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Abstract

This paper studies a version of the job shop scheduling problem in which some operations have
to be scheduled within non-relaxable time windows (i.e. earliest/latest possible start time
windows). This problem is a well-known NP-complete Constraint Satisfaction Problem (CSP).
A popular method for solving this type of problems consists in using depth-first backtrack
search. Our earlier work focused on developing efficient consistency enforcing techniques and
efficient variable/value ordering heuristics to improve the efficiency of this search procedure. In
this paper, we combine these techniques with new look-back schemes that help the search
procedure recover from so-called deadend search states (i.e. partial solutions that cannot be
completed without violating some constraints). More specifically, we successively describe
three "intelligent" backtracking schemes: (1) Dynamic Consistency Enforcement dynamically
identifies critical subproblems and determines how far to backtrack by selectively enforcing
higher levels of consistency among variables participating in these critical subproblems, (2)
Learning From Failure dynamically modifies the order in which variables are instantiated based
on earlier conflicts, and (3) Heuristic Backjumping gives up searching areas of the search space
that are deemed too difficult. These schemes are shown to (1) further reduce the average
complexity of the search procedure, (2) enable our system to efficiently solve problems that
could not be solved otherwise due to excessive computational cost, and (3) be more effective at
solving job shop scheduling problems than other look-back schemes advocated in the literature.



1. Introduction
This paper is concerned with the design of recovery schemes for incremental scheduling

approaches that sometimes require undoing earlier scheduling decisions in order to complete the
construction of a feasible schedule.

Job shop scheduling deals with the allocation of resources over time to perform a collection of
tasks. The job shop scheduling model studied in this paper further allows for operations that
have to be scheduled within non-relaxable time windows (i.e. earliest possible start time/latest
possible finish time windows). This problem is a well-known NP-complete Constraint
Satisfaction Problem (CSP) [Garey 79]. Examples of such problems include factory scheduling
problems, in which some operations have to be performed within one or several shifts, spacecraft
mission scheduling problems, in which time windows are determined by astronomical events
over which we have no control, factory rescheduling problems, in which a small set of operations
need to be rescheduled without revising the schedule of other operations, etc.

A generic approach to solving CSPs relies on depth-first backtrack search [Walker 60, Golomb
65, Bitner 75]. Using this paradigm, scheduling problems are solved through the iterative
selection of a variable (i.e. an operation) and the tentative assignment of a value (i.e. a
reservation) to that variable. If in the process of constructing a solution, a partial solution is
reached that cannot be completed without violating some of the problem constraints, one or
several earlier assignments have to be undone. This process of undoing earlier assignments is
referred to as backtracking. It deteriorates the efficiency of the search procedure and increases
the time required to come up with a solution. While the worst-case complexity of backtrack
search is exponential, several techniques have been proposed in the literature to reduce its
average-case complexity [Dechter 88]:

"* Consistency Enforcing Schemes: These techniques prune the search space from
alternatives that cannot participate in a global solution [Mackworth 85]. There is
generally a tradeoff between the amount of consistency enforced in each search
state1 and the savings achieved in search time.

"* Look-ahead Schemes: variable/value ordering heuristics [Bitner 75, Haralick
80, Purdom 83, Dechter 88, Fox 89, Sadeh 91] help judiciously decide which
variable to instantiate next and which value to assign to that variable. By first
instantiating difficult variables, the system increases its chances of completing the
current partial solution without backtracking [Haralick 80, Fox 89, Sadeh 91]. Good
value ordering heuristics reduce backtracking by selecting values that are expected
to participate in a large number of solutions [Dechter 88, Sadeh 91].

" Look-back Schemes: [Stallman 77, Doyle 79, Gaschnig 79, Dechter 89a] While it is
possible to design consistency enforcing schemes and look-ahead schemes that are,
on the average, very good at efficiently reducing backtracking, it is generally
impossible to efficiently guarantee backtrack-free search. Look-back schemes are
designed to help the system recover from deadend states and, if possible, learn from
past mistakes.

1A search state is associated with each partial solution. Each search state defines a new CSP whose variables are
the variables that have not yet been instantiated and whose constraints are the initial problem constraints along with
constraints reflecting current assignments.
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Our earlier work focused on developing efficient consistency enforcing techniques and
efficient look-ahead techniques for job shop scheduling CSPs [Sadeh 88, Sadeh 89, Fox
89, Sycara 91, Sadeh 90, Sadeh 91, Sadeh 92]. In this paper, we combine these techniques with
new look-back schemes. These schemes are shown to further reduce the average complexity of
the search procedure. They also enable our system to efficiently solve problems that could not
be efficiently solved otherwise. Finally, experimental results indicate that these techniques are
more effective at solving job shop scheduling problems than other look-back schemes advocated
in the literature.

The simplest deadend recovery strategy consists in going back to the most recently instantiated
variable with at least one alternative value left, and assigning a different value to that variable.
This strategy is known as chronological backtracking. Often the source of the current deadend
is not the most recent assignment but an earlier one. Because it typically modifies assignments
that have no impact on the conflict at hand, chronological backtracking often returns to similar
deadend states. When this happens, search is said to be thrashing. Thrashing can be reduced
using backjumping schemes that attempt to backtrack all the way to one of the variables at the
source of the conflict [Gaschnig 79]. Search efficiency can be further improved by learning
from past mistakes. For instance, a system can record earlier conflicts in the form of new
constraints that will prevent it from repeating earlier mistakes [Stallman 77, Doyle 79].
Dependency-directed backtracking is a technique incorporating both backjumping and constraint
recording [Stallman 77]. Although dependency-directed backtracking can greatly reduce the
number of search states that need to be explored, this scheme is often impractical due to its
exponential worst-case complexity (both in time and space). For this reason, simpler techniques
have been developed that approximate dependency-directed backtracking. Graph-based
backjumping reduces the amount of book-keeping required by full-blown backjumping by
assuming that any two variables directly connected by a constraint may have been assigned
conflicting values [Dechter 89a] 2. N th order deep and shallow learning only record conflicts
involving N or fewer variables [Dechter 86].

Graph-based backjumping works best on CSPs with sparse constraint graphs [Dechter 89a].
Tnstead, job shop scheduling problems have highly interconnected constraint graphs.
Furthermore graph-based backjumping does not increase search efficiency when used in
combination with forward checking [Haralick 80] mechanisms or stronger consistency enforcing
mechanisms such as those entailed by job shop scheduling problems [Sadeh 91]. Experiments
reported at the end of this paper also suggest that N-th order deep and shallow learning
techniques often fail to improve search efficiency when applied to job shop scheduling problems.
This is because these techniques use constraint size as the only criterion to decide whether or not
to record earlier failures. When they limit themselves to small-size conflicts, they fail to record
some important constraints. When they do not, their complexities become prohibitive.

Instead, this paper presents three look-back techniques that have yielded good results on job
shop scheduling problems:

1. Dynamic Consistency Enforcement (DCE): a selective dependency-directed
scheme that dynamically focuses its effort on critical resource subproblems,

2Two variables are said to be "connected" by a constraint if they both participate in that constraint.
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2. Learning From Failure (LFF): an adaptive scheme that suggests new variable
orderings based on earlier conflicts,

3. Heuristic Backjumping (HB) a scheme that gives up searching areas of the search
space that require too much work.

Related work in scheduling includes that of Prosser and Burke who use N-th order shallow
learning to solve one-machine scheduling problems [Burke 89], and that of Badie et al. whose
system implements a variation of deep learning in which a minimum set is heuristically selected
as the culprit [Badie et al 90].

The remainder of this paper is organized as follows. Section 2 provides a more formal
definition of the job shop CSP. Section 3 describes the backtrack search procedure considered in
this study. Sections 4, 5 and 6 successively describe each of the three backtracking schemes
developed for this study. Experimental results are presented in section 7. Section 8 summarizes
the contributions of this paper.

Appendix I presents additional experimental results obtained on a testsuite first introduced in
[Sadeh 91].

2. The Job Shop Constraint Satisfaction Problem
The job shop scheduling problem requires scheduling a set of jobs J j, .... Jn ) on a set of

physical resources RES=(R 1 ,...,Rm). Each job j, consists of a set of operations
0O= { 01 ..... 0,• ) to be scheduled according to a process routing that specifies a partial ordering

among these operations (e.g. di BEFORE d.).

In the job shop CSP studied in this paper, each job J, has a release date rd, and a due-date dd1
between which all its operations have to be performed. Each operation 01 has a fixed duration
duti and a variable start time sli. The domain of possible start times of each operation is initially
constrained by the release and due dates of the job to which the operation belongs. If necessary,
the model allows for additional unary constraints that further restrict the set of admissible start
times of each operation, thereby defining one or several time windows within which an operation
has to be carried out (e.g. one or several shifts in factory scheduling). In order to be successfully
executed, each operation 01 requires P' different resources (e.g. a milling machine and a
machinist) k. (1 •j <pl), for each of which there may be a pool of physical resources fromwhichinito chos,
which to choose, f~ij={(l,... .I ), with r.k e RES (1 <k• < 4) (e.g. several milling machines).

More formally, the problem can be defined as follows:

VARIABLES:

A vector of variables is associated with each operation, 01 (1 • 1 <_ n, 1 <_ i < n1), which includes:
1. the operation start time, sti, and

2. each resource requirement, Rf.., (1 5j gp.) for which the operation has several
alternatives.
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CONSTRAINIS:

The non-unary constraints of the problem are of two types:
1. Precedence constraint defined by the process routings translate into linear

inequalities of the type: sl +dui < sl (i.e. O BEFORE 0!);

2. Capacity constraints that restrict the use of each resource to only one operation at a
time translate into disjunctive constraints of the form:
(VpVq R *•W) v sd+duei < sl v sl+du.S ssr. These constraints simply express
that, unless they use different resources, two operations Oi and 01 cannot overlap 3.

Additionally, our model can accommodate unary constraints that restrict the set of possible
values of individual variables. These constraints include non-relaxable due dates and release
dates, between which all operations in a job need to be performed. In fact, our model can
accommodate any type of unary constraint that further restricts the set of possible start times of
an operation.

Time is assumed discrete, i.e. operation start times and end times can only take integer values.
Each resource requirement R. has to be selected from a set of resource alternatives, U. r RES.

OBJECTIVE:

In the job shop CSP studied in this paper, the objective is to come up with a feasible solution as
fast as possible. Notice that this objective is different from simply minimizing the number of
search states visited. It also accounts for the time spent by the system deciding which search state
to explore next.

3. The Search Procedure
A depth-first backtrack search procedure is considered, in which search is interleaved with the

application of consistency enforcing mechanisms and variable/value ordering heuristics that
attempt to steer clear of deadend states. Search proceeds according to the following steps:

1. If all operations have been scheduled then stop, else go on to 2;

2. Apply the consistency enforcing procedure;

3. If a deadend is detected then backtrack (i.e. select an alternative if there is one left
and go back to 1, else stop and report that the problem is infeasible), else go on to
step 4;

4. Select the next operation to be scheduled (variable ordering heuristic);

5. Select a promising reservation for that operation (value ordering heuristic);

6. Create a new search state by adding the new reservation assignment to the current
partial schedule. Go back to 1.

3These constraints have to be generalized when dealing with resources of capacity larger than one.



The default consistency enforcing scheme and variable/value ordering heuristics used in the
procedure are the ones described in [Sadeh 91]:

Consistency Enforcement: The consistency enforcing procedure is a hybrid procedure that
differentiates between precedence constraints and capacity constraints. It guarantees that
backtracking only occurs as the result of capacity constraint violations. Essentially, consistency
with respect to precedence constraints is enforced by updating in each search state a pair of
earliest/latest possible start times for each unscheduled operation. Consistency enforcement with
respect to capacity constraints tends to be significantly more expensive due to the disjunctive
nature of these constraints. For capacity constraints, a forward checking type of consistency
checking is generally carried out by the system. Whenever a resource is allocated to an operation
over some time interval, the forward checking procedure checks the set of remaining possible
start times of other operations requiring that resource, and removes those start times that would
conflict with the new assignment. The system further checks for consistency with respect to a
set of redundant capacity constraints, which can be quickly enforced in each search state. This
includes checking that no two unscheduled operations totally rely on the same resource over
overlapping time intervals4.

Variable/Value Ordering Heuristics: The default variable/value ordering heuristics used by
the search procedure are the Operation Resource Reliance (ORR) variable ordering heuristic
and Filtered Survivable Schedules value ordering heuristic described in [Sadeh 91]. The ORR
variable ordering heuristic aims at reducing backtracking by first scheduling difficult operations,
namely operations whose resource requirements are expected to conflict with the resource
requirements of other operations. The FSS value ordering heuristic is a least constraining value
ordering heuristic. It attempts to further reduce backtracking by assigning reservations that are
expected to be compatible with a large number of schedules.

These default consistency enforcing schemes and variable/value ordering heuristics have been
reported to outperform several other schemes described in the literature, both generic CSP
heuristics and specialized heuristics designed for similar scheduling problems [Sadeh 91, Sadeh
92]. They seem to provide a good compromise between the efforts spent enforcing consistency,
ordering variables, or ranking assignments for a variable and the actual savings obtained in
search time. Nevertheless, the job shop CSP is NP-complete and, hence, these efficient
procedures are not sufficient to guarantee backtrack-free search.

The remainder of this paper describes new backtracking schemes that help the system recover
from deadend states. It will be seen that, when the default consistency enforcing scheme and/or
variable ordering scheme are not sufficient to stay clear of deadends, look-back mechanisms can
be devised that will modify these schemes so as to avoid repeating past mistakes (i.e.so as to
avoid reaching similar deadend states).

4See [Sadeh 91] for further details.
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4. Dynamic Consistency Enforcement (DCE)
Backtracking is generally an indication that the default consistency enforcing scheme and/or

variable/value ordering heuristics used by the search procedure are insufficient to deal with the
subproblems at hand. Consequently, if search keeps on relying on the same default mechanisms
after reaching a deadend state, it is likely to start thrashing. Experiments reported in [Sadeh
91, Sadeh 92], in which search always used the same set of consistency enforcing procedures and
variable/value ordering heuristics, clearly illustrated this phenomenon. Search in these
experiments exhibited a dual behavior. The vast majority of the problems fell in either of two
categories: a category of problems that were solved with no backtracking whatsoever (by far the
largest category) and a category of problems that caused the search procedure to thrash.

Theoretically, thrashing could be eliminated by enforcing full consistency in each search state.
Clearly, such an approach is impractical as it would amount to performing a complete search.
Instead, our approach consists in (1) heuristically identifying one or a few small subproblems
that are likely to be at the source of the conflict, (2) determining how far to backtrack by
enforcing full consistency among the variables in these small subproblems, and (3) recording
conflict information for possible reuse in future backtracking episodes. This approach is
operationalized in the context of a backtracking scheme called Dynamic Consistency
Enforcement (DCE). Given a deadend state and a history of earlier backtracking episodes within
the same search space (i.e. while working on the same problem), this technique dynamically
identifies small critical resource subproblems expected to be at the source of the current deadend.
DCE then backtracks, undoing assignments in a chronological order, until a search state is
reached, within which consistency has been fully restored in each critical resource subproblem
(i.e. consistency with respect to capacity constraints in these subproblems). Experimental results
reported in Section 7 suggest that often, by selectively checking for consistency in small
resource subproblems, DCE can quickly recover from deadends. The remainder of this section
further describes the mechanics of this heuristic.

4.1. Identifying Critical Resource Subproblems
The critical resource subproblems used by DCE consist of groups of operations participating in

the current conflict along with groups of critical operations identified during earlier backtracking
episodes involving the same resources. Below, we refer to the group of (unscheduled)
operations identified by the default consistency enforcing mechanism as having no possible
reservations left as the Partial Conflicting Set of operations (PCS). In order to restore
consistency, the search procedure needs to at least go back to a search state in which each PCS
operation has one or more possible reservations. Often, however, this is not sufficient, as other
operations contribute to the conflict. DCE attempts to identify these other operations by
maintaining a data structure of critical resource subproblems identified during earlier
backtracking episodes. Below, we refer to this data structure as the Former Dangerous Groups
of operations (FDG). Details on how this data structure is created and maintained are provided in
Subsection 4.3.

For each capacity constraint violation among operations in the PCS, DCE checks the FDG data
structure and retrieves all related resource subproblems. A resource subproblem in the FDG is
considered related to a capacity constraint violation in the PCS if, in an earlier backtracking
episode, operations in that resource subproblem were involved in a capacity constraint violation
on the same resource and over a "close" time interval. A system parameter is used to determine
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if two resource conflicts are "close". In the experiments reported at the end of this paper, two
conflicts were considered close if the distance separating them was not greater than twice the
average operation duration. Related critical subproblems identified by inspecting the FDG data
structure are then merged with corresponding operations in the PCS to form a new set of one or
more critical resource subproblems. Below we refer to the overall set of operations identified by
inspecting the FDG as the Dangerous Group of operations (DG) for the conflict at hand. Finally,
at each level, while backtracking, the set consisting of the union of the PCS, the DG and the set
of undone operations up to that level is referred to as the Deadend Operation Set (DOS). Like
the FDG, the DOS is organized in groups of resource subproblems consisting of operations
contending for the same resource over close or overlapping time intervals.

4.2. Backtracking While Selectively Enforcing Consistency
Once an initial DOS has been identified, DCE backtracks, undoing assignments in a

chronological order, until it reaches a search state in which consistency is restored within each of
the resource subproblems defined by operations in the DOS. While restoring consistency within
each of these resource subproblems is a necessary condition to backtrack to a consistent search
state, it is clearly not a sufficient one. In other words, the effectiveness of DCE critically depends
on its ability to heuristically focus on the right resource subproblems5 .

During backtracking, unscheduled operations are merged into corresponding resource
subproblems in the DOS. Because full consistency checking can be expensive on large
subproblems, if a resource subproblem in the DOS becomes too large, k-consistency is enforced
instead of full-consistency, where k is a parameter of the system [Freuder 82]. In the experiments
reported at the end of this paper, k was set to 4. At the end of a backtracking episode, DOS has
maximum size, call it DOSmar Assuming that the procedure was able to backtrack to a
consistent search state6, DOSm.U contains all the operations at the origin of the deadend (and
often more). DOSmaJ is then saved for later use in the FDG data structure. Additional details
regarding the management of this data structure are provided in the next subsection. If a related
backtracking episode is later encountered by the system, DOSm= can then be retrieved and serve
as the DG for this new episode.

The behavior of the DCE procedure is illustrated in Figure 1. Each node represents a search
state, labeled by the operation that was last scheduled to reach that state, the resource allocated to
that operation, and the operation's start time. In this example, search is assumed to have reached
a deadend at depth D 5. Operations in the PCS are those operations whose domains of possible
start times were identified as empty at depth D5 due to capacity constraint violations. Upon
encountering a deadend at D 5, DCE backtracks to D4 and performs full consistency checking
with respect to capacity constraints on the set of operations DOS4 =PCSUDGU[Om}. If there
are still capacity constraint violations at D4 , operation O0 is undone, and full consistency
checking is performed on the new DOS, namely DOS3 =PCSuDGu(Oi,Om}. The procedure is

5Noticc that DCE is not expected to be very effective at recovering from complex conflicts involving interactions
between multiple resource subproblems. Instead, in Section 6, we present a Backjumping Heuristic that appears
more appropriate for dealing with these complex conflicts.

6Clearly, while this is not guaranteed, experimental results suggest that this is often the case.
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. ........ PCS U DG U (OMOiOk,OJ}- DOSI- DOSe=

0*F !r OJRJ D2  )
................. PCS U DG U (Om,OIrOk) - DOS2

0 k~k D3
........... PCS U DG U {°,,01)- DOS3

0 1R1 D4  )
................. PCS U DG U {(0- DOS 4

Figure 1: The DCE Backtracking Scheme.

repeated until a consistent DOS is found (DOS,,,m=DOS1 in this example).

4.3. Storing Information About Past Backtracking Episodes
The purpose of the Former Dangerous Groups of operations (FDG) maintained by the system

is to help determine more efficiently and more precisely the scope of each deadend by focusing
on critical resource subproblems. Each group of operations in the FDG consists of operations
that are in high contention for the allocation of a same resource. Accordingly, whenever, a
conflict is detected that involves some of the operations in one group, the backtracking procedure
checks for consistency among all operations in that group.

The groups of operations in the FDG are built from the Deadend Operation Sets (DOS)
obtained at the end of previous backtracking episodes (DOSmax). Indeed, whenever a
backtracking episode is completed, DOSMa is expected to contain all the conflicting operations
at the origin of this episode. Generally, DOSnmx may involve one or several resource
subproblems (i.e. groups of operations requiring the same resource). Each one of these
subproblems is merged with related subproblems currently stored in the FDG. If there is no
related group in FDG, the new group is separately added to the data structure. Finally, as
operations are scheduled, they are removed from the FDG.

4.4. Additional "Watch Dog" Consistency Checks
Because groups of operations in the FDG are likely deadend candidates, our system further

performs simple "watch dog" checks on these dynamic groups of operations.

More specifically, for each group G of operations in FDG, the system performs a rough check
to see if the resource can still accommodate all the operations in the group. This is done using
redundant constraints of the form:

p eOie G
where esdi and Is~i are respectively the earliest and latest possible start times of 01,in the current



search state.

Whenever such a constraint is violated, an inconsistency has been detected. Though very
simple and inexpensive, these checks enable to catch inconsistencies involving large groups of
operations that would not be immediately detected by the default consistency mechanisms some
inconsistencies can still escape these rough checks.

5. Learning From Failures (LFF)
Encounter of a deadend is also often an indication that the default variable ordering was not

adequate for dealing with the subproblem at hand. Typically the operations participating in the
deadend turn out to be more difficult than the operations selected by the default variable ordering
heuristic. It is therefore a good idea to first schedule the operations participating in the conflict
that was just resolved. Learning From Failure (LFF) is an adaptive procedure that overrides the
default variable ordering in the presence of conflicts.

After recovering from a deadend (i.e. after backtracking all the way to an apparently consistent
search state), LFF uses the Partial Conflicting Set (PCS) of the deadend to reorganize the order
in which operations will be rescheduled and make sure that operations in the PCS are scheduled
first. This is done using a quasi-stack, QS, on which operations in the PCS are pushed in
descending order of domain size (operations with more available start times go first). If a
candidate operation is already in QS, i.e. it is encountered for a second time, it is pushed again as
though it had a smaller domain. This orders operations in terms of their criticality (most critical
operation on top) so as to ensure that, as QS is popped, the most critical operations will be
scheduled first. When QS becomes empty, the search procedure switches back to its default
variable ordering heuristic.

6. A Backjumping Heuristic
Traditional backtrack search procedures only undo decisions that have been proven to be

inconsistent. Proving that an assignment is inconsistent with others can be very expensive,
especially when dealing with large conflicts. Graph-based backjumping and N-th order
shallow/deep learning attempt to reduce the complexity of full-blown dependency-directed
backtracking by either simplifying the process of identifying inconsistent decisions (e.g. based
on the topology of the constraint graph) or restricting the size of the conflicts that can be
detected. The Dynamic Consistency Enforcement (DCE) procedure described in Section 6 also
aims at reducing the complexity of identifying the source of a conflict by dynamically focusing
its effort on small critical subproblems. Because these techniques focus on smaller conflicts, they
all have problems dealing with more complex conflicts involving a large number of variables7 . It
may in fact turn out that the only effective way to deal with more complex conflicts is by using
heuristics that undo decisions not because they have been proved to be inconsistent but simply
because they appear overly restrictive. This is the approach taken in the backjumping heuristic
described in this section. Clearly, the resulting search procedure is no longer complete and may
fail to find solutions to feasible problems.

7CIearly, there are some conflicts involving large numbers of variables that are easy to catch, as illustrated by the
watch dog checks described in Section 4.
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Texture measures such as the ones described in [Fox 89] could be used to estimate the
tightness of different search states, for instance, by estimating the number of global solutions
compatible with each search state8 . Assignments leading to much tighter search states would be
prime candidates to be undone when a complex conflict is suspected. The Backjumping
Heuristic (BH) used in this study is simpler and, yet, often seems to get the job done. Whenever
the system starts thrashing, this heuristic backjumps all the way to the first search state and
simply tries the next best value (i.e. reservation) for the critical operation in that state (i.e. the
first operation selected by the variable ordering heuristic). BH considers that the search
procedure is thrashing, and hence that it is facing a complex conflict, when more than 0
assignments had to be undone since the last time the system was thrashing or since the procedure
began, if no thrashing occurred earlier. 0 is a parameter of the seiarch procedure.

7. Experimental Results
Two sets of 40 scheduling problems each were generated that differed in the number of major

bottlenecks (one and two major bottlenecks respectively). Each problem had 50 operations and 5
resources (i.e., 10 jobs). All jobs were released at the same time and had to be completed by the
same due date. In each problem, the common due date was set so that all operations had to be
scheduled within a rather tight estimate of the problem makespan (see [Sadeh 91] for details).
These are the conditions in which the default variable/value ordering and consistency enforcing
schemes work least effectively (see study reported in [Sadeh 91]). Among these 80 problems, we
only report performance on problems in which the default schemes were not sufficient to
guarantee backtrack-free search9 . This leaves 16 scheduling problems with one bottleneck, and
15 with two bottlenecks. Additional results are also presented in Appendix I. We successively
report the results of two studies. The first study compares the performance of three complete
backtrack schemes: chronological backtracking, 2nd-order deep learning, and the procedure
combining the DCE and LFF backtrack schemes described in Section 4 and 5. The second study
compares the complete search procedure using the DCE and LFF backtracking schemes with an
incomplete search procedure combining DCE and LFF with the Backjumping Heuristic (BH)
described in Section 6.

7.1. Comparison of Complete Search Procedures
The two "intelligent" backtracking techniques, DCE and LFF are complementary and were

used in combination, denoted by DCE & LFF10 . Each of the problems in the experiment set was
run using chronological backtracking, 2nd-order deep learning [Dechter 89b] and the DCE &
LFF procedures advocated in Section 4 and 5. The results reported here were obtained using a
search limit of 500 nodes and a time limit of 1800 seconds (except for deep learning, for which

8A search state whose partial solution is compatible with a large number of global solutions is a loosely
constrained search state, whereas one compatible with a small number of global solutions is tightly constrained.

9Clearly, performance on problems that do not require backtracking is of no interest to this study. Our
backtracking schemes never get invoked on these problems, and hence CPU time remains unchanged.

10Besides the experiments reported below, additional experiments were performed to assess the benefits of using
DCE and LFF separately. These experiments show that both techniques contribute to the improvements reported in
this section.
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Table 1: Results of One-Bottleneck Experiments.

Exp. Chronological DCE & LFF Deep Learning
No. Backtracking

No. of CPU Result No. of CPU Result No. of CPU Result

Ne• (Nec e3 (sec)- Nodes (sec
1 500 1427 F 122 1232 S* 500 5756 F
2 500 1587 F 500 1272 F 500 5834 F
3 74 148 S 63 117 S 25 36000 F
4 69 152 S 52 120 S 69 391 S
5 500 1407 F 65 134 S 500 11762 F
6 500 1469 F 500 1486 F 500 8789 F
7 500 1555 F 59 130 S 500 9681 F
8 500 1705 F 41 145 S* 500 9560 F
9 53 108 S 53 102 S 53 122 S

10 500 1529 F 500 1536 F 500 9114 F
11 500 1460 F 85 1800 F 500 14611 F
12 500 1694 F 500 1131 F 500 21283 F
13 51 109 S 51 81 S 51 88 S
14 500 1762 F 63 138 S 500 18934 F
15 500 1798 F 69 142 S 500 9600 F
16 5CO 1584 F 500 1183 F 65 36000 F

S: Solved F: Failure; S*: Proved infeasible
Time Limit: 1800 sec (Except Deep Learning)
Node Limit: 500

the time limit was increased to 36,000 secondsl1l). All CPU times reported below were obtained
on a DECstation 5000 running Knowledge Craft on top of Allegro Common Lisp. Comparison
between C and Knowledge Craft implementations of similar variable and value ordering
heuristics suggests that the code would run about 30 times faster in C [Sadeh 93].

Results for the one-bottleneck problems are reported in Table 1. Chronological backtracking
solved only 4 problems out of 16. Interestingly enough, deep learning showed no improvement
over chronological backtracking either in the number of problems solved or in CPU time. As a
matter of fact, deep learning was even too slow to find solutions to some of the problems solved
by chronological backtracking. This is attributed to the fact that the constraints in job shop
scheduling are more tightly interacting than those in the zebra problem, where the improvement
of deep learning over naive backtracking was originally ascertained. On the other hand, DCE &
LFF solved 10 problems out of 16 (2 out of these 10 problems were successfully proven
infeasible). As expected, by focusing on a small number of critical subproblems, DCE & LFF is
able to discover larger more useful conflicts than 2nd-order deep learning, while requiring only a
fraction of the time. Another observation is that DCE & LFF expanded fewer search states than
chronological backtracking for the problems that chronological backtracking solved. However,
each of the DCE & LFF expansions took slightly more CPU time, due to the higher level of
consistency enforcement.

Results for the set of two-bottleneck problems are reported in Table 2. Similar results are
observed here again: deep learning shows no improvement over chronological backtracking and
seems significantly slower. The difference between chronological backtracking and DCE&LFF
is not as impressive as in the first set of experiments. This is probably because both bottlenecks
may have capacity conflicts at the same time. DCE & LFF may then have problems determining
which one to consider first. As can be seen in Table 2, chronological backtracking solved 7 out
of 15 problems, whereas DCE & LFF solved 8 out of 15. On the problems solved by both
chronological backtracking and DCE & LFF, DCE & LFF turned out to be slightly faster overall.

IIThis was motivated by the fact that our implementation of deep learning may not be optimal.
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Table 2: Results of Two-bottleneck Experiments

Exp. Chronological DCE & LFF Deep Learning
No. Backtracking

No. of CPU Result No. of Pu esult No. of CPU Result
Nodes (sec) Nodes (sec) Nodes (sec)

1 500 1139 F 113 1800 F 18 36000 F
2 500 1444 F 425 1800 F 115 36000 F
3 84 175 S 109 202 S 84 811 S
4 56 123 S 56 112 S 56 213 S
5 51 101 S 51 113 S 13 36000 F
6 500 1531 F 321 1800 F 328 36000 F
7 500 1775 F 500 1357 F 500 2793 F
8 52 102 S 52 115 S 33 36000 F
9 500 1634 F 247 974 S 500 1519 F
10 500 1676 F 91 1800 F 26 36000 F
11 66 163 S 59 104 S 66 2240 S
12 56 139 S 58 104 S 58 281 S
13 54 129 S 52 91 S 54 28900 S
14 500 1676 F 346 1800 F 500 9031 F
15 500 1522 F 324 1800 F 296 36000 F

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit : 1800 sec. (36000 sec. for Deep Learning)
Node Limit : 500

7.2. Complete vs. Incomplete Search Procedures

Table 3: Results of One-bottleneck Experiments.

Exp.
No. DCE LFF DCE & LFF BH

No. of CPU Result No. of CPU Result
Nodes (sec) Nodes -ec)

1 122 1232 S* 350 1800 F
2 500 1272 F 203 1124 S
3 63 117 S 63 123 S
4 52 120 S 52 116 S
5 65 134 S 65 144 S
6 500 1486 F 127 424 S
7 59 130 S 59 125 S
8 41 145 S* 457 1800 F
9 53 108 S 53 100 S

10 500 1536 F 67 170 S
11 85 1800 F 74 170 S
12 500 1131 F 164 616 S
13 51 81 S 51 92 S
14 63 138 S 63 149 S
15 69 142 S 69 158 S
16 500 1183 F 156 524 S

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit: 1800 sec. Node Limit: 500

Table 3 and 4 compare the performance of the complete search procedure based on DCE &
LFF against that of an incomplete search procedure using DCE & LFF in combination with the
Backjumping Heuristic (BH) described in Section 6. While DCE & LFF was able to solve only
10 out of 16 one-bottleneck problems and 8 out 15 two-bottleneck problems, DCE & LFF
combined with BH solved 14 one-bottleneck problems and 13 two-bottleneck problems. The
only one-bottleneck problems that were not solved by DCE & LFF & BH are the two infeasible
problems identified by the complete search procedure DCE & LFF. This is hardly a surprise.
While the addition of BH to DCE & LFF enables the search procedure to solve a larger number
of problems, it also makes the procedure incomplete (i.e. infeasible problems can no longer be
identified). Additional experiments combining BH with a simple chronological backtracking
scheme produced results that were not as good as those obtained by DCE & LFF & BH. This
indicates that both BH and DCE & LFF contribute to the performance increases observed in
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Table 4: Results of Two-bottleneck Experiments

Exp.
No. DCE &LFF DCE & LFF &BH

No. of CPU Result No. of CPU Result

:o e s e Nodes ec

1 113 1800 F 151 456 S
2 425 1800 F 371 1780 S
3 109 202 S 95 210 S
4 56 112 S 56 108 S
5 51 113 S 51 97 S
6 321 1800 F 420 1800 F
7 500 1357 F 159 534 S
8 52 115 S 52 96 S
9 247 974 S 423 1705 S

10 91 1800 F 440 1800 F
11 59 104 S 59 113 S
12 58 104 S 58 112 S
13 52 91 S 52 102 S
14 346 1800 F 239 512 S
15 324 1800 F 73 195 S

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit: 1800 sec. Node Limit: 500

Table 3 and 4.

Results on two-bottleneck problems (See Table 4) also suggest that the impact of the
backjumping heuristic is particularly effective on these problems. This is attributed to the fact
that two-bottleneck problems give rise to more complex conflicts. Identifying the assignments
participating in these more complex conflicts may simply be too difficult for any exact
backtracking scheme. Instead, because it can undo assignments that are not provably wrong but
simply appear overly restrictive, BH seems more effective at dealing with these more complex
conflicts.

8. Concluding Remarks
We have presented three "intelligent" backtracking schemes for the job shop scheduling CSP:

1. Dynamic Consistency Enforcement (DCE), a dependency-directed scheme, that
dynamically focuses its effort on small critical subproblems,

2. Learning From Failure (LFF), which modifies the order in which variables are
instantiated based on earlier conflicts, and

3. a Backjumping Heuristic which, when thrashing occurs, can undo assignments that
are not provably inconsistent but appear overly restrictive.

The significance of this research is twofold:
1. Job shop scheduling problems with non-relaxable time windows have multiple

applications, including both manufacturing and space-related applications. We
have shown that our schemes combined with powerful techniques that we had
previously developed (1) further reduce the average complexity of backtrack
search, and (2) enable our system to efficiently solve problems that could not be
solved otherwise due to excessive computational cost. While the results reported
in this study were obtained on problems that require finding a feasible schedule,
the backtracking schemes presented in this paper can also be used on optimization
versions of the scheduling problem, such as those discussed in [Sadeh 93].

2. This research also points to the shortcomings of dependency-directed backtracking
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schemes advocated earlier in the literature. In particular, comparison with N-th
order deep learning indicates that this technique failed to improve performance on
our set of job shop scheduling problems. This is because N-th order deep learning
uses constraint size as the only criterion to decide whether or not to record earlier
failures. When deep learning limits itself to small-size conflicts, it fails to record
some important constraints; when it considers conflicts of larger size, its
computational complexity becomes prohibitive. Traditional backtracking schemes
never undo assignments unless they can prove that they are at the source of the
conflict. When dealing with large complex conflicts, proving that a particular
assignment should be undone can be very expensive. Instead, our experiments
suggest that, when thrashing cannot easily be avoided, it is often a better idea to
use backjumping heuristics that undo decisions simply because they appear overly
restrictive. When using such heuristics, search completeness can no longer be
guaranteed.
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Appendix I
For reference, this appendix reports additional experimental results obtained on a testsuite of

60 job shop scheduling problems first introduced in [Sadeh 91]. The testsuite consists of 6
groups of 10 problems. Each problem requires scheduling 10 jobs on 5 resources (50 operations
total). Each job has a linear process routing specifying a sequence in which it has to visit each
one of the five resources. This sequence varies from one job to another, except for a
predetermined number of bottleneck resources (one or two in these experiments) which are
always visited after the same number of steps. The six groups of problems were obtained by
varying two parameters:

1. the number of apriori bottlenecks (BTNK): one (BTNK=l) or two (BTNK=2), and

2. the spread (SP) of release and due dates between which each job has to be
scheduled: wide (SP=W), narrow (SP=N), or null (SP = 0).

Additional details on how these scheduling problems were obtained can be found in [Sadeh
91].

Table I-I compares the performance of chronological backtracking and DCE & LFF & BH on
the 60 problems. For each problem, search was stopped if it required more than 500 search
states. Performance in each problem category is reported along three dimensions:

1. Search efficiency: the average ratio of the number of operations to be scheduled
over the total number of search states that were explored. In the absence of
backtracking, only one search state is generated for each operation, and hence
search efficiency is equal to 1.

2. Number of experiments solved in less than 500 search states each.

3. CPU seconds: this is the average CPU time required to solve a problem. When a
solution could not be found, this time was approximated as the CPU time taken to
explore 500 search states (this approximation was only used for Chronological
Backtracking, since DCE&LFF&BH solved all problems). All CPU times were
obtained on a DECstation 5000 running Knowledge Craft on top of Allegro
Common Lisp. Experimentation with a variation of the system written in C++
suggests that the search procedure would run about 30 times faster if
reimplemented in this language [Sadeh 93].

The results indicate that DCE&LFF&BH consistently outperformed the chronological
backtracking scheme in terms of CPU time, search efficiency and number of problems solved.
The most impressive performance improvements were obtained on the most difficult problems
(SP=N and SP=0). In particular, on problems with SP=0 and BK=I, DCE&LFF&BH solved
40% more problems than the chronological backtracking scheme and, on the average, proved to
be 3.5 times faster. Overall, while chronological backtracking failed to solve 8 problems out of
60, DCE&LFF&BH was able to efficiently solve all 60 problems, and, on the average, was
almost twice as fast as the chronological backtracking scheme. These results further confirm the
effectiveness of the backtracking scheme described in this paper.
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Chronological DCE&LFF&BH

Search Efficiency 0.96 0.96

SP=W Nb. exp. solved 10 10
BTNK=I (out of 10)

CPU seconds 88.5 90.5

Search Efficiency 0.99 0.99

SP=W Nb. exp. solved 10 10
BTNK=2 (out of 10)

CPU seconds 93 95

Search Efficiency 0.78 0.91

SP=N Nb. exp. solved 8 10
BTNK=I (out of 10)

CPU seconds 331.5 106

Search Efficiency 0.87 0.93

SP=N Nb. exp. solved 9 10
BTNK=2 (out of 10)

CPU seconds 184 119.5

Search Efficiency 0.73 0.8

SP=0 Nb. exp. solved 7 10
BTNK=1 (out of 10)

CPU seconds 475 134.5

Search Efficiency 0.82 0.84

SP=0 Nb. exp. solved 8 10
BTNK=2 (out of 10)

CPU seconds 300.5 226.5

Search Efficiency 0.86 0.92

Overall Nb. exp. solved 52 60
Performance (out of 60)

CPU seconds 245.S 128.7

Table 1-1: Comparison of Chronological Backtracking and DCE&LFF&BH on 6 sets
of 10 job shop problems.
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