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1. INTRODUCTION

Most modem military communication is performed using Spread Spectrum (SS) systems

techniques because of their relative robustness in jamming environments. Despite this resistance

to interfering signals, SS systems can undergo performance degradation when subjected to severe

jamming [Haze88, Drap89]. The primary reason for this is that, although SS techniques can

provide some immunity to jammers, the reception of the SS signal is still accomplished using

linear receivers. The linear receiver is only optimal in the case of Gaussian channel noise and

jamming signals are, by design, non-Gaussian.

It has long been known that the optimal and quasi-optimal receivers for such scenarios

are nonlinear processors (Drap85, Higb88, Midd66, Spau85]. These processors have, in the

past, been difficult to implement in available hardware. Today's technology has opened a

window of opportunity to solving the problem of rejecting interfering signals in such situations

because of advances in high speed digital signal processors.

The objective of the recent research effort was to investigate and determine the viability

of utilizing Locally Optimal (LO) nonlinear processing to mitigate non-Gaussian interfering

signals in a Direct Sequence (DS) SS communications system. The effort centered on the use

of memoryless techniques, as well as techniques employing memory, and performance

comparisons of many receiver and nonlinear processor configurations.

The approach used included the analysis and evaluation of several implementations of the

various nonlinear processing algorithms. The analysis included the study of well known

techniques as well as newly developed methods. Evaluation was accomplished through the

development of software simulations designed to test the algorithms in various signalling

scenarios.
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The results illustrate the tradeoffs of each nonlinear processor algorithm for use in a

spread spectrum receiver. This knowledge can be used to determine the most effective processor

for a given interference scenario. The work presented in this report is directly in line with the

mission of Rome Laboratorie., (RL) to provide secure, reliable communications to the United

States Air Force.

1.1 Problem Statement and Formulation

The design and development of a digital communications system which exhibits a low

probability of error (PJ in a variety of jamming scenarios is of paramount importance in military

applications. To attain this goal, it is necessary to design a receiver which will mitigate the

effects of the interference and thereby facilitate the correct demodulation of the transmitted

signal. For many practical applications in which the interference is thermal (Gaussian') noise,

the optimum receiver is a linear processor which incorporates the use of a matched filter for

signal recovery. The matched filter impulse response is:

h(t) =ks(T-t) (1-1)

where h(t) is the matched filter impulse response, s(t) is the real transmitted signal waveform,

T is the sampling time of the matched filter (equal to the period of the transmitted waveform),

and k is an arbitrary constant.

Alternately, a time correlator realization of the matched filter can be used for signal

recovery. The time correlator produces an output exactly equal to that of the matched filter at

Thermal noise can be modelled using the Gaussian Probability Density Function (PDF) given by:

i -7)
f,(n) =-- e where N is the Gaussian random variable, /g is the mean, and a2 is the variance.
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the sample time T, and can be written as:

T

z-fr() s(t)t (1-2)
0

where z is the output of the correlator sampled at time T, r(t) is the received signal, and s(t)

is the transmitted signal waveform. In most digital communications systems, the received signal

is sampled and discrete-time processing is used. Therefore, Eq. (1-2) becomes

N

z,= , m ,...,M (1-3)
k-1

where z,, is the correlator output corresponding to the m' possible transmitted signal, r4 is the

k' sample of the received signal, s,,, is the k' sample of the mh possible transmitted signal, N

is the number of samples (elements) per signal vector, and M is the total number of possible

signals. As may be seen, Eq. (1-3) is a linear function of the received samples, and hence is

termed a linear receiver. Note that when the communications system employs two-dimensional

signalling, the operations of Eqs. (1-1) to (1-3) must be performed on both the In-phase (I) and

Quadrature (Q) channels.

In a jamming environment, however, a digital communications system that employs a

linear receiver experiences a performance degradation due to the highly non-Gaussian nature of

the jammer. Therefore, communications systems subjected to large jamming signals require

other (nonlinear) processing methods for signal recovery. Furthermore, the receiver must be

adaptive since in hostile situations the jamming statistics will often be nonstationary.

The nonlinearity needed can be derived from the likelihood function of statistical decision

theory [Midd66,Spau85]. In the classical approach two methods are discussed: they are the

Globally Optimal (GO) and the Locally Optimal (LO) demodulators. The GO demodulator

provides more robust performance whereas the LO demodulator is much simpler to implement
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[Haze88]. The former is obtained directly from the likelihood function whereas the latter is an

alternate form obtained from a Taylor series approximation and yields near-optimal performance

for large Jammer-to-Signal (J/S) ratios. The likelihood function is generated from the PDF of

the incoming signal.

The memoryless two-dimensional GO demodulator decision rule is formulated in the

following manner.

For a'received signal vector pair (rit)"

Choose (_s,.s) which maximizes

Zm=E3 lnVfN,(rIs,lS.rQ.SQ2.)J (14)
k.I

where (•,Q) is the mh of M possible transmitted signal vector pairs with components (s,.,s•,),

(r,,r,) is the k' sample pair of the received signal vector pair, NW and NR are the I and Q

random noise vectors, and fvo(-) is the noise PDF.

The memoryless two-dimensional LO demodulator is obtained from the GO demodulator

through a Taylor Series expansion around the signalling point. The resulting decision rule is:

Choose (s.,,S) which maximizes:

N

k.-

S2 i s the

where r'= r,,_r is the envelope of the received signal sample pair, 9L=tanr' ] is the

phase, fR(rk) is the received envelope PDF, and
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d•f(r) (1-6)
Ard_+

fR(rd) r

is the LO Memoryless Nonlinear Transform (MNT).

Both the GO and LO demodulators require knowledge of the received signal PDF. In

addition, the LO demodulator uses the derivative of the received signal PDF. Thus, both

receivers need a mechanism to derive (an estimate of) the PDF from the input. Historically,

experimental PDFs have been estimated using histograms with bins of equal width. One

modification, called the Equi-probable Bin Histogram (EBH) method (Haze88], uses bins

containing equal numbers of samples.

One major drawback inherent to the histogram methods of estimating the received signal

PDF is that they produce discrete approximations of the actual continuous PDF. The error

associated with these approximations is further amplified by the differentiation process required

to produce the LO MNT. Thus, a means of constructing a continuous estimate of the received

signal PDF would be beneficial. One such method which provides a piecewise continuous

approximation is the M-Interval Polynomial Approximation (MIPA) [Haze88]. However, this

approximation still has discontinuities at the breakpoints where adjacent approximating

polynomials meet. The Fourier Series Approximation (FSA) approach, on the other hand,

provides an estimate of the PDF, using the Fourier series expansion, which is continuous

throughout its entire domain.

The derivation and performance evaluation of the EBH and the FSA memoryless LO

processor implementations have comprised a major portion of the recent research effort. The

simulation of both memoryless methods in a standard communications system and also a spread

spectrum system provided valuable insight into the LO processor's performance characteristics.
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Also, the performance of FSA and EBH LO processing in a spread spectrum system was

compared to the performance associated with standard histogram and MIPA processing. Finally,

LO processing with memory was examined, with emphasis on the methodology incorporated in

the Robust Digital Adaptive Transceiver (Drap89].

1.2 Development of the Memoryless Locally Optimal (LO) Maximum Likelihood (ML)

Function for Two-Dimensional Signalling

A brief, derivation of the memoryless GO and LO detectors is presented in this

subsection.

Let the transmitter be a two-dimensional M-ary signal source represented by a random

vector pair with an I component S, taking on a value ., and a Q component S, taking on a

value s. Here s-.) represents the m' of M possible signal pairs. For the received signal,

the I component is R, with value 7, and the Q component is RQ with value r,. Finally the

interference (thermal noise and jammer) is characterized by an I component N, having a value ý

and a Q component NQ having a value -n. The relationship between the transmitted and

received signals is given by:

R,=S,+NV, , RU=SI2+ (1-7)

The Maximum Likelihood (ML) detection algorithm at the receiver is implemented as:

Choose the possible signal pair, (s.,sQ.), which maximizes:
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zm=f,(1, 4  -., s.(1-8)

which is the PDF of the received signal conditioned on the in"' transmitted signal pair. The

variable zm is called the ML decision statistic. Using the relationship defined in Eq. (1-7) and

assuming statistical independence of the signal and interference, Eq. (1-8) becomes:

z, = f- •o -• "a-7.)(1-9)

where fW, R(.) is the joint interference PDF. Next, if the elements of both the I and the Q

received vectors are assumed to be Independent and Identically Distributed (IID)2, Eq. (1-9)

becomes
N

Z, -fI fN, N (r -s.,r, -Sr,, ) (1-10)
k-i

where (r,,rQ) is the / received signal sample pair, and (s,.,sQ) is the k' sample pair of the

m' possible source signal. Since the logarithm is a monotonically increasing function, the

natural logarithm of Eq. (1-10) is used to simplify calculations [Mels78]. This results in the GO

ML decision statistic of Eq.(1-4), repeated here for convenience:

Choose (s,, s0.) which maximizes:

N
Nf. _ln ,VN,(rs ,r s.) (111

k-I

The resulting GO and LO processors are memoryless due to the lID assumption.
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For a large J/S ratio', a first-order two-dimensional Taylor Series expansion around the

received signal point can be used to approximate the interference PDF. The expansion is valid

under the assumption that the deviation of the interference from the received signal point is

minimal for a large J/S. Also, in this case the interference PDF may be approximated by the

received signal PDF, fR,R(') These simplifications result in the LO ML decision statistic

[111i9g1]:

Choose ( s, .s) which maximizes:

Nv ~ -fRR a(r, Irr, 7=~fRRQ Ito .r) 1(-2
l -I=- fRs,R(rl÷rs.), f R,R(rIrQ.)

However, determination of the received signal joint PDF is a difficult process, and determination

of the partial derivatives even more so. To reduce the complexity of the likelihood function,

bivariate radial symmetry of the received signal PDF is assumed. Under this assumption, the

received signal PDF is given by:

fR(r) 0<0<2i" (1-13)

0, elsewhere

where fR(r) is the received envelope PDF, r=rr is the received magnitude, and

O=tan-'(rQ/r,) is the received phase angle. The radial symmetry assumption is valid for

3 A typical jammer is usually at least 20 dB greater than the transmitted signal. Therefore, for a signal
environment where jammers are present, a large J/S assumption is valid.
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interference sources of interest as they will have random phase angles. Even a constant-

frequency waveform will have a vector that rotates at a uniform rate and is therefore equally

likely at any angle [Higb88]. With this assumption the LO ML decision statistic of Eq. (1-12)

reduces to Eqs. (1-5) and (1-6), repeated here for convenience:

Choose (s,,, sQ) which maximizes:

N

1,.=E (s,. g(r) cosO, +sQ g(rk) sinOk} (1-14)

where

dg~rf)=_ rk _ (1-15)

fR(r,) rA

is the LO MNT.
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2. MEMORYLESS LOCALLY OPTIMAL PROCESSOR ALGORITHMS

The memoryless LO receiver derived in Section 1.2 requires the PDF of the received

signal to generate the LO MNT used in detection of the transmitted signal. However, in practice

a priori knowledge concerning the received signal PDF is not available. Instead, an

approximation must be made based on the information, usually the received signal samples,

available at the receiver. This section presents two methods of estimating the required PDF.

The Equiprobable Bin Histogram (EBH) method is an extension of the traditional

histogram method [Krey88] of estimating PDFs. In this method, the histogram bins are chosen

to have equal probability rather than equal width as is the usual case. Thus, the width of the

bins is allowed to vary, while the height of each bin is constrained so that the area under the

PDF approximation is equal to one. This provides an improved resolution over the traditional

histogram method in regions where there are a large number of samples.

The next method discussed is the Fourier Series Approximation (FSA) which utilizes a

Fourier series to estimate the received signal PDF. This algorithm, in contrast to the EBH

method, produces an approximation of the PDF which is continuous and has continuous

derivatives throughout its entire domain. This is extremely useful since the LO MNT requires

the derivative of the received signal PDF, and the differentiation process tends to increase the

error associated with the discrete approximations generated by the histogram methods.
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2.1 Equiprobable Bin Histogram (EBID

A standard histogram has bins of equal width, and provides equal resolution over the

entire range of interest. Intuitively it seems better if more resolution could be given to the

intervals of data corresponding to higher probabilities. One method of achieving this is to

constrain the bins to have equal probability rather than equal width. The probability of a

random sample falling in a given bin is the area of the bin, so the bins must have equal area to

be equiprobable. For a given data sequence this may be accomplished by assigning an equal

number of samples to each bin. A histogram with these constraints is known as an Equiprobable

Bin Histogram (EBH), and unlike a standard histogram, both the height and the width of the

EBH bins vary.

An EBH is constructed by sorting the data in ascending order and assigning an equal

number of data points to each bin. Figure (2-1) is a five bin (B=5) EBH for an arbitrary data

sequence. The data point with the largest value in the i*' bin is called the i"' breakpoint and is

denoted Xi. The zeroth breakpoint, X0, is the minimum value of all data points. The height of

each bin, Y, is determined from the constraints described above: the width times the height of

each bin must be equal and the total area of all bins must equal one. Thus, Y= (XrXtd)/B.

Five Bin EBH

A,'•t' I t u. ,ae

-Z0 0 0 20 -'0 6 0 a0
05 ,05

:0~~~: -i- . 0
01 0

•0 2t, -0- 2

00
0 1?-

0 01 0 0

2 4

Figure (2-1)
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Several examples demonstrate the differences between a standard histogram, an EBH,

and the ideal PDF. A 6 dB Binary Phase Shift Keying (BPSK) signal added to 0 dB Gaussian

noise is shown in Fig. (2-2). Figure (2-3) shows the corresponding 10 bin histogram and 10 bin

EBH. As may be seen in the figure, both histogram methods provide an approximation that is

reasonably close to the ideal PDF, represented by the smooth non-boldface line. The same

analysis for a 26 dB BPSK signal added to 0 dB Gaussian noise is shown in Fig. (2-4). In this

case there are two regions of high probability, namely at amplitudes of -20 and 20. It may be

seen that the standard histogram gives equal resolution to the entire range of the PDF, while the

EBH focuses on the areas of high probability and provides a representation that is closer to the

ideal PDF.

First 1000 Samples of BPSK Data
6

10 0 0080100 0 .00 ..00 600.. .00

sample

Figure (2-2)

It should be noted that the magnitude PDFs of the jamming scenarios in this report have

a single region of high probability, and the performance of the EBH offers little or no

improvement over the standard histogram. However, for future jamming scenarios the EBH

may be of greater value.
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Histogram of SPSK Signal with AWGN EH oft BPSK Signal with AWGN
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Figure (2-3)

Histogram of BPSK Signal with AWGN
0.20

0.15
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L-

96 0.05
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EBH of BPSIC Signal with AWGN
0.20

0 0.15

a0.10

. 0.05

0.00
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Amplitude

Figure (2-4)
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2.2 The Fourier Series Approximation (FSA) Algorithm

A novel method of generating a continuous LO MNT using the Fourier series has been

derived and simulated. The Fourier Series Approximation (FSA) is a method of generating a

continuous estimation of the PDF of a random variable. This method is extremely useful for

LO processing since the LO MNT requires the derivative of the received signal PDF, and the

differentiation process amplifies the error associated with discrete histogram approximation

methods. This section presents the derivation of the FSA algorithm, a method of implementation

based on a histogram approach, and a direct parametric implementation of the FSA algorithm.

2.2.1 Derivation of the FSA Algorithm

Given the received signal magnitude, r, the envelope PDF, fR(r), is approximated by the

following expression:

a P P
fR(r) = - +E a.cos(nwor) +E b sin(nwor) (2-1)

21r 2 -x
where w 2 - r. is the maximum value of the received signal set being processed, rf

. -rm, T

is the minimum value of the received signal set, and p is the order of the FSA. The coefficients

{a.} and {bnj are determined by minimizing the following error criterion:
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row

e(r) I ['R(r) -JR(r)1]dr
/ (2-2)

ro. aO P P
a0'r -• acos(nwr)-F b sin(nwor)]2dr=, ( r)-7 - N. .,

Differentiating Eq. (2-2) with respect to a. and equating to zero yields the following expression:

7 a0  P i (2-3)S + a~cos(nwr) + bsin(n dr - f!(r)dr

By noting that the integration of the sine and cosine functions over an integer multiple of their
ro.

period is equal to zero and that JfR(r)dr= 1, Eq. (2-3) becomes

a.= 2 (2-4)rm~ -rm

To find the coefficients {aj}, differentiation is performed with respect to ak and the result is

equated to zero. This gives the following equation:

J cos(kwr) - a - Ea.cos(nwr) - r b.sin(nr) dr =0

After some manipulation, the expression for at is found to be
F.

a,.= 2 cos(kwOr)fR(r)dr, k= 1,...,p (2-6)
r. --r .. j

Similarly, the coefficients {b,} are found by differentiating Eq. (2-2) with respect to bk and

equating to zero, resulting in the expression:
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sin~kwori [fR(r) -1 a cos(nw r) Eb sin(nwor) dr=O

Again, after some manipulation, the expression for b, is found to be

2 r.

bt= 2 Jsin(kc~r)fR(r)dr, k= 1,...,p (2-8)

Finally, the LO MNT function is given by:

d/4(r) 1 (2-9)
fR(r) r

and its FSA derived estimate, g(r), is

p p

E anw0sin(nwcr)-E b~nw0cos(ncj 0r)
9( " =" _n (2-10)

a P r
7-+Ea cos(nwor)+_ b ,sin(ncn0r)

Equations (2-1), (2-4), (2-6), (2-8), and (2-10) specify the FSA algorithm completely.

2.2.2 The Histogram-based Implementation of the FSA Algorithm

One method of implementing the FSA algorithm involves using the FSA to approximate

a histogram estimate of the PDF. The coefficients {a,} and {b.} are approximated by evaluating

Eqs. (2-6) and (2-8) using rectangular numerical integration (Krey88], with fR(r) replaced by a
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histogram approximation of the received signal envelope PDF. The resulting approximations

for the FSA coefficients are:
B-I

d= 2 E •ycos(n, 2 "x) (2-11)

,=2 A a-2
rE y~sin(n 2 x) (2-12)

rO - rmu -r. ri

where y, is the value of the i' histogram bin of the PDF, x, is the received signal value

corresponding to the i, histogram bin, B is the number of histogram bins, and A is the bin

width.

The LO MNT is then estimated using the following algorithm:

1. Let N, N2 = D2 = 0 and let D, -- (INITIALIZATION)2

2. For n = to p (ITERATION)

N, = N, + .nwsin (nwor)

N2 = N2 - b nw~cos(ncLr)

D, =D1 ÷+ cos(nwr)

D2 = D2 + b sin(nwr)

N+ N2  1
3. 90 + (COMPUTATION)

D, *D2 r
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2.2.3 Parametric Implementation of the FSA Algorithm

The expectation of a function h(X) of a random variable X having a PDFfx(x) is defined

as

E{h(X)} =. h(x)fx(x) dx (2-13)

Using this definition, Eqs. (2-6) and (2-8) may be rewritten as

a, = 2 E{cos(nwR)}, n 1,...,p (2-14)

and

b'- 2 Elsin(nwoR)}, n=1,...,p (2-15)
r. -r.

Equations (2-14) and (2-15) can be approximated using a sample average of the form

2 1 IV
"r ~rm -r E cos(nork) (2-16)

and

b - 2 1 f

2 • . sin(ncaOrk) (2-17)

where rk is the k't sample of the random variable R, and N is the total number of available

samples.

The parametric implementation of the FSA has an advantage over the histogram-based

method in that the parametric method does not require the intermediate stage of approximating
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the PDF with a histogram. However, the parametric form has the disadvantage of added

complexity since the sample averages of Eqs. (2-16) and (2-17) require calculation of 2Np

trigonometric functions, where p and N can both be large.
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3. SIMULATION OF THE MEMORYLESS LOCALLY OPTIMAL PROCESSOR

ALGORITHMS

Software simulation was the method chosen to characterize the performance of each

memoryless LO receiver implementation. For most types of jammers, determining the

theoretical performance of the LO receiver is a mathematically intractable problem. Simulation

provides a means of determining the types of performance gains incurred in a variety of jamming

scenarios.

Two types of communications systems were simulated using the Signal Processing

WorksystemTM (SPW) by Comdisco Systems, Inc. The first was a conventional Quadrature

Phase Shift Keying (QPSK) communications system. This simulation was used to isolate the

performance gain associated with the LO processor. The second simulation configuration was

a QPSK DSSS system which was used to determine the performance characteristics of the LO

processor in a spreading environment. By using both simulations, it is possible to determine

scenarios in which the LO processor improves overall system performance.

This section provides an introduction and overview of the SPW simulation package. The

conventional QPSK and QPSK DSSS simulations are also presented.
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3.1 Introduction to the SPW Environment

The Signal Processing WorksystemTM (SPW) from Comdisco Systems, Inc. is the

simulation platform of choice. It consists of several modules which aid in the different design

phases of communication systems. These include: the Block Diagram Editor (BDE), the Signal

Display Editor (SDE), the Filter Design System (FDS), and the Code Generation System (CGS)

[Comd9I].

The BDE is a graphical, block oriented environment ..n which communication systems

can be readily implemented and simulated. Each system component is represented as a graphical

block. The blocks provided in SPW are very general, allowing use in a wide variety of

applications. Over 150 library blocks are provided in the BDE, including:

"* modulators / demodulators such as Binary Phase Shift Keying (BPSK), Quadrature Phase

Shift Keying (QPSK), and Minimum Shift Keying (MSK)

"* encoders / decoders such as Hamming, Reed-Solomon, convolutional

"* mathematical functions, including simple arithmetic, trigonometric, logarithmic,

integration and differentiation

"* filters, including Butterworth, Chebyshev, Elliptic, Bessel, and user defined filters.

"* vector functions, such as inner products, serial-to-parallel and parallel-to-serial

conversions

"* signal sources / sinks, including binary sources, white noise generators, pseudo-random

number generators, and user defined sources.

In addition to these blocks, the user may define new blocks, either through a hierarchical

combination of existing blocks or by designing custom coded blocks in Fortran or the C

Programming Language (C).

The SDE can be used to generate signals for use in the BDE, or to examine the

simulation results from a system that has been successfully modeled and simulated in the BDE.

The major strength of the SDE lies in its signal analysis capabilities. In particular, the following
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functions are available: Fast Fourier Transforms (FFTs), histograms, autocorrelation and

cross-correlation analysis, and spectral density evaluation. Also, signals may be directly

modified by a host of operations. For example, addition, scaling, inversion, differentiation,

integration, and trigonometric functions may be performed on a signal or group of signals. In

addition, several nonlinear filtering operations are provided, including quantizing, clipping, and

limiting.

The FDS allows the designer to model and study many different types of digital filters

for use in communication systems. Any Finite Impulse Response (FIR) or Infinite Impulse

Response (IIR) filter can be designed. Butterworth, Chebyshev, Elliptic, Equiripple, and Bessel

filters may be easily implemented with the aid of pre-defined "methods". In addition, the user

can define methods for any other type of filter. Once a filter is modeled with the FDS it can

be used in the BDE or SDE.

The CGS is able to convert the BDE simulations to C code. This code can then be

downloaded to any of the digital signal processing boards or computers supported by SPW.

3.1.1 Classification of Blocks

The blocks in the BDE may be classified into three categories: SPW primitive and

hierarchical library blocks, user custom coded primitive blocks, and user hierarchical blocks.

Library blocks are the blocks supplied as a part of the SPW environment. Some library blocks

are primitive, in that their specification is directly linked to the underlying software code (e.g

C). Others are hierarchical, meaning that they are composed of other SPW library blocks which

may be either primitive or hierarchical. A hierarchical block is specified by means of a

"detail"' which displays the interconnection of its constituent blocks. User custom coded

Words enclosed in quotes ("") refer to SPW terminology.
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primitive blocks are written by the user in C or Fortran and linked to a graphical symbol. User

hierarchical blocks are made up of library, custom coded, or other user hierarchical blocks. As

may be seen, the capacity to create multiple levels of hierarchy provides an extremely powerful

and flexible simulation environment.

Figure (3-1 a) shows the symbol for a user custom coded primitive bubble sort block, and

Fig. (3-1b) shows its detail. The detail of this block is a list of parameters that are passed to

the C or Fortran code when the system is simulated. Once the block is complete, the SPW user

need not be concerned with the actual C or Fortran code.

Figure (3-2a) shows the symbol for a user hierarchical MNT block, the detail of which

is displayed in Fig. (3-2b). The inputs and outputs of the symbol in Fig. (3-2a) correspond to
"ports" in the detail in Fig. (3-2b). The ports must have the same names as the inputs and

outputs, but need not be in the same position. Note that in addition to the parameter list, other

blocks are included in the detail. This is the characteristic difference between hierarchical and

primitive blocks.

The concept of hierarchy is very useful in system design, and is an integral part of the

BDE. On the top level of the hierarchy is the system to be simulated. The system consists of

several blocks. These blocks may contain sub-systems (hierarchical blocks), which are a lower

level of hierarchy. At the lowest level of the hierarchy are blocks that point directly to C or

Fortran code, i.e. primitive blocks. One useful aspect of hierarchy is that a system can be easily

transformed into a hierarchical block. This block may then be used as a component of a larger

system, and the process continued until the overall system is completed.

Experience has shown that judicious use of all three types of blocks provides the most

efficient simulations, both in terms of system complexity and simulation execution time. By

taking advantage of the hierarchical nature of SPW, systems can be modularized, greatly

simplifying their analysis.
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3.1.2 Exported Parameters

A very useful feature of the BDE is the exportation of parameters. This enables the

designer to set the value of a parameter equal to a function of other parameters. Often, several

different blocks have a common parameter, and this allows all common parameters to be

exported to a single parameter on the top level of hierarchy. Rather than "pushing" into each

block and changing each parameter, the designer need only change the parameter on the top

level and all of the exported parameters will assume that value.

3.1.3 On-Line Documentation

On-line help may be obtained in the BDE by selecting HELP on the EZ-Menu [Comd9l]

and then pointing to the desired object. A text message containing the required documentation

appears in a "viewport." This documentation is available for all SPW library blocks in three

forms: 1) help on the block usage, 2) help on the block's input and output, and 3) help on the

block's parameters. The first type of help is obtained by pointing to the block itself after

selecting HELP on the EZ-Menu. The second type is obtained by pointing to any input or

output port of the block. The third type is obtained by pushing into the block and pointing to

any parameter. On-line help has also been provided for all blocks designed and implemented

for use in the two simulations presented in the following sections2.

A complete listing of the help screens for each user block used to implement the simulations discussed herein
is provided in Volume I1 of this report. For these SPW blocks all three types of help screens described above have
been combined into the block usage help screen.
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3.2 The Conventional QPSK Simulation

The purpose of this section is to provide an overview of the SPW simulation of a

conventional QPSK communications system. An overview of the conventional QPSK baseband

simulation is shown in Fig. (3-3). The simulation contains: a) a standard QPSK modulator

which transmits a two-dimensional (I and Q) signal, b) a channel which contains multiple

Continuous Wave (CW) jammers, a Gaussian Partial Band (PB) jammer, and background

thermal (Gaussian) noise, and c) either the standard linear receiver implemented via a two-

dimensional correlator or one of the memoryless LO processor implementations followed by the

correlator.

The components of a typical memoryless LO processor block are shown in Fig. (3-4).

The first operation performed in the LO processor block is rectangular to polar conversion which

provides the magnitude and phase of the received signal. Next, the corresponding approximation

(eg. traditional Histogram, EBH, FSA, etc.) of the received magnitude PDF is constructed.

Through the use of the PDF approximation, in conjunction with the received magnitude, the LO

nonlinearity is computed. Finally, the values for the LO nonlinear transform and the phase of

the received signal are converted back to rectangular form. Thus, the output of the LO

processor block is (g,,g ,) = Q(,()cosO,,g(r,)sinO,), where &(.) is the LO MNT estimate.

Using (,gQ), the two-dimensional correlator generates the LO decision statistic of Eq.

(1-5) discussed in Section 1. 1, repeated here for convenience:

N

Imn {s,.g(r)cosOk+sIg(rk)sinO,} (3-)
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3.3 The QPSK DSSS Simulation

The simulation of a baseband QPSK DSSS communication system with LO processing

has been implemented using the SPW software package. An overview of the entire system is

provided in Fig. (3-5). It consists of: a) a transmitter, with output (>y,•), containing a QPSK

source, whose output is given by s..), modulated by a Pseudo-Noise (PN) sequence

generator producing a code sequence vector c, b) a channel consisting of additive thermal (white

Gaussian) noise, multiple CW jammers, and a Gaussian PB jammer, and c) a receiver, with

input (r,,Q,), that includes the LO MNT which outputs the signal vector (g&,g,), the PN

sequence despreading source (perfect synchronization of transmitter and receiver is assumed)

which when multiplied with the output of the LO MNT produces the ordered vector pair (C','Q),

and a two-dimensional correlator.

LO QPSK DSSS Simulation

Transm i ter Canne l Peceiver

L< I- OPusuc -
LO MNT

N~PNSource Source s

Figure (3-5)
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3.3.1 Theoretical Justification

To construct the LO receiver for the QPSK DSSS system it is necessary to implement

the LO decision statistic of Eq. (1-5), repeated here for convenience
N

l4,=, {s,. g(r,) cosO. *sg.. g(r,) sink,} (3-2)

Referring to Fig. (3-5), the k! sample of the baseband output of the QPSK DSSS transmitter is

given by (.,,Q)-=(c s , ,IsQ.), where c=-- [c ,,c2, .. ,ck,, ... cNT is the PN sequence which is fixed

for a given signal period, and (s,.,sQ.) is the ke sample of the m* possible transmitted signal

pair. Since cA. (ck, sC, sQ) = (s,,so) for the DSSS system, there is a one-to-one and invertible

mapping of s,.. to XI.. The process of memoryless LO detection of the received signal can be

implemented by correlating the output of the LO MNT, (g,4), over the set of

{(X ,,X)}, mm = 1,...,M, choosing the one corresponding to the largest decision statistic, I,, and

mapping the signal vector (X.,X.) to the possible information signal vector (s., sQ). This

procedure may be stated more concisely as:

Choose the information signal-(s.,sQ) corresponding to the signal vector ( 7., XQ) which

maximizes:

N

1l =E {X,. g(rk) coSok +XQ .g(rd sin8 k (-3

The receiver implementation of Eq. (3-3) is termed the canonical form LO receiver since it has

the same form as Eq. (3-2). The block diagram for the LO QPSK DSSS receiver

implementation given by Eq. (3-3) is shown in Fig. (3-6).
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An alternate LO receiver implementation requiring only a slight modification to the

standard correlator-based linear receiver can be developed by noting that Eq. (3-3) may be

written as
N

kIV
E, (X I•. {. g(r,) cosO +X )•. g( r) sinO.}

( cks, .g(r,)cos6, +Cs,.,g(r,)sinOk} (3-4)
N

( {s,. [c.g(rk)coso] +s,..[cg(r,)sinO,]}
k-I

Thus, the LO QPSK DSSS receiver can be implemented by first multiplying the output of the

LO MNT by the PN sequence, and then correlating over the set of possible information signals

{fa."s)}, m=l,... ,M. Note that this LO receiver may be easily implemented by placing the

LO MNT before the despreading in a linear QPSK DSSS receiver. The resulting alternate, or

non-canonical form, LO QPSK DSSS receiver implementation can be summarized in the

following algorithm:

Choose the information signal (so.) which maximizes
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N

I i (S," c~g(4) coOSG+s~ dc~g(r~) sinO4 (3-5)

Due to its modular nature, the LO receiver algorithm given by Eq. (3-5) was implemented in

the SPW QPSK DSSS simulation shown in Fig. (3-5).

The non-canonical form LO receiver algorithm of Eq. (3-5) has two major advantages

over the canonical form algorithm of Eq. (3-3). First, it has a more modular structure than the

canonical algorithm and can be easily implemented by inserting the LO MNT into a standard

correlator based QPSK DSSS linear receiver. Second, it is more flexible than the canonical

algorithm in the sense that the PN spreading sequence can be modified without requiring new

reference signals to be stored for use by the correlator. However, the canonical algorithm of

Eq. (3-3) has the advantage of being a potentially faster implementation than the non-canonical

algorithm, since only one multiplication is required (i.e. multiplying the output of the LO MNT

by the stored reference signals), whereas the non-canonical algorithm requires two

multiplications (i.e. multiplication of the output of the LO MNT by the PN sequence, and then

multiplying the result by the stored reference signals). System requirements, e.g. speed versus

flexibility, will dictate which LO receiver implementation is more desirable.
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4. SIMULATION RESULTS FOR THE MEMORYLESS LOCALLY OPTIMAL

PROCESSING ALGORITHMS

This section presents the simulation results for the conventional QPSK and DSSS QPSK

systems with memoryless LO processing discussed in Sections 3.2 and 3.3. The following

memoryless LO algorithms were examined in each system: Histogram, EBH, and FSA. In

addition, the second order M-Interval Polynomial Approximation (MIPA) algorithm [11191,

11i93] was used in conjunction with the DSSS QPSK system. The probability of bit error, Pb,

performance of each system and LO algorithm combination was computed for a multitude of

jamming scenarios. When useful, tte Pb for a standard linear system was also calculated for the

purpose of comparison. By examining the operation of the LO algorithms in many different

environments, it is possible to determine basic characteristics which govern performance, and

ultimately which system/LO algorithm configuration is optimal for a given jamming scenario.

This section is organized in the following manner. First, the simulation results for each LO

algorithm in the conventional QPSK system are addressed. Next, the results are presented for

the QPSK DSSS system when subjected to three different types ofjammers, namely a single CW

jammer, two CW jammers, and a PB jammer. Finally, the performance of both systems are

compared to determine the effects of the SS system's processing gain on the LO processor.

4.1 Results for the Conventional QPSK System - The Single CW Jammer Scenario

The results for the conventional QPSK system when subjected to a single CW jammer

are presented in this section. The user-definable parameters for each LO algorithm are shown

in Table 4-1. As may be seen, the parameters B (number of bins), R, (Symbol Rate)', N,

(Samples per Symbol), and N (Samples per Correlation) are common to all the memoryless LO

algorithms.

All other simulation parameters of interest are normalized to R,. Thus, the value chosen for R, is arbitrary.
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Parameters for the LO Algorithms

LO Q lgsuim User-Definable Parameters

1) Histogram R, - Symbol Rate
2) EBH B - Number of Bins
3) MIPA (21 Order) N, - Samples per Symbol

N - Samples per Correlation (equivalent
to samples per PDF approximation)

4) FSA R, - Symbol Rate
P - Order of Approximation
B - Number of Bins
N, - Samples per Symbol
N - Samples per Correlation (equivalent

to samples per PDF approximation)

Table 4-1

Before it is possible to thoroughly test each LO algorithm for a variety of Jammer-to-

Signal power ratio (JIS), CW jammer frequency relative to the symbol rate (f/R,), and bit energy

to signal thermal (Gaussian) background noise power ratio (EbNo) values2 , it was necessary to

determine values for B, N,, and N. In addition, P (Order of Approximation) must be chosen for

the FSA LO algorithm. To determine a value of N, that would be used in all subsequent

analyses, the Pb for both the Histogram and EBH methods were computed using the system

settings shown in Table 4-2, and the results are presented in Fig. (4-1), with the region

15 _ N, - 50 emphasized in Fig. (4-2). Note that the rows are reversed in Fig. (4-2) for clarity.

As may be seen from the figures, Pb for the conventional QPSK system with LO processing

decreases as N, increases. Using these results, and accounting for processing limitations, N, -

20 was used for all subsequent simulations.

2 In this report, the values for J/S and EWINo are specified per channel.
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Simulation Parameters To choose values for B and N, the Pb was computed for

the Histogram and EBH methods for a range of B and N values
Parameter Value

when the system was subjected to a single CW jammer with JIS
N, 5 to 50 = 30 dB. The values for the system parameters used in this

R, 0.1 analysis are given in Table 4-3, and the results for the

B 64 Histogram and EBH methods are displayed in Figs. (4-3) and
N 50,40 (44), respectively. The Pb plots indicate that there is a critical

EVNo 10 dB relationship between B and N for both methods. If the chosenN0  0 dBJoS 30 dB value of B is too large for a given value of N the Pb suffers.

f/R, 0.496 Conversely, if the chosen value of N is too small for a given

Symbols per 7,056 value of B, the Pb also increases.

Pb Calculation

Table 4-2

Conventional QPSK System Conventional OPSK System
Histogram and EBH Implementations Histogram and EBH -Implementations

1 1,, -.. , ., , 25 2 3* -J

Samples per Symbol (Symbol Rate -0.1) Samples Per Symbol (Symbol R2te 0.1)

Figure (4-1) Figure (4-2)
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Simulation Parameters

ParameterVau

B 8 to 128
N 5,000 to Conventional QPSK System

50,000 Histogram Implementation

R, 0.05
N, 20

Eb/NO 10 dB
No 0 dB . LP"
J/S 30 dB am-/

f/IR, 0.496 -

Symbols per 5,000 .. 600 iM

Pb Calculation ..ao",co,,,,.,"

Figure (4-3)
Table 4-3

Conventional QPSK System
EBH Implementation

1.33

1 ,6
A'. .U • I

10980 i ssee a ssUw . s Moe ism ade.a ."M

Samples per C.rela•• nOa

Fgure (4-4)
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The main reason for these relationships is that in both the Histogram and EBH methods,

the total number of samples, N, is separated into B bins. As B increases for a given N, the

average number of samples in each bin decreases. If this average number becomes too small,

the PDF approximation will not be a good estimate of the actual PDF, and the resulting MNT

will be inaccurate. For all subsequent analyses, the value of N was set to N = 50, 000 and the

effect of varying B on the Pb was examined.

With the basic analysis of the LO processor parameters completed, it was possible to

examine its performance relative to a variety of channel parameters, including: JIS, f/R,, and

E/No. In the first simulation, the relationships between these three parameters and B were

examined for the Histogram and EBH methods. For the system parameters in Table 4-4, the

following analyses are plotted: 1) for Eb/NO = 0 dB, Figs. (4-5) and (4-6) show the Pb relative

to JIS and P/R, I for B = 8, Figs. (4-7) and (4-8) show the Pb relative to J/S and f/R, for B =

32, and Figs. (4-9) and (4-10) show Pb relative to JIS andf/R5 for B = 128; 2) for Eb/No = 10

dB, Figs. (4-11) and (4-12) show the Pb relative to JIS and f7R,, for B = 8, Figs. (4-13) and

(4-14) show the Pb relative to J/S and fI1/R for B = 32, and Figs. (4-15) and (4-16) show Pb

relative to JIS and fj/R, for B = 128. For a baseline measurement, a plot of Pb fnr a

conventional linear QPSK system with Eb/NO = 10 dB is provided in Fig. (4-17).

The first observation that can be made from these figures is that there is a clearly defined

region in which the LO processor improves performance. In all the figures, this region begins

around JIS > 20 dB andfj/R, > 0.2. Note that the relationship between Pb and f/R, implies

that the performance of the LO processor improves as the CW jammer moves farther away from

the center of the main lobe bandwidth of the information signal, and only a slight performance

improvement is seen as the CW jammer moves towards the center of the main lobe. The next

' The range offjR, was chosen to be 0.00496 to 0.496, rather than 0.005 to 0.5, so that samples of the CW
jammer taken in successive periods would not have the same value. This produces a histogram that has a relatively
"smooth" shape, rather than one that has a few bins of high probability, and a majority with zero probability.
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observation is that increasing B only decreases Pb up to a point, after which the Pb increases.

Furthermore, the effects of varying B seem to be more pronounced at low EJINO than at high

EbINO. This can be seen more clearly in Fig. (4-18) to (4-21) where Pb is shown for B and f/R,

varying.

Another interesting phenomenon that can be observed is that while JIS must be large for

good performance, the LO processor is able to reduce the Pb more substantially in a high E61 No

environment (e.g. 10 dB) than in a low E/NO environment (e.g. 0 dB). This indicates that for

the best LO processor performance, the signal must be much weaker than the CW jammer, but

at the same time larger than the background thermal (white Gaussian) noise.

Simulation Parameters Finally, in comparing the results for the

Histogram method to the EBH method for the
ParaeterValue

parameters in Table 4-4, it may be observed that

J/S 0 to 50 dB the Histogram method has a slightly lower Pb thanf/R, 0.00496 to
0.496 the EBH method for most cases in the region of

EbIN0o Oto 10 dB interest. It must be stressed, however, that the
B 8 to 128

value of N, was N, = 20 for all simulation runs in

R, 0.05 Figs. (4-5) to (4-16). But from Fig. (4-2) it may
N, 20N 50,000 be seen that while the Histogram method performs

better than the EBH method for low values of N,
No 0 dB the EBH method produces a lower Pb for higher

Symbols per 5,000 values of N,. Thus, by increasing N, to a value
Pb Calculation larger than 20, it may be possible to improve the

Table 4-4 performance of the EBH method such that it will

have a lower Pb than the Histogram method for

most cases in the region of interest.
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Histogram Method - Eb/NO=O dB, B=8 EBH Method - Eb/NO0O dB, B=8
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Conventional QPSK System Conventional QPSK System
Histogram Method - Eb/NO0-0 dB, B 128 EBH Method - Eb/NO-O dB, B -128
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Conventional QPSK System Conventional OPSK System
Histogram Method - Eb/NO0 I0 dB, B=32 EBH Method - Eb/NO= I0 dB, B-32
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The Pb performance for the histogram

implementation of the FSA LO algorithm in

conjunction with the conventional QPSK system

was also investigated. Before examining the Pb
Conventional QPSK System

EBH Method - Eb/NO= 10dB, J/S=50dB performance with respect to J./S,f/R, and EbNO,

it was necessary to determine "good" values for

P and B. Figure (4-22) shows the Pb,

performance of the FSA method relative to P and

B for a single CW jammer having i/S = 30 dB

.,and f/Re = 0.496. The system parameters are

las displayed in Table 4-5. As may be seen from

., ,Fig. (4-22), there is a definite region where the
Nianberaf Bins

FSA order, P, exceeds the histogram resolution,
Figure (4-21) or B. Using these results, and after further

investigation, the values P = 8 and B = 64 were chosen for the subsequent analysis.

Using the knowledge gained in the preceding analysis, the Pb for the histogram

implementation of the FSA method was computed relative to JiS, f/R,, and Eb/NO. The results

are displayed in Figs. (4-23) to (4-25) for the simulation parameters shown in Table 4-6. The

first major observation is that the FSA method is governed by the same region of interest as the

Histogram and EBH methods, namely J/S >_ 20 dB and f/R, > 0.2, and the Pb decreases as

f]/R, increases as before. Since these two observations are the same as those seen in the

Histogram and EBH methods, it may be assumed they are characteristic of the basic LO

processor algorithm and not the result of a specific implementation. One final observation of

interest is that Pb decreases as E1/No increases. Thus, while it is critical that J/S be large enough

for the small-signal assumption to be valid, it is also important that the information signal be

larger than the background thermal (white Gaussian) noise.
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Simulation Parameters

M r Value

P 2 to 20
B 8 to 128
f/R, 0.00496 to

0.496 Conventional QPSK System
FSA Method - J/S-30 dB, fj/Rss0.496

Rx ~~~0.0500A - I
N. 20
N 50,000 , o

Eb 'NO 10 dB, 0.

J/S 30 dB -
No 0 dB 000

Symbols per 5,000
PbCalculation " 4 , . . & , , ,

M•A Ordr

Table 4-5 Figure (4-22)

In comparing all three methods, the Histogram, EBH, and the histogram implementation

of the FSA, it may be observed that all three have approximately the same Pb performance.

This is most likely a result of each method being based on a histogram approximation of the

PDF. Because the parametric implementation of the FSA is not based on an initial histogram

approximation, it is believed that this method will have a lower Pb in the region of interest than

the other LO processor algorithms. This claim will be examined further in future research.
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Simulation Parameters

Paaee Value

J/S 0 to 50 dB
f/R. 0.201376

to 0.496EI/No 0 to 10 dB Conventional QPSK SystemFSA Method - Eb/NO-O dB

p 8
R, 0.05 0.45
N, 20 -
B

0.3$

N 0 dB 02 3
0.2 .299"S1

Symbols per 5,000 0 t10 50 0

P•, Calculation o 13 40

Table 4-6 Figure (4-23)

Conventional QPSK System Conventional QPSK System
FSA Method - Eb/N0=5 dB FSA Method - Eb/NO10- dB

0.4• ,0

~0.3.

"S 0.25,0, A 0 .15,

.20.2JI 0.1, 5.

2 0.1 0.201376 • 0.0o- 0 1
960.29958 0199584

0.0 976 g" 3.49
0 0 10 20 30 40 50 0 t 20 30 40 So

JIS (dM) JIS (aS)

Figure (4-24) Figure (4-25)
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4.2 Results for the QPSK DSSS System

The performance of the QPSK DSSS system was examined for the following overall

jamming scenarios: 1) a single CW jammer, 2) two CW jammers, and 3) a single PB jammer.

4.2.1 The Single CW Jammer Scenario

The results for the QPSK DSSS system when subjected to a single CW jammer are

presented in this section. Except for the addition of a new LO processor parameter, the

Processing Gain (PG), the channel parameters (J/S, f/R,, and Eb/NO) and the LO processor

parameters (R,, N,, N, B, and P) of interest are the same as for the conventional QPSK system.

In this report, PG is defined as the number of chips per information symbol, or in terms of the

other LO parameters:

N,
PG -- -(4-1)

where N, is the number of samples per chip.

The Pb performance of the QPSK DSSS system with LO processing relative to J/S, f/R,,

and PG was examined using the system parameters given in Table 4-7. The values for N,, N,

B, and P were chosen using the knowledge gained through the analysis of the conventional

QPSK system. The organization of the Pb plots is as follows. For the Histogram method, Figs.

(4-26) and (4-27) show the Pb with respect to A/S and f/R, 4 and Figs. (4-28) and (4-29) show

the P. with respect to PG and fi/R,. Similarly, Figs. (4-30) to (4-33), (4-34) to (4-37), and

" Note that in these analyses Pb is plotted versus f/R, forf/R, in the range 0.201376 to 0.496, not 0.00496 to
0.496 as in the results for the conventional QPSK system. Values off/R, less than 0.2 are outside the region of
interest because the Pb is large there.
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(4-38) to (4-41) depict Pb with respect to JiS, PG, and f/R, for the EBH, FSA, and second-order

MIPA (MIPA2) methods, respectively. Comparable results for a standard linear QPSK DSSS

system are provided in Figs. (4-42) to (4-45). From a cursory examination of the Pb plots, three

observations can be made: 1) for f/R, > 0.2 and a given PG, the Pb for almost all LO

processor methods decreases as JIS increases; 2) for J/S > 10 dB and a given PG, the Pb

decreases as f;/R, increases; and 3) for a given J/S and f/R,, the Pb for almost all LO processor

methods decreases as PG increases. These results are consistent with those for the conventional

QPSK system.

Simulation Parameters In comparing across LO processor
methods, the following observations can be made.

Parameter Value
In the region of interest, J/S Ž_ 20 dB and f/R, >

J/S 0 to 50 dB 0.2, all the LO processor methods have roughlyf1R, 0.201376

to 0.496 the same Pb performance characteristics with the
PG 5 to 20 following exceptions: 1) the FSA and MIPA2

R, 0.1 methods perform better than the Histogram and
No 2PG 2 N EBH methods for low J/S (J/S < 10 dB), and 2)N, PG * N,

N 50,400 the Histogram, FSA, and MIPA2 methods perform
B (histogram and EBH) 32(FSA) 64 better than the EBH method when PG and A/S are

(MIPA2) 8 both low (PG . 10, JAS < 10 dB). The second
P (FSA) 8 exception is consistent with the results observed
E1/No 10 dB for the conventional QPSK system, namely that for
N0  0 dB

low N, the Histogram method has a smaller Pb

Symbols per 5,040 than the EBH method, but the converse is true for
Pb Calculation high N,. Future research is required to determine

Table 4-7 the reason(s) for the first exception.
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Histogram QPSK DSSS System Histogram QPSK DSSS System
Probability of Bit Error - PG = 10 Probability of Bit Error - PG - 20

0.12 0.12,

X0.1 0 0.1

O' 0 10 .JIS 0 40dB) 0.496 }' 10 00 307402" S

Figure (4-26) Figure (4-27)

Histogram QPSK DSSS System Histogram QPSK DSSS System
Probability of Bit Error - J/S= 10 dB Probability of Bit Error -JIS=50 dB

aM .004

.-- 0L . 0.201376

0.02 0.29J U 0.02 O1-53

0.0K1"ý 0.397M9 0.39779 M ,

0 0 10 20 3 0 s .%0o\z e z 04

10.496 " 0 10 30090 0

Proessing Gain Processing Gain

Figure (4-28) Figure (4-29)
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EBH QPSK DSSS System EBH QPSK DSSS System
Probability of Bit Error- PG = 10 Probability of Bit Error - PG = 20

0.12• 0.12,

iM

0.04.
S0.201376 0.02-

0.25504 0.29954

O0 0.496 0•' 0 0 0 30 4 0.4%
0 10 2 30 40 so 0%4

3/S (M) J/s (M)

Figure (4-30) Figure (4-31)

EBH QPSK DSSS System EBH QPSK DSSS System
Probability of Bit Error J/S10 dB Probability of Bit Error - J/S=50 dB

0.12 0.14,

0o.1 0.o12.

-= o.06- 00

0.0000.04
S 0.04

a0 2S 0.04
O 000.9540 o.o2 o.__58

O,0.39779 0. -2

5 10 15 20 0 10 is 20 0.4% '

Processing Gain Proessing Gain

Figure (4-32) Figure (4-33)
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FSA QPSK DSSS System FSA QPSK DSSS System
Probability of Bit Error - PG = 10 Probability of Bit Error - PG = 20

a...• 0.07

. A .. 0.04Y

0.2013760 .2"5376 0.017

0.39792 ., 01
0.0 0.9 9S O" 0. 0.4916 7

0 10 20 30 40 so0 10 20 30 a96

XIS (dB) 
0 1 S (dB)

Figure (4-34) Figure (4-35)

FSA QPSK DSSS System FSA QPSK DSSS System
Probability of Bit Error - J/S= 10 dB Probability of Bit Error - J/S=50 dB

0.1. 0 .14,

00.09
" 0.08.ot. 0.02Y

S0.04 .. 00.030

0.05Y .

0.002013760.0 -0• .201376

0 0.29954 0.02- 0.299584
. 0.01 0.397792 IV 0.397M

5 10 15 20 0.496 000 0.40% 25 I0 Is 20
Processing Gain Processing Gain

Figure (4-36) Figure (4-37)
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Second-Order MIPA QPSK DSSS System Second-Order MIPA QPSK DSSS System
Probability of Bit Error - PG 10 Probability of Bit Error - PG = 20

0.122 0.1 0000 0

06 049 o.

•0.08Y 0.0 0.07.

2 -2013760.2"SU~ • 0.0230217
i. 0020.9938 0.01. 0.2 &

0 0 1 2D 30 40 so 4, 7792 •
J/S (0) 0 10 20 30 40 50

J/S (dB)

Figure (4-38) Figure (4-39)

Second-Order MIPA QPSK DSSS System Second-Order MIPA QPSK DSSS System
Probability of Bit Error - J/S= 10 dB Probability of Bit Error - J/S=50 dB

000.11" /00,0.1

So.2.// .4

0.04/ . 0.06
0.08.///1 S0.07 -. 1/ 0•. 1 ~

:•0.0.5. o 
00

"-- 0 .o4./-_ 0.06. 0

0.203376 .02 201

7792 0.979254

5 00 is 20.0 0.496Prcssn ai 0 15 20
Processing Gain Processing Gain

Figure (4-40) Figure (4-41)
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Linear QPSK DSSS System Linear QPSK DSSS System
Probability of Bit Error - PG - 10 Probability of Bit Error - PG - 20

- j. " 00 0.6 o 0,

0.2S

M.0.1 0 496/

S04 039772 q .000,,
000 0 201.,76 0 -?

0 10 20 30 40 so

J/S (dB) J/S (dM)

Figure (4-42) Figure (4-43)

Linear QPSK DSSS System Linear QPSK DSSS System
Probability of Bit Error - J/S--10 dB Probability of Bit Error - J/S=50 dB

00.5
0Z 0.499

.I 4wX 0.494

E i. 0.4944

O. 0.496 - 0.493 0.4960.397792 0397792
0.299584 04920995

0.0s 10 15 20 .201376 0.491 15 20 1376

Processing Gain Processing Gain

Figure (4-44) Figure (4-45)
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4.2.2 The Two CW Jammers Scenario

This section presents the results for the QPSK DSSS system using the Histogram and

EBH implementations of the LO nonlinear processor when subjected to two CW jammers. In

this analysis, the first CW jammer was held fixed at JIS (1" CW) = 30 dB and f/R. (1" CW)

= 0.496. The second CW jammer was then varied over the range JIS (2"4 CW) = -20 to 50

dB andf/R, (2" CW) = 0.00406 to 0.406. The remaining system parameters are given in Table

4-8. The Pb performance curves are plotted in Figs. (4-46) and (4-47) for the Histogram and

EBH methods, respectively. As can be seen from the figures, the Pb is small when JIS (2" CW)

is low, and increases as J/S (2" CW) increases. Note however, as J/S (2" CW) grows larger

than J/S (1 CW), i.e. as the second jammer becomes the dominant interferer, the Pb remains

at a high value. This indicates that the absolute values of the A/S for both CWs, as well as the

difference in their magnitudes, determines the Pb performance.

Another observation that can be made in this scenario is that asfi/R, (2" CW) decreases,

the Pb actually decreases. This would seem to contradict the results of the previous sections.

However, a possible reason for this seemingly anomalous case is that as f/R, (2" CW)

decreases, the second CW jammer's frequency spectrum moves farther away from that of the

first CW jammer. Under this hypothesis it appears that the increased frequency spacing between

interferers is not as detrimental to the system as are closely spaced interferers.
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Simulation Parameters

J/S (2* CW) -20 to
50 dB

f/R, (2" CW) 0.00406 to
0.406

Histogram QPSK DSSS System

R, 0.1 Probability of Bit Error
S~2

N, N. * PG 0-
PG 20
N 50,400 ' Oe

B 32

EbINo 10dB o2;: 2

"No 0dB0.22
J/S (ItCW) 30 dB

.20 -10 0 10 20 30 40 50

f/Rz (1* CW) 0.496 J/S (dB) for Scod CW Ismfer

Symbols per 5,040 Figure (4-46)
Pb Calculation

Table 4-8
EBH QPSK DSSS System
Probability of Bit Error

0.4"o
"M035 o

0.2 0.406
0.15..-32%120.15, 0.245224

M0 0.164,36
0 0.05 m00

-4 G.o o2 1 10 20 30 40 5000o 0

J/S (0B) for Second CW Jammer

Figure (4-47)

4-22



4.2.3 The PB Jammer Scenario

This section discusses the Pb performance of the QPSK DSSS system when the channel

interference is a single PB jammer, implemented by passing white Gaussian noise through a

lowpass filter, and white Gaussian background noise. The results shown are for the LO

processor implemented via the Histogram method. Two parameters govern the PB jammer: J/S

andfIR3, wheref, is the lowpass bandwidth (cutoff frequency) of the PB jammer (recall that the

simulation is performed at baseband). The simulation results forf/R. < 1, with the simulation

parameters in Table 4-9, are shown in Figs. (4-48) to (4-50). Figure (4-48) illustrates the

relationship of Pb to JIS and fIR, I for PG = 20 (similar results were observed for PG = 5 to

15 but are not shown here). The plots of Pb with respect to PG andflR, for J/S = -10 and 30

dB are shown in Figs. (4-49) and (4-50), respectively. As may be seen, Pb is small for low

values of J/S (J/S < 0 dB) and increases as J/S increases. In addition, it may be observed that

Pb decreases as PG increases for high J/S, but for low J/S Pb actually increases as PG increases.

Future analysis is required to determine the reason(s) behind this trend. Finally, for a given PG

and JI/S, the Pb is seen to increase as f,/R increases. This indicates that the LO processor

performs well for narrowband interference and worse for wideband interference.

Figures (4-51) to (4-53) depict the Pb plots for f/R1 > 1 with the system parameters

given in Table 4-10. These results confirm that the performance of the LO processor degrades

as the power spectrum of the PB jammer becomes more wideband.

' Unlike the CW jammer, the values for fIR, for the PB jammer may be chosen to be "nice* values, such as
0.2, 0.8, 1.2, etc. Since the PB jammer is implemented by passing white Gaussian noise through a lowpass filter,
the probability of successive samples being identical is small. Thus, any reasonable value off/R, will produce a
histogram that is relatively *smooth."
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Simulation Parameters

Parameter V

J/S -10 to
30 dB

0.2toO.8

R, 0.1 Histogram QPSK DSSS System

Ne 2 PB Jammer - PG - 20

N, Ne * PG
PG 20 - -

N 50,400
B 32- -

Eb/No 10 dB
NO 0 dB

AN

Symbols per 5,040 
$A

Pb Calculation -

Table 4-9 Figure (4-48)

Histogram QPSK DSSS System Histogram QPSK DSSS System

PB Jammer - J/S=-10 dB PB Tammer - J/S=30 dB

am.

-- Ga

Figure (4-49) Figure (4-50)
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Simulation Parameters

J/S -10 to
30 dB

f/R, 1 to 3.5
b

R, 0.1 Histogram QPSK DSSS System

N, 2 PB Jammer- PG 20

N, N,*PG
PG 20
N 50,400
B 32 "Sm a t

EbINo 10 dB .3
No 0 dB

Symbols per 5,040 -" as
Pb Calculation " /Si. J, so

Table 4-10 Figure (4-51)

Histogram QPSK DSSS System Histogram QPSK DSSS System
PB Jammer - J/S=-10 dB PB Jammer - J/S=30 dB

"C -
"A A

o 0
GAS-' 0,• AJ

1,0W I1 GAO a I3 l

?aieigG#in Proad~mn Gain

Figure (4-52) Figure (4-53)
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4.3 Comparison of the Conventional QPSK and QPSK DSSS Systems

To compare the effects of spread spectrum on the LO processor, the Pb performance of

the conventional QPSK and QPSK DSSS systems using the Histogram, EBH, and FSA LO

implementation methods were compared for the single CW jammer scenario. As in previous

simulations, N, for the conventional QPSK system was fixed at N, = 20, and PG = 10 and N,

= 2 were used for the QPSK DSSS system. Figs. (4-54) through (4-59) illustrate the Pb versus

JIS results with f/R, = 0.397792 and 0.496 for each of the three LO processor methods. The

corresponding system parameters are provided in Table 4-11.

Simulation Parameters As may be seen in the figures, the Pb for

the QPSK DSSS system is smaller than that of the
conventional QPSK system for low values of JIS.

J/S 0 to 50 dB However, for larger values of J/S the Pb for the
f/R 5  0.397792and 0.496 two systems is approximately the same. Thus, for
R, 0.1 high values of JIS, the LO processor dominates the
N5 (cony. QPSK) 20N, (QPSK DSSS) 2 improvement in performance. In addition, spread
PG (QPSK DSSS) 10 spectrum can be used to improve performance, and
N 50,400
B (histogram and EBH) 32 provide robustness, at lower values of J/S.

(FSA) 64
P (FSA) 8

E81Vo 10 dB
No 0 dB

Symbols per 5,040
Pb Calculation

Table 4-11
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Comparison of Both Systems Comparison of Both Systems
Histogram Method - fj/Rs-O.397792 EBH Method - fj/Rs=0,397792

6.I6

J/3 (08) J/S (0)

Figure (4-54) Figure (4-55)

Comparison of Both Systems Comparison of Both Systems
FSA Method - fy/Rs=0.397792 Histogram Method.- fj/Rs=0.496

X/S (dB)

Figure (4-56) Figure (4-57)
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Comparison of Both Systems Comparison of Both Systems
EBH Method- fj/Rs=0.496 FSA Method - fj/Rs-0.496

J/ (d0) J/S (d)

Figure (4-58) Figure (4-59)
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4.4 Conclusions

Using the previous analyses, a number of conclusions can be drawn concerning the

optimum use of the memoryless LO processor. When the channel interference consists of a

single CW jammer:

* the memoryless LO processor is only effective in high JIS and high f/R,

environments

* the performance of the LO processor improves as the EV/NO increases

large values of N, should be used

regarding the LO processor implementation methods, for a given value of N, the

value for B should be chosen judiciously such that the average number of samples

in each histogram bin remains large enough so that an accurate approximation of

the PDF is obtained

In the case of two CW jammers, the memoryless LO processor should be used only if one

of the jammers has a relatively low JIS. In addition, the Pb performance improves as the

spectral separation of the CW jammers increases.

If the channel contains a single PB jammer, the memoryless LO processor should only

be used in moderate JIS environments. Also, the PG of the DSSS system must be modified as

the JIS changes.

Finally, it should be noted that all of the results in this section are for the memoryless

LO processor only. Future research should examine the use of LO processors with memory,

and their ability to improve Pb performance, particularly in regions where the memoryless LO

processor is insufficient.
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5. LOCALLY OPTIMAL PROCESSING WITH MEMORY

The LO processors discussed in the previous sections assumed that adjacent samples of

the total channel interference were Independent and Identically Distributed (liD). Using this

assumption, it is possible to obtain the joint PDF of the interference samples as the product of

the individual marginal PDFs. However, the resulting memoryless LO processor does not take

advantage of the wealth of information contained in the interrelationships between adjacent

samples. Thus, a more robust LO processor, of which the memoryless processor is a subset,

can be derived by removing the IID assumption. This results in a processor with memory. Of

particular interest during the contract effort was the derivation of the LO processor with memory

presented in the Robust Digital Adaptive Transceiver (RDAT) report by Charles Stark Draper

Laboratories, Inc. [Drap89]. The following sections present the RDAT theory and methodology,

focusing on the development of the LO detector for one-dimensional (ID) and two-dimensional

(2D) signalling environments. In addition, a particular interference scenario was simulated to

provide further insight into, and a means of verifying, the research presented in the RDAT

report.

5.1 Derivation of the LO Processor with Memory for ID Signalling'

The LO processor with memory for the case of ID signalling is derived in [Drap89] as

the solution to the following radar problem: After translation to baseband, consider the

following two hypotheses:

The notation for all of Section 5 follows the symbology introduced in [Drap89J. When necessary to clarify

the meaning of an equation or expression, notation consistent with this report is also included.
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HI: ;v=svn

where "=(z,.. ] is the vector of received signal samples, -;=[s1 ,...,SJ]r is the vector of

transmitted signal samples and may be written as "v=sew=s[C,...,C¢]r with the set of (cJ's

having amplitudes equal to ± 1 and where s is a constant, nN-[nl,...,nAl is the vector of total

channel noise (thermal noise and jammer) samples, and N is the number of samples per symbol

period. The N-point joint PDF of the channel noise is given by f.(nl). The following

assumptions are made in the derivation:

"* c; and n,,, (and thus s and N) are statistically independent

"* the signal of interest is much weaker than the total channel noise.

The LO processor is derived by considering the standard likelihood ratio test [VanT68]:

H,
f14H,(. H,) > (5-2)

IA .;vH <1

or equivalently

-HiIn(/) =In AfzH'('•WH1)" >H| 7 53

L "0

since th,. natural logarithm is a monotonic function. Using the assumption that the signal and

interference are statistically independent, I becomes
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(5-4)

Taking the natural logarithm of I and using the first order N-dimensional Taylor series expansion

gives the expression

In(I) = ln(f.(4-) - ln(f

[a ai
= n¢f.(,)) - ýIn¢(f,,) "s -In¢(f ) (5-5)

r ]r
where h()h() ....[h(),... L-h(-) is the gradient of h('z,). The expression of Eq. (5-5)d ;v azi oz.V I

is a valid approximation due to the weak signal assumption. Substituting Eq. (5-5) into Eq.

(5-3) results in the following form for the LO detector with memory:

H0

or equivalently

H1L A, ZT-- > n0)(5-7)

H0

where G•=[g1,.-.,g ~ with the nonlinearity at the i' instant, g1(z,), given by
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g,(zi) = - (;n)) (5-8)

5.1.1 Simplification of the LO Processor using Markov Processes

The LO processor of Eq. (5-7) requires the N-point joint PDF of the baseband channel

noise. In practice, it is usually difficult to obtain this PDF either theoretically or through

estimation techniques. However, if it is possible to model the channel noise using Markov

random vectors, then generation of the joint PDF can be greatly simplified.

Recall that by using Bayes rule, an N-point joint PDF, f.(z), of a random vector n may

be written as [Woze65]:

f.,('•) -f f(z I IZ21 .... ZN) zf.(zV[ III...,1ZJ.,)AZ,,I...,1ZN.,)
=f.(zJVZI z,. .. ,1ZN.-1f(zJ.I ZI ,. .. .,ZN.2)f.(zI I,... 4N.2) (5-9)

= f,(z Z,,. . .,Zs.,)fn(zA(. I Z,,I...,IZN.2) ...f4,(42 1 Z,)f (Z,1)

However, if the vector n, is an MI order Markov random vector, then

f,(zj Iz 1,. ...,zj.,) =ffl(zj I ;. .. ,zJ.) (5-10)

In particular, if nv is a first order Markov random vector, then f,,(Z.IZI, ... ,ZJ.I) =f(z Izj.,) and

Eq. (5-9) reduces to

N

f. C) =I f. (z, I zI.,) ($.11)
j-I

with fA(z1 I z) Af (zi).
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Using Eq. (5-11) and assuming nv is a first order Markov random vector, the

nonlinearity at the i* instant in Eq. (5-8) becomes

g~~=~ln(f.(;v)) In flf(z I zi -I
N 1 (5-12)

-E- lna(z, I;_,))

= - a--f-(z, I z..1) - ivf(z,., I zI)
I .i

or equivalently,

g,(z ,) =g ,(z , I z ,.[) .g ,(z ,.1  IZ) 0 Jz , . ) (5-13)

where

g,(z, Iz, 1,)A -- a ln(f,(z,1z5,,)) (5-14)
az1

and

g,(z,., Iz,) A -z aln(fQ(z,. I z,)) (5-15)az,

Thus, for the first order Markov case the general N-point nonlinear processor, g1(z,), becomes

the simplified three point processor, g1(z._,,z1,z1.,), of Eq. (5-13). Finally, by incorporating the

first order Markov nonlinearity of Eq. (5-13) into. Eq. (5-7), the LO processor with memory

reduces to the following expression:
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HI
L= cig,(z, ,,i • > (5-16)-ziz. ) <T

1.1 H0

where g,(Zo,Z,,z 2) a g,(z,z 2) and gNzv.,ZZN,!) a gV(zi.,,ZV).

The LO processor given in Eq. (5-16) for the first order Markov case may be further

simplified to include only two point nonlinearities, g,(z,,zj.), by modifying the correlation

sequence qý in the following manner. Using Eq. (5-13) in Eq. (5-16), L becomes

N

L=•, c [g(zI z.,)+g,(z,.! I0 (z-)]
i.I

Manipulation of the summation indices provides the following system of equations:

N NL= ci g,(zi z,_, + cg,(z,. , I z
i-,I i-I

N N.I

=• cAg,(z, z;,) E c1.gi,.(zI ;z-,)
i-i i-2
N

--• [c~g,(z, I z,_,) .c,., g,.,(z, I z~,.)] (5-18s)

+cgN(z/,,, IZN) -C0g0(ZI Izd)

+C ,,gm(z,,.! Iz,,) -Cogo(Z, I zo)

Using Eq. (5-14) and noting that f.(z•I;-,)af.(zz,) [Woze65], gj(zljzj-j) may be written as:
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• |I 
Il 

i II I I

a+ ..±InI/(z,-1)J (5-19)

a
Tz,

or

g,(z, l z1.,) = g 1(z,,z,.,) (5-20)

where g8(z1,z11j)_ -- n[fj(z,,(ZZ.)]. In addition, a new correlating sequence, C, may be definedaZi

as C +c,- g,_(z 1- z_;) Thus, the 3-point test statistic of Eq. (5-16) reduces to the followingas :t~ct+q.,g,(z,jz,.,)

2-point test statistic 2:

N

L=, e~g,(zj,,z,.) {-
i-i

The resulting expression in Eq. (5-21) is the 2-point equivalent processor discussed in

(Drap89]'.

I The processor given by Eq. (5-21) is derived from results presented in [Drap89] under the assumptio that

ClvgNZv., IZv) =0 and Cogo(Z1 I z0) 0. These conditions can be met by defining CO =0 andg,(z,. 1 IZN) =0
since i= 1, ... , N. This was not explicitly stated in [Drap89].

' There is an error in Figure 2-4 of [Drap89J. The second processor in this figure is the equivalent 2-point

processor. However, the block diagram indicates that three points are necessary. Thus, gj(zi*,,Zj,Z1.1) should be

replaced with gi(Zj,Zj.t).
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5.1.2 Derivation of the Theoretical LO Gain for ID Signalling

It is possible to derive analytical expressions for the performance gain associated with

the LO processor with memory if, under the central limit theorem [Woze65], the statistics of L

are assumed to be Gaussian. Then, the probability of detection, PD, and the probability of false

alarm, P., for the nonlinear receiver are given by [Drap89]:

PD =Erf[- L, (5-22)

and

PF=Erf[YO]L. (5-23)

where < L, > and O'L, are the mean and standard deviation, respectively, of L under hypothesis

H1, <Lo> and a,. are the mean and standard deviation, respectively, of L under H0 , and
I W ,2

Erf(x) = -7 e e'7dx [Drap85]. It can be shown [Drap85,Drap89] that Eqs. (5-22) and (5-23)

are a function of the Signal-to-Noise Ratio (SNR) at the output of the LO processor, SNRAU 4,

which is given by

' The term SNRrAp is used here to be consistent with [Drap89l. In (Drap89], the LO processor with memory

is called the Time Amplitude Processor (TAP), with corresponding output SNR equal to SNRrp..
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I2

SNR <Lt - <Lo>]

SNRTr•,
OIL, (5-24)

SN . = <Lt > -<Lo>j

under hypotheses H, and Ho, respectively. Since it is assumed that ao,, - a, Eq. (5-24) becomes

< > - <Lo> 1-6
SNRTAP[ TPSNRTA

Thus, it is necessary to evaluate the quantities (< L, > - < Lo > ) and or, in order to analytically

specify the performance of the LO receiver.

The following is a sketch of the derivation presented in [Drap89] for the quantity

(<LI > -<LO>). The decision statistic, L, is given by S

L =W Gm( zw) (5-26)

where G is used instead of G to indicate that this is the actual LO processor implementation,

not the theoretically optimum one. The expression for < L, > is given by

1

The I- scale factor is introduced in this equation in [Drap89l as a result of implementing the requiredN
summation for the LO receiver with a standard linear correlator. The effects of this scale factor can be removed
by appropriately modifying the decision threshold.
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where f•H(.) is equivalent to f•€(" ) since under hypothesis H, it is assumed that the vector CN

is transmitted. Assuming that the signal is much weaker than the channel interference, f'tH(.)

can be approximated using a Taylor series expansion as

f zjm rzwj j) -.CzN ];)(5-28)

where G,(;) is given by Eqs. (5-7) and (5-8). Substituting Eq. (5-28) into Eq. (5-27) and

identifying terms, it can be shown that

>-< >=J ej [ 'ý) vC; );] f.GfC(; f(-v) d;zvdc-,(-

or

SI 0 -r UT( . .< (5-30)

where < - >-. indicates expectation with respect to • (under Ho) and c%. Next, by assuming

that the correlation matrix of cj is the identity matrix [Drap89], and by using the identity

x-y=Tr(y7T), Eq. (5-30) becomes
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<L> - <Lo> M±Tr<GG>.) (5-31)

where

(5-32)
N

The expression for qL, can be derived as follows. Assuming that <Lo > 0 because

=v under Ho, then o•- <4L2>. Using Eq. (5-26) and noting that ; and "- are

statistically independent under Ho, the expression for <aL> is

<L0>~C =J4 JW~Nccf( fC~CN) v~ ~ (5-33)

Again assuming that the correlation matrix of ; is the identity matrix, Eq. (5-33) reduces to

<L2> = I N•

(5-34)
K,

N

where
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(5-35)

Finally, by substituting Eqs. (5-32) and (5-35) into Eq. (5-25), the output SNR for the

LO receiver becomes

K2

SNRTA, =s 2N".i =s 2 Nk (5-36)
K,

where

Ký,

The expressions for K,, and K, of Eqs. (5-32) and (5-35) may be simplified if the noise

PDF, f,,(.), is spherically symmetric'. In this case, < §g,> , <Ajg > a <gg> and

< R,' >= -< gj> < g 2> for all i and j, and Eqs. (5-32) and (5-35) reduce to

K.= <ag> (5-38)

and

K-< = 2 > (5-39)

In [Drap89], the assumption of stationarity, not spherical symmetry, is used to obtain the results in Eqs. (5-38)

and (5-39). However. stationarity does not guarantee that < itgi> = < g,> and <g2> = <gjl> for all
i and j, as will be shown through simulation in Section 5.3.
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The gain of the LO receiver relative to a linear receiver may be calculated by dividing

Eq. (5-36) by the output SNR for a linear receiver. The output SNR for a linear receiver,

SNRL8, may be computed by substituting ; for O(v) in Eqs. (5-32) and (5-35), and using the

result in Eq. (5-36). This gives the expression

SNR,,R = S-N (5-40)
2an

where o0, is the variance of the total'channel noise. Dividing Eq. (5-36) by Eq. (5-40), the

resulting gain of the LO receiver relative to a linear receiver is given by

Gr,2 SNR 2  
2  (541)

SNRL - K,

The following is a summary of the assumptions made in the derivation of SNRTrAJ and GTA,.

"* the signal of interest is much weaker than the total channel noise

"* the statistics of L are Gaussian

L-,' = rL,

< <Lo> =0, and thus 0,= <L.>

the individual samples of cN are uncorrelated

the vectors ;v and cN are independent under hypothesis Ho.

5.2 Derivation of the LO Processor with Memory for 2D Signalling

Similar to the case of ID signalling, the LO processor with memory for 2D signalling

is derived in [Drap89] as the solution to the following radar problem: After translation of the
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I and Q channels to baseband, consider the following two hypotheses:

H,: x,=Scos(a,÷O)+n,,
Yi .Ssin(a÷O) + n, (5-42)

H0: xi -- n,
yi = ny,

where (x,,y) is the sample pair of the I and Q channels at the i' instant, a, is the ill sample of

the information sequence,(phase modulation is assumed), S and 0 are unknown amplitude and

phase components associated with the channel, and (n.,,ny) is the sample pair of the total noise

in the I-and Q channels at the i± instant. The following assumptions are made in the derivation

of the LO processor:

"* a1 is independent of S and 0

" a is independent of n,, and ny,

"* S and 0 are independent of n., and ny,

"* the underlying random noise process, n(t), which when sampled in the I and Q channels

produces n,, and ny,, is stationary and has zero mean

"* the signal of interest is much weaker than the total channel noise.

The received signal under hypothesis H, of Eq. (5-42) can be written in a more compact form:

R, = Si + n, (5-43)

where R"=[ x, yilr, j = T(1c) "(S,0) with

T(S,6) = Se(0) = S(cos(O) sin(O)]T  (5.44)

representing the unknown parameters, and
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)[cos(,) -sin(a) (5-45)
T sin(c() cos(c,,) J

representing the known parameters. The matrix 71a,) of Eq. (5-45) has the following useful

properties:

* T"(cv•) uTT(ct)

* 7T(-q) uTT(c), and

* l(t,) T(ca) = T(ai -.c)

The LO processor is derived from the standard likelihood ratio test [VanT68]:

- - HI
f,,(R,,...,R,,HI) >(

where N is the number of samples per signal period. Using the assumptions outlined at the

beginning of Section 5.2, the conditional PDF can be written as

f (,...')= Jffa(R-•S'''RN- S] 6)fs,('H,)d' (5-47)

T

where f.(.) is the joint PDF of n, i= 1,...,N, and conditioning on HI implies that a, is known.

Also, from Eq. (5-42), f,(.) is given by

f.,,,.(R, ..... ,isI Ho) =f.C(•,,..... R,) (5-48)

Using Eqs. (5-47) and (5-48) in Eq. (5-46), the likelihood ratio becomes
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(5-49)
3 I (5)fd., (T5 H)dS"

where

(5-S0)

indicates the dependence of the likelihood ratio on 5, i.e. on the unknown amplitude and phase

terms. Assuming that the desired signal, S,, is much weaker than the channel noise, n•, the

expression for I(M) may be approximated via a multidimensional Taylor series expansion as

1(-6) I, 1• -k"M (5-51)

where £ is a [2x 1] vector defined as

-A _ - •, T (,) T ( .) (5-52)J'.(R,,...,R-') ,., a)?,

and M is the [2x2] matrix defined as

I V
MA - 1=- F Tc, ... 

7 c, (5-53)
f(R,,..-.,,R) ,., -1 a, a8 R(j

Since the second order term, . MW, is on the order of II 2 A T", M is replaced by its
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average value [Drap89], M, given by

M f R 1)I- . R (5-54)

resulting in the following approximation of Eq. (5-51):

2

5.2.1 Statistics for the LO Likelihood Ratio Assuming Known Signal Amplitude

and Phase Offset

An interesting result may be observed if the likelihood ratio of Eq. (5-55) is examined

for a known T. If 7 is known, then the likelihood ratio of Eq. (5-49) reduces to I= 1(6) and

the likelihood ratio test becomes

H1

Ho

An equivalent test statistic, as discussed in [Drap89], is

H,
e ela) > e"r (5-57)

Ho

Furthermore, the expression in Eq. (5-55) for I(6) may be written in a slightly different fashion

by "completing the square" to yield
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Ils)M I- I)M(L-MS) + L IMILI-I

In addition, if the threshold, y, is assumed to small, the approximation

V = I ÷-y (5-59)

may be used in Eq. (5-57). Finally, substituting Eqs. (5-58) and (5-59) into Eq. (5-57), and

rearranging terms, yields the equivalent likelihood ratio test

<x Mb.M ) > ' (5 -60)
Ir l- - <7

exp [- LM HO

As may be seen, the likelihood ratio is a functior of L. Since the likelihood ratio is defined as

a ratio of two PDFs, Eq. (5-60) may be interpreted as

H,fL,-L1H,) > (5-61)

fL(-L IHo) <

where, from Eq. (5-60), fL.(LI H,) is a Gaussian PDF with mean equal to Ma, fL(L HO) is a

Gaussian PDF with zero mean, and both have a covariance matrix equal to Mt. In this context,

the decision statistic L may be considered to be a Gaussian random vector under both the

hypotheses, H, and Ho. Thus, the development of Eq. (5-60) provides another argument, in

addition to the central limit theorem, that the statistics of L are Gaussian.
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5.2.2 Development of the LO Likelihood Ratio Assuming an Unknown Nonrandom

Signal Amplitude and a Random Phase Offset

The most useful scenario to examine is when the signal amplitude is unknown, but not

necessarily random, and the phase offset is a random variable. In this case, H, becomes a

composite hypothesis [VanT68] because the overall problem is still a binary detection problem,

but the received signal under H, is a function of a random variable, 0, and an unknown albeit

nonrandom parameter S. Assuming S is a known parameter for the moment, the likelihood ratio

for this scenario is given by [VanT68]

f , I , ( K ......go V H ) ( 5 -6 2 )

[ fH(-R,,....-.,RNIO,HJ)feI(OIHI)dO

Now, for the case when S is unknown, it is intuitively obvious that the detector with the best

performance will be one that is able to measure S perfectly and then use this value in the

optimum likelihood ratio test. However, in most cases this type of detector is unrealizable due

to errors caused by the channel noise. Thus. one logical method for constructing the likelihood

ratio is to first e!:imate S and then use this estimate in the likelihood ratio test as if it were

exact. One possible estimator for S is the Maximum Likelihood Estimate (MLE), denoted by

S,,. The value of S., is equal to the value of S which maximizes f,,,(X, .... ,RIS) ', or in other

words, S,, is the value of S most likely to have produced the given value of the received signal

vector. Using the above argument, one can construct the Generalized Likelihood Ratio (GLR)

[VanT68], which in this case is

7 This is the reason why one of the main focal points of Section 3.2.2.2.1 of [Drap89] is determining the value
of S which maximizes the decision statistic, I.
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fr ls.H,(R,, .. ,'RN I 31H,) I s.1,

frjj.(Rj,.... ,, I H)

f,,.,(R,,...,RNIHO)(333max frjs.Hi(RII...RISHI)

Using the development of Eq. (5-63), Eq. (5-62) can be modified to yield the GLR for the case

of unknown nonrandom signal amplitude and random phase offset

max j v H('R,..'.RNIO.SH 1)fs sH(OGISHI)d)s I rf5H"I* (5-64)

A, 91ff.(.l,..., R-YYO

But fSH,,(R-',....•,NIO.S,H,) =f,.,(R, -S,.....RNSI ) and frtH.(R,,....l 0 H0 ) =f (R ,...,R').

Also, f.OSH,) =f 1 H 1,(-) since S and 0 are assumed to be statistically independent. Thus

s nj (R,-S,...,R•vSýj)i= max ___ I ff. __ d1 (H-_

S N)

= <max I(SO) >
S

where < • >, indicates expectation with respeL, to 0.

Substituting Eq. (5-44) into Eq. (5-51) yields the following LO expression for /(b):
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1(-) =I(S,O) =1 + se(O)TL- lS2eO)TM((O) (5.6

Provided that M> 0, the maximum of 1(S,O) with respect to S occurs when

s --s "(o) -_ _o)r (5-67)
40O)TM ,R

Substituting Eq. (5-67) into Eq. (5-66) produces the expression

I (e•o)'T)• (5-68)
max l(S,8) =l(S ,0) = I +
S 2 709):M--e(O)

Using Eq. (5-68) in Eq. (5-65) yields the generalized likelihood ratio test

H,

< ((0)r-) 2> > < 7(o)Trd7(6)>, (5-69)

where -=y - I. Using the identity

<'(0)TM,(0)>_=Tr[Ml• <7e(O)7(o) T> ,] (5-70)

and assuming that 0 is uniformly distributed over the interval [0,2x) yields the result

<RB)TM"RO) > oTrjfM <eO)7(o)T>j,]
(5-71)

since <e7(O)'7(o)T>, is a two dimensional identity matrix. Similarly, it can be shown tha:

< (e(O)TE)2 > =OT II1TI12  (5-72)

Substituting Eqs. (5-71) and (5-72) in Eq. (5-69) gives the expression

5-21



H!

i l 2>. (5-73)
2 T4M<J

Finally, recalling the discussion in Section 5.2. 1, M may be though of as the covariance matrix

of T, and as such

Tr[M,=TF < !'T>,>

(5-74)

A< 1101H2>1
where < • >- indicates expectation with respect to the received signal under H0 (the channel

noise) '. Thus, the resulting LO likelihood ratio test for the case of an unknown nonrandom

signal amplitude and a random phase offset is

H,
T 2II > (5-75)

2 < llToI12> <)
HO

5.2.3 Derivation of the Theoretical LO Gain for 2D Signalling

The performance measures of interest, as in the case for ID signalling, are PD and PF.

Similar to the ID signalling case, and discussed in [Drap85], the output signal to noise ratio,

'This result is presented in [Drap89]. Note that for Eq. (5-74) to be true, the covariance matrix of L under

H, must be approximately equal to the covariance matrix of L under H0, and the mean of L under H0 must be
approximately equal to the zero vector. These assumptions were not explicitly stated in [Drap89].
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SNRTAJ, of the LO processor determines the performance. SNRr Apis given by the expression

[Drap89]9

SANRTEA E <T" IT> - <E IT0F> 112 (5-76)

TP< <111 0112>

where < - > represents expectation with respect to the information sequence and the received

signal under hypothesis Ho or H, as required, and El . }- indicates expectation with respect to

5".

As indicated in Eq. (5-76), the terms required to evaluate SNRr•, are calculated given 5,

and then the result is averaged with respect to S, or 0, or both depending on the given scenario.

Recalling Eq. (5-52), the expression for " may be written as

N

IV

where G•(R,,...,R",) represents the implemented/approximated version of

- 8f,(R,,.... =R (5-78)f .. ,...,Rv .R

in Eq. (5-52). Since a,, T, and •,, are independent, and since the received signal under

hypothesis H, is a function of all three of these variables, the expression for <LI 5> may be

written as

'Note that in [Drap891 the required conditioning on 'Y was omitted.
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< L;l5>jt-f fi ,. ,,RNa ,l )dR,...dRda

(5-79)

where ,, = [a1 ,... aN]. Assuming that the signal is much weaker than the channel noise, a first

order multidimensional Taylor series expansion off,(.) may be used, resulting in the expression

s (5-so1
f ~ ~ ~ f (RS1 UTCI ....,R SN)) 7rf(I,.N [j T(cx) (0)J (8)

j-1

where

Using Eqs. (5-77) and (5-80) in Eq. (5-79), and identifying the term that represents

< L'o IS> -= <L 0 >, yields the following result

< EtIlT> - <E,,ol W> =-sNK,.-(O) (5-82)

where Km is the [2x2] matrix defined as

I i" ! T T(ajj (5-83)

where < - > R.ý, indicates expectation with respect to the received signal and a.0. Since in the

approximation of Eq. (5-80), the received signal is assumed to be nearly equal to the noise, andii

and a, are assumed to be independent, Eq. (5-83) may be written as

5-24



IV N

Finally, if it is assumed that a, is independent of a,, and that a, is uniformly distributed over

the region (0,21r), then the expression for K, simplifies to

K. 1 <Tr(ca) <C iT>lj,)> ;(.-)

The expression for < 11 oll2> is given by:

< [Z0112> = < III'°1121"> = J J IITI OfN(t,,.'R"")f"C'U.N)d'Rt'"dffdt (5-86)

Substituting Eq. (5-77) into Eq. (5-86) yields the following expression for < 20 >112>

< 11I-ol11l2> = NK,, (5-87)

where Kv is the scalar parameter defined as

N V A

K, <G/r71a~) TT(ctj)dj > '; (5-88)
Wi-i j-l

Again, since i is independent of cti, and if it is assumed that ct, is independent of a, withoa

uniformly distributed over the region [0,27r), the Eq. (5-88) reduces to

1N (5-89)K,=• G •>

The expressions for Km and K, of Eqs. (5-85) and (5-89) may be simplified if the noise
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PDF, f.(-) is spherically symmetric ". In this case, <eir 1T> - < djZT> A <( r> and

< > = < ( > -4 < 0 T 0 > for all i and j, and Eqs. (5-85) and (5-89) reduce to

K. = < 6,-T> (5-90)

and

K~<GTG>(5-91)

Finally, substituting Eqs. (5-82) and (5-87) into Eq. (5-76) yields the following

expression for SNRTAp:

SNRT., = -ES2K 1,.AO) U 2}, (5-92)

For the case when S is deterministic and 0 is uniform over [0,21r), Eq. (5-92) becomes

2.r

-N A S2N - I TK.TK. 7dO (5-93)21r

or

SNRT4p= SIV [ Tr K,. K w . ." .] (5-94)

However, since 0 is uniform over (0,27r)

0 In [Drap891, the assumption of stationarity, not spherical symmetry, is used to obtain the results in Eqs.

(5-90) and (5-91). However, stationarity does not guarantee that <GiGT> = j and

<G Gii> = <G.j- j G> for all i and j, as will be shown through simulation in Section 5.3.
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2T

1 -(5-95)

Thus, Eq. (5-94) reduces to

SNRAP=SzN T[K. KI] (S-96)
2K,

The theoretical gain of the LO processor relative to a linear receiver, Gr. 4 -, may be

computed by taking the ratio of SNRTrp to the output SNR of a linear receiver, SNRJ,. The

expression for SNRLJ is calculated by using 6, = [x, yj• to evaluate K. and K, in Eq. (5-96).

Evaluating < G;•jr>I in Eq. (5-84) for G, = (x,,yiIr yields

<,-j J>,=_ CQ(RI'"... RdRI'""d'Rv (5-97)

where

Xi Xi

a(,..,# =xi €yj (5-98)

y a 9xj ' 3 yj

Evaluating the two off-diagonal terms, and assuming that the tails of f.(.) approach zero as xj

and y, approach + , yields
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~af,(R yJ___ _ A D... v jyj'-- N00

,-em Y, (5-99)

and

- a d... ..dN- j yj f.(R,,...,R) I l _00 dRlA..R.,d jdRJ.,..dR=-0
-co X, (5-100)

For i=j, using integration by parts the diagonal terms of Eq. (5-97) reduce to

00
xi L,_dR, ... d .-R x, f.C,,.. I dl.dy

axi. v y x.f-(R1 , ..,R=) 0 -YI..dyL.i. 1. dyv +J(R1l... WNdRI ... NR~

i a 7.... Y. x.=- co y

Jfn(WI ......RA) dRI1...d41Rv

=1

(5-101)

and
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0

UC(p* ..... RN NR.

(5-102)

Note in the above the tails of f•(.) are assumed to decay to zero as xi and y, approach ± o.

For i;•j, the diagonal terms of Eq. (5-97) reduce to

-iXi dR,-.,Rv =- x, f,(-R,, ... R-) dR,..Rj~tydR~.dR=J -dffl(Rd7...,RN)I x=- IdyjdRj...dRO
R j

ecapt A,

(5-103)

and

-lyi "f' R, .. dR - y f(- ,...,-V) lY ; d'R,.. _dR d.j.dR '

ayj Yin III. R Yj=-0 -'x~ +.d ,=
RR

(5-104)

again since the tails of the channel noise PDF are assumed to decay to zero. Substituting the

results of Eqs. (5-99) through (5-104) into Eq. (5-84), and noting that TT(i) T(oR) is the two

dimensional identity matrix, K,,,m becomes
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K., = •2.2 (5-105)

where

10, i 
(5-106)

To evaluate K,,, G•- -xi,yir is substituted into Eq. (5-88) which yields the expression

K". =r~ 2 *a2+ Y (5- 10

where

2 2... dx-R..... dR for all i

(5-108)

2-- 2= O yyf('R,...,- RN) dR .. dR for all i

Substituting Eq. (5-105) and (5-108) into Eq. (5-96) yields the following result for SNR• •

SNRLR = S (5-109)2

Finally, dividing Eq. (5-96) by (5-109) yields the expression for GT•:

GTAP T _.K:) (5-110)2K,
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5.2.4 Theoretical LO Output SNR and Gain for BPSK Modulation

The derivation of SNR TAp and GrAp for the case of BPSK modulation is examined in this

section. For BPSK, a5 =0° or 1800 and T(cz) is

{ 12.2 for a (=O1)

-12., for c,. = 1800

Thus, K. becomes

N ~

By defining G(R 1 ..... R) as

Uj,=-[G.,•,Z C. , 7 (,<71,j]r (5-113)

where

(5-114)

"q' a y , a "I

and (3] = [G G"f as the implementation/approximation of "G =[G., Gz]r, Km may be written as

K .= 4I [K in-, K ,, (5-115)K.-•~,, [K. K..,j

where
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K. f J ., G., f.(xC.yr dAdy,,

14.. .. {,~f(~y~xy 5-116)
Km = J d, Gy, f.(X.Y7) dXNydYN.

Kmo =I J - , , ,Yv) dx~vdyN

Also, .K, becomes

I N
K,--_ (K, - K,) (5-117)

where

K , IG" f C;"f('•u 7) d x-vd yt
(5-118)

K, =~M Jv G~Axdx.,dyN

Substituting Eqs. (5-115) and (5-117) into Eq. (5-96) yields the resulting expression for SNRrTJ

for BPSK:

I N IV N IV N NS 2 +K,,, . + K .. , ÷

SN .RTAP iN1 ' i-1 j-1 IV i- i - i j-1

2• (K, .K,,)

(5-119)

Similarly, GrT, for the case of BPSK modulation is:

5-32



Kf. K,,, +E K., Km..' + K,' K, K
G TAP - i,,! j-1 iI j-1, I j,,1 j- 1,,

2 N (K,ý + KY)2N

(5-120)

If the channel noise PDF, f,(.), is spherically symmetric, the expressions for SNR.,P and

Gr• may be greatly simplified. In this case, K,.m, = Km - K.. , K -, K , Km , K,. = K,, a K., ,

K,.,=K -4,K,, and also K,=K, AK, and Kf,=K ,,AK, for all i andj. Thus, Eqs. (5-119)

and (5-120) simplify to

SNRT, J - mS , 2+ , K, 2 n,,, (5-121)
2 (K, + K,/)

and

I ~(Ký. ý ý2K +.2~ +K..2)
GTAP (5-122)

2 (k,2 +k , )

5.3 Simulation Results for the LO Processor with Memory

To provide insight into the RDAT theory and methodology, and to provide a means of

verification, an interference scenario discussed in [Drap89] was simulated using the MATLABTh

software package by The Math Works, Inc. The scenario, depicted in Fig. (5-1), involves ID
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signalling and a channel interference consisting of: i) additive white Gaussian noise, w(n), with

variance given by a2,, and ii) colored Gaussian noise, j(n), with variance given by ac. The

sequence j(n) is obtained as the output of an N-point Moving Average (MA) process, whose

input is white Gaussian noise, v(n), having variance equal to o•. Thus, the colored Gaussian

noise sequence, j(n), is given by the equation

1NIj(n)= IE v(n-k) (5-123)

The autocorrelation sequence, X(k) = E{n(n) n(n +k)} = < n(n) n(n +k) > , of the total channel noise,

n(n) =j(n) + w(n), is given by

a,+ ac , k=O

X(k)={N-IkI 2 , 1_IkI<N (5-124)

[0 kaN

Finally, the covariance matrix for the total channel noise is given by

X(O) X(l) X(2) ... X(p-l)-

X(l) X(O) X(l) ... X(p-2)

A= X(2) X(l) X(O) X(p-3) (5-125)

X(p-1) X(p-2) X(p-3)... X(O)

where p is the number of received samples processed by the LO processor per signal period.

5-34



LO Processing with Memory

Colored Gaussian Noise Scenario
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Figure (5-1)

Since the total channel noise is the sum of two zero mean Gaussian noise processes, its

PDF is also Gaussian and is given by

f.(-) = (2_ _I-_/2 e (5-126)

where -= [ni n2 ... n,]r. Thus, the nonlinearity at the it' instant, gi, is given by

g= ln(fn)) ==TA-Iq (5-127)
an,

where e, is a vector of length p whose elements are all zero except for the i'h element which is

equal to one. Recalling that for 1D signalling the gain of the LO processor relative to a linear

receiver, GTAp, is given by
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GTAP = k o,. (5-128)

K. 2 2

where k -. , Km and K, are given by Eqs. (5-32) and (5-35), q. =ac + a. in this scenario, and
Ký,

that for the LO receiver L = g,. Thus, the value of k for the LO receiver may be computed as

k= <g2> (5-129)
P i-1

Substituting Eq. (5-127) into Eq. (5-129), and noting that <t-r> -A, yields the following
result for k:

k -!E TA-' (5-130)
P M~

Finally, the expression for GMp is given by
2 P

GTAp= 2 'A'7, (5-131)
P .

Figures (5-2) to (5-5) illustrate the resulting values of GTr in relation to the LO

2= 2processor length, p, and the length of the colored Gaussian MA process, N, for oa = . ,

= I0,, = 10, • 100 a., 1= 00, and a2 1000w = 1000, respectively. As may be seen, the gain

of the LO processor increases as its length increases. It is shown in [Drap89] that as the LO

processor length increases, the gain relative to a standard linear receiver approaches that of the

optimal filter for this scenario, the Wiener filter. Furthermore, for a given LO processor length,

the gain increases as the value of N increases. This indicates that the LO processor is better able

to remove the effects of the colored Gaussian noise as adjacent samples become more correlated.
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In comparing the results shown in Figs. (5-2) through (5-5) to those in [Drap89] (see

Figs. 2-8 to 2-11 on pp. 2-33 to 2-36), it was noticed that the results were not identical. The

reason for this discrepancy is that the results in [Drap89] were generated using the assumption

that since the channel noise process was stationary, the value for k could be calculated using just

one g,, i.e. using the equation

k= <gi> (5-132)

for any i. However, as discussed in Sections 5.1.2 and 5.2.3, stationarity is not a sufficient

condition to ensure that < gc > = < g/> for all i and j. Instead, the PDF of the channel noise

must be spherically symmetric, which is not the case in this scenario. To show that stationarity

is not a sufficient condition to give the result in Eq. (5-132), the values of GT, in relation to p

and N were plotted for the case of 2• = 100a2 = 100 using Eq. (5-132) with i=1. The results of

this experiment are shown in Fig. (5-6) and are almost identical to the results presented in

[Drap89] ". It may be observed that Figs. (5-6) and (5-4) are not the same, but should be if

stationarity is sufficient to ensure the validity of Eq. (5-132). Thus, stationarity is not a

sufficient condition to warrant the simplification of the expression for k given in Eq. (5-129) to

that given in Eq. (5-132).

There are some slight differences in the plot shown in Fig. (5-6) and that of Fig. 2-10 of [Drap89]. These
differences are most likely a result of differences in the resolution of the computer software used to generate and
plot the results.
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LO Processor Gain for the Colored Gaussian Noise Scenario
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LO Processor Gain for the Colored Goussian Naive Scenario
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6. FUTURE OBJECTIVES

While the work presented herein provides an assortment of clues into the fundamental

behavior of the LO processor, there is still much research to be done in this area. Previous

sections of this report addressed the memoryless LO processor and the many algorithms used

to implement it. Software simulation is the method of choice for characterizing the performance

of this processor. Two simulations were presented which provided a means of investigating the

Pb of the memoryless LO processor in a variety of jamming environments. The LO processor

with memory was also discussed, with an emphasis placed on its derivation and the development

of the theoretical expressions for the output SNR and gain relative to a linear receiver. A

number of logical extensions of the research presented in this report may be identified. Some

of these include:

* Simulation of the LO processor with memory and its incorporation into the QPSK DSSS

system. By comparing the results of this simulation to the memoryless LO processor

results, the performance enhancement gained through the use of memory can be

quantified.

* Investigation of other modulation techniques, particularly Continuous Phase Frequency

Shift Keying (CPFSK) [LeAb93], a form of Minimum Shift Keying (MSK), and their

effects on the performance of the LO processor.

* Simulation of the parametric implementation of the FSA algorithm. All of the LO

processor implementation methods mentioned in this report employ a histogram

approximation of the received signal PDF at some point in their respective algorithms.

Since it was seen that all the methods had roughly the same performance results, one

may conclude that the histogram is the limiting factor. By examining the parametric

implementation of the FSA algorithm, it may be possible to determine if this hypothesis
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is true, or if the method of LO processor implementation has relatively little effect on

its overall performance.

Adaptation of the Continuous Polynomial Approximation (CPA) algorithm [Grim93] for

use as an LO processor implementation method. Through simulation the performance

of this algorithm can be compared to the other methods (Histogram, EBH, FSA, and

MIPA) previously discussed.

LO processing is a rich area of study. Intuitively, the LO processor with memory should

be more robust than the memoryless processor and thus able to mitigate a wide array of different

jammer types, including those for which the memoryless LO processor performed poorly. Also,

whether or not different LO processor implementation algorithms have a strong influence on

overall performance remains to be seen. The work presented in this report, along with the

future tasks mentioned in this section, will lead to the definition of a communications system that

is robust and able to provide a secure and reliable information exchange in a multitude of

interference scenarios.
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