
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

ELECTE

S APR 1 2 1994

THESIS G -J

FAULT DETECTION AND ISOLATION
FOR THE BLUEBIRD
TEST BED AIRCRAFT

by

Mario J.L. L6vesque
December, 1993

Thesis Advisor: Isaac I. Kaminer
Thesis Co-Advisor: Harold A. Titus

Approved for public release; distribution is unlimited.

\KY~9 4 in10 9 5 1
/IIIhI llIIII/IIltII I t!I#i~iI 9 4 4 1 1 0 7 1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approvod for public rlease:
distribution is unfimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School EC Naval Postgraduate School

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City. State. and ZIPC (de)

Monterey, CA 93943 Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Fault Detection and Isolation for the Bluebird Test Bed Aircraft

12. PERSONAL AUTHOR(S)
Ldvesque, Mario J.L.

13a. TYPE OF REPORT 13b. TIME COVERED 1.DTOFRPT(Ya.1Month. Day) 115. PAGE COUNT
Master's Thesis FROM 07/91 TO 12/93 December 1993

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those c' the author and do not reflect the

official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Fault Detection and Isolation. Failure detection, FDI. sensor failure, actuator

failure. Multiple Model algorithm, Kalman filter.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A Fault Detection and isolation (FDI) algorithm design is presented using the Multiple Model algorithm technique for

the Bluebird aircraft being developed at the Naval Postgraduate School. The requirement to maintain high performance
in the dynamic system of the aircraft necessitates the use of FDI techniques to detect and isolate malfunctions in the

sensors and actuators of the aircraft without using hardware redundancy. The solution presented makes use of analytical

redundancy in a bank of Kalman filters. Statistical tests using Bayesian theory are applied on the filter's innovations
to perform the task of detection and isolation. The algorithm was developed using MATLAB software from The Math

Works, Inc. The work presented in this thesis is related only to the task of FDI. The remaining task of the monitoring

system, reconfiguration and continued operation by the observed plant after a failure detection, will not be addressed.

....................................... /.:

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[0 UNCLASSIFIED/UNLIMITED OSAME AS RPT. [•DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Isaac I. Kaminer (408) 656-2972 AA/KA
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

Fault Detection and Isolation
for the Bluebird Test Bed Aircraft

by

Mario J.L. Ldvesque
Captain, Canadian Air Force

B.Eng., Royal Military College, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December, 1993

Author: .

Mario J.L. Levesque

Approved by:

Isaac I. Kaminer, Thesis Advisor

Harold A. Titus, Second Reader

Michael A. Morga Chairman
Department of Electrical and Computer Engineering

ii

ABSTRACT

A Fault Detection and isolation (FDI) algorithm design is presented using the

Multiple Model algorithm technique for the Bluebird aircraft being developed at

the Naval Postgraduate School. The requirement to maintain high performance in

the dynamic system of the aircraft necessitates the use of FDI techniques to detect

and isolate malfunctions in the sensors and actuators of the aircraft without using

hardware redundancy. The solution presented makes use of analytical redundancy in

a bank of Kalman filters. Statistical tests using Bayesian theory are applied on the

filter's innovations to perform the task of detection and isolation. The algorithm was

developed using MATLAB software from The Math Works. Inc. The work presented

in this thesis is related only to the task of FDI. The remaining task of the monitoring

system, reconfiguration and continued operation by the observed plant after a failure

detection, will not be addressed. Accesion For

NTIS CRA&W

DTIC TAB
Unannounced 0
Justification

By
Distribution I

Availability Codes

"Avail andlor
Dist Special

-I .,/

1ii..

TABLE OF CONTENTS

INTRODUCTION TO FAULT DETECTION AND ISOLATION ... I

A. SUBDIVISIONS OF FDI "

1. Type and Size of Failure "

2. Sources of Failure

3. Location of Failures :3

B. FDI VERSUS BUILT IN TEST TECHNIQUE 3

C. FDI ALGORITHM PERFORMANCE EVALUATION

1. Failure Sim ulation 5

2. Rapidity of Detection 5

3. False Alarm 6

4. Incorrect Fault Isolation 6

D. ROBUSTNESS OF F.DI ALGORITHMM 6

E. PROGRESS IN FDI 7

F. FDI APPLICATION 8

1. FDI'on the Bluebird Aircraft 9

II. IMPLEMENTATION OF MULTIPLE MODEL TECHNIQUE FOR FDI 10

A. DESCRIPTION ON THE MULTIPLE MODEL TECHNIQUE 10

B. STATE EQUATIONS OF THE AIRCRAFT 10

1. State-Space Representation of Sampled and Discrete Systems 11

C. KALMAN FILTER EQUATIONS 13

1. Assumptions and Initial Values 14

a. Noise Assumptions 14

b. Initial States Assumptions 15

iv

2. Discrete Kahnan Filter Equations 15

D. PROBABILITY OF FAILURE USING BAYESIAN THEORY . . 17

III. ADJUSTMENTS TO THE MULTIPLE MODEL ALGORITHM 19

A. MODEL SELECTION FOR EACH FILTER 19

1. Fault Modeling for the Filters and for the Simulation Runs . 19

a. Actuator Failure 19

b. Sensor Failure 20

B. TUNING OF THE KALMAN FILTERS 2

1. Influence of the Kalman Filter's Gains 21

2. Tests on the Kalman Filter 99

3. The Filter Knobs 9

C. PROBLEMS WITH THE PROBABILITY CALCULATIONS . . 23

D. PERFORMANCE OF THE MULTIPLE MODEL ALGORITHM

IN DIFFERENT ENVIRONMENTS 24

1. Non-Gaussian Noise 24

2. Non-Linearities 24

IV. SIMULATION AND RESULTS FOR THE MULTIPLE MODEL FDI

ALGORITHM 26

A. SIMULATION PARAMETERS 26

B. KALMAN FILTER TESTS 27

C. DETECTION AND ISOLATION RESULTS 29

V. CONCLUSIONS AND RECOMMENDATIONS 31

A. CONCLUSIONS 31

B. RECOMMENDATIONS 31

APPENDIX A: USER'S MANUAL 33

APPENDIX B: GRAPHICAL RESULTS 37

V

APPENDIX C: FDI PROGRAM LISTING 69

LIST OF REFERENCES 99

BIBLIOGRAPHY 101

INITIAL DISTRIBUTION LIST 103

vi

LIST OF TABLES

3.1 NOMINAL CONDITIONS FOR THE BLUEBIRD 25

4.1 PROCESS NOISE VALUES 27

4.2 MEASUREMENT NOISE VALUES 28

vii

LIST OF FIGURES

2.1 FDI Flow Diagram using Multiple Model Algorithm 11

B.1 Process Noise w 37

B.2 Measurement Noise v 38

B.3 Transpose Values of the Covariance Matrix P for State u 39

B.4 Transpose Values of the Covariance Matrix P for State v 39

B.5 Transpose Values of the Covariance Matrix P for State w t0

B.6 Transpose Values of the Covariance Matrix P for State p 10

B.7 Transpose Values of the Covariance Matrix P for State q 41

B.8 Transpose Values of the Covariance Matrix P for State r 11

B.9 Transpose Values of the Covariance Matrix P for State phi 12

B.10 Transpose Values of the Covariance Matrix P for State theta 42

B.11 Transpose Values of the Covariance Matrix P for State psi 43

B.12 Kalman Gains for the State u 44

B.13 Kalman Gains for the State v 44

B.14 Kalman Gains for the State w 45

B.15 Kalman Gains for the State p 45

B.16 Kalman Gains for the State q 46

B.17 Kalman Gains for the State r 46

B.18 Kalman Gains for the State phi 47

B.19 Kalman Gains for the State theta 47

B.20 Kalman Gains for the State psi 48

B.21 Measurement and State Estimate u 49

B.22 Measurement and State Estimate v 49

viii

B.23 Measurement and State Estimate w 0

B.24 Measurement and State Estimate p 50

B.25 Measurement and State Estimate q(I 51

B.26 Measurement and State Estimate r 51

B.27 Measurement and State Estimate phi 52

B.28 Measurement and State Estimate theta 52

B.29 Measurement and State Estimate psi 53

B.30 Innovation Process for the State u 54

B.31 Innovation Process for the State v 54

B.32 Innovation Process for the State w 55

B.33 Innovation Process for the State p55

B.34 Innovation Process for the State q 56

B.35 Innovation Process for the State r 56

B.36 Innovation Process for the State phi 57

B.37 Innovation Process for the State theta 57

B.38 Innovation Process for the State psi 58

B.39 Probability of Elevator Hard Failure 59

B.40 Probability of Aileron Hard Failure 59

B.41 Probability of Rudder Hard Failure 60

B.42 Probability of Thrust Actuator Hard Failure 60

B.43 Probability of u Sensor Hard Failure 61

B.44 Probability of v Sensor Hard Failure 61

B.45 Probability of w Sensor Hard Failure 62

B.46 Probability of Roll Rate Sensor Hard Failure 62

B.47 Probability of Pitch Rate Sensor Hard Failure 63

B.48 Probability of Yaw Rate Sensor Hard Failure 63

ix

B.49 Probability of Roll Angle Sensor Hard Failure 6

B.50 Probability of Angle of Attack Sensor Hard Failure 6-

B.51 Probability of Heading Angle Hard Failure 65

B.52 Probability of No Failure (65

B.53 Probability of Soft Failure on the Elevator Actuaaor 66

B.54 Probability of Soft Failure on the Elevator Actuator 66

B.55 Probability of Soft Failure on the Elevator Actuator 67

B.56 Probability of Soft Failure on u sensor 67

B.57 Probability of Soft Failure on u sensor 68

B.58 Probability of Soft Failure on u sensor 68

x

ACKNOWLEDGMENT

I would like to express my appreciation to Professor Isaac Kaminer for his advic(e

and professional counsel without which I could not have completed this work. I would

also like to thank Professor Hal Titus and Professor Roberto Cristi for their help and

discussion during the Kalman filter design phase of this thesis. Thanks also to Carl

Marquis for his assistance with LATEX and Unix. Special thanks go to NMichlle Girard

for her unfailing support and many words of encouragement over the past several

months. I dedicate this thesis to you.

xi

I. INTRODUCTION TO FAULT DETECTION
AND ISOLATION

The field of Fault Detection and Isolation (FDI) has evolved as a result of ef-

forts to produce better control algorithms for dynamic systems. Continually higher

standards of performance, reliability and survivability dictate the development of

new control techniques to achieve certain hardware goals. Hardware performance

goals can be related to lowering noise, eliminating biases and meeting bandwidth

specifications for sensors actuators and other mechanical components. Reliability

specifications are evolving and form the basis for determining the minimum hardware

and software complement to deal with performance requirements. An example of a

reliability specification is that which applies to aircraft and dictates the probability

of catastrophic failure to be at 10- or better for civilian aircraft or at 10-1 to 10-5

for military applications [Ref. 1, p.1-1]. The survivability criterion applies more to

military applications where the continuation of a mission is important after the sys-

tem has been partly damaged. FDI techniques can be applied to the design of Flight

Guidance and Control Systems to increase their reliability, lower the cost associated

with hardware redundancy, and improve aircraft survivability by allowing more dis-

persion of components [Ref. 1]. The main task of failure detection and compensation

is to modify the normal mode configuration in order to include the capability of de-

tecting abnormal changes and compensating for them by activating back-up systems,

adjusting feedback gains, or taking other correction measures. The primary func-

tion of the FDI algorithm itself is to register an alarm when an abnormal condition

develops in a monitored system and to identify the component at the source of the

problem. The failure detection and isolation system should provide the capability

1

to detect the occurrence of failures in a given system and isolate the faulty sensors

or hardware. all in the presence of noise and errors in the model. The basis for the

decision in the event of a fault is the fault signature. in other words. a signal that is

obtained from some kind of faulty system model defining the effects associated with

a fault. The difficulty associated with the design of FDI systems lies in maintaining

their ability to detect small failures, while avoiding false alarms in the presence of

noise and erroneous models which cause effects similar to the failures signatures.

A. SUBDIVISIONS OF FDI

FDI systems are concerned with determining the details of a particular failure

such as its type, its source, its location and its size.

1. Type and Size of Failure

The type of a failure can be divided into two parts:

* Abrupt or hard faults.

* Soft or incipient faults.

An abrupt fault can also be described as hard or catastrophic, and results in drastic

changes in the model. On the other hand, an incipient or soft failure is characterized

by a slowly developing and time varying perturbation in the system.

2. Sources of Failure

The sources of failures in Flight Control Systems are usually described by

actuator or sensor failures. A failed sensor can be detected by hardware redundancy.

This method is implemented by using several sensors to measure the same signal.

The outputs can be compared in a voting scheme in order to detect significant differ-

ences between the repeated sensors and isolate a faulty sensor. This FDI method can

become very costly for aircraft using hundreds of sensors, and this hardware multipli-

cation can also significantly increase the overall weight of the aircraft. The additional

2

space required to accommodate the equipment also becomes a major concern in the

already limited and crowded environment inside an aircraft. The use of hardware

redundancy to detect erroneous actuators or system failures is usually not practical

because the replication of components other than sensors is not feasible [Ref. 2]. The

problems associated with hardware redundancy motivated the introduction of the

concept of analytical redundancy in FDI. In regards to present aircraft, the onboard

use of highly efficient computers capable of mathematically intensive calculations.

now renders possible the use of algorithms to perform the task of FDI. The analvti-

cal redundancy approach uses the system model instead of hardware redundancy to

detect and isolate failures in the observed system.

3. Location of Failures

The term location, identification or isolation are often used interchangeably

in FDI when determining which sensor or actuator is at fault. The level of coupling

in the system is a criteria to consider when classifying the isolation problem. For

example, jet engine and flight control systems involve plants with strong coupling.

Their subsystems are also strongly coupled, and because of this, usually not all the

state variables are being measured. To achieve the isolation process for these systems

use of analytical redundancy is necessary [Ref. 2].

B. FDI VERSUS BUILT IN TEST TECHNIQUE

FDI techniques differ from other error detection schemes implemented by means

of Built-in Test Equipments (usually called BITE's). BITE are usually designed to

test for hardware malfunction using hardware or software methods such as:

"* CPU tests to check the instruction repertory.

"* Parity control on data and address buses.

"* Wrap around circuitries used to test two way interfaces and mainly useful at
system level for integration purposes.

3

"* Power sensing circuitries to detect when the applied power goes out of the
expected range.

"* RAM tests through write-then-read cycles performed on all the memory loca-
tions and with particular patterns.

"* ROM tests performed by checking the run time computed checksums against
prestored ones.

"* Wrap around tests that require data management.

"* Special-to-project logic checks that control the global development of the system
versus time. [Ref. 3, 4]

These tests are implemented in self-monitored systems and run in external self-

contained units. BITE's often make use of the concept of graceful degradation when

the loss of redundancy would result in a penalization that would be considered too

high. For some failures, specified degraded modes of operation are better suited. This

approach is generally dealt with by specifying for each important function a nominal

operation and a reduced level of operation. The BITE approach is more limited than

the FDI using analytical redundancy in that it can only monitor the systems or signals

that are physically measurable. An FDI algorithm on the other hand can monitor a

wider array of parameters. Even though the sensors in a given system are dissimilar

they are all driven by the same dynamic states and are therefore functionally related.

This is what is referred to as analytical redundancy, inherent redundancy, or func-

tional redundancy, as opposed to hardware redundancy. The work presented in this

thesis will be oriented towards the development of an FDI algorithm using analytical

redundancy.

C. FDI ALGORITHM PERFORMANCE EVALUATION

Many criteria are used to evaluate the performance of an FDI algorithm but

the most prominent are:

e Rapidity of detection.

4

* Sensitivity to slowly developing faults.

* False alarm rate.

* Missed failure detection.

* Incorrect fault isolation. [Ref. 5. p. 7]

1. Failure Simulation

The standard method for testing the performance of an FDI scheme is to

simulate a fault, maintain it, and look at the reaction of the algorithm. The faults

of a dynamic system can be simulated in various ways. For example. a sensor fault

on a recorded signal can be reproduced by adding noise or multiplying the signal

by a constant, and the behavior of the fault detection device can then be observed.

This method can be repeated to test and improve the FDI algorithm. More details

are presented in a later chapter to show how the failures were simulated for the FDI

algorithm presented in this thesis. It should be mentioned that the technique of

emulating faults on one signal creates little or no effect on the other signals. This

situation could differ significantly from what could happen in a feedback process

subjected to some failure. In this case one fault would often affect several other

signals.

2. Rapidity of Detection

The output of the detection system should either indicate that a particular

system has failed or give no response if the system is still serviceable. The rapidity

of detection plays a role depending on the purpose of the FDI implementation. In

aircraft applications, the rapidity of detection is instrumental in ensuring the success

of the mission, especially on the vital control sensor of jet aircraft equipped with

stability augmentation systems. However, if the FDI algorithm is to be employed

in a system for preventive maintenance purpose, the algorithm should be tuned to

5

detect slowly developing faults in the form of biases or noise at the expense of speed

of detection.

3. False Alarm

False alarm occurs when an error is detected while the system is still oper-

ating properly. False alarms are indicative of a poor FDI algorithm. Effort should be

made during the design of the algorithm to minimize the occurence of false alarms as

they lead to lack of confidence in the system. Unfortunately the minimization of the

false alarm rate is often done at the expense of detecting small errors. A trade-off

between these two criteria must be made. To address this issue, the question of how

important an undetected failure would affect the system must be answered. Some-

times the seriousness of the fault is such that it is better to respond to a false alarm by

changing the suspected component and retesting it later than leaving it in operation.

This discussion leads to the choice of thresholds in the algorithm. Clark and Walker

present two interesting approaches to solve the threshold determination problem by

presenting adaptive threshold selection methods in chapters 2 and 14 of [Ref. 5].

4. Incorrect Fault Isolation

False identification of the failure source is another effect to be minimized in

the design of the algorithm. An erroneous identification of a correctly detected fault

causes the reconfiguration system to compensate for the wrong sensor or actuator

and can lead to multiple other failures.

D. ROBUSTNESS OF FDI ALGORITHM

The performance criterion of the FDI algorithm leads to the concept of robust-

ness. Robustness of the algorithm is a measure of how the performance can remain

unaffected by variation in parameters unaccounted for in the design or by conditions

in the operating system that vary differently than what was assumed during the

6

modeling.

The primary sources of divergence from modeled deterministic systems are noise

and uncertainties in the physical parameters of the operating plant. Most of the signal

processing techniques used in the field of FDI treat the problem of noise by assuming

that contributions have random fluctuations that follow stationary Gaussian process.

If the actual system has disturbances and noise that are non-stationary andor non-

Gaussian than the FDI algorithm performance will be degraded. Nonlinear models

can also contribute to the inaccuracy of the model. In particular. when the parameters

of the model are derived from a linearization process around some nominal conditions.

The majority of the FDI techniques are based on state estimation methods common

to linear systems theory. If the parameters of the model are known with precision.

the state estimates representing the modeled plant will be accurate, the FDI scheme

will be sensitive to incipient faults and the false alarm rate will be kept to a minimum

[Ref. 5, p. 10].

Robustness with respect to the type of fault should also be considered in the

design, since any given components can malfunction in many different ways. Sensors

can experience biases, change of scale factor, wear and tear, friction, variation with

hot or cold temperature, etc. All these symptoms can cause any given component to

fail in a different pattern. If the FDI algorithm is set to detect and identify only a few

of the many types of faults for any sensor this will lib ýt its performance. Therefore,

the FDI scheme should be built on taking the widest repertoire of fault signatures and

should also be capable of accommodating any new types of failures as they develop.

E. PROGRESS IN FDI

Perhaps one of the most cited reference in FDI is the paper published by Will-

sky in 1976 [Ref. 6]. In his paper Willsky provides an overview of a number of the

7

basic concepts in failure detection. In particular, he concentrates on linear svstems

and compares the design of voting schemes, specific failure-sensitive filters, multiple

hypothesis filter detectors, statistical tests on filter innovations and development of

jump process formulations. Since 1976. several other survey papers have been pub-

lished in the field of FDI [Ref. 7, 8, 9]. New approaches have been presented using

geometrical interpretation of the concept of analytical redundancy. These approaches

were developed for determining robust parity relations for failure detection in dynamic

systems. The differences in the recently introduced methods are that the problems

of model uncertainties are now addressed in detail. [Ref. 10, 2]. To respond to the

same problem of model uncertainties, many authors have worked with and developed

the theory of Unknown Input Observers(UIO) for use in linear uncertain dynamical

systems [Ref. 11, 5]. The last two methods mentioned are part of what is referred

to as the model-based approach to FDI. Some progress has also been reported using

neural networks or the knowledge based approach. Recent research directions include

use of techniques such as fuzzy logic, adaptive threshold selector and 7-X, observers

[Ref. 12].

F. FDI APPLICATION

The FDI algorithm developed in this thesis uses the six degree of freedom model

derived for the Bluebird test aircraft by Capt Kuechenmeister USMC [Ref. 13]. The

non-linear model can be linearized around typical flight conditions. The Bluebird

aircraft is used at the Naval Postgraduate School to test guidance, navigation and

control systems in horizontal flight. The physical characteristics of the Bluebird are

given in table 2.3 in [Ref. 13, p. 8]. In an aircraft flight control system the actuators

are used as servomechanisms which drive the control surfaces and the engine. The

actuators receive their input signals from an onboard Flight Management Computer.

8

The instrumentation of the Bluebird aircraft includes manv sensors or transducers

attached to the airframe, which provide signals proportional to the motion of the air-

plane, such as airspeed, altitude, heading, accelerations, attitude and rates of change

of attitude, control surface deflections. engine thrust etc.

1. FDI on the Bluebird Aircraft

The four different actuators under test in the Bluebird model correspond

to the following control surfaces and engine:

"* Elevator.

"* Aileron.

"* Rudder.

"* Thrust.

The sensors include the following parameters in the Bluebird model:

"* u for the forward velocity.

"* v for the lateral velocity.

"* w for the vertical velocity.

"* p for the roll rate.

"* q for the pitch rate.

"* r for the yaw rate.

"* - (phi) for the Euler roll angle.

"* E (theta) for the Euler angle of attack.

" %Y (psi) for the Euler heading angle.

The FDI algorithm implemented uses the Bluebird aircraft model and the

multiple model FDI technique described in [Ref. 7] and [Ref. 14]. The equations and

explanation on how this algorithm works are presented in Chapter II.

The work presented in this thesis is related to the Fault Detection or Fault

Isolation task (FDI). Reconfiguration or the remaining task of the monitoring system

to reconfigure and permit continued operation by the observed plant after a fault has

been detected and isolated is not addressed.

9

II. IMPLEMENTATION OF MULTIPLE
MODEL TECHNIQUE FOR FDI

A. DESCRIPTION ON THE MULTIPLE MODEL TECHNIQUE

The multiple model method addresses the problem of FDI by observing a se-

quence of inputs and outputs from a system and then choosing one out of a given set

of possible models that is felt most likely to have responded in an observed fashion.

This broad definition for multiple model technique does not only apply to FDI prob-

lem but also to areas of system identification and adaptive control which prompted

the early development of this method [Ref. 151.

The approach to FDI using multiple model technique is achieved as follows:

the fault isolation is carried out on the basis of different fault hypothesis and a

separate estimator(observer or Kalman filter) is assigned for a finite number of fault

hypotheses. These hypotheses are then tested in terms of likelihood functions, using

Bayesian decision theory, to detect which fault is present. The algorithm presented

in this thesis makes use of a bank of 14 Kalman filters which represent each of the

different error hypotheses tested. The first hypothesis is in the case of no failure. The

remaining filters are tuned for hard failure in the four actuators and nine sensors.

Figure 2.1 represent the flow diagram for the multiple model FDI algorithm.

B. STATE EQUATIONS OF THE AIRCRAFT

The states of the observed plant can be represented by a set of linearized stochas-

tic equations in the time domain. In the following equation the input is represented

by u, the output vector by y and the states of the system by the vector x. All other

effects that obscure the fault detection are introduced in the vectors w and v and

10

samnm Filtur 1

13 matrix Fault no 1

" oat

_________ Kan14iar1

Figure 2.1: FDI Flow Diagram using Multiple Model Algorithm

include parameters such as noise or unknown inputs:

k(t) = Ax(t) + Bu(t) + Ww(t) (2.1)

y(t) = Cx(t) + Vv(t) (2.2)

In the Bluebird application, x E V, u E VZ4 and y E V9. The matrices A, B, C are

known and of compatible dimensions.

1. State-Space Representation of Sampled and Discrete Systems

The solution to equation 2.1 has the following form:

x(t) = 4§i(t, to) x(to) + 1, •(t, r) B u(T) dr + il i(t, r) W w(7) dT (2.3)

11

If the system is sampled with sampling interval T. then we are interested

in the values of the state x at discrete time intervals. Using equation 2.3. the value

of the state's vector x, at time t = (k + I)T given its value at t, = kT can be obtained

as follows:

,(k+1)T

x((k+ I)T) = 4[(k+ I)T. kT]x(kT) + P((k + I)T.r)B u(7)dr +

fk(+)T 4b((k + 1)T, T-) W Wo(7) (17 (2.4)

If u(.) and w(.) are piecewise constant between sampling intervals. that is.

u(t) = u(kT) for kT<t< (k+ 1)T

and

w(t) = w(kT) for kT<t <(k+ I)T

then u and w can be taken out of the integral in equation 2.4 to obtain the sampled

or discrete state-space representation

x((k+l)T) = 'Z[(k+l)T, kT]x(kT)+fA[(k+l)T, kT]u(kT)+]F[(k+I)T, kT]w(kT),

(2.5)

where

$[(k + 1)T, kT] = fk+I) exp{A[(k + 1)T,T]} dr (2.6)

is the state transition matrix in the discrete form and

A[(k + 1)T, kT] = J P[(k + 1)T.r]Bdr (2.7)
A[(k

r[(k + 1)T, kT] = (+l)T f[(k + I)T. 7]W dT (2.8)

A discrete measurement y is given by

y(kT) = C(kT)x(kT) + V(kT)v(kT) (2.9)

12

If the system is not a sampled continuous system, then T caij be ignored and set to

one [Ref. 16, p. 215]. The solution to the difference equation 2.5 can be obtained by

letting k take on values k = 0. 1,2,3...... V and collecting terms to get the solution

of the discrete-time equation over kT samples:

k-1 k-I

x(kT) = 4(T) x(O) + 1 ,I0k-J-'(T) A(T) u(jT) + E k- --I(T) F(T) ,(jT) (2.10)
j=O)=0

The format used in the rest of the document as well as in the code of

the FDI algorithm will utilize the nomenclature employed in [Ref. 17] which is a

simplification of the equations derived above. The following eqnations represent the

state and measurement equations of a linear plant using this simplified format. Notice

that the vectors are represented by using bold characters. In the Bluebird application.

the C matrix will be set to be identity since all measurements are equal to tile state

of the plant:

x(k+1) = (k+1,k)x(k) + A(k+1,k)u(k) +L(k+I,k)w(k) (2.11)

y(k) = C(k)x(k) + V(k) v(k) (2.12)

C. KALMAN FILTER EQUATIONS

The following reasons prompted the use of Kalman filters to detect failures.

First the algorithm of the Kalman filter allows the calculation of the gain matrix in

order to minimize the variance of the estimation error. This feature of optimization

will be beneficial if the same estimates obtained from the FDI algorithm are to be used

later on in the aircraft autopilot. Another advantage of using an estimation algorithm

is that in the absence of hardware redundancy it is still possible to use a degraded

instrument through the information provided by the estimator in the reconfiguration

mode. However, the main reason for using Kalman filters is that the covariance of

the residual or innovation process calculated in order to determine the Kalman gains

13

are also utilized in the detection calculation using Bayesian theory. [-his feature of

the detection algorithm will be covered in more detail in section D.

The equations developed in the following sections are implemented in the MATLAB

code listed in APPENDIX C.

1. Assumptions and Initial Values

a. Yoise Assumptions

With the plant equations given by 2.11 and 2.12. the following as-

sumptions are made: The measurement noise has zero mean,

E[v(k)] = 0, fork =0.1.2.... (2.13)

is uncorrelated.

E [v(k)v T (j)] = E [v(j)v T (k)] = 0. forj 7 k (2.14)

and has covariance

E[v(k)v T (k)] = R(k), for k = 0,1,2,... (2.15)

Equations 2.14 and 2.15 can also be expressed with the Kroneker delta as

E [v(k)v T(j)] = R(k)6k0 (2.16)

where

60 1 = 0, k~j (2.17)

The random process noise has zero mean

E(w(k)] = 0, for k =0,1,2.... (2.18)

is uncorrelated, and has covariance

E[w(k)w T (j)] = E[w(j)wT (k)] = Q(k)6kj (2.19)

14

The random process noise and the measurement noise are uncorrelated

E[w(k)vT(j)] = E[v(j)wT (k)] = 0, for k.j =O.1,2.... (2.20)

b. Initial States Assumptions

The input u(k) for k = 0. 12.,... is known and deterministic.

The initial state is a random variable with known mean

E[x(0)] (2.21)

and covariance

E I [x(0) - Ro-][x(0) - Roor}= M (2.22)

the measurement noise and initial states are uncorrelated:

E [x(O) vT(k)] = E [v(k) xT(O)] = 0. for k = 0, 1,2.... (2.23)

The random process noise and initial state values are uncorrelated as well:

E [w(k)xT(O)] = E [x(O)wT(k)) = 0, for k = 0, 1,2,... (2.24)

2. Discrete Kalman Filter Equations

The observer equation is given by

5c(k/k) = k(k/k - 1) + G(k) [y(k) - S(k)] (2.25)

where

k(k) = C:R(k/k- 1) (2.26)

The nomenclature i(k/k - 1) means estimate of x at time or observation k given

measurements at time up to and including (k - 1). The goal of the optimal estimator

is to minimize the estimation error defined as

e(k/k) dLe' k(k/k) - x(k) (2.27)

15

A zero mean estimation error is sought for all k to obtain an unbiased estimator.

The complete development of the gain, covariance. and update matrices in order to

achieve the minimization of the variance of the measurement errors can be found in

[Ref. 17, p.4 - 3 2 to 4-41]. The following equations summarize the different parameters

involved in the calculations inside the Kalman filter. The computational steps involve

calculations before use of the Kalman filter as well as generation of estimates during

the filter operation. The gain schedule can be evaluated prior to using the estimator

since the gains do not depend on the measurement data sequence [Ref. 17. p4-421.

The following calculations are used to compute the gains and are imple-

mented in the MATLAB file kalmn_gain.m found in APPENDIX C.

First, let k = 0 and set the initial value for the covariance matrix P(k/k -

1) = M and then calculate the gain schedule with

G(k) = P(k/k -1) CT(k) [C(k)P(k/k - 1)CT(k) + R(k)]- (2.28)

The term in the bracket of equation 2.28 represents the hypothesized filter's internally

computed residual covariance or the innovation covariance. This term will become

important in section D. and is denoted as

ai(k) = C(k)P(k/k - 1)CT(k) + R(k) (2.29)

Next, compute the covariance of the estimation error matrix

P(k/k) = [I - G(k)C(k)]P(k/k- 1) (2.30)

Now, compute the predicted value for P(k + 1/k) using the discrete Riccati equation:

P(k+l/k) = $(k+l,k)P(k/k)'ý T (k+l,k) + r(k+l.k)Q(k)r(k+l.k) (2.31)

Repeat equation 2.28, 2.30 and 2.31 recursively until the final observation value

for k is reached. Hopefully, k should be large enough so that the gains will have

16

reached steady-state values. Notice that the last value calculated for P(k + I/k)

becomes P(k/k - 1) when the values are brought up again at the beginning of this

computation loop.

After the gain schedule has been computed. the values are stored in memory

and the observer can be implemented. The next equations are required to build the

Kalman filter. Once again these equations can be evaluated on a digital computer.

The MATLAB code for the Bluebird application can be found at APPENDIX C in

file kalman.i.m. First, k is set to zero and k(O/ - 1) is initialized to 3-,. After this.

k(k/k) can be evaluated when the first observation y(k) becomes available with

k(k/k) = k(k/k-1) + G(k)[y(k) - C(k)k(k/k- 1)] (2.32)

The term in the bracket of equation 2.32 is referred to as the innovation process or

the residual and is represented by

ri(k) = y(k) - 1(k/k - 1) (2.33)

The predicted value for k(k + I/k) is then evaluated with

*(k + I/k) = ,•(k + 1, k) k(k/k) + A(k + 1, k) u(k) (2.34)

Equations 2.32 and 2.34 are also repeated recursively to generate the state estimates.

As in the previous procedure, the last value calculated for k(k+ I/k) becomes k(k/k-

1) when the loop is reentered.

The updated measurement estimates are also calculated in the above steps

in equation 2.32 since

Sr(k) = C(k)k(k/k- 1) (2.35)

D. PROBABILITY OF FAILURE USING BAYESIAN THEORY

As explained earlier, the Multiple Model algorithm makes use of Bayesian theory

to perform the task of detection and isolation. The Multiple Model technique involves

17

the design of a finite set of linear stochastic systems indexed by I = 1,2 V with

the ith model being the one that corresponds to the actual model being observed.

This leads to the standard multiple hypothesis testing problem. Suppose that Hi

denotes the hypothesis that the real system corresponds to the tI" model. and pi(O)

the a-priori probability that Hi is true, then similarly pi(k) can denote the probability

that Hi is true for all the measurements up to and including the k"h observation. The

previous measurements can be represented by the set Alk = {u(O), u(1),. . , u(k -

1), y(l), y(2),.... y(k - 1)}. The Bayes' rule gives the following formula to calculate

pi (k),

p,(k) - p(y(k)IIHi, MAk) pi(k - 1)Eiý=ipA y (k) Inj, ,M~k) pj (k-I

where p(.) is the conditional probability density function. The density functions

must be calculated at each observation. This density function is conditioned on Hi

and is fortunately the same one step prediction density function produced by the

ith Kalman filter. This term is represented by ai in 2.29. Under hypothesis Hi,

the residual ri(k) should have a mean of zero, a covariance of ai(k) and be normally

distributed. Moreover, y(k) conditioned on Hi and Mk should be Gaussian with mean

Ci(k) 3FZ(k/k - 1) and with covariance ai(k). [Ref. 7, p. 2-2] These assumptions lead

to the following important formula for the probability density function

p(y(k)H1,Mk) = exP{-½rT(k)a-'(k)ri(k)} (2.37)p(yk~~,Mk)=(2r)22[det ai(k)]! 2

where m is the dimension of y(k).

Equations 2.32, 2.33, 2.34, 2.36 and 2.37 represent the Multiple Model

algorithm.

18

III. ADJUSTMENTS TO THE MULTIPLE
MODEL ALGORITHM

A. MODEL SELECTION FOR EACH FILTER

As mentioned in Chapter II. , section A., the Multiple Model algorithm is

implemented using a bank of Kalman filters. Each Kalman filter is based or -tuned"

for one possible error scenario. The inputs to the filters are the measurements of the

different aircraft sensors and the outputs are the innovation sequences ri(k), which are

a measure of how close the estimates are to the true measurements. These residuals

should be white sequences for the filter tracking the correct model. If the filter's model

is not correct, then the residuals will not be white and will include errors due to the

fact that the estimates are based on incorrect models. The probability calculations

equation 2.36 give a measure of which model, based on a specific fault, is most likely

to be correct compared to other models.

1. Fault Modeling for the Filters and for the Simulation Runs

Each Kalman filter is based on a particular failure; several methods can be

used to change the nominal model, i.e., the model representing no failure, to one that

is modified to isolate a specific fault.

a. Actuator Failure

Typically, actuator malfunction can be modeled by setting one of the

columns of the B matrix "o zero for the respective actuator to be at fault. Another

way is to increase the covariance of w(k) over the normal range of operation. A

third way, equivalent to the previous two, would be to add a driving term g(k) in

equation 2.34, [Ref. 8, p.461]. The algorithm developed in this thesis will utilize

19

the first two schemes to simulate faults and only the zeroing scheme to set the model

used by each Kalman filter. This is done in order to keep the number of Kahnan

filter to a minimum. Work by Menke and Maybeck has also indicated that soft

failure can be detected by Kalman filters tuned with hard failure models [Ref. 14,

p. 3136]. Therefore, the method employed in this thesis will use the first modeling

scenario where the columns of the B matrix are set to zero to tune the Kalman filters.

However, during the simulation, the appropriate column of the system's B matrix fed

into all the different Kalman filters will only be set to zero for simulation of hard

actuator failure. Incipient actuator failure simulation will be done by changing the

covariance of the process noise for the system's model. In other words, Kalman filters

based on the models with B matrice's column set to zero will be expected to detect

both hard and soft failure for the one specific actuator.

b. Sensor Failure

Sensor failures can also be modeled in three ways. The methods are

the same as for the three schemes explained above for the actuators except that

the zeros are included in the respective sensor's column of the C matrices and the

measurement noise v(k) is varied instead of the process noise.

B. TUNING OF THE KALMAN FILTERS

After selecting the models for the design of each filter, it is important to set the

parameters of every Kalman filter so that the process of detection will be optimized

to prevent the occurrence of false alarms. The Kalman filter is said to be tuned if it

provides an optimal or minimal error covariance on the estimates of the states.

The performance of the filter can be evaluated and adjusted by a series of

statistical tests. The operation of the estimator in equation 2.32 can be simplified

20

by the following representation

Rn,, = X~od + G [residualsnew] (3.1)

From equation 3.1, it is easy to see that the new estimates are formed partly using

the old estimates, which are a function of the plant model, and also from the new

measurements residuals. As one can see, the value of the new estimates is also a

function of the Kalman gains. For small G's, the new estimates use the model and

for large gains, the new estimates will be influenced by the measurements. The choice

and derivation of the gains is therefore instrumental in the operation of the Kalman

filters.

1. Influence of the Kalman Filter's Gains

As can be seen in equation 2.28, the gains are influenced by two variables,

P(k/k - 1) and R(k). Thus, there are four ways to influence the estimates. First

P(k/k - 1) are small and R(k) are fixed which gives small gains and is in agreement

with the model behavior since small P(k/k - 1) means that the model is adequate

(small variances on the errors). Second, R(k) are large and P(k/k - 1) are fixed,

which leads to small gains and also means that the model should be believed since

the measurements are noisy. Now for the case where the gains are large. If the

P(k/k - 1) is large and R(k) is fixed then the model is inadequate and the new

measurements should be used. If R(k) is small and P(k/k - 1) is fixed, then it means

that the measurements are good.

A Kalman filter does not operate correctly if the gains becomes small before

they should, meaning that the filter thinks that the new measurements do not carry

valuable information when this is actually not the case. The filter is said to diverge

when this occurs. To avoid filter divergence a series of tests must be performed.

21

2. Tests on the Kalman Filter

As a first check for the operation of the Kalman filter, the innovations

should form zero-mean and white sequences (see proof in [Ref. IS]). Formulae can be

found in [Ref. 16, p.95-97] to evaluate the mean with test statistics and to perform

whiteness tests on the covariance of the residuals. These tests can also be performed

in MATLAB using the mean(.) and cov(-) functions.

3. The Filter Knobs

The different parameters available in the Kalman filter for tuning will be

discussed in this section. The normal approach taken for state estimation in aircraft

application is to use a model developed from the aircraft's equations of motion. test

i to estimate the noise statistics then construct the filters and adjust them using

the data collected in the testing. Once these steps have been done the filters can be

evaluated to test their performance. If the designer is not satisfied with the results,

adjustments are done until satisfactory performance is obtained. This constitutes the

phase called "tuning of the Kalman filter".

Various parameters are changed during the tuning process. These param-

eters, sometimes called "filter knobs", are the process noise covariance Q(k), the

measurement noise covariance R(k), and the initial condition on P(O/O). From equa-

tion 2.31, it is apparent that for large Q(k), P(k + ilk) will also become large

indicating high uncertainties and an unreliable model. Conversely, if the values for

Q(k) are small, P(k + 1/k) will be small and the model will become adequate.

Another way to look at varying the knobs is to observe their effects on the

filter's transient response and the noise in the state estimates. As Q(k) increase so

will the gains and the system transient performance will be faster. However in this

case the noise in the state estimates will be larger. The same effect would occur if

R(k) would be smaller, but in many cases, the noise on the sensors is fixed. (See

22

Table 4.2). The second possibility is to lower values for Q(k). This results iii lower

gains, and therefore in a slower filter transient performance. However. this would also

filter more noise from the estimates.

The initial values for P(O/O) also have an effect on the algorithm. ks

P(O/O) is set to large values, the initial gains will also become large and the initial

measurement will be heavily weighted compared to the model which will be considered

inadequate. It should be noted however that as more observations become available

the effects of the initial values of P(O/O) disappear. This effect is favorable as the

initial values for P(O/O) are seldom known. These results will occur only if the filter

is stable and the system is observable and controllable. [Ref. 161

C. PROBLEMS WITH THE PROBABILITY CALCULATIONS

A minimum value problem can arise when using equation 2.36. If the value

calculated for pi(k) is small the next value pi(k + 1) will only grow back slowly if it

has to. If pi(k) becomes zero, then the next values for pi(n) for n > k will also be set

to zero.

To avoid the problem of slow variation in the pi (k) calculation and the generation

of null values, the pi(k) are set to a minimum value if the calculations fall below a

certain level. The bound has been set to 10-4 for the application studied in this thesis.

This number can be changed easily in the MATLAB file pk.m under the variable name

"min" for any other value. However, this one seemed to work fairly well for the

Bluebird application and lies in the range recommended by Willsky [Ref. 7, p.2-5].

23

D. PERFORMANCE OF THE MULTIPLE MODEL ALGORITHM IN

DIFFERENT ENVIRONMENTS

1. Non-Gaussian Noise

The Gaussian noise assumption is made in the formulation of equation 2.36

more specifically in the density function of equation 2.37. According to Willsky, [Ref.

7], even in the presence of non-Gaussian residuals. the performance of the algorithm

should not be influenced. That is, the algorithm is designed to measure how well

each of the Kalman filters is tracking by observing the residuals that are produced.

The probability calculations of equation 2.36 only measui, tnow well each filter is

estimating data relative to each other and how well they are expected to be tracking.

The important term in equation 2.37 is

rT(k) a-' (k) ri(k). (3.2)

In fact previous efforts have noted the leading coefficient before the exponential in

equation 2.37 provides little information in the identification of a failure [Ref. 141.

If the likelihood quotient that equation 3.2 represents is large, the ith model will be

non valid and if it is small, then the ith model is tracking well. This is reflected in

the calculation for the pi(k) and the Multiple Model algorithm will still produce the

expected results in the presence of non-Gaussian statistics.

2. Non-Linearities

The usual approach to non-linearities is to linearize the system around a

number of operating points that reflect the flight condition of the aircraft for each of

the models in the algorithm. These linearized models span the flight envelope and

can then be used to design extended Kalman filters which can replace the standard

Kalman filters in the Multiple Model algorithm. This has been done in this thesis

but around one operating point only. The A and B matrices were generated by Lt D.

24

TABLE 3.1: NOMINAL CONDITIONS FOR THE BLUEBIRD

Turn rate 0.1 (rad/sec)
Ground speed S0 (ft/sec)
Rate of descent 300 (ft/min)

Hallberg USN in his present thesis work to design a controller for a nonlinear system.

such as the flight control system of the Bluebird . The plant was linearized around

the conditions in Table 3.1 and the numbers in the A and B matrices were generated

using the MATLAB function "linmod". The values are shown in APPENDIX C in

file ABCU-load.m. The C matrix is set as the identity.

The problem associated with the linearized approach is to determine whether

the tracking errors from the extended Kalman filters corresponding to the linearized

model are significantly smaller than the errors from filters based on more distant

models. In the nonlinear case, the inaccuracies of the Kalman filters increase the val-

ues of the internally generated residual covariance ai(k) in equation 2.29 and 2.28.

This has the effect of reducing the value of the probabilities pi(k) obtained through

equation 2.37. As the values for ai(k) increase it becomes more difficult to detect

errors.

25

IV. SIMULATION AND RESULTS FOR THE
MULTIPLE MODEL FDI ALGORITHM

The procedure to simulate faults and test the Multiple Model FDI algorithm is

explained in APPENDIX A.

The simulation included trials to simulate hard failures in the actuators, hard

ailures in the sensors, soft failures in the actuators and soft failures in the sensors.

The results are shown in APPENDIX B. An input function was introduced in the

system in order to generate fluctuations in the sensors and drive the states to nonzero

values (see file kalmanV.i .m in APPENDIX C). If a state or sensor is at or close to

zero it is very difficult or impossible to detect a failure that is based on the hypothesis

that the sensor or actuator will go to zero when it fails.

The following paragraphs will introduce some of the data used to initialize the

algorithm prior to testing as well some discussion of the results.

A. SIMULATION PARAMETERS

As discussed in chapter 111. section B. 3., the value chosen for the process noise

will influence the behavior of the filters. The numbers employed in the simulation

are shown in Table 4.1 and can be changed in file ABCU~oad.m. These values

were selected to be as low as possible in order to have each of the separate filters

tuned to follow their respective model closely and to put little weight on the new

measurements. This is done to isolate the effect of a hard failures in each specific

filter.

It was found that in certain runs where the process noise values were too low, the

numbers generated by the Kalman filters in MATLAB would become unstable or out

26

TABLE 4.1: PROCESS NOISE VALUES

State Value -J

u 1.50000 (ft/sec)
v 0.75000 (ft/sec)
w 0.75000 (ft/sec)
p 0.08550 (rad/sec)
q 0.08550 (rad/sec)
r 0.60000 (rad/sec)
-I) 0.00785 (rad)
0 0.00785 (rad)
T 0.02618 (rad)

of range and the output of the probability computation were assigned to NaN (Not

a Number). NaN is produced in MATLAB when a division of either zero by zero or

infinity by infinity occurs. To fix this problem, numbers assigned for the process noise

were increased until the algorithm could function properly. Andrews and Grewal in

[Ref. 19, p.1 92 - 2 60] provide several interesting implementation methods for Kalman

filters where ill-conditioned problems arise. None of these special methods have been

tested in this thesis but they should be investigated if more accuracy is to be required

in future usage of this algorithm.

The values used for the measurement noise are those provided by the manu-

facturer of the sensor. These numbers are given in Table 4.2 and were obtained

from [Ref. 13, p. 60,61,71]. Samples of white noise were generated in MATLAB to

be represented by w and v in equations 2.11 and 2.12 and are shown in figure B.1

and B.2.

B. KALMAN FILTER TESTS

The Kalman filter developed for the algorithm was first tested using the plant

described in [Ref. 16, p. 127] and [Ref. 19, p. 143] and the error covariance matrices

27

TABLE 4.2: MEASUREMENT NOISE VALUES

11 State J Value
u 1.00000 (ft/sec)
v 0.50000 (ft/sec)
w 0.50000 (ft/sec)

p 0.57000 (rad/sec)
q 0.57000 (rad/sec)
r 0.57000 (rad/sec)
(D 0.00873 (rad)
0 0.00873 (rad)
%Y 0.05236 (rad)

matched those in the referenced books. The covariance matrices for the simulation

runs are shown in Figures B.3 - B.11. All converge to small values as expected.

The gains for the bank of Kalman filters are shown in Figures B.12 -1 B.20.

The values for the gains converges to zero or close to it. This was expected since the

process noise numbers were chosen to be small in order to get small gains. This way

the filters would trust the model derived for their appropriate failure hypothesis.

The measurement state estimates or filtered measurements were plotted against

the noisy measurements in Figures B.21 - B.29 for the case of no failure. On all the

figures. the estimates from the Kalman filters follow the general curve or orientation

of the "true" measurements which was expected from the theory. The "'notch" seen

on some of the figures at the 1001h observation is caused by the step input function

that comes down at this point. The residuals or innovation processes are also shown

in Figures B.30 - B.38 and are used in the calculation of the probability of detecting

error in equation 2.36.

28

C. DETECTION AND ISOLATION RESULTS

Menke and Maybeck in [Ref. 14. p. 3136] decided to set the detection threshold

for the different failure scenarios to a repetitive probability of 0.9 or higher for ten

consecutive observations in their application of FD!. This definition sets a minimum

that was well exceeded when testing this algorithm for the hard failure scheme. A set

of 13 hard failures were tested and some of the results are plotted in Figures B.39

- B.51. All of the data was not shown due to the large volume generated. Every

run for each failure generates 13 graphs of probability computation and only one of

those should show values close to one. The algorithm was quite good at detecting

abrupt failures in the system since all the probability plots show values reaching one

fairly soon and staying at that level until the end of all the observations. The plots

shown in Figures B.39 - B.51 represent only the particular output from the filter of

interest for the particular failure that they were supposed to be tuned to detect. The

otner plots from the filters tuned for other failures gave values of probability in the

vicinity of zero.

The test for no failure was also successful and the filter tuned for no failure

resulted in probability computation of one fairly early in the simulation as seen in

Figure B.52.

The results obtained during the soft or incipient failure runs were incoclusive

and the algorithm used in this detection scheme should not be considered yet as

operating satisfactorily. The probability computations were not consistent from one

run to another and several false alarms were generated, i.e., probabilities of 0.9 were

reached on filter channels not tuned to detect the error being tested. The plots in

Figures B.53 - B.55 were generated for the soft failure simulation on the elevator,

Figure B.53 shows that the failure was not detected. Figure B.54 and Figure B.55

show false alarm occurrences on the no failure filter and on the pitch rate filter.

29

The same types of results were obtained when soft failure was tested for the

airspeed velocity sensor as seen in Figures B.56 - B.58.

30

V. CONCLUSIONS AND
RECOMMENDATIONS

A. CONCLUSIONS

The results obtained were very encouraging for the detection of hard failures.

The filters were well tuned to detect failures under those particular situations. The

problematic results obtained when simulating soft failures were anticipated. These

difficulties have also been encountered by other researchers working in the field. More

work will be required to render this feature operational for the present FDI algorithm.

B. RECOMMENDATIONS

The Kalman gains should be precalculated and stored prior to being used since

they do not vary with measured data.

The work done in this thesis did not address the task of reconfiguration. If

the FDI algorithm is to be implemented on the Bluebird this part will need to be

addressed.

The whiteness tests described in chapter III. should also be conducted once

the algorithm is installed on the test bed since the noise experienced in the working

model might be quite different from that which what was generated numerically in

the MATLAB code.

A dual failure detection scheme could be implemented in future development in

order to detect several failures occurring at the same time.

The implementation methods from [Ref. 19, p.1 92 - 26 0] should be investigated

in order to improve the robustness of the algorithm when small numbers are generated

by the filter, thus eliminating ill-conditioned situations inside the algorithm.

31

The algorithm implemented was tested on a model derived from the linearization

of a nonlinear system around one nominal flight condition. More tests should be

conducted using models linearized around several flight conditions.

32

APPENDIX A: USER'S MANUAL

This appendix describes in detail the steps required to open and run the software

which generates the various probability charts to verify if failures have been detected.

The user must be familiar with the basic operation of the MATLAB software

package. Additionally, it is assumed that the user is already logged on to a NIATLAB

capable Unix work station. Before entering the MATLAB environment. one must

change the working directory to the one which contains all the '.m" files, in this case,

"marioth". The command is:

cd marioth

If the user is remotely logged onto a work station, he must set the DISPLAY environ-

ment variable appropriately in order to display graphics. The command which sets

this variable to intrepid, a Sparc 2 work station in the Avionics Lab is:

setenv DISPLAY intrepid.aa.nps.navy.mil:O

Now it is time to begin the MATLAB session by typing:

matlab

The next command to run the main program is:

fdi

A series of windows will appear for the user to select the type of failure to be

simulated. The user is required to position the arrow of the mouse on the pad of his

choice and click the left button of the mouse to select the item. The first window to

appear is for the selection of the type of failure to be simulated. The choices are:

33

e no failure

* Hard or abrupt failure

* Soft or incipient failure

The second window to appear, if a selection other than "no failure" has been

chosen from the previous window, is for the selection of a failure source. The choices

are:

* Actuator Failure

* Sensor Failure

The last window to appear will be to either select an actuator type or a sensor

type, depending on the choice made from the previous window. If the selection was

for an actuator failure, the choices will be:

* Elevator

* Aileron

* Rudder

* Thrust Actuator

If the selection was for a sensor failure, the choices will be:

•u

*v

•w

ep

eq

or

* phi

* theta

* psi

34

Before running the program, the user might want to change some parameters

inside the program in order to save time or to look at more graphics.

The structure of the FDI program will now be presented in order to give the

user insight into how the algorithm works prior to changing the values inside the

different files. The structure of the algorithm is made of several MATLAB files and

functions.

The main file is called fdi.m and the majority of the calls to the different

functions are initiated within this file.

The first file to be accessed is ABCU-load.m. The values for the plant matrices

A,B,C.u are stored in this file along with the initial value for k(O/ - 1). P(k/k - 1)

and the values for the standard deviation of the process noise and measurement noise.

If many runs were to be conducted for different linearized models around operating

points, the plant matrices would be changed in this file. The values for the time

increment dt as well as the Stop time can be changed appropriately to vary the

total number of observations.

The second file accessed by fdi.m is the function faultchoice .m. This function

brings up the various pop-up menus and allows the user to simulate a certain fault

in the plant by zeroing the column or changing the noise on certain matrices. No

changes are required from the user to this file unless the structure of the program

needs to be changed.

The third step combines the calls to the function kalmn-gain.m in order to

calculate the gain for each of the Kalman filters associated with a particular fault.

Since the gains are independent of the measurement data, once the program has been

run once and the gains are stored in memory, the flag "need-to-calculate-gains"

can be set to "0" and some time will be saved for the future runs since the gains will

not be recalculated every time.

35

The fourth step comprises the calls to the function kalman-i .m. This function

returus values for the residuals and the state estimates. Modifications to this file

can be made under the heading -measurements". where a step input of one second is

forced into the plant. The size of the step input is set to five degrees for the control

surfaces and to 50% for the thrust actuator. A call to the function kalman.plots

is located at the bottom of the file and can be enabled by removing the -%" at the

beginning of the line. The kalman-plots function generates plots for the process

noise, measurement noise, Kalman gains, error covariance matrices P(k/k). estimates

vs. noisy measurements, and plots for the residuals.

The "last call" of the main file is to the function pk.m. This function calculates

the hypothesis conditional probability pk as the probability that a measured param-

eter assumes the value at k conditioned on the observed measurement history up to

time k. It also generates the plots to show the probabilities of failure associated with

each sensor and actuator. No changes are required from the user to this file unless

the structure of the program needs to be changed.

36

APPENDIX B: GRAPHICAL RESULTS

Process noise
4

3

g2

0

C;

0

1-2
"--1

0 20 40 60 80 100 120 140 160 180 200
observation index (k)

Figure B.I: Process Noise w

37

Measurement noise
4II

3

III2-

0
E

0

-2 -

C

0 20 40 60 80 100 120 140 160 180 200
observation index (k)

Figure B.2: Measurement Noise v

38

Covawui of saumr error aMm. digonmi vakum for the GWOe xl
OO25ý

0.015A. /
//

o 0011- ,/

0ý005h
0

20 40 60 80 100 120 140 160 180 200
obeervaion kidex (k)

Figure B.3: Transpose Values of the Covariance Matrix P for State u

Covearano of emidmaon error menir, dklagonel vaides for the slee x2
0.03

0.025-1

0.02

10.015

0.01

0.005-

0 20 40 60 80 100 120 140 160 180 200
obeemvason kxx ()

Figure B.4: Transpose Values of the Covariance Matrix P for State v

39

XlO- Covuiance ot etmation amor mfa. dmgonW vah for the sate x3

9

,k P

6

14

3ý

2k

o 20 4o 60 80 100 120 140 160 180 200
obswlou IneMx (k)

Figure B.5: Transpose Values of the Covariance Matrix P for State w

X 10e Covence of seitioon ewr lo, degoe vako• e for the state x4

3

12:

91.5

1

20 40 60 s0 100 120 140 160 180 200
observation hdx (k)

Figure B.6: Transpose Values of the Covariance Matrix P for State p

40

4.5X 10-3 Covolence ol euateuon ovoriner dak*o vaknm for the state, 5

4tt

3.5

3

2.s5

I2
1.5~

% 20 40 w so Io 120 140 160 180 200

Figure B.7: Transpose Values of the Covariance Matrix P for State q

Figu CeBOvrnsposetIMetInsr ofni ditgofe l vake forathe @ato* xt

5

4

3.

2.

1 1

I
0 20 40 60 so 100 120 140 160 180 200

obnsvawtr Index Mk

Figure B.8: Transpose Values of the Covariance Matrix P for State r

41

X 10,3 Covaram o *e@mimWfn ar•,• l' diwWvau forOe W 1 $Mtale x7
4•

3.5w

2.5

t I

0.5-

0 20 40 6o 80 100 120 140 160 180 200
obeervtion Index (k)

Figure B.9: Transpose Values of the Covariance Matrix P for State phi

X 103 lance ot etd rornatr x, dagoiul vaiues for the *tat x8

3.5

.3

0.5

42

X 10-3 Covanance of estimnation error matrk, diagonal vakie for the state x9
3.5,

31

25

0.5-

C

0 20 40 60 80 100 120 140 160 180 200
obevation kde (k)

Figure B.11: Transpose Values of the Covariance Matrix P for State psi

43

Kahtm Gain fm the at&* xl
0.5,

0.41

0.3q

0 . 1 -

0 20 40 60 80 100 120 140 160 180 200
obeevauon kWx (k)

Figure B.12: Kalman Gains for the State u

Kakman Gain for the tal x2
0.6,

015

0.4

0.3

•0.2ý
C

2 0.1

-0 2 40 60 80 100 120 140 160 180 200
obeivatlon index (k)

Figure B.13: Kalman Gains for the State v

44

Kahmn Gain for the iw x30.6

0.5

0.4

€ 0.3 -!

0.2-

0.1

0 L

.77
0 20 60 80 100 120 140 160 180 200

obewrvaton kidex (k)

Figure B. 4: Kalman Gains for the State w

Kamna Gaidn for the ut x4

010.5

0.4

02

-0.3

0.1

01 20 40 60 80 100 120 140 160 180 200
obmevaton Index (k)

Figure B.15: Kalman Gains for the State p

45

KbMmn Gain for the sum z5

01

OAI

0.43

• o.j•0.21

0.1-

-0. 20 40 60 s0 100 120 140 160 180 200
obervubon WW= (k)

Figure B.16: Kalman Gains for the State q

Koani= Gadn fm ths smta A6
0.5,

0.4

0.3

S0.2

.1
0.1

"°0 20 40 60 s o 100 120 140 160 180 200

oservm#Abn knex (k)

Figure B.17: Kalman Gains for the State r

46

Kahmn G.M Ik the am@ x

0.3

0.1

.0 20 40 s 80 100 120 140 160 180 200
obmsvaton Wdsx (k)

Figure B.18: Kalman Gains for the State phi

Kuilmkn Gain for the gale xq
0.6

0.5

OA
2.4

S0.3

0. 1

0

0.1

0 20 40 60 80 100 120 140 160 180 200
oburvatlon Index (k)

Figure B.19: Kalman Gains for the State theta

47

KhlWmn Gain for the gIf. x9

0.5ý

0.4

0.3

0.1OIý

0 20 40 60 80 100 120 140 160 180 200
obewvaton kne (k)

Figure B.20: Kalman Gains for the State psi

48

Meumuwne (-.) yol and idJ w yl

82

so-

76-

74[

'20 20 40 60 80 100 120 140 160 180 200

Figure B.21: Measurement and State Estimate u

Moeurne • WnA() yhi2 and Lpdoe y225

20

15

10-

cm 5-

0-

.5

*10 20 40 60 80 100 120 140 160 18 20
observatlon Wadx (k)

Figure B.22: Measurement and State Estimate v

49

Mmwwu, mongm (-) yhi3 and updms y3

01

.2 h

I4-

A

-10 20 40 so 100 120,, 140 160 180 2

ooewvhml kxbex (k)

Figure B.23: Measurement and State Estimate w

mumemn'0 trf -. yha4 and updony4
2

105

3! 0. "

0 20 40 60 80 100 120 140 160 180 200

observation kid= (k)

Figure B.24: Measurement and State Estimate p

50

Memuawslt oom"n (-.) -W endW ~6Y5
2.5,4
1 0

0 I

-0.5 U I
-1 I -.

0 20 40 6o 80 100 120 140 160 180 200
olbv"fIOn Index (k)

Figure B.25: Measurement and State Estimate q

Memwumwt .e" (-.) yh"6 and upclesy6
2

1.5

1 oo

-05

-1,

20 40 60 80 100 120 140 160 180 200
ob•cvamon kW= (k)

Figure B.26: Measurement and State Estimate r

51

MerwmeW .wmit (-.) ytN97 awW updme y7

0.9r

0.81

S0.61-

Si /'

0.3 K0.4-

IV

0. 20 40 60 0 100 120 140 I60 180 200

Figure B.27: Measurement and State Estimate phi

Moemu wt Umni (-.)y and Wpdame y

0"o.5 •

I A4AOA -

0 0.3

02

0.1 1
o ~1

-0.1

0 20 40 60 80 100 120 140 160 180 200
obtwaton WW= (k)

Figure B.28: Measurement and State Estimate theta

52

imunmmt . (-,) yh.* and updolm y9
2.3k

2.2

2.1L

2-

t 18 I

>!

1.8-i

1.7"

1.5 -L

so20 40 60 80 100 120 140 160 180 200
dbwvmbn WOWu (k)

Figure B.29: Measurement and State Estimate psi

53

31

,tto

I I

I :

-3

0 20 40 60 80 100 120 140 160 180 200
obewv0son uis (k)

Figure B.30: Innovation Process for the State u

Reslus (y-yhm) *2
1.5

0.5

-05

-1

-1 20 40 60 80 100 120 140 160 180 200
obwrvgon kxW (k)

Figure B.31: Innovation Process for the State v

54

RewJim (y-ytul di3

2b5

2F

1

.5,

0 0 ý40 60 80 100 120 140 160 180 200
obeewation kide (k)

Figure B.32: Innovation Process for the State w

Resiuakn (y-yhat) rk4
2

1 .5-

0.5

0.5

Figure B.33: Innovation Process for the State p

55

RPSaaUi (YYl) ft
1.5!

0.5' k f 4

-1 25

0 20 40 60 80 100 120 140 160 180 200
obrvWion index (k)

Figure B.34: Innovation Process for the State q

RFMumb (y-yhtu) rt6

1.5

0.5

-0.5

-21

"0 20 o o60 80 10 120 140 160 180 200
obmrvion index (k)

Figure B.35: Innovation Process for the State r

56

Residwft~ (y-yhat) 11(7
0.04.

0.03-

0.02-

-0.01 -ý

I U

-0.04

"0% 20 40 60 80 10'0 120 14'0 160 180 200
obsrvalon index (k)

Figure B.36: Innovation Process for the State phi

Reeduaa (y-yhal) re4
0.04

0.02-

01
-0.04

1

-0.06

-0 20 40 60 so 100 120 10 160 180 200
obenmation index (k)

Figure B.37: Innovation Process for the State theta

57

ResidUm (y-yhot) rk9

0.15•

=005ý

0

-0.05

-0.1-

0 20 40 60 80 100 120 140 160 180 200
omwvmlon ndex Qk)

Figure B.38: Innovation Process for the State psi

58

Probalty of •,wm hard failure

lr

0.9

0.8$

0.7i

0.6ý

0.5

0.4-

0.21

0.1

'o 20 40 60 80 100 120 140 160 180 200
obsrvahian wx (k)

Figure B.39: Probability of Elevator Hard Failure

Probability of aileron hard failure

0.7-

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60 80 100 120 140 160 180 200
ol•ebaWon Mndex (k)

Figure B.40: Probability of Aileron Hard Failure

59

ProbilIty ol nuddsr hwd falum

0.9

0.8•

0-7ii.o.eF
1 05k-

0.4l

0.3

0.2k

0.1 ,,-

0 20 40 60 80 100 120 140 160 180 200
obueivaon index (k)

Figure B.41: Probability of Rudder Hard Failure

Probabilty of thnist aautor haird falure

0.91

0.8

0.7

lo~s

OA-

0.3-

0.1 -)

0 20 40 60 80 100 120 140 160 180 200
obswvaflon Wd (k)

Figure B.42: Probability of Thrust Actuator Hard Failure

60

PrbbiWy of u. foriward vaocay hard semor fa&ure
2

IL

o.6F

0.8-
i

0.2

0.2

% 20 40 60 80 100 120 140 160 180 200
observation index (k)

Figure B.43: Probability of u Sensor Hard Failure

Probebility of v, IWml ve"ocy hard wror falurs

0.99M99

0.9998

,0.9997

SO.Me 6

0.9995

0.9994

0.9m93

30 20 40 60 80 100 120 140 160 180 200
observation index (k)

Figure B.44: Probability of v Sensor Hard Failure

61

Praobaity of w. vetmta velocily hwld sewmor talum

1.
I

O.SH

0.7

0.6

0.44

O.34

0.2k

0.10 20 4 60 s0 100 120 1 40 160 180 200
obeelvatlon kidex (k)

Figure B.45: Probability of w Sensor Hard Failure

Probabiily of p, roll rate hwad samor falu

II
0.8-

0.7

0.64

10.5

0.3

0,2

2 40 60 80 100 120 14'0 160 180 200
obesavaton Index (k)

Figure B.46: Probability of Roll Rate Sensor Hard Failure

62

Probfibty of q, pach raet hwd senso ftadre

o.sF

0.78

o.,6145
CL

0

0.3

0.4

0 20 40 60 80 100 120 140 160 180 200
obMvilon index (k)

Figure B.47: Probability of Pitch Rate Sensor Hard Failure

PrmbUtky ol r, yaw rate hird semsor failure

0.s-

0.8

0.7-

ko.6 -
i

0.3-

0.2

0.1 20 40 6 80 100 120 140 160 180 200
otxevatlon indeM (k)

Figure B.48: Probability of Yaw Rate Sensor Hard Failure

63

Pmrbbily of pM, roll nsor had tslum

o.9F /
0.8ý

&0.7

0.5

Os

0.4

'3- 20 4o 60 80 100 120 140 160 180 200
obsaewvaon Widex (k)

Figure B.49: Probability of Roll Angle Sensor Hard Failure

P mb@bity of VWa, angle of Waak senmor h•d ftalum

0.9-

0.8-

0.7

,.0.5-

0.4

0.3

0.2

0 20 40 60 80 100 120 140 160 180 200
observation, index 0k)

Figure B.50: Probability of Angle of Attack Sensor Hard Failure

64

Prob~ft of pi, hWMed semr hard filure

2

1.61

1 .2+

0.8-

0.6 F
0.41-

0.2h

0 20 40 60 80 100 120 140 160 180 200
obtervafon index (k)

Figure B.51: Probability of Heading Angle Hard Failure

Probabity of no aom

0.9

0.8-

0.71

0.6 4

as-
0.4

0.3

0.2 -

0.1

20 40 60 80 100 120 140 1 60 180 200
obeewation index ()

Figure B.52: Probability of No Failure

65

Probadity cdi or kwlaI&J
0.12

0.16

0.06-

0.04

0.02--

0 20 40 60 80 100 120 140 160 180 200
osawato inmdex (k)

Figure B.53: Probability of Soft Failure on the Elevator Actuator

Pmb@lky of no wrw
0.7 ,

0.6 1
0.5

11OA 1

(L 0.3 -

0.2

0.1 -

0 20 4!0 60 80 100 120 140 160 180 200
obsrvadon index (k)

Figure B.54: Probability of Soft Failure on the Elevator Actuator

66

PIobmity of q, pitc rawe semor f.Uure

0.98- I

0.71

061-

a,.

0.31

0.21-

0.1-

0 20 4o 60 80 100 120 140 160 180 200
osevaon nde (k)

Figure B.55: Probability of Soft Failure on the Elevator Actuator

Probalty of u. forward veoy hard aeior faiure
1.5

-0.5

0 20 40 6 0 s 100 120 140 160 180 200obemation idex (k)

Figure B.56: Probability of Soft Failure on u sensor

67

Probdfily of no error

0.71-

0.61-

0.5ý

0.31-

0.12

0 20 40 6 80 100 120 140 160 180 200
obmefWaon index (k)

Figure B.57: Probability of Soft Failure on u sensor

ProbIWRY of r, ymw raw sensor faium

0.9-

0.8-

0.7

0.6

O.5

0.4

0.3

0.1

01 20 40 60 80 100 120 140 160 180 200
observation Index (k)

Figure B.58: Probability of Soft Failure on u sensor

68

APPENDIX C: FDI PROGRAM LISTING
fdi.m

% Fault detection and isolation for the Bluebird test bed aircraft

% By: Capt M. Levesque
% Canadian Air Force

% Main file in thesis for the partial fulfillement of
% the requirement for the degree of MSEE

% This is the main file that call all the subroutines
%required for the fdi algorithm

clear
clg
clf
%%%

ABCU-load %loads nominal matrix values for aircraft, A,B,C and u

kmax=Stop.time/dt;

X Plant matrix
[rC,cC]=size(C);
[rA,cA]=size(A);

%initialisation of input matrices from selected failure%%%

[Bm,Cm,Wm,Vm]=faultchoice(B,C,Wik,Vik,incipient-faultnoise_factor);

%noise generation
%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x%%%%%%%
Qm=zeros(rA,(rA*(kmax))); %covariance of process noise
Rm=zeros(rC,(rC*(kmax))); %covariance of measurment noise

wm=randn(rA,kmax); %randn(M,N) is an M by N matrix with random
vm=randn(rC,kmax); %entries normally distributed, mean 0.0 var 1.

%cov(X) is covariance matrix of X when each row is an observation and
%each column a variable
Qm=cov(wm'); %unweighted covariance matrix of the process/plant noise
Rm=cov(vm'); %unweighted covariance matrix of the measurement noise

[phidummy,GAMMAwm]=c2d(A,Wm,dt); %gives phi(k+l,k) and Gammaw(k)

%calls to calculate gains covariances of error matrices
%%69%

69

need-to-calculate-gains-l
if need-to-calculate-gains=1

%.Kalman filter tuned for no failure;
Blkf=B;
Clkf=C;

[G1,PPkkl,all=kalmn-gain(P-init,Vik,Wik,A,Blkf,Clkf,dt,Stop_ttime);

%hard actuator failures
%%%%%%%%%%%%%%%%%%%%%%%

%Kalman filter tuned for the system with elevator hard failure;
B2kf=B*diag([O 1 1 1]);
C2kf=C;

[G2,Pkk2,a2]=kalmn-gain(P_ init,Vik,Wik,A,B2kf,C2kf,dt,Stop_time);

%Kalman filter tuned for the system with aileron hard failure;
B3kf=B*diag([1 0 1 1]);
C3kf=C;

[G3,Pkk3,a3]=kalmn-gain(Pinit,Vik,Wik,A,B3kf,C3kf,dt,Stopt ime);

%Kalman filter tuned for the system with rudder hard failure;
B4kf=B*diag([1 1 0 1]);
C4kf=C;

[G4,Pkk4,a4]=kalmn-gain(Pinit,Vik,Wik,A,B4kf,C4kf,dt,Stop-time);

%Kalman filter tuned for the system with thrust actuator hard failure;
B5kf=B*diag([l 1 1 0]);
C5kf=C;

[G5,Pkk5,a5]=kalmngain(P_ init,Vik,Wik,A,B5kf,C5kf,dtr,Stop.time);

%,hard sensor failures
%%%%%%%%%%%%%%%%%%%%%%%%

%,Kalman filter tuned for the system with u, forward velocity
hard failure;

B6kf-B;
C6kf=C*diag([O 1 1 1 1 1 1 1 1]);

[G6,Pkk6,a6]=kalmn-gain(P_ init,Vik,Wik,A,B6kf,C6kf,dt,Stop_ttime);

%Kalman filter tuned for the system with v, lateral velocity
hard failure;

B7kf=B;
C7kf=C*diag([1 0 1 1 1 1 1 1 1]);

EG7,Pkk7,a7]=kalmn-gain(P_init ,Vik,Wik,A,B7kf,C7kf ,dt ,Stoptime);

%Kalman filter tuned for the system with w, vertical velocity
hard failure;

B8kf=B;
C8kf=C*diag([1 1 0 1 1 1 1 1 1]);

[G8,Pkk8,a8]=kalmn-gain(P-init,Vik,Wik,A,B8kf,C8kf,dt ,Stop-time);

70

%Kalman filter tuned for the system with p, roll rate hard failure;
B9kf-B;
C9kf=C*diag([1 1 1 0 1 1 1 1 1]);

[G9,Pkk9,a9]=kalmn-gain(P-init,Vik,Wik,A,B9kf,C9kf,dt,Stop-time);

%Kalman filter tuned for the system with q, pitch rate hard failure;
BlOkf=B;
ClOkf=C*diag(El 1 1 1 0 1 1 1 1]);

[GlO,PkklO,alO]=kalmn-gain(P-init,Vik,Wik,A,BlOkf,ClOkf,dt,Stoptime);

%Kalman filter tuned for the system with r, yaw rate hard failure;
Bllkf=B;
Cllkf=C*diag([l 1 1 1 1 0 1 1 1]);

[Gll,Pkkll,all]=kalmn-gain(P-init,Vik,Wik,A,Bllkf,Cllkf,dt,Stop-time);

%Kalman filter tuned for the system with phi, roll sensor hard failure;
B12kf=B;
Cl2kf=C*diag([l 1 1 1 1 1 0 1 I]);

[G12,Pkkl2,al2]=kalmn-gain(P-init,Vik,Wik,A,Bl2kfCl2kf,dt,Stop-time);

%Kalman filter tuned for tle system with theta, angle of attack sensor
hard failure;

Bl3kf=B;
C13kf=C*diag([l 1 1 1 1 1 1 0 1]);

[G13,Pkkl3,a13]=kalmn-gain(P-init,Vik,Wik,A,B13kf,C13kf,dt,Stoptime);

%Kalman filter tuned for the system with psi, heading sensor
hard failure;

Bl4kf=B;
C14kf=C*diag([1 1 1 1 1 1 1 1 0]);

[G14,Pkkl4,a14]=kalmngain(Pinit,Vik,Wik,A,B14kf,C14kf,dt,Stoptime);

end; %for if need-to-calculate.gains

%Calls to kalman filter function to calculate residue and state
estimates

%the nominal system

%Kalman filter tuned for no failure;
[resl,xhatl]=kalmani(Gl,Pkkl,xk.init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,Blkf,
Clkf,dt,Stoptime);

%hard actuator failures

%Kalman filter tuned for the system with elevator hard failure;
[res2,xhat2]=kalman-i(G2,Pkk2,xk-init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B2kf,
C2kf,dt,Stop_time);

71

%.Kalman filter tuned for the system with aileron hard failure;
[res3,xhat3]=kalman_ i(G3,Pkk3,xk_init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B3kf,
C3kf ,dt ,Stoptime);

%Kalman filter tuned for the system with rudder hard failure;
[res4,xhat4]=kalman_ i(G4,Pkk4,xk_.init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B4kf,
C4kf ,dt,Stop.time);

%Kalman filter tuned for the system with thrust actuator hard failure;
[res5,xhat5]=kalman_ i(G5,Pkk5,zxk_init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B5kf,
C5kf ,dt ,Stop.time);

%hard sensor failures

%Kalman filter tuned for the system with u, forward velocity hard
failure;

[res6,xhat6]=kalman_ i(G6,Pkk6,xk_ init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B6kf,
C6kf ,dt ,Stop-time);

%Kalman filter tuned for the system with v, lateral velocity hard
failure;

[res7,xhat7]=kalman_ i(G7,Pkk7,xk_ init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B7kf,
C7kf,dt,Stop-time);

%Kalman filter tuned for the system with w, vertical velocity hard
failure;

[res8,xhat8]=kalman_ i(G8,Pkk8,xk_ init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B8kf,
C8kf, dt, Stop.time);

%Kalman filter tuned for the system with p, roll rate hard failure;
[res9,xhat9]=kalmani(G9,Pkk9,xk_ init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,B9kf,
C9kf ,dt ,Stoptime);

%Kalman filter tuned for the system with q, pitch rate hard failure;
[resiO,xhati0]=kalman_ i(GlO,PkklO,xk-init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,
BlOkf,ClOkf ,dt,Stop-time);

%Kalman filter tuned for the system with r, yaw rate hard failure;
[resl1,xhatll]=kalman_ i(Gll,Pkkll,xk-init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,
Bllkf,Cllkf,dt,Stop-time);

%Kalman filter tuned for the system with phi, roll sensor hard failure;
[resl2,xhatl2]=kalman_i(Gl2,Pkkl2,xk-init,GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,
B12kf,C12kf ,dt ,Stop.time);

%.Kalman filter tuned for the system with theta, angle of attack
sensor hard failure;

[res13,xhat13]=kalmani(G13,Pkk13,xkinit, GAMMAwm,Vm,wm,vm,A,Bm,Cm,u,
B13kf,C13kf ,dt ,Stop.time);

%,Kalman filter tuned for the system with psi, heading sensor hard

72

failure;
[resl4,xhatl4]=kalman-i(G14,Pkkl4,xkinit,GAMMAwm,Vm,wm,vm,ABmCm,u,
B14kf,C14kf,dt,Stop-time);

%Soft or incipient failure

%Calls to probability function to calculate the probabilities on
each filter

pkx=pk(resl,al,res2,a2,res3,a3,res4,a4,res5,a5,res6,a6,res7,a7,res8,a8,
res9,a9,reslO,alO,resll,all,resl2,al2,resl3,al3,resl4,al4,dt,Stoptime);

73

ABCUAoad.m

%this m file is executed at the beginning of the fdi main file to load
%the memory with the following initial conditions

Stop_ttime=2;
dt=O.0l;

%/verification with model in the book by Candy p. 127

A=[0.999 0.0
0 1];

B=[1
0];

u-0;
C=[29.8 -0.623

0 24.9];
xk-init= [2.5

2.5];
P.init=le-6;
Wik=[sqrt(10) sqrt(10)]';
Vik=[sqrt(5.06e4) sqrt(l.4e5)]';

%verification with model in the book by Andrews and Grewal p.143

A= [0 1
-25 -2*.2*5];

B=[O
12];

u1I;
C=[i 0];
xk-init= [E

0];
P-init=2;
Wik=[O sqrt(4.47)]';
Vik=[sqrt(0.01)]';
incipient-fault-noise-factor=5;

Ymodel simulation using numbers from Dave Kuechenmeister's thesis

A=[-0.0635 0 0.3277 0 -1.4922 0 0 -32.1740 0
0 -0.3911 0 1.6086 0 -72.6109 32.1740 0 0

-0.7572 0 -4.7741 0 67.9934 0 -0.0002 -0.0002 0
0 -0.1471 0 -5.4414 0 1.5183 0 0 0

0.0151 0 -0.1933 0 -3.1672 0 0 0 0
0 0.1440 0 -1.0578 0 -0.8114 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0];

B-E -4.5835 0 0 8.7745

74

0 5.8282 0 0
-38.8681 0 0 0

0 0.6252 47.1717 0
-22.0417 0 0 0

0 -7.3151 -6.4345 0
0 0 0 0
0 0 0 0
0 0 0 0];

%deterministic control input
u=[-0.0181

0
0

0.2336];
C=eye(length(A));

xk_ init= [73.3000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0];

P.init=1;

Wik=[sqrt(O.1) sqrt(O.01) sqrt(O.01),...
sqrt(O.001) sqrt(O.001) sqrt(O.001),...
sqrt(O.001) sqrt(O.001) sqrt(O.001)]'; %Ww=[sigma]

Vikf[sqrt(10) sqrt(1) sqrt(1) sqrt(O.057) sqrt(O.057) sqrt(O.057),...
sqrt(O.2*pi/180) sqrt(0.2*pi/180) sqrt(3*pi/180)]';

incipient-fault-noisefactor=5;

%model simulation using numbers from Eric Hallberg's thesis
%%

A=[-0.0825 0.1193 0.0467 0.0011 1.3303 3.4789 0.0027 -32.0613 0
-0.1020 -0.4281 -0.0059 -1.4341 0 -80.7651 30.8814 0.7255 0
-0.8561 -0.0427 -5.2818 -3.4481 75.6252 0.0006 -8.4582 2.5534 0
0.0048 -0.1583 0.0149 -6.0885 0.3198 1.6817 -0.0074 0.0022 0
0.0069 -0.0039 -0.2155 -0.1305 -3.5224 0.0441 0.1064 -0.0321 0

-0.0061 0.1680 -0.0002 -0.8975 -0.0086 -0.9863 0.0002 0 0
0 0 0 1.0000 -0.0226 -0.0811 -0.0001 0.0971 0
0 0 0 0 0.9632 -0.2687 -0.0965 0 0
0 0 0 0 0.2696 0.9666 0.0016 -0.0082 0];

75

B=E-7.5739 0 -0.3370 8.7745
-0.2898 0 7.2176 0

-47.9100 0 -1.4904 0
1.8944 58.1206 0.4870 0

-27.2996 1.5561 0.0352 0
-0.0418 -10.8643 -9.0965 0

0 0 0 0
0 0 0 0
0 0 0 0];

%deterministic control input
u=O 0

0
0
.75];

C=eye(length(A));

xk-init= [81.5317
3.5119

-1. 4341
0.0042
0. 0275
0.0925
0.2720

-0.0840
1.7317];

P_init=l;
wf=1.5;
Wik=[l*vf 0.5*wf 0.5*wf 0.057*wf 0.057*wf 0.4*vf 0.3*pi/180*wf
0.3*pi/180*wf 1*pi/180*wf] 3;

Vik=[1 .5 .5 0.57 0.57 0.57 0.5*pi/180 0.5*pi/180 3*pi/180]';

incipient-fault-noise-factor=2;

76

faultchoice.m

function [Bm,Cm,Wm,Vm]=faultchoice(B,C,Wik,Vik,
incipient.fault-noise-factor)

% This function modifies the values of the matrices A, B, C, or u
% according to the type of failure selected from the user.

%choice of failure to be simulated%%
Failure-type-menu('Choose a fault scenario to test the FDI algorithm',

'no failure',
'Hard or abrupt failure',
'Soft or incipient failure');

if Failure-type -= 1
Failure-source-menu('Choose a failure source',

'Actuator Failure',
'Sensor Failure');

if Failure-source == 1
Actuator-type=menu('Choose a control surface related to your

actuator failure', ...
'Elevator',
'Aileron',
'Rudder',
'thrust actuator');

elseif Failure-source == 2
Sensor-type=menu('Choose a parameter related to your

sensor failure',
)u),

)v),

'ii', ..), .

,pJ ,

'phi', ..
'theta',
'psi');

end;
end;

end;

%%

%implementation of selected failure to input matrices%%%

%no failures
%%%%%%%%%%%%%%%%%%%%

77

if Failure-type == 1
Bm-B;
Cm-C;
Wm-Wik;
Vm=Vik;

%Hard or abrupt failures
%%%%%%XX%%%%%%%%%%%%XX %
elseif Failure-type == 2

if Failure-source == 1 %acmuator hard failure
Wm-Wik;
Vm=Vik;
Cm=C;
if Actuator-type == 1 %elevator hard failure

Bm=B*diag([O 1 1 1]);
elseif Actuator-type == 2 %aileron hard failure

Bm=B*diag([l 0 1 1]);
elseif Actuator-type == 3 %rudder hard failure

Bm=B*diag([1 1 0 1]);
elseif Actuator-type == 4 %Thrust actuator hard failure

Bm=B*diag([1 1 1 0]);
end;

elseif Failure-source == 2 %sensor hard failure
Wm=Wik;
Vm=Vik;
Bm=B;
if Sensor-type == 1 %u, forward velocity hard failure

Cm=C*diag([O 1 1 1 1 1 1 1 1]);
elseif Sensor-type == 2 %v, lateral velocity hard failure

Cm=C*diag([l 0 1 1 1 1 1 1 1]);
elseif Sensor-type == 3 %w, vertical velocity hard failure

Cm=C*diag([1 1 0 1 1 1 1 1 1]);
elseif Sensor-type == 4 %p, roll rate hard failure

Cm=C*diag([l 1 1 0 1 1 1 1 1]);
elseif Sensor-type == 5 %q, pitch rate hard failure

Cm=C*diag([l 1 1 1 0 1 1 1 1]);
elseif Sensor-type == 6 %r, yaw rate hard failure

Cm=C*diag([1 1 1 1 1 0 1 1 1]);
elseif Sensor-type == 7 %phi, roll sensor hard failure

Cm=C*diag([1 1 1 1 1 1 0 1 1]);
elseif Sensor.type == 8Xtheta, angle of attack sensor hard failure

Cm=C*diag([1 1 1 1 1 1 1 0 1]);
elseif Sensor-type == 9 %psi, heading sensor hard failure

Cm=C*diag([l 1 1 1 1 1 1 1 0]);
end;

end;

%Soft or incipient failure
%%%%%%%%%%%%%%%%%%%%%%%%%7

78

elseif Failure-type - 3

nf=incipient-fault.noise-factor;

if Failure-source == 1 %actuator soft failure
Bm=B;
Cm=C;
Wm=Wik;
Vm=Vik;
if Actuator-type == 1 %elevator hard failure

Bm-B*diag([nf 1 1 1]);
elseif Actuator-type == 2 %aileron hard failure

Bm=B*diag([l nf 1 1]);
elseif Actuator-type == 3 %rudder hard failure

Bm=B*diag([1 1 nf 1]);
elseif Actuatortype == 4 %Thrust actuator hard failure

Bm=B*diag([l 1 1 nf]);
end;

elseif Failure-source == 2 %sensor soft failure
Bm=B;
Cm=C;
Wm=Wik;
if Sensor-type == 1 %u, forward velocity hard failure

Vm=diag([nf 1 1 1 1 1 11 1])*Vik;
elseif Sensor-type == 2 %v, lateral velocity hard failure

Vm=diag([1 nf 1 1 1 1 1 1 I1])*Vik;
elseif Sensor-type == 3 Zw, vertical velocity hard failure

Vm=diag([l 1 nf 1 1 1 1 1 1])*Vik;
elseif Sensor-type == 4 %p, roll rate hard failure

Vm=diag([l 1 1 nf 1 1 1 1 1])*Vik;
elseif Sensor-type == 5 %q, pitch rate hard failure

Vm=diag([l 1 1 1 nf 1 1 1 1])*Vik;
elseif Sensor-type == 6 'r, yaw rate hard failure

Vm=diag([l 1 1 1 1 nf 1 1 1])*Vik;
elseif Sensor-type == 7 %phi, roll sensor hard failure

Vm=diag([l 1 1 1 1 1 nf 1 1])*Vik;
elseif Sensor-type ==8%theta, angle of attack sensor hard failure

Vm=diag([l 1 1 1 1 1 1 nf 1])*Vik;
elseif Sensor-type == 9 %psi, heading sensor hard failure

Vm=diag([1 1 1 1 1 1 1 1 nf])*Vik;
end;

end;
end;

79

kalmn-gain.m

function [G,Pkk,a]=kalmn-gain(P-init,Vik,Wik,A,Bikf,Cikf,dt,Stoptime)

kmax=Stop-time/dt;

% Plant matrix
[rC,cC]=size(Cikf);
[rA,cA]=size(A);

%matrix initialisation
%% % /%If%%
Pkkml=zeros(rA,(rA*kmax+l)); %P(k/k-1)
Pkk=zeros(rA,(rA*(kmax))); %P(k/k) covariance of estimation

%error matrix
G=zeros(rA,(rC*(kmax))); %Kalman Gains
a=zeros(rC,(rC*(kmax))); %hypothesized filter's internally

%computed residual covariance

%noise generation
Qikzeros(rA,(rA*(kmax))); %covariance of process noise
Rik=zeros(rC,(rC*(kmax))); %covariance of measurment noise

w=randn(rA,kmax); %randn(M,N) is an M by N matrix with random
v=randn(rC,kmax); %entries normally distributed, mean 0.0 var 1.

%cov(X) is covariance matrix of X when each row is an observation and
%each column a variable
Qik=cov(w'); %unweighted covariance matrix of the process/plant noise
Rik=cov(v'); %unweighted covariance matrix of the measurement noise

[phidummy,GAMMAik]=c2d(A,Wik,dt); %gives phi(k+l,k) and Gammaw(k)

% KALMAN FILTER CALCULATION

[phi-ikf,del-ikf]=c2d(A,Bikf,dt); %gives phi(k+l,k) and del(k)

% Offline calculations, generation of gain schedule
% (The Gains do not depend on measurement data)
%%%%%%%%A%%%

for i=l:kmax

%set P(O/-l)=P-init, the covariance of initial state value
if i==1,

Pkkml(:,(i*rA-(rA-1):i*rA)) = ..

80

ones(rA,rA).*P-init;
end;

%hypothesized filter's internally computed residual covariance used
in G

a(:,(i*rC-(rC-1):i*rC)) =
(Cikf * Pkkml(:,(i*rA-(rA-1):i*rA)) * Cikf' +
(Rik*diag(Vik)));

%Kalman Gains
G(:,(i*rC-(rC-1):i*rC)) =

Pkkml(:,(i*rA-(rA-1):i*rA)) * Cikf' *.
inv(a(:,(i*rC-(rC-1):i*rC)));

%P(k/k), covariance of estimation error matrix
Pkk(:,(i*rA-(rA-1):i*rA)) = (eye(rA) -

G(:,(i*rC-(rC-1):i*rC)) * Cikf) *

Pkkml(:,(i*rA-(rA-1):i*rA));

%discrete Lyapunov equation
%update the estimation error covariance matrix, new Pkkml or P(k+1/k)
Pkkml(:,((i+l)*rA-(rA-1):(i+l)*rA)) = phi-ikf *

Pkk(:,(i*rA-(rA-1):i*rA)) * phi.ikf' +
(GAMMAik*GAMMAik'*Qik);

end;

Sm=mean(a');
% tot-mean-a--mean(m)
% co=cov(a(1,:))
% size(a)
% a

81

kalmand.m

function [residualk,xhatkk]=kalmani(G,Pkk,xkinit,GAMMAwm,Vm,wm,vm,
A,Bm,Cm,u,

Bikf,Cikf,dt,Stop.time)

%The function kalman-i

%This function calculates the residuals and the state estimates of
%a system using a kalman filter tuned according to the input values
%in above bracket.

%by CAPT M. Levesque
X CAF
% Nov 1993.

% INITIALISATION PART%%%
!unalias rm
V!rm -r kalman.data
%diary kalman.data

kmax=Stop.time/dt;

% Plant matrix
[rC, cC] size(Cm);
[rA,cA]=size(A);

Y.matrix initialisation
%%
xk=zeros(rA,kmax+l); %system states
yk=zeros(rC,kmax); %measurement updates
xhatkk=zeros(rA,kmax); %xhat(k/k) state estimates
xhatkkml=zeros(rA,kmax+l); %xhat(k/k-1) state estimate a-priori
yhatk=zeros(rC,kmax); %measurement estimates
residualk=zeros(rC,kmax); %residual is y - yhat

% KALMAN FILTER CALCULATION
%%%

% measurements
%%

[phi,del]=c2d(A,Bm,dt); %gives phi(k+l,k) and del(k)
uinit=u;
for i=l:kmax,

if i<i/dt %1 sec unit step input
u=[3*pi/180

5*pi/180

82

3*pi/180
1];

else
u-uinit;
end

if i==l,
xk(:,i)=xk_init;

end;

xk(:,i+l) = phi * xk(:,i) + del * u + diag(GAMMAwm) *wm(:,i);

yk(:,i) = Cm * xk(:,i) + diag(Vm) * vm(:,i);

end;

% Online calculations, generation of estimates
%%%%%%%%%%%%%%%%%%%%%%%%%%•%%%%%%%%%%%%%%%%%%%%%%%%%%

[phi-ikf,del-ikf]=c2d(A,Bikf,dt); %gives phi(k+l,k) and del(k)

for i=l:kmax

if i<I/dt %1 sec unit step input
u=[3*pi/180

5*pi/180
3*pi/180
1];

else
u=uinit;
end

%initial states
if i==1,

xhatkkml(:,i)=xk.init;
end;

7.measurement estimate
yhatk(:,i) = Cikf*xhatkkml(:,i);

%innovation process, error in the measurement and estimate
residualk(:,i) = yk(:,i)-yhatk(:,i);

%state estimate
xhatkk(:,i) = xhatkkml(:,i) +

G(:,(i*rC-(rC-1):i*rC))
(residualk(:,i));

%State estimate update
xhatkkml(:,i+l) = phi.ikf * xhatkk(:,i) + del-ikf * u;

end;

83

%diary off

kalman-plots(A,Cm,G,Pkk,yhatk,yk,residualk,wm,vm,dt,Stoptime)

84

kalman-plots.m

function []=kalman-plots(A,C,G,Pkk,yhatk,yk,residualk,w,v,dt,Stoptime)

%The function kalman.plots

%This function is used to generate plots from the values calculated
%in the function kalman-i.

%by CAPT M. Levesque
% CAF
% Nov 1993.

% PLOTS
%%%

[rC,cC]=size(C);

[rA,cA]=size(A);

kmax=Stop.time/dt;

k=l:kmax;

%plot of the noise
%%
producenoiseplot=O;
if producenoiseplot==l

plot(k,w)
title('Process noise')
xlabel('observation index (k)')
ylabel(lwhite noise (mean=O, variance=l)')
pause;

plot(k,v)
title('Measurement noise')
xlabel('observation index (k)')
ylabel('white noise (mean=O, variance=l)')
pause

end;
%plot of the kalman gains
%%%%%%%%%%%%dn%%%%%%%%%%%%%%%%%%%%%%%%%%%%
producegainplot=O;
if producegainplot==l

k1l:kmax;
for i=1:rA

for r=l:rC
plot(k,G(i,(k.*rC-(rC-r))))
pause;
hold on

85

end;
title(['Kalman Gain for the state x',num2str(i),])
xlabel('observation index (k)')
ylabel('Kalman Gain (G)')
pause
hold off

end;

end;

%plot of the covariance matrix Pkk
prod%%%%%c%%%%o%%%%%%%%%%%%%%%p%%o%%%%%%
producecovarianceplot=O;
if producecovarianceplot==l
k=l:kmax;

for i=1:rA
plot(k,Pkk(i,(k.*rA-(rA-i))))
title(['Covariance of estimation error matrix, diagonal values for

the state x',num2str(i),])
xlabel('observation index (k)')
ylabel('Covariance, P(k/k)')
pause

end;
end;

%plot of the measurements and its estimates
producemeasurementsO;%%%%%%%%%%%%%%%%%%%%%
producemeasurements=O;
if producemeasurements==l

k=l:(kmax);
for n=l:rC,

plot(k,yhatk(n,:),'-.')
hold on;
plot(k,yk(n,:))
title(['Measurement estimate (-.) yhat',num2str(n),' and updates

y',num2str(n),])
xlabel('observation index (k)')
ylabel([I'Y',num2str(n),' and Yhat',num2str(n),])
pause;
hold off;

end;
end;
% plot of the residuals
%%%%%%%%%%%%%%%%%%Ij%%%%%%%%%%%%%%%%%%%%%%
produceresidualplots=O;
if produceresidualplots==l

for n=l:rC,
plot(k,residualk(n,:))

86

title(['Residuals (y-yhat) rk',num2str(n),])
xlabel('observation index (k)')
ylabel(['rkl,num2str(n),])
pause;

end;
end;

87

pk.m

function [pk] = pk(resl,al,res2,a2,res3,a3,res4,a4,res5,a5,res6,a6,
res7,a7,res8,aB,res9,a9,reslO,alO,resll,all,resl2,al2,resl3,al3,
resl4,a14,dt,Stop.time)

%The function pk

%This function calculates the hypothesis conditional probability pk
%as the probability that a measured parameter assumes the value at k
%conditioned on the observed measurement history up to time k.

kmax=Stop.time/dt;
[ra,ca]=size(al);

pkl-kml=l; %pk(:,O)=l;
pk2_kml=l;
pk3_kml=l;
pk4_kml=l;
pk5_kml=l;
pk6_kml=l;
pk7-kml=l;
pk8_kml=l;
pk9_kml=l;
pklO_kml=l;
pkll_kml=l;
pkl2_kml=l;
pkl3_kml=l;
pkl4-kml-l;

min= 0.0001;

Scase for k=1 to have a value for p(t-1), index can not equal zero!
%%%
k=1;

fzkl(k) = 1 / ((2*pi)-(ra*(1/2))*det(al(:,(k*ra-(ra-1):k*ra)))
"0.5) * ...
exp(-0.5*resl(:,k)'*inv(al(:,(k*ra-(ra-1):k*ra))) *
resl(:,k));

fzk2(k) = 1 / ((2*pi)-(ra*(1/2))*det(a2(:,(k*ra-(ra-1):k*ra)))
"-0.5) * ...
exp(-0.5*res2(:,k)'*inv(a2(:,(k*ra-(ra-1):k*ra))) *
res2(:,k));

fzk3(k) = 1 / ((2*pi)-(ra*(1/2))*det(a3(:,(k*ra-(ra-1):k*ra)))

88

"0.5) *

exp(-0.5*res3(:,k)'*inv(a3(: ,(k*ra-(ra-1):k*ra))) *
res3(:,k));

fzk4(k) = 1 / ((2*pi)-(ra*(1/2))*det(a4(:,(k*ra-(ra-1):k*ra)))
-0.5) *
exp(-0.5*res4(:,k)'*inv(a4(: ,(k*ra-(ra-1):k*ra))) *
res4(:,k));

fzk5(k) = 1 / ((2*pi)-(ra*(1/2))*det(a5(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-0.5*res5(:,k)'*inv(a5(: ,(k*ra-(ra-1):k*ra))) *
res5(:,k));

fzk6(k) = 1 / ((2*pi)-(ra*(1/2))*det(a6(:,(k*ra-(ra-1):k*ra)))
-0.5) *
exp(-0.5*res6(:,k)'*inv(a6(: ,(k*ra-(ra-1):k*ra))) *
res6(:,k));

fzk7(k) = 1 / ((2*pi)-(ra*(1/2))*det(a7(:,(k*ra-(ra-1):k*ra)))
"=0.5) *
exp(-0.5*res7(:,k)'*inv(a7(:,(k*ra-(ra-1):k*ra))) *
res7(:,k));

fzk8(k) = 1 / ((2*pi)-(ra*(1/2))*det(a8(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-0.5*res8(:,k)'*inv(a8(:,(k*ra-(ra-1):k*ra))) *
res8(:,k));

fzk9(k) = 1 / ((2*pi)-(ra*(1/2))*det(a9(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-0.5*res9(:,k)'*inv(a9(:,(k*ra-(ra-1):k*ra))) *

res9(:,k));

fzklO(k) = 1 / ((2*pi)-(ra*(1/2))*det(alO(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-0.5*reslO(:,k)'*inv(alO(:,(k*ra-(ra-1):k*ra))) *
reslO(:,k));

fzkll(k) = 1 / ((2*pi)-(ra*(1/2))*det(all(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-0.5*resll(:,k)'*inv(a11(:,(k*ra-(ra-1):k*ra))) *
resll(:,k));

fzkl2(k) = 1 / ((2*pi)-(ra*(1/2))*det(al2(:,(k*ra-(ra-1):k*ra)))
-0.5) *
exp(-0.5*resl2(:,k)'*inv(al2(:,(k*ra-(ra-1):k*ra))) *

resl2(:,k));

fzkl3(k) = 1 / ((2*pi)-(ra*(1/2))*det(al3(:,(k*ra-(ra-1):k*ra)))
"0.5) *

89

exp(-O.5*resl3(:,k)'*inv(a13(:,(k*ra-(ra-1):k*ra))) *
resl3(:,k));

fzkl4(k) = 1 / ((2*pi)-(ra*(1/2))*det(a14(:,(k*ra-(ra-1):k*ra)))
"0.5) * ...
exp(-O.5*resl4(:,k)'*inv(al4(:,(k*ra-(ra-1):k*ra))) * .

resl4(:,k));

pkl (k) =fzkl (k) *pkl-kml/...
(fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml + fzk5(k)*pk5_kml

fzk6(k)*pk6_kml + fzk7(k)*pk7-kml + fzk8(k)*pk8_kml + fzk9(k)*pk9_kml

fzklO(k)*pklO-kml + fzkll(k)*pkll1kml + fzkl2(k)*pkl2_kml +
fzkl3(k)*pkl3_kmi + fzkl4(k)*pki4-kml + fzkl(k)*pkl-kml);

if pkl(k)<min, pkl(k)=min; end;

pk2(k)=fzk2(k)*pk2_kmi/...
(fzkl(k)*pkl.kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml + fzk5(k)*pk5_kml

fzk6(k)*pk6_kml + fzk7(k)*pk7Tkml + fzk8(k)*pk8_kml + fzk9(k)*pk9gkml
"4 + ..
fzklO(k)*pklOjkml + fzkll(k)*pklljkml + fzk12(k)*pk2_kml +.fzkl3(k)*pkl3_.kml + fzkl4(k)*pkl4..kml + fzk2(k)*pk2_kml);

if pk2(k)<min, pk2(k)=min; end;

pk3 (k) =fzk3 (k)*pk3_kmi/...
(fzkl(k)*pkljkml + fzk2(k)*pk2_kml + fzk4(k)*pk4_kml + fzk5(k)*pk5-kml

fzk6(k)*pk6_kml + fzk7(k)*pk7-kml + fzk8(k)*pk8_kml + fzk9(k)*pk9-kml

fzklO(k)*pklO.kml + fzkll(k)*pkll-kml + fzkl2(k)*pkl2_kml + ...

fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzk3(k)*pk3_kml);
if pk3(k)<min, pk3(k)=min; end;

pk4 (k) =fzk4 (k) *pk4_kml/...
(fzkl(k)*pkl.kml + fzk2(k)*pk2_kmi + fzk3(k)*pk3_kml + fzk5(k)*pk5-kml

fzk6(k)*pk6_kml + fzk7(k)*pk7-kml + fzk8(k)*pk8.kml + fzk9(k)*pk9_kml

fzklO(k)*pklO-kml + fzkll(k)*pkll-kml + fzkl2(k)*pkl2_kml + ...
fzkl3(k)*pkl3-kml + fzkl4(k)*pkl4_kml + fzk4(k)*pk4_kml);

if pk4(k)<min, pk4(k)=min; end;

pk5 (k) =fzk5 (k) *pk5_kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk6(k)*pk6_kml + fzk7(k)*pk7Tkml + fzk8(k)*pk8_kml + fzk9(k)*pk9_kml

fzklO(k)*pklO-kml + fzkll(k)*pkllckml + fzkl2(k)*pkl2_kml + ...

fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzk5(k)*pk5_kml);

90

if pk5(k)<min, pkS(k)=min; end;

pk6(k)=fzk6(k)*pk6_kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5_kml + fzk7(k)*pk7_kml + fzk8(k)*pk8_kml + fzk9(k)*pk9_kml

fzklO(k)*pklO-kml + fzkll(k)*pkll-kml + fzkl2(k)*pkl2_kml + ...

fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzk6(k)*pk6_kml);
if pk6(k)<min, pk6(k)=min; end;

pk7(k)=fzk7(k)*pk7_kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5_kml + fzk6(k)*pk6_kml + fzk8(k)*pk8_kml + fzk9(k)*pk9_kml

fzklO(k)*pklO-kml + fzkll(k)*pkll-kml + fzkl2(k)*pkl2_kml +
fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4-kml + fzk7(k)*pk7-kml);

if pk7(k)<min, pk7(k)=min; end;

pk8(k)=fzk8(k)*pk8_kml/...
(fzki(k)*pklkmi + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pksjkml + fzk6(k)*pk6_kml + fzk7(k)*pk7_kml + fzk9(k)*pk9_kml

fzklO(k)*pklOkml + fzk11(k)*pk11kml + fzkl2(k)*pkl2_kml + ...

fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4-kml + fzk8(k)*pk8_kml);
if pk8(k)<min, pk8(k)=min; end;

pk9(k)=fzk9(k)*pk9_kml/...

(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5_kml + fzk6(k)*pk6_kml + fzk7(k)*pk7Tkml + fzk8(k)*pk8_kml

fzklO(k)*pklOjkml + fzkll(k)*pkll-kml + fzkl2(k)*pkl2_kml +
fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzk9(k)*pk9_kml);

if pk9(k)<min, pk9(k)=min; end;

pklO(k)=fzklO(k)*pklO-kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5.kml + fzk6(k)*pk6_kml + fzk7(k)*pk7_kml + fzk8(k)*pk8.kml

fzk9(k)*pk9-kml + fzkll(k)*pkllkml + fzkl2(k)*pkl2_kml +
fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzklO(k)*pklOkml);

if pklO(k)<min, pklO(k)=min; end;

pkll(k)=fzkll(k)*pkll-kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5_kml + fzk6(k)*pk6_kml + fzk7(k)*pk7_kml + fzk8(k)*pk8_kml

91

fzk9(k)*pk9_kml + fzklO(k)*pklOjcml + fzk12(k)*pkl2_kml +
fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzkll(k)*pklljkml);

if pkil(k)<min, pkll(k)=min; end;

pkl2(k)=fzkl2(k)*pkl2_kml/...
(fzkl(k)*pklkml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5_kml + fzk6(k)*pk6_kml + fzk7(k)*pk7jkml + fzk8(k)*pk8_kml

fzk9(k)*pk9gkml + fzklO(k)*pklO-kml + fzkll(k)*pkll-kml +
fzkl3(k)*pkl3_kml + fzkl4(k)*pkl4_kml + fzk12(k)*pk12_kml);

if pkl2(k)<min, pkl2(k)=min; end;

pkl3(k)=fzkl3(k)*pkl3_kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4_kml

fzk5(k)*pk5_kml + fzk6(k)*pk6_kml + fzk7(k)*pk7_kml + fzk8(k)*pk8-kml

fzk9(k)*pk9_kml + fzklO(k)*pklO-kml + fzkll(k)*pk11_kml +
fzkl2(k)*pkl2_kml + fzkl4(k)*pkl4_kml + fzkl3(k)*pkl3_kml);

if pkl3(k)<min, pkl3(k)=min; end;

pkl4(k)=fzkl4(k)*pkl4_kml/...
(fzkl(k)*pkl-kml + fzk2(k)*pk2_kml + fzk3(k)*pk3_kml + fzk4(k)*pk4jkml

fzk5(k)*pk5-kml + fzk6(k)*pk6_kml + fzk7(k)*pk7_kml + fzk8(k)*pk8_kml

fzk9(k)*pk9-kml + fzklO(k)*pklO-kml + fzkll(k)*pkll-kml +
fzkl2(k)*pkl2_kml + fzkl3(k)*pkl3-kml + fzkl4(k)*pkl4_kml);

if pkl4(k)<min, pkl4(k)=min; end;

%calculation for the rest of the samples
%%

for k = 2:kmax

fzkl(k) = 1 / ((2*pi)-(ra*(1/2))*det(al(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-O.5*resl(:,k)'*inv(al(:,(k*ra-(ra-1):k*ra))) *

resl(:,k));

fzk2(k) = 1 / ((2*pi)-(ra*(1/2))*det(a2(:,(k*ra-(ra-1):k*ra)))
-0.5) * ...
exp(-O.5*res2(:,k)'*inv(a2(:,(k*ra-(ra-1):k*ra))) *
res2(:,k));

fzk3(k) = 1 / ((2*pi)-(ra*(1/2))*det(a3(:,(k*ra-(ra-1):k*ra)))
"-0.5) * ...
exp(-O.5*res3(:,k)'*inv(a3(:,(k*ra-(ra-1):k*ra))) *
res3(:,k));

92

fzk4(k) = 1 / ((2*pi)-(ra*(1/2))*det(a4(:,(k*ra-(ra-1):k*ra)))"-0.5) * . .

exp(-O.5*res4(:,k)'*inv(a4(:,(k*ra-(ra-1):k*ra))) *
res4(:,k));

fzk5(k) = I / ((2*pi)-(ra*(1/2))*det(a5(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-O.5*res5(:,k)'*inv(a5(:,(k*ra-(ra-1):k*ra))) *
res5(:,k));

fzk6(k) = I / ((2*pi)-(ra*(1/2))*det(a6(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-O.5*res6(:,k)'*inv(a6(:,(k*ra-(ra-1):k*ra))) *
res6(:,k));

fzk7(k) = I / ((2*pi)-(ra*(1/2))*det(a7(:,(k*ra-(ra-1):k*ra)))
"Q0.5) *
exp(-O.5*res7(:,k)'*inv(a7(:,(k*ra-(ra-1):k*ra))) *
res7(:,k));

fzk8(k) = I / ((2*pi)-(ra*(1/2))*det(a8(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-O.5*res8(:,k)'*inv(a8(:,(k*ra-(ra-1):k*ra))) *
res8(:,k));

fzk9(k) = I / ((2*pi)-(ra*(1/2))*det(a9(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-O.5*res9(:,k)'*inv(a9(:,(k*ra-(ra-1):k*ra))) •
res9(:,k));

fzklO(k) = 1 / ((2*pi)-(ra*(1/2))*det(alO(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-O.S*reslO(:,k)'*inv(alO(:,(k*ra-(ra-1):k*ra))) •
reslO(:,k));

fzkll(k) = 1 / ((2*pi)-(ra*(1/2))*det(all(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-O.S*resll(:,k)'*inv(all(:,(k*ra-(ra-1):k*ra))) *

resll(:,k));

fzkl2(k) = 1 / ((2*pi)-(ra*(1/2))*det(al2(:,(k*ra-(ra-1):k*ra)))
"0.5) *
exp(-O.S*resl2(:,k)'*inv(al2(:,(k*ra-(ra-1):k*ra))) *
resl2(:,k));

fzkl3(k) = I / ((2*pi)-(ra*(1/2))*det(al3(:,(k*ra-(ra-1):k*ra)))
"-0.5) *
exp(-O.5*resl3(:,k)'*inv(al3(:,(k*ra-(ra-1):k*ra))) *

resl3(:,k));

93

fzkl4(k) = I / ((2*pi)-(ra*(1/2))*det(a14(:,(k*ra-(ra-1):k*ra)))
"-0.5) * ...
exp(-O.5*resl4(:,k)'*inv(a14(:,(k*ra-(ra-1):k*ra))) *
resl4(:,k));

pkl(k)=fzkl(k)*pkl(k-l)/...
(fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*pk4(k-1) + fzk5(k)*
pk5(k-1) + ...

fzk6(k)*pk6(k-1) + fzkl(k)*pk7(k-1) + fzk8(k)*pk8(k-1) + fzk9(k)*
pk9(k-1) +
fzklO(k)*pklO(k-1) + fzkil(k)*pkii(k-1) + fzkl2(k)*pkl2(k-1) + ...

fzkl3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-1) + fzkl(k)*pkl(k-1));
if pkl(k)<min, pkl(k)=min; end;

pk2(k)=fzk2(k)*pk2(k-l)/...
(fzkl(k)*pkl(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*pk4(k-1) + fzk5(k)*
pk5(k-1) +

fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk8(k)*pk8(k-1) + fzk9(k)*
pk9(k-1) + ...

fzklO(k)*pkIO(k-1) + fzkil(k)*pkil(k-i) + fzk12(k)*pki2(k-i) + ...

fzkl3(k)*pkl3(k-i) + fzkl4(k)*pkl4(k-1) + fzk2(k)*pk2(k-1));
if pk2(k)<min, pk2(k)=min; end;

pk3(k)=fzk3(k)*pk3(k-l)/...
(fzkl(k)*pkl(k-i) + fzk2(k)*pk2(k-1) + fzk4(k)*pk4(k-1) + fzk5(k)*
pk5(k-1) + ...
fzk6(k)*pk6(k-i) + fzk7(k)*pk7(k-i) + fzk8(k)*pk8(k-1) + fzk9(k)*

pk9(k-1) + ...
fzklO(k)*pklO(k-i) + fzkll(k)*pkll(k-i) + fzkl2(k)*pkl2(k-1) +
fzki3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-i) + fzk3(k)*pk3(k-1));

if pk3(k)<min, pk3(k)=min; end;

pk4(k)=fzk4(k)*pk4(k-l)/...
(fzkl(k)*pki(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-i) + fzk5(k)*
pk5(k-i) + ...
fzk6(k)*pk6(k-i) + fzk7(k)*pk7(k-i) + fzk8(k)*pk8(k-1) + fzk9(k)*

pk9(k-i) + ...

fzklO(k)*pklO(k-1) + fzkll(k)*pkll(k-1) + fzkl2(k)*pkl2(k-1) +
fzkl3(k)*pki3(k-1) + fzkl4(k)*pkl4(k-1) + fzk4(k)*pk4(k-1));

if pk4(k)<min, pk4(k)=min; end;

pk5(k)=fzk5(k)*pk5(k-l)/...
(fzkl(k)*pkl(k-i) + fzk2(k)*pk2(k-i) + fzk3(k)*pk3(k-i) + fzk4(k)*
pk4(k-i) + ...

fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk8(k)*pk8(k-1) + fzk9(k)*
pk9(k-1) + ...

94

fzklO(k)*pklO(k-1) + fzkll(k)*pkil(k-1) + fzkl2(k)*pk12(k-1) + ..

fzk13(k)*pk13(k-1) + fzk14(k)*pk14(k-1) + fzk5(k)*pk5(k-1));
if pkS(k)<min, pk5(k)=min; end;

pk6(k)=fzk6(k)*pk6(k-) I...
(fzkl(k)*pkl(k-1) , fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-1) + ...
fzk5(k)*DkS(k-1) + fzk7(k)*pk7(k-i) + fzk8(k)*pk8(k-i) + fzk9(k)*

pk9(k-1) +
fzlrlOkk)*pkIO(k-1) + fzkll(k)*pkll(k-1) + fzkl2(k)*pkl2(k-1) + .
fzk13(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-i) + fzk6(k)*pk6(k-1));

if pk6(k)<min, pk6(k)=min; end;

pk7(k)=fzk7(k)*pk7(k-i)/...
(fzkl(k)*pkl(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-i) + ...
fzk5(k)*pk5(k-i) + fzk6(k)*pk6(k-1) + fzk8(k)*pk8(k-1) + fzk9(k)*

pk9(k-i) + ...
fzklO(k)*pklO(k-i) + fzk1l(k)*pkll(k-1) + fzkl2(k)*pkl2(k-1) + ..

fzkl3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-i) + fzk7(k)*pk7(k-1));
if pk7(k)<min, pk7(k)=min; end;

pk8(k)=fzk8(k)*pk8(k-l)/...
(fzkl(k)*pkl(k-i) + fzk2(k)*pk2(k-i) + fzk3(k)*pk3(k-i) + fzk4(k)*
pk4(k-i) + ...

fzkS(k)*pk5(k-i) + fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk9(k)*
pk9(k-i) + ...

fzkiO(k)*pklO(k-1) + fzkii(k)*pkll(k-1) + fzkl2(k)*pkl2(k-i) + ..

fzkl3(k)*pkl3(k-i) + fzkl4(k)*pkl4(k-i) + fzk8(k)*pk8(k-i));
if pk8(k)<min, pk8(k)=min; end;

pk9(k)=fzk9(k)*pk9(k-l)/...
(fzkl(k)*pkl(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-1) + ...

fzk5(k)*pk5(k-i) + fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-i) + fzk8(k)*
pk8(k-i) + ...

fzklO(k)*pklO(k-1) + fzkll(k)*pkll(k-1) + fzkl2(k)*pkl2(k-1) +
fzki3(k)*pk13(k-1) + fzki4(k)*pk14(k-1) + fzk9(k)*pk9(k-1));

if pk9(k)<min, pk9(k)=min; end;

pklO(k)=fzklO(k)*pkiO(k-l)/...
(fzkl(k)*pkl(k-i) + fzk2(k)*pk2(k-i) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-i) +
fzk5(k)*pk5(k-i) + fzk6(k)*pk6(k-i) + fzk7(k)*pk7(k-1) + fzk8(k)*

pk8(k-i) + ...
fzk9(k)*pk9(k-1) + fzk11(k)*pkii(k-1) + fzk12(k)*pkl2(k-1) + ..

95

fzkl3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-I) + fzklO(k)*pklO(k-1));
if pklO(k)<min, pklO(k)=min; end;

pkll(k)=fzkll(k)*pkll(k-1)/...
(fzkl(k)*pkl(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-1) +
fzk5(k)*pk5(k-1) + fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk8(k)*

pk8(k-1) +
fzk9(k)*pk9(k-1) + fzklO(k)*pklO(k-1) + fzkl2(k)*pkl2(k-1) +
fzkl3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-1) + fzkll(k)*pkll(k-1));

if pkll(k)<min, pkll(k)=min; end;

pkl2(k)=fzkl2(k)*pkl2(k-l)/...
(fzkl.(k)*pkl(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-1) + ...
fzk5(k)*pk5(k-1) + fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk8(k)*

pk8(k-1) +
fzk9(k)*pk9(k-1) + fzklO(k)*pklO(k-1) + fzkll(k)*pkll(k-1) +
fzkl3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-1) + fzkl2(k)*pkl2(k-1));

if pkl2(k)<min, pkl2(k)=min; end;

pkl3(k)=fzkl3(k)*pkl3(k-l)/...
(fzkl(k)*pkl(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-1) + ...

fzk5(k)*pk5(k-1) + fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk8(k)*
pk8(k-1) + ...

fzk9(k)*pk9(k-1) + fzklO(k)*pklO(k-1) + fzkll(k)*pkll(k-1) +
fzkl2(k)*pkl2(k-1) + fzkl4(k)*pkl4(k-1) + fzkl3(k)*pkl3(k-1));

if pkl3(k)<min, pkl3(k)=min; end;

pkl4(k)=fzkl4(k)*pk14(k-l)/...
(fzkl(k)*pkl(k-1) + fzk2(k)*pk2(k-1) + fzk3(k)*pk3(k-1) + fzk4(k)*
pk4(k-1) + ...
fzk5(k)*pk5(k-1) + fzk6(k)*pk6(k-1) + fzk7(k)*pk7(k-1) + fzk8(k)*

pk8(k-1) + ...

fzk9(k)*pk9(k-1) + fzklO(k)*pklO(k-1) + fzkll(k)*pkll(k-1) + ...

fzkl2(k)*pkl2(k-1) + fzkl3(k)*pkl3(k-1) + fzkl4(k)*pkl4(k-1));
if pkl4(k)<min, pkl4(k)=min; end;

end; % index k

plot(l:k,pkl)
title('Probability of no error')
xlabel('observation index (k)')
ylabel('Probability')
pause

96

plot(1:kpk2)
title('Probability of elevator failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pk3)
title('Probability of aileron failure')
xlabel('observation index (W)')
ylabel('Probability')
pause

plot(l:k,pk4)
title('Probability of rudder failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pk5)
title('Probability of thrust actuator failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pk6)
title('Probability of u, forward velocity sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pk7)
title('Probability of v, lateral velocity sensor failure')
xlabel('observation index (I)')
ylabel('Probability')
pause

plot(l:k,pk8)
title('Probability of w, vertical velocity sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pk9)
title('Probability of p, roll rate sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pklO)

97

title('Probability of q, pitch rate sensor failure')
xlabel(lobservation index (k)')
ylabel('Probability')
pause

plot(17k,pk11)
title('Probability of r, yaw rate sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(l:k,pkl2)
title('Probability of phi, roll sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(1:k,pkl3)
title('Probability of theta, angle of attack sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

plot(1:k,pkl4)
title('Probability of psi, heading sensor failure')
xlabel('observation index (k)')
ylabel('Probability')
pause

98

LIST OF REFERENCES
1. Cunningham, T.B.. "Introduction and Overview,"' AGARD-LS-109 Fault Toler-

ance Design and Redundancy Management Techniques. pp. I-1 - 1-2. September
1980.

2. Horak, D.T., "System Failure Isolation in Dynamic Systems," J. Guidance. Vol
13, No. 6, pp. 1075-1082, Nov-Dec 1990.

3. Ranieri, R., Redaelli, R., "Automatic Error Detection and Recovery Techniques
in Onboard Intelligent Units for Space and Avionic Application." AGARD-('P-
361 Design for Tactical Avionics Maintainability, pp. 29-1 - 29-4, May 1984.

4. Drtil, H., Meyer, W., "Failure Self-Detection in Digital Flight Guidance Systems."
AGARD-AG-224, Integrity in Electronic Flight Control Systems, pp. 11-1 -. 11-7.
September 1980.

5. Patton, R.J., Frank, P.M., and Clark, R.N., Fault Diagnosis in Dynamic .S'ysteins.
Theory and Application. Prentice-Hall, Englewood Cliffs. NJ, 1989.

6. Willsky, A.S., "A Survey of Design Methods for Failure Detection in Dynamic
Systems," Automatica, Vol 12, pp. 601-611, 1976.

7. Willsky, A.S., "Failure Detection in Dynamic Systems," AGARD-AG-224. In-
tegrity in Electronic Flight Control Systems, pp. 2-1 - 2-14, September 1980.

8. Frank, P.M., "Fault Diagnosis in Dynamic Systems Using Analytical and
Knowledge-based Redundancy - A Survey and Some New Results," Automatica,
Vol 26, No 3, pp.4 59 - 4 74 , 1990.

9. Isermann, R., "Process Fault Detection Based on Modeling and Estimation Meth-
ods - A Survey," Automatica, Vol 20, No 4, pp. 387-404, 1984.

10. Lou, X.C., Willsky, A.S., Verghese, G.C., "Optimally Robust Redundancy Rela-
tions for failure Detection in Uncertain Systems," Automatica, Vol 22, No 3, pp.
333-344, 1986.

11. Saif, M., Guan, Y., "A New Approach to Robust Fault Detection and Identifi-
cation," IEEE Transactions on Aerospace and Electronic Systems, Vol 29, No 3,
pp. 685-695, July 1993.

12. Frank, P.M., "Lecture Notes", Abstracts, 12th Benelux Meeting on Systems and
Control, Houffalize, Belgium, March 3-5, 1993,

13. Kuechenmeister, D.R., A Non-linear Simulation for an Autonomous Unmanned
Air Vehicle, MSAE Thesis, Dept. of Aeronautics and Astronautics, Naval Post-
graduate School, Monterey, CA, September 1993.

14. Menke, T.E., Maybeck, P.S., "Sensor/Actuator Failure Detection in the VISTA
F-16 by multiple Model Adaptive Estimation," Proceedings of the ACC, San-
Francisco, CA, pp.3135-3140, June 1993.

99

15. Magill, D.T., "'Optimal Adaptive Estimation of Sampled Stochastic Processes."
IEEE Transactions on Automatic Control. Vol AC-10. pp. 434-439, October
1965.

16. Candy, J.V.. Signal Processing, The Model-Based .1pproach. Mc(raw-tlil., 1986.

17. Kirk, D.E., "Optimal Estimation: An Introduction to the Theory and Applica-
tions," Class Notes, U.S. Naval Postgraduate School. Monterey, ('A. 1975.

18. Anderson, B.D.. Moore, J.B., Optimal Filtering, Englewood Cliffs. N.J.. Prentice
Hall, 1979.

19. Andrews, A.P.. Grewal, M.S., Kalman Filtering Theory and Practice. Prentice
Hall, 1993.

100

BIBLIOGRAPHY
Ackermann, J., "Robust Control System Design." AGARD-AG-289 Fault Tolerant
Considerations and Methods for Guidance and Control Systems. July 1987.

Anderson, B.D.O., Moore, J.B., Optimal Control Linear Quadratic Methods. Prentice
Hall, 1990.

Bueno, R.A., Performance and Sensitivity Analysis of the Generalized Likelihood Ra-
tio Method for Failure Detection, MSAE Thesis. M.I.T.. Dept. of Aeronautics and
Astronautics, Cambridge, Mass., February 1977.

Chow, E.Y., A Failure Detection System Design Methodology Ph.D. Dissertation,
M.I.T. Dept. of Elec. Eng. and Comp. Sci., Cambridge, Mass., July 1980.

Da, R., "Failure Detection in Hybrid Strapdown - INS/GPS." AIAA Guidance. Nav-
igation and Control conference, Monterey CA, August 9-11 1993.

Deckert, J.C., Szalai, K.J., "Analytic Redundancy Management for Flight Control
Sensors," AGARD-AG-272 Advances in Sensors and their Integration into Aircraft
Guidance and Control, June 1983.

Farrell, J., Berger, T., Appleby, B., "Using Learning Techniques to Accommodate
Unanticipated Faults," IEEE Control Systems Magazine, June 1993.

Gelb, A., Applied Optimal Estimation, The M.I.T. Press, 1974.

Hall, S.R., Walker, B.K., "Orthogonal Series Generalized Likelihood Ratio Test for
Failure Detection and Isolation," J. Guidance, Vol 13, No. 6, Nov-Dec 1990.

Isermann, R., "Fault Diagnosis of Machines via Parameter Estimation and Knowledge
Processing - Tutorial Paper," Automatica, Vol 29, No 4, 1993.

Kubba, W.J., "Failure Detection, Isolation and Indication in Highly Integrated Digital
Guidance and Control System," AGARD-CP-272 Advances in Guidance and Control
Systems Using Digital Technique, August 1979.

Labarrere, M., "Detection de Pannes de Capteurs d'Avion par Utilisation de la Redon-
dance Analytique," AGARD-AG-224, Integrity in Electronic Flight Control Systems,
September 1980.

Labarrere, M., Pelegrin, M., Pircher, M.,"Automatic Recovery after Sensor Failure on
Board," AGARD-CP-272 Advances in Guidance and Control Systems Using Digital
Technique, August 1979.

Laprie, J.C., "Computing Systems Dependability and Fault Tolerance: Basic Con-
cepts and Terminology," AGARD-AG-289 Fault Tolerant Considerations and Meth-
ods for Guidance and Control Systems, July 1987.

101

Mariton, M., "Detection Delays, False Alarm Rates and the Reconfiguration of Con-
trol Systems," Int. J. Control, Vol 49, No. 3, 1989.

Marquis, C.W., Integration of Differential GPS and Inertial Navigation u.sing a Corn-
plementary Kalman Filter, MSAE Thesis, Dept. of Aeronautics and Astronautics.
Naval Postgraduate School, Monterey, CA, September 1993.

Min, P.S., Ribbens, W.B.. "A Vector Space Solution to Incipient Sensor Failure De-
tection with Applications to Automotive Environments." IEEE Transactions on Ve-
hicular Technology, Vol.38, No.3, August 1989.

Onken, R., "System Integrity by use of Selfdiagnosis Failure Detection." AGARD-
AG-224, Integrity in Electronic Flight Control Systems. September 1980.

Park, J.. Rizzoni, G.. "A New Interpretation of the Fault Detection Filter: The
Optimal Detection Filter," Proceedings of the ACC. San-Francisco, CA. June 1993.

Singh, M.G., Systems & Control Encyclopedia Theory, Technology, Applications. Vol.
1, A-Com, Pergamon Press, Manchester, UK, 1987.

Stukenberg, N., "An Observer System For Sensor Failure Detection and Isolation in
Digital Flight Control Systems." AGARD-CP-272 Advances in Guidance and Control
Systems Using Digital Technique, August 1979.

Stukenberg, N., "Optimal Detection of Sensor Failures in Flight Control Systems
using Deterministic observers," AGARD-AG-289 Fault Tolerant Considerations and
Methods for Guidance and Control Systems, July 1987.

Szalai, K.J., Larson, R.R. and Glover, R.D., "Flight Experience with Flight Control
Redundancy Management," AGARD-AG-224, Integrity in Electronic Flight Control
Systems, September 1980.

Tsui, C-C., "A General Failure Detection, Isolation and Accommodation System With
Model Uncertainty and Measurement Noise," Proceedings of the A CC, San Francisco,
CA, June 1993.

West-Vukovich, G., Zywiel, J., Scherzinger, B., "The Honeywell/DND Helicopter
Integrated Navigation System (HINS)," IEEE AES Magazine, March 1989.

Xia, Q., Rao, M., Shen, S.X., and Gourishankar, V.-G. "Robust Failure Detection,
Estimation and Compensation in Linear Systems," Proceedings of the ACC, San Fran-
cisco, CA, June 1993.

102

INITIAL DISTRIBUTION LIST

No. tf Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Dr. Isaac I. Kaminer, Code AA/Ka 5
Department of Aeronautics and
Astronautics
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr Harold A. Titus, Code EC/Ts
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Michele Girard
26030 Atherton Dr
Carmel, CA 93923

103

No. of Copies

7. DPED 1
National Defence Headquarter (NDHQ)
MGen George R. Pearkes Bldg
Ottawa, Ont,
KMA 0K2
CANADA

8. Directorate of Avionics, Simulators and Photography (DASP 2)
National Defence Headquarter (NDHQ)
MGen George R. Pearkes Bldg
Ottawa, Ont,
KMA OK2
CANADA

9. Capt. Mario J.L. Levesque
Directorate of Avionics, Simulators and Photography (DASP 2-3-6)
National Defence Headquarter (NDHQ)
MGen George R. Pearkes Bldg
Ottawa, Ont,
KIA 0K2
CANADA

104

