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1. INTRODUCTION

Most modern military communication is performed using Spread Spectrum (SS) systems
techniques because of their relative robustness in jamming environments. Despite this resistance
to interfering signals, SS systems can undergo performance degradation when subjected to severe
jamming [Haze88, Drap89]. The primary reason for this is that, although SS techniques can
provide some immunity to jammers, the reception of the SS signal is still accomplished using
linear receivers. The linear receiver is only optimal in the case of Gaussian channel noise and

jamming signals are, by design, non-Gaussian.

It has long been known that the optimal and quasi-optimal receivers for such scenarios
are nonlinear processors [Drap85, Higb88, Midd66, Spau85]. These processors have, in the
past, been difficult to implement in available hardware. Today’s technology has opened a
window of opportunity to solving the problem of rejecting interfering signals in such situations

because of advances in high speed digital signal processors.

The objective of the recent research effort was to investigate and determine the viability
of utilizing Locally Optimal (LO) nonlinear processing to mitigate non-Gaussian interfering
signals in a Direct Sequence (DS) SS communicatioﬁs system. The effort centered on the use
of memoryless techniques, as well as techniques employing memory, and performance

comparisons of many receiver and nonlinear processor configurations.

The approach used included the analysis and evaluation of several implementations of the
various nonlinear processing algorithms. The analysis included the study of well known
techniques as well as newly developed methods. Evaluation was accomplished through the
development of software simulations designed to test the algorithms in various signalling

scenanos.
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The results illustrate the tradeoffs of each nonlinear processor algorithm for use in a
spread spectrum receiver. This knowledge can be used to determine the most effective processor
for a given interference scenario. The work presented in this report is directly in line with the
mission of Rome Laboratories (RL) to provide secure, reliable communications to the United

States Air Force.

1.1 Problem Statement and Formulation

The design and development of a digital communications system which exhibits a low
probability of error (P,) in a variety of jamming scenarios is of parambum importance in military
applications. To attain this goal, it is necessary to design a receiver which will mitigate the
effects of the interference and thereby facilitate the correct demodulation of the transmitted
signal. For many practical applications in whict. the interference is thermal (Gaussian') noise,
the optimum receiver is a linear processor which incorporates the use of a matched filter for

signal recovery. The matched filter impulse response is:
h(t)=ks(T-t) (1-1)
where h(f) is the matched filter impulse response, s(f) is the real transmitted signal waveform,

T is the sampling time of the matched filter (equal to the period of the transmitted waveform),

and k is an arbitrary constant.

Alternately, a time correlator realization of the matched filter can be used for signal

recovery. The time correlator produces an output exactly equal to that of the matched filter at

' Thermal noise can be modelled using the Gaussian Probability Density Function (PDF) given by:
1 (n-u)
[ n)= e 7, where N is the Gaussian random variable, p is the mean, and ¢? is the variance.
V2o
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the sample time 7, and can be written as:

T
z=[r)s()dr (1-2)
0

where z is the output of the correlator sampled at time T, r(f) is the received signal, and s(t)
is the transmitted signal waveform. In most digital communications systems, the received signal

is sampled and discrete-time processing is used. Therefore, Eq. (1-2) becomes

N
2.=Y M s M=l M (1-3)

k=l

where z,, is the correlator output corresponding to the m™ possible transmitted signal, r, is the
K* sample of the received signal, s, is the ¥* sample of the m" possible transmitted signal, N
is the number of samples (elements) per signal vector, and M is the total number of possible
signals. As may be seen, Eq. (1-3) is a linear function of the received samples, and hence is
termed a linear receiver. Note that when the communications system employs two-dimensional
signalling, the operations of Egs. (1-1) to (1-3) must be performed on both the In-phase (I) and

Quadrature (Q) channels.

In a jamming environment, however, a digital communications system that employs a
linear receiver experiences a performance degradation due to the highly non-Gaussian nature of
the jammer. Therefore, communications systems subjected to large jamming signals require
other (nonlinear) processing methods for signal recovery. Furthermore, the receiver must be

adaptive since in hostile situations the jamming statistics will often be nonstationary.

The nonlinearity needed can be derived from the likelihood function of statistical decision
theory [Midd66,Spau85]. In the classical approach two methods are discussed: they are the
Globally Optimal (GO) and the Locally Optimal (LO) demodulators. The GO demodulator

provides more robust performance whereas the LO demodulator is much simpler to implement
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[Haze88]. The former is obtained directly from the likelihood function whereas the latter is an
alternate form obtained from a Taylor series approximation and yields near-optimal performance
for large Jammer-to-Signal (J/S) ratios. The likelihood function is generated from the PDF of

the incoming signal.

The memoryless two-dimensional GO demodulator decision rule is formulated in the
following manner.
For a‘received signal vector pair (7, r):

Choose (5 ,'%-) which maximizes

hi
z, =kz-|: ln[fNI w5, -50‘)} (1-9)

where ('5,'.,};_) is the m* of M possible transmitted signal vector pairs with components (s, .5, ),
(r.rg) is the k* sample pair of the received signal vector pair, N, and NQ are the [ and Q

random noise vectors, and f,,,qu(') is the noise PDF.

The memoryless two-dimensional LO demodulator is obtained from the GO demodulator

through a Taylor Series expansion around the signalling point. The resulting decision rule is:

Choose (5,,3,) which maximizes:

hJ

1=y {s,_ g(r)cosb, +s, g(r,) sinO,‘}

k=l

r
where = r,f+ré. is the envelope of the received signal sample pair, 6,=tan™' [_Q] is the

phase, f,(r) is the received envelope PDF, and
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d
'J;‘fn(rg) l (1'6)

& .2

fr) o

g(rk) -

is the LO Memoryless Nonlinear Transform (MNT).

Both the GO and LO demodulators require knowledge of the received signal PDF. In
addition, the LO demodulator uses the derivative of the received signal PDF. Thus, both
receivers need a mechanism to derive (an estimate of) the PDF from the input. Historically,
experimental PDFs have been estimated using histograms with bins of equal width. One
modification, called the Equi-probable Bin Histogram (EBH) method [Haze88], uses bins

containing equal numbers of samples.

One major drawback inherent to the histogram methods of estimating the received signal
PDF is that they produce discrete approximations of the actual continuous PDF. The error
associated with these approximations is further amplified by the differentiation process required
to produce the LO MNT. Thus, a means of constructing a continuous estimate of the received
signal PDF would be beneficial. One such method which provides a piecewise continuous
approximation is the M-Interval Polynomial Approximation (MIPA) [Haze88)]. However, this
approximation still has discontinuities at the breakpoints where adjacent approximating
polynomials meet. The Fourier Series Approximation (FSA) approach, on the other hand,
provides an estimate of the PDF, using the Fourier series expansion, which is continuous

throughout its entire domain.

The derivation and performance evaluation of the EBH and the FSA memoryless LO
processor implementations have comprised a major portion of the recent research effort. The
simulation of both memoryless methods in a standard communications system and also a spread

spectrum system provided valuable insight into the LO processor’s performance characteristics.
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Also, the performance of FSA and EBH LO processing in a spread spectrum system was
compared to the performance associated with standard histogram and MIPA processing. Finally,
LO processing with memory was examined, with emphasis on the methodology incorporated in

the Robust Digital Adaptive Transceiver {Drap89].

1.2  Development of the Memoryless Locally Optimal (LO) Maximum Likelihood (ML)

Function for Two-Dimensional Signalling

A brief. derivation of the memoryless GO and LO detectors is presented in this

subsection,

Let the transmitter be a two-dimensional M-ary signal source represented by a random
vector pair with an I component 3, taking on a value § , and a Q component 3‘.0 taking on a

value };_. Here ('s.,_,};) represents the m™ of M possible signal pairs. For the received signal,

the | component is R, with value 7, and the Q component is 750 with value r,. Finally the

interference (thermal noise and jammer) is characterized by an I component 7\7, having a value'n;

and a Q component N, having a value 7,. The relationship between the transmitted and

received signals is given by:

=S +-[\7 (1'7)

The Maximum Likelihood (ML) detection algorithm at the receiver is implemented as:

Choose the possible signal pair, (5,5,), which maximizes:
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in fﬁn( n-;l}r. ? (1-8)

which is the PDF of the received signal conditioned on the m* transmitted signal pair. The
variable z, is called the ML decision statistic. Using the relationship defined in Eq. (1-7) and

assuming statistical independence of the signal and interference, Eq. (1-8) becomes:

Z,= ﬁ,-ﬁo(-?,' -.g -;Q -S- ) (1-9)

where ( ) is the joint interference PDF. Next, if the elements of both the I and the Q

received vectors are assumed to be Independent and Identically Distributed (IID)?, Eq. (1-9)

b:comes
N
Zm=Hf/vl1vq(rl'-$,~,r0.‘so_) (1.10)
k=i

where (r,,r,) is the k* received signal sample pair, and (5,_,5g_) is the k* sample pair of the

m* possible source signal. Since the logarithm is a2 monotonically increasing function, the
natural logarithm of Eq. (1-10) is used to simplify calculations [Mels78]. This results in the GO

ML decision statistic of Eq.(1-4), repeated here for convenience:

Choose (},.,_sz,_) which maximizes:

N
z;; ln[ﬁv’Nq(r,.—s,_,rQ.-s Q~)] ‘ (1-11)

* The resulting GO and LO processors are memoryless due to the [ID assumption.
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For a large J/S ratio’, a first-order two-dimensional Taylor Series expansion around the
received signal point can be used to approximate the interference PDF. The expansion is valid
under the assumption that the deviation of the interference from the received signal point is

minimal for a large J/S. Also, in this case the interference PDF may be approximated by the

received signal PDF, jjw(-). These simplifications result in the LO ML decision statistic

[I11i91]:

Choose (;,5,) which maximizes:

N

d d
‘a—r,'f;e,go(rl.sro.) _a';;f;szq(r[.!rq.) (1‘12)

L==Y |5, — +$
~ Qld
k=l ‘fRIRq(r’n’ ro.) f;zth(r'n'rQn)

However, determination of the received signal joint PDF is a difficult process, and determination
of the partial derivatives even more so. To reduce the complexity of the likelihood function,
bivariate radial symmetry of the received signal PDF is assumed. Under this assumption, the

received signal PDF is given by:

KD gcp<rn (1-13)
f 5 (Tl Q)= 27r
0, " elsewhere

where fi(r) is the received envelope PDF, r=,/r,’+ré is the received magnitude, and

f=tan"!(r,/r) is the received phase angle. The radial symmetry assumption is valid for

} A typical jammer is usually at least 20 dB greater than the transmitted signal. Therefore, for a signal
environment where jammers are present, a large J/S assumption is valid.
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interference sources of interest as they will have random phase angles. Even a constant-
frequency waveform will have a vector that rotates at a uniform rate and is therefore equally
likely at any angle [Higb88]. With this assumption the LO ML decision statistic of Eq. (1-12)

reduces to Eqs. (1-5) and (1-6), repeated here for convenience:

Choose (},',?0_) which maximizes:

N

lm=§ {s,.. g(rcost, +s, g(r,) sinok} (1-19)
where
d
g(r)= 2;’:&('1) .1 (1-15)
YRR T
is the LO MNT.




2. MEMORYLESS LOCALLY OPTIMAL PROCESSOR ALGORITHMS

The memoryless LO receiver derived in Section 1.2 requires the PDF of the received
signal to generate the LO MNT used in detection of the transmitted signal. However, in practice
a priori knowledge concerning the received signal PDF is not available. Instead, an
approximation must be made based on the information, usually the received signal samples,

available at the receiver. This section presents two methods of estimating the required PDF.

The Equiprobable Bin Histogram (EBH) method is an extension of the traditional
histogram method [Krey88] of estimating PDFs. In this method, the histogram bins are chosen
to have equal probability rather than equal width as is the usual case. Thus, the width of the
bins is allowed to vary, while the height of each bin is constrained so that the area under the
PDF approximation is equal to one. This provides an improved resolution over the traditional

histogram method in regions where there are a large number of samples.

The next method discussed is the Fourier Series Approximation (FSA) which utilizes a
Fourier series to estimate the received signal PDF. This algorithm, in contrast to the EBH
method, produces an approximation of the PDF which is continuous and has continuous
derivatives throughout its entire domain. This is extremely useful since the LO MNT requires
the derivative of the received signal PDF, and the differentiation process tends to increase the

error associated with the discrete approximations generated by the histogram methods.




2.1  Equiprobable Bin Histogram (EBH)

A standard histogram has bins of equal width, and provides equal resolution over the
entire range of interest. Intuitively it seems better if more resolution could be given to the
intervals of data corresponding to higher probabilities. One method of achieving this is to
constrain the bins to have equal probability rather than equal width. The probability of a
random sample falling in a given bin is the area of the bin, so the bins must have equal area to
be equiprobable. For a given data sequence this may be accomplished by assigning an equal
number of samples to each bin. A histogram with these constraints is known as an Equiprobable
Bin Histogram (EBH), and unlike a standard histogram, both the height and the width of the
EBH bins vary.

An EBH is constructed by sorting the data in ascending order and assigning an equal
number of data points to each bin. Figure (2-1) is a five bin (B=5) EBH for an arbitrary data
sequence. The data point with the largest value in the i* bin is called the i breakpoint and is
denoted X;. The zeroth breakpoint, X), is the minimum value of all data points. The height of
each bin, Y,, is determined from the constraints described above: the width times the height of

each bin must be equal and the total area of all bins must equal one. Thus, Y;=(X-X,,)/B.

Five Bin EBH

aAmoy i tuce

-2 0 ca 20 a0 6 0 80
3 0 3
1
~0 - — 10 4
2 |
1031 o3
9 |
grer 0.2
i01ir_.—d , 5 101
oo‘—,L —— go

oresmvent g LRE P LY g ‘“

Figure (2-1') |
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Several examples demonstrate the differences between a standard histogram, an EBH,
and the ideal PDF. A 6 dB Binary Phase Shift Keying (BPSK) signal added to 0 dB Gaussian
noise is shown in Fig. (2-2). Figure (2-3) shows the corresponding 10 bin histogram and 10 bin
EBH. As may be seen in the figure, both histogram methods provide an approximation that is
reasonably close to the ideal PDF, represented by the smooth non-boldface line. The same
anafysis for a 26 dB BPSK signal added to 0 dB Gaussian noise is shown in Fig. (2-4). In this
case there are two regions of high probability, namely at amplitudes of -20 and 20. It may be
seen that the standard histogram gives equal resolution to the entire range of the PDF, while the
EBH focuses on the areas of high probability and provides a representation that is closer to the
ideal PDF.

First 1000 Samples of BPSK Data

Amplitude
(-]

b : ' t
: . . N B | PAFN 1 RN 1| - - NENN e
-2 FURY AR ! . | - . . . : ! 1 ! ,
! ! . : . .
. :

R A0 B N & UL AT IO AR SUUTII M & UGS RUUURNY LU SOSUN

A A e
o 200 400 600 aco 1000
Sample

Figure (2-2)

It should be noted that the magnitude PDFs of the jamming scenarios in this report have
a single region of high probability, and the performance of the EBH offers little or no
improvement over the standard histogram. However, for future jamming scenarios the EBH

may be of greater value.
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2.2  The Fourier Series Approximation (FSA) Algorithm

A novel method of generating a continuous LO MNT using the Fourier series has been
derived and simulated. The Fourier Series Approximation (FSA) is a method of generating a
continuous estimation of the PDF of a random variable. This method is extremely useful for
LO processing since the LO MNT requires the derivative of the received signal PDF, and the
differentiation process amplifies the error associated with discrete histogram approximation
methods. This section presents the derivation of the FSA algorithm, a method of implementation

based on a histogram approach, and a direct parametric implementation of the FSA algorithm.

2.2.1 Derivation of the FSA Algorithm

Given the received signal magnitude, r, the envelope PDF, fi(r), is approximated by the

following expression:

P P
G =529 +Y a,cos(nwyr)+Y b, sin(nwyr) 2-1)
a=| nsl
where w,= Zer = 2_;_5, I sy 18 the maximum value of the received signal set being processed, 7,

is the minimum value of the received signal set, and p is the order of the FSA. The coefficients

{a,} and {b,} are determined by minimizing the following error criterion:
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e(n)= j V() FonVdr ‘
L 2-2)

e »
= J [fR(r)—%?-Z ancos(nwor)-t b sin(nwyr))’dr

Differentiating Eq. (2-2) with respect to a, and equating to zero yields the following expression:

r_ » '-
J [% + E a,_cos(nwuf ) + t b_sin(nwor)] dr= J f“' (rdr (2-3)

By noting that the integration of the sine and cosine functions over an integer multiple of their

period is equal to zero and that J S(Ndr=1, Eq. (2-3) becomes

a,= —2 2-9)

To find the coefficients {a,}, differentiation is performed with respect to g, and the result is

equated to zero. This gives the following equation:

Tems

a P P
[ cos(kwyr) | fo(r) - -23 Y acos(rwy) - Y b sin(rwgr) | dr=0 2-5)
as|

=l
r_

After some manipulation, the expression for g, is found to be

L

J cos(kw P (dr,  k=1,...,p (2-6)

2

rmax - rmin

a,=

Similarly, the coefficients {b,} are found by differentiating Eq. (2-2) with respect to b, and

equating to zero, resulting in the expression:
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’-l

a P P
J sin(kwyr) | fo(7) - .79 -Y a,cos(nwy) - Y b sin(ray) | dr=0 @7

ne=l ns=l
-

Again, after some manipulation, the expression for b, is found to be

b= 2_,.‘ JSi"("%’)fR(r)dr, k=1,....p 2-8)

rllll!

Finally, the LO MNT function is given by:

d
7@ 1 2-9)

8(r=- 0

and its FSA derived estimate, g(r), is

P 4
Y a,nagsin(nuy) =Y b nacos(nwgr)
g‘(r): el rel + v (2-10)
r

P 3
%‘3 *Z a,cos(nwyr) +E b sin(nwyr)

Equations (2-1), (2-4), (2-6), (2-8), and (2-10) specify the FSA algorithm completely.

2.2.2 The Histogram-based Implementation of the FSA Algorithm

One method of implementing the FSA algorithm involves using the FSA to approximate
a histogram estimate of the PDF. The coefficients {a,} and {b,} are approximated by evaluating
Egs. (2-6) and (2-8) using rectangular numerical integration [Krey88], with fi(r) replaced by a
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histogram approximation of the received signal envelope PDF. The resulting approximations

for the FSA coefficients are:

2A ~ 2T 2
d = e X . ( 'll)
. 24 2
b, Y ysin(n—==—x) @2-12)
rm"rm-. i=0 rw - - min ‘

where y, is the value of the  histogram bin of the PDF, x, is the received signal value

corresponding to the /* histogram bin, B is the number of histogram bins, and A is the bin

width.

The LO MNT is then estimated using the following algorithm:

. LetN,=N,=D,=0andletD, = % . (INITIALIZATION)
2. Forn=1top o (ITERATION)
{

N, =N, +é nwsin(nwyr)
N,=N, - 5nnwocos(nwor)
D, =D, +d cos(nwyr)

D, =D, +b sin(nw,r

3. gry= +.1. : (COMPUTATION)




2.23 Parametric Implementation of the FSA Algorithm

The expectation of a function A(X) of a random variable X having a PDF f,(x) is defined

Elh(0} = [ h()f {x)dx 2-13)

Using this definition, Egs. (2-6) and (2-8) may be rewritten as

a,=- % E{cos(nw,R)}, n=l,....p (2-14)
and
b,= . "i E{sin(nw,R)}, n=1,....p 2-15)

Equations (2-14) and (2-15) can be approximated using a sample average of the form

_2 1y 2-16)
a, oW kzl cos(nwyr,)
and
2 I
b, = =Y sin(nwyr,) 2-17
T aax “Fain Y kel

where r, is the k® sample of the random variable R, and N is the total number of available

samples.

The parametric implementation of the FSA has an advantage over the histogram-based

method in that the parametric method does not require the intermediate stage of approximating

29




the PDF with a histogram. However, the parametric form has the disadvantage of added
complexity since the sample averages of Egs. (2-16) and (2-17) require calculation of 2Np

trigonometric functions, where p and N can both be large.
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3. SIMULATION OF THE MEMORYLESS LOCALLY OPTIMAL PROCESSOR
ALGORITHMS

Software simulation was the method chosen to characterize the performance of each
memoryless LO receiver implementation. For most types of jammers, determining the
theoretical performance of the LO receiver is a mathematically intractable problem. Simulation
provides a means of determining the types of performance gains incurred in a variety of jamming

scenarios.

Two types of communications systems were simulated using the Signal Processing
Worksystem™ (SPW) by Comdisco Systems, Inc. The first was a conventional Quadrature
Phase Shift Keying (QPSK) communications system. This simulation was used to isolate the
performance gain associated with the LO processor. The second simulation configuration was
a QPSK DSSS system which was used to determine the performance characteristics of the LO
processor in a spreading environment. By using both simulations, it is possible to determine

scenarios in which the LO processor improves overall system performance.

This section provides an introduction and overview of the SPW simulation package. The

conventional QPSK and QPSK DSSS simulations are also presented.
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3.1 Introduction to the SPW Environment

The Signal Processing Worksystem™ (SPW) from Comdisco Systems, Inc. is the
simulation platform of choice. It consists of several modules which aid in the different design
phases of communication systems. These include: the Block Diagram Editor (BDE), the Signal
Display Editor (SDE), the Filter Design System (FDS), and the Code Generation System (CGS)
[Comd91].

The BDE is a graphical, block oriented environment in which communication systems
can be readily implemented and simulated. Each system component is represented as a graphical
block. The blocks provided in SPW are very general, allowing use in a wide variety of
applications. Over 150 library blocks are provided in the BDE, including:

® modulators / demodulators such as Binary Phase Shift Keying (BPSK), Quadrature Phase
Shift Keying (QPSK), and Minimum Shift Keying (MSK)
® encoders / decoders such as Hamming, Reed-Solomon, convolutional
® mathematical functions, including simple arithmetic, trigonometric, logarithmic,
integration and differentiation
e filters, including Butterworth, Chebyshev, Elliptic, Bessel, and user defined filters.
® vector functions, such as inner products, serial-to-parallel and parallel-to-serial
conversions
® signal sources / sinks, including binary sources, white noise generators, pseudo-random
number generators, and user defined sources.
In addition to- these blocks, the user may define new blocks, either through a hierarchical
combination of existing blocks or by designing custom coded blocks in Fortran or the C

Programming Language (C).

The SDE can be used to generate signals for use in the BDE, or to examine the
simulation results from a system that has been successfully modeled and simulated in the BDE.

The major strength of the SDE lies in its signal analysis capabilities. In particular, the following
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functions are available: Fast Fourier Transforms (FFTs), histograms, autocorrelation and
- cross-correlation analysis, and spectral density evaluation. Also, signals may be directly
modified by a host of operations. For example, addition, scaling, inversion, differentiation,
integration, and trigonometric functions may be performed on a signal or group of signals. In
addition, several nonlinear filtering operations are provided, including quantizing, clipping, and

limiting.

The FDS allows the designer to model and study many different types of digital filters
for use in communication systems. Any Finite Impulse Response (FIR) or Infinite Impulse
Response (ITR) filter can be designed. Butterworth, Chebyshev, Elliptic, Equiripple, and Bessel
filters may be easily implemented with the aid of pre-defined "methods". In addition, the user
can define methods for any other type of filter. Once a filter is modeled with the FDS it can
be used in the BDE or SDE.

The CGS is able to convert the BDE simulations to C code. This code can then be

downloaded to any of the digital signal processing boards or computers supported by SPW.

3.1.1 Classification of Blocks

The blocks in the BDE may be classified into three categories: SPW primitive and
hierarchical library blocks, user custom coded primitive blocks, and user hierarchical blocks.
Library blocks are the blocks supplied as a part of the SPW environment. Some library blocks
are primitive, in that their specification is directly linked to the underlying software code (e.g
C). Others are hierarchical, meaning that they are composed of other SPW library blocks which
may be either primitive or hierarchical. A hierarchical block is specified by means of a

"detail"! which displays the interconnection of its constituent blocks. User custom coded

' Words enclosed in quotes (") refer to SPW terminology.

3-3




primitive blocks are written by the user in C or Fortran and linked to a graphical symbol. User
hierarchical blocks are made up of library, custom coded, or other user hierarchical blocks. As
may be seen, the capacity to create multiple levels of hierarchy provides an extremely powerful

and flexible simulation environment.

Figure (3-1a) shows the symbol for a user custom coded primitive bubble sort block, and
Fig. (3-1b) shows its detail. The detail of this block is a list of parameters that are passed to
the C or Fortran code when the system is simulated. Once the block is complete, the SPW user
need not be concerned with the actual C or Fortran code.

Figure (3-2a) shows the symbol for a user hierarchical MNT block, the detail of which
is displayed in Fig. (3-2b). The inputs and outputs of the symbol in Fig. (3-2a) correspond to
"ports” in the detail in Fig. (3-2b). The ports must have the same names as the inputs and
outputs, but need not be in the same position. Note that in addition to the parameter list, other
blocks are included in the detail. This is the characteristic difference between hierarchical and

primitive blocks.

The concept of hierarchy is very useful in system design, and is an integral part of the
BDE. On the top level of the hierarchy is the system to be simulated. The system consists of
several blocks. These blocks may contain sub-systems (hierarchical blocks), which are a lower
level of hierarchy. At the lowest level of the hierarchy are blocks that point directly to C or
Fortran code, i.e. primitive blocks. One useful aspect of hierarchy is that a system can be easily
transformed into a hierarchical block. This block may then be used as a component of a larger

system, and the process continued until the overall system is completed.

Experience has shown that judicious use of all three types of blocks provides the most
efficient simulations, both in terms of system complexity and simulation execution time. By
taking advantage of the hierarchical nature of SPW, systems can be modularized, greatly
simplifying their analysis.
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3.1.2 Exported Parameters

A very useful feature of the BDE is the exportation of parameters. This enables the
designer to set the value of a parameter equal to a function of other parameters. Often, several
different blocks have a common parameter, and this allows all common parameters to be
exported to a single parameter on the top level of hierarchy. Rather than "pushing” into each
block and changing each parameter, the designer need only change the parameter on the top

level and all of the exported parameters will assume that value.

3.1.3 On-Line Documentation

On-line help may be obtained in the BDE by selecting HELP on the EZ-Menu [Comd91]
and then pointing to the desired object. A text message containing the required documentation
appears in a "viewport." This documentation is available for all SPW library blocks in three
forms: 1) help on the block usage, 2) help on the block’s input and output, and 3) help on the
block’s parameters. The first type of help is obtained by pointing to the block itself after
selecting HELP on the EZ-Menu. The second type is obtained by pointing to any input or
output port of the block. The third type is obtained by pushing into the block and pointing to
any parameter. On-line help has also been provided for all blocks designed and implemented

for use in the two simulations presented in the following sections’.

¥ A complete listing of the help screens for each user block used to implement the simulations discussed herein
is provided in Volume II of this report. For these SPW blocks all three types of help screens described above have
been combined into the block usage help screen.
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3.2 The Conventional QPSK Simulation

The purpose of this section is to provide an overview of the SPW simulation of a
conventional QPSK communications system. An overview of the conventional QPSK baseband
simulation is shown in Fig. (3-3). The simulation contains: a) a standard QPSK modulator
which transmits a two-dimensional (I and Q) signal, b) a channel which contains multiple
Continuous Wave (CW) jammers, a Gaussian Partial Band (PB) jammer, and background
thermal (Gaussian) noise, and ¢) either the standard linear receiver implemented via a two-
dimensional correlator or one of the memoryless LO processor implementations followed by the

correlator.

The components of a typical memoryless LO processor block are shown in Fig. (3-4).
The first operation performed in the LO processor block is rectangular to polar conversion which
provides the magnitude and phase of the received signal. Next, the corresponding approximation
(eg. traditional Histogram, EBH, FSA, etc.) of the received magnitude PDF is constructed.
Through the use of the PDF approximation, in conjunction with the received magnitude, the LO
nonlinearity is computed. Finally, the values for the LO nonlinear transform and the phase of

the received signal are converted back to rectangular form. Thus, the output of the LO

processor block is (g,',go.) =(§(r)cosb,,§(r)sind,), where g(-) is the LO MNT estimate.

Using (§,.4,), the two-dimensional correlator generates the LO decision statistic of Eq.
(1-5) discussed in Section 1.1, repeated here for convenience:

N

=Y {S 1, 8(r)cost, +s Qﬂg(rk)sinok} _ 3-1)

kal
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3.3 The QPSK DSSS Simulation

The simulation of a baseband QPSK DSSS communication system with LO processing

has been implemented using the SPW software package. An overview of the entire system is
provided in Fig. (3-5). It consists of: a) a transmitter, with output (X, X), containing a QPSK
source, whose output is given by (5,5,), modulated by a Pseudo-Noise (PN) sequence
generator producing a code sequence vector ¢, b) a channel consisting of additive thermal (white
Gaussian) noise, rﬁultiple CW jammers, and a Gaussian PB jammer, and c) a receiver, with
input (7,7, that includes the LO MNT which outputs the signal vector (88, the PN
sequence despreéding s;ource (perfect synchronization of transmitter and receiver is assumed)
which when multiplied with the output of the LO MNT produces the ordered vector pair (3,,7,),

and a two-dimensional correlator.

LO QPSK DSSS Simulation

Transmitter Channe | Receiver
—
opsk | 3 A TN ] r 20 corr /| | 8
Sourc.‘——.@\f ‘l‘—Tr_/i —=/\/I\ o LO MNT Oec tsion >
.._Dh_j e, ) raf
N | ‘ ! |Gaussran
Source] jJammers | o se
R ( i
Figure (3-5)
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3.3.1 Theoretical Justification

To construct the LO receiver for the QPSK DSSS system it is necessary to implement

the LO decision statistic of Eq. (1-5), repeated here for convenience

l=
k

{S,.' g(r)cosé, +$5.8(r) sino,‘} (3-2)

N
=l

Refexfring to Fig. (3-5), the km sample of the baseband output of the QPSK DSSS transmitter is
givenby (N, \X, )=(c,S, ,C,S, ), where €=[C,,Cp-++1Cp---»C,]T is the PN sequence which is fixed
for a givén signal period, and (s, .5, ) is the k® sample of the m® possible transmitted signal
pair. Since ¢, - (¢;S, ,,5g ) = (5, .5y ) for the DSSS system, there is a one-to-one and invertible
mapping of 5, to N, . The process of memoryless LO detection of the received signal can be

implemented by correlating the output of the LO MNT, (g,g,), over the set of

{(7:,_,'):0_)}, m=1,...,M, choosing the one corresponding to the largest decision statistic, I,, and

mapping the signal vector (')':, ,7\'0) to the possible information signal vector ('5,' ,'3';). This
procedure may be stated more concisely as:

Choose the information signal (};,'s.o_) corresponding to the signal vector (')'\',.,fa.) which
maximizes:
N
L =Z {)\,‘ g(r,)cosf, +\ 2.8 sinok} ' (3-3)
ksl

The receiver implementation of Eq. (3-3) is termed the canonical form LO receiver since it has
the same form as Eq. (3-2). The block diagram for the LO QPSK DSSS receiver
implementation given by Eq. (3-3) is shown in Fig. (3-6).
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An alternate LO receiver implementation requiring only a slight modification to the
standard correlator-based linear receiver can be developed by noting that Eq. (3-3) may be

written as

N

1=y {)\,_ g(rycosh,+\, g(r,) sinO,‘}

k=1

N

= E {c,s,‘ g(r,)cosb, +ctsa_.'g(rk)sin0k} 3-9

k=1

N

=y {s 1 [cx8(r)cosb ] +s,_[c, g(rk)sino,‘]}

k=1
Thus, the LO QPSK DSSS receiver can be implemented by first multiplying the output of the
LO MNT by the PN sequence, and then correlating over the set of possible information signals
{(-s,. ,};_)}, m=1,...,M. Note that this LO receiver may be easily implemented by placing the

LO MNT before the despreading in a linear QPSK DSSS receiver. The resulting alternate, or
non-canonical form, LO QPSK DSSS receiver implementation can be summarized in the
following algorithm:

Choose the information signal (E_,};_) which maximizes
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N

L=y {s,_. ¢,8(r)cosf, +s, c,8(r,) sinak} G-5

ksl

Due to its modular nature, the LO receiver algorithm given by Eq. (3-5) was implemented in
the SPW QPSK DSSS simulation shown in Fig. (3-5).

The non-canonical form LO receiver algorithm of Eq. (3-5) has two major advantages
over the canonical form algorithm of Eq. (3-3). First, it has a more modular structure than the
canonical algorithm and can be easily implemented by inserting the LO MNT into a standard
correlator based QPSK DSSS linear receiver. Second, it is more flexible than the canonical
algorithm in the sense that the PN spreading sequence can be modified without requiring new
reference signals to be stored for use by the correlator. However, the canonical algorithm of
Eq. (3-3) has the advantage of being a potentially faster implementation than the non-canonical
algorithm, since only one multiplication is required (i.e. multiplying the output of the LO MNT
by the stored reference signals), whereas the non-canonical algorithm requires two
multiplications (i.e. multiplication of the output of the LO MNT by the PN sequence, and then
multiplying the result by the stored reference signals). System requirements, e.g. speed versus

flexibility, will dictate which LO receiver implementation is more desirable.
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4. SIMULATION RESULTS FOR THE MEMORYLESS LOCALLY OPTIMAL
PROCESSING ALGORITHMS

This section presents the simulation results for the conventional QPSK and DSSS QPSK
systems with memoryless LO processing discussed in Sections 3.2 and 3.3. The following
memoryless LO algorithms were examined in each system: Histogram, EBH, and FSA. In
addition, the second order M-Interval Polynomial Approximation (MIPA) algorithm [Illi91,
111i93] was used in conjunction with the DSSS QPSK system. The probability of bit error, P,,
performance of each system and LO algorithm combination was computed for a multitude of
jamming scenarios. When useful, the P, for a standard linear system was also calculated for the
purpose of comparison. By examining the operation of the LO algorithms in many different
environments, it is possible to determine basic characteristics which govern performance, and
ultimately which system/LO algorithm configuration is optimal for a given jamming scenario.
This section is organized in the following manner. First, the simulation results for each LO
algorithm in the conventional QPSK system are addressed. Next, the results are presented for
the QPSK DSSS system when subjected to three different types of jammers, namely a single CW
jammer, two CW jammers, and a PB jammer. Finally, the performance of both systems are

compared to determine the effects of the SS system’s processing gain on the LO processor.

4.1 Results for the Conventional QPSK System - The Single CW jammer Scenario

The results for the conventional QPSK system when subjected to a single CW jammer
are presented in this section. The user-definable parameters for each LO algorithm are shown
in Table 4-1. As may be seen, the parameters B (number of bins), R, (Symbol Rate)', N,
(Samples per Symbol), and N (Samples per Correlation) are common to all the memoryless LO

algorithms.

! All other simulation parameters of interest are normalized to R,. Thus, the value chosen for R, is arbitrary.
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meters for Ee m AEoritm

LO Algorithm User-Definable Parameters
1) Histogram R, - Symbol Rate
2) EBH B - Number of Bins
3) MIPA (2 Order) N, - Samples per Symbol
N - Samples per Correlation (equivalent

to samples per PDF approximation)

4) FSA R, - Symbol Rate
P - Order of Approximation
B - Number of Bins
N, - Samples per Symbol
N - Samples per Correlation (equivalent

to samples per PDF approximation)

L]
Table 4-1

Before it is possible to thoroughly test each LO algorithm for a variety of Jammer-to-
Signal power ratio (J/S), CW jammer frequency relative to the symbol rate (f/R,), and bit energy
to signal thermal (Gaussian) background noise power ratio (E,/N,) values?, it was necessary to
determine values for B, N,, and N. In addition, P (Order of Approximation) must be chosen for
the FSA LO algonithm. To determine a value of N, that would be used in all subsequent
analyses, the P, for both the Histogram and EBH methods were computed using the system
settings shown in Table 4-2, and the results are presented in Fig. (4-1), with the region

15 = N, =50 emphasized in Fig. (4-2). Note that the rows are reversed in Fig. (4-2) for clarity.

As may be seen from the figures, P, for the conventional QPSK system with LO processing
decreases as N, increases. Using these results, and accounting for processing limitations, N, =

20 was used for all subsequent simulations.

? In this report, the values for J/S and E,/N, are specified per channel.
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glmuEuon Farameters

To choose values for B and N, the P, was computed for
the Histogram and EBH methods for a range of B and N values

Parameter Value
when the system was subjected to a single CW jammer with J/§
N, 510350 =30 dB. The values for the system parameters used in this
R 0.1 analysis are given in Table 4-3, and the results for the
B 28 400 Histogram and EBH methods are displayed in Figs. (4-3) and
(4-4), respectively. The P, plots indicate that there is a critical
E/N, 10dB  relationship between B and N for both methods. If the chosen
N, 0dB
J/OS 30dp Vvalue of B is too large for a given value of N the P, suffers.
/R, ~ 0.496  Conversely, if the chosen value of N is too small for a given
Symbols per 7056 Vvalue of B, the P, also increases.
P, Calculation
Table 4-2
_ Conventional QPSK System Conventional QPSK Syst
Histogram and EBH Implementations Histogram and E%H Implelﬁe:gtions
M'/ j 0014
g “"/ j § 0.0004 ‘
:‘—% 0-'/ :.:o.; 0.0084 j
§ /NN
.08+ B 9.0034 1 ¢
;amp(:spersmrol (s';mbo:’nau“-a;; * ? Sa:;plei;rSym:ol(s;:nbol l:ate-:),.l) N

Figure (4-1)

Figure (4-2)
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The main reason for these relationships is that in both the Histogram and EBH methods,
the total number of samples, N, is separated into B bins. As B increases for a given N, the
average number of samples in each bin decreases. If this average number becomes too small,
the PDF approximation will not be a good estimate of the actual PDF, and the resulting MNT

will be inaccurate. For all subsequent analyses, the value of N was set to N = 50,000 and the

effect of varying B on the P, was examined.

With the basic analysis of the LO processor parameters completed, it was possible to
examine its performance relative to a variety of channel parameters, including: J/§, f/R,, and
E,/N,. In the first simulation, the relationships between these three pararheters and B were
examined for the Histogram and EBH methods. For the system parameters in Table 4-4, the
following analyses are plotted: 1) for E,/N, = 0 dB, Figs. (4-5) and (4-6) show the P, relative
to J/S and f/R, 3 for B = 8, Figs. (4-7) and (4-8) show the P, relative to J/S and f/R, for B =
32, and Figs. (4-9) and (4-10) show P, relative to J/S and f/R, for B = 128; 2) for E,/N, = 10
dB, Figs. (4-11) and (4-12) show the P, relative to J/S and f/R, for B = 8, Figs. (4-13) and
(4-14) show the P, relative to J/§ and f/R, for B = 32, and Figs. (4-15) and (4-16) show P,
relative to J/S and f/R, for B = 128. For a baseline measurement, a plot of P, for a

conventional linear QPSK system with E,/N, = 10 dB is provided in Fig. (4-17).

The first observation that can be made from these figures is that there is a clearly defined
region in which the LO processor improves performance. In all the figures, this region begins
around J/S = 20 dB and f/R, > 0.2. Note that the relationship between P, and f/R, implies
that the performance of the LO processor improves as the CW jammer moves farther away from
the center of the main lobe bandwidth of the information signal, and only a slight performance

improvement is seen as the CW jammer moves towards the center of the main lobe. The next

? The range of f/R, was chosen to be 0.00496 to 0.496, rather than 0.005 to 0.5, so that samples of the CW
jammer taken in successive periods would not have the same value. This produces a histogram that has a relatively
“smooth” shape, rather than one that has a few bins of high probability, and a majority with zero probability.
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observation is that increasing B only decreases P, up to a point, after which the P, increases.

' Furthermore, the effects of varying B seem to be more pronounced at low E,/N, than at high
E,/N,. This can be seen more clearly in Fig. (4-18) to (4-21) where P, is shown for B and f/R,

varying.

Another interesting phenomenon that can be observed is that while J/§ must be large for

good performance, the LO processor is able to reduce the P, more substantially in a high E/N,

environment (e.g. 10 dB) than in a low E,/N, environment (e.g. 0 dB). This indicates that for

the best LO processor performance, the signal must be much weaker than the CW jammer, but

at the same time larger than the background thermal (white Gabssian) noise.

gunl ulatlI on Parameters

Parameter Yalue
J/S 0to S0 dB
f/R, 0.00496 to
0.496
E,/N, Oto 10dB
B 8 to 128
R, 0.05
N, 20
N 50,000
N, | 0 dB
Symbols per 5,000

P, Calculation

P e
Table 4-4

most cases in the region of interest.

Finally, in comparing the results for the
Histogram method to the EBH method for the
parameters in Table 4-4, it may be observed that
the Histogram method has a slightly lower P, than
the EBH method for most cases in the region of
interest. It must be stressed, however, that the
value of N, was N, = 20 for all simulation runs in
Figs. (4-5) to (4-16). But from Fig. (4-2) it may
be seen that while the Histogram method performs
better than the EBH method for low values of N,
the EBH method produces a lower P, for higher
values of N,. Thus, by increasing N, to a value
larger than 20, it may be possible to improve the
performance of the EBH method such that it will

have a lower P, than the Histogram method for
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Probability of Bit Error

The P, performance for the histogram
implementation of the FSA LO algorithm in
conjunction with the conventional QPSK system

was also investigated. Before examining the P,

Coaventional QPSK System )
EBH Method - Eb/N0=10dB, J/S=50dB performance with respect to J/S, f/R,, and E,/N,,

| | it was necessary to determine "good" values for
P and B. Figure (4-22) shows the P,

" R performance of the FSA method relative to P and
: ‘ : t 5 B for a single CW jammer having J/S = 30 dB
* g e b wew and f/R, = 0.496. The system parameters are
N j i .,,‘i;:; displayed in Table 4-5. As may be seen from
' m m . e L Fig. (4-22), there is a definite region where the
oot B FSA order, P, exceeds the histogram resolution,

Figure (4-21)

or B. Using these results, and after further

investigation, the values P = 8 and B = 64 were chosen for the subsequent analysis.

Using the knowledge gained in the preceding analysis, the P, for the histogram
implementation of the FSA method was computed relative to J/S, f/R,, and E,/N,. The results
are displayed in Figs. (4-23) to (4-25) for the simulation parameters shown in Table 4-6. The ‘
first major observation is that the FSA method is governed by the same region of interest as the
Histogram and EBH methods, namely J/S = 20 dB and f/R, > 0.2, and the P, decreases as
f/R, increases as before. Since these two observations are the same as those seen in the
Histogram and EBH methods, it may be assumed they are characteriétic of the basic LO
processor algorithm and rnor the result of a specific implementation. One final observation of
interest is that P, decreases as E,/N, increases. Thus, while it is critical that J/S be large enough
for the small-signal assumption to be valid, it is also important that the information signal be

larger than the background thermal (white Gaussian) noise.
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imulation Farameters

Parameter Yalue
P 21020
B 8 to 128
J/R, 0.00496 to
0.496 Conventional QPSK System
| . FSA Method - J/S=30 dB, fj/Rs=0.496
R, 0.05 '
N, 20
N 50,000
-}
E/N, 10 dB g,
s 30 dB 3
N, 0dB §“ .
Symbols per 5,000 = | S N
Pb Calculation 3 [ . . [ 1 " - u: s » - %
PSA Order
Table 4-5 Figure (4-22)

In comparing all three methods, the Histogram, EBH, and the histogram implementation
of the FSA, it may be observed that all three have approximately the same P, performance.
This is most likely a result of each method being based on a histogram approximation of the
PDF. Because the parametric implementation of the FSA is not based on an initial histogram
approximation, it is believed that this method will have a lower P, in the region of interest than

the other LO processor algorithms. This claim will be examined further in future research.
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4.2 Results for the QPSK DSSS System

The performance of the QPSK DSSS system was examined for the following overall

jamming scenarios: 1) a single CW jammer, 2) two CW jammers, and 3) a single PB jammer.

4.2.1 The Single CW Jammer Scenario

The results for the QPSK DSSS system when subjected to a single CW jammer are
presented in this section. Except for the addition of a new LO processor parameter, the
Processing Gain (PG), the channel parameters (J/S, f/R,, and E,/N;) and the LO processor
parameters (R,, N,, N, B, and P) of interest are the same as for the conventional QPSK system.
In this report, PG is defined as the number of chips per information symbol, or in terms of the

other LO parameters:

N,
PG=_: 41)
NC
where N, is the number of samples per chip.

The P, performance of the QPSK DSSS system with LO processing relative to J/S, f/R,,
and PG was examined using the system parameters given in Table 4-7. The values for N,, N,
B, and P were chosen using the knowledge gained through the analysis of the conventional
QPSK system. The organization of the P, plots is as follows. For the Histogram method, Figs.
(4-26) and (4-27) show the P, with respect to J/S and f/R, * and Figs. (4-28) and (4-29) show
the P, with respect to PG and f/R,. Similarly, Figs. (4-30) to (4-33), (4-34) to (4-37), and

* Note that in these analyses P, is plotted versus f/R, for f/R, in the range 0.201376 to 0.496, not 0.00496 to
0.496 as in the results for the conventional QPSK system. Values of f/R, less than 0.2 are outside the region of
interest because the P, is large there.
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(4-38) to (4-41) depict P, with respect to J/S, PG, and f/R, for the EBH, FSA, and second-order
MIPA (MIPA2) methods, respectively. Comparable resuits for a standard linear QPSK DSSS
system are provided in Figs. (4-42) to (4-45). From a cursory examination of the P, plots, three
observations can be made: 1) for f/R, > 0.2 and a given PG, the P, for almost all LO
processor methods decreases as J/S increases; 2) for J/S = 10 dB and a given PG, the P,
decreases as f/R, increases; and 3) for a given J/S and f/R,, the P, for almost all LO processor
methods decreases as PG increases. These results are consistent with those for the conventional
QPSK system. ‘

S Inuation Parameters In comparing across LO processor

methods, the following observations can be made.

Parameter Value , :
In the region of interest, J/S = 20 dB and f/R, >
; ; ;’ Oot'; 3:)39112 0.2, all the LO processor methods have roughly
t0 0.496 the same P, performance characteristics with the
PG 51020 foljowing exceptions: 1) the FSA and MIPA2
R, _ 0.1 methods perform better than the Histogram and
N, 2
N, PG * N, EBH methods for low J/S (J/S < 10 dB), and 2)
N 50,400 - the Histogram, FSA, and MIPA2 methods perform
8 z;lss‘f)g_mm and EBH) gi better than the EBH method when PG and J/S are
(MIPA2) 8 both low (PG < 10,J/S < 10 dB). The second
P (FSA) 8 . . :
exception is consistent with the results observed
f;b/No é OddBB for the conventional QPSK system, namely that for
0

low N, the Histogram method has a smaller P,

Symbols per 5,040 than the EBH method, but the converse is true for

P, Calculation . . . .
high N,. Future research is required to determine

L | .
Table 4-7 the reason(s) for the first exception.
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4.2.2 The Two CW Jammers Scenario

This section presents the results for the QPSK DSSS system using the Histogram and
EBH implementations of the LO nonlinear processor when subjected to two CW jammers. In
this analysis, the first CW jammer was held fixed at J/§ (1* CW) = 30 dB and f/R, (1* CW)
= 0.496. The second CW jammer was then varied over the range J/S (2 CW) = -20 to 50
dB and f/R, (2* CW) = 0.00406 to 0.406. The remaining system parameters are given in Table
4-8. The P, performance curves are plotted in Figs. (4-46) and (4-47) for the Histogram and
EBH methods, respectively. As can be seen from the figures, the P, is small when J/S (2* CW)
is low, and increases as J/§ (2* CW) increases. Note however, as J/S (2® CW) grows larger
than J/S (1* CW), i.e. as the second jammer becomes the dominant interferer, the P, remains
at a high value. This indicates that the absolute values of the J/S for both CWs, as well as the

difference in their magnitudes, determines the P, performance.

Another observation that can be made in this scenario is that as f/R, (2* CW) decreases,
the P, actually decreases. This would seem to contradict the results of the previous sections.
However, a possible reason for this seemingly anomalous case is that as f/R, (2* CW)
decreases, the second CW jammer’s frequency spectrum moves farther away from that of the
first CW jammer. Under this hypothesis it appears that the increased frequency spacing between

interferers is not as detrimental to the system as are closely spaced interferers.
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4.2.3 The PB Jammer Scenario

This section discusses the P, performance of the QPSK DSSS system when the channel
interference is a single PB jammer, implemented by passing white Gaussian noise through a
lowpass filter, and white Gaussian background noise. The results shown are for the LO
processor implemented via the Histogram method. Two parameters govern the PB jammer: J/§
and f/R,, where f, is the lowpass bandwidth (cutoff frequency) of the PB jammer (recall that the
simulation is performed at baseband). The simulation results for f/R, < 1, with the simulation
parameters in Table 4-9, are shown in Figs. (4-48) to (4-50). Figure (4-48) illustrates the
relationship of P, to J/S and /R, * for PG = 20 (similar results were observed for PG = 5 to
15 but are not shown here). The plots of P, with respect to PG and f/R, for J/S = -10 and 30
dB are shown in Figs. (4-49) and (4-50), respectively. As may be seen, P, is small for low
values of J/S (J/S <0 dB) and increases as J/S increases. In addition, it may be observed that
P, decreases as PG increases for high J/S, but for low J/S P, actually increases as PG increases.
Future analysis is required to determine the reason(s) behind this trend. Finally, for a given PG
and J/S, the P, is seen to increase as f/R, increases. This indicates that the LO processor

performs well for narrowband interference and worse for wideband interference.

Figures (4-51) to (4-53) depict the P, plots for f/R, > 1 with the system parameters
given in Table 4-10. These results confirm that the performance of the LO processor degrades

as the power spectrum of the PB jammer becomes more wideband.

% Unlike the CW jammer, the values for £/R, for the PB jammer may be chosen to be "nice” values, such as
0.2, 0.8, 1.2, etc. Since the PB jammer is implemented by passing white Gaussian noise through a lowpass filter,
the probability of successive samples being identical is small. Thus, any reasonable value of £/R, will produce a
histogram that is relatively "smooth.”
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4.3 Comparison of the Conventional QPSK and QPSK DSSS Systems

To compare the effects of spread spectrum on the LO processor, the P, performance of
the conventional QPSK and QPSK DSSS systems using the Histogram, EBH, and FSA LO

implementation methods were compared for the single CW jammer scenario. As in previous

simulations, N, for the conventional QPSK system was fixed at N, = 20, and PG = 10 and N,
= 2 were used for the QPSK DSSS system. Figs. (4-54) through (4-59) illustrate the P, versus
J/S results with f/R, = 0.397792 and 0.496 for each of the three LO processor methods. The

corresponding system parameters are provided in Table 4-11.

gimulation Parameters

Parameter Yalue

J/S 0to S0 dB

S/R, 0.397792
and 0.496

R, 0.1

N, (conv. QPSK) 20

N, (QPSK DSSS) 2

PG (QPSK DSSS) 10

N 50,400

B (histogram and EBH) 32

(FSA) 64

P (FSA) 8

E,/N, 10dB

N, 0dB

Symbols per 5,040

P, Calculation

T S e e
Table 4-11

As may be seen in the figures, the P, for
the QPSK DSSS system is smaller than that of the
conventional QPSK system for low values of J/S.
However, for larger values of J/S the P, for the
two systems is approximately the same. Thus, for
high values of J/§, the LO processor dominates the
improvement in performance. In addition, spread
spectrum can be used to improve performance, and

provide robustness, at lower values of J/S.
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4.4 Conclusions

Using the previous analyses, a number of conclusions can be drawn concerning the
optimum use of the memoryless LO processor. When the channel interference consists of a
single CW jammer:

o the memoryless LO processor is only effective in high J/S and high f/R,

environments

. the performance of the LO processor improves as the E,/N, increases

o large values of N, should be used

] regarding the LO proceé;or implementation methods, for a given value of N, the

value for B should be chosen judiciously such that the average number of samples
in each histogram bin remains large enough so that an accurate approximation of
the PDF is obtained

In the case of two CW jammers, the memoryless LO processor should be used only if one
of the jammers has a relatively low J/S. In addition, the P, performance improves as the

spectral separation of the CW jammers increases.

If the channel contains a single PB jammer, the memoryless LO processor should only
be used in moderate J/S environments. Also, the PG of the DSSS system must be modified as
the J/S changes.

Finally, it should be noted tha; all of the results in this section are for the memoryless
LO processor only. Future research should examine the use of LO processors with memory,
and their ability to improve P, performance, particularly in regions where the memoryless LO

processor is insufficient.
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5. LOCALLY OPTIMAL PROCESSING WITH MEMORY

The LO processors discussed in the previous sections assumed that adjacent samples of
the total channel interference were Independent and Identically Distributed (IID). Using this
assumption, it is possible to obtain the joint PDF of the interference samples as the product of
the individual marginal PDFs. However, the resulting memoryless LO processor does not take
advantage of the wealth of information contained in the interrelationships between adjacent
samples. Thus, a more robust LO processor, of which the memoryless processor is a subset,
can be derived by removing the IID assumption. This results in a processor with memory. Of
particular interest during the contract effort was the derivation of the LO processor with memory
presented in the Robust Digital Adaptive Transceiver (RDAT) report by Charles Stark Draper
Laboratories, Inc. [Drap89]. The following sections present the RDAT theory and methodology,
focusing on the development of the LO detector for one-dimensional (1D) and two-dimensional
(2D) signalling environments. In addition, a particular interference scenario was simulated to

provide further insight into, and a means of verifying, the research presented in the RDAT

report.

5.1  Derivation of the LO Processor with Memory for 1D Signalling’

The LO processor with memory for the case of 1D signalling is derived in [Drap89] as
the solution to the following radar problem: After translation to baseband, consider the

following two hypotheses:

! The notation for all of Section 5 follows the symbology introduced in [Drap89]. When necessary to clarify
the meaning of an equation or expression, notation consistent with this report is also included.
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H: z=s+n,
Hy ;\I:-’;\I

(5-1)

where 7,=(z,,....2,]7 is the vector of received signal samples, 5,=[s,,.-..5,J7 is the vector of
transmitted signal samples and may be written as §,=5G,=5[C,,...,c,J” With the set of {c;}’s
having amplitudes equal to +1 and where s is a constant, -n;,s[n,,...,n,v]T is the vector of total
channel noise (thermal noise and jammer) samples, and N is the number of samples per symbol
period. The N-point joint PDF of the channel noise is given by L(FN). The following
assumptions are made in the derivation: |

K T, and m, (and thus 5, and n,) are statistically independent

* the signal of interest is much weaker than the total channel noise.
The LO processor is derived by considering the standard likelihood ratio test [VanTé68]:

- H,
f;m,(?fle:) > (5-2)

4 n
H) <
f;IH.(;VI » H

0

or equivalently
oG] o
u\ Wiy >
In()=ln | 22T In (5-3)
’ [fz.,,xzﬂlﬂa]; "
0

since th= natural logarithm is a monotonic function. Using the assumption that the signal and

interference are statistically independent, / becomes




AT (54
fL3)

Taking the natural logarithm of / and using the first order N-dimensional Taylor series expansion

gives the expression

In() =In(f,(7,- 3,)) - In(£(Z))

T
~ (£ 3 - [{Zlnm&;»} 3 - 55
' T
A dmen] %
| [-d—il“(ﬂ(zw)):l Sv

,
where _ii_h('z:,) = ih(}:,),...,.i.h(zv) is the gradient of A(Z,). The expression of Eq. (5-5)
dz, az, dz,

is a valid approximation due to the weak signal assumption. Substituting Eq. (5-5) into Eq.

(5-3) results in the following form for the LO detector with memory:

Hl
LaGys, =5G g, Inn) (5-6)
HO
or equivalently
Hl
=7r= > In(n) _ 5.
LaGyeg — (5-7
HO

where G,=[g,,...,8,]” with the nonlinearity at the i* instant, 8{z), given by




8(z) = -ailnff.('i)) (5-8)
Zi

5.1.1 Simplification of the LO Processor using Markov Processes

The LO processor of Eq. (5-7) requires the N-point joint PDF of the baseband channel
noise. In practice, it is usually difficult to obtain this PDF either theoretically or through
estimation techniques. However, if it is possible to model the channel noise using Markov

random vectors, then generation of the joint PDF can be greatly simplified.-

Recall that by using Bayes rule, an N-point joint PDF, j;(—z;,) , of a random vector 7 may

be written as [Woze65]:

L2 221 Zp e 0Z0) 2L Zyse ooy MRy oo sZye)
T JCA0 P SO | ¢SS P SO SN} 8 ¢ AR AN | (5-9)

=j:|(zlv' Zyyeee ’ZN-l)f;c(zN-l lzv oo ’ZN-Z) . f;(zz Izl)f;l(zl)
However, if the vector 7::, is an M™ order Markov random vector, then

A CATIONE A EJ X A b AR A (5-10)

In particular, if 71',,, is a first order Markov random vector, then f,(z|z,;...,2,.,) =£(]z.,) and

Eq. (5-9) reduces to

FAEAE | FACALAD) (5-11)

j=1

with £.(z,20) a£.(2).




Using Eq. (5-11) and assuming Tl,,, is a first order Markov random vector, the

nonlinearity at the i*® instant in Eq. (5-8) becomes

——d

- __d =n._ 9 N
8% a—z,l"(f"(z”» a—z]l" [Hf.(z,lz,-,)

J=i

3 N
= -‘azj-zl ln(f,‘,(zllzj-l))

3 d
= —szj;l(ztlél-l) = &'::f;.(zi.l |2)

or equivalently,

gi(Z/) =8/2,12,.)) +8/2.,12) = 8/2,.,,22,.))

where
d
gi(zil Z.)4 'Tln(ﬂ(lez,--l))
Z
and
d
84z, |2) a 'Eln(f;(zm IZ,-))

(5-12)

(5-13)

(5-14)

(5-18)

Thus, for the first order Markov case the general N-point nonlinear processor, g,.(-z;,) , becomes

the simplified three point processor, g(z,_,,2»2,.;), of Eq. (5-13). Finally, by incorporating the

first order Markov nonlinearity of Eq. (5-13) into. Eq. (5-7), the LO processor with memory

reduces to the following expression:
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R,

N
>
L=Y c.8/z.1202) <7 (5-16)
isl
HO

where £,(25,2,,) 4 8,(2;,2) and g\(2y.1:2y2y.1) & 8MZy.1s2y) -

The LO processor given in Eq. (5-16) for the first order Markov case may be further

sirhpliﬁed to include only two point nonlinearities, g,(2,z,.,), by modifying the correlation

sequence _q'v in the following manner. Using Eq. (5-13) in Eq. (5-16), L becomes

N
L=Y c,lg(z)z.) +8(2.12)] (5-17)

iel
Manipulation of the summation indices provides the following system of equations:

N N
L‘E c.8(zlz.) "'2 €8z, |2)
int

i=l
N N+l
=; c,.g,.(zl.[z,.,,) + Ez c‘-lgi-l(zilzt~1)
N
=E [e.8.z 2. )+, 8.zl 2] (5-18)
i=l
*+Cn8Mnn 120 ~€o80(2 | 20)
N
=2 [Ci *C g'i.‘—*"l(ZiIZl-l):, gi(zllzl-l)

i it g,’(z{'zi-l)
"'c)vglv(z)v.l |Z~) 'cogo(zl IZO) -

£i@pzi)
£z

Using Eq. (5-14) and noting that £,(z,{z,_)a [Woze65], g(z|z._,) may be written as:
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| . X = ‘—l - ———
g.(Z,lZ,-l) n[ f:.(zt-l) ]

I 2,2,)]+ 02 (5-19)
(]

3
9z,
-8
dz,
-2 inff 22 )]
azl a\eHIvf-]
or
84z1z.)) =842,2,.) (5-20)

where g(z,,z,)& -a_i.lnE,(zi,z,_,)]. In addition, a new correlating sequence, ¢, may be defined

i

PN AR

e&lz) Thus, the 3-point test statistic of Eq. (5-16) reduces to the following
[ A/ Rl £

as ¢,=c,+C,_,
2-point test statistic 2
N
L =Z ¢8/2:2,.) (5-21)
i=l

The resulting expression in Eq. (5-21) is the 2-point equivalent processor discussed in
(Drap897°.

? The processor given by Eq. (5-21) is derived from results presented in [Drap89] under the assumption that
Cn8rZy.y 12) =0 and €,8(2,]2,) =0. These conditions can be met by defining C,=0 andg(2,.,12,) =0
since i=1, ..., N. This was not explicitly stated in [Drap89}].

? There is an error in Figure 2-4 of [Drap89]. The second processor in this figure is the equivalent 2-point
processor. However, the block diagram indicates that three points are necessary. Thus, gi(z‘.‘l,z‘.,z'._l) should be

replaced with £(2,,2,.,).
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5.1.2 Derivation of the Theoretical LO Gain for 1D Signalling

It is possible to derive analytical expressions for the performance gain associated with
the LO processor with memory if, under the central limit theorem [Woze65], the statistics of L
are assumed to be Gaussian. Then, the probability of detection, P,, and the probability of false

alarm, P, for the nonlinear receiver are given by [Drap89]:

P,=Erf [__7'<L‘>] (5-22)

9L,

and

| P=Erf [__._7 ~<L> ] (5-23)

where <L,> and ¢, are the mean and standard deviation, respectively, of L under hypothesis

H,, <Ly> and o, are the mean and standard deviation, respectively, of L under H,, and

Erf(x) =._1_I e T dx [Drap85]. It can be shown [Drap85,Drap89] that Eqgs. (5-22) and (5-23)
21|' x

are a function of the Signal-to-Noise Ratio (SNR) at the output of the LO processor, SNRy,, *,

which is given by

* The term SNRy,, is used here to be consistent with [Drap89]. In [Drap89], the LO processor with memory
is called the Time Amplitude Processor (TAP), with corresponding output SNR equal to SNRy,,.
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(<L,>-<L,>]"
SNRru, = o, 4
: “ (5-24)
r y2
<L>-<L>
SNRy,, = ' 2
L ’n )

under hypotheses H, and H,, respectively. Since it is assumed that g, =0, , Eq. (5-24) becomes

<L,>-<L>

SNR,,, =

2 . Y
] =SNRTAP. =~ SNR;,, (5-25)

%,

Thus, it is necessary to evaluate the quantities (<L,> - <L,>) and o, in order to analytically

specify the performance of the LO receiver.

The following is a sketch of the derivation presented in [Drap89] for the quantity
(<L,> ~<L,>). The decision statistic, L, is given by *

L= % LN ED (5-26)
where G is used instead of G to indicate that this is the actual LO processor implementation,

not the theoretically optimum one. The expression for <L,> is given by

5 The % scale factor is introduced in this equation in [Drap89] as a resuit of implementing the required

summation for the LO receiver with a standard linear correlator. The effects of this scale factor can be removed
by appropriately modifying the decision threshold.
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<L,>=

[ 75 ,,mlH Vi(Godzde, (527
&

where f,, (+) is equivalent to £, (+) since under hypothesis H, it is assumed that the vector ¢,
is transmitted. Assuming that the signal is much weaker than the channel interference, f;, a(*)

can be approximated using a Taylor series expansion as
JAMEAL AL XERTV
~(1 + G2

(5-28)

where G,(z,) is given by Egs. (5-7) and (5-8). Substituting Eq. (5-28) into Eq. (5-27) and

identifying terms, it can be shown that

<L,>-<L> =3[ [[@6.RT@E) L@SGRE s
s
or
<L>-<L>= .1‘:_, <&6(RGUHG>zz (5-30)

where <:>-- indicates expectation with respect to Z,, (under Hy) and -c;, Next, by assuming
that the correlation matrix of 'Z';, is the identity matrix [Drap89], and by using the identity

X'y=Tr(x y7), Eq. (5-30) becomes
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<L>-<L>=3iTd<CG,Gl>-
: o N'( $Gr>3) (5-31)

=5 K

where

K, A%Tr(< 650>
(5-32)

-Z <8.8>+

The expression for ¢, can be derived as follows. Assuming that <L,> =~ 0 because

%=, under Hy, then ¢~ <L{>. Using Eq. (5-26) and noting that 7, and G, are

statistically independent under H,, the expression for <L¢> is

<1d> = [ [ H@6.67a] £RLGRAE, (5-33)
5

Again assuming that the correlation matrix of _c:, is the identity matrix, Eq. (5-33) reduces to

<Lg> =ﬁliTr<é~G;>2

(5-39)

K,
N

where




1 A AT
KVA-ﬁTr< GyGy >3

(5-39)
_Z <gl> z

l'l

Finally, by substituting Egs. (5-32) and (5-35) into Eq. (5-25), the output SNR for the
LO receiver becomes

2

K
SNRT”=SZN7(: =sINk (5-36)
where
Kl
ka— (8-37)
a Kv

The expressions for K, and K, of Egs. (5-32) and (5-35) may be simplified if the noise
PDF, f(-), is spherically symmetric’. In this case, <g,8>=<§g>a<gg> and

<!> =<g}> a4 <g*> foralliandj, and Egs. (5-32) and (5-35) reduce to
K =<gg> (5-38)

and

KV

<g*> (5-39)

¢ In [Drap89}, the assumption of stationarity, not spherical symmetry, is used to obtain the results in Egs. (5-38)

and (5-39). However, stationarity does not guarantee that < g,2.> = <gj 8; > and <g, > = <g > for all
i and j, as will be shown through simulation in Section 5.3.
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The gain of the LO receiver relative to a linear receiver may be calculated by dividing
Eq. (5-36) by the output SNR for a linear receiver. The output SNR for a linear receiver,

SNR,z, may be computed by substituting -z;, for GN(?;) in Egs. (5-32) and (5-35), and using the

result in Eq. (5-36). This gives the expression

2
SNR, =S (5-40)

Oy

where o’ is the variance of the total‘channel noise. Dividing Eq. (5-36) by Eq. (5-40), the

resulting gain of the LO receiver relative to a linear receiver is given by

SNR., Kn . (5-41)

=0,— =ka,

Gppp b T2
WA SR, K,

The following is a summary of the assumptions made in the derivation of SNR;,, and G, :
* the signal of interest is much weaker than the total channel noise

] the statistics of L are Gaussian

¢ =,
* <L,>=0,andthus 0, = <Lg>

*  the individual samples of ¢, are uncorrelated

e the vectors z, and c, are independent under hypothesis H,.

5.2  Derivation of the LO Processor with Memory for 2D Signalling

Similar to the case of 1D signalling, the LO processor with memory for 2D signalling
is derived in [Drap89] as the solution to the following radar problem: After translation of the
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I and Q channels to baseband, consider the following two hypotheses:

H,: x,=Scos(a+0)+n,

y;=Ssin(a,+0) +n, a2
' (

Hg x=n
yi '”y

where (x,,y) is the sample pair of the [ and Q channels at the i® instant, «, is the i* sample of

the information sequence .(phase modulation is assumed), S and 6 are unknown amplitude and

phase components associated with the channel, and (n,,n,) is the sample pair of the total noise

in the I-and Q channels at the i® instant. The following assumptions are made in the derivation

of the LO processor:

a, is independent of § and 4

a, is independent of n_and n,

S and 4 are independent of n, and n,

the underlying random noise process, n(t), which when sampled in the I and Q channels

produces n, and n,, is stationary and has zero mean

the signal of interest is much weaker than the total channel noise.

The received signal under hypothesis H, of Eq. (5-42) can be written in a more compact form:

(5-43)

S

[

7?-=T§"‘"

where R =[x, y1”, S,=T(a) S.0) with

3(S,0) =Se(8) = S[cos(6) sin(6)]” (5-44)

representing the unknown parameters, and
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sin(a) cos(ax)

cos(a;) -sin(a)
Na) = [ ] (5-43)

representing the known parameters. The matrix T{«) of Eq. (5-45) has the following useful
properties:
e TYa)=TT(a)

e T-a)=T(a), and

* TNa)Na)=T(e+a)

The LO processor is derived from the standard likelihood ratio test [VanT68):

la (5-46)

- = H,
f;lﬂ,(Rl""’RN'Hl) >7
3 R <
fyn Ry R\ HY A,

where N is the number of samples per signal period. Using the assumptions outlined at the

beginning of Section 5.2, the conditional PDF £, (+) can be written as

-frllll(_R.l’””ﬁN) = If;w(ﬁl -El"“ ’EN'TS.NI.‘S.)fam,(-‘ﬂ H l)d-a. (5-47)

[

where f,(+) is the joint PDF of n, i=1,...,N, and conditioning on H, implies that e, is known.

Also, from Eq. (5-42), f,| ,,.(-) is given by

f;-'”.(_R-p“'a_R.NlHo) =L(_R.l""’ﬁN) (5‘48)

Using Egs. (5-47) and (5-48) in Eq. (5-46), the likelihood ratio becomes
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R, Ry-S,1 3
/= [‘f;"( S RSl ) f,n(BIH)AE

j;(Rl,...,RN) (5-49)
a I‘ 1(8) £y, (3] H’)d'é'
where
l(a)gf'"(‘ __’ Rv=Sul &) (5-50)
f(R,...R)

indicates the dependence of the likelihood ratio on 3', i.e. on the unknown amplitude and phase

terms. Assuming that the desired signal, '.i is much weaker than the channel noise, 7:,', the

expression for /() may be approximated via a multidimensional Taylor series expansion as

[(3)=1+3"L- %‘a’m’- (5-51)

where L is a [2x1] vector defined as

N
e T ORAC ) YRy R (5-52)
SRy R R,

and M is the [2x2] matrix defined as

LA ¥f,(R,,....R)
M .._______ T A D \ (5-53)
Aj;(R R N).z-n:,‘v'( @) dR.IR, Tty

Since the second order term, %T‘STM'S, is on the order of || 5][2a3 8, M is replaced by its




average value [Drap89], M, given by

M= | ME,,...R)f(R,....R)dR, ...dR, (5-54)

resulting in the following approximation of Eq. (5-51):

I3 =1+3"L- .2‘.3’[4'5’ (5-55)
5.2.1 Statistics for the LO Likelihood Ratio Assuming Known Signal Amplitude

and Phase Offset

An interesting result may be observed if the likelihood ratio of Eq. (5-53) is examined

for a known 9. If 3 is known, then the likelihood ratio of Eq. (5-49) reduces to /=1(8) and

the likelihood ratio test becomes

I 2 (5-56)

An equivalent test statistic, as discussed in [Drap89], is
Hl
. el(f) ZeT (5‘57)
HO

Furthermore, the expression in Eq. (5-55) for 1(%) may be written in a slightly different fashion

by "completing the square” to yield




(3 =1- .;.(r-ﬁ:s'mf'(z'-ha . %m}z (5-58)

In addition, if the threshold, v, is assumed to small, the approximation

e’ = 1 +y (5-59)

may be used in Eq. (5-57). Finally, substituting Eqs. (5-58) and (5-59) into Eq. (5-57), and
rearranging terms, yields the equivalent likelihood ratio test
exp [- %(Z-A-fg)’;l "(f-ﬂ-ﬁ.)-l Z‘
. — <7 (5-60)
exp [ - .;-.erf] : H,

—

As may be seen, the likelihood ratio is a functior of L. Since the likelihood ratio is defined as
a ratio of two PDFs, Eq. (5-60) may be interpreted as
- Hl |
SULIH) > (5-61)
-_— <7
FATlHy
0

where, from Eq. (5-60), f,(L|H,) is a Gaussian PDF with mean equal to M3, f(L|H,) is a

Gaussian PDF with zero mean, and both have a covariance matrix equal to M. In this context,

" the decision statistic L may be considered to be a Gaussian random vector under both the

hypotheses, H, and H,. Thus, the development of Eq. (5-60) provides another argument, in

addition to the central limit theorem, that the statistics of L are Gaussian.

5-18




§5.2.2 Development of the LO Likelihood Ratio Assuming an Unknown Nonrandom
Signal Amplitude and a Random Phase Offset

The most useful scenario to examire is when the signal amplitude is unknown, but not
necessarily random, and the phase offset is a random variable. In this case, H, becomes a
composite hypothesis [VanT68] because the overall problem is still a binary detection problem,
but the received signal under H, is a function of a random variable, 6, and an unknown albeit
nonrandom parameter S. Assuming S is a known parameter for the moment, the likelihood ratio

for this scenario is given by [VanT68]

FyuRose o Ry HY)

l= —
j;'H.(R,,...,ROIHo)

(5-62)
_ [ fae n Ry R 0.H )y 01 H,) B

fiu Ry Ry|HY)

Now, for the case when S is unknown, it is intuitively obvious that the detector with the best
performance will be one that is able to measure § perfectly and then use this value in the
optimum likelihood ratio test. However, in most cases this type of detector is unrealizable due
to errors caused by the channel noise. Thus. one logical method for constructing the likelihood
ratio is to first es;imate S and then use this estimate in the likelihood ratio test as if it were

exact. One possible estimator for S is the Maximum Likelihood Estimate (MLE), denoted by

§,. The value of $,, is equal to the value of § which maximizes £, (R,,...,R,|5) 7, or in other

words, 3,,,, is the value of S most likely to have produced the given value of the received signal

vector. Using the above argument, one can construct the Generalized Likelihood Ratio (GLR)

[VanT68], which in this case is

’ This is the reason why one of the main focal points of Section 3.2.2.2.1 of [Drap89] is determining the value
of S which maximizes the decision statistic, /.

5-19




I zf;|s.u,(7.‘;n°"jimls’ﬂl)|s-.'},_,
b LR Ry HY

(5-63)
X S, o Rl S.H)

S Roseees Ryl Ho)

Using the development of Eq. (5-63), Eq. (5-62) can be modified to yield the GLR for the case

of unknown nonrandom signal amplitude and random phase offset

m;x I Lo suRisec Ryl 0.8,H ) fy s 4 (6| S,H,)dO
| =

d Lo Ry Ry HY)

(5-64)

But [y (R, Ry|0,5,H) =, (R -5, .Ry=5,| D) and [, R,,....R )| HY =f,(R,,....R,).

Also, fy sy () =fyu () since S and 6 are assumed to be statistically independent. Thus

£ RS, B 51D
[ =max [ZneTi7o00 NN 8|H,)do
'S | £(R,,....RY) Sun 015D
= max II(BL,H,(GIH.MG (5-65)

=< m§x I(5,6)>,

where < - >, indicates expectation with respec: to 6.

Substituting Eq. (5-44) into Eq. (5-51) yields the following LO expression for /(3):
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I3)=1(S.0)=1+SEO)L - %s’?(o)’ifi(a) (5-66)

Provided that M > 0, the maximum of /(S,8) with respect to S occurs when
se5° @=L _ (567
a0)" M 46)
Substituting Eq. (5-67) into Eq. (5-66) produces the expression

max i(5,8) =S * ,8) = 1 + L (AOTLY (5-68)
S 2740 M )

Using Eq. (5-68) in Eq. (5-65) yields the generalized likelihood ratio test

Hl
< -;-(?(6’)’2')2 >, z 7 <e0Me6)>, (5-69)
HO
where ¥=v-1. Using the identity
<HOTM D) >, =Ti[M <e6) A0 > | (5-70)

and assuming that @ is uniformly distributed over the interval [0,27) yields the result

<AOTMAO)>,=Ti|M <A qO"> |
- (5-71)
=_TnM
Lo
since <'e.(0)'é'(0)r>, is a two dimensional identity matrix. Similarly, it can be shown that
<(e®Ly>,=L"La |T|? (5-72)

Substituting Eqs. (5-71) and (5-72) in Eq. (5-69) gives the expression
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(5-73)

AV

Iz}

TrM]

<

o —
XA

Finally, recalling the discussion in Section 5.2.1, M may be though of as the covariance matrix

of L, and as such
TAM]=Ti<IL >
=<L'L>; (5-74)
A
where <> indicates expectation with respect to the received signal under H, (the channel

noise) ®. Thus, the resulting LO likelihood ratio test for the case of an unknown nonrandom

signal amplitude and a random phase offset is

1y 27 (5-75)
AITAES
<|L,|*> H,

523 Derivation of the Theoretical LO Gain for 2D Signalling

The performance measures of interest, as in the case for 1D signalling, are P, and P;.
Similar to the 1D signalling case, and discussed in [Drap85], the output signal to noise ratio,

* This result is presented in [Drap89). Note that for Eq. (5-74) to be true, the covariance matrix of L under

H, must be approximately equal to the covariance matrix of L under H,, and the mean of L under H, must be
approximately equal to the zero vector. These assumptions were not explicitly stated in [Drap89].
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SNR;,, of the LO processor determines the performance. SNRp, is given by the expression

[Drap89)°

SNR.. < E | <Z,|3> - <L,| 3> |2 (5-76)
T )
<|L,[*> 5

where < - > represents expectation with respect to the information sequence and the received

signal under hypothesis H, or H, as required, and E{-}; indicates expectation with respect to

3.

As indicated in Eq. (5-76), the terms required to evaluate SNRy,, are calculated given 3,
and then the result is averaged with respect to §, or 8, or both depending on the given scenario.

Recalling Eq. (5-52), the expression for L may be written as

N
L=Y T"(a)G(R,,....Ry) (5-7

where G(R,,...,R,) represents the implemented/approximated version of

I PAGTY 578

in Eq. (5-52). Since «,, 8, and n, are independent, and since the received signal under

hypothesis H; is a function of all three of these variables, the expression for <T|3> may be

written as

° Note that in {Drap89] the required conditioning on S was omitted.
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(5-79)

where a, =[a,,...,a,)". Assuming that the signal is much weaker than the channel noise, a first

order multidimensional Taylor series expansion of f(+) may be used, resulting in the expression

) N
fR-S,...R,-5) =f(R....K) [1 +SY. G/ (R,,....R) ) 2‘(0)} (5-80)
j=l

where
G= -2 1lf(R,....R,)] (5-81)
aR,
Using Egs. (5-77) and (5-80) in Eq. (5-79), and identifying the term that represents
<L,| 3> =<L,>, yields the following result
<L,|3> - <L,| > =SNK_e(6) (5-82)

where K, is the [2x2] matrix defined as

N N
K,a+Y Y <T"@)6,5 o) > 5= (5-83)

i=l  j={
where < - > indicates expectation with respect to the received signal and ZN. Since in the

approximation of Eq. (5-80), the received signal is assumed to be nearly equal to the noise, and';t:

and o, are assumed to be independent, Eq. (5-83) may be written as
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N N -
K= A S <TT0) <68 >aTa)>5 534
isl jal
Finally, if it is assumed that q; is independent of «;, and that o, is uniformly distributed over
the region [0,27), then the expression for K, simplifies to

N
K, ~ % Y <T7a) <GG >z Na)>5 (5-85)

isl

The expression for < | L, [|2> is given by:

<UITI> = <IT 113> = [ [ ITI R RILEIAR, Rz, (5.3
a

Substituting Eq. (5-77) into Eq. (5-86) yields the following expression for < | L [|?>
<|Z,|*> =NK, (5-87)

where K, is the scalar parameter defined as

N N

=]

Kal Y Y <G/ Ta)Te)G>5 (5-88)

{ j=l

Again, since 71: is independent of «;, and if it is assumed that o, is independent of «;, witha,

uniformly distributed over the region [0,27), the Eq. (5-88) reduces to

N
(b5 <66y 55
i=]

The expressions for K,, and K, of Egs. (5-85) and (5-89) may be simplified if the noise
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PDF, f.(+) is spherically symmetric '°. In this case, <GG'>= <G,- "Gj"> a<GG™> and

'<6/6>=<G"G>a<G"G> foralliandj, and Egs. (5-85) and (5-89) reduce to

K =<GG™> (5-90)
and
K=<G"G6> (5-91)

Finally, substituting Eqs (5-82) and (5-87) into Eq. (5-76) yields the following

expressmn for SNRy,:

SNRr,p = 2 E(5? [ K,80) 17} (5-92)

For the case when § is deterministic and 6 is uniform over [0,2x), Eq. (5-92) becomes

2=
SN 1 (= - :
SNR,,, = X [) e'KTK ‘e df (5-93)
or
2x
XY r 1 .
SNR,,, = % Tr [K KT — = L eerdaJ (5-94)

However, since 4 is uniform over [0,27)

' In [Drap89], the assumption of stationarity, not spherical symmetry, is used to obtain the results in Egs.
(5-90) and (5-91). However, stationarity does not guarantee that < G 6 T> =< éjb.jr> and
< G G >=< G > for all i and j, as will be shown through simulation in Section 5.3.
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1Y 1|10 (5-95)
— [ eerdo==
211 7001
Thus, Eq. (5-94) reduces to
Tk K
SNR,A,=SZN_ifIT(___l (5-96)

The theoretical gain of the LO processor relative to a linear receiver, G, may be

computed by taking the ratio of SNRy,, to the output SNR of a linear receiver, SNR,,. The
expression for SNR,; is calculated by using G‘,.=[x,. yJ to evaluate K, and X, in Eq. (5-96).

Evaluating <G,G> in Eq. (5-84) for G,=[x,,y]" yields

<Gi-6jr>f= - I Q(-R.l""'ﬁn)dﬁl""’d-ﬁ)v (5-97)
7
where
'x .(R.....Ry . I (R,,...R)]
_ { ax i ay,
O®R,,....R)= _ 7 (5-98)
¥ (R...R) Of(R,...R)
i a yl' a
! % Vi

Evaluating the two off-diagonal terms, and assuming that the tails of f,(+) approach zero as x,

and y; approach + oo, yields
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fR,...R) = = - = U= — =
-in__:_)?___".dR,...dR~=- L xijj‘(Rl,...,RN)Iy__mdR,..de_,dxdej,,..deO
] =
acen ’ (5-99)
and
(R, Ry = = - = T - _
-Ly‘___:a_),.f.—“f-dkl...dRN=- L v, £ (R, BY) __ o @R.dR,,dydR, .. dR, =0
] i
s ’ (5-100)
For i=j, using integration by parts the diagonal terms of Eq. (5-97) reduce to
f, = = - = W - == =
-in&-dR,...de- [ X, f,(Rl,..}wx_ DB B Dy [ f(R,...R)dR,...dR,
i YireesTn i
acept y, ~ R
= J f(R,,....R)dR,...dR,
3
=1
(5-101)

and
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a

f, = = - . I _ = = =
-J;y...é;dR‘...dRN--- j y, fu(R‘,...,fy).ty_ | dredrd . dry [ f.(R....R)dR....dR,
i b S0 ” i 7
except X,

= [/(R,....RydR,...dR,
R

=1
(5-102)
Note in the above the tails of f,(-) are assumed to decay to zero as x; and y; approach too.

For i=j, the diagonal terms of Eq. (5-97) reduce to

=+00

af,

X.=
o— —— — — I L — — —
-[x‘.g.dR,,...,de— I % fR....R)| _ dR..R_dydR,, dR,=0
3 j R.R, X;==
BCtplxi
(5-103)
and
of, = — - = TT® - =
-[yiay dR,,....dR, =- j Y f(RiuR| dR.R_ dxdR,,. .dR,=0
R J R, Ry yj=-
except y;
(5-104)

again since the tails of the channel noise PDF are assumed to decay to zero. Substituting the
results of Egs. (5-99) through (5-104) into Eq. (5-84), and noting that T7(a) T{a) is the two

dimensional identity matrix, K, becomes
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K., 7ha (5-105)
where

. 10 (5-106)

w8 1o

To evaluate X, , G,=[x,y]" is substituted into Eq. (5-88) which yields the expression

K =0:Aaf+a§ (5-107)

where
ot=0= ix,.’f;(k’l,...,iv)dk',...dk‘,v , for all i

(5-108)
0;=0,1= Ly,-zfn(ﬁ,,...,ﬁ,v)d'ﬁl...dk'” , for ail i

Substituting Eq. (5-105) and (5-108) into Eq. (5-96) yields the following result for SNR,, :

2
SNR,,= 3 (5-109)

Finally, dividing Eq. (5-96) by (5-109) yields the expression for Gy, :

2 T
G. = O'nTl{Kme} (5_110)
TAP 2Kv
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524 Theoretical LO Output SNR and Gain for BPSK Modulation

The derivation of SNRy,, and G, for the case of BPSK modulation is examined in this

section. For BPSK, «;=0° or 180° and T(a) is

) L, for a,=0° (5-111)
a.)=
"o |-1,, for a,=180°
Thus, K, becomes
I AR
K.,==—% <6G >4 (5-112)
N
By defining G(R,....,R,) as
-— — ——- — - T
G=[G. o) G, (5] (5-113)

where

9 - =
G, a -gx-ilnk(R,,...,RN)]
(5-114)

G, a -aiyilnk(ﬁ,,...,ﬁ‘v)}

>
>

a

and G, =[G, y']T as the implementation/approximation of Ei =[G, Gy]T, K,, may be written as

L& | K, K,

"y L7 (5°115)
K =—§
" N& K, K,

i=]

where
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K =

m,,

G, f(%n Y d%,dY,

K, =[G,G, f(x,%)dxdy,

[ .
! (5-116)

K, = [ 6,G. £z dxdy,
K, | 6.6, f(Re W) dxdy,

Also, K, becomes
1 N
K = Z (Kv‘ +K» (5-117)
where
K, = | G fiZo 30 dxdyy

K, = [ G, 1.1 dxdy,

(5-118)

Substituting Egs. (5-115) and (5-117) into Eq. (5-96) yields the resulting expression for SNR,.,.,
for BPSK:

N N

S X K Ko, *EZK X, *ZEK . *EEK K.,

j=] jsl i=] j=l % el Jj=1 inl jel
SNR -
7'AP

22 (K + K)

(5-119)

Similarly, G, for the case of BPSK modulation is:
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(5-120)

If the channel noise PDF, f(+), is spherically symmetric, the expressions for SNR,.,, and
Gr,.» may be greatly simplified. In this case, K, = K"'-, ak, , K"',. = K,_m s K, K'".., = K,,,l ak, ,
Km,.,"'K"',.,A K., , and also Kv‘i=Kv"g K, and X, =K,”g K, forall iandj. Thus, Egs. (5-119)
and (5-120) simplify to

) 521\/(19,"2 K, ?+K, 2+ Km_z)
) 2(K,}K,})

(5-121)

SNR..p

and

oK, +K, +K,?+K, )
2(k,2+K,?)

v
4

(5-122)

Gryp=

5.3  Simulation Results for the LO Processor with Memory

To provide insight into the RDAT theory and methodology, and to provide a means of
verification, an interference scenario discussed in [Drap89] was simulated using the MATLAB™

software package by The Math Works, Inc. The scenario, depicted in Fig. (5-1), involves 1D
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signalling and a channel interference consisting of: i) additive white Gaussian noise, w(n), with
variance given by o, and ii) colored Gaussian noise, j(n), with variance given by o}. The
sequence j(n) is obtained as the output of an N-point Moving Average (MA) process, whose
input is white Gaussian noise, v(n), having vanance equal to o2. Thus, the colored Gaussian
noise sequence, j(n), is given by the equation

N-1
=L ¥ vin-k) (5-123)
N k=0

The autocorrelation sequence, A(k) =E{n(n)n(n+k)} = <n(n)n(n+k)> , of the total channel noise,

n(n) =j(n) +w(n), is given by

2 2
og,+d, , k=0
- 5-124
N(k) = ﬁwlﬂ-ai, 1<|k| <N (5-124)
0, k=N

Finally, the covariance matrix for the total channel noise is given by

[ N0) A1) AR - Ap-D)]
A(D) AO) A - Np-2)
A=| M2 MDD NO) - Np-3) (5-125)

Ap-1) Mp-2) AMp-3) - NMO) |

where p is the number of received samples processed by the LO processor per signal period.
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Figure (5-1)

Since the total channel noise is the sum of two zero mean Gaussian noise processes, its

PDF is also Gaussian and is given by

- 1 danea .
S AT 7 10

where n=(n, n, ... n,)7. Thus, the nonlinearity at the i* instant, g,, is given by

8= -a—i-ln(ﬂ(ﬁ)) =nTA'g (5-127)

where Z is a vector of length p whose elements are all zero except for the i* element which is

equal to one. Recalling that for 1D signalling the gain of the LO processor relative to a linear

receiver, Gr,p, is given by
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e

Grip=ko, (5-128)

K: I .
where k= = K, and K, are given by Eqs. (5-32) and (5-35), o’ =0®+ 0’ in this scenario, and

v

that for the LO receiver §,=g,. Thus, the value of k for the LO receiver may be computed as

Z < g‘ (5-129)

Substituting Eq. (5-127) into Eq. (5-129), and noting that <7 n’> =A, yields the following

result for k:

k=135 T (5-130)

1
P =]
Finally, the expression for Gr,, is given by

(5-131)

..M

> T

i=l

TAP

.blBQN

Figures (5-2) to (5-5) illustrate the resulting values of Gr,, in relation to the LO

processor length, p, and the length of the colored Gaussian MA process, N, for aZ=af.= l ,

0:=100%=10, o7 =1000 =100, and ¢? = 10000> = 1000, respectively. As may be seen, the gain
of the LO processor increases as its length increases. It is shown in [Drap89] that as the LO
processor length increases, the gain relative to a standard linear receiver approaches that of the
optimal filter for this scenario, the Wiener filter. Furthermore, for a given LO processor length,
the gain increases as the value of Nincreases. This indicates that the LO processor is better able

to remove the effects of the colored Gaussian noise as adjacent samples become more correlated.
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In comparing the results shown in Figs. (5-2) through (5-5) to those in [Drap89] (see
Figs. 2-8 to 2-11 on pp. 2-33 to 2-36), it was noticed that the results were not identical. The
reason for this discrepancy is that the results in [Drap89] were generated using the assumption
that since the channel noise process was stationary, the value for & could be calculated using just

one g,, i.e. using the equation

k=<gl> (5-132)

for any i. However, as discussed in Sections 5.1.2 and 5.2.3, stationarity is not a sufficient
condition to ensure that < g,-2> = <gf> for all i and j. Instead, the PDF of the channel noise

must be spherically symmetric, which is not the case in this scenario. To show that stationarity

is not a sufficient condition to give the resuit in Eq. (5-132), the values of Gy, in relation to p
and N were plotted for the case of a2 =1000% =100 using Eq. (5-132) with i=1. The results of

this experiment are shown in Fig. (5-6) and are almost identical to the results presented in
[Drap89] ''. It may be observed that Figs. (5-6) and (5-4) are not the same, but should be if
stationarity is sufficient to ensure the validity of Eq. (5-132). Thus, stationarity is not a
sufficient condition to warrant the simplification of the expression for k& given in Eq. (5-129) to

that given in Eq. (5-132).

"' There are some slight differences in the plot shown in Fig. (5-6) and that of Fig. 2-10 of [Drap89]. These
differences are most likely a result of differences in the resolution of the computer software used to generate and
plot the results.
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LO Processor Gain in dB
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LO Processor Gain Calculated using g1 (i=1)
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6. FUTURE OBJECTIVES

While the work presented herein provides an assortment of clues into the fundamental
behavior of the LO processor, there is still much research to be done in this area. Previous
sections of this report addressed the memoryless LO processor and the many algorithms used
to implement it. Software simulation is the method of choice for characterizing the performance
of this processor. Two simulations were presented which provided a means of investigating the
P, of the memoryless LO processor in a variety of jamming environments. The LO processor
with memory was also discussed, with an emphasis placed on its derivation and the development
of the theoretical expressions for the output SNR and gain relative to a linear receiver. A
number of logical extensions of the research presented in this report may be identified. Some

of these include:

o Simulation of the LO processor with memory and its incorporation into the QPSK DSSS
system. By comparing the results of this simulation to the memoryless LO processor
results, the performance enhancement gained through the use of memory can be

quantified.

o Investigation of other modulation techniques, particularly Continuous Phase Frequency
Shift Keying (CPFSK) [Leib93], a form of Minimum Shift Keying (MSK), and their

effects on the performance of the LO processor.

o Simulation of the parametric implementation of the FSA algorithm. All of the LO
processor implementation methods mentioned in this report employ a histogram
approximation of the received signal PDF at some point in their respective algorithms.
Since it was seen that all the methods had roughly the same performance results, one
may conclude that the histogram is the limiting factor. By examining the parametric

implementation of the FSA algorithm, it may be possible to determine if this hypothesis
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is true, or if the method of LO processor implementation has relatively little effect on

its overall performance.

o Adaptation of the Continuous Polynomial Approximation (CPA) algorithm [Grim93] for
use as an LO processor implementation method. Through simulation the performance
of this algorithm can be compared to the other methods (Histogram, EBH, FSA, and
MIPA) previously discussed.

LO processing is a rich area of study. Intuitively, the LO processor with memory should
be more robust than the memoryless processor and thus able to mitigate a wide array of different
jammer types, including those for which the memoryless LO pfoccssor performed poorly. Afso,
whether or not different LO processor implementation algorithms have a strong influence on
overall performance remains to be seen. The work presented in this report, along with the
future tasks mentioned in this section, will lead to the definition of a communications system that
is robust and able to provide a secure and reliable information exchange in a multitude of

interference scenarios.
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