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PHASE I FINAL REPORT

CONTRACT F49620-93-C-0041

HIGH TEMPERATURE SUPERCONDUCTING JOSEPHSON JUNCTION ARRAY

SYSTEMS

EXEUTVESUMM4ARY

This goals of this Phase I program were to investigate high-temperature superconducting

Josephson arrays as mm-wave sources, to demonstrate radiation from them if possible, to

investigate potentially compatible radiative structures and to study practically useful subsystems

that would utilize their features. A junction technology was selected and improved to the point

where radiation from a variety of 2-dimensional arrays was measured. Power outp s of near 1
gW were measured, off-chip, and calibrated, above 100 GHz. The arrays were functioning and

were successfully coupled to a variety of antennas for broadband transmission. The effects of

array topology on radiation were investigated and an appropriate structure selected for further

development. Antennas for a variety of specific applications were selected on the basis of

bandwidth requirements, impedance levels, polarization and capability of sufficient monolithic

integration. The final part of the program was a study of potential subsystems that would utilize

these arrays. Interchip communications transceivers were one application studied and interchip

coupling was demonstrated using two of the antenna coupled arrays. The most promising of the
applications appears to be a monolithic clock source operating near 100 GHz. A monolithic
source of clean signals in this frequency range would solve many skewing and power distribution
problems beginning to appear in higher performance signal processing and communications

circuits. Based on the demonstrated performance of simple arrays, the feasibility of applications

such as the clock, and the inherent advantages of arrays in terms of efficiency, size and tunability
make continuing work very attractive.
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1. Background and objectives

The purpose of this Phase I project was to begin an investigation of high-temperature

superconducting Josephson junction arrays as mm-wave sources for a variety of possible
applications. Many existing sources in this frequency range suffer from low power density, poor

efficiency and/or difficult integrability [1]. The fundamental advantages of Josephson arrays [2]

could be important in these applications areas if significant phase locking of a sufficiently large

arrays can be achieved to obtain useful power levels

The objectives for this Phase I project can be grouped into five areas

1. Assessment of junction technologies for array purposes

We have two main junction technologies in house and the best one was to be selected for further
array development. Criteria include Ic, Rn, ATc, ARn, yield and process ease.

2. Process improvements

This is not a major component but the junction and other process steps were to be improved

particularly with respect to parameter uniformity. This was in conjunction with larger efforts on

other programs.

3. Test process run

Fabricate simple arrays and other circuits to help evaluate junction processes, passive structures

and to attempt radiation measurements on some simple arrays.

4. Radiative element study
A paper study (with simple experiments when feasible) of appropriate antenna types (bow, planar
equiangular and Archimedian spirals and log periodic spirals) that are all broadband but have

differences in impedance levels, bandwidth, polarization and other factors.

5. Subsystem integration study

A look at possible applications (that may be exploited in phase II) including source-based I]

concepts, mm-wave transceivers and junction arrays as phased array systems.

DI)1. L r.-&at I oi t.



F4%V-!3-CW41~bfmp sum perconucgfjosephson junti mnaysys~tems 4
2 Status of researh effort

Radiation was successfully measured from HTS JJ arrays during this project [3],[41 after

preliminary tests and improvements on the junction processes. The effects of topology on

radiation were analyzed and a probable structure was selected for later work. Paper studies were

conducted on radiation structures and subsystem applications. Likely radiative structures were

selected for several applications and the applications were graded on technical feasibility and

economic interest.

2.1 Junctions:

Two types of junctions were analyzed for use in the arrays project: electron-beam-defined

nanobridge junctions (NBJ) [5] and SNS edge junctions [6]. The structure and fabrication of

these junctions have been discussed in the literature and in the Phase I proposal. As can be seen

from the following table, the NBJs have a definite advantage in terms of uniformity but have

generally smaller critical currents and a longer fabrication time. The low critical current can be

compensated for by paralleling a number of junctions (as has been done for some digital
circuits), but the penalty in area can be enormous for array applications. For these purposes,
yield is defined as the fraction of junctions on a wafer having critical current > 5 ptA and it

generally exceeded 90% for both types of junctions.

Junction Ic (ILA) Rn (Q) AJc ARn yield lithography process time

Type (3 o- (3 O) difficulty

SNS 100-500 0.2-2 ± 22% ± 12% high easy short

1 (2 jim) (3-5 days)

NBJ 20-70 5-20 ± 11% ± 7% high hard long

(e-beam) (1-4 weeks)

The reduction in power density (array power per unit lithographic area) using NBJs can be severe

and may not be acceptable for the source-based applications. The long lead time at this point is

primarily an inconvenience. Also, although the SNS spreads are poorer, they are improving with

new barriers being engineered. The substitution of Co- and Ca-doped YBCO barriers for the
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original CaRuO3 barrier have reduced interface resistances and associated critical current

variations [6]. For these reasons, we chose to pursue primarily the SNS arrays for this work.

2.2 Process improvements:

Although this was not a significant part of this program (most of the work is being performed in
other programs which are being leveraged), the barriers were re-engineered this year resulting in

improved SNS uniformity. Improvements were also made in design rules allowing a tighter

packing of junction within the arrays thus increasing power density. This change was made

possible by changes in the ion milling protocol.

2.3 Test fabrication and measurement results

Two types of chips were fabricated under the auspices of this contract. The first consisted of a

variety of 2-D array topologies (plus test structures). These arrays were designed for dc and

spectral (off-chip) measurements. These measurements are used to study linewidth, efficiency,

output power and topological dependencies. The second consisted of a number of antenna

structures for help in evaluating the bandwidth and efficiencies of those structures. The results

are indicated below.

2.3.1 Transmission line tests

This is a simple half wavelength coplanar waveguide resonator with embedded junctions to

establish the propagation characteristics of these lines at high speed. This is important for proper
design of the matching networks that will be used at these mm-wave frequencies for the intended
applications. For time reasons, only one of these resonators was fabricated. But the junction I-V
curve showed a distinct step at 190 gtV (and a small wiggle at 380 p.V). This suggests a resonant
frequency of 91.96 GHz [7]. The resonant structure (shown in Fig. 1) is 500 urn long.
Assuming that this is W/2, the effective permittivity of the structure is 10.6. This is somewhat

lower than one would expect from classical coplanar waveguide formulae (erefl'=12-13) but is

not unreasonable based on some ambiguity in the electromagnetic surroundings of the

transmission line. We thus have a reasonable starting point for the design of matching structures.
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Shorted CPW resonator to evaluate Vph

Test junctions
to monitor
resonances

to bias
pad

bias pad

Capacitive gap to allow DC isolation

Figure 1. Coplanar waveguide structure for phase velocity tests.

2.3.2 Array tests and measurements

A few different array topologies have been measured extensively. The spectrum for one pure 2-

D array (see definition below, having junctions both parallel and normal to the main bias current

vector) operating at 77K is shown in Fig. 2. The array was embedded in a planar equiangular

spiral to be described in section 2.3.4. Power was measured off-chip with a 25 dB gain horn

connected to a harmonic mixer. This mixer was calibrated and connected to a conventional

spectrum analyzer. The estimated accuracy on the amplitude is about 2 dB and the estimated

frequency accuracy is 1 MHz.



F49620-93-C-0041 High temperature superconducting Josephson junction array systems 7

-45 I

E -

O -55- II

E-60-

"65 i I
117.5 118 118.5 119 119.5 120 120.5

Frequency (GHz)

(A)

(B)

Figure 2. (a) Measured spectrum of a 2-D array embedded in a planar equiangular spiral
antenna and (b) a photomicrograph of the interior of such an array. The dark lines (4 pLm wide)
are the upper YBCO/normal metal bilayer. The white boxes are the lower YBCO/SrTiO 3
bilayers. Junctions form where the dark lines cross the edges of the white boxes.

The efficiency can be calculated in a number of different ways. If a stable clock is needed, the

narrow band power is of most interest and those peak values (in a 3 MHz bandwidth) are as high

as 0.3 pW. The DC input power was about 6 tW so this corresponds to an efficiency of about

5%. Compared to efficiencies below 1% for many conventional sources, this is attractive. For

other applications, it is the broadband power that is of more interest and for this array that can be

as high as 1.3 giW leading to an efficiency of 22% which is quite good. Mismatch was

fortunately quite low with the present structure which helped efficiencies and output power

levels considerably. The flatness of power over a broad band is not excellent, presumably

because of the effects of surface wave modes. These surface wave effects are both a blessing and
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a cum i that they do contribute to phase locking of the array. The many steps in the IV curve

(of a typical array but not one used for efficiency calculations) shown in Fig. 3 can, at least in

part, be attributed to this coupling mode.

2.5

2

1.5-

0.51

0-

-0.5 P
-0.5 0 0.5 1 1.5 2

V (mV)

Figure 3. IV curve of a 2D array at 77K.

2.3.3 Topological effects

One reason why I-D arrays are not particularly attractive is that they are extremely sensitive to

parameter spread. Clearly if one junction is open, the circuit will fail; but more generally, tighter

parameter control is needed for phase locking than with the 2-D arrays. There are several quasi-

2-D array topologies and 3 of them are illustrated in Fig. 4. A collection of I-D arrays (Fig. 4c)
will have additional difficulty phase locking because of the lower level of communication

between junctions: there is only a radiation field to do the job. The pure 2-D structure (Fig. 4a)

offers greater hope of phase locking with excellent power density but can suffer from the

nucleation and propagation of vortices within the structure. This can artificially increase

linewidth. Another structure uses inductive cross-links (Fig. 4b) as opposed to junction cross-

links. It has a good deal of the phase locking advantages of the previous structure but with an

impediment to vortex nucleation/motion. Spectra from these three structures [8] are shown in

Fig. 5. All arrays were identical in size and used the same coupling structure. As is clear, it is

difficult to get a signal out from the Fig. 4c structure and the inductive cross-link version does

show the best linewidth. It should be noted that type 4b suffers more than 4a when the critical
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current spreads degrade. This may be because the cross-junctions provide some negative
feedback when too much current begins to be shunted away from a trouble spot. The structure of
Fig. 4b, then may have the best hope for a narrow but highly lockable source for further

applications assuming critical current spreads continue to improve.

(A) (B) (C)

SL•

00. *Type0B

S -8

00oo0 I@016 0 660•

Figure 4. Three quasi-2-D structures investigated.

2.4 Radiative study and antenna runs

For many of the applications envisioned, off-chip coupling is required and there are a variety of
possibilities. In narrowband situations, there are many simple alternatives but most of the
applications will be broader band (an octave or more) since tunability is one of the advantages of
these arrays. We considered four types of broadband antennas (see Fig. 6) [19]

(a) bow tie structures (one per junction or small groups)
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(b) Archimedian spirals
(c) equiangular planar spirals

(d) log periodic spirals

Type (a) has been attractive for LTS arrays because of the ability to locally tune out capacitance

with a minimal RF penalty. The presence of many antennas can facilitate phase locking as well.

Since HTS junctions have very low capacitance, many of these advantages vanish. The

bandwidth is comparatively narrower (-2:1 as opposed to 4:1 or even 10: 1 with the others) and

the space requirements can be enormous. Particularly since we are focusing on the more

commercially interesting 100 GHz range, the space requirements lower the power density to a

point where it is not very attractive for many applications. It is attractive, however, for the

phased array application but that will be discussed in more detail in the section 2.5.4.
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Pads

One (or a few) junction(s) ArMy
in each bow tie

• • • "" Pads

(A) (B)
Biaas Pads

tproisformer (CPW)

Arry in Center

(C) (D)

Figure 6. Four antenna types investigated. (a) array of bow tie antennas, (b) Archimedian
spiral, (c) planar equiangular spiral and (d) log periodic spiral.

2.4.1 Impedance

These very broadband structures all share a reasonable degree -f self-complementarity. Hence,
their impedances tend to approach the classical value [9] of 11/2 where T" is the local wave

impedance. For the case of an antenna on a substrate, the coplanar waveguide effective dielectric
constant seems to be reasonable [9] to use when computing h which results (for LaAIO3) an
impedance of 45-55 Q. Experiments were done on (c) and (d) antennas on LaA10 3 and the
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impedances were measured directly in the 30-40 GHz range (the lower end of the design range

for the antennas used). The type (c) antenna was about 53 ± 30 over this small band while the

type (d) antenna was about 62 ±4 0 over this band. The uncertainty was probably more due to

the complicated launch structure at the measurement point than to variations in the antenna fields

themselves. The actual impedance may be slightly higher since the probe arms used for the

measurement may have interfered slightly with the radiation pattern (effectively adding
capacitive loading) being tested.

For nanobridge junctions, matching is relatively straightforward (even with a square array)

because of the higher junction resistances. For the slightly more attractive (see section 2.1) SNS

junctions, it presents more of a problem since these junction resistances are much lower. One

must then consider incorporation of the matching structures in the antenna system. Type (d) has

a definite advantage here since tapers or other transformer structures can be neatly fit into the

interior of either apex arm.

2.4.2 Bandwidth
We did not observe significant differences in bandwidth. Through simple transmission

measurements between two similar antennas, it was verified that both (c) and (d) had bandwidths

of at least 3:1 (30-95 GHz) but more extensive measurements were not possible within the scope

of this project. Theoretically, it is expected that all would have bandwidths of up to 6:1 or higher

depending on the coupling structure. Since our needs will probably not exceed 3:1 or 4:1, we

suspect that this will not be a major issue. As is clear, the upper and lower frequency limits are

fundamentally set by the sizes of the largest and smallest radiating elements. As such, it is

reasonable to expect only minor differences between these antennas.

2.4.3 Polarization

This is of more concern in the pure source application. The advantage here goes to (b) with it's

circularly polarized field (true to a lesser extent with (c)). Type (d) has a linearly polarized field,

which is unusual but does not present a problem for transceiver applications (similar antennas on

both ends). The polarization in (d) is linear but parallel to the edges of the teeth. Since the most-

active tooth varies with frequency, the polarization changes with frequency more so than with the

other antennas. In terms of off-chip measurement, the circular polarization is less efficient but

not very position sensitive (thus making measurement much easier). The bow ties are, of course,
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simpler with their direct linear polarization but this advantage will often not outweigh the other

disadvantages of that approach.

2.4.4 Miscellaneous

The spirals have the advantage in terms of output power density but that is in direct competition

with the matching needs discussed above. It may be possible to integrate some matching

networks in the arms of the planar equiangular spiral (c), particularly if the lowest frequency

needed is above 100 GHz. If any significant matching hardware is needed, the composite real

estate requirements would probably favor the log periodic spiral (d).

In the measurements performed, the (d) type seemed slightly more prone to surface wave

formation perhaps because of the launch polarization. While this does sometime help locking of

the array, it can do strange things to the effective bandwidth.

Combining these thoughts, there are a few recommendations that can be made. When off-chip

coupling is needed for the envisioned broadband applications types (b), (c) or (d) are the logical

choice. For uniform illumination or when circular polarization is needed, type (c) is

recommended. It has more stable impedance control than (b) and has low sensitivity to

lithographic defects. For systems where matching is critical and there may be a need for

integrated circuitry near the array, type (d) is a good choice. The ease of inserting a transformer

and other circuits directly in the structure will keep losses to a minimum and increase efficiency

(both in terms of power and real estate).

2.5 Subsystem design

There are a variety of potential subsystem-level applications that may be of interests using

arrays. The purpose of this section is to select the best one or two for potential work in Phase II

and beyond. Among the candidates from the phase I proposal and further analysis are

(a) illumination sources for mixing and other quasi-optical applications

(b) a monolithic clock
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(c) a transceiver system working between chips or subsystems

(d) a phased array antenna using individual modulated oscillators as the antenna elements

The first two on the list are similar in that only a modestly tunable source is required. The other

two require a reasonable amount of ancillary circuitry (modulators, phase shifters, etc.).

2.5.1 Illumination sources

Type (a) is clearly attractive for mm- and sub-mm receivers possibly in the realm of radio

astronomy. The criteria of interest are area of coverage, power, linewidth, tunability,

polarization and its uniformity. With the variety of antennas available, the coverage area itself is

not an issue but the power density is. This is the biggest weakness of Josephson array sources

over competing technologies. Assuming junction uniformities continue their recent rate of

improvement, a few mW may be possible from one of these sources in the near term. For

sensitive mixers (SIS, RTDs and some others) this should be reasonable over a relatively large

area. Linewidth may or may not be an issue and this must be traded off against tunability.

Without resonant locking, the linewidths have been as low as 100 MHz in the W band range.

This may be all that is needed, but some specific applications may require slightly below I MHz

linewidths. This could possibly be achieved by improving the spreads on the junction processes.

If tighter linewidths are needed, resonant locking is always available. Monolithic resonators with

Qs as high as 50,000 have been reported. At this linewidth, the tuning range appears to be

substantial: 3:1 bandwidths or sometimes more. Based on simple JSPICE simulations, however,

getting more than 20-30% tuning range may be difficult. The trade-off here may be possible but

the commercial market is somewhat limited. In this regard, the related application (b) is

somewhat more attractive.

2.5.2 Monolithic clock

There is an increasing need for high speed clocks and one of the trade-offs discussed above may

be very attractive. Modest tuning range (to adjust for clock skew or for communications

synchronization) is required but huge bandwidths are probably not needed. A small linewidth

would be required (resonator Q>10,000) but that seems possible based on present linewidths, as

low as a few 10s of MHz (or lower), and available resonator technologies. Parallel plate

resonators with Qs higher than this have already be demonstrated because of the low radiation
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losses possible in such structures. A flip chip ground plane may be required for implementation

depending on advances in multilayer technologies. The monolithic, or at worst hybrid, nature of

the construct reduces power loss via surface modes and launch mechanisms. Power output in the

1Os of mW range would be attractive for a number of small superconducting and other digital

circuits. The tuning range would probably be at most a few GHz and that would be for global

synchronization or other timing reconciliation activities.

In terms of the combination of realizability, competitiveness and economic viability, this is

probably one of the more interesting applications for phase 1I pursuit. The cleanliness, tunability

and efficiency of other sources (on a per $ basis) including multiplied synthesizers, RTDs, Gunns

and LMPATTs all seem to suffer in comparison to an array-based system.

2.5.3 Interchip communications

It has been proposed [10] to use a modulated mm-wave carrier as a linking medium between

chips in some multichip carrier. An array would seem like a plausible choice to do such a job for

a superconducting system because of its easy integrability. The antenna choice for such a system

has already been mentioned but the practicality of this approach should be analyzed.

Bandwidth is the first issue of relevance. Assume a virtual carrier of 200 GHz (reliably

characterizing anything higher will prove difficult and expensive) and frequency shift-keying

(FSK) modulation (11 ]. The latter is quite simple since it relies on two sideband frequencies to

represent the binary data. Other techniques may, at best, double the effective bandwidth which is

probably not too important for this analysis. Linewidth is only an issue if it affects the

modulation sidelobes. The values seen so far, of order 10 MHz, should be adequate.

A simple modulation and demodulation scheme is shown in Fig. 7. A dc voltage bias is applied

to the array and a voltage-based data stream is applied in series during transmit. During receive,

a small current bias is swept (in addition to the fixed dc bias) and envelope detected. This sweep

rate is at least 3x the data rate and may be provided by a small array. The average voltage is then

run through a high speed comparator circuit (semiconducting or superconducting) to pull off the

output data stream. Vref is defined by the FSK frequencies but will be on the order of a few
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hundred mV. Tolerances will be fairly tight since Vref stability will track directly into bit error

rates (a stable source is hence quite important).

To determine the maximum data rate that can be handled, there appear to be two major

constraints: the maximum speed of the mod/demod system and the effective bandwidth of the

array system. The last question is a bit easier. We presumably can handle at least 3:1 antenna

and tuning bandwidths so we will assume the available bandwidth of 200 GHz (100-300 GHz).

Using a Carson estimation [I I], the maximum data rate would be limited to about 0.5(total

bandwidth)- frequency deviation in a one-sided sense. The highest comfortable number we

could get would be about 20 GHz for a data rate (assumes a 30 GHz deviation). Modulating at

20 GHz rates does not appear to be a problem other than the time constants of the array biasing

system. On the arrays tested so far via TDR, these time constants appear to be less than l5ps so

that is probably not an obstacle. The envelope detection on demodulation will certainly not be a

problem (50 GHz would be relatively easy) and the sweep generation will be straightforward

based on the experiments above (signal levels are only in the 10s of AV). Insufficient data exists

on the comparator to judge the level of engineering effort required but GaAs parts exist in the

literature that operate at > 20 GHz and some superconducting parts operating at 30 GHz have

been demonstrated. It thus seems possible that 20 GHz data rates could be practically sustained.

Mod in

Main
Array

S'H

Vref

Demod Out
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Figur 7. Mm-wave transceiver system for interchip communications. S represents a sweep

source (on-chip small array) and the switches represent transmit/receive selection.

Another concern is range of transmission. It is generally difficult to get narrow beamwidth at the
same time as extreme bandwidth from the antenna so we cannot expect large gain. A maximum
reasonable directivity is probably about 4. Assuming a power output of 10 gW (somewhat

liberal) and a received power of at least 0.1 jiW (for reliable demodulation), the standard range

equation [9] gives

r _ FG'TGRPrT = 0(3;L)
4yr N R

or something close to 4-5 mm. Within a stacked module pack this might be reasonable but more

than that would be impractical. It would not be extremely competitive with a coaxial bump
bonding approach in that case. A more attractive technological comparison would be to a fiber

link but the free space range does not appear to be that high. If a better demodulation scheme

could be found, such that say 1 nW power could be detected and demodulated reliably, then a

few cm range would be possible.

Despite these difficulties, it should be pointed out that interchip radiation coupling is possible.

As a simple experiment (to see if it could be done at all), two arrays (embedded in log periodic

spiral antennas) were placed over each other, separated by about 1 mm. Array 1 was voltage
biased at a fixed level while the IV curve of array 2 was measured. The concept was that if
radiation was being coupled, a step should appear on the IV curve of array 2 that tracked with the
bias on array 1. The IV curve of array 2 while array 1 was biased at 150 gV is shown in Fig. 8.

The step was found to track the array 1 bias over the range 120-245 ^±V, decreasing in size and

vanishing at both ends of that range. The step is somewhat broader than expected because of

excess noise pickup in this rather complicated experimental setup. While this certainly does not

demonstrate the practicality of the subsystem, it does illustrate that interchip coupling is possible.
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Figure & I-V curve of an array (in a log periodic antenna) placed 1mm above a voltage biased

array in a similar antenna.

2.5.4 Phased array

A phased array system is potentially attractive in the context of an illumination source or a short

range transponder. With a carefully controlled phase lag between elements of the array some

steering would be possible. Although the probable beamwidth will be large, steering would

enable some selection between destinations. As mentioned earlier, a likely topology is one of

individual radiating elements (e.g., bow tie antennas with a small array at each) steered in phase

with respect to the others. The use of Josephson inductance to do the tuning is one choice for

size reasons although other options include a ferroelectric capacitance or a flux flow inductance

modulation. Linewidth requirements would not be severe (at least among the envisioned

applications), the present values would probably be adequate.

Consider first what the phase control element would be. With a JJ inductance unit, a few pH of
shift would be quite realizable. An artificial transmission line phase shifter would then allow

more than adequate steering over a large bandwidth at the price of real estate. It is likely that a

single tuning element is all that would be allowed for that space reason. Based on recent analysis
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[12], it seems that getting the needed steering from a single Josephson element would be very
difficult. The same would hold for a single flux flow element since the scale of inductance

changes are about the same. A small ferroelectric capacitor would be possible but the materials
integration issues would be significant. Aside from the needed steering capability, the control

wiring would be a significant problem. Because the number of elements will be large for

sufficient power levels, small arrays would probably be used for each radiating element. Getting

the control wiring to each radiating element without interfering with the radiation pattern would

be difficult and almost certainly would result in a slow steering system (many ms probably).

In addition to the above problems, simulations suggest there will be difficulty in maintaining

sufficient phase lock in the array with the steering differentials in place. It is likely that there

would be severe amplitude fluctuations with steering angle greater than about 10 degrees with a

center frequency of 100 GHz. If that level of steering is not adequate, some fairly substantial

amplitude trimming circuits will have to be incorporated at each element as well. Since the real

estate and control wiring space is already somewhat limited, this represents a fairly severe

problem. Combining these obstacles, it would appear that the phased array system is a more

long term project requiring more significant development than some of the other subsystems with

significantly greater commercial appeal.

2.5.5 Conclusions on subsystem applications

The most enticing subsystem demonstration appears to be in the area of a monolithic clock. It is

an application of considerable commercial impact, marries well with the military source needs,

requires minimal active circuit or materials development outside of the array proper and takes

maximal advantage of the benefits of array-based oscillators. The apparent advantages in

efficiency, size, integrability and tunability make the clock concept quite attractive for short term

development. While many of the other applications have advantages, they all have some

significant limitations in terms of technology development required or in perceived advantage

over competing approaches.



F49620-93-C-0041 High temperature superconducting Josephson junction array systems 20

2.6 References

[1] R. E. Collin, Foundations for micww jgnn (McGraw-Hill, New York, 1966) or S.

Sze, Semiconductor devices: physics and technology (Wiley, New York, 1985).

(2] M. Octavio, C. B. Whan, and C. J. Lobb, Appl. Phys. Lett. 60, 766 (1992) or S. P. Benz and

C. J. Burroughs, Appl. Phys. Lett. 58,2162 (1991) or K. Wan, B. Bi, A. K. Jain, L. A. Fetter, S.

Han, W. H. Mallison, and J. E. Lukens, IEEE Trans. on Mag. 27, 3339 (1991)

[3] J. S. Martens, A. Pance, IK Char, L. Lee, S. Whiteley, and V. M. Hietala, "Superconducting

Josephson arrays as tunable microwave sources operating at 77K," Appl. Phys. Lett., Sept. 1993.

[4] J. S. Martens, K. Char, A. Pance, L. P. Lee, M. E. Johansson, S. R. Whiteley, K. E.

Kihlstrom, J. R. Wendt, V. M. Hietala, T. A. Plut, G. A. Vawter, S. Y. Hou, Julia M. Phillips,

and W. Y. Lee, "The use of 2-dimensional arrays to determine the uniformity of Josephson

junctions," IEEE Trans. on Appl. Superc. 3, 3095 (1993).

[5] J. R. Wendt, J. S. Martens, C. I. H. Ashby, T. A. Plut, V. M. Hietala, C. P. Tigges, D. S.

Ginley, M. P. Siegal, J. M. Phillips, and G. K. G. Hohenwarter, Appl. Phys. Lett. 61, 1597

(1992).

[6] K. Char, M. S. Colclough, T. H. Geballe, and K. E. Myers, Appl. Phys. Lett. 62, 197 (1993).

(7] T. Van Duzer and C. W. Turner, Principles of superconductive devices and circuits (Elsevier,

New York, 1981), chp. 5.

[8] J. S. Martens, K. Char, A. Pance, M. E. Johansson, S. R. Whiteley, J. R. Wendt, S. Y. Hou,

Julia M. Phillips, "HTS Josephson arrays," presented at the 1993 International Superconducting

Electronics Conference, Boulder, CO, 8/12-14/93.

[9] W. Stutzman and G. Thiele, Antenna theory and design (Wiley, New York, 1981), Ch. 6.

[10] Private communication, Prof. M. Beasley, Stanford University.



F49620-93-C-0041 High temperature superconducting Josephson junction array systems 21

[11] for example: F. G. Stremler, Introduction to communications systems (Addison Wesley,

New York, 1982), chp. 10.

[12] M. J. Feldman, "The Josephson junction as a variable inductance tuner," presented at the

1993 International Superconducting Electronics Conference, Boulder, CO, 8/12-14/93.

Two papers based on the work in this program have been published. They are references 3 and 4

above whose listing is repeated below.

J. S. Martens, A. Pance, K. Char, L. Lee, S. Whiteley, and V. M. Hietala, "Superconducting

Josephson arrays as tunable microwave sources operating at 77K," Appl. Phys. Lett. 63, 1681

(1993).

J. S. Martens, K. Char, A. Pance, L. P. Lee, M. E. Johansson, S. R. Whiteley, K. E. Kihlstrom, J.

R. Wendt, V. M. Hietala, T. A. Plut, G. A. Vawter, S. Y. Hou, Julia M. Phillips, and W. Y. Lee,

"The use of 2-dimensional arrays to determine the uniformity of Josephson junctions," IEEE

Trans. on Appl. Superc. 3, 3095 (1993).

4 Personnel,

Jon Martens

Current Position:

Member of the Technical Staff

Education:
Ph.D., Electrical Engineering, University of Wisconsin

Experience:



.4%20-93-C-0041 Hlgh temperature superconducting Josephson junction array systems 22

Dr. Martens has a background in microwave/inm-wave circuit and device design and has

been working on high speed superconducting electronics for the last 5 years. This includes work
on Nb and HTS circuits at the University of Wisconsin and high speed HTS circuits at Sandia
National Laboratories. The latter includes assisting in the development of two HTS junction
technologies, the demonstration of HTS digital circuits, the development of the flux flow

transistor to the stage of W-band amplification and the development of novel mm-wave materials
characterization techniques. At Conductus he has worked on HTS digital and analog Josephson
circuits (including a demonstration of HTS single flux quantum logic circuits), junction
development and mm-wave measurements.



F49620-93-C-0041 High temperature superconducting Josephson junction array systems 23

Aleksandar Pance

Current Position:
Member of the Technical Staff

Education:

Ph.D., Electrical Engineering, University of Rochester

Experience:
Aleksandar Pance joined Conductus after finishing his Ph.D. at the University of

Rochester. His Ph.D. thesis deals with modeling, design, analysis and measurements of 2-D

quasioptical Josephson junction arrays for 100 GHz- I THz oscillators. He has performed

microwave model measurements and characterization of 2-D active grid antenna arrays and

numerical simulations of Josephson junction arrays in time domain. He has designed 2-D

quasioptical arrays with 1000- 1100 junctions for fabrication in Nb-based technology. He has

proposed new Central frequency/Wideband design of quasioptical Josephson oscillator arrays

with integrated tuning structures. Dr. Pance is currently involved in several projects dealing with

both digital and analog high frequency applications of low and high temperature

superconductors.



F•4WQ.93-C-041 Hh temperature superconductig osephson junction array systems 24

Kookrln Char

Current Position:

Manager, Device Development group

Education:

Ph.D., Applied Physics, Stanford University

M.S., Physics, UCLA

B. S., Physics, Seoul National University

Experience:
Kookrin Char has been responsible for thin film and device development based on pulsed

laser deposition at Conductus since joining the company. He has designed and constructed a

mullet-target laser deposition system whose target carousel has recently become a commercial

product. He has developed processes for depositing state-of-the art YBCO films on buffered

sapphire substrates. His multilayer technique has been successfully applied to produce

engineered Josephson junctions in high-quality films. He leads the team that has developed the

bi-epitaxial Josephson junction technology now in use at Conductus and is responsible for many

of the key innovations behind Conductus' HTS JJ technology. Recently, he developed epitaxial

HTS SNS Josephson junctions using CaRuO3 as the metallic barrier. At Stanford University, he

developed highly-successful mullet-source sputtering techniques for producing YBCO films and

identified the existence of the "2-4-8" phase in these films. He also pioneered many techniques

for processing YBCO films. Kookrin Char has maintained a position of leadership in high-

temperature superconductor thin film materials and Josephson junctions since the earliest days of

this new technology.



F49620-93-C-0041 High temperature superconducting Josephson junction array systems 25

Marie Johansson

Current Position:
Process Engineer

Education:
Graduate courses (physics), University of Colorado, Boulder, 1990-1991
Graduate courses (physics), University of Linkoeping, Sweden, 1988-1989

BS, physics, University of Linkoeping, Sweden, 1986

Experience:

Ms. Johansson joined Conductus Inc. in July 1992. She is responsible for process development

and production of microwave and MRI/NMR devices at Conductus. She has developed a

reproducible wet-etching and passivation technique for processing of these devices. During her

time at Conductus, she has also developed a processing technique for digital devices such as shift

registers, and analog/digital converters.

From 1989 to 1991, as a guest researcher at National Institute of Standards and Technology, she

developed a process for fabrication of SNS junctions, from high temperature superconducting

thin films. Ms. Johansson also performed deposition and characterization of these materials.

From 1991 to 1992 she was employed at Advanced Fuel Research, East Hartford CT. where she

was responsible for establishing the processing of YBCO IR-detectors on Silicon. Ms.

Johansson was employed in the Microwave Technology Group at the National Defense Research

Institute (FOA), Link(ping, Sweden from 1986 to 1989. She developed, fabricated and

characterized passive microwave devices (based on normal metals). She was responsible for the

development of a low loss 3dB coupler for use in microwave systems.



F49620-93-Ci0041 Hgh temperature superconducting Josephson junction array systems 26

Stephen Whiteley

Current Position:

Manager, Digital Technologies group

Education:
Ph.D., Electrical Engineering and Computer Science, UC Berkeley

Experience:

Stephen Whiteley has an extensive background in superconductor and semiconductor

circuit development. Most recently he has served as a consultant to several firms pursuing

superconductive electronics development, particularly in the area of advanced signal processing

components. He is currently developing an advanced Josephson circuit simulator based on

SPICE3 as a commercial product. He served as the manager of the New Devices and Circuits

Group at Hypres, Inc., where he designed complex Josephson circuitry that was often integrated

with optical and other sensors. Upon completion of his doctorate, he worked for Tektronix, Inc.

on designing a high-speed analog/digital bipolar LSI integrated circuit - a time interpolator -

that is currently in use in the company's products. Stephen Whiteley's participation brings one

of the foremost experts currently working in this field into the project.



F49620-93-C-0041 High temperature superconducting Josephson junction array systems 27

Talk presented below contained array material (the use of NBJ arrays to help determine

uniformity):

"Electron beam defined nanobridge junctions: uniformity, physics and applications," 1993 Fall

MRS meeting, Boston, MA, 11/29/93-12/3/93.

Paper below was exclusively on this array work:

"HTS Josephson arrays," 1993 International Superconducting Electronics Conference, Boulder,

CO, 8/12-14/93.

6 New discoveries

We believe that the experimental comparison of the effects of 2-D array topology on spectral

performance (section 2.3.3) is original. This provides direction for the proper array design to be

possibly exploited in Phase II and other work. It is also believed that the

modulation/demodulation system proposed for the transceiver application (section 2.5.3) is a new

concept. It provides a monolithic circuit approach to interchip communications at 20 GHz data

rates although admittedly of limited spatial range.

7 Future thouhts

Based on the experiments to date, it appears that HTS technology is quite capable of producing

Josephson arrays with reasonable linewidths, modest output power, good efficiency,

straightforward antenna coupling and excellent tunability. The junction processes are still

improving and as the critical currents and their uniformities improve, it is likely that output

power densities and linewidths will improve as well. For a phase II project or other follow-on

work, a subsystem integration is of great importance. There are a large number of circuits

(drivers, modulators) and radiative structures to facilitate this. The subsystem to pursue should

probably be selected on the basis of the maximal advantage of a Josephson system (efficiency,

tunability, potential linewidth control, size) and maximum commercial value. Of those

subsystems evaluated, the quasi-monolithic clock seems to be the most attractive. Assuming that
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the linewidth seficatons discussed in section 2.5 can be achieved and power densities increase

a small amount, a very useful circuit could be produced that would satisfy the needs of a number

of digital signal processing and communications systems under consideration.


