"i

* - gPs, o-end : lamew
O - Pgee-eest l , Li OmmiA~es t 4&Aql, 2amueieeoel

10 ele"spur Poloj Ieeses I
Is -L ale..l~mted bw awemue qevtlas
12 - - ------13

14
as pfeem"a 9et~emd~tl (omeilem a uelm$em
to1. Swl. a taa

17 Wmelie to a ftuma a10 Valuemueegle a)0ia a
19
20 - *1" al321 - Peet-mid a If OemLtA e the iAeply Wsme~beaaga

22 U l.6ielyV1~.Og23 -- male.e. UnLIted bp, einaeet -
25 --- --- --24

27 pweeeda, 2.aeaLet (CeaLtiem , beele a

20 PiefLa OkcayIe
2o sveflhemoes Ilu I
30 Xoe BeagOaOZ ln

32 PWe-e0 W iee
33 Peet-emd , LA C"e•teef tbu iO.play Wee. Naeoals34 -- e1i. dALagla e _lleejbaep
35 -- ,,alo.. 11.14.4 b7 unW.t epgwstag.
34 --

34

35 peee&.no OeetLes (eONAti. I heelema 1
40 iefrelz e IitAlag I
41 lamyoeavme a m4,1mg s

42 Vlue Paeeege a Lug) a43-------------- -

4a - f tet-o-ed a LI ceedlA s thee dlAplay lmi,,eeieg44 -- e1.e diep ,,•leyVl.Uoegn a
47 -- ,mle.e limited h= e.egeestiag
46 -- IIme"
4so

5 IPreeeae mteUse
S2531 -- Pw-e• a se.e

54 -- Imet-eed a Plum pashags La Alpbajbie
55 -- mmt a 1 t2 s no" At tU Pe~ge Lt temd ".-',
54 -- ely thre raise. Ueege Le PeLated hee the
57 -- emeiLt. b*L tooted by &a ,uecttea

VZeeeiz fells-...

"4 preesiege &2.huumiea
41
42 -- PIWe-eui lime"
63 -- P *i l pee g L- AldpheIiede
64 ,a C a a It lIp e the paage aL tuamed Us',

S eLth, tie It"enneaege ef the Value_bmmeegs
L4 e pelated ea ae Haee'tlea teert premioaI. sellod.

70

71 - p re-ee"i e Uinee
72 rasPet-so"i a SplayLag of IuoeIlew La tee.Lete
73 ------

74

76 -- --------------------
77 -- e U!
73 -- feet-emed a OleplayLa of "~Ute emtLmed depeedag
75 -- ope reat peebeGe ied.

61
02 a"n Meeact

Figure 1 ASSERT Specifications

may have the corresponding assertions,IO6

Sum :- 0;
ASSERT.Precondition (Sum - Sum OF (A, 0),

"Sum loop", "startV, "Failed");
for i in I .. n loop

Sum :- Sum + A(i)
ASSERT.Invariant (Sum - SumOF (A, i),

"Sum loop", integer'image(i), "Failed");
end loop ;
ASSERT.Postcondition (Sum - SumOF (A, n),

"Sum loop", "end", "Failed");

where the prefix, "Sum loop" appears in each line of the display. The display would appear as,

PRE : Sum loop start
INV : Sum loop 1
INV : Sum loop 2
INV : Sum loop 3
INV : Sum loop 4
INV : Sum loop 5

POST: Su*m loop end

The prefixes "PRE s ", "xNV s ", "POSTm ", and "ABRTU " are placed at the beginning of the line
displayed by the procedure Precondition, Invariant, Postcondition, and Assertion, respectively. Combining
the assertion prefixes with the client provided prefixes creates a display format that is easy to interpret.
For example the nested pair of loops in the statement sequence,

Sum := 0 ;
ASSBRT.Precondition (Sum - Answer (0),

"*Outer", "start", "Start fail") ;
"for outer in 1 .. r10 loop

ASSeRT.Precondition (Sum - Answer (Outer-i),aR Inner% "nest begin", "nest fail") ;
"*for inner in 1 , outer loop

Sum :r Sum + 1 o
ASSERT.Invariant (Sum - (Answer (Outer

-1)+Inner), OInner",
integer-image(inner), "nest fail"),

end loop ;
ASSERT.Postcondition (Sum - Answer (Outer),

""Inner",
"nest end" & integerInege(outer),
"nest fail") ;

ASSERT.Invariant (Sum - Answer (Outer),
"Outer",
"integerimage(outer),
"fail" a integer'image(outer)r),

"end loop ;
ASSeRT.Postcondition (Sum - Answer (10),

"Outer", "start", "Start fail") ;

have assertions that produce the display,

7

PRE : Outer start
PRE : Inner nest begin
INV : Inner 1
POST: Inner next end 1
INV : Outer 1
PRE : Inner nest begin
INV : Inner 1
INV : Inner 2
POST: Inner next end 1
INV : Outer 2

Because of the potential verbosity of the display, the package has two global modes and two display
modes. The global modes are on and off. The display modes are referred to as Alpha mode and Beta
mode. The package displays assertion messages only when the global mode is on. No messages are
displayed when the global mode is off. When the global mode is on, if the display mode is Alpha, every
time an assertion testing procedure is called a message is displayed. In Beta mode messages are displayed
only when a test fails. By selectively using the global on/off modes with the display Alpha/Beta modes
clients may control the verbosity of the display.

The usefulness of the package depends somewhat on the cleverness of a client in performing
meaningful assertion tests along with useful and distinct messages. A future modification of the package
will be the inclusion of a Silent display mode. In Silent mode all assertion messages are placed in a file,
which may be viewed at a later time.

3.2 Package Applications

Building an assertion testing package is easy, making it useful is another story. To illustrate, consider
building the assertions to test a simple algorithm, like the bubble sort illustrated in Figure 2. A set of
assertions to test the looping conditions for the bubble sort appears in Figure 3. Fortunately, the tests for
all the assertions may be created using a single function, Is-Sorted, which also appears in Figure 3.

ProCedure BubbleSort (A : in out intArray) is

temp, bub i integer I

beqin
tio.Put Line ("Start sort') I
tio.Put-Line (*first precond')
for index in 1 .. A'range'last-1 loop

bub i- index ;
while (bub > 0)

and then (A (hub) > A (bub+l)) loop
temp :- A (bub);
"A (bub) s- A (bub+l)
"A (bub+l) I- temp ;
hub t- bub - 1;

end loop
end loop;
end Bubble_Sort g

Figure 2 Bubble Sort Algorithm

Figure 4 contains a partial listing of sample output from the assertions in Figure 3. This simple

example demonstrates one of two problems associated with using the ASSzRT package, its propensity for

8

funCtion is sorted
(A T Int-Arrayi
start,
Finish i integer) return boolesa is

begin -- Is Sorted
for index in (Strt.l) .. Finish loop

if A(indez-1) > A(Index) then
return false

end if
end loop
return true
end Is Sortod

procedure Bubble Sort (A i in out Int Array) is

temp, hub a integer

begin
tie.Put Line (*Start sort") 3
ASSURT.PreCondition (ISSorted (A, 1. 1),

"Outer", 'Start', "Start error");
tio.Put Line ("first procond*) ;
for index in 1 .. A'range'last-I loop

hub s- index p
ASSERT.Precondition (Is Sorted (A, 1, Index),

"Inner", "Start", "Start error);
while (hub > 0)

and then (A (hub) > A (bub+l)) loop
temp 3- A (bub);
"A (bub) a- A (bub+l) p
"A (hub+l) t- teM I
bub a- bub - 1;
ASSERT. Invariant

IsSorted (A, bub+l, Index+l),
inner",

integer"image(bub+1),
"invariant error");

end loop ;
ASSERT. Poetcondition

Is Sorted (A, 1, Index+l),
Inner*, 'Finish", 'Finish error');

ASSERT.Invariant (is Sorted (A, 1, Index+l),
"Outer', "OK", integer'image(index))g

end loop;
ASSERT. Postcondition

Is Sorted (A, 2, A'Range'last),
"Outer", "OK", "end error")p

end Bubble Sort ;

Figure 3 Bubble Sort with Assertions

producing enormous amounts of output. If the procedure in Figure 3 was sorting five hundred numbers,
the assertion tests would produce approximately 250,000 lines of output.

By selectively using the package's O/Off switch and the Alpha/Beta display wodes a client can
dramatically reduce the amount of output produced by the package. Since the major concern centers on
assertion failures, the Beta display mode is normally the primary interest of clients. In Beta mode, only
assertion failures produce output, a system that is mostly correct would produce very little output, and the

output that is produced would be the output that is of most interest to clients.

Figure 4 Sample Output for Bubble Sort Assertions

The secon" fundamental problem with using the Assert package is the general problem of creating
assertions. ror the best possible results, assertion tests should be developed independently of the package
being tested. There are sound formal reasons for the independent development of assertions. The formal
reasons are addressed in Section ?. Informally, it is desirable for the independent development of assertion
tests so that the code in the assertion tests is as distinct as possible from the code in the program. The
basis for the assertion tests in Figure 3 is at least a finction whose code is independent of the code in the
procedure. A more desirable situation would be to have as much code as possible pre-written, which leads
us to Section ?.

3.3 Iterators and Assertions

Many times, the coding effort involved in building assertion tests is potentially as large as the effort
required to build the system being tested. This would explain why assertion testing is not a popular
method of testing the correctness of programs. This difficulty may be overcome with the right software
development tools. One family of tools that we have found to be very useful is the family of iterators
over homogeneous data structures.

Frequently, assertions center on verifying relationships that hold regarding the contents of
homogeneous structures. Often, algorithms to test assertions may be accomplished through the traversal
of a structure while performing simple comparison tests. The traversal may be constructed with a
predefined iterator. Fortunately, in our environment the packages for all homogeneous data structures
include collections of the typical iterators over the structure. For example, binary tree packages include
should include breadth first, depth first, and other typical iterators. In addition, we have a standard array
tool package, The specifications for the array iterators appear in Figure 5.

When it comes to developing assertions, there are two advantages in using iterators when they are
available and appropriate. The first advantage is that iterators can dramatically reduce the amount of code
written to test assertions. A second advantage with iterators is that the traversal code for the structure
exists, and may be presumed to be correct, hence increasing the probability that the assertion test is valid.

The selector version of the step and bisection array iterators, serve as the basis for many array
traversal based assertions. To illustrate, consider the coding for the assertion testing function, Islsorted,
in Figure 3. It is composed of a loop to traverse the part of the array being tested and an if-else
structure that performs the actual test. Figure 6 illustrates a version of IsSorted built with the use of
an iterator. In the iterator based version the client only writes a procedure, Checkone, to perform a
single test and instantiates the iterator with that test.

The use of iterators actually serves two purposes. Beside the obvious benefit of reducing the amount
of code written to perform the assertion tests, basing the assertion tests on iterators makes the code that
performs the assertion tests dramatically different than the source code being tested. This difference helps
provide some degree of independence between the system's code and the assertion testing code. That

10

immuem•_egeetmgbg aileam

!-

.-

.- - 'get

sImme a megn g -- mo _st•ee

--- ~ ~ ~ ~~r. 'S A - ----- -- ---- - -- 7----- -

"a.

b" o(~ , Sawer, ..lbe ,_r))t ge oblumt a mre La I SteeLDi-ut

tweo ftet W isi It~t_ d I ivlLtl I

twpo Afim geU ifa (t) p
two wIgpe s SMavIy (Aaue7-aseo 9mag)) at "aimTes

Sll•~ ~~t Ipsiute• •d IprivateI
fptduoaese" (a, , I &a out IAn'81_Sv" 3n I (A•

Coetrol arat "M~eg *"AM&taseI~
Deas S La eat Valesa -T

(£ a La eat AMST ,w'e p
Lat aot A&-i m•rIl

FAe
two.OIbet I s IAti pivteI
two Iiu,• I s L (.43.) p
two &aVMS Ise Liure5Ay (Aootl caam" Sp:2ict) of as(Ploetl)

ssescoeTht is, Athe privat wItigteasrintsigcd a aeatnec oeh h

I in ar~t Aray-TWe

Centime a sert tee .Ama
tera I o A out wtna ass1hr erto

A a La out Arayijale
start a An arreay-an" I
ieratomt &a Laintegrer aI Ii
rea" a La out ltea. tee..Iju) I

-- Easetime a teienz e Ne It Ifan ict - 00

Figure 5 ArrayjTool Package Specifications (Partial)

independence helps alleviate some of the concerns that the assertion testing code may be tainted by the
system's code. tiat is, the group writing the assertion testing code may have a tendency to echo the
system's code while writing assertion tests. As a result the assertion tests could contain the same errors
that appear in the actual code. By writing assertion tests in a different way, building them on top of
iterators, there is greater certainty that errors existing in the system's code are not echoed in the assertions.

4 Estimating The Number of Undiscovered Error
After testing a software system how many undiscovered errors still remain? After a certain amount

of testing, locating, and correcting of errors can the testing information be used to form a mathematically
sound estimate of the number of undiscovered errors? This paper describes a statistical framework for
making estimates about the number of errors that may still remain in a software system as well as
providing measures of the quality of the testing process. This paper also suggests several methodologies
that may help to improve the accuracy of the results obtained when using the techniques described in this
paper.

11

runction is sorted
(A int-Array;
Start,
Finish i integer) return boolean is

Answer tboolean s- true

procedure Chock One
(A a In lot Array ;
Index : in positive
Continue I out boolean
Amner s in out boolean) is

begin -- Check 0on
If A(iadex-1) &- A(Iadex) them

Coutiaue I- trme p
else

Coatinuo t- false
Answer s- false ,

end if I
end Check One

procedure CheckRange is now
ArrayTools.ArrayStepSelector

(Objectyype i> integer
ArrayRange -> positive
ArrayType -> Int Array
Pass Thru Type -> boolean ,
Process - Check-One)

begin -- Is-Sorted
CheckfRange (A, Start+1, 1, Finish, Answer)
return Answer ;
end Is Sorted

Figure 6 IsSorted Using An Iterator

Let X be the number of errors that exist in a software system. Two teams, Able and Baker,
independently evaluate the system. As a result of their independent evaluation Team Able found A errors
and Team Baker found B errors. Let C represent the count of the number of errors located by both teams.
C is included in A and B. Let p be the probability that Team Able locates any given error and q be the
probability that Team Baker locates any given error. p and q represent independent probabilities.

It is reasonable to expect that the number of errors located by Team Able, A, approximates pX, the
number of errors Team Able is expected to find. Similarly, B approximates qX, the number of errors
located by Team Baker, and C approximates pqX, the number of errors located by both teams. This leads
to the following estimate for X the number of errors in the system,

X AK-4K, A.B

PqK C

The total number of discovered errors is A + B - C. An estimate of the number of undiscovered errors
is

X-(A + B-C)
C

12

AB-AC-BC+C'
C

(A-C)(B-C)
C

Estimates for the values p and q are of interest, they produce measures of the quality of work
performed by each team. The measure of the quality of the work performed by Team Able is

2.p4K w_ C
qX a

The measure of the quality of work performed by Team Baker is

C

PX A

To illustrate uses of these estimates, consider the independent evaluation of a software system by two
teams, Able and Baker, that produces the values 30, 35, and 25 for A, B, and C, respectively. The
estimate for the total number of errors is 42. The number of errors discovered by the two teams is 30+35-
25 = 40. The estimate for the number of undiscovered errors is 2! Finally, the measures for the quality
of work performed by teams Able and Baker are 25/35 = 71% and 25/30 = 83%, respectively.

As a second example, suppose the independent evaluation of a software system by two teams produces
the values 30, 35, and 15 for A, B, and C, respectively. These values produce an estimate of 70 for the
total number of errors in the system. Since 30+35-15 = 50 errors were discovered, and the estimate for
the number of undiscovered errors is 20. The quality measures of the two teams evaluating the software
are 15/35 = 43% and 15/30 = 50%.

This technique is based on work by Polya, see [Po176], on the probabilities of the number of
undiscovered errors in a text after being proofread independently by two proofreaders. In that paper Polya
uses probabilities to determine an estimate of the number of undiscovered mistakes that exist in a
manuscript after the manuscript has been independently evaluated by two proofreaders. To what extent
can this approach be applied to software? At which points could this technique be applied during the
software system life cycle? There are two considerations that must be addressed for Polya's "proofreading
approach" to apply to the evaluation of software systems. One is the relationships that exist between
problem domain of the software system and the domain of use of the system by the groups beta testing
the system. The second issue is addressing whether the requirements of the mathematical foundation are
met in the testing process. These issues are addressed in the next two sections.

13

4.1 Domains

Applying probabilities to proofreading is relatively
easy when compared to applying the same approach to
estimating the number of errors that exist in a software
system. Specifically, in the case of proofreading the S
work domain of the two proofreaders is identical, the
same manuscript. With large complex software
systems the problem is complicated by a collection of
domains. The software system functions over the
domain of the problem space for which it was
intended. Beta testers might only test a subdomain of
the software's problem domain, that part of the
problem domain that is of interest to them. For
example, assume the software system was a Figure 7 Incompatible Bela Testing
spreadsheet system. Most users to not use all of the Domains
features of a spreadsheet, they concentrate on those
features that are useful to them in their problem
domain, which is a subdomain of the spreadsheet's capability. Two different beta testers may be testing
overlapping, but generally unrelated subdomains of the software system's domain, see Figure 7.

Assume two beta testers are testing a software system and there tests are represented by Figure 7. If
the software system developer has confidence in the work performed by the beta tester, then the estimates
p and q helps measure the relationships between the subdomains of the beta testers. If p = q = 0, then
the subdomains of the beta testers do not overlap. If p < q = 1, then the subdomain of beta tester Able
is contained within the subdomain of beta tester Baker. The closer p and q are to one, The closer the
subdomains of the two beta testers. Figure 8 illustrates an example where two beta testers are testing very
similar domains.

The values p and q must be used carefully. On
one hand, if a software developer expects a beta tester
to perform a good job, the values p and q could
provide a measure of the relationships of domains
between beta testers. eta

On the other hand, if a software developer is se
confident that two beta testers are testing similar, or
identical, subdomains, as illustrated in Figure 8, the
values p and q may be good measures of the quality
of work performed by the two beta testers. In this
case, Figure 8 Similar Beta Testing

Domains
(A - Q(B -Q

C

14

is an estimate of the number of errors that remain undetected in n the beta tested subdomain of the
system.

4.2 Independence
First of all, the results are estimates and must be carefully analyzed before the results may be

interpreted. Whether the statistical foundation of these calculations is sound depend heavily on the
evaluations of the software system being determined by the two teams working in a truly independent
fashion. The statistical computations are based upon the probabilities of independent events. One might
question whether the ability of the team to determine one error is independent of their ability to locate any
other error. Assume that error i may be located with probability p,. Then p is

EP,

where n(X) is the number of errors.

Intuitively, the more errors found in a system, the lower the confidence we should have in the software
system. On the other hand, each time an error is located and corrected, without introducing a new error,
the software system is closer to being correct. The obvious question is: Just how close?

The approach advocated in this paper suggests a methodology for obtaining an estimate on the number
of errors that remain in the system and evaluations for the quality of testing being performed. Since the
approach produces statistical estimates, there are a variety of factor that can adversely effect the estimates.
Two factors that can effect the results and a way of producing multiple estimates are described below.

The results described above depend upon the probability of occurrence of independent events. There
are two ways in which independence, or the lack there of, may effect the estimates produced. First, it is
important that the two individuals, or groups, performing the testing do it in an independent fashion. If
there is any direct, or indirect, communications between the two testing groups, the estimates are invalid.
The second assumption, over which we have no control, is that the probability of a particular testing
group of fimding any given error is independent of locating any other error. One could argue that once
a certain type of error is recognized in a software system, a tester might devise a process of locating
similar errors, hence invalidating the independent probability of locating errors.

4.3 Beta Testing Equivalent Domains

It should be noted that the validity of the estimate of the number of undiscovered errors is valid only
when the beta tester test the exact same subdomains of the problem. At first that may appear to be an
impossibility. However, if assertion testing is placed into each program where the results of the assertion
tests are reported to a file, the file may be analyzed relative to the beta test results provided by a tester.
Now the errors indicated by the assertion tests may be measured relative to the errors reported by the beta
tester. the assertion tests are performed on the identical domain as the domain of the beta tester, hence
the estimates of the undiscovered errors within that subdomain could be fairly accurate.

15

4.4 Multiple Estimates

When more than two beta testers is are used a
collection of estimates may be formed. Assume the
beta testers are testing in the same subdomain of the
problem domain and there are X errors in that

subdomain. Assume the three beta testers, y, 8, and e
locate errors in a software system with probabilities p,
q, and r, respectively. If A is the number of errors

located by y, B is the number of errors located by 8, Figure 9 Identical Subdomaina
and C the number of errors located by e. Let D be
the number of errors located by both y and 8, E be

the number of errors located by both 8 and e, F be the number of error located by both Y and e, and
G be the number of errors located by all three. then

A -pX, B - qX, C - rX, D -pqX, E - qrX, F -prX, and G -pqrX.

There are five estimates that can be made for X,

A B C G A*B B-C A-C D-EF
__D..F 7 - -F,and G 2

DDEF'Sii'arE'tmFteGma

and three estimates each for p, q, and r. The estimates for p are 3, E' and -". Similar estimates may
B E C

be obtained for q and r.

With three or more beta testers one may use the results to produce multiple estimates. These results
may be further analyzed for consistency between the beta testers. Our experience indicates that with
multiple beta testers, one can first use the results of the initial error analysis to eliminate results that are
inconsistent to remove certain results from further consideration, then apply the approach described above
to the remaining results.

5 Finite State Automata

It is desirable to introduce finite state automata early in the computing curriculum. Not only is it an
important theoretical topic, but it is a fundamental design topic. In design, it is used to provide broad high
level design characteristics of systems. It also plays an important role in object oriented design, where
state transitions describe the state and change in states of objects in various object classes.

We introduced finite state automatons (FSAs) as a theoretical topic and made extensive use of CASE
tools as a means of drawing state transition diagrams. We found three excellent CASE tools that freshman
found easy to use. They are Open Select, Rationale ROSE, and Weilan's LeCASE. Along with the CASE

16

tools we also discussed methods of implementing FSAs in programming languages. We concentrated on
two schema for implementing FSAs, one using a state transition table and the second as a function.

Besides the two methods mentioned above, we also used a simulator, described in Section 6, to
simulate FSAs. One laboratory assignment and one software development assignment were given to the
class. The laboratory assignment used the simulator to build a machine that recognized regular
expressions. For the laboratory assignment, the student were given a relatively simple task, like build a
simulator that recognized all strings of zeros and one where the number of zeros was divisible by five.

The software development assignment requires the use of the FSA simulator, building a graphic
representation using one of the CASE tools, and implementing the FSA in Ada and testing the
implementation.

The FSA simulator is actually a special case of the Turing Machine Simulator described in the next
section.

6 Turing Machine Simulator
We introduced turing machines in the CS 2 course, the second semester freshman computing course.

"Turing machines were introduced as part of a software development example. The introduction was done
with an object oriented flavor by first discussing the component classes that make up a turing machine
simulator: Tape class, Finite State Class, Transition controlled. The transition controller obtained
information from the other objects, tape objects and finite state object, determined the next transition, then
sent a message to each object informing it of its change in state (status).

6.1 Overview
Besides the description of a turing machine and its operations, the problem discussed the issues of user

interfaces were discussed. The program presents a turing machine simulation by illustrating the movement
of the tape across the screen and indicating the state transitions as they occur. The simulator had user
definable controls. A user has the following options:

a. Single stepping through a simulation.
b. Speeding up the single step option with an ability to perform a fixed number of steps before

halting the simulation.
c. Going to continuous simulation mode. Once in this mode, the simulator may not be halted.

The simulator also includes a step counter. The user may define a step limit. The limit is used to
automatically terminate the simulator when the limit is exceeded.

The simulator terminates when either when the step counter exceeds the limit, or when no transition
exists for the given state/symbol pair.

17

6.2 Construction

The simulator is put together as a collection of interrelated packages. The system is composed of
three packages and a driving procedure,

a. The tn tape package
b. The tinmstate package
c. The tmnmachine package
d. T"he tm procedure

The machine is entirely encapsulate in the tinmmachine package. As such, the turing machine
simulator may be used with other programs that may require the use of a turing machine to perform part
of its task.

The tm procedure obtains the name of the file that contains the machine being simulated, calls the
machine simulator, and passes to it the name of the file and the simulation parameters.

The tmtape and tm-state package completely encapsulate tapes and states in an object oriented
fashion. That is, states and tapes are entirely encapsulated within each package, including the information
each tape and state must know to display themselves.

The tin package instantiates the tin-machine with the type of machine desires, a finite state automaton,
or a one, two, or three tape turing machine. In turn, Tle tin machine instantiates the tinstate package
and the tinmtape package. In the case of finite state automatons, we made a special version of tm machine
that restricts the tin tape to a one-way read-only tape. and simplifies the user description of finite state
automata.

6.3 Use

Users define turing machines by completing turing tables. The tables are placed in an ASCII file,
which is prepared before running the simulator. To assist users in defining turing machines, the simulator
accepted ASCII files with one state transition per record. There are four record formats:

a. Comment records begin with a --"
b. The first record in a sequence of records associated with a state simply contains the state name,

old-state

c. The transitions for a specific state follow the record with the state name, one per record, with the
format,

current symbol next state new symbol head movement

d. A blank record terminates the transitions for a state.

18

The old-state and next-state were strings of up to A- two tape turing macthne

eight characters in length. The current symbol That duplicates the string of
-eros and ones bracketed by

and newsymbol were any printable ASCII - dollar symbols on to the 2nd tape
character, except '*' which has a special meaning. Start copies the first $
The head movements are '<', '-', or '>', which $ - mr $ > $ >
indicate that the read write head moved left,
remains stationary, or moves right, respectively. -- This state copies the rest of the
The symbol '*' is a "DON'T CARE" indicator. -- symbols to the second $

0 mr0 > 0 >
That is, when it appears in the place of the :mr I >1>
current state or current symbol it means the value $ - HALT $ - $ -

of this object may be anything. In the next state

or newsymbol position it means keep the current Figure 10 Turing Table Example
value. Since the state transition table is read from
top to bottom, DON'T CARE indicators should
appear after other state transitions that would
override them.

The system also allows users to place comments in the state transition tables. Comments may be
placed in line, after a state transition, or are indicated by beginning a line with ".

7 Generalized Towers of Hanoi

The classical Towers of Hanoi Problem, see A B
Figure 11, is a game involving n disks and three
spindles. The diameter of each disk is unique.
The object of the game is to move the stack of n
disks from the spindle containing the disks to a
specified target spindle. The disks must be moved
one at a time by removing any disk from the top i
of a stack on one spindle to another spindle. A Figure 11 Towers of Hanoi
disk may be placed on another spindle only if the
spindle is empty or if the disks on the spindle are
larger than the disk being moved. This problem
is employed as an example in a number of mathematics and computing courses to demonstrate recursion
or algorithm measurement. A fairly complete and traditional presentation on the Towers of Hanoi appears
in [Knu??].

The Towers of Hanoi problem is frequently used in computing courses as a problem whose solution
involves a non-trivial use of recursion. For n > 1 the algorithm for moving n disks is described as a
recursive three step process, as illustrated in Figure 12:

Step 1: Recursively apply this algorithm to move n-i disks from spindle A to spindle B using spindle C
to assist in the process.

Step 2: Move the one disk on spindle A to spindle C
Step 3: Recursively apply this algorithm to move the n-1 disks from spindle B to spindle C using spindle

A to assist in the process.

19

Implementations of this algorithm in recursive A B
programming language appear in a number of
programming language and CS 1 texts, including
[], [, [1. Figure 13 contains a version of the
solution written as a procedure in Ada. This
procedure uses a screen display package that
visually displays the disk movements as they are
made.

procedure towers or hanoi
from spindle, A B C

help-spindle,
tospindle : in

Figure 13 Sample Towers of Hanoi
Program _........_ _

A B C

Let H(n) be the minimum number of moves
required to solve the Towers of Hanoi problem
with n disks. Using induction it can be shown
that H(n) = 2'-1.

Figure 12 Recursive Solution
There are two obvious variations of the to the Towers of Hanoi

Towers of Hanoi problem, suggested in [Knu??].
One variation is that the disks are not all different,
several disks may be identical. A second variation
is to solve the problem with more than three spindles. A four spindle version of the Towers of Hanoi
problem is used by several of our computing faculty as a software development assignment to test
students' knowledge of recursion. We refer to the four spindle version of the Towers of Hanoi problem
as the Towers of Saigon.

7.1 The Towers of Saigon

I A B c D
Independently, two faculty had used the

Towers of Saigon as a programming assignment.
In both cases, students were required not just to
construct a correct program but to evaluate their
programs. The programs written by students Figure 14 Towers of Saigon
produced a large variety of timing results. Several
faculty analyzed these results. This led to an
analysis of the various solution strategies
implemented by the students.

20

Students employed Two basic solution
strategies. These strategies evolved from specific ,l | |
suggestions made by the two faculty. We refer to
these two sotution strategies as the n-2 strategy
and the split strategy. One faculty member's FIgure 15 The Towers of Saigon
suggestions led to the n-2 strategy, the other n-2 Solution Strategy
faculty member's suggestions led to the split
strategy. Figure 15 illustrates the n-2 recursive
strategy. In the n-2 strategy a tower of n disks, n
> 2, is moved in five steps:

Step 1: Recursively use this five step algorithm to move n-2 disks to spindle B.
Step 2: Move one disk from spindle A to spindle C.
Step 3: Move the last disk from spindle A to spindle D.
Step 4: Move the disk on spindle C to spindle D.
Step 5: Recursively apply this five step algorithm to move the n-2 disks on spindle B to spindle D.

When n = 1, the single disk may be move to the appropriate spindle. When n - 2, the two disks may
be moved to the appropriate spindle in three moves.

The second strategy, the split strategy, makeA C D
specific use of the Towers of Hanoi (3 spindle)
algorithm. With split strategy a number k,
dependent on n, is selected. This strategy
employs a three step process: Figure 16 The Towers of Saigon

Step 1': Recursively apply the split algorithm to Spilt Solution Strategy
move n-k disks from spindle A to spindle C.

Step 2': Apply the Towers of Hanoi solution to
move the k disks from spindle A to spindle D using spindle B. Note that spindle C cannot be used
because the disks on spindle C are smaller than the disks being moved during this step.

Step 3': Recursively apply the split algorithm to move the n-k disks from spindle C to spindle D.

Most students applied the split strategy by choosing k = pn for some p, 0 < = p < 1. Typical values
selected for p were 1/2, 1/3, and 1/4. Regardless of the choice made for p, for large values of n the split
strategy clearly out performed the n-2 strategy.

Several faculty began experimenting with the split strategy using various functions, k=ffn), for

selecting k. Independently, two faculty found the choice of k = /A to be substantially better than other
functions that were attempted. This lead to an interest in determining the best possible split strategy
solution, or possibly, the best solution for all possible strategies.

Observe that the Split Strategy encapsulates all possible strategies. For example, the n-2 strategy is
an example of the Split Strategy with k = 2. Regardless of the strategy that one might adopt to solve the
Towers of Saigon, that strategy must included the building of a tower of size k on an intermediate spindle
while the remaining disks are moved to the target spindle using the remaining three spindles.

21

7.2 A Minimum Move Strategy for the Towers of
Saigon

Let H(n) be the minimum number of moves required to solve the Towers of Hanoi problem with n
disks. Let S(n) be the minimum number of moves required to solve the Towers of Saigon problem with
n disks. The solution for moving n disks in the Towers of Saigon may be viewed as finding the optimum
split location, k, so that n-k disks are moved using a four spindle algorithm to one of the two assisting
spindles, then moving the lower k disks using a three spindle (Towers of Hanoi, H(k)) algorithm to the
final spindle, and then moving the n-k disks to the final spindle using a four spindle algorithm. It is well
known that the minimum number of moved for the three spindle Towers of Hanoi problem with k disks
is 2k-1. Clearly,

S(n) = o, for n = o,
= 1, for n = 1,
= 2 S(n-k) + H(k), for some k, 0 < k < n, otherwise.

We wish to determine a formula for k in terms of n that will determine s(n), call it g(n), i.e., our best
choice is k = g(n). Let AS(n) = S(n) - S(n-1). We wish to minimize AS(n). Observe that

AS(n) = 2 S(n-g(n)) + 28() - 1 - (2 S(n-1-g(n-1)) + 21'(') - 1).

That is,

AS(n) = 2 [S (n-g(n)) - S (n - 1 - g(n - 1))] + 23(n)- 28(-).

If g(n) = g(n-1) then

AS(n) = 2 [S (n-g(n)) - S (n - 1 - g(n))].

If g(n) = g(n-1) + 1 then

AS(n) = 2 (S (n-[g(n-1)+1l)- S (n - 1 - g(n -1))) + 2s-')+' - 28('1) = 28(01).

It is clear that to minimize AS(n), we wish to keep g(n) = g(n-1) until

2[S(n-g(n)) - S(n-l-g(n-1))] > 29(").

Hence g(1) = g(2)=1, g(3) = g(4) = g(5) = g(1) + 1, g(6) = g(7) = g(8) = g(9) = g(5) + 1, and so forth.
That is, g(n) remains fixed one time more in each subsequent subsequence of values of g(n). That is, g(n-
1) is the greatest integer such that

-~-I)

9-4

22

Thus g(n-1) satisfies a(ii-l)(u-l)*), and by the quadratic formula,
2

2

The sequence AS(n), s = 1, 2, 3, ... , is the sequence

(On}=1,2. 2, 4.4, 4,8, 8 8.8... 2'- 1 ... 21-1

and I

an=2 2

7.3 Observation

According to a tale, a group of monks made a deal with God. He would solve a 64 disk version of
the Towers of Hanoi at the rate of one move a second before He would destroy the world. At that rate
the world would be destroyed in 584,542,046,091 years. If the monks would have made the same deal
with God using 64 disks and 4 spindles, the world would have come to an end in 19.3 days! What a
difference a spindle makes.

7.4 Acknowledgements
I would like to acknowledge roles played by Professors Paul Jackowitz, Robert McCloskey (both of

the Computing Sciences Department) and Prof. Steve Dougherty (of the Math. Dept.) for their continued
interest and work on Split Strategy for the Towers of Saigon problem.

8 Software
All the software that was developed through this grant has been placed in the PAL (Public Ada

Labrary). Portions of the software have also been processed with static logical analyzers and modified to
conform with these analyzers. For completeness, the listing of the packages and systems developed
through this grant are included below.

23

8.1 ASSERT
package Assert ia Maim I aatbyeZ m

procedure Precondition (Cooditiom 8hoeloam j -&-bbUh
Pofix 3 Steg Diapla"lo ias txto._ilety I
tsiLbssacge 2 Strie g
vlaeommoage t atnial) I -- geag1ia

----- ------------------------.. . t--------- : ot:I ing j
--]Pr-.d 2 Name- prcaaedure ceseet.ioemtat (Conditiao boloaem I
-- Poet-emi a if condition thea display .Tue Meage -- Prefix string

-- olse lclDsr.Aaoese a- Tr..-mmaaace I t=iq
n- uaia = by curreat operating -- Pla0Message : etci

mad

- -- - - - - -- Adeprtio•s tat (Condition I h--leam

type 80 Na :p s tuing ;
Procadure Poetao• diti1a (conditian I hoeneas I of Itn

Prefix s utring trNSesacge I String
tr e_ ge 2 tage 2 string ia

---------------------- - - begin - Aserton (Toot

-- et-@gcad if Condition them display Trusemaeaage in M ai- s them
-- olse. ip Val" Message I- tt OPtLCe aim as')3

-- ~ UI" =meeIhi by auireat opemating if Cemdtirdrhe
-- c -- text 0o.Pt Lime (Coditiam tru)

---- --- --- --- --- --- --- ---- --- --- --- --- --- --- if poo!ageagaj - Alpha thee
-- txt-0.1 �LiO e ('hL) 3

procedure IZaericat (condition # boohol.. r ttlo. pat_Lle
Prefix g String a (DiSpJe7 VFile, typec•_ege s G a " " Profix 4
tr.s!mmaecg 1 string 3*&True eecel'ale jleeoae a String) 3 e••mnd if)

"-"-------•---------------- --- Tex Li
-- Pot-agd i t Conditiom the display Trmosse Vile, t

e lse. ic VelseoeMosgeg ; noMsv a 'ale 6 ssagex G

-- Imle ted by reat oetia g:roam, e(d 11oi
-- -d e--.nd iAss1= : t-Te--- e-e--iemt--t-

Procedure ASO&CeRim (CamditiOm a beeleom P
Pref ix I string a -poadr rooamditio. is saw Aeaertiem-teet (P*)
tnmessaoge I string
FalseMessrage I string F,_o prIetoamtima is me, inertlm :oot (Post')

-- ev-ad a Name is t aw Asoertitet (*Z N)I
-- Poit-mod a if Cditian thea dipIlay tmd " , oCedur AmertIam oirmw Amrisam teate_ ASst*)u

-- mey display@ 1 Value Mesag I ~ i el ~AssLert.io Lonw!srinWs *mt)

.- o lieitee by Vaot otedI e ating
_e by rnetoof•recetirg preogndition (Conditinm S beolesm I
--- Preofix : S trin I

tromelbeampe a string ;
Procedure nete-mode Felmeeflsaege a String) Ia

SP•o-€ i Name begin -- Prcos•ditiem
-- Pot-oaId : Place Package ia AlPhc-od t Assertin- Test

conaset i m atsNodo if the e ia turned ise*, (conditiem, 'zm%, Prefix, trem.eceage, Valseeeog) a

o- emly the Plae _oe e ic printed bame the an Precod nditio
mitia eig tooted by aen aserti

procedure fails.. proeduretamr(rict Conditiom : bholeam a
------- Prefix I string

ftz Massa"g t String
.ro.edlpha . .de I Vcla.. .maa..... S string is

-:"r "-m ;' a N-ame begin -- Invaria• t
-- POt-ocid hoPace p&CA1=g io Alphcl•Ode heaertiemto
... Cammt I In Alpha Made it the package ia turned *. , (Cdtc, PY', Prefix, Truemyeoeage, Plo*eeee)

-- Oither tFe TVriN8beGe6 Of the Flclaojeeocg0 end Iazanit
is priated as each assertion test podoedro

-- is called. Procedur Poetogmditiom (conditiam I bOOleca
Prfe mosv I string I

Prooedureo Off i Vcleejbcocge : sing) ia

-- Pr-m~d Namebeg"c -- Pooatemdtiam
- Pit-oa a Displaying of kaeertioaeo Asae tenartiom test

(Cemditlam, PIP *, Prefix, true• M•eoe, Valse_eosmaq) a
end Pmtoomdition I

procedure an
.A-- -- •sern conditiom t hsleca

-- ro-oad2 NmePrefix 2stringa
-- Poet-ooed aDisplayimg of assertions cautionued depending true-mosavce : Striap

upon curreat package =ade ale •e•k go I ,tring Iise

b" --
procedure close I Aaoertlem toot

(comditldm, -a5 * Pref ix, true Nesaage, Palso-naeecge) I
end Aseert end Assertion

Procedure meAftw Nod
with toat-1O bon- oeMd
package bady Assert Is eackageUm Nod Se Nts

type Ncin-switch Type is (aon, off) ----------------------------
type Pegkagejasditype ia (Alpha, Nate) i

24

3gmoogw &Uh&_mmfa Le

bgin -- &LOAMm-bpaska1-mmd I- &Li--
o" his"-Mo"

zooode off La

I -- oft
I- *it

a"n off I

ktomi'.g as La

S"ani I~o

kmooog. CIO". La

beng" -- Clom.
laimt30.cla. (DL&paVU llo)
*adi CIO" I

bmm-- Aaa~zt
lezt0I.o.am (DLaplay IPLLa, Txt-_O.a._utMe, *DZPLAX.AhC*)
-- TotO.Opon (DLaplayVPLl*, TextjO.OutMfjA., *CM:*
eAd La"met 1

25

8.2 Turing Simulator

8.2.1 The Procedure tm
-ead-i-e-- - --- - - - - - - - - - - - - - -

-- efltAi •. - - - -- t-atox si.1.t5 Vaster flila (<ar> to quit): a. 1);

a tox perates anSa see way ifinite tp.tio.set Line (File som, 15±3.s) I
place state transition table in a data file uI•ng thoe uile F liss 2 a Loop

-- following tw reord formsts begin
WM.Set laohin (IVleU(1. ".5 t5)) c

-- <State name> tiLo.lut (*<Or) to ooatlnue') ;

<ymbol 1..n .t-.tate. -< -ew..mbO1> -ead ms m 1.. tio.et Line (B.u, 38) 1

-. Tm.DfplayTable
- A <state nam- record is followed by transition reord-to.-it -- to oot=nCw') I

-- for each state transitios. the <"eadnae is a ', '-', or -- tieo.ost xin (3if, 35)
-- . 3 to iiaLoate that the bead is to noe left, stay in sio.cleer

-posaition. or move right reopsotively. hse set of state sassume ;
Stransitions is terminatsd wit Is a record containing a esio.l•u•tS(ritial tape 1 (I S to quit):

-- Thore Are two types of tilde record, either 10-200o Of tapes, 1);
tio.oet Liao (Tapa().litt, Tspe(I).Siso) 0

"-o hieLle TsP1().ssi 3- 0 "o
Cne- xt stats. <ew symbols) bead ato> f ±I ina 2.. _

the oed te of recoxdis a cathk all set of trowitionsn sio.VtS(lxitial tapa' G intag"'r igO (L) &

that is, a tilde re---d indicates the transitions fox this " ((>r) to quit), -,+2*i-•2-WUOf_.Taos, 1);

state for all other state symbol pairs not Listed tio.eet Lime (tape(i).Int, apo(i). sme)
if tal).aisea 0 then

-- oheazetsrs ap(.Zt() : ,-'
------------------b---- - esd -1 a

with Thuri-g.Nsachae..Sia p eda loop
with striag-sas er 1 81.o utt(Start stat.e: , 10, 1) a

with integer text-io, Text_-10, saorenIO1 tio.OettLine (Stat., G-Ssie) I
seS.Zspu (state 1 e~~)

prooedure Mt in State , 8.o.lioe I
sio.a"lJ('Nez. So. of stepe (0ca2> - 10000): , 12, 1);

package tia reasos Text 20 iio.dwt (max.5tsps) ; tio.SkipLine
package Lio wosems inteer.teoi t if mSZaSteps - 0 thea
package sio team•& screeanz o Sam S :I 10000 0

pack"&5 sN Is saw StrintLgOURScae p end If
sio.Clear

subtype Actuel TapeRange is positive range 1..3 NeedLine

type Seadlise Array is begin
array (atualTap*_Rasngs) of string (1..80) p State :a •.lSimlate (Taps, State,

t1re, true, 1.25, Mex-Stepe)

o_Of_ •apes s ArtualTape@_ng s- 3; meesge ('Machlne salted)

Reader I seadlineArray :- (
Oa TAV TO NR1 A&C 1NI" 1 m 5.lfl Sweet 0

u L A T m, essage (' ine salted *)

TWO T aFP URING MACINIS aIN a C X.Dsa&taIrza
VLATOR , 0snease ('State tramnition Table Zrz') p
. TIR E T A Pl TUR IN a AC IS I V Sh ea .Tape.•sOmmfle w 3•

M ULATOR I ""NSo"g
('3ua off right ad of tape -- poesible infinite loop') s

package TN in Rew turing~machino-gin ue .Tssiap*_ftcL*W -2
(NmO_0r Taps .1 No Of Tape e ('pan off left s•a of tqpe*) I

Machine AM -0- S qfiTape thea T.Tapearowr m

machima:Col -c- 25, message (Umexpected tape failure') I
BTr.3ow -" 5S+So_Of.tapes, eboa us.týie_.mEeedod "=

STCol -2- 40) "es"
('Smeded amas. teps -- poseible infiRite loop')

subtype Tape-Range s IsM.TapsRange sad ;

File mame 3 string (1..80) ; iso.Clear I

F Sizse a natural pastillies
_io.putS(' litial Tape I (<or) to quit):

state I:4.1!ateo am 81t.g I ", 100-25Of _Tapes, 1);

a Sias nat euml $ toinsetu.sLe (apm(1).Iact, apm(1).sise) I

stok T Tm.ayti aeword end
Ta~pe a IM.Tape -IFLt-Array I
Nan-stepa s natural I Ishen tothes ma.
suf a string (1..80) tiao.UMa Lie

35- I natural I tio.put..*........ File-ome (I.1 -size)
a - arrox - -4c to Coutinue')

pcroedur* message (Msg s string) is .4 tio.Oet Lia (Vil Iosm, P Sise) i

3uf : string (1..40) ; TM.End..-in ,
RS a natural I eio.Clear

Deadlines
begin -- Nessage sio.PutS ('Eter file nsa (<Oc> to quit): , 8, 1);

sio•.lotS(0M, 20, 1) 1 tio.oet.Line (rile iam, V Sine) I

sis 4<l 2 ("as) to contiau', 21, 1) end lo ;
tLo.nGtLie (sof, 3.5) I
end message I and TM i

procedure Seadline in

begin -- seadlife
sio.puts (neader(UoOfiapes), 1, 1)
end seadLine e

begin -- TM
iso.Clea;

26

8.2.2 The package tm machine-sim

with turi•at•ape. W-State-tresitioel Ccatcl - - .------------. .- 0 3 T -------------------------
with Staingpeaama)

genes.. with Tout 20. ScreemIC

s Ya0-Tpe 3 positive 3- 1 waeek" be4 I ria~gak.Ncia...SA is
max state loseSin , poeitive t 12 1

macinemm a at..)a- ppeaks". @55 is swStrinuaq_& ermliltlil:•a *-- I; • lml 4* e)lIMacineCol natural *" 15 p (MuShtrn• Se e - ax statm. U sine) p
IS llIw antural 3- 21 1

Sy~el s natural :- 40 pakaeti.. renme vext-20 I
pickage i. reamsS4-een.

packael uring-mackine..Sin isOLresn
cen2

aitisLsed * boo-ees I- false
packa" wTe e is - uingy e Simula& g s boolees s- false

(no Of -Tape" -M, meoffspes2 Oas Sare,.a heel.. an false""law Hoofkinenow - 5Ue.oOfapses, salted t boulean I- false 1
Uead colum -MachinteCoe1÷2)

procedure Mom (Now a natural) is
package Uin s is now vitstatranaitio~kcmtcont

MeOfteee i o-of-tepe) begin -- amc
si-.putS (*+', aew, machin. Cel) I

subtype State Nan. string is fuSt. StateHemGL~ StIn foe i is I *..aK State goes Slow loop
Sio.VutC (-, W, Pmec~ineC.14+i) I

subtype Aotion_ saccd is mtHS.Actien.Secari nd lo Ic; * ,Sw, ahieelZteSaeSmSie p
subtype Tape Mange is TKIST.Tape-aang P *io.Mt on *I ,sw
subty"p symel-Array is flLST.5ymel-.Arey I end S a

type Tape_ nit Sec is
reoerd precedre DisplayState (state I State.•lmString

mine 2 natural 2a O step-Ma# natural) is
hnt. string (1 . 2SS)

end Vecard p beg"n -_ Diallay state
type Taps _nit_&Amway is aCray (Tape-"A") of Tape-ltitsec ", io.ptS(1)

am Incmsw
Tape Range screr I exception p -- si.. (

T
c 2 " 1, W)p

irie-Emoiseae 2 exception, mie ueC !S S.tat. scie Machine Cal)I
-- ie.PtS(. 3 , 1, 1);

state-Stror I exception rename Is.ST. Statoesticr I 505 (Machine 3w12)
DataL •Sri a exception renson fg St.Dat*Sclir. I -- .1c.iuts(mtim .

8ie.PtSm ("Step no. % Stop-g smachin•e ,W-., 1)
Tape oerflow a 0ecep0tio renams) oLa e.tapre setflow I e DispLay-state
tapunderflowa enception rename UTKtape .Tapeoderflcw

-*ap~e~ , aexep..tionreamebeeneatape Error p PCo. Display(Atioa (Action : Action accord) is

precedure out Machine (File Uses string) beoon -- Display hation
renames si-sr.eet-machini a - si.VutS (State Transition* St.3WM.

St eel)p
procedure Display Table sie.puts (*Next *tate& ' A H83FeuetStete, St-SO~i,

renme* TST.D• iplay_.le÷, Stel) 1
for i in tapes-San. loop

function simulate sie.Paut (Tape- a integer' image (i) a *a
(Inpet s tape-Init AVry & Actiom.Aation~i).New..Sym aS
start . .tt._.amt; ng SL Achtion.hotion Ci).Saud Nove,
on ooreen a boclean s, ofaLse p $IkRcwIii Sit-Cel)
Sinigle Step abeelsat I- false Iend loop I
Pau"e Duration 2- 1.50 ; end Displey-Actica
MaxN Stope natural 1- 1000) return Stateamstring

------ begin -- SiameAction
-- Precond t et Macblu has been called to initialine a sie.uttS C .T-Now. STnC-l)p

machine eie.puts (I , Tý_w1,lSTCel)p
-- PoetCoed: returns the terminiting state of the machine fur i in Tape PRage loep

-- "x-ep-icas si•t C' ,Stln._li~stel

- TapejandI K low - end loop
-Tape0er " - end raeematin I

• dfin simlat ae••_s-

start Ia g
On amcree . bolelsena fas

function TapeSize (Tape 2 TapeMange) return natural 8inglestep I hoeleen :- false
rename fIKTape.vape-sin p Palmle I Duration 1- 1.50

functin Tow-leas (am : Tw-Man mrstope t natural 8- 1000) return state-Rme-tring is

Left a natural 3- 1 p Curient state I State Urn String I-start p
night: natural)return String ==L.nucu hoeleen s- not 5 ngle step I

rename UTIape.Tape._PisOe Useeister t natural $- 0 1
NaoxLueeStopea natural s- I I

function needtPosition (Tape a tpeflange) return natural stop-go I natural t- 0,;
rename IN trape .sead-Pceiticn ;Current Syekelt Symbel Array ;

Action I Action Soooid I
function Transition (state 3 state Boomstsingp

Symbel : Syebl Array) return Aationk~Acood Suffer I etring (1. .80) 1
rename MLST. Transition I BSSise a natural I

function Valid stateasme (State aState UNOMatring) return precedure eot..ape-symoLe is

rename IKMST.Valid~otate-amme beg"n -- Oat Tapessymbols
tot I. in tape. Sang leop

procedure End SiM IN tape.Seed Read (L, Curient-Symbel(i)) I
rename IN ST.Zn4_SiN 3a im)cp

end TuringMackine-Min

27

prcedure p•ate-Tape (Tape I te Piliang.) Is

boomn -- updats love
if satias.MtIas(Taee).-MV@P.M th-

_s .UitLemeed (taps. Circent_Sysbol (Taps)) l
ele

UITags .Uxit.mEaad (tas", Aaticwa.atiom(Tase) .3ikSm) I
end-i Ip
Cas hatiamhaetim(itas) .M"_d"v Is
when 1>1 `0tap MRlN-ows.ee&.3fiht(fave)p
%"&s "' -31 IR-etag m.UaedgoLst(taeg)
use& Others c. Maul I
ad ease p
Salted a. false p

fez n taage e(rle Ilp (i).Ilat (1..1 pwt(J).Siin))I

endA lo
if comSceen thae n

- sio.cleax I
-- io.puts ('DsIplay en, 1,1) p

-- &aO./1t5 (Oft" avabohl 1, 1) p
DiapltState (Cmnzoat.State. Stevpo) j

end if Istiuxop a

f- vwoAS ("Megi Loop 0. , 1) p
Get Tags sa hol s
- eoLat..s ("Jtansitioa " 1, 1) p

Action a Transeitiom (Curzent_State, CurtenatiSmbl) p
-- viaplay Table
if onlaoo thlen

-- Sio.iuts (*Display sotimal, 1. 1) ;
DiaplaY aties (Lotion) p
if cestl-numa then

dolay nesse.
else

User •tep S- Usez Step + I p
If UrO Step > -ax UeozStemp than
Door stop 1- 0 ;
sia.ivts(*C(cftt) Q(Uit) w 1, 233 1)1
tio.Got Lime (buffer, 3)1..) p
it ale si~ 3- then

Ease urtfer (1) is
'den '' C: en Ceatsuow .. tzue I
wArn 'q' I exit gi1Lapop I
when '0' .. ' 2' .n

natuzel'value (Saffez(1.. Sims~)) p
when others -a-

nulln
end ease I

end if p
end if

end if I
-- Lo..PutS (Ilzas aoticar, 1, 1)
c~ase Lou*.• I

end if ;
for L in Tape Man"g loop
-- elo-atS (Topiet. tape*, 1, 1) F
Upiatotaps (L)p
end loop p
CuzzentSate se aL*i.Ueztstate
stop-go 3-a. p-P + 1I
if OnGoem laze.
-- s6o.Put* ('Dispisy stop and auzoant state', 1, 1)
Disav!*&YState (Cuzzent tate, stop-go)

if Stop 90 > Vax Steps then
raise iimxoeed*d

end if ;
end loop siULoop
return Curcent Stats

whne S~tate5 accro
salted I- tzaw I
return Current Statep

end simulate ;

end ftcbiagaahimos.iu p

28

8.2.3 tm StateTransition Control Package

With SUI sote type Sta-tm3eod in

gaetcstate aSte 6 8 t= n i
Ulo.Oftepee a positive a -- a- 1 I T Liat C tL.Lst..tyle 1

(nu~~~~~~~s•4-Lsi• ~~~~~~ --- -- -----i--- -----..........................
packtateOa s swie atzsiaftiwau 2a n ~zu

peokele~~Prceur Laae.teeiiento i

0 (Vobok~tzin Lag i es S-1huTate $r SinS Stt aacr

"sbyp t*AtErNstzu is et Ima State Manss $e) Tuarget t in out state smeord)I
subtype Tre-e.ange is pmit.!w Range 1.._Oftepee a
type sykol-Arzay is &zmry (tpePne ? ahate. I p ee law And aseet
type Tepehnatiou is (Soo ' I Li ovt State=3oz

record Target I is out .U_ p
New 8ym s ohezenter a '

Sa oSa nhCazatez 9'* procedure Sep (Somezo t in out state-Aenord)Iend gemd:€ p

type APticerzay is e-way (Ta•p-Rane) of TapeoA.tioa I LatiLR '-" (Left, Right I StAt4eeoozd) Ve.trn booleen

type Ati.._skeod is package s, ie now Litjpt•_•pt
record (sItste0end, cop. no.An-swoet. Sep. ")

Nent taete State NýStztin I)- (Othes ""-
action. . a.tio. -&ray p Initialised $ bn.lean s- felse I

aw rerord p asozee I boolen I- faloe I
Current State : state~man kString

state-actoz a exception p
-ta--srr a _exfeption S ttate List I SoL.Li.ttý•y)

procedure et-Kohie (ile string) ----- - ---------
----------- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -- --------- ------------- odiee of support procedures required to instantiate

-Preoonad a vileuwas is the Kam of a filo that conetains a -- UtetlgtLpt with 6tate-10oocdo
orrect desoiptioa of Turing chine - - ----------------

Soetoond. The penkage initalizd t the W. tat.
-- t�e a trensition tabletsezbe. a (I& state d

RecUneptions a te3r~ow if f file format error Terget a is out stateavnood) is

--- -- -InC- -
proaedure Diepleyteable PTrezt.State I- surnoe Statep

------------ ------------- ----------- T-tL.Coff (sourceT.tiiet, terget.! Lint) I
IT kee asetýKanhine was na~led and temnte"n Copy

-- :n�uccessfully
. ..Poeto.ad: Displays the state tranaition table pc "-" No(e t, et- --------- ---------------------------- (3nom0 . in o t Sat_Nenard

procdureAUVIy~ftTarget a in out State Senord) is

procedure DinPlay-pff I Terget.stete . Souree Sttat I
T L.Mowe And Resnt (Sourcne tiit. Te)gett List) a

function Transition (state t State neown String; end Aw"eAndMet
symbol t symol.ARray) return Actin•e Seord ;

---------------- ------------- procedure Sep ($auo*re in out StatA~eord) in
-- proened 3 GetNenhime wee called end terminated

su essefully begin - SaP
-- Potonada returns the trenoitina for the (State, SyMbol) T._L.Sep (Sname.?jint) I

- o Pair en aSr -I
swpuoeptiona state-arror if no state trensition described

----------- -------- --- fucti• (Lo ft, Right a StateRenod) return booleen in

functiona Valid State Urne (state i State Urn _String) begin
return boole nI return false I -- mot ugod

proened t Got~naahise wee called and terinasted
-cLeddf s ll proy cedur~e Get (nh"ine (Iil a.e Sestring) in
--loeatad rotorn" true 1ff state in a Valid state now

----- ------------------------------- -n -ile-- tio.Vrile-typs,
: 0 etring(.

procedure 2nd_Sin a-Seine =a Iaue
------------------------------------- StateSen : State Reod
-proeend : a tzminfto rasteeltica3.noard I

-Poetoonda totuems the Peakes" to its initial candition token-arf a taken nnordp

---on------e --t-t---i--------d-end US State tnwsitina Control
and IL~at-aTcaaitc&_CatrI ibegin -- set Tzaneitianlkeaoord

-SO------------------ a00T ------------------------- for 1 in Tape Ram leap
with Liott.Wtp, LintjLptLpt aTrema..3P~L DIM :-tokenjuaf Pienec1)p
With TertlO., SoreenJO I tio~pat (*& tx~ReaecSymb5ol (i))

if i /- Tape Rengeieost then
package body USStatetVreneiti C~ntzoI in Taoimna_ t- GSi.Saan

end if I
package tio renses Tatent IO " end lopI
package @is zoen=* aoreeno s TranseAC.Nent State 8-a. ma.Sna.vinne

tio.97at (* *-Stee3. mn Sae
type traneitIon.Senord In fog I& in tepejng leap

record Takenjauf s- S 8.5can j
symbol o sywhol~krrey I if tuimen-saf Blue - I then
Pert Sttate state wms, tring I Transa~en.satlminn(1) OUwyu t- Taen~ D.Pieoe(1)
Lotion s Aa tiniLAcvy i tioPait S teo..cin~)Swy

end record pelse
tin Put (token Sof.PLnce); ti@.sow _Line I

peckage ti.L in -w LstPtLet (Transition-Manord) ras end ifre
tokens-uf aS-S.Sane

29

it Taken 0f0.8in - I than eAd lop I
came. Token N.E .Piece(1) in Text Z0. Put G Actieftlafo.neat State
%kee -,'a '. e for I in Tape Range long

nvas.t 0. put (* & Actioni i

t-o.'at (-" _*.a•J A(t).m •l not i lo"")op+in I
rbnohr 3 ai". flatalSrzc Tet1. LineIead am"e I contLam t. txm@ ,

else ad Tgam-itimatieom I
tio.put (Tokes_-Sg .pieee) tio."ew Line
aine Data br, I proceure Statesationm (State .mfo t in state R-ord,

Gad if FNot go"d & im Out not Deed Neoee I
end Ilop Cotimue a out -o.I... T in
it t_l.s Zmpty (state ec .Tj_4.t) thea

ti. Zmeirtizt (TraTnne., State oe .TLit) b bogim -- State Aatia-
else Tet Zo.Plt (Statoeafo. State)I text io.3•. miao p

tl .Aped (Stat.-c .2 _Lit, Trmfl•)e~z_ t e (State-_ano.T LInt, UotUeood) I
and if I Test 10.0 0Lime I

t~io..ew Line icontinue I- true ;
end Oet TraseitiaonRecord Med state Aotiem l

begin -- Get Machias begin - Display Table
s L.5ap (Stato Lit) if ImItLimed the.
tio.@pea (in._iln, tie. a file, File Se) P Tra.ere•, tatee (Gtate•_int, }ot Ueed) I
ti.l ut ('Ti State Tmrnsitiom Table") tio.nemalie end it I
wtiLe not tLo.Rnd of File (inmFile) loop and DispLayteble I

tio..3tLime (InFle, Bufler, Smiss) I
sI.lmnput (Suffer (I..* Sime))} prcoedure DimplayO is
state "G.Stato s- a S.ican.liece I
it State SeciState 1.2o then begin -- Dis#1lay-f
tio.put-(Sffte .. R Sue)) p OmSoreen :- true I
tio.ovg_Line end Displaya_ p

else
tie.Put (State ec. State) .tinew Liea procedure DinplayOff in
tio.eet Line (In-yile, Dat er,. s~iia) ;
sms~nput (Duf ez (1..zjii.))I- begin -- Dimplay_0ff
Tokenm*of :-9RSft;a Screen s-fas

tbile (Token Suf Size / *) loop gad DiOnPlYftf .
a- nd (Token -xf .PLeoe(l)/') loop

if(Taken-Va Sine 2-- 2) function Treneition (state a tate Urn stciag
and then (Taken SuE.pLeae(1..2) - --) then Symbol : Sy3bal.Array) return haotieR•eord is
tLo.Put (Buffer (1..S iee)) I
tio.vowjLime I type xotura~eamord in
also record

get Traenitaom Reacd r ound g baoole. I- falsn e
and If I nee tim eord b
tio.et_Lime (Za File, saEfer, k iae) end reoard I

-Sl.Input (Suffer (1.3lSine)l-
Token• :uE- IlS.Soen p C state a state I amestring s- State

e"d loop ; Anumae a Return Neaord p
-it (TokemnSu.xsie - 1)

a- nd (Taken_SatE.PLeae(l) - 1-1) thea procedure Vind.Stato (S Rea a in State Secord
-- If not S_s.Snd Of_String then C-state & in out state emstrIng p

-- set Transitiioýnaeaod ; CoutieLau out boolean) a
-- emdif)
-- e procedure Traverse states isnomw _L.om gloiteretor
.. tio.Put (token uff.Viece); tio.UewLie ; (State~sere0S tring, riadState) p
-- raise Datagzzror ;

end if p reage Tind Traenitioe (Aot a in
if s11. Lieuty (State-Lit) then Trammitim sooead p

Si.. nsertjLret (State 3eC, State-Lint) pAmser :a in out Return eaordI
elme Cantinue a out bolalen)p

gL.Append (StateLiet, state-hea)p
end if ; praoedure TreverseActions i ew T L.6ea0ll4_Zt.rator
ti.o.ow._Ln (etumrAleoa, rLdndTraneition)

end if ;
end loop I Eunction Metoh-Up (gym, syn Su asymokolArray)
t~io.Clooe (In-File) return booleen in
Xnitielmed :- true I
end eot..aehins I Answr S boolean I- true I

prcaedure DisplayTable is bgin -- Naeth.Up
-fr i n T�epeRange Loep

type Bat used osord i• if syml(i) an'-, ed then
roodi - Sa (i) MA ... e then
Nd rsoed p ehaote =11) / s(m1) then*" e~oord i Anwe I- fllle

exit
ot Deoed t notDeed leoord andf•i

end loop p
proaedure StatoeJuhti (Irate info I in ltatoefoeard I return Ammar

not Used , in out Not ged Reaod p end Natah up p
Continue t out boolean e spacaoedure rind state (S neocu a int State neaseod ,

procedure Traver"eStatee in new SL.mooSellteretor Cstate I in ut State mass String ;
(NotUSedReaored, State_Aatism) p Continue out booleam) In

procedure Transition Action bogi -- Viad-State
(AsctlneInfo £ in TranaitionR•9ecord i if SSoe.State - C state then

Not Used a in out not Ueed Reoord p tr ghooticnn (S-oc .tLier AAanew) A
cantinue a out basleenm Continue s- falsep

else
procedure Traverse Transitions in neo TL.notltr-tor tru

(NatDeed Recor-d, Trenaitism-Autiom) Ipn i
end ,ind_Stete p

prcaedure TransitiAon Ltiaon
(Ltion linfo as in TreneitiamnesArrd p paadure Widrmtol(c in

Not Deed a in out not ueed aecord p trsnoitionRemaor pTmýic (c
Contiu I out bcioean T is Answer in Out Return ReorCd p

Cantinue: out boolean) i.
begin -- TranitiAon Action
for i in Tape Real* loop begin -- Wind • r,•nition
TextIo.Put (I a Actimnfo.Symbol(i)) I if xatch.Up (iyabol, hat.s57bol) then

30

andz to (taow(m. het UetState aton))s
b oag - " T aiion p

ftevrseNtate (StateLiat, € lltats) s

zotur &naswo.Aaoz $aloe

CZeiss ta -tamw..

e ito o

holeaft is

en-ds- Vin1d tzaitom a4J

begin -- !zeaveitsi

if s ,.etat (StateLint, at p

it tw Lema Iodte

return gal"m I

esti.t State Saw

and if I

end Traven rttose

begin -- YaU.Savezsom

eifi SL.Ze*-ty (Sat*ýL.?ailthLent)te
Seturn fa~me I

*I"

tumn gragee (state-List) Int))

end iftI
and !G4saauezu a0

bcoegin RD-si Vaidntt_

.Jit ..L Zeatlk taejin) he
sotuI- galee

S-.autm aee (State Lint)0t)

end Und54in

end !NStatsTaaneitinmComta~l

31

8.2.4 The TuringJape Package

-- T I ka go m a(optio nally) displays Turing feturn charIct r

-- smacin. tapes, .. m esmat1 ~ra~e-------------------- --------.------. r..tent.d

genrc -- letCo0 d 2 areturn• Symbol uner the /U" head ;

*o-f ftape. a positive 1 -- 1..-

Top Rev a natural a. 3 p -- SOxe*n position of taps futi Es.d itioa (TapsIo Taps5.aags) retmen natuaio p
Us&.oawtae O naturaal -- 20 --- tposi"tion f3O/U head

NIan Top Si.. I integer S. 1500 a-- ax sie of taps -- groCemd - -No-e

-- PoitCoad I Returns Used position i.ne ,

TaO lo e pt 0------------ --------------------------------
Tapsnurd0 flow: excestio

TaposError a eox tion W ith Screen_20, Taut 20 ;

procedure initialise (TasplNo 2 Tapel-Rage; Start : string) p package body TringTaps is

-- P-roCe-d a Nne package sin r.•ea Sreeno;
-- %oet•oed a Give a Turing taps an initial value
-- separStor i constant character

Corper : ctest character :* ,+
proceduro Display_o ; op I ouestaet character a* ,-,

---. U_W_• ed % ocastant character ,
-- reCoed I Nnae Blank s ocastant, character

-- PoetCond 2 Display the current tape oan the s*ceen
------ ---..--.------------------............. Left Eags I constant natural 2- mesdColum / 2

pirg ht dgt asonstant natural s- (S0 - e-ad Colwms) / 2 a
procedurs bispisy Off;

--- type tape M5c is
-- Iproeed a no"e record

SPoetCond , stop displaying the tape Tape I String (I. . Tapa Sine)
--- --------------------...... good t naturala #: 1;

mtight _End I natural O0
procedure Read -meed (TapeSo apoangnr

Symbol- a int out character) I type Taps Array is &Crey (Tapsinange) of teps-seep

IreCond : Taps was initialised initialised : boolean s- false I
-- PoetCod I Return's the symbol currently bsing scanned by Simlating a booleasn 2 false p
-- the /U head a Scsreen a beolean 2 false P

Data : TapeArrzay I
procedure Writenead (Tape No I Taps. tangol

Symbol in: ou character) ; procedure Displayapslsymbols is

-- PreCond : Tape was initialised Left t natural
-- IctCced a Replace the taps position currently being Ser-COL t naturalp
Sscanned by the R/U headwith Symbol

-------- ----------------.... begin -- Display_TapSymbols
for i in Tapsangs loop

procedure Move ad Left. (taps o a TapspoRangs) I if Data(i).noed > leftldge then
---------------------------------- ---------------------- - Left I- Data(i).Usad-Left-_dge+l

-IreCod I Tap* vas initialised cr_ Col s- IledColuo - 2-(Left._dgo-l) P
-- Poetcobd : Nov the R/N head one position Left on the tap glose
-- 3noeption:s TapUrndArfloa if the R/ head movsa off the Left I- I I
-- tape Bcr l s- Neaed Colvi - 2-(Data(i).•ead-l) I

While (Sar-Col 4*80) And (Left C.Data(i) .Tops last) lccw
procedure UMov eaUsdight (Tape-"o : TapeRange) sio.potC (Deta(i) .Tapel(ft), Top-_Wl + S*(£-L),

--. c .Col) I
-- Pr•Ceed Z Taps was initialis•ed arCol s- SrCol + 2 p
-- Poeond : m the A/N heed oe poeition right on the Left s- Left + I ;
-- taps and loop p
-- Iception. tapo_Ovrflow if the a/W/ head moves off the end loop I
-- tap end Display_TepSymbol"

procedure Iaitialise (Tap*_So a TapeRangs; Start a string) is
pr•c•dure I•nd_•imulation

--- e--- bInitialize

-- precod 2 Nos . tialid sd true I
-- VoetCoed a Marks the current tape as unitiaLised Simaulating . false p
--- Data(Tapos o).Tap* :- (others ' '-) p

Data(teapeo).Tape (1..Start'last) I- Start ;
functioe Taps Sise (Taps*_ : Tape aIngs) return natural 1 Data(tape•o) .Nead s- I ;

--. Deta.ct apa• Bo). Kiht d t- Start' last I
-- PreCoed s Rome if on Screen than
-- P•stmo• d returns the length of the non-blank portion of DisplayOs:
-- the taps end it ;

---.. ead initialize I

function TapsVie" (TapsiRO t Tapeslang* procedure, DisplayCc is
Left I natural I- I ;
might: natural) return string p Col : natural I

-- preCond n Non begin -- DOiplaycam
-- Posteoed aReturns Taep (Left. .ight) Onp "a~roon t true I

---- --- --- --- - - --- --- ---- --- --- --- --- --- --- if jnitialised then
initialized z- false p
Simlating I- true I
for i in tape-an"e loop
Col :- NeedColm - I;

32

vitae col •0 S0 leop niewJ~ey~ee.po_ ebo p

eia.vpuo (cerser, apy 4, -(i-), +gl) pad it I
eie.vatc (Suepwat"e, vepUm.0 4 5e(i-I), cel) 1 eLse
sia..ltc (Cozasr. TOP-Mo.43452 i Cal) I raise Topenrzac I
if Cal ' so thea ed Lf I
eios.utC (Top, TOLXMp s S+i-'1-1)' Cal.) j ead UseaAUsd aikt I
ein.lutC (wop, TOpr2 4 S*(i-l), col+l) I

and U i IProedure hd t•mulatise is
Cal I- eel + 2 S

S" In" I begn-end Simulation
oio*lptC (vk sed, ToAImp 4 + S-(1-1), Send Caumn) a lmitiLuslad;- false I
si@.1.tc (sopecater, Tap SeWN4 +~i-) Used airnu) I SAMleting l.false I

ead loop I as rek Sman f-alse
"flspley Tare Uymbols 0 eal USMAinmaatiem Iend if e I ~ze s s~

eagdU a
.ad DispJAy-OI I funation TopesSims (Tepea o t epeRags) retuor natural is

Pew InZ Display-Pff is begin __ Tap* sits
retun Dete(TapeNo).Rig•t_Zmd

begio -- DosplsyOff ed Veqpe_Sis a
an leases R- fe"seI
ea DisPleapoff fu.etica Tovelvieoe (Tre•So Ta, e UsweS

Left I natucral I- ;
pcoceduze Used -eed (TapeNo s Tapesags N igbt , natural) "eturn stuing is

Sybol a in oWt cbzea4ts) is
begin -- Taps lie

begi" -- Used Uoed loturn Dst&(T&eps.o) .aps (Left..Rigbt) I
if initialised ar Simulating then and Tarevisea

Initialized s- false I
simalating t- true I fumatiom Cure•etSa1oI (Tepee. I Te•pe-osg)
symbol a- Data(Tsps Na) -Tape (Data (Tae-"~) -Road) I CetrCA abazeaater is

else
raise Tare-Swear I begin - Carreat Symbol

and it iUf Zniti&Ued e Simulating then
end easdUeed I return Date(TapesNo) .Ver (Det4(Tepsoo) .sed) j

oele
piooedure WriteUseod (Tapeso N a Tapslange I reise Tapys EsxI p

symbol is out ohaveatsz) is sad if I
sad Currgu_-Sdjbal

begin -- write mead
if nitisliusd-Oa simulJting then futiom Uoed l-sitiae (Tepee_. o Tape-RAMn) "turn natural is

Initialized 3- fals P
simileting :- true i bog"n -- Used positism
Dete(TapeNa)o).Tepe (Date(TapesNo).Used) s- symbol S retura Dta(Te_ UWo)-.ed p
Ut an save" than end eed__stion I

DlAPsY-TapseBywholsp
eAd i ead T!uringTpI

else
raise Testrzaz I

end it ;
end Writesead p

proaudure NoawasedReafLt (TapeNo s TapeRmengs) is

begin -- Move Need Zft
it Ifitialised or 1ulaetig then

zitie•iued Ia- false p
limulating I- true p
if Deta(Taeps.o).sead - I thean

raise Tipe Undorflow I
alse

Data(Tape ao).3ead s- Data(Tape o) .eed - I pend U;
if on Sores. then

If Data(TeapUo).sed < LRftt dge then
sio.su (" ", TopsaV 4 E*(" ePso-1),

Used_Calu-Zu*Det4(Tapmepo). ied-I)
eio.]Pt (* , ITP-o + s*("ep.eo-1),

Uoed .Colvmw2Uat&(TapsNo) .Nsed-1)I
sio.vat (, TOp-ow + S-(Teps8a-1),

ise~d.Coln-2 *Date (Tpe o). Usead-1)
eand if p
DisplsyTapesy1bols

end Uf
else

raise Tapearroz p
end it I
end 110s Usead-Rftp

procedure Na•waUe _dight (Tape_"o v Tapeenge) is

begin - Nowe edRight
it zniti• smad or Simalating then

Initi.UIsd s- false p
Simulating I- tinep
if Dete(Taps No).Usod - Data(VapeoN).Tap'lest then

raise Ts OesOrflea p
else

Date(Tape-No).Used t- bataCTape o) Usead 4 1p
it Daeta(TepsoN). sed 2, DetaCTepe o) .Eigbt E nd then

Dste(Tapoea) .Utight~zad :- bia~teclpss) .Useadp
eand t pend Uf p

if Onsazeen then
if D•t•(Tapepmo).Used <- Left Idge then

sIO.luts (Corneer Top, TMpA + $*(Tape UO-1).
Used colm-2DataCTapwspo) .Ued+I) I

sio.lPoU (Sepezator G blank,

sio.s•ut (corner S Top, :ap- .N+ S+(Tapeo-l.),
UsedColrmn-Z.ete(Tape-"). .Usedl)p

ond if p

33

8.3 Towers of Hanoi

8.3.1 Progmmming Assignment

The Towers of Hanoi program was discussed in class. A copy of the Hanoi program is in

/home/facultybeidler/Cmpsl44/hanoi.ada

You can see how the program executes by bringing up an xterm window and executing

/home/facultyibeidler/Cmpsl44/hanoi

Below is a graph of the number of disk moves required to complete the Towers of Hanoi problem with
1 through 8 disks, inclusive. Note that the number of moves required to perform the Towers of Hanoi
is

d

M(d) - 2 - 1

where d is the number of disks.

127 255 511 1023 2047 4095

80+

70+

h60+

50+

40+

h
30+

20+

h

34

10+

hWs h/s
-----+ @..... + + @ + + 4 -.... @......

1 2 3 4 5 6 7 8 9 10

The file /home/faculty/beidler/Cmps144/saigon.ada contains a partially completed Towers of Saigon
program. The Towers of Saigon is like the Towers of Hanoi, but uses four spindles instead of three.
Complete and run the program and do the following:

1. Run the program with all values between one and eight disks.

2. Cut and paste the graph above and plug in the letter 's' to roughly indicate the growth pattern for the
number of moves required to solve the Towers of Saigon with between one and eight disks, inclusive.

3. Include with your submission for this assignment and estimate of the move function for the Towers
of Saigon program.

4. Submit the information above, via email, with a .lst of your program.

8.3.2 Basic Towers of Hanoi Program

with tty, tegtio, hanoiboazd; tnr, ofhanoi
Mai: help_spiadle,

procedure hanoi. is elepne from- pindle.top81dite - toepila~l,
Numbr_0fDimsk a onsatant natural t- S n-,rofd.a.a ,, nuer.of dieka - 1);

end it;
package h•lbeoard is new end towore ofhafoti.

hanoi hoard f '= ISO~e "1 4,
U:r . urOf _Dis) a begin -- of hanoi

use New-board -- tio.pit(*Nm many disks? *)I
tio.gotline(in string, etting[ise);

package tio renaee Taet_ I -- nlbr;_of_di•k i: integer Ivalue((in_atring)a

'atrn a tring (1 .. 40) pfrmpnde nfltn,
!Zsti, ngL. : intoger p eoo ,
first aum I poeitive I- 1 toendi. ,n thirLdam_ ,
second MANa I poeitive 1 2 o disk. ,O n-.- of disk.)
thidnau. I positive - 3 ; tty.lut (23, 1, loMgL.nteger inage(Stepuwamber)

itty.ut.(24,1. *) a
stepnu.. a loagnLtegar a- 0 1 end hanoi;

pc-,edube towers of hanoi
(frauapiad,
helpp Ind le,
to sinl a in pstv~r of~diakn a in inter) in

begin -- of towers of hanoi
if numer -of disks - 1 then

step.nu.der a- ste'plumber + I I
Moe. Disk (fromlp•iad', to epindle);
-- tlo.lmt (Stop ")I

-- tio.put

-- tio~put (s Mov a disk era *)

l"f~e.Uange (from~epindle))la
t. Ola I" to *)I
t..io.l'* p(teitivw Unge (toSpindle)) I

-- tio. newLiep
olme

-- aolnl but the bottom disk to the "belp epinadl
tto~we of hanoi

(fr•_epindle "n froam•epinde,
beLpespindloe -e to p=indle,
toepindis e- helpespindle,

herof~diska 3, nunmbr of disks - 1);
-- M Moe the bottom disk to the "to* spinde
towers of ki

from-spindlo en froa spindle,
help_-pidL en helpepind"s ,
tonp i en toe-pindlk,
alheriof dinks n1)

-N o the disks from the "help" spindle an top of the big disk

35

8.3.3 Towers of Hanoi Display Package
Samaria tifog I in I .. so o0 Siadle oop

i3oo _a a~dle poaitiw I Oiplyapitadle (Spinddle_3oli(), Uaaoi(I))

uo~!~',oeiiwe md~ ioop
package basoiboard isjoe ~ ds

Disk."_ra a eo a (frInaIsdle, toý_pimdl.e g ia poeitsitve i

irooe1 e mois_disk (frm_*pidla, to-_pidle i ha bove, beiow z i.atela I
poetiw0 I a

ead hsolboards Display 018k (fetea--amaoi (toap-DdLe).topDisk - 1,
SpiadleCoLm (t.0 al)

with menwa io I manoi(lvm Spiadle).Disk(Moi(roISpidla).tOpO8k));
-- wi tt

(s

-wt apialec••iI (1: -piandl),

Donkays body hamoi hoard is Umanoit VZOISSphadle) .Disk (Maaoi (Prmsy -pindl) Top-Diak)

a&eeIbo I oestesat natural a. 20 k
Nuoai(TO. & JWl)-TapOD-sk s- NumftO(To-&li.AI).-Tolpn-.+I;

Di8 • aim. g ocsant natural I- (0)/of inle Uof(in) . ka8'a('i(.) . Dk) a-

subtype disketring atissrin (I .. klsej Umaovi(pam sidple)I.DvAJk(uaaii(vm apindLe).Top Disk);
Sanoi(r•a(_Spmdle) Disk(U aoi (lFrplidlae). -Tojp k)

aeplea_dlsk a oametaut Disk_8tzag : (others 'I') ; ' 0 1

bleaker t acmataat Disk-ftrial a- (others .0w ') &U-i(FSzou&phadlo) .TGp.01k i-
mandiske . oomatant atag, r Ia (Disk-sie-2) I 2 1 U (bipad)-p-1

Comat - count + , I

subtype ateak rang.• s integer rang. I .. max.di•-k_ -- tty. ut (3, *o. " - • ,ae- . (coast))
type apiadle array in azray (taokrseng_) of natural e aorm o.Puts ('Noeaw - " a h-tlea'griaag.(Cot) , 3, So);
type a•iadleo-rovrd is -- tty.Not (22, 1, '-*)

regord areen jo.vuta " ", 22, 1) ;
topdsk i integer a. 0 del a.,y 0.001
Disk I spadle-array l. (others -2. 0); for i hi I .. 32767 loop

ead regard; amll p
Subtype spindlerCang. is intager rang. I .. no of Spindles;a"la
type boandtyp. is array (apiadle-tang.) of svlmdlareooord; endypu loop "

-- tty.9 (3,3,"fv t) t
type spindle-oolimmftype is array (I .. UOf Spindlea) of -- tty.pua (t3,3,nle) DIs) 1

nteger -- tty.P (4.3, ixteg9'lIng. (TSpimdLe));
-- tty.put

apindleoll a aindlo olItype t (3,3, ist4egrims'hg. (Mmoi(fo S pinle).5•0 Lk))I

hanoi boardtype ; -- tty.ftt (4,3. hategOgmimag.
froonamber, (Uamoi(!o_spiadle).Disk(Uamii(ToSpindle) .ToV_9 k)));
toý-nmmer integer I -- tty.put (7.3. istegaz'haage
count a natural 1- 0 ;(Iaao(to.Spsdlo) .Diak(uasoi().T*)p_Vi&k-1)));

Aboem I.
pcoedw* Display-Disk bl(To-8dle) .D1 (Uaaoi(to°pJmdLe) top_-18k);

(RSew, Colum : natural I Disk 3 integer)is below S-
Uamoi (tRoSphndl9). Disk (Uamoi (?*oý_pidle) .Top-018k-1);

begin -- Dhaplay-Disk if Above 3, Below thea
if Disk -a- 0 then Saise Dh.kIrrzm I
tty.lut (am, Col40isk. D la•nkr(1..(-Disk)) & "I' a ond if I

-- Sleaker(1..(-Disk))) , -- tty.lut (3,3,'ext amex')
eareen io.1,to (Slaaker(l.. (-Disk)) a " Gk end it f

blanker(I..(-Disk)), Sw, Col D); -- tty.Put (3,3, e"it oute')

alsoe end mo_-disk;
tty.lut (saw, colum-Disk. Sampl Disk (1. .018k) G Wf &

-S-pIOhak (1..n.0k)) ; begin -- hamoi board
*areeniLo.puts (Samlo Diak (1. .018k) a '0" a if xuOpfD18ki > MaxDI4k them

SimliDisk (1. .D1ak), new, Coium-Disk) I raise oonetraint error I
end it I elSe
and Display-Disk i initialio mboard (hamoi)

end if ;
prooedurs h-ta~tiamaboard (hanoi a in out boardtype) 18 end hasoL-board;

Ir oe Displaypldl
(Colum : natural I Spindle x SphIdle__Noord) is

begin -- Display Spindle
for i in Steak Range lop

DiSplay vioF (3eee* - I, Column, Spindle.Disk(I))
end loop I
end OisplayStpindle i

bei--o initialing board
epinLeoolv (1) .- -Disk 41-/2
for i in 2 .. NoOf -pindlee loop

Spind, climj1n 3 Spindle -Colon (i-1) * 01kDime;

.. ar text do.pue (ieg (ol-i))er

end loop -
anoi(1).vaop Disk t-So _OfDisks

-- tty.Cla $agoren
eoreeniLo.Cloar ;
-- tty."t (NeseAaw, 1,
Mcoeen iouts

b aae-no, 1) ;

36

8.3.4 Towem of Saigon Sample Code

-- cqVv',,gt (a) 1991,1992 John loidlo tosseSa&Lg (
-- Copting scienes Dept. grin. pmlA 1,

UNIT. of Scranton, szamt". Ia 13510 beLpspindle a 2,

-- (717) 941-744, vote o-ti d" -3:4,
(717) 941-4290 PA[R of disks -m m=-_adioko)I
beidlolgs• 80.oo .vfs .eda sad set qiip-lay

-- t.,-~beid lsoeatos "itest 3
begin -- of siLjm

-- I UM.O by 200-gof it oduai.uiae* isotitut•ios Ma1Y. ti_.Dat(Osj (1o O•?D*) I
-- Tin software hJo GUARANTO. Pleasenr"Dort amy ergt.c. All iie..got ;no0@7= I tie.skigLLiso

"'"teaz.times will be Made as oem aspo ssible (Actually &et~jispLay7(U.0f _Disks)I
within ame workaig day). -- tty.Dut (23, 1. lesit~gecimg(stsfln s)-tty.pat(24.l, * *) ;

Witb• texto, kboiboards Textm LO.eet_•i (zn-Za4ing. StlmgLSiss)

procedure sailg" is

oubtype Di.&kUsag is lsatga r41age I .. 9 1

pIacage tio renam Test 1O 1
paakage lie it mew lest-o..iatgerjo(xteler)

_a-tzi? 3 striag (1 .. 40)1Stilsi S intaeges I
0o OfDisk. i DiskMang. a

stopnumber 3 Iae4Lnatgeg•- 0 1

Procedure Oat Display (umberOfDisks I in integer) is

package Ewk_beard is mew
heasi board '3*-O-svinrles -0 4,

oO - mber Of Disks) p
use s5w board

plooodure towers of saigon
(frOMspindle,
belpspisdls,

UWmberOf_disks : :in = "),is

begin -- of tower& of Saigon
-- tio.pe t (intoedisag_ (3•_LfDishs))s tio.vew-4.asa
Ceo.a 4e OD is
When 1-

None-Disk Iureq Spindle, ltoSpindls)
Stepnmber t- Sgtp_lmbr * 1 I

when 2 -3-
TarotsOf Sgaigo (Frm Spiedl,

Uelp2Spindlo,

To Spind•lt

1) s
Towvers of SaiLgon (ftpSpinadle,

Uealppiadle,T'oSpiadle,
1)s

T~oner O f aio (ep.pmds
ielp_2_spindls,

Preolpimdlo,

To__Spindlo.

1);!

when ethers "m
TcworsOf•_Sai• (Frm spAndls,

nWo7- lp;_lad'o

lelp...piadle,
Number Of Disks-2)

To -6 adl,Towersoof Saigon (Voim _Slisdle,

velp_2-piedle,

UToI Spindle,

1) I
Towore-Of Saigo (nro Spind,

MeIp72..Spimdlo
aslp..Spind1o
To_•Spindle,

Towereo9f-Saigo (Seip_2 spindle,
FromSpindle,

To Spindae

TowerseOf-Saigan DBelp.2.Spadlo
Fr..qSpindi*,
2-v_8 ad' ,

andsr_0fDisks-2)
end torero-of-a•iv.a

begin -- Sat-Display

37

9 References
Beidler, J. "Structuring Iterators for Reuse", To Appear in the Proceedings of Ada-Europe '93. Paris,

France. July 1993.

-, An Object-based Approach to Data Structures Using Ada, a text in preparation.

"-, "Building on the Booch Components: What Can Be Learned When Modifying Real World Software
Tools for Educational Use', Proceeding of Tri-Ada ;92, Nov. 1992.

"-, "A Role for Iterators as A Tool for Software Reuse", Proceedings of WAdaS '92, July 1992.

"-, "A Sequence of Integrated Laboratory Assignments for Freshmen". Proceeding of ASEET-6
Symposium, Washington, D.C. Sept. 1991.

-, P. Jackowitz, and R. Plishka, "A Graphics-based Editor for Parallel Systems", Proceeding of the Third
Annual CASE Workshop, Cambridge, MA, July, 1988.

-, and P. Jackowitz. "On Defining Consistent Generics." SIGPLAN ilUt, v.21 no.4, April 1986. pp.

32-41.

-, and P. Jackowitz, Modula-2, PWS Publishers, 1986.

-, R. Austing, and L Cassel, "Computing Programs in Small Colleges," Available through the ACM --
Summary appears in CACM, June 1985.

-, Data Structures, Allyn-Bacon, Waltham, MA. 1980.

Brender, Ronald. Character Set Issues for Ada 9X. SEI. Pittsburgh, PA. 1989.

Booch, Grady, Software Components with Ada, Benjamin Cummings, Menlo Park, CA. 1987.

Cohen, Sholom. Ada Support for Software Reuse. SEI. Pittburgh, PA. 1990.

Doerr, A. and K. Levasseur.. Applied Discrete Structures for Computer Science, 2nd Ed.,
Dellen/MacMillian

Lewis, H, and C. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, 1981.

Liskov, Barbara, and John Guttag, Abstraction and Specification in Program Development, McGraw
Hill, New York, 1986.

Piff, M., Discrete Mathematics: An Introduction for Software Engineers, Cambridge University Press,
Cambridge, 1991.

38

Polya, George., "Probabilities in Proofreading". American Matmatical Monthly. v.83 n.l January
1976, p.42.

Shaw, Mary, W. Wulf, and R. London, "Abstraction and Verification in Alphard: Iteration and
Generators", Aiphard: Form and Content. Springer-Verlag, New York 1981.

Stubbs, D and N. Webre. Data Structures with Abstract Data Types and Modula-2. Brooks/Cole.
Monterey, CA. 1987.

39

