
AD-A277 999 0
Computer Graphics Research Laboratory

Quarterly Progress Report D T I C
No. 49 li IC

Norman I. Badler 0 APR12 1994
Department of Computer and Information Science; D

University of Pennsylvania

Philadelphia, PA 19104-6369
Third Quarter 1993

November 22, 1993

j- c

.~~~D I II i., V-A't Aiý Its. . -. __"•

94-10897 j94 ' 4 ,- -,00-0
IMiIIlhil 4 11 O1O



aLbaL 9.urz . Lb J.; LUr )'UK RKEPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE MBNo, 0Ao
OMB N•O. 01704-0180

g i ;. tUofq .j ,n too, 1 o-%'OIWtioA of -mtlowMatlaf 4 "tamgl to 4-fow I Vow oV 'WO.'nDo kse•q tk tte "K t" VAR n tfwt ,ifvfttr"•sof, 'lltW• .lt~ M ~to.• .oat net af •' 1401onq Ite @Gaa fegdo A" cofeles se revow theV 'ose" ot tOrmat.oA $. A came t ,.,, itV. t ,,8e,. eCt.Sto0e o v Oth"r aWt of tt•! .colfift6.OA of ,V~otlelm&" Ineuain 69mq wqqe t~o for reducinq t" DubrfOn to V*as..qto~t .Vaftwadttw% %wv,.cu 0-enrsc -to'UatOV OoD.a,.oE. adrd R@fteg l. 1 J It jeftfUW~00--t H*0.o AV %W-| '104 At.*qton Va IJJ024 102 tew tO t" aei(. ott f Ame, a•nlu•et 'vI v ofk fltewt•on PrOWCIi0104.0 see) *Va*n'tqtOtm DC 21SO
1. AGENCY USE ONLY (Leave Wadnk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1993
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Computer Graphics Research Laboratory
Quarterly Progress Report No. 49

6. AUTHOR(S)

Dr. Norman I. Badler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Pennsylvania REPORT NUMBER
Computer & Information Science Department
Philadelphia, PA 19104-6389

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBERU.S. Army Research Office

P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of theauthor(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Wasmum 200 words)

This Quarterly Report includes descriptions of various projects underway in
the Computer Graphics Research Lab during July through September 1993.

14. SUBJECT TERMS 
1! NUMBER OF PAGES

Computer Graphics 84
16. PRICE CODE

17. SECURITY CLASSIFIC.,,uei Id. S.CURITY CLASSIFICATION - 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTOf REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-0' 280-5500 

Stanoaro Form 298 (Rev 2-89)



X(WORANDUM OF TR"ANSUfl7AL

U.S. Army Research Office
ATTN: ACXRO-RT-IPL
P.O. Box 12211
Research Triangle Park, NC 27709-2211

Reprint (15 copies) X Technical Report (50 copies)

I'Manuscript (1 copy) - Final Report (S0 copies)

Thesis (1 copy)

MS PhD Other

CONTRACT/GRANT NUMBER DAALO0-Sg-C-O031

TITLE: Computer Graphics Research Laboratory Quarterly Progress Report

No. 49

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerey,

Dr. Norman I. Badler
University of Pennsylvania
Computer & Information Science Department
Philadelphia, PA 19104-6389

DAAL03-89-C-0031



Contents

1 Introduction: Norman I. Badler 1

2 Jack 5.8: John Granieri 2

3 NTSC Project: John Granieri 4

4 External Activities: John Granieri 5

5 Parallel Transition Networks: Welton Becket 5

5.1 Planned extensions .. .... ... .... ... .... .... ... ... ... . ... 7

6 New Additions in Jack 5.8: Mike Hollick 7

6.1 CAD Geometry Conversions ................................ 7

6.2 Flock of Birds Interface .................................. 7

7 A New Collision Avoidance System: Xinmin Zhao 8

8 Posture Control Network: Ramamani Bindiganavale, Kok-Hoon Teo, Susanna
Wei 9

9 Stylistic Walking with Flexible Torso and Pelvic Rotations: Hyeongseok- Ko 15

10 Prototyped OSR in LISP: Libby Levison 15

11 SIGGRAPH Movie: Libby Levison 16

12 Gestures: Brett Achorn 16
Accesion For

13 SASS Update: Francisco Azuola 17 NTIS CRA&I
DTIC TAB 0

14 X-SASS: Ann Song, Francisco Azuola, Susanna Wei 18 Unannounced Eo
Justif ication

By
Distribution I

Availability Codes
Avail and lr

Dlst Special



15 Viewpoint to Jack Conversion: Pei-Hwa Ho 21

16 Free-Form Deformation (FFD): Bond-Jay Ting 21

17 Human Reach Trajectory Animation: Hanns-Oskar Porr 22

18 Additions to Motion System: Paul Diefenbach 23

19 Textures and Transparency: Paul Diefenbach 23

20 Texture Sampling and Strength Guided Motion: Jeffry S. Nimeroff 23

21 Radiosity: Min-Zhi Shao 24

22 Blended Shape Primitives: Douglas DeCarlo 25

23 Computation of Eye Movement of Two Agents in a Dialog Situation: Catherine
Pelachaud 26

A PaT-Nets: Welton Becket 31

B CVToJack Geometry Translation Program 38

B.1 Introduction . . . . . . .. . . . .. . . . . .. . . . . . . . . . .. . . . . . . . . . . . 38

B.2 Computervision Basics .................................... 38

B.3 W hat is needed to convert? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

B.4 Generating a Jack Environment File ........................... 39

B.5 Generating a Jack Psurf File ............................... 40

C Hierarchical Shape Representation Using Locally Adaptive Finite Elements: A
Model-Based Approach: Eunyoung Koh, Dimitri Metaxas and Norman Badler 42

D A 3-D Model of Tongue Movements Using Soft Object Techniques: Catherine
Pelachaud, Chin Seah, C.W.A.M. van Overveld 43

ii



1 Introduction: Norman I. Badler

This Quarterly Report includes descriptions of various projects underway in the Computer Graphics
Research Lab during July through September 1993. These reports include:

"* An overview of the new features of Jack,85.8.

"* An update on the Naval Training Systems Center (NTSC) project to use Jack to control human
figures within a distributed simulation environment.

" An introduction to the Parallel Transition Networks (PaT-Nets) package for designing and
executing general object-oriented state-controllers for use with the motion-system or user-
interaction with Jack.

"* Additions to Jack 5.8 including CAD geometry converters and the Flock of Birds interface.

"* An update on the new Collision Avoidance System in Jack which includes collision avoidance
by the Jack human figure.

" A discussion of posture control in Jack including a set of basic postures and automatic tran-
sitioning between postures.

" Progress in locomotion for producing different styles of walking using torso flexion and pelvic
rotation (TFPR).

" A description of the Object Specific Reasoner (OSR) prototype including its integration with
high-level and search planners to create SodaJack, a system generating directives describing
the motion of an animated agent.

"* A brief description of the animation of the SodaJack system for SIGGRAPH.

"* Plans for the creation of a system to generate conversational gestures.

"* A discussion of human figure model enhancements supported by the Spreadsheet Anthropom-
etry Scaling System (SASS).

"* An update on X-SASS (SASS under X-Windows).

"* Progress in the conversion of the Viewpoint Animation Engineering human model for use
within Jack.

"* The enhancement of Free Form Deformations (FFDs), including the incorporation of FFDs
into the motion system, leading to the simulation of human internal organs.

" Progress in the animation of human reach trajectories using human reach data from the MOCO
corporation and a Jack human model created using SASS.

"* Enhancements to the motion system in the areas of interpolated motion events and extended
motion events.

" Extensions to texture mapping to include the use of transparency in textures and texture
filtering for ray-tracing.



"* Plans for incorporating the Jack strength model with inverse kinematics for more realistic joint

placement.

"* Extensions of radiosity rendering.

"* A discussion of blended shape primitives and the applications in computer vision and computer
graphics.

"* Advancements in facial animation, including the use of PaT-Nets for controlling the eye move-
ments of agents involved in dialog.

There are also four appendices-

"* PaT-Nets: Welton Becket. Documentation.

"* CVToJack Geometry Translation Program. User documentation.

"* Hierarchical Shape Representation Using Locally Adaptive Finite Elements: A Model-Based
Approach: Eunyoung Koh, Dimitri Metaxas and Norman Badler.

"* A 3-D Model of Tongue Movements Using Soft Object Techniques: Catherine Pelachaud, Chin
Seah, C.W.A.M. van Overveld. To be sent to Computer Animation '94.

This research is partially supported by ARO DAAL03-89-C-0031 including U.S. Army Re-
search Laboratory (Aberdeen), Natick Laboratory, and NASA Ames Research Center; U.S. Air
Force DEPTH through Hughes Missile Systems F33615-91-C-0001; Naval Training Systems Cen-
ter N61339-93-M-0843; Sandia Labs AG-6076; DMSO through the University of Iowa; NASA KSC
NAG10-0122; MOCO, Inc.; Robotics Research Harvesting, Inc.; NSF IR191-17110, CISE CDA88-
22719, and Instrumentation and Laboratory Improvement Program #USE-9152503.

2 Jack 5.8: John Granieri

Our next general release of Jack will be Jack 5.8. 5.7 was essentially an internal lab version, and 5.8
will be the official release. I will ship it during the fourth quarter of 1993. Here's a quick overview
of some of the new features that are new or revised since Jack 5.6 (the last external release of Jack):

New Human Body: Jack 5.8 has a new human body model. Your environments which contain
human figures from 5.6 or earlier will need to be upgraded. The new human replaces the
venerable human5 figure. Its most notable attributes are: more human looking; it has proper
eyeballs; no more glasses and hat; better fingers; better feet; you can generate bodies directly
from SASS; more geometry in the arms and legs to better approximate the human shape.

New CAD Translators: A set of new and enhanced CAD file translators are being released with
Jack 5.8. In particular, there is a very good IGES translator, both in and out of Jack. There
are also guidelines for building geometry in an external CAD system which will be viewed in
Jack. There are also several new psurf utilities, which can reduce the node and face count in
very complex geometry.
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SASS Version 2.1: SASS has been in development for a while, and this is the first full external
release of that program. It helps in creating human figures according to a variety of anthro-
pometric variables.

Strength: The torque and strength computations for the human body are much improved. The
data for available torque in the human body is from NASA Johnson Space Center. We have
the available torque arm values now, and the leg values should be available shortly (this will
only be an update to the body definition, all code is already within Jack).

Improved Animation System: The improvements to the animation system include: (1) motion
groups, which allow you to group related motions together, and then create motion templates;
(2) improved support within Jack for channels, which hold interpolated data, and are more
extensible than the older frame structures; (3) motions and channels are now read and written
using full Peabody syntax, not JCL. There are also several new motion types which make
animating highly articulated figures much easier.

Articulated Hand: The articulated hand has been improved and the commands for using them
are more robust. This will be followed by a more complete treatment of hand controls in the
near term future.

LISP Programming Interface: Jack users who don't have access to source code can now extend
Jack's functionality by writing Lisp code. A lisp interpreter is embedded in Jack, as well as
lisp functions to access the internal structures of Peabody. This represents a very powerful
way for users to extend Jack, and to share those extensions with others. We hope to distribute
(in the near future) some sample lisp code which will demonstrate the power and flexibility of
this new feature.

JCL Reference Manual: A preliminary version of a JCL Reference Manual will be released. It
organizes the JCL commands alphabetically, and gives the full syntax for each command.
This should make it easier to build JCL scripts, as well as provide a dense overview of Jack's
functionality.

Utah Raster Toolkit 3.0: Jack now uses Version 3.0 of the URT. A subset of the URT is dis-
tributed with Jack. The URT is public domain software, and is included as a convenience to
the Jack user.

Radiosity: An improved version of the radiosity renderer is included. This version uses a fast over-
relaxation progressive refinement algorithm, and will export the finished rendered geometry
back into Jack, keeping the psurfs independent (the older version would create one huge psurf
out of an entire environment).

Improved Video Image Generation: Jack can now perform full-scene anti-aliasing and record
60 fields per second. This can dramatically improve image quality generated directly from
Jack (when you're not using the ray-tracer).

Mirrors and Shadows: Jack 5.8 will include a preliminary release of real-time shadow and mirror
generation. This should be very useful for analyzing visibility, as well as generating nicer
images for presentation.

View and Clipping Planes: Support for user-definable clipping planes (up to 6) as well as com-
mands for pushing and popping the view associated with a window. Jack also will push the
view in a window when an automatic viewing adjustment is made, so you can then later pop
back the previous view.
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Rulers: You may create rulers which continuously read out the distance between two points in the
environment. This is very useful for measuring fit and reach while placing or animating a
human figure in a work environment.

Finer Grain Collision Detection: The collision detection routines have been greatly improved.
They allow for tracking collisions between any two sets of segments in the environment, as well
as choices for different intersection algorithms and display options.

Remote Commands: Jack can receive commands from remote processes through a command pori.
There are also a set of special JCL commands intended for use from remote processes. The
Lisp interpreter can also communicate with external process through a lisp port.

Paths: You can now create an explicit path in Jack, which can then be used for animation or other
uses.

Joint Motors: Joint motors are functions that allow the user to continuously "exercise" a degree
of freedom for a particular joint.

Real-time Animation Preview: Jack can now preview your animations at close to 30 fps on an
SGI workstation, using the SGI utility movieplayer.

Flock of Birds 6 DOF Sensor: Support for Ascension Technology's Flock of Birds 6 DOF Sen-
sors has been added to Jack. You can use a bird to control the position and orientation of
a figure or site in the Jack environment. We will also distribute the source code for the bird
server process, so that you may easily modify it to support other types of sensors.

Contributed programs: There are several utility functions that are released with Jack as "con-
tributed" commands. They aren't directly supported for now, but are released so that you can
use them and give us feedback on their usefulness and applicability. Some of them include:
(1) commands for using the GL fog parameters, to add fog to your windows, (2) fractal gen-
eration commands, (3) network commands for connecting two or more Jack processes with a
shared environment, (4) particle system generators. There may be more by the time Jack 5.8
ships.. whatever I can cram in before the deadline!

3 NTSC Project: John Granieri

We have made some progress on our wrfk with Naval Training Systems Center. Essentially, they
will be using Jack to control human figures within a distributed simulation environment. My work
on this consists of:

e Building a method for updating human figures between a Peabody environment and a Per-
former environment. I use sockets between the two processes to send figure locations and joint
transforms from Jack to Performer. This works fine for now, but we'll need to improve the
connection for higher performance in the future. I've tried using shared memory, but am hav-
ing technical difficulties so far. We're also creating loaders in Performer to load Jack databases
(environments). Jonathan Crabtree is working with me on this part.
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" The ability to request posture changes from the Performer side, and have Jack execute motions
that create the desired posture change in the Peabody environment (See Section 8.) This seems
to be a general need for interfacing Jack to other simulation systems: some external process
pastes a set of motions on Jack's timeline, then requests Jack to execute the motions, updating
the external simulation process as it goes.

" We will need lower resolution human figures, using simplified torso and hand segments for
faster update on the Performer side, but which still allow Jack to treat the figure as a true
"human" inside Peabody. This has implications on the Jack internal processes which manage
the human figure, most notably the spine and behavior functions (which rely heavily on the
human figure's articulation structure to build constraints to implement the behaviors).

" We will also need to change the interpolation of Jack motions from 30 fps to some lower 'value
(say 10 fps), depending on the speed of the Performer process, and what frame rate it can
achieve. This has broad implications on the structure of our motion system. I'm currently
studying this now.

4 External Activities: John Granieri

" I attended the SGI Developer's Forum at Stanford in August and saw lots of interesting things
that may end up being used in Jack. Some of the more interesting ones: (1) IRIS Performer
- I'm benchmarking this now, and we may use it as the base for Jack (See above.) (2) Speech
recognition - this might be useful for command input. (3) Distributed Shared Objects - this
may provide a very good solution to extending Jack in the future (and alleviate the dreaded
"link" time problems we have).

"*I attended the SAE Human Modeling Technology Standards committee meeting at the Aerotech
show in Costa Mesa. We had most of the developers of human modeling systems together, and
we demo'ed our systems to each other. It was very enlightening. We hope to be very active
in this committee, to help form the standards which should lead to much broader acceptance
and use of the technology which Jack represents.

" I travelled to England to demonstrate Jack during the U.K./European launch of Jack by our
distributor, GMS. We showed Jack in the Virtual Reality theater at the SGI booth at the CIM
'93 show in Birmingham, as well as at British Aerospace (makers of Harrier Jump jet) and
Vickers Defense (makers of the Challenger tank) as well as many others at the CIM show.

"*I gave two two-day Jack Training Courses, in June and September. We had 10 attendees at
each session, from various research sponsors and commercial users of Jack. You can get an
attendee list from the UPenn Center for Technology Transfer.

5 Parallel Transition Networks: Welton Becket

The Parallel Transition Networks (PaT-Nets) package written in XLISP-STAT in Jack, allows users
to design and execute general object-oriented state-controllers in Jack (See Appendix A for initial
documentation.) It includes a set of macros for creating new networks and a simple net operating
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system that time-slices running nets into Jack (so they run simultaneously with the motion-system
or during user-interaction). A sample, abstract network is shown in Fig. 1.

Net Class: class-name

Parameters: p] p 2 p3...

cl Locals: al a2 a3...

c2

default Monltorl

c4

action3

------------------------------------------------ I

Figure 1: An example PaT-Net.

Each PaT-Net is a lisp class in the object-oriented sense (using the XLISP-STAT prototyping
mechanism) whose primary components are a set of nodes and a set of arcs. Each node may
contain an action, which may consist of arbitrary lisp code. Each arc has a condition containing
an arbitrary lisp expression which should eval to true if the arc should be taken, and a target node
defining the new state if the arc is taken. A PaT-Net may also contain an arbitrary number of
monitors, consisting of a condition and an action - if at any time the condition is true the action
is executed in the local space of the net. Networks are run by creating an instance of the PaT-Net
class. Instances may take arguments, which allows parameterising nets on creation. Each instance
may have any number of local variables available to the actions and conditions. Since PaT-Nets are
actually classes, new PaT-Nets can be made that inherit functionality from any number of parent
PaT-Nets or that override or extend the functionality of parent PaT-Nets.

Actions and conditions may access all the Jack-API primitives in XLISP, and this allows them
to become embedded Jack controllers. Actions can spawn new PaT-Net instances simply by instan-
tiating new nets and the new nets will run in parallel with the parent. Actions can also execute
waits, which take the running net out of the active list until some condition is met. A net can wait
for:

"* Another net to finish.

"* Another net to pass through a specific node.

6



"* A certain time (in the motion system).

"* A semaphore or priority queue.

"* An arbitrary lisp condition.

There are also facilities for creating probabilistic nodes that select arcs based on posted proba-
bilities of the arc being chosen.

5.1 Planned extensions

"* I plan to design and oversee the implementation of a graphical interface to constructing the
PaT-Nets, which will be written in TCL. It will allow pasting manipulating nodes and arcs
graphically and will have facilities for managing libraries of PaT-Nets.

"* I am investigating the possibility of extending PaT-Nets to simulate Condition/Event Petri
Nets by allowing multiple threads of execution in the same net and symbolic tokens that pass
through the net.

6 New Additions in Jack 5.8: Mike Hollick

Most of the new developments I have mentioned in previous reports (e.g. rulers, real-time animation
preview, user defined clipping planes) have been tested and included in Jack 5.8. Many bug fixes
have been made, including one that will allow Jack to run over Distributed GL.

6.1 CAD Geometry Conversions

The Jack CAD Geometry Translator package is very near to completion. Over the past few months
many bug-fixes have been made to existing translators, while much progress has been made on the
new IGES translator. This IGES translator is very robust and will be the preferred tool for geometry
conversion.

The ComputerVision translator is nearly complete. Preliminary documentation is included in
this report as Appendix B.

I am in the process of checking and updating the other translators with Jack 5.8 to insure
compatibility with the new release. All translators will be included in the 5.8 general release.

6.2 Flock of Birds Interface

The new Flock of Birds interface (as described in previous progress reports) will be included with
Jack 5.8. The 4 sensor based human control module will also be included in the standard distribution.
Extensive testing has led to several fixes to both the Jack side and the flockd control program.
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Operation of a flock over one serial port is now supported. Currently, performance in this mode is
not acceptable, but I am working on using hardware flow control on the line to significantly increase
data throughput. This will allow any SGI machine (including Indigos and Indys) to be used with
the Flock of Birds.

7 A New Collision Avoidance System: Xinmin Zhao

I have been re-designing/re-implementing the collision avoidance system to extend its functionalities,
make it more robust, and hopefully more efficient.

Upper-body collision avoidance is being added. This will make many interesting collision avoid-
ance behaviors possible (e.g., the one shown in Fig. 2, which was produced by the new collision
avoidance system). In particular, we will be able to see the whole body coordination during collision
avoidance.

In the previous implementation, there are 5 constraints on each hand for every obstacle segment
being avoided. They are placed at the following positions: palm-center, wrist, upper lower-arm,
elbow, and shoulder. The total number of constraints for each obstacle is 10. There are about
20 segments in the agent's body which have to be avoided (self collision avoidance), plus some
environment obstacles. In a moderately complex environment, it is not uncommon to have more
than 30 obstacles, which corresponds to more than 300 constraints in the system. With so many
constraints, it is difficult to further improve the system performance.

In the new system, we adopt a different approach. Instead of having 10 constraints for each
obstacle being avoided, we use 10 constraints, independent of the number of obstacles being avoided.
These 10 constraints are shared by all the obstacles. As before, we have 5 constraints on each hand,
and they are placed at the following joints: wrist, elbow, shoulder, waist, and knee. The first 2
constraints try to resolve collisions by moving the hand (arm), while the rest of the constraints try
to avoid collisions by moving the whole body.

Even though there are fewer constraints in the new system, each constraint is doing much more
work than before: now each of them has to avoid collisions with all the obstacles, not just one
obstacle as before. So the performance gain will not be as significant as the reduction of the number
of constraints.

8



Figure 2. Jack avoids collibion with an overhead obstacle.

8 Posture Control Network: Ramamani Bindiganavale, Kok-

Hoon Teo, Susanna Wei

One of the biggest challenges most Jack users have is to get the human figures into the right positions.

Though a set of manipulation procedures is available for this purpose. it still riuyujicz much umie

and effort from the user to get it right. For vach newly created human figure. the process of setting

it in the right posture has to he repeated. It is thus clear that the current set of primitives for direct
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manipulation of human figures is not sufficient for simulations and animations involving more than
just a few human figures.

The main goal of this project is to introduce the notion of posture into Jack. Posture is the
arrangement of bodily parts within the human figure. However, we would also like to extend this
notion to all computer generated articulated figures in general. The main objectives here are to:

1. Implement a predefined set of human postures in Jack so that the user can simply point and
click to fix figures in a selected posture.

2. Implement a posture control network enabling smooth transitions between any two arbitrary
postures.

The Posture Network consists of a set of static postures and a finite state machine controlling
the transitions between them. From the perspective of a Jack user who performs human factor
simulations, it is essential to jump start human figures into a desired posture. With the current set
of human control and manipulation primitives, a user needs to understand how the behavior system
works so that the human figure can be set to the desired posture.

A number of basic static postures (stand, squat, sit, supine, prone, kneel, etc.) have been
generated. The user, without an in-depth understanding of the behavior system, can now get the
human figure directly into any one of these postures. These postures can be further used to build
more complicated postures or to move the human figure from one posture to another posture.

Motion sequences have been built to enable transitions between adjacent sets of postures. A
finite state machine has been built to keep track of the figure postures and to generate the set of
required motion sequences to transit between any two arbitrary postures. Thus the user can generate
animations of motion between any two postures without directly manipulating the human figure.
Fig. 3 illustrates the transition graph depicting the relationship between the postures used in the
finite-state system.

The transition graph is represented as a matrix in Fig. 4. The problem of finding the required
motion sequence for transition between any two given postures corresponds to finding a path con-
necting them in the transition graph. The algorithm to generate the complete transition sequence
is as follows:

Transit (x:posture,y:posture,M:Matrix)

1. If M(x,y) = -1 then stop.

2. If M(x,y) contains a motion sequence (denoted by lower-case characters), then execute the
sequence and stop.

3. If M(x,y) contains posture x, then execute M(x,z) followed by M(z,y)

Some of the predefined sets of postures have been illustrated in Fig. 5, 6, 7, 8.

The current postures have all been defined solely in terms of joint angles. The main disadvantage
of this method is that the same set of joint angles applied to an anthropometrically scaled human

10



Stand

[a] U]

[dl [e]

Figure 3: Posture Transition Graph.

Final 0 1 2 3 4 5
Initial
0 (Stand) -1 a I T I T
1 (Squat) j -1 3 b 3 h
2 (Supine) 3 3 -1 d 3 3
3 (Sit) 1 g c -1 e 1
4 (Prone) 3 3 3 f -1 3
5 (Kneel) I i I 1 1 -1

Figure 4: Posture Transition Matrix.

figure does not guarantee a visually similar appearance. Further research has to be done to generalize
the basic static postures and the intermediate transitions to any anthropometrically sized figure.
Many more key postures and the transitions between them have to be identified and added to the
database of postures to reproduce most human actions.

As part of the NTSC project, a new posture system (new static postures and transitions) has to
be built. One of the basic postures is shown in Fig. 9.
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Figure 5: Static Squatting Posture

Figure 6: Static Sitting Posture
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Figure 7: Static Supine Posture

Figure 8: Static Kneeling Posture
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Figure 9: Soldier Holding a Rifle
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9 Stylistic Walking with Flexible Torso and Pelvic Rota-
tions: Hyeongseok Ko

For the locomotion animation in Jack, a biomechanical measurement of straight line walking is
generalized to the motion of an arbitrary anthropometrically scaled human in stepping along any
curved path, including intermittent non-rhythmic stepping such as turnaround or lateral stepping.

The torso flexion and pelvic rotation (TFPR) during walking had been determined from the
original measurements. In the previous quarter, the TFPR has been parameterized to generate
different styles of walking. Sinusoidal functions are used: two parameters control the shape of the
curve, i.e., the amplitude and displacement.

Twelve parameters are used to specify the pelvic rotation pattern: A4, Dvr, Ay, Dye, A-, De,
A:, Dp, Ay, Dy, A-, D'. The first six values are for angular rotation, and the latter six are for
the translation of the pelvis compared to the normal walking step. The z axis is along the forward
direction, y axis is lateral (rightward), and z axis is downward. With these parameters the actual
pelvis rotation at the normalized time t is given as

,,(t) = Aasin(2wr) + ,. (1)

The other rotations or translations are described similarly except that they may be cosine functions
instead of sines.

For example, if we set A' = 10, we can observe a rhythmic pelvis rotation. By setting D' = 20,
the center of ma is lowered 20cm uniformly during the step. In addition to that, if we set B;, =20
and DP = -10, the torso is bent forward by 20 degrees and the hip is placed 10cm backward,
resulting in crouched walking.

The flexion of torso is controlled similarly by sinusoidal functions with the parameters: A',, D,,

10 Prototyped OSR in LISP: Libby Levison

A prototype of the Object Specific Reasoner (OSR) has been written in Lucid Common Lisp. The
OSR is the intermediate planning level of the AnimNL and SodaJack systems, and is responsible for
tailoring general action plans to the specific agent, object and situation of their use.

Prototyping the OSR entailed specifying a small knowledge base with supporting access and
retrieval functionality and building representations of all the objects in the scene. A small set of
task-action procedures were defined, and the task-action elaboration mechanism was coded. The
output of the OSR is currently a list of motion commands written to a file; full integration to the
motion control system is expected by the end of 1993.

With the basic structure of the OSR in place, the OSR was integrated with Chris Geib's high-
level planner "ItPlanS", and Mike Moore's search planner "SearchPlan" to build the SodaJack
system. SodaJack takes menu-commands such as "serve soda" or "serve icecream" and results in
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a list of motion commands for the animated agent to perform. A rough sketch of the system is:
ItPlanS receives the menu command, and identifies a plan which will accomplish the stated goal.
All references to objects are resolved at this level when ItPlanS calls SearchPlans to bind referents
to objects in the world. The plan is then expanded into steps or task-actions. Each task-action is
sent to the OSR, and the OSR confirms that the agent can perform the requested action on the
object (or not). ItPlanS uses this information to select the plan expansion to follow. Once ItPlanS
commits to a task-action, it is sent to the OSR and the OSR generates the set of motions for the
agent to perform. These are written to a Jack Command Language file, and read into the Jack
system separately.

In the case that the action cannot be performed, it is often the case that a tool could be used to
license the action. The OSR generates a description of the attributes such a tool would need, and
returns this to ItPlanS. If ItPlanS so chooses, it can invoke SearchPlans and request a search for
such a tool. SearchPlans requires access into the OSR knowledge base for this purpose.

Specifying the interfaces between the OSR and ItPlanS, and that between the OSR and Search-
Plans took most of a month. A parser was written to interpret instructions from ItPlanS, and
to retrieve and add information required by the OSR but missing from the ItPlanS command.
SearchPlans also needs access to OSR specific knowledge; additional access routines into the OSR
knowledge base for SearchPlans.

The final system generates lists of motion directives describing the motions of the animated
agent. The next step is to port the code to XLISP, and then to integrate directly with the Jack
system.

11 SIGGRAPH Movie: Libby Levison

As a test bed for the integrated planning system, we created animations demonstrating the probable
outcome of running SodaJack. The animations were generated by Brian Stokes, under my supervi-
sion. We designed the presentation format of SodaJack and built the narrative slides that describe
the system and its functionality. This requires illustrating the integration and flow of control be-
tween the three modules in the SodaJack system. With Len Wilson, I edited together the final
version of the SodaJack 11 minute movie.

12 Gestures: Brett Achorn

This quarter I will be working with Dr. Justine Cassell to develop a system to generate conversational
arm and hand gestures. Some of the computational issues to be addressed will include identifying
gesture primitives; instantiating gestures based on intention, emphasis, and timing; and developing
heuristics for correctly transitioning from one gesture to the next without drifting out of the comfort
range for an average person or interfering with subsequent gestures.
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13 SASS Update: Francisco Azuola

During the past quarter, SASS v.2.0 has been under test. As a result, the release version 2.1.3 has
come out as the one chosen to be part of Jack 5.8.

In essence, v.2.0 and up provide direct connection between SASS and Jack. Important features
regarding v.2.1.3 are:

1. The database code has been cleaned up to provide a more robust and flexible access to this
facility. Some bugs and suggestions were pointed out by users of v.2.0, that have been corrected
in v.2.1.3.

2. User feedback has resulted in extensive debugging and revision of the program. A major
revision has been done regarding the figure creation. This is perhaps the most important
accomplishment. When SASS v.2.0 was released, users pointed out that the human body
model, namely polybody, was quite unrealistic. Up to this point, the major issue in SASS
had been to preserve accuracy along the scaling process. But now we have entered into a new
phase of our design, in which the users demand "good looks" of the model, i.e., the polybody
was criticized for not being appealing enough. In order to provide a temporary solution to this
problem, new geometry was developed. SASS v.2.1.3 has been updated to support this new
geometry.

3. Regarding the new geometry, the major changes made are:

"* Increase the number of faces per segment, for all the limbs, to allow for better shaping.

"* Hip and buttocks have been given a better looking shape.

"* Improving the overlap between segments has been especially considered. In particular,
new torso segment overlaps have decreased the formation of gaps considerably.

"* The scaling process for the torso itself has been refined.

"* A new head has been modeled, including eyes, eliminating the need fo. the sunglasses
that were used in the past due to the lack of eyes.

"* The sitting posture of the figure has been noticeably improved, by a better positioning of
hip joints.

4. In general, the new geometry has also allowed for a more accurate scaling process, and has
pointed out some problems in this process that will be addressed in a future version of SASS.

5. Work is currently being done regarding geometry, as we recognize there is still room for im-
provement. The polybody model needs to be refined a lot more. Furthermore, the introduction
of the Viewpoint Animation Engineering geometry for the human body will provide a high
quality human model in the future, at the expense of increased complexity.

6. Work also is being done on the interface for SASS. To allow for better portability, and to
improve the user interface with the program, a new one is being designed and developed using
TCL environment, which is going to be introduced in Jack as well (See next section.)
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14 X-SASS: Ann Song, Francisco Azuola, Susanna Wei

In order to make it easier for programmers to maintain their code and for users to extend their
applications, we are in the process of porting SASS to X windows using TK. This new version of
SASS running under X windows is called X-SASS.

To achieve a user-friendly interface in X-SASS, we use picture buttons, dialogue boxes, and pull-
down menus. Users can resize the window and scroll up/down and left/right on the spreadsheet of
X-SASS. They can also work on multiple windows. The X-SASS screen layout is as follows:

The group bar
The command bar

data section

Figures 10 and 11 are sample spreadsheets designed for X-SASS. Since TK is a C library package,
we will write C programs to communicate between TK and the current SASS.

18



__________ %bAei Values 41

ma

Figure 10 Sample display of X-SASS.

31~~~~ 1.50% t)



Qpco u. .c .

am34 00% .4 .000 V7 00%

70 00% 3 0 a I

I le 0.ur% ."% 94peo wcrmn br nu aait

am09



15 Viewpoint to Jack Conversion: Pei-Hwa Ho

We have converted the human model from Viewpoint Animation Engineering to the standard Jack
format.
The conversion involves:

"* Transforming the segment geometry to the proper coordinate frame.

"* Define the proper joint centers on the segment.

"* Slicing the upper torso to conform to the seventeen segment torso model.

We have also developed the program that switches between the standard body and a Viewpointbody. This will be useful since the standard body has a lot fewer polygons than the Viewpoint body.We are waiting for the detailed hand model from Viewpoint in order to created a comparable hand
model.

To make the Viewpoint model more useful, we need to:

"* Normalize the segment geometry in order to create models of different sizes.
"* Decimate the detailed geometries to create a model of lesser detail but easier to manipulate

in real time.

16 Free-Form Deformation (FFD): Bond-Jay Ting

In this quarter, multiple attachment between deformation lattice and segments has been achieved.Also the preservation of joint positions of the human spine is completed.

"* Preservation of Joint Positions: One of the characteristics of a spline curve is smoothing.When a control node position is changed, other control nodes will smooth out the appliedobject and reduce the effect from that control node. This smoothing characteristic also makesthe exact node position very hard to predict. When applying free-form deformation to thehuman body, this smoothing characteristic will push joints away from their positions. In thisquarter, I was working on correcting this problem and preserving the joint positions. Thatis, the joint positions from deformation lattice motions should coincide with the spine joint
positions from articulated rigid body motions.

"* Multiple Attachment: With this effort, one single deformation lattice can be attached tomore than one segment. This not only speeds up the computation time, but also makes possibleobject selected deformation in the same 3-D space. Inside the same space, there may be anexisting deformable object as well as an object which is not deformable. With this effort, wecan apply deformation on deformable objects and use rigid body motion on those objects which
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are not deformable. One implementation is simulating human torso movement with human
organs. Inside the human torso, there are human organs which consist of soft tissues which
are deformable. But there also exists bone structure which should be treated as rigid body.
With this attachment selection, we can simulate it with both rigid body motion and free form
deformation.

In this quarter, I also added some animation functions which make deformation animation pos-
sible.

Next quarter, I will implement the inner organ simulation by using both rigid body motion and
free form deformation. I will also concentrate on adding material properties into deformations.

17 Human Reach Trajectory Animation: Hanns-Oskar Porr

The MOCO corporation has supplied us with a large number of trials of human reach data. In this
stage of my research it is my task to visualize this data.

In the experiments conducted by MOCO, a human subject reached for several predetermined
points directly ahead and/or above. Located on the human's torso and arm, 4 Ascension Technology
Bird magnetic field sensors were placed. Each sensor can measure its location and orientation (6
DOF) in reference to a sampling device. Thus, this setup enabled MOCO to digitally sample the
resulting reaching motions.

In the first step in creating the animation, I used the SASS system developed by Francisco
Azoula to model a synthetic actor that fits the anatomy descriptions given by MOCO, e.g. length of
forearm, clavicle, etc. This standard human Jack model then had to be augmented with a improved
wrist and forearm model developed by Jianmin Zhao for his Ph.D. research. This new wrist enables
the figure to twist the forearm more realistically, and thus is a better fit for the simulation. Next,
four new sites were placed on the torso and arm that model the location and orientation of the Bird
sensors, in accordance with the human landmark measurements supplied by MOCO.

The actual animation is accomplished using the constraint solver in Jack. I created four con-
straints, that restrain the aforementioned sensor sites to 4 goal sites. These goal sites are moved
from one frame to the next to the location/orientation of the measured data as supplied by MOCO.
Whenever this happens, the internal constraint solver tries to find a body configuration that puts
the sensor sites into a position that matches these goal site - it tries to solve the constraints of the
system.

Initial results of the motion look very good. The constraint solver seems to find or approximate
the desired position/orientation very well. There are some minor adjustments that will have to be
made with reference to the measurements. For instance the landmark measurements of the sensor
placements were taken in reference to one of the edges of the physical sensor, and not to its center
where the actual magnetic measurement occurs. Thus, the site placement is slightly off.

One other problem that I will have to solve in the near future is that the constraint solver is too
slow for real time recording. I will have to write an extension to the system that collects the frames
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and plays them back at a faster rate.

18 Additions to Motion System: Paul Diefenbach

Interpolated spline path motion was extended to facilitate camera motion. Path point manipulation
and creation were modified to permit view attachment. Quaternion interpolation was extended to
permit individual path segment orientation reversal (i.e. clockwise or counterclockwise interpola-
tion).

Jack version 5.7 now includes two commands to facilitate extended motion events. The first is a
Timed JCL command to place any JCL command on the timeline. The second is a Go and Record
command to record each frame as the Go is being performed. This allows for animating previously
unrecordable events such as color changes and deformations.

I worked with Ben Ting to incorporate FFDs into the motion system. Two commands to create
FFD motions were added. Used in conjuncture with the Go and Record command I added, as well
as the Timed JCL command, deformations are now animateable.

19 Textures and Transparency: Paul Diefenbach

Texture mapping was extended to include the use of alpha values (transparency) in textures. Two
types of texture transparency are supported; namely alpha-blend and alpha-only. Alpha-blend uses
each pixel's alpha value to blend its color; alpha-only draws with full translucency all pixels whose
alpha value is not equal to zero. Alpha-only uses Z-buffering; alpha blend does not.

Alpha-only and untextured transparent objects are now drawn in a sorted order after non-
transparent objects based on their rootsite's distance from the viewer. This permits more accurate
transparency than previously allowed.

20 Texture Sampling and Strength Guided Motion: Jeffry
S. Nimeroff

During the third quarter of 1993, I completed my work on the Convolution Mask Approximation
Module (fast texture filtering while ray-tracing) and sent the work off to Computer Graphics Forum.

I have recently started working on incorporating the strength model in Jack into the inverse
kinematics algorithm for end-effector positioning (for Siggraph '94). The strength data is used to
prune the search space of valid joint angle positions and we hope to achieve more realistic joint
placement than without using the model.
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21 Radiosity: Min-Zhi Shao

In the radiosity program coding part I finished a radiosity environment decomposition program for
rendering complex environments. I also revisited the whole radiosity package, polished the code,
and made some minor changes of the user interface.

The current radiosity system consists about 12,000 lines of C code. Its major functions include:

"* interactive and automatic meshing in environment modeling;

"* fast overrelaxation progressive refinement algorithm;

"* adaptive environment subdivision in radiosity calculation;

"* texture mapping;

"* output decomposition for walking Ehrough complex environments.

My major fture research is to develop and implement more efficient algorithms and techniques
for rendering dynamic and complex environments.

In mathematics, the radiosity equation is the redholm integral equation of the second kind
(9]. Conventional numerical approaches to solve the Fredholm integral equation are mainly the
projection methods such as collocation method and Galerkin method [4][5]. In the past ten years,
with the rapid growth of computing power, several new numerical methods have been developed.
Among them, to my knowledge, multigrid method [11] and wavelet method [7], have already been
successfully applied to solve the Fredholm equation ([101[11] for multigrid and [1][2][3] for wavelet).

Multigrid method is a fast solution technique for finite difference and finite element approxima-
tions of differential or integral equations [10][11J. The main idea is to solve a problem on a succession
of scales, propagating low spatial frequency from coarse grids to fine grids, and propagating high
spatial frequency from fi6e grids back to coarse grids. To my knowledge, general multigrid method
has not yet been applied to the radiosity solution.

Alpert et al [1][2][3] noticed that in many cases of interests after decomposing the integral equa-
tions, while the matrices involved are dense, their elements vary smoothly as a function of their
indices, except along a collection of bands of fixed width. Then, their major idea was to use the
wavelet to transform such locally smooth matrices into sparse matrices which support fast algorithms
for matrix application and inversion. Gortler et al (81(131 used Alpert et al's results to ideal diffuse
radiosity solution.

Recently, Briggs and Henson [6] presented a short note in which the authors explored the sug-
gestive similarities between multiresolution wavelet and multigrid approaches to general operator
equations.

It should be noted that in all above numerical methods, the kernel of the Fredholm integral
equation of the second kind is assumed to be given. Apparently, this is not the case in radiosity
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solution while the visibility calculation usually costs more than 90% of the total computation. How-
ever, I suspect the wavelet solution can be more advantageous than the conventional method for
general non-diffuse environment. Two points: 1) The matrix equation becomes huge with direc-
tional radiosity. Immel et al [12] once reported a test result with 8 hours of visibility calculation
versus 192 hours of matrix solution for a simple environment. The Alpert et al's algorithms might
be more advantageous in this case. 2) One of the latest results of the conventional method is to
use spherical harmonic decomposition to represent the directional surface radiosity distribution [14].
It should be quite obvious that, in general, the directional radiosity distribution is non-stationary.
But, using compact support multiresolution bases to represent non-stationary signal is the major
consideration to choose wavelet transform instead of the conventional Fourier transform. Besides the
wavelet method, I think it should also be interesting to investigate the possibility to use multigrid
techniques to accelerate radiosity solution.

It was until recently that I began to investigate the literatures of new developments in the
second kind equation. Though my understanding of the subject is still rather superficial, I found the
new thoughts quite fascinating and tended to believe it might well lead to new results in radiosity
illumination solution.

22 Blended Shape Primitives: Douglas DeCarlo

The physics-based modeling paradigm used and developed by Dimitri Metaxas uses parameterized
primitives (e.g. superquadrics) to represent basic shapes. More complex shapes are attained by
using global deformations such as tapering and bending which are defined independently of the
underlying parameterized primitive. Another way of introducing more complex shapes is to use
other parameterized shapes such as supertoroids.

One drawback to using parameterized shapes is that it is not possible to construct shapes that
reflect two different parameter sets within the same shape (a "bullet" shape, for instance, would
need the squareness parameters on only one end of the superquadric).

To address this defciency, the "blending" of two shapes has been defined. When two shapes are
blended, the result is a shape that is a combination of the two original shapes. This blending is
accomplished by the addition of a few parameters that describe how the shapes are combined.

A bullet shape could be defined by a blend of a sphere and a cylinder. Blends between shapes
such as superquadrics and supertoroids are also possible, even though they differ topologically. The
result would be a shape that has a hole which can appear depending on the blending parameters.

The vision applications for this include the ability to fit shapes with holes from range data. The
initial shape would only develop a hole if the data reflects it. The graphics applications include a
wider range of shapes to use for modeling systems (shapes with holes, for instance). This method
for making blended shapes does not require the computation of intersection points between shapes,
or the making of blending patches to connect the shapes.
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23 Computation of Eye Movement of Two Agents in a Di-
alog Situation: Catherine Pelachaud

With Welton Becket and Chin Seah we have been working on eye movement. We are using Welton's
finite automaton program: he has established a language which allows us to define easily actions and
conditions of the automaton. The different states of the automaton are defined in a hierarchical way.
Eye movement can be classified into 4 main subclasses depending on their role in the conversation.

1. Feedback: eye movement is used to collect and seek feedback.

2. Planning: corresponds to first phase of a turn when the speaker organizes his or her thoughts.

3. Comment: accompanies and comments speech. It occurs in parallel with accent, emphasis...

4. Control: controls the communication channel and it is used as a synchronization signal: re-
sponses may be demanded or suppressed by looking at the listener.

To each of these classes corresponds a "sub-finite-automaton." An automaton is defined by a set
of nodes joined by arcs. A node is reached when a certain condition is true. When a condition is
true, an action is performed. The top level of the automaton is:

1O(CI or C2 or C3, spawn(FA-feedbacd), 11)
NO(C4 or C11, spawn(FA-planning), 12)
NO(C8 or C9 or CIO, spaurC(FA-coinnou), 13)
1O(CS or C7, spawn(FA-control), 14)

where "C" corresponds to a condition, "spawn" activates a sub-finite-automaton, and "N" cor-
responds to the top node of the sub-automaton. Examples of conditions are:

"* Cl: existence of a grammatical pause

"* C2: existence of a hesitation pause

"* C3: speaker emitted a "within-turn-signal"

"* C4: beginning of turn

"* C5: end of turn

"* C6: listener emitted a "b -ck&hannel signal"

"* C7: listener emitted a "turn-requesting-signal"

"* C8: existence of an accent

"* C9: is the phrase a question

"* CIO: is the phrase an answer

26



* Cll: is the turn of short duration

Example of actions (noted "A"; agentl, agent2 denote either the speaker or the listener) are:

"* Al: agentl gazes toward agent2

"* A2: agenti gazes away from agent2

"* A3: agentl gazes more at agent2

"* A4: agenti gazes less at agent2

"• A5: break of the mutual gaze

"* A6: establish mutual gaze

In parallel I have been working with Prof. Joseph Cappella. We first looked at data files provided
by Prof. Cappella. These files are transcripts of a dialog situation between two agents. Each tenth
of a second, twenty parameters are defined. They are:

1. number of turn (even turn numbers correspond to agent1, odd turn numbers correspond to

agent2)

2. turn state (see definition below)

3. vocalization by agent1

4. vocalization by agent2

5. agent1 gazes at agent2's face

6. agent2 gazes at agentl's face

7. agenti does adaptator's movement (hand on body, clothes...)

8. agent2 does adaptator's movement (hand on body, clothes...)

9. agenti does speech related hand and arm gestures away from body. They correspond to
illustrators.

10. agent2 does speech related hand and arm gestures away from body. They correspond to
illustrators.

11. agent1 does body focus hand movements (such a rubbing hands together).

12. agent2 does body focus hand movements (such a rubbing hands together).

13. agenti does a back-channel

14. agent2 does a back-channel
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15. agentl does a head-nod

16. agent2 does a head-nod

17. posture of agentl: (0: straight, 1: toward agent2, 2: away from agent2)

18. posture of agent2: (0: straight, 1: toward agentl, 2: away from agentl)

19. agentl smiles

20. agent2 smiles

Turn-state is defined as follow:

e when agent 1 has the floor:

turn-state=O: agentl and agent2 don't speak

turn-state=l: agentl speaks, agent2 doesn't speak
turn-state=2: agenti and agent2 speak

e when agent2 has the floor:

turn-state=3: agent2 and agenti don't speak

turn-state=4: agent2 speaks, agenti doesn't speak

turn-state=5: agent2 and agent1 speak

An example of rules we looked at is:

"• listener looks more at the speaker

"* speaker and listener don't start and end smiling at the same time

"* speaker smiles less than listener

"* speaker smiles more when pausing than when talking

"* speaker looks more when pausing than when talking

"* if the turn is of short duration then there is more mutual gaze

"* if there is mutual smile than there is less mutual gaze

"* if speaker looks at the listener or speaker pauses, then listener does more smiles and head nods

"* at the end of utterance there is more mutual gaze

"* speaker looks less at the beginning of a turn

We are trying now to adapt these results to the finite-automaton definition. There are 24 possible
states. Indeed, agent1 can gaze or not gaze. Agent1 can gaze while having the floor and talking
or pausing... 1 denotes gazing at the other agent, 0 denotes no gaze; with the notation introduced
earlier about turn-state, we have the following tables:
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Gaze
agent 1 agent2

1 0__

0 1

Floor
agent1 agent2 floor
0 0 agentl
1 0 agenti
1 1 agenti
0 0 agent2
0 1 agent2
1 1 agent2

To each gaze-tuple, corresponds a floor state: this gives us a 24-state machine. We have started
looking at the data to find the probability of going from one state to another. This will be very
useful for the definition of the finite-automaton defining to the gaze-behavior. These probabilities
will correspond to weights on each node of the automaton. In parallel we have to define each function
of eye movements by one of these 24 states.
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A PaT-Nets: Welton Becket

Below is the initial documentation for PaT-Nets. There are many more features and access functions
not described below - complete documentation will be available soon...

1) CREATIIG FSPS

Create an FSK with DEFIET:

(DEFIET fax-name *optional :locals ' (locall local2...)
:class-vars '(cvarl cvar2...)
:parents (list parent1 parent2)

specl
spec2

DEFNET defines an FSK class. Each instance of the class will
have local1... localn as local variables available to all methods
(all actions and conditions). Class-vars are shared among all
instances of tsm-name. Parents should be the names of other
FSM classes. The FSI class will inherit all methods (actions and
conditions) and all nodes of the parents. Note that every
FSK gets the FSK class as a parent automatically -- don't put
it in the parent list.

Specs can be:

A) (DEFINIT (argi arg2 ... argn)
code)

Define initializer function to be called when a new FSI
is instantiated from the FSK class. It takes the given
arguments, which can be accessed DIRECTLY, as opposed
to needing the VAL function like with instance and class
vars (see below).

B) (DEFACTION :action-name
code)

Create an action with the given name (which must begin with a 1:1).
Code can be any arbitrary lisp code. The return value from
an action is ignored.
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C) (DEFCOND :condition-name
code)

Create a condition with the given name (which must begin with
a ':'). A condition should return true if the arc containing

it is to be taken and nil if it is not to be taken.

D) (DEFIODE node-name :action-name
(:condl statel) (:cond2 state2) ... (:condn staten))

Create a node with the given name (which doesn't have to

start with a colon, though it can). When the node is entered
it executes the :action-name action. Then it blocks
on any waits executed in the action (see below). Then it
looks for an arc with a true condition to follow, doing
nothing if no arc is true (but not executing the action
again -- there's an implicit wait-for-arc). Note that

the first arc with a true condition is taken, so order
is important (unless conditions are mutually exclusive).

Each (:cond state) is an arc -- :cond is the name of a
condition to evaluate, state is the name of a node to go to.

Special actions, conditions, and nodes:

:no-op = No action. This can go wherever an :action
can go.

:default = Default condition. This ALWAYS evaluates
to true -- any arcs appearing after an arc
with the :default condition will never be

considered.

exit = Exit state. This is how to exit an FSX,
use exit as the name of the state to go to

and the fsn will be exited on the current
cycle.

E) (DEF-PROBNODE node-name :action

(probl statol) (prob2 state2) ... (probn staten))

Take each of the states with the given probabilities.
Each prob-i should be a number in [0,1). The prob-i
should sum to less that or equal to 1.0. If no arc
is taken (which happens only if prob-i sum to less that 1.0).

then there's an implicit wait.

An example:
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(DEF-PRODBODE statel :actionl
(0.1 statel) (0.7 state2) (0.2 state3))

which has a 10% chance of going to statel, a 70% chance
of going to state2, and a 20% chance of going to state 3.

F) (DEF-WEIGETNODE node-name : action
(weightl statel) (wight2 state2) ... (weightn staten))

Similar to a DEF-PROBSODE, except the weight-i are scaled
to sun to 1.0.

G) (DEF-RAIDIODE node-name :action
statel state2 state3 ... staten)

Takes one of the states randomly. Translates to a DEF-PROBIODE
with each probability as 1/number-of-states.

3) (DEFIOKITRO nonitor-name :condition :action-name)

A monitor is evaluated on every cycle by an FSR before
the state is advanced -- monitors are even evaluated when
the FSH is in a wait. Monitor-name is the name of the
monitor (which needn't start with a colon). :Condition
is a condition which should evaluate to true when the
monitor is to be executed. :Action-naao is the name of
an action that is executed when the monitor is true.

An Example:

(DEFIET sanp-tsm :locals '(a b)

(DEFINIT (a b)
(val a a)
(val b b))

(DEFACTION : inca
(val a (1+ (val a))))

(DEFACTION : incb
(val b (1+ (val b))))

(DEFCOND :cl (< (val a) Q))

(DEFCOID :cS (< (val b) 5))

(DEFIODE statel :inca (:default state2))
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(DEFIODE state2 :no-op (:cl statel) (:default state3))

(DEFIODE state3 : incb (:default state4))

(DEFIODE itate4 :no-op (:c5 state3) (:default exit)))

2) CREATING FSN INSTANCES

Create an instance by mending and FSN class the message :new
with any arguments required by the FSN initializer function.
Like:

(send frn-class :new argi arg2 ... argn)

which returns the new FSN object. The object is automatically
inserted in the active list of FSMm, and it will begin executing on
the next cycle. Using the example above, do something like:

(setf fred (send mamp-f m :new 1 2))
(setf san (send samp-fsm :new 3 3))

To create a new instances of samp-fsm with different arguments
bound to fred and sam. The two PSm will begin executing in
parallel in the next cycle.

3) ACTIONS AND CONDITIONS

The actions and conditions are actually methods in the FS1 class
in which they are defined (this in the reason they need to begin
with a colon -- it's required by the class mechanism...).

A) LOCAL VARIABLES

Actions and conditions can access an FSI. local variables or class
variables using VAR:

(VAR a) -- returns the value of FSK variable a

(VAR a newval) -- sets the value of FSK variable to newval.

Note that a is not evaluated, but newval, if present, is evaluated.

B) SPAWNING NEW FSKS

An FSK can spawn a new fin in an action just by using the
standard FSM instantiation mechanism described above. An
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example action that does this (and uses a wait, described

below):

(DEFACTION :actionl
(val waiting-for

(send another-tsa :new 5 6))

(send self :wait-fsm (val waiting-for)))

C) WAITS

An action can post a set of waits that the is. will wait for

on exiting the action. The FSM will wait for the conjunction
of all posted waits before continuing. Note that the FSK
does not block until it exits the action. Each wait
is signaled by the FSM sending a message to itself:

1) (SEND self :wait-fsm fsm-instance fkey state)

Wait for an fsm to exit before continuing. If state is

present it waits for FSK to pass through the given
state (a node name) before continuing. lote that san-instance
must be an instance of an FSN class and not the class itself.
An example action:

(DEFACTION :actionl
(send self :wait-fsm (send nyism :new 3 4)))

and to wait for a state:

(DEFACTION :actionl
(send self :wait-fsm (send myfsm :new 3 4) :state 'state2))

2) (SEND self :wait-time time)

Wait for a specific time in the motion system (in seconds).
To wait 3 seconds before proceeding,

(send self :wait-time (÷ (motion-time) 3.0))

3) (SEND self :wait-condition condition-tn)

Wait for an arbitrary lisp expression to evaluate to true.

The condition-fn should be a function closure taking
no arguments, like:

(send self :wait-condition #'(lambda () (< x 3.0)))

4) (SEND self :wait-motion motion-ptr)
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Wait for a motion in the motion system to finish before
proceeding. Motion-ptr must be a pointer to a motion, which
can be found by name with the MOTION-FIID function.
Example:

(send self :wait-motion (notion-find "default.ccube"))

5) (SEND self :wait-seuaphore (a kkey (priority 1.0 )))

Wait on a semaphore s. Semaphores are instances of the

semaphore class created like:

(setf sl (send semaphore :new))

The FSM is placed on the semaphore's wait queue with the
given priority (defaulting to 1 -- higher numbers for higher
priority).

A semaphore is signaled (released) with:

(send self :signal-semaphore s)

Note that since waits don't block until after the action
exits, no code dependent on having the semaphore should
appear after the wait.

An example fsm using semaphores which waits on two semaphores
then releases them in the next state:

(setf sl (send semaphore :new))
(setf s2 (send semaphore :new))

(DEFNET semwaitl

(DEFACTION :actionl
(format t "in state 1'%")
(send self :wait-semaphore si)

(send self :wait-semaphore s2))

(DEFACTION :action2
(format t "in state 2"%")
(send self :signal-semaphore sl)
(send self :signal-semaphore s2))

(DEFNODE statel :actionl (:default state2))
(DEFNODE state2 :action2 (:default exit)))
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D) OTHER MESSAGES AVAILABLE II ACTIONS AND CONDITIONS

1) (send ftn-instance :exit &optional (exitcode 'finished))

Force an ton instance (which can be self) to exit with
a given exit code, one of 'finished or 'failed. The
tam kills any dependent processes and kills any tuns
waiting on a particular state in itself.

2) (send fsn-instance :status)

Get the status of the isa, one of:

'running -- in active list
'idle -- not running yet

'failed -- exited with failed status
'finished -- exited with successful status
'waiting -- waiting on conditions

3) (send iam-instance :add-dependent dep-iun-instance)

Tell the isa-instance that dep-lsn-instance is a dependent
process, so that when fsm-instance exits, it kills
dep-isn-instance.
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B CVToJack Geometry Translation Program

B.1 Introduction

CVToJack is a program that translates geometry from a CADDS 4X version 6.2 system to the format
used for Jack. In order to convert geometry from CADDS 4X to Jack the following is done:

1. The user generates ASCII geometry files of parts on the Computervision system using com-

mands in the CADDS package.

2. Those files and procedure files are transferred to the computer system where Jack resides.

3. The geometry translator is then invoked to create a Jack psurf file or a Jack environment file.

4. When the entire process is complete, there will be a directory containing psurf files and another
directory containing environment files.

B.2 Computervision Basics

The CADDS 4X tool generates parts which are a collection of entities. Each entity may be 3D
geometry, 2D figures, display information, or instance information. Nodal figures (nfigs) are CADDS
entities that are used for instancing other parts in a current part. Subfigures (Sfigs) are also used
to instance other parts in a current part. For example, to create a room with a table and chairs:
A set of walls and a floor and ceiling are created and saved as an nfig part, a table is created and
saved as an nfig part, and a chair is created and saved as an nfig part. A new part is opened and the
CADDS command insert nfig is used to place the walls, floor and ceiling part. The table is placed
the same way. The chair is inserted several times to put several chairs about the table. From this
example the top level part would be converted to a Jack environment file and each of the nfig parts
would become psurf files.

Nfigs may also be used to place procedure file shapes in a part. A procedure file is a CADDS
file that contains text with shapes and values for parameters of the shape in the file. Scale and
variable information may be set in the nfig properties. Some construction tools in CADDS may
automatically insert procedure file information during certain operations. All of this information is
converted and becomes part of the psurf Jack file.

B.3 What is needed to convert?

The first item needed is for the CVToJack tools to be loaded on the machine on which you want to
pe -frm the conversion. It will run on an SGI workstation that also runs Jack.

A top level part in the CADDS data base that contains only nfig or sfig instances is needed to
generate a Jack environment file. Procedure files may be instanced in an nfig of a top level part. If
the procedure file has Nodal Line following parts, then Nodal Lines in the part are used to convert
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the procedure file. If a top level part does not exist then the part that needs conversion may be
saved as an nfig. A new part could then be generated that inserts this one nfig. In this case, the
environment file would have only one psurf instanced and the psurf would be as large as the part.
When possible the top level part should be made up of many nfig or sfig instances so that each of
the psurf files will be smaller. When the top level file has entities other than nfigs, sfigs, or Nodal
Lines, they will be ignored.

Also needed is a directory structure for copied files and for files generated by the conversion
process. Whatever directory the conversion tools are run from is considered the base directory.
Several required directories are needed at this level. These directories are pconverc, econvert,
procedure, and jackdata. The pconvert directory is used to hold files that will be converted to
psurfs. The econvert directory is used to hold files that will be converted to environment files. The
procedure directory holds procedure text files. The jackdata directory stores environment files
and psurf files after they have been converted. The following shows the directory structure:

base
I

I I I I
pconvert econvert procedure jackdata

B.4 Generating a Jack Environment File

A Jack environment file consists of orientation information and instances of psurf file data. A CV
part file that is made of nfig instances may be converted to an environment file. When using the
environment file option only nfig entities, sfig entities, and associated nlines of the CV part are
looked at all others are ignored. The conversion process is as follows:

1. Using the CADDS 4X command, OPEN PART name, open the part.

2. Use the CADDS 4X command, DO EARDPILE ilename, to store all screen information to a file.

3. Issue the CADDS 4X command, LIST PART STATUS, to dump to the screen (and the hardfile)
part information including the units used. This command is optional and when not issued the
units are assumed to be feet.

4. Issue the CADDS 4X command, DUMP ENTITY, to dump to the screen (and the hardfile) all
the entity information for the part. This command must always be issued.

5. Use the CADDS 4X command, DO HARDFILE, to close the file. When closing the hardfile a
filename is not needed on the command line. At this point a file named filename (or other user
defined name) will reside in the ..bcd directory that is under the CV create directory for the
user.

6. Rename the file to correspond to the CV name such as
mv dumpi a.b.c.partl.
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It is necessary to do this in 2 steps since CV will convert "." in a filename to a directory level.
You would not get a. b. c .part I in the .bcd directory. You would get a directory hierarchy
with directory a in _bed, directory b in a, directory c in b, and the file partI in directory c.

7. Copy the file over to the econvert directory on the conversion machine.

8. Run the conversion tool on the file with the environment file option.

9. You will be prompted for a filename to store nfig names not found in the jackdata directory.
This list tells the user which parts need to be generated into psurf files. All previously generated
psurf files do not have to be redone.

10. On completion a file named filename.env will be generated in the jackdata directory.

B.5 Generating a Jack Psurf File

A Jack psurf file consists of geometry information in a local coordinate system. A CV part file that
is made of entities and procedure file data may be converted to a psurf file.

The conversion process is as follows:

1. Using the CADDS 4X command, OPEN PART name, open the part.

2. Use the CADDS 4X command, DO HARDFILE filename, to store all screen information to a file.

3. Issue the CADDS 4X command, LIST PART STATUS, to dump to the screen (and the hardfile)
part information including the units used. This command is optional and when not issued the
units are assumed to be inches.

4. Issue the CADDS 4X command, DUMP ENTITY, to dump to the screen (and the hardfile) all
the entity information for the part. This command must always be issued.

5. Use the CADDS 4X command, DO SARDFILE, to close the file. When closing the hardfile a
filename is not needed on the command line. At this point a file named filename will reside in
the -bed directory that is under the CV create directory for the user.

6. Rename the file to correspond to the CV name such as
my dumpi a.b.c.partl.

It is necessary to do this in 2 steps since CV will convert "." in a filename to a directory level.
You would not get a. b. c. part 1 in the -bcd directory. You would get a directory hierarchy
with directory a in _bcd, directory b in a, directory c in b, and the file partl in directory c.

7. Copy the file over to the pconvert directory on the conversion machine.

8. Run the conversion tool on the file with the psurf file option.

9. You will be prompted for a filename to store nfig names and procedure file names not found in
the pconvert or procedure directories. This list tells the user which parts need to be copied
to the procedure directory and the pconvert directory.
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10. On completion a file named filename.psa will be generated in the jackdata directory when all
the procedure files instanced are found and all the instanced nfig parts are found. If for some
reason the user does not want to copy these files over, he or she may create empty files in the
appropriate directories. The converter will find the filenames and create a psurf file.
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C Hierarchical Shape Representation Using Locally Adap-
tive Finite Elements: A Model-Based Approach: Euny-
oung Koh, Dimitri Metaxas and Norman Badler
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Hierarchical Shape Representation Using Locally
Adaptive Finite Elements: A Model-Based Approach

Abstract

This paper presents a physics-based algorithm for hierarchical shape representation using deformable
models with locally adaptive finite elements. We develop our technique using dynamic deformable models
which support local and global deformations. The dynamic deformable models express global deforma-
tions with a few parameters which represent the gross shape of an object, while local deformations
capture shape details of objects through their many local parameters. Our new adaptive finite element
algorithm ensures that during subdivision the desirable finite element mesh generation properties of con-
formity, non-degeneracy and smoothness are maintained. Through our algorithm, we locally subdivide
the triangular finite elements based on the distance between the given datapoints and the model. In
this way, we can very efficiently and accurately represent the shape of an object with a resulting small
number of model nodes. Furthermore, using our locally adaptive subdivision algorithm in conjunction
with our model's global deformations we construct a hierarchical representation of the shape of 3D data
with multiple levels of surface detail.

Keywords: Adaptive Finite Elements, Hierarchical Representation, Physics-Based modeling, Deformable
Models, Model-Based Approach.
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I Introduction

Recovering the shapes and motions of 3D objects from visual data is a primary goal of low and intermediate
level vision. While simple shape primitives such as spheres, cylinders and polyhedra have the advantage of
representing shapes with only a few parameters, their representational power is inadequate when it comes

to natural objects. The shapes of most natural objects are complex and irregular and can't be represented
in terms of simple shape primitives. Spline models that deform locally subject to continuity constraints
are well suited to free-form shape representation by virtue of their relatively distributed parameters sets

which provide many local degrees of freedom.

Recently [15, 7] we have created a new family of modeling primitives by developing a mathematical
approach that allows the combination of global and local deformations. Our primitives include global

deformation parameters which represent the salient shape features of natural parts and local deformation
parameters which capture shape details. More specifically we developed hybrid models whose underly-
ing geometric structure allows the combination of parametric models (superquadrics, spheres, cylinders),
parameterized global deformations (bends, tapers, twists, shears, etc.) and local spline free-form defor-

mations. In this way the descriptive power of our models is a superset of the descriptive power of locally
deformable models [17, 161 and globally deformable models [10].

Through the application of Lagrangian mechanics, we develop a method (8] to systematically convert the
geometric parameters of the solid primitive, the global (parameterized) and local (free-form) deformation

parameters, and the six degrees of freedom of rigid-body motion into generalized coordinates or dynamic
degrees of freedom. More precisely, our method applies generally across all well-posed geometric primitives

and deformations, so long as their equations are differentiable. The distinguishing feature of our approach is
that it combines the parameterized and free-form modeling paradigms within a single physical model. Thus
our models based on forces that the datapoints exert on the model and the prescribed mass distributions,

elasticities and energy dissipation rates change positions and orientations and deform away from their rest

positions so as to conform to the data set.
Even though the formulation of global deformations is independent of the number of model nodes used,

local deformations require a tessellation of the model surface into a grid of finite elements. The quality of
the model fit to the data depends on the number of the finite elements used. In our framework we assumed
that the size of the finite element grid remained constant throughout the model fit to the data. Clearly

this is a serious limitation in case of model fitting applications where the user assumes no prior knowledge

of the complexity of the given data.

Almost all of the current physics-based shape recovery algorithms which use 3D or surface models

assume fixed-size grids [17, 10, 8, 19, 3, 41. Recently [18] proposed a technique for adaptive subdivision
of meshes consisting of nodal masses interconnected by adjustable springs. Even though their technique
works well for adaptive fixed-size meshes, in case of local subdivision of the mesh a computationally

expensive constraint procedure has to be applied to ensure that the triangular structure of the mesh is
maintained. In [5] an adaptive subdivision algorithm is presented for nonrigid motion analysis which uses

planar triangular patches. Planar patches though are not sufficient for representing highly convoluted
surfaces and ensuring desirable continuity properties (in the finite element technique the continuity level

of the solution is determined by the energy expression associated with each finite element and the use

3



of appropriate elements). Finally in [14] an adaptive mesh generation algorithm is presented for surface

reconstruction. Even though the algorithm supports local subdivision, it does not use any underlying 3D

model, can't guarantee the level of smoothness of the solution since it is based on geometry and special

algorithms need to be employed to deal with cracks often occurring during subdivision.

In this paper we extend our physics-based framework for shape estimation by developing a new technique
which allows the robust local adaptive subdivision of an initial finite element grid based on the distances

of the given datapoints to the model surface. Our technique is an adaptation of Rivara's local refinement

process for finite element grids [111. Starting from a small number of finite elements tessellating the model

surface, the model locally subdivides based on the above criterion so as to improve the model fitting. In

this way with a resulting small number of model nodes we can very efficiently and accurately represent

the shape of an object. In order to further improve the fit of the model to datapoints we also modify our

previously developed force assignment algorithm [15] so that each datapoint gets assigned to a point within
a finite element whose distance from the datapoint is minimum, instead of to a model node. Once the

force is assigned it is appropriately distributed to the nodes of the corresponding finite element according

to the finite element theory.

Our local subdivision algorithm utilizes the properties of triangles bisected by the longest side. That is,

the interior angles of the refined triangles do not go to zero as the level of subdivision goes to infinity. Also

this triangulation improves the shape regularity of the subdivided triangles as the subdivision proceeds.

The local subdivision algorithm can be shown to satisfy conformity, non-degeneracy and smoothness which

are desirable properties for finite element meshes and ensure the accuracy of the solution.

Our locally adaptive subdivision algorithm combined with the global deformations of our dynamic

models, allows the reconstruction and representation of shape hierarchically. Our shape hierarchy consists
of using global deformations only, then then global and one course level of local deformation and finally

global and local deformations with various levels of local deformations extracted from our locally adaptive

subdivision algorithm. The hierarchical representation with gradual object surface detail also has important

applications in computer graphics. There, it can be used to resolve the issue of handling excessive detail

when the object is far from the viewer or it is moving very fast.

Using our new local subdivision algorithm we present shape recovery experiments with real and syn-

thetic range data sets which run at interactive rates on an Iris Crimson workstation with VGX graphics.

In this way we not only represent accurately the shapes of objects, but also efficiently since a lot fewer

model nodes than the given datapoints are required.

2 Overview

Section 3 reviews the formulation of deformable models. Section 4 presents our local adaptive subdivision

algorithm which also includes the description of the finite elements used and our new force assignment

technique. Section 5 presents experimental results that demonstrate the recovery of object shape from 3D

range data using our deformable models. Section 6 draws conclusions from our work.
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3 Deformable Models

In this section we h-iefly review the general formulation of deformable models; further detail can be found

in [15, 8].

3.1 Geometry: Global and Local Deformations

Geometrically, the models developed in this paper are closed surfaces in space whose intrinsic (material)
coordinates are u = (u, v), defined on a domain fl. The positions of points on the model relative to an

inertial frame of reference 4 in space are given by a vector-valued, time varying function of u: x(u, t) =
(ZI(u, t), X2(u, t),X3(u, t))T, where T lb the transpose operator. We set up a noninertial, model-centered

reference frame 4) and express these positions as:

x = c + Rp, (1)

where c(t) is the origin of 0 at the center of the model and the orientation of 0 is given by the rotation
matrix R.(t). Thus, p(u,t) denotes the canonical positions of points on the model relative to the model
frame. We further express p as the sum of a reference shape s(u, t) and a displacement function d(u, t),

i.e., p =s+d.

The ensuing formulation can be carried out for any reference shape given as a parameterized function
of u. Based on the shapes we want to reccver, we first consider the case of superquadric ellipsoids [1],
which are given by the following formula:

e = (CI, e2, e3 )T; el = aa1 C .lCv(2, e2 = aa 2CucIS-' 2, e3 = aa3S,,", (2)

where -7r/2 < u < 7r/2 and -7r < v < 7r, and where Se = sgn(sin w)l sin w[, and C,( = sgn(cos w)l cos w[e,
respectively. Here, a > 0 is a scale parameter, 0 _< a0,a2,a3 _< 1 are aspect ratio parameters, and E1,c2 2_ 0

are "squareness" parameters.
We then combine linear tapering along principal axes 1 and 2, and bending along principal axis 3 of

the superquadric e' into a single parameterized deformation T, and express the reference shape as:

s = T(e,ti,t 2,bi,b 2,b3)= (WA- + 1) e2  (3)
e3

where -1 5 tt 2 _< 1 are the tapering parameters in principal axes 1 and 2, respectively, and where b,
defines the magnitude of the bending and can be positive or negative, -1 < b2 _< 1 defines the location

on axis 3 where bending is applied and 0 < b3 < 1 defines the region of influence of bending. Our
method for incorporating global deformations is not restricted to only tapering and bending deformations.

Any other deformation that can be expressed as a continuous parameterized function can be incorporated
as our global deformation in a similar way. We collect the parameters in s into the parameter vector

'These coincide with the model frame axes z,p and z respectively
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q. = (a, ala 2,a3, l,E32,tl,t 2 ,b l ,b 2 ,b3 )T.

Local, finite element basis functions are the natural choice for representing the local deformations [15, 8].

The elements have a node at each of their corners. The generalized coordinates of the finite element basis

functions are the nodal variables-a vector qd, associated with each node i of the model. If we collect the

generalized coordinates into a vector of degrees of freedom qd = (..., qd. we can write d = Sqd,

where S is the shape matrix whose entries are the finite element basis functions. In a subsequent section

we will give more details about the finite elements we use.

3.2 Kinematics and Dynamics

The velocity of points on the model is given by,

* = c + lp + R=c + Bi + R + RSId, (4)

where 0 = (..., 0,...)T is the vector of rotational coordinates of the model and B = [...9(Rp)/00. *..].
Furthermore, s = [0s/Oq,]4, = J4., where J is the Jacobian of the superquadric with global deformations

function. We can therefore write

x = [I B RJ RS]4 = L4, (5)
where q =(qT TTTT

qTqqT8qj) T , with q, = c and qe = 0.

Our goal when fitting the model to visual data is to recover the vector of degrees of freedom q. Our

approach carries out the coordinate fitting procedure in a physically-based way-by enabling the data to

apply traction forces to the surface of the model [151. We can make our model dynamic in q by introducing

mass, damping, and a deformation strain energy. In applications to vision [8], it makes sense to simplify

the motion equations while preserving useful dynamics by setting the mass density p(u) to zero to obtain

D4 + Kq = fq, (6)

where D and K are the damping and stiffness matrices respectiVely, and where fq(u, t) are the generalized

external forces associated with the degrees of freedom of the model. The above equation yields a model that

has no inertia and comes to rest as soon as all the applied forces equilibrate or vanish. We also decouple

the equations by assuming that D is diagonal and constant over time. For fast interactive response, we

employ a first-order Euler method to integrate (6). Note that we represent the rotation component q9

as a quaternion and that we never assemble a finite element stiffness matrix, but compute Kq in an

element-by-element fashion for the local deformation degrees of freedom [8].

4 Locally Adaptive Finite Elements

In this section we will describe the local strain energy and the finite elements used, our algorithm for assign-

ing forces from datapoints to points on the model, our criterion to locally select elements for subdivision

and our local finite element subdivision algorithm.

6



4.1 Finite Elements with C1 Continuity.

For the applications in this paper we select a strain energy and the appropriate finite elements that
guarantee C1 continuity. In particular we present new efficient shape functions. A thin plate under tension
deformation energy, suitable for C' continuous model surface, is given by the functional

+ý d)+W 0L (ý)2 )+ W10 'ad'2 + ad)2
W2 +) w(Ov) ( + W02 w -l + wood 2 du. (7)

The nonnegative weighting functions wij control the elasticity of the material. Increasing wo, and w1o
makes the deformations have more membrane properties, while increasing the w~o, wl and w02, the
deformations behave more like a thin plate. In our implementation, however, we reduce these functions to
scalar stiffness parameters w,,(u) = wij.

To approximate the above strain energy (7) we use triangular finite elements [8] whose shape functions
are tensor products of one-dimensional Hermite polynomials [20] which are given by the formulas

H°(ý) = I - 3ý2 + 2ý3 H'(ý) = ý(€ - 1)2

H°(ý) = ý2 (3 - 2f) H' = f2(f- _I)(8

where the subscripts are related to the two endpoints of the one-dimensional segment and the superscripts.

0 and 1, denote the association of a basis function to a nodal variable or a nodal derivative respectively.
These new finite elements are much more computationally efficient than the ones described in [8, 9].

Using the above finite elements and the corresponding shape functions we compute from the strain
energy (7)) the stiffness matrix Kjd through a technique based on the theory of elasticity and demonstrated
for the case of a loaded membrane deformation energy in [8].

4.2 Force Assignment

In our applications, for each given range datapoint z we want to find a point u. on the.model that minimizes
the distance d between z and the model, where: d(u) = 11z - x(u)jl. A brute-force approach to the above
minimization problem that worked well in our previous efforts (15, 81 is to select from all the model nodes
the one that minimizes d. The above approach is inadequate for our local finite element subdivision
algorithm since it only takes into account model nodes in computing d(u). In this paper we will use the
following algorithm which is the most accurate possible, given that we approximate the model surface with
finite elements and there is no analytic formula for x(u).
Algorithm
In this algorithm for each datapoint z we perform the following minimization. According to the finite
element theory, we use the elemental shape functions Ni to approximate an element's surface and compute
the point in each finite element whose distance minimizes

d(u) = mill njjz - x(u)jj= min z -- Ni(u)xi, (9)
i=1 I

where Ni is the shape function corresponding to node i whose nodal position is xi and j is a finite element
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Figure 1: Extrapolation of force to the element nodes.

from the set E of finite elements that comprise the model surface. ZFrom these computed model points we

select the one u, whose distance d(u,) from the datapoint is the minimum of all the computed distances.

The complexity of the algorithm is O(mn), where m is the number of finite elements used and n is the

number of given datapoints.

We then assign to u, the following force

f(u 2 ) = O(z - x(u-)), (10)

based on the separation between the datapoint z in space and the force's point of influence u, on the

model's surface and where 0 is the strength of the force given as an input parameter. We then extrapolate

f(u,) to the element nodes using the formula

f. = Ni(u.)f(u.), (11)

where Ni is the shape function that corresponds to node i and f, is the extrapolatedvalue of f(u 2 ) to node

i. (Fig. 1).

4.3 Criterion for Finite Element Subdivision

We use a criterion based on the distance from the datapoints to the finite elements and the curvature

inherent in the datapoints, to decide whether an element or elements should be subdivided. We first

compute using the above algorithm the point u_ on the model whose distance d(u2 ) is the minimum from

the given datapoint z. If

d(u,) > rd, (12)

where rd is a threshold, we subdivide the elements that this nearest model point is on. We distinguish the

following three cases.

1. If u. lies inside an element, then the element is selected for subdivision.

2. If u, lies on an edge, then the two adjacent elements to the edge are subdivided.

8



T
C

"B"T 1

A E
(a) (b) (c)

Figure 2: Various subdivision examples. (a) Subdivision of a triangle by the longest edge, (b) An example

of non-conforming triangulation, (c) An illustration of conforming operation.

3. If u2 is a model node, then all the elements adjacent to the node are subdivided.

Once the above criterion is satisfied we subdivide the chosen elements and apply the following subdi-

vision algorithm to ensure that the resulting grid has properties necessary for the application of the finite

element method. It is worth mentioning that given that curvature calculation is very sensitive to noise

and that we want to use our technique in case of sparse data, we did not consider using the data curvature

as a criterion for subdivision. Also our criterion for subdivision does not use the model surface curvature,

because the chosen finite elements ensure a smooth C 1 continuous solution.

4.4 Subdivision Algorithm

Our subdivision algorithm is essentially based on Rivara's Iocalrefinement algorithm [11]. The subdivision

algorithm has the following two basic steps.
Step 1: Bisection Operation

In the first step the chosen finite element based on the above criterion performs a bisection operation as

follows: let T be a triangle with vertices A, B, and C; a natural way of subdividing the triangle T into two

triangles for finite element methods [12] is to bisect it along its longest edge; let AB be the longest edge

of T, and D the midpoint of AB; then T is subdivided into two triangles, ADC and BCD as shown in

Fig. 2(a).
This subdivision has been shown to provide properties desirable for use in finite element applications.

First, none of the interior angles of the refined triangles will become obtuse as the level of subdivision

increases. Rosenberg and Stenger [121 proved that if a, is the smallest angle of the triangulation obtained

by the i-th iterative subdivision, then a, _> .• for any i, where 00 is the smallest interior angle of the
initial triangulation. Second, the subdivision improves the shape regularity of the triangles, that is, the

triangles become approximately equilateral as the level of subdivision increases [13].

Step 2: Conforming Operation

Inth frs te te hoe fnie leet asd nth aov cieronpefom abiecio peatona



The second part of the algorithm ensures that the resulting finite element grid generates properties nec-
essary for application of the finite element method. A triangulation is defined to be conforming if any

two adjacent triangles must share either a common vertex or a common edge [20). In Fig. 2(b), the tri-
angulation is not conforming, because conformity is violated between T1 and T, and between T2 and T.

In the finite element method, we must maintain the continuity across inter-element boundaries, i.e., it is

necessary to maintain the conformity of the triangulation.
In Fig. 2(c), if we introduce a new node, D, as a result of bisecting element T, the element, T1, adjacent

to the subdivided edge AB becomes non-conforming. In order to ensure conformity, further subdivision

must be performed on T1 along the edge common with midpoint D. However, it is possible that the

common edge may not be the longest edge of T1. Therefore, this subdivision will cause the triangulation
to lose the aforementioned properties of shape regularity.

To remedy this problem, we take the following approach in subdividing element T1 as shown in Fig.2(c).
We first bisect T, by its longest edge, AE, at its midpoint, P. If AE is the common edge, then we stop

subdividing. Otherwise, we further subdivide T1 by connecting P to the midpoint D of AB. As a result

of this process, conformity is preserved and the subdivision will not produce triangles with obtuse angles.

This process is called a conforming operation.

In our local subdivision algorithm, the conforming operation is performed whenever subdivision of an
element causes non-conformity. The conforming operation, however, may create new non-conformity. In
order to ensure the conformity this conforming operation is recursively applied until the triangulation
becomes entirely conforming. This recursive process is guaranteed to stop because there is only a limited

number of triangles to start with. Fig. 3 illustrates an example of applying a series of conforming operations
which were necessary because of propagating non-conformity.

Based on the above description, our local subdivision algorithm can be given as follows:

While the subdivision set is not empty

BEGIN

Set T as a triangle from the subdivision set.

Remove T from the subdivision set.
If T has not been bisected then

BEGIN

Set Eloiget as the longest edge of T.

Subdivide Eiongeat.

Bisect T by Eionget.

Set T' as the adjacent triangle of T by the edge Eionyet.

Conform(T', Eiortgeat).

END

END

We define the conforming operation Conform(T', E') as

Set E;ongest as the longest edge of T'

10
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Figure 3: An example of recursive local subdivision.

if Eionget is the same as E' then

BEGIN

Bisect T' by E'.

Return.

END

Subdivide Eiogest.

Bisect T' by Eoongest*

Set Tý as one of the sub-triangles from the previous step which contains the edge E'.

Bisect t by E'.

Set T as the adjacent triangle of T' by the edge E;'onoe.st

Conform(T, Elonge,t).

In summary, our local subdivision algorithm satisfies several desirable properties for finite element mesh

generation. They are: 1) conformity: any two adjacent elements share only either a node or an edge; 2)

non-degeneracy: the triangulation maintains the shape regularity of the refined elements, i.e., no angles of

the element become obtuse, and the triangles tend to be approximately equilateral; 3) smoothness: there

is no abrupt size difference between adjacent elements, and hence the transition between small and large

elements is smooth.

11
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Figure 4: Fitting of model to squash-shaped data. (a) Model initialization, (b) Intermediate step of model
fitting with apparent global deformations, (c) Model fitted to data without local subdivision, (d) Model
fitted to data after three levels of local subdivision.

5 Experiments

We have carried out various experiments to test our locally adaptive finite element algorithm. These include

3D range data taken from the NRCC range image database, the Cyberware, Inc., 3D digitizer, a human

head model provided by Viewpoint, Inc., and synthetic 3D data sampled from the surfaces of deformable

superquadrics. Using our new force assignment algorithm the models deform globally and locally and

subdivide locally to fit the given data. Our experiments run at interactive rates on an R4000 Iris Crimson
workstation with VGX graphics. In all the experiments we used a time step size equal to 1.0 x 10-1 for

the Euler method and a unit damping matrix D, while the threshold for local subdivision was rd = 0.05.

In Fig. 4 we fit a deformable model with 27 nodes to 123 3D datapoints sampled from the surface of a
squash-like model undergoing deformations, where the local deformations simulated a loaded membrane.

The local deformation stiffness parameters of the model were too = 0.5, wo0 = 0.5, w1o0 = 0.5, to0 2 = 0.0,

Woll = 0.0 and to20 = 0.0 (the latter three were set to zero to give membrane properties to the local deforma-

tions of our model). The initial model was an ellipsoid (q. = (2.6,0.35,0.35,0.9,1.0, 1.0, 0.0, 0.0, 0.0, 0.0, O.O)T)

and the force strength parameter was 6- = 100.0. Fig. 4(a) shows a view of the range data and the initial

model, while Fig. 4(b) shows an intermediate step in the fitting of the model to the data where the global

deformations are apparent. Fig. 4(c) shows the model fitted to the data without local subdivision, while

Fig. 4(d) shows the final model fitted to the data after three levels of local subdivision. The improvement

in the shape is obvious, as well as the new triangles formed as a result of the subdivision. The new final

number of model nodes is 46, which is significantly smaller than the number of given datapoints.

To better demonstrate the creation of new triangles through our algorithm, Fig. 5 shows in parameter

12
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Figure 5: (a) Initial triangular mesh, (b), (c) and (d) Resulting triangular meshes at the end of each of
the three subsequent local subdivision levels.

space the triangles formed after each level of subdivision in an experiment analogous to the above, where

the initial number of model nodes was 51. Fig. 5(a) shows the initial triangular mesh, while Figs. 5(b), (c)

and (d) show the resulting triangular meshes at the end of each of the three subsequent local subdivision

levels.

In the following experiments, the model's fitting errors with respect to the input data are measured,
where fitting errors are defined in terms ui the distances from the. original input data to the fitted deformable

model. The fitted model is obtained by fitting the deformable model to input data until the movement

of each element becomes relatively nonexistent. That is, we audit the difference between two positions of

each element obtained from two consecutive iterations during fitting, and we allow the model to continue

fitting until the maximum difference in the model elements is less than a given threshold value.

In the first experiment, a deformable model with 66 nodes was fitted to 857 3D data points sampled
from a biomedical image of the left part of human lung (Fig. 6(a)). The initial fitting model was an

ellipsoid (Fig. 6(b)). Fig. 6(c) shows the model after global deformations. Fig. 6(d) shows the model after

local deformations. Fig. 6(e) shows the model with 243 nodes after three levels of our locally adaptive

subdivision. Comparison of Fig. 6(d) and Fig. 6(e) shows that the subdivision was concentrated in the

boundary area with more features.

Table I shows error statistics collected after fitting the deformable models to the input data of human

lung. For one model we allowed locally adaptive subdivision while we superseded subdivision on other two

models. We show the number of nodes in the model, the number of polygons in the model, the number of

iterations, the mean error value, the maximum error value, the standard deviation and the variance of the

13



I ... -. ,-,

• . * .'*.* *''

(a) (b) (c)

(d) (e)

Figure 6: Fitting of model to data of a human lung. (a) input data of a human lung (left part), (b) model
initialization, (c) model fitted to data with only global deformations, (d) model fitted to data with global
and local deformations, (e) model fitted to data after three levels of local subdivision.
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model sub1 I sub2 [ sub3 sub4 nosubi nosub2

# of nodes 66 129 168 243 256 627

# of elements 128 254 332 482 512 1250

# of iterations 11401 16928 21298 27303 20901 22251

mean .... 0.081739 0.023317 0.013317 0.008100 0.019040 0.011834

maxerror 1.351201 0.371757 0.318139 0.104073 0.281506 0.247791

aerror 0.162214 0.038362 0.017991 0.010340 0.034987 0.026694

cOlrror 0.026313 0.001472 0.000324 0.000107 0.001224 0.000713

Table 1: Error estimates of fitting of the model to 857 data points of a human lung.

fitting errors for each fitting of the model. For this application, for each level of subdivision, we allowed

fitting until the maximum model movement measure becomes less than 0.00005. Then we subdivided the

model elements as explained in the previous sections. In selecting elements for subdivision, we used a

distance threshold of rd = 0.3. We started fitting the model with 66 nodes and 128 elments while the

number of input data points was 857. At the first level of subdivision, 87 elements were selected for
subdivision, and the model resulted in a total of 129 nodes and 254 elements. At the second level of

subdivision, 50 elements were selected and the subdivision process produced a total of 168 nodes and 332

elements. At the third level, 77 elements were selected, and the subdivision process generated a total of

243 nodes and 482 elements.
We also fitted a model with a number of elements comparable to the final subdivided model and

measured the fitting error. This model contained 256 nodes and 512 elements. As shown in the table, the

mean and maximum errors derived using this model notably exceed those of the subdivided model. Table 1

also shows the error measures obtained by fitting the model with 627 nodes and 1250 elements. Through

this example it is apparent that our locally adaptive subdivision significantly improves the model fitting.

In Fig. 7, we fit a deformable model with 47 nodes to 470 3D data points sampled from a human upper

left arm. The input image is given in Fig. 7(a). The local deformation stiffness parameters of the model were

wo = 0.1 and w, = 0.1. The initial model was an ellipsoid (q 2 = (8.0,0.21,0.21,0.8, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0)T)

and the force strength parameter was = 20.0.

Table 2 shows error estimation collected after fitting the deformable models to the above input data. We

again show the number of iterations, the mean value, the maximum value, the standard deviation and the
variance of the fitting error for each model. For the model with subdivision, for each level of subdivision, we

allowed the model to fit until the maximum model movement measure becomes less than 0.00005. Then we

subdivided the model elements as explained in the previous sections. In selecting elements for subdivision,

we used a distance threshold of Td = 0.2. The number of input data points was 470. We started fitting

15
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Figure 7: Fitting of model to data of a human arm. (a) input data of a human arm (left part), (b) model
initialization, (c) model fitted to data with only global deformations, (d) model fitted to data with global
and local deformations, (e) model fitted to data after two levels of local subdivision, (f) model fitted to
data after three levels of local subdivision.

model i subi sub2 sub3 lsub4 7nosub

# of nodes 47 107 241 343 402

# of elements 90 210 478 682 800

# of iterations 4351 9249 14548 25546 128144

meanerror 0.118530 0.086852 0.007490 0.001484 0.002796

maxeror 4.399110 0.927110 0.402416 0.047835 0.203244

__e__o_ 0.263431 0.096933 0.022171 0.003416 0.010973

Olr2 _ 0.69396 0.009396 0 000492 0.000012 0.000120

Table 2: Error estimates in fitting of the model to 470 data points of a human upper arm.
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Figure 8: Fitting of model to foot data. (a) Foot data, (b) Model Initialization, (c) Intermediate step
of model fitting to the data with apparent global deformations, (d) Model fitted to data without local
subdivision, (e) Model fitted to data after one level of local subdivision, (f) Model fitted to data after four
levels of local subdivision.

of the model with 47 nodes and 90 elements. At the first level of subdivision, 86 elements were selected
for subdivision, and the model resulted in a total of 107 nodes and 210 elements. At the second level of
subdivision, 173 elements were selected, and the subdivision process produced a total of 241 nodes and 478
elements. At the third level, 34 elements were selected, and the subdivision process generated a total of
343 nodes and 682 elements. We also fitted a model with a number of elements comparable to the number
of elements in the final subdivided model and measured the fitting error. This model contained 402 nodes

and 800 elements.
Fig. 7(a) shows a view of the range data. Fig. 7(b) shows the initial model. Fig. 7(c) shows the

model after global deformations. After global deformations, we obtained scaling parameters of q% =
(8.0,0.238, 0.3 04 ,0. 8 17 )T and quaternion of qp = (40.621, -0.694, -0.081,0.0 9 5 )T. Bending deformation
was applied to result in qb = (0.371,0.105, 0.6 7 0 )T. Fig. 7(d) shows the model after local deformations.

Fig. 7(e) shows the intermediate model after two levels of local subdivision. Fig. 7(f) shows the intermediate

model after three levels of local subdivision.

In the following two experiments we use range datapoints obtained from the Cyberware, Inc., 3D

digitizer. In Fig. 8 we fit a deformable model with 227 nodes initially to 3825 3D range datapoints

obtained from a mannequin foot. The local deformation stiffness parameters of the model were woo = 0.5,

w01 = 0.5, W10 = 0.5, W02 = 0.1, w1 1 = 0.1 and w20 = 0.1. The initial model was an ellipsoid (q, =

(2.3, 0.3, 0.5, 0.3, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, O.O)T) and the force strength parameter was 0 = 20.0. Fig. 8(a)

shows the given foot data. Fig. 8(b) shows a view of the range data and the initial model, while Fig. 8(c)

shows an intermediate step in the fitting of the model to the data where the global deformations are

apparent. Fig. 8(d) shows the model fitted to the data without local subdivision, Fig. 8(e) shows the
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Figure 9: Fitting of model to head data. (a) Model Initialization, (b) Model fitted to data without local
subdivision, (c) Model fitted to data after five levels of local subdivision.

model fitted to the data after one level of local subdivision, while Fig. 8(f) shows the final model fitted
to the data after four levels of local subdivision. The new final number of model nodes is 640, which is
significantly smaller than the number of given datapoints.

In Fig. 9 we fit a deformable model with 627 nodes initially to 5070 3D range datapoints obtained
from a head. The local deformation stiffness parameters of the model were woo = 0.005. u'0 = 0.001.

W10 = 0.001, W0 2 = 0.00001, w1l = 0.00001 and w20 = 0.00001. The initial model was an ellipsoid

(q, = (2.5.0.5,0.5,0.65, 1.0 ,1. 0 ,0. 0 , 0 .0 , 0 .0 , 0 .0 ,0.0)T) and the force strength parameter was 3 = 20.0.
Fig. 9(a) shows a view of the range data and the initial model. Fig. 9(b) shows the model fitted to the
data without local subdivision, Fig. 9(c) shows the final model fitted to the data after five levels of local
subdivision. The improvement in the shape with respect to the level of subdivision is obvious. The new
final number of model nodes is 1597, which is significantly smaller than the number of given datapoints.

In Fig. 10 we fit a deformable model with 289 nodes initially to 2929 3D range datapoints of a mask
obtained from the NRCC Image database. The local deformation stiffness parameters of the model were
woo = 0.005. wIo = 0.001, wI 0 = 0.001, wo2 = 0.0001, w1l = 0.0001 and w-20 = 0.0001. The initial model

was an ellipsoid (q, = (2 -7,0. 3 ,0. 4 ,0. 5 5,1.0, 1.0,0..0 ,0,. 0 ,0.0, 0., 0 .0 )T) and the force strength parameter

was 3 = 10.0. Fig. 10(a) shows a view of the range data and the initial model. Fig. 10(b) shows the final
model fitted to the data after two levels of local subdivision. The new final number of model nodes is 526,
which is again significantly smaller than the number of given datapoints.

In this experiment we fit a deformable model with 47 nodes to 1269 3D data points defining a
human head. The input data were obtained from the Viewpoint, Inc. The local deformation stiff-
ness parameters of the model were wo = 0.05 and w, = 0.05. The initial model was an ellipsoid

(q2 = (7.0, 0.5,0.5,0.6, 1.0,1.0,0.0, -0.3, 0.0, 0.0, 1.0)T) and the force strength parameter was ) = 1.0.
Fig. 11(a) shows a view of the range data. Fig. 11(b) shows the initial model. Fig. 11(c) shows the

model after global deformations. Fig. 11(d) shows the model after local deformations. Fig. 11(e) shows
the intermediate model after two levels of local subdivision. Fig. 11(f) shows the intermediate model after
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Figure 10: Fitting of model to mask data. (a) Model Initialization, (b) Model fitted to the data after two
levels of local subdivision.

four levels of local subdivision.

Fig. 12 (a) and (b) respectively show a front view and a back view of human body figures displayed

at three different levels of detail. The human body figure consists of 15 parts: head, torso, lower torso,

3 parts for each arm, 3 parts for each leg. For coarser levels of detail, approximations of each body part

were obtained as described in the above experiments. The numbers of polygons used at each level of

representation were 18155, 7292, and 2260 respectively, and the numbers of nodes were 18005, 3696, and

1180 respectively.

6 Conclusions

We have developed a new technique that allows the local adaptive subdivision of the finite elements rep-

resenting the local deformations of our deformable models. Our algorithm ensures that during subdivision

the desirable finite element mesh generation properties of conformity, non-degeneracy and smoothness are

maintained. In conjunction with the use of our new force assignment technique from datapoints to model

points, we not only represent more accurately an object surface, but also more efficiently because new

model nodes are added only when necessary in a local fashion. Finally, using our new locally adaptive

finite element technique and the global deformations of our models we can achieve a smooth hierarchical

shape representation.
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Figure 11: Fitting of the model to input data of a human head. (a) input data, (b) the initial model, (c)
the model after global deformations, (d) the model after local deformations, (e) the model after two levels
of subdivision, (f) the model after four levels of subdivision.
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Figure 12: A human body displayed at three different levels of detail: (a) the front view, (b) the back
view. 21
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A 3-D Model of Tongue Movements Using Soft Object Techniques

Catherine Pelachaud, Chin Seah, C.W.A.M. van Overveld

1 Abstract

A geometric and kinematic model for describing the global shape and the predominant motions

of the human tongue, to be applied in computer animation, is discussed. The model consists of a

spatial configuration of moving points that form the vertices of a mesh of 9 3-D triangles. These

triangles are interpreted as charge centres (the so called skeleton) for a potential field, and the

surface of the tongue is modelled as an equi-potential surface of this field. In turn, this surface is

approximated by a triangular mesh prior to rendering. As to the motion of the skeleton, precautions

are taken in order to achieve (approximate) volume conservation; the computation of the triangular

mesh describing the surface of the tongue implements penetration avoidance with respect to the

palate. Further, the motions of the skeleton derive from a formal speech model which also controls

the motion of the lips to arrive at a visualy plausible speech synchronous mouth model.

2 Introduction

In this paper, a simple tool is discussed to model the shape of a human tongue. This tool also

supports simulated tongue movements during speech production, useful in the context of computer

animation. In real life, the tongue plays an important role in speech production. Some phonemic

elements are not differentiated by their corresponding lip shapes; rather they are distinguished by

the movement of the tongue (for example /d/, /t/...). Even though only a small portion of the

tongue is visible during normal speech, taking the tongue shape into account will enhance the visual

plausibility of a computer graphics facial animation system. A geometric tongue model, however,

is far from trivial: indeed, the tongue is a complex and flexible organ with highly articulated and

irregular motions. In most facial animation system, tongue movement is not considered, or if so it

is over simplified. In most of the cases it is represented by a parallelepiped that can move inward,

outward, upward, and downward [12], [3], [17], [14]. We propose to model the tongue based on

the soft object technique of [27]. This technique assumes a so called skeleton, comprising of few

geometric primitives (in our case 9 triangles) that serves as a charge distribution causing a spatial

potential field. The modelled soft object is an equi-potential surface defined by this field. Modifying



the skeleton will modify the equi-potential surface, i.e. the soft object. Since the skeleton has only

few degrees of freedom, defining the behavior over time of the skeleton is a convenient way to define

the behavior over time of the resulting complex shape. We propose an interactive tool to model

the shape of the skeleton; moreover we propose an algorithm to compute the soft object which

implements penetration avoidance such that the tongue stays within the palate at each frame while

the volume is approximately constant.

In the next section we explain our model and we discuss how the primitives for the model

are built. We also summarize briefly our implementation of the soft object technique. The user is

referred to [24] for more details on the construction of a triangle mesh to represent the equi-potential

surface. In the subsequent section we describe our penetration avoidance algorithm. Finally we

show how we compute tongue shapes during speech production. Lip shapes are also computed and

coarticulation effects are taken into account to produce the final animation.

3 tongue definition

The human tongue plays a significant part in speech production. Sounds are differentiated, among

other factors, by the position of the tongue related to the palate, and by the curvature and con-

traction of the tongue.

The tongue is a'highly flexible organ. It comprises of muscles, fat and connective tissue 1211.

Longitudinal and transverse muscles interleave each other. Their contraction patterns determine

the direction of the tongue deformation. The contraction of longitudinal muscle will shorten and

draw back the tongue while the contraction of the other group of muscles will flatten and extend

it [21]. Moreover the tongue can be bent, twist and tensed [20].

4 Tongue Modeling

Our goal is to find a compromise between a highly flexible structure with very complex movements

and a simple representation made up from few primitives, each with few parameters. In this respect,

the soft object technique seems to be a promising approach. Few primitives (9 triangles) define the

model. We present first how we form the skeleton for the soft object. Then we discuss a tool to

help create different skeleton shapes. This tool relates the geometric parameters from the skeleton
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Figure 1: Skeleton of the tongue

(i.e. the locations of the vertices of the 9 triangles) to what will be called shape parameters. Each

shape parameter implements a meaningful shape attribute of the tongue; each shape parameter

can be modified interactively. Finally we explain how the final shape of the tongue is computed

from the skeleton; to this aim, the soft object technique will be explained briefly.

4.1 3-D Model

In [21], Maureen Stone proposed a 3-D model of the tongue. She defined 5 segments in the coronal

plane - one medial and two laterals (on each side of the median) - and 5 segments in the sagittal

plane - root, posterior, dorsal, middle and anterior. Our model can be compared with Maureen

Stone's 3-D model. On the one hand we want to be able to model an asymmetric tongue shape

and on the other hand we want to keep the number of degrees of freedom possibly low. Therefore

we retain only 3 segments in the sagittal plane and 3 segments in the coronal plane (see figure 1).

By moving points v/[1] and vl[2] along the median, they will represent respectively the ante-

rior/middle and the dorsal/posterior degrees of freedom. In normal speech, the anterior and middle

segments are never independent characteristics of a tongue shape simultaneously (similar for dorsal

and posterior), so these don't have to occur as independent shape parameters. Therefore, in our

model the remaining segments in the coronal plane are one medial and one lateral segment. Bent,

3



Figure 2: Two examples of tongue shapes

twisted. and curved shapes can still be represented with our model as well as asymmetric shape.,.

but the --groove" shape can not be modelled independently, anymore. Nevertheless. since we aim

at modelling normal speech. where only a small portion of the tongue contributes to the visual

appearance of the mouth, this approaximation turns out to be sufficiently versatile for modelling

tongue shape during speech production.

4.2 Geometric Representation

The tongue model consists of 9 triangles. The median is divided into three parts. The two xniddlo

points Z-11 and vl['2 can move along the median. A tool has been developed to modify interactively

and independently each shape parameter of the model; these shape parameters are: the lengths of

tile edges 1, forming the median and the angles ai between these edges. Each modification creates

a new tongue shape (figure 2). By rotating the segments in the sagittal plane the tongue can be

made to bend or roll. The external points v'[i] can be moved by rotating the edges in the coronal

plane: the tongue can be made to twist or take a U-shape.

Modifying the lengths of the edges will modify the tongue surface: the tongue can be made to

compress. stretch, narrow, or flatten.

The relations between the points of the tongue skeleton (geometric parameters) and the shape

4



parameters are (please also refer to figure 1 for the meaning of the shape parameters): v1 are the

points, Ii are the size of the segments and ai are the angles):

vi[O].Z = :0;

VIOi].u = yo;
vi[O].z = zo;
vI[1].z = Vt[O].z + (ii *sin(a 1 ));
vl[1].y = vL[O].y - (I1 * cos(ai));
vi[1].z = vI[0].-;
vt[21.z = VI[,1., - (12 * sin(a 2));
vl[2].y = v/[1].Y+ (12 * cos(a2));
v/[2].z = vI[1].z;
V131-X. = vj[2).z + (13 * sin(aA));
vl[3].y = V,[2.Y- (1 * Cos(a 3 ));
vl[3].z = vl[21.z;
vl[4].z = v[1].z- (14 * cos(ai));
vl[4].x = v1[1].z + (14 *sin(a 1));
vL[4).y = vl[l].y;
vl[5].z = vl[1].x + (is * sin(aM));
V,[5J.y = ,,[l].Y;
vl[51.z = v1[1l.z4 + (1 * cos(a2));
vl[6].z = vl[2].z + (16 * sin(a3));

vl[6].)y = vl[2].y;
vl[6].z = vl,2].z - (16 * cs(a);
vl[7].z = vlI2].x + (17 *sin(a 4));
v[[7].y = vl(2].y;
v,,[7.z = v,,2]. z+ (17*cos(a 4 ));

vl[8].z = vl[3].z + (is * sin(as));
vl[8].y = vI[3s.y;
vl[8].z = vI[3].z - (s *cos(as));
vl[9].z = v/[3].z + (19 * sin(as));
vl[9].y = vl[3].y;
vl[9].z = vl[3].z + (l9 •*cOS(a6));

4.3 The Soft Object Technique

Equi-potential surfaces are a sub-class of implicit functions. Among other things, they can serve to

model soft objects. Equi-potential surfaces are expensive to render directly (e.g. using ray tracing);

rather, they should be converted into a triangle mesh prior to rendering. In [241, a method is

proposed to convert an equi-potential surface into a triangle mesh in such a way that the triangle

5



shapes adapt to the local curvature of the equi-potential surface: relatively flat areas give rise to

large triangles whereas small triangles occur in strongly curved regions; moreover, isotropically

curved surface regions translate into nearly equilateral triangles and highly anisotropically curved

regions give very acute triangles.

In order to implement this, the notions of an acceptable surface and of acceptable edges are

introduced. An acceptable surface is a surface where for each two points, a and b, the angle

between the normals in a and b does not exceed a constant factor /3 times ja - bl. The value of 3

relates to the maximal curvature of the surface. For an edge ab to be acceptable, its length ja - bj

should not exceed a given threshold L.max and the angle between the normals in the points a and b

should not exceed a given threshold value a. Given 3, a, and Lmax quantitative estimates for the

maximal deviation of the surface and the triangular mesh approximation can be derived (see [241).

Summarising, the tessalation is characterised by:

"* the surface is given by f(r) = 0, r E *3

"* a cord (edge of a triangle) is a tuple (a, 6, na, n•b) where

f(a)=f(b)=O and na=VVf(a) and nb=Vf(b)

"* the surface is called acceptable iff for every cord ab on the surface

L(na, nb) <_ /3 a - b I

"* a cord is called acceptable iff

L(na, nb) • a and Ia - b 1 I•Lmaz

"* a triangle consisting of three cords is acceptable iff all three cords are acceptable

In this case, f(r) is a potential field, caused by a set of point charges. Each triangle contributes

one point charge; in order to compute the potential in point r in space, the point charge is located

in the point R within the triangle, closest to r. Such a point charge is represented by a tuple (R, p)

where R is the in 3-D space and p is its charge. The potential due to this point charge in point r is

f(r) = R 1

6



If two triangles share an edge, the resulting potential is twice as high near this edge which results

in unwanted bulging of the equi-potential field. This is remedied by adding line charges located

at the common edges with negative contributions. In turn, this would cause over compensation

near the vertices where common edges meet, so we also have to add positive point charges in the

common vertices.

For all triangles, lines and vertices, the combined equi-potential surface is

S- {r E I Pi o-1r }

The algorithm discussed in detail in [24] guarantees that the vertices of the adaptive triangular

mesh approximating S are on f(r) = VO; that a closed surface results, and that the surface is

tessalated by acceptable chords only.

To assure that vertices lay on the surface, initially the value of VO is set to a value close to 0.

As a result, S will be very large and nearly spherical. A sphere-shaped surface is straightforwardly

triangulated, and adaptiveness does not matter since the curvature is the same everywhere. Next,

VO is increased slightly. The surface S shrinks and may become slighly more involved. Since the

vertices only have to move little, however, a linearisation of the expression for f(r) is sufficiently

accurate to compute new locations of the vertices. The acceptability criterion is checked for all

edges; if an edge is not acceptable it is split. In this manner, the value of VO is increased in

several steps until it reaches the value for which the final shape of the equi-potential surface is

defined. This stepwise approach assures that underway the vertices of the triangle mesh stay on

the (shrinking) surface S and the repeated checking of the acceptability criterion guarantees that

an adaptive triangulation results.

In order to achieve a closed surface, the starting polyhedron is chosen to be closed; e.g. one can

take a tetrahedron which is the simplest closed triangular mesh.

5 Animation

Animating the skeleton over time, given an input text, is achieved by outputting for each phonemic

item the values of all the shape parameters (the edge lengths of the median and the angles between

these edges) defining the skeleton. Thus a tongue skeleton is obtained for every key-frame. Since

during the construction of a soft object, the number of vertices in the triangular mesh is not

7



necessary the same for all shapes of the skeleton, interpolating the resulting meshes is in general

not well possible. Instead, the animation is obtained by interpolating between tongue skeletons;

so to each frame corresponds a tongue skeleton and the soft object algorithm computes for every

frame the final tongue shape.

5.1 Compressibility and Velocity

In real life, compressibility is an important feature of the tongue. The tongue does not extend or

retract uniformly along its surface. Each segment can be compressed or extended independently.

The pattern of compression and expansion varies over the tongue.

The middle segment has a tendency to be more compressed than the other segments. Conso-

nants and vowels show different patterns of compression and retraction. During the production of

consonant, the tongue tries to reach the palate and shows greater change of position. During the

production of vowels, the tongue has the tendency to compress more in order to open the vocal

tract. For vowels the degree of compressibility is mainly a function of tongue height.

Some differences between segments occurs also in the timing of the tongue movement. Some

points arrive earlier followed by the other points: each segment has its own characteristic velocity

[201.

Regardless of context, the vowel expansion and compression patterns vary roughly as a function

of tongue height. The higher vowels, /i/ and /o/, cause the anterior segment to become compressed

and retracted whereas the dorsal segment moves upward. For /a/, the middle and dorsal segments

are compressed.

Finally, for vowels the tongue is more compressed than for consonants. This reflects the fact

that the tongue displaces farther for the consonants to contact the palate and it retracts for the

vowels to open the vocal tract.

6 Penetration Avoidance

When the tongue moves we have to check that it does not penetrate the palate. The palate is

modeled as a semi-sphere and a finite, strip-shaped plane. The penetration avoidance algorithm

works in two passes. The first pass takes place at the skeleton level; the second pass takes place

when the triangle mesh representing the soft object is computed. A possible penetration is detected

easier and faster during the first pass since here checking involves fewer points. This step assures

8



the tongue skeleton to be within a given sphere-and-plane configuration, sufficiently small within

the palate (to be called the virtual palate) to guarantee that the associated equi-potential surface

does not penetrate the true palate; also, in the first pass the area of the triangles of the tongue

skeleton is kept approximately constant which implements approximate volume conservation of the

tongue as a whole. The second pass corrects for possible penetrations of the resulting equi-potential

surface with the true palate.

The algorithm works essentially the same in both passes. First, a possible penetration is checked.

either with the skeleton and the virtual palate or the equi-potential surface and the true palate. If

there is no penetration, the algorithm terminates. If there is a penetration, the penetrating points

(of the skeleton or of the triangular mesh representing the equi-potential surface) are moved back

inside the (virtual) palate. In order to preserve the volume, in pass one the algorithm assures that

"* the length of a segment with a penetrating extreme remains constant;

"* if a segment of the sagittal plane is compressed (respectively expanded), the other segments

of the coronal plane expand (respectively compress) to compensate.

6.1 First pass

Hcre we describe how to check for penetration of the virtual palate, modelled using a sphere and a

planar strip, by the skeleton. Also, the criteria to be used for preserving volume of the tongue are

discussed.

6.1.1 Penetration of a Sphere

The first pass takes place when computing the shapes of the skeleton over time. The program

checks if, for each frame, each vertex of the tongue skeleton is within the virtual palate. The first

check is within the sphere part of the virtual palate. The condition for penetrating the sphere is:

(x - Xo)2 + (y - Yo), + (z - ZO) 2 > r

where (x, y, z) are the coordinates of a vertex, (zo, yo, zo) are the coordinates of the center of the

sphere, and r is its radius.
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where d = I(x, y,,z) - (xo, to, zo)I (see figure 3 (a) and (b)). Similar formulas hold for y, and z

coordinates.

Moving a vertex as described above would change the length I of the incident edges in the

skeleton. Since theseF lengths are shape parameters that carry significance for the current tongue

shape, however, they should be invariant. Therefore, instead of merely translating the single affected

vertex, the algorithm rotates the incident segment instead. Firstly, we need to determine the angle

to rotate which is equal to the angle between the vertex that moved and its neighbouring vertex:

,r2 +d 2 -_12

B = arccos( .7" t )

r2 + d2 _-kA = arccos( +d)

Therefore, the angle of rotation is C = B - A (see figure 3 (a) and (b)).
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Next, we need to either rotate left or right along the arc of the palate depending on where the

vertex was before. In case of a left rotation along the arc of the palate, again two cases need to be

considered (see figure 3 (c) and (d)). Two angles need to be computed.

D=arcsin(y) and E=D-C
r

The new coordinates of the vertex will be finally:

Xnew = r - (r * cos(E)) and Ynew = r * sin(D))

The case of right rotation is similar. This completes the penetration check with the sphere.

6.1.2 Penetration of a Plane

If a vertex crosses the plane (for simplicity, the coordinate system is assumed to be perpendicular

to this plane), the algorithm takes the following steps:

"* compute the normal distance dist of the vertex from the plane:

dist = PO*X+PI *Y+P2

where p0, pl, p2 define the plane.

"* next the vertex is moved perpendicularly onto the surface. This is done iteratively, i.e. by

moving the point along the normal in several steps:

Xnew = X- ( dist * po

step

where again xew is the new x coordinate and step is the step of the iteration. We do the

same for y coordinate. At each step, the new vertex is checked if it is inside the virtual palate.

If it is the algorithm terminates; otherwise it reiterates : the vertex moves along the normal

and the check is done once more.

6.1.3 Expand / Contract

In order to conserve the tongue volume, the change in length in one direction should be compensated

by a change in the other direction. Using the soft object technique allows producing objects from
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Figure 4: Extansion / Contraction of the tongue

few primitives and to define their animation in an intuitive way. Nevertheless, it does not guarantee

volume conservation of the equi-potential surface. For our purpose we ignore these volume changes.

At the skeleton level, however, we can strive for area conservation of the triangles forming the

skeleton. The penetration avoidance algorithm modifies segment lengths in the sagittal plane; so

the algorithm should adjust accordingly the segment lengths in the coronal plane.

In the coronal plane the skeletal frame is expanded and contracted as follows. After detecting

a penetration of the virtual palate in the saggital plane, the algorithm compares the segment's

lengths and computes the ratio of the change in length:

(oldlength,,, - newlengthsag)

at~ilodhnge - oldlengthag

Then in the coronal plane, the corresponding sides of the segment are extended or contracted

according to this ratio (see figure 4)

newlengthr, = oldlength, + (MUtiOchange * oldlengthc,,).

So if a segment length is shortened, the side length is increased thus (approximately) preserving

the area of the associated triangle.
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6.2 Second Pass

In the second pass, the penetration check is done on the final equi-potential surface. Since penetra-

tions with the skeleton were detected already, only few points of the triangular mesh representing

the equi-potential surface are expected to penetrate the palate. These points are simply projected

onto the palate.

T Speech

Different tongue shapes differentiate phonemic elements. Consonants and vowels show different

characteristics; for vowels, the entire tongue surface matters as well as its curvature while for

consonant it is mainly the points of contact between the tongue and the palate or teeth that

matter. For consonants, the tongue touches the palate with more tension than for vowels.

Jaw actions occur during accented vowel production. During jaw opening the tongue has greater

distances to cover to reach its maxima positions. Depending on the speech rate, the tongue might

not have time to reach these positions.

As it is noted in [101, there is not a universal tongue shape for each articulation, but the

constraints on the tongue are such that to each articulation corresponds a particular shape which

can appear in various positions in the oral cavity. The relevant issue here is the relation between

the different tongue positions.

As speech rate increases the tongue does not have 'time to reach its extreme positions; the

tongue shows less displacement, but its curvature is not affected by higher speed rates. Curvature

is accentuated with loudness.

For slow speech-rate, steady-state tongue behavior occurs where the tongue remains still. [10]

found coarticulation effects in the tongue motion during speech production. To compute lip shapes,

our model uses a look-ahead model with some temporal and geometric constraints [18]. Our tongue

model uses also the look-ahead model to compute the tongue shape.

8 Coarticulation

Using the tool we discussed in the previous sections, we specified a tongue shape for each vowel

and consonant (see figure 5). Even though there is no universal shape for each phonemic item, we

define one tongue shape to each phonemic item for the sake of simplicity [11].
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Figure 5: Tongue shape during vowel production

Next, speech is decomposed into a sequence of discrete units such as syllables and phonemes.

The lip shape and tongue shape of any given phoneme are influenced by its predecessors and

successors due to a phenomenon called coarticulation.

8.1 FACS

Each facial expression is defined by a set of Action Units. An action unit is part of the Facial

Action Coding System (FACS) developped by P. Ekman and W. Friesen. This system describes

any visible facial action by the changes occurring beneath the muscular activity. An Action Unit

(AU) corresponds to an action produced by one or more related muscles. Using such a notational

system allows the computation of facial expression for a given animation to be independent of the

chosen facial model. We refer the reader to [4] for a detailled description of each AU.

8.2 Computation of the Lip Shapes

In previous work ([18]) we implemented an algorithm computing the lip shapes. This algorithm is

based on lip reading techniques. Vowels and consonants are divided into clusters corresponding to

their associated lip shapes. Such clustering depends on the speech rate. The faster a person talks,

the more marginally visible segments will lose their characteristic lip shapes.
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The computation of the lip shapes is done in 3 steps:

"* First, we apply coarticulation rules such as forward and backward rules derived from the

look-ahead model. These rules deal with the fact that a segment may be influenced by a

following or preceding vowel;

"* Next, we look at temporal constraints where we consider the relaxation and contraction time

of each AU. Indeed, we check that each AU has time to contract after the previous segment

or relax before the next one. If not, the previous segment will be influenced by the contraction

of the current segment and similarly for relaxation time.

"* Finally, we look at geometric constraints by considering the surrounding phonemes. The

intensity of an action is rescaled to take into account the geometric relation between successive

segments. For example, when saying the word "popcorn", the 'o' of 'pop' is less open due to

the 2 surrounding p's which are formed by the closure of the lips.

8.3 Computation of Tongue Shapes

We applied a similar look-ahead algorithm to compute the tongue shape. Phonemic segments show

a slightly different clustering scheme for the tongue shapes in comparison with the lip shapes. The

look-ahead model assures that for some highly deformable phonemic segments, the tongue shape

will be influenced by the surrounding segments. If no tongue shape is associated to a particular

segment, the program uses the property of the tongue which states that when a gesture is not

involved in a particular segment but is in the next one, this gesture starts earlier [21]. In this

case, the program starts the tongue movemen" on the previous segment which shows no tongue

movement (e.g for /be/, the tongue associated to phoneme /e/ in not engaged in the production

of /b/ and therefore starts as the same time as /b/ is pronounced [21]).

The program outputs the different values of the tongue skeleton for each key-frame (each phone-

mic item correspond with a key-frame). The final tongue shapes are computed using the soft object

program. The animation is displayed using Jack®a graphics package developed at the University

of Pennsylvania.
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9 Conclusion

We have presented a tool to model tongue movement during speech production. Tongue movement

plays an important part in speech production. It helps to differentiate some phonemic elements

when they can not be differentiated by their associated lip shapes. Tongue shape is very complex

and flexible. The soft object technique allows to model a complex and flexible shape; at the same

time these shapes are defined by few primitives which can be easily modified to create other shapes.
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