
AD-A277 981 4TATION PAGE ___________

P I m II hi" W g ft I11 III mm " Im -- "

1m lollIN 1111e 1 1n11 Owg60lm*w" rid ft ,fl 1215 JISII Of -- IOf* ,, UI 1204., M•mip. VA
Z - ofte OeMaw mi"d. WalinewI. DC 2i0.

2. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES -

4. TITLE AND 5. FUNDING

t, c e e" v.) s ')

6. iAuTnors:

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
ORGANIZATION

latisnal jgstihute •6tandards and Technologyui olng Zbb, Room
Gaithersburg, Maryland 20899
USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORINGMMONITORING

Ada ointProgam OficeAGENCY
The Pentagon, Fire 3El118 DV.V
Washington, DC 20301-3080 i 9"••'j

1.SUPPLEMENTARY •j ..

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

Approved for Public Release; .,distribution unlimited

13. (Maximum 200

14. SUBJECT 15. NUMBER OF

Ada programming]inguage, Ada Compler Validation Summary Report, AmB.P
) _ g 3pb y 6 Val. Testing, Ada Val. Office, Ada Val. ci j

17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

S Standard Form 298. (Rev. 2-89)
PrM by ANSI Sld.

AVF Control Number: NIST93GVS5201_1.11
DATE COMPLETED

BEFORE ON-SITE: 93-08-23
AFTER ON-SITE: 93-09-30
REVISIONS:

Accesion For

NTIS CRA&I

DTIC TAB
Unannounced 0
Justification-----------

Ada COMPILER By-
VALIDATION SUMMARY REPORT: Distribution!

Certificate Number: 930927S1.11328
Green Valley Software Availability Codes

C_Ada, Version 1.1 Avail and I or
ZENY 386 => ZENY 386 Dist Special

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.

94-10865

AVF Control Number: NIST93GVS5201_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on September 27, 1993.

Compiler Name and Version: CAda, Version 1.1

Host Computer System: ZENY 386 under UNIX System V/386,
Release 3.2

Target Computer System: ZENY 386 under UNIX System V/386,
Release 3.2

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
930927S1.11328 is awarded to Green Valley Software. This
certificate expires 2 years after ANSI/MIL-STD-1815B is approved by
ANSI.

This report has been reviewed and is approved.

Ada Validation Facilit Ada Validation/,acility
Dr. David K. Jefferson Mr. L. Arnold/J!phh'son
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

SAda Va tjon Organization • da Joint Program Office
Director, omputer & Software /M. Dirk Rogers, Major, USAF

Engineering Division / Acting Director
Institute for Defense Analyses " Ada Joint Program Office
Alexandria, Virginia 22311 Washington, DC 20301
U.S.A. U.S.A.

NIST93GVS520_-_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: Green Valley Software

Certificate Awardee: Green Valley Software

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC-Version: 1.11

Ada Implementation:

Compiler Name and Version: CAda, Version 1.1

Host Computer System: ZENY 386 under UNIX System V/386,
Release 3.2

Target Computer System: ZENY 386 under UNIX System V/386,
Release 3.2

Declaration:

I, the undersigned, declare that I have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

KL ,7- , 2
Customer Signature ate
Li Xin
Company Green Valley Software
Title- Vice President, Green Vally Software

Certificate Awardee Signature Date
Li Xin
Company Green Valley Software
Title: Vice President, Green Vally Software

TABLE OF CONTENTS

CHAPTER 1 .. 1-1
INTRODUCTION .. 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1. 4 DEFINITION OF TERMS 1-3

CHAPTER 2*. 2-1

IMPLEMENTATION DEPENDENCIES :2-1
2.1 WITHDRAWN TESTS 2-i
2. 2 INAPPLICABLE TESTS 2-1
2 . 3 TEST MODIFICATIONS 2-4

CHAPTER 3o. . . -

PROCESSING INFORMATION................ 3-1
3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-i
3.3 TEST EXECUTION 3-2

APPENDIX A *...................... A-1
MACRO PARAMETERS A-I

APPENDIX B o.............*......... B-1
COMPILATION SYSTEM OPTIONS *................ B-I
LINKER OPTIONS .. B-1

APPENDIX C o....*......o...C-I
APPENDIX F OF THE Ada STANDARD. -

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technic4l terms used in this
report, the reader is referred to (Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST-CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner. and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable.tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AV?
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1583 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration (Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLPMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDIB02B BD1BO6A ADIBO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A" BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD51l1A CD7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

B23003D and B23003E check that an implementation imposes a limit on
the length of the input line. This implementation has no such
limit (see Section 2.3).

The following 285 tests have floating-point type declarations

2-1

requiring more digits than SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefiijed type SHORTINTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAXMANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

2-2

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D55A03C..H (6 tests) use 15 or more levels of loop nesting; this
level of loop nesting exceeds the capacity of the compiler.

The 23 tests below involve separate compilation of generic
declarations and their corresponding proper bodies; this
implementation requires that the declarations and bodies be in the
same compilation (cf LRM 10.3.9).

B83004B B83004D B83204F B83EOlF BA1010D
BA1011C CA2009C CA2009F CA1012A _CA3011A
LA5008A..H LA5008J LA5008M LA5008N BC3204C
BC3205D

C85005C and C85006C exceed the capacity of the implementation (see
Section 2.3).

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

B91001H checks that an address clause for a task entry must not
precede any entry; this implementation does not support interrupts
(see Section 2.3).

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma
INLINE for procedures and functions; this implementation does not
support pragma INLINE.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and ADa011A use machine
code insertions; this implementation provides no package
MACHINECODE.

BD9001A, AD9001B, ED9002A, AD9004A, and BD9004B use pragma
INTERFACE; this implementation does not support the pragma.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

2-3

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

The tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File, Access Method
CE2l02D CREATE INFILE SEQUENTIALI0
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT I10
CE2102F CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT 10

CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUTFILE SEQUENTIALIO
CE2102Q RESET OUTFILE SEQUENTIAL_IO
CE2102R OPEN INOUTFILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT 10
CE2102U RESET IN FILE DIRECT I0

'CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT710
CE3102G DELETE TEXTIO
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT710
CE3102K OPEN OUTFILE TEXT_10

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3304A checks that SET LINE LENGTH and SETPAGELENGTH raise
USE ERROR if they specify-an inappropriate value for the external
file; there are no inappropriate values for this implementation.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 109 tests.

2-4

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22005K B23002A B24001A B24001B
B24001C B24005A B24005B B24009A B25002A
B25002B B26001A B26005A B27005A B2AO21A
B32201A B33301A B36201A B37301J B43201A
B44001A B44002A B44004A B44004B B44004C
B44004E B45205A B48002A B48002D B51003A
B51003B B51003C B51003H B5XO03I B55AOlA
B55AO1D B55AOlE B55B17A B56001C B56001H
B61001H B61001I B62001D B63001A B63001B
B64003A B66001C B71001C B71001F B71001I
B71001L B710010 BT7001U B91002A B91002B
B91002C B91002D B91002E B91002F B91002G
B91002H B91002I B91002J B91002K B91002L
B91003D B95001D B95003A B95004A B95030A
B95032A B95061A B95061B B95061C B95061D
B95061E B95061F B95061G B95081A B97101A
B97101E B97101G B97101H B97103E B97104D
B97104E B97104G BC1202E BC2001D BC2001E
BC2004A BC3003A BC3003B BC3005B BC3205C
BD5005D BE2210A BE2413A

B23003D and B23003E were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests check that an
implementation imposes a limit on the length of the input line,
this implementation has no such limits. The AVO ruled that this
behavior is acceptable.

B23003F was graded passed by Evaluation Modification as directed by
the AVO. This test checks that an identifier may not exceed the
limit on the input line length. Although this implementation
imposes no such limit, it does limit identifiers (and literals) to
120 characters; the AVO ruled that this behavior is acceptable, and
that this test thus constitutes a check that the identifier limit
is correctly enforced.

B38003A and B38009A were graded passed by Test Modification as
directed by the AVO. These tests check that various illegalities
are detected by the compiler. This implementation required that
the illegal constraint on line 74 in B38003A and line 66 in B38009A
be removed in order for subsequent errors to be detected.

B83E01F and BA1011C were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests expect that the
bodies of generic units can be compiled separately from their
declarations. This implementation requires that generic
declarations and bodies be in the same compilation; this
restriction is allowed by LRM 10.3.9.

2-5

C85005C and C85006C were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain a
combination of tasks and data structures that exceeds this
implementation's capacity.

B91001H was graded inapplicable by Evaluation Modification as
directed by the AVO. This test checks that an address clause for
and entry cannot proceed that or any other entry of the task. This
implementation does not support interrupts, and so rejects any
address clause for an entry, regardless of placement.

BA3001A were graded inapplicable by Evaluation Modification as
directed by the AVO. This test contains a generic subprogram
declaration with no corresponding body. This implementation
requires that generic declarations and bodies be in the same
compilation, therefore it detected the absence of a subprogram body
as an additional error. The AVO ruled that the additional error
message may be ignored.

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Mr. Li Xin
Green Valley Software

Building 13, Wanmingyuan
Fuchengamenwai, Beijing

China 100037
Telephone: 86-1-8313399-3307

FAX: 86-1-8342707

For sales information about this Ada implementation, contact:

Ms. Li Jiangyue
Green Valley Software

Building 13, Wanmingyuan
Fuchengamenwai, Beijing

China 100037
Telephone: 86-1-8313399-3308

FAX: 86-1-8342707

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the

3-1

implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3637

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 438
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 438 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled, linked, executed and captured on the
host/target computer.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-O name Name of executable main program file. Runada is
the default value.

-t number Set size of task stack as number. 3777 is the
default value.

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada strlrng aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
--

$MAXINLEN 120 -- Value of V

-$BIGID1 (l..V-I -> 'A', V => '1')

$BIGID2 (1..V-1 => 'A' V -> '2')

SBIGID3 (I..V/2 => 'A') & '3' & (l..V-I-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (1..V-1-V/2 -> 'A')

$BIGINTLIT (I..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRINGI #""I & (1..V/2 => 'A') & #""l

$BIGSTRING2 i""' & (1..V-I-V/2 => 'A') & 'I' & f'"'

$BLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"1-6:" & (l..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL ""' & (1..V-2 => 'A') & '""'

A-i

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
--- --

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2048

$DEFAULTMEM_SIZE _ 5242880

$DEFAULTSTORUNIT 8

$DEFAULT_SYSNAME CAda

$DELTADOC 2.0.* (-31)

$ENTRYADDRESS 0

SENTRYADDRESS1 0

"$ENTRYADDRESS2 0

$FIELDLAST 2147483647

$FILETERMINATOR STANDARD.ASCII.FS

$FIXEDNAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING ""

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY'

$GREATER_THAN_DURATION 86400.01

$GREATERTHANDURATIONBASELAST
1.4E05

$GREATERTHANFLOATBASELAST
16#0.7FFFFFFFFFFFFF8#E33

$GREATERTHANFLOATSAFELARGE
16#0.7FFFFFFF_8#E32

$GREATERTHANSHORTFLOATSAFELARGE

A-2

DO NOT SUPPORT SHORTFLOAT

$HIGHPRIORITY 16

$ILLEGALEXTERNALFILENAME1 /NODIRECTORY/NONAME

$ILLEGALEXTERNALFILENAME2 THISFILENAMEISTOOLONG

$INAPPROPRIATELINELENGTH -1

$INAPPROPRIATEPAGELENGTH -1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("A28006DI.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE NOLANGUAGE

SLESSTHANDURATION -86400.01

$LESSTHANDURATIONBASE_FIRST
-1. 4E05

$LINETERMINATOR STANDARD. ASCII. LF

SLOWPRIORITY 1

$MACHINECODESTATEMENT NULL;

$MACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

SMAXDIGITS 9

SMAXINT 2147483647

SMAXINTPLUS_1 2147483648

$MININT -2147483648

$NAME NOSUCHTYPEAVAILABLE

SNAMELIST CAda

A-3

$NAME_SPECIFICATION1 X2120A

$NAMESPECIFICATION2 X2120B

SNAME_SPECIFICATloN3 X3119A

$NEGBASEDINT 16#FFFFFFFF#

$NEWMEM_SIZE 5242880

SNEWSTORUNIT 8

SNEWSYSNAME CAda

SPAGETERMINATOR STANDARD.ASCII.FF

$RECORDDEFINITION NEW_INTEGER

SRECORDNAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASKSTORAGE_SIZE 3770

$TICK 0.01

$VARIABLEADDRESS 32

$VARIABLEADDRESS1 64

$VARIABLEADDRESS2 128

SYOURPRAGMA NOSUCHPRAGMA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

-O name Name of executable main program file. Runada is the
default value.

-t number Set size of task stack as number. 3777 is the default
value.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

-n number Maximum number of tasks in an Ada program. 18 is the
default value.

-e number Maximum number of entries in a task. 15 is the default
value.

B-i

- 4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 9 range
-16:0.FFFFFFFF:E31 .. 16:0.FFFFFFFF:E31;

type DURATION is delta 0.01 range -86400.00 .. 86400.00;

end STANDARD;

C-1

Appendix F of Language Reference Manual for CAda vl.l

F.1 Implementation-Dependent Pragmas

C ada vl. 1 does not support the predefined language pragmas: INLINE

and SUPPRESS.

See Annex B for a descriptive pragma summary.

F.2 Implementation-Dependent Attributes

C_ada vl.l does not have any Implementation-Dependent Attributes.

F.3 Specification of the Package SYSTEM

package SYSTEM is

type NAME is (C_ADA);

SYSTEM NAME : constant NAME := CADA;
STORAGE UNIT : constant :- 8;
MEMORY SIZE : constant :- 5*2**20;
MAX INT : constant := 2**31 - 1;
MININT : constant :- -(2**31);
MAXDIGITS : constant := 9;
MAX MANTISSA : constant :- 31;
FINE DELTA : constant :m 2**(-31);
TICK- : constant :- 0.01;
subtype PRIORITY is INTEGER range 1 .. 16;

end SYSTEM;

F.4 Restrictions on representation clause

The representation clause allowing in C Ada v1.1 are length,
enumeration and record representation clause; CAda vl.1 support
address clause for object declared by an object declaration only.
CAda vl.l does not support interrupt and machine code insertion.

In C Ada v1.1, a representation clause for a generic formal type or
a type depends on a generic formal type is not allowed. In addition,
"a representation clause for a composite type that has a component or
" subcomponent of a generic formal type or a type derived from a
generic formal type is not allowed.

F.5 Conventions For Implementation-Generated Names

C Ada v1.1 does not allocate implementation dependent component in
record.

C-2

F.6 Interpretation of Expression Appearing In Address Clause

It should be static.

F.7 Restrictions On Unchecked Type Conversions

C Ada v1.1 supports the generic function UNCHECKEDCONVERSION with
the restriction given in section 13.10.2.

F.8 Implementation-Dependent Characteristics of Input-Output Packages

F.8.1 Restrictions On Input-Output Packages

C_Ada vl.1 does not provide the package LOW_LEVELIO.

F.8.2 Interpretation Of the FORM Parameter

Parameter FORM is used to provide access right to other users in the
system.

The parameter is a string whose interpretation is a sexadecimal
literal. The meaning and the syntax are the same as that in Unix.
Access right is defined by 3 successive sexadecimal digits, they
stand for the access right of user himself, of the users who are in
the same group as the owner, and of others.

F.B.3 Implementation-Dependent Input-Output Error Conditions

C Ada vl.l has no exceptions other than that defined in package
IEXCEPTIONS.

C-3

